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The theory of angular distributions of v rays is developed systematically, aiming at a phase consistent derivation of
angular distribution formulas for gamma rays emitted in the decay of an aligned initial state. The development starts
from first principles, that is, the angular distribution formulas are derived directly from perturbation theory and all
quantities introduced are carefully and explicitly defined. In particular the mixing ratios are phase consistently related to
reduced matrix elements of interaction multipole operators which again are well defined in phase. Hence the mixing
ratios become physical quantities which can be extracted from angular distribution measurements and then compared
in both magnitude and sign with the predictions of nuclear models (especially the independent particle model). Critical
stages in the theoretical development at which either a choice of phase convention has to be made or transformation
properties enter are emphasized.

As a first step, the transition probability for emission of gamma radiation with wave vector k and polarization & from
an initial state | \> to a final state | u> is calculated using time-dependent perturbation theory. This step makes no
specification of the angular momentum of the initial and final states and no multipole expansion of the interaction. Par-
ticular attention is paid to the relation between emission and absorption. In the second step of the calculation the angular
momentum of the initial and final states is specified, the interaction is expanded in a series of multipoles and the final
angular distribution formula is derived. In order to describe emission of gamma radiation a definite and well-defined part
of the interaction Hamiltonian must be expanded. This part of the Hamiltonian is determined by the order in which the
initial and final states are written in transition matrix elements. The expansion yields a set of interaction multipole opera-
tors which are well defined in phase and transformation properties. There is no uncertainty in the relative phase of the
electric and magnetic interaction multipole operators due to an arbitrariness in the phases of the vector potentials. These
interaction multipole operators must be used to define the mixing ratios appearing in angular distribution formulas in
this paper. It is shown that care must be taken when using Siegert’s theorem and “‘effective” multipole operators.

In the last section, reduced matrix elements of the interaction multipole operators are given explicitly for one- and
two-particle states and one- and two-holes states of the independent particle model.
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I. INTRODUCTION

The technique of observing the mixing ratios §,
i.e., the ratios of reduced matrix elements of different
multipoles contributing to a gamma transition be-
tween well-defined nuclear states has become a widely
used source of information about the structure of nu-
clear levels. The mixing ratio is usually obtained from

an angular distribution measurement of the gamma
rays with respect to a fixed axis of quantization. This
axis is defined in the experiment itself, as, for example,
in the case of gamma rays following a nuclear reaction
by the particle beam inducing the reaction. The in-
formation obtained is, in principle, twofold. In order
to fit the measured angular distribution, a certain
magnitude and a certain sign of the mixing ratio are
needed.

Both these quantities can, in principle, be predicted
if a nuclear model is used and can, therefore, both pro-
vide useful information about the validity of the model.
One of the two pieces of information has so far been
almost universally ignored: a comparison of the sign
(i.e., the relative phase of two multipoles contributing
to the transition) of the measured value of & and its
theoretical prediction (from a nuclear model) could
not be made. This is because it is usually impossible to
trace back to common ground the phase conventions
made in angular distribution theory and in model cal-
culations of electromagnetic transition matrix elements.

The methods used here are not new: We aim at
giving a phase-consistent derivation of an angular
distribution formula in terms of phase-defined electro-
magnetic reduced matrix elements and in terms of
population parameters of the initial state in its mag-
netic substates. It covers the most common method
used for determining mixing ratios from a distribution
measurement of gamma rays with respect to an axis
of cylinder symmetry. In order to make applications
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easy, the reduced matrix elements, which enter into
the distribution formula, are explicitly given to cover
the cases of single-particle, single-hole, two-particle,
and two-hole transitions. We derive the formulas from
first principles and try to proceed “step by step” to
enable the reader to follow the conventions which are
made, or the principles which are applied, to fix the
phases in a “most consistent” manner.

II. THE COMMON STARTING-POINT

A. Transition Probabilities for Absorption and Emis-
sion of Gamma Rays

The fundamental starting point is the formula for a
transition probability given by first-order perturba-
tion theory for a transition from a discrete state to a
continuum state (Di 47)

Wasp=(2r/R) | 0| V | @) oo, (2.1)

where | @) is the initial state and | 8) is the final state.
The interaction causing the transition is represented
by V, and p, is the density of final continuum states.

In our problem the initial state is a nuclear state | \).
The wave function representing this state may be a
many-particle state of any complexity, and at this
stage of the calculation it is not even necessary to
specify its angular momentum. The final state |b)
consists of a nuclear state | x) and a photon state | k, ¢),
where k is the propagation vector of the photon, i.e.,
| k | =% the photon wave number, and ¢ is a unit vector
giving the polarization. Special assumptions about the
definition of & are made later in this section when po-
larization conventions are specified. We may write the
total final wave function as

| 0)=|u, (k, €))
and

wO—pt(k, e))=Q2x/h) | (s, (& ) | V|\) [o(E).
(2.2)

In order to find the transition probability for emis-
sion of a photon with wave number k and polariza-
tion e it is necessary to calculate the matrix element
{u, (k, &) | V|\) and the density of states factor. If
we normalize the photon wave functions in a cubical
box with side L and periodic boundary conditions then
the density of photon states with a definite polariza-
tion per unit energy per unit solid angle is

p(E) =L3k/Tic(2m)?, E=fck. (2.3)

Later in this section we need the analog of formula
(2.2) for photon absorption. A nucleus in a state | u)
is irradiated with gamma radiation with polarization
¢, wave_vector k_and intensity /,(w) dw photons cm™2
sec™! in_the frequency range dw. The probability per
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unit time for absorption of a gamma ray from the in-
cident radiation with the associated nuclear transition
| u)—| ) is given by the “standard formula” of time-
dependent perturbation theory (Di 47)

w(ut(k, &) >N) = (2n/h) (dn/dE) | (N | V |, (&, 2)) |~
(2.2%)

The factor dn/dE is the number of photons per unit
energy in the initial state at the absorption frequency
wyn. If we again normalize the photon wave functions
in a cubical box with side L then the number of photons
in the box in the frequency range dw is

dn=L1,(w\,) dw/c,
where ¢ is the velocity of light. Hence
dn/dE= L3, (w\) [Fic; (2.3)

o= (FE\—E,)/fi is the frequency of the absorbed
photon.

The photon intensity I,(w) is related to the energy
intensity I.(w) by

I(0) =hol,(w). (24)

The interaction V between the photons and the nu-
cleons is self-adjoint if probability is to be conserved.
This implies that

(u, & &) [ V[N=N]V]p (& e))* (2.5

If the states in Eqs. (2.2) and (2.2') are the same
then formula (2.5) can be used to relate the emission
and absorption process. The square modulus of the
emission matrix element occurring in formula (2.2) can
be replaced by the square modulus of the absorption
matrix element occurring in (2.2"). This result is called
the “principle of detailed balance.” The emission and
absorption matrix elements may also be related re-
placing the principle of detailed balance by the principle
of time reversal invariance. This is necessary when,
for example, the state |\) is a continuum state (com-
pared Sec. 2.2).

Up to this point we have not said anything about
the defailed structure of the photon—nucleon inter-
action V. Two alternative approaches are possible for
calculating the matrix element (u, (k, &) | V | \).

(a) The interaction V may be taken from quantum
field theory and the matrix element {(u, (k, €) | V | \)
calculated explicitly.

(b) The transition probability for absorption of
radiation can be calculated treating the radiation field
classically. The result is compared with formula (2.2")
and a value for the square modulus of the matrix ele-
ment | A | V | g, (k, €)) |? extracted. This quantity is
then inserted in formula (2.2) for the emission proba-
bility making use of the principle of detailed balance.

The second approach has the advantage of a semi-
classical treatment. The interaction matrix element is
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obtained from well-known time-dependent perturba-
tion theory which makes use of familiar formulae only.
It is unnecessary to erect the complex formalism of
quantum field theory.!

In the following paragraphs we first develop the
semiclassical approach to the absorption problem,
treating the incident radiation as a classical electro-
magnetic field with an intensity distribution 7,(w)
(ergs per cm? and sec and unit angular frequency
range). The Hamiltonian for a nucleus interacting
with a classical electromagnetic field is?

H=H,— (eﬁ/ch) E {ngnpn'A(l’n) +gsnsn' R(rn) }

=H0+Hint(l) .

Here we have measured the momentum p, of the nth
particle in natural units of 7, i.e., p=—4V and simi-
larly the spin s is measured in units of 7, i.e., s=1%4,
where ¢ can be represented by the Pauli spin matrices.
g is the orbital g factor for the #th nucleon and g, is
its spin g factor. g;=1 or O for a proton or a neutron,
g=25.585 or —3.826 for a proton or a neutron, respec-
tively. For the sake of simplicity we now drop the sub-
script # and always understand Hi,s as a summation
of single-particle operators, summed over all individual
nucleons if many-nucleon systems are concerned.
If the classical field A is a plane wave, then

A(r, ) =AoRe[eexp (tker—iwl) ]
=34,[e exp (k- r—iwt)+e* exp (—ik-r+iwt)],
(2.7)

with 4o and w being real, positive numbers. In general
e is a complex unit vector e=g;-+ie;, e-e¥=1. Then

(2.6)

1 The semiclassical treatment has the disadvantage that a
spontaneous emission cannot be calculated in a completely con-
sistent manner while the absorption can be treated satisfactorily.
In a proper quantum-mechanical treatment this problem does
not arise. Semiclassical derivations of the transition probability
formula for spontaneous emission of electromagnetic radiation
fall into two main categories. Some [Schiff (Sc 49), Mott and
Sneddon (Mo 48)] introduce the Einstein probability coeffi-
cients 4 for spontaneous emission and B for absorption and
induced emission. The absorption coefficient B is calculated by
treating the radiation field classically and 4 is related to B by a
thermodynamic argument. The present treatment is equivalent
to this with the principle of detailed balance replacing the thermo-
dynamic argument. Other derivations [Schiff (Sc 49), Blatt
and Weisskopf (Bl 52)] begin by calculating the electromagnetic
radiation from a classical oscillating charge-current distribution
in the absence of external fields and then “‘somewhat arbitrarily
rewrite the formulae in terms of quantum matrix elements to
obta‘iig]a probability for spontaneous emission” [Schiff (Sc 49),
p- 249].

Many derivations of formulas for transition probabilities
begin by making a multipole expansion of the electromagnetic
field [Blatt and Weisskopf (Bl 52), Preston (Pr 62)]. This
approach introduces angular momentum algebra right from the
start and makes it difficult to keep track of signs. We prefer
to calculate the general formula for transition probabilities
in a plane wave formalism and to introduce the angular momentum
algebra at a later stage when calculating matrix elements.

2 Strictly speaking, this form of the interaction Hamiltonian
és tnﬁﬁ;ﬂy when the nuclear forces are local. Compare however

ec. .

Eq. (2.7) becomes simply

A(r, ) =Ao e cos (ker—wt) —es sin (k-r—wt) .
(2.7)

If the plane wave is plane polarized, then for example
£ can be chosen as the direction of polarization, i.e.,
£,=0. For a circular polarized wave we can introduce
two mutually perpendicular unit vectors e, and e,
perpendicular to e,,=k/| k| in the right-hand screw
sense, i.e., €, X €,y =e€,, (e, having the direction of k),
such that

e=e;=—V2"1(e,+ie,)
or

e=e_1=V27 (e, —ie,)

or in a combined notation
e=e,=—(g/V2)(er+ige,), (2.8)

where g=1 corresponds to right-handed, ¢g=—1 to
left-handed circular polarization with respect to e,
In this case

A(r, t) = A — (¢/VZ) €, cos (K+T—wt)
+V2-1e, sin (k-r—wt)].

g=1 or —1,

(2.9

The over-all signs of e; and e_; are chosen so that these
complex unit vectors have convenient transformation
properties with respect to rotations. :
The average energy flux N in the wave may be cal-
culated from the time average of the Poynting vector
E=—¢"1(0A/a1),

N=é (E x 3, ge=curl A.

(2.10)

Substituting for example formula (2.9) for A in these
equations, we obtain (for a definite circular polariza-
tion ¢) the average energy flux carried by a circular
polarized wave

N = (wh/87) Ao, (2.11)

Substituting the plane wave of arbitrary polarization
given by formula (2.7) into the expression for Hi,y(2)
defined in Eq. (2.6) we obtain the interaction Hamil-
tonian for a plane (circular or plane) polarized wave
with the nucleons in a nuclear system. It is convenient
to divide Hin¢(#) into two parts with time dependence
exp (—iwt) and exp (iwt).

Hi(t) =3A40{H,(k, ) exp (—iwt)

+H.(k, ) exp (iwt) }, (2.12)
where, for example,
H,(k, &) = —eli/2mc{2gip-¢ exp (ik-1)
+gs-Vxeexp (tker)}, (2.13)
and
H.(k, &) =[H.(k, 2) T, (2.13)

because p and s are self-adjoint and A is real [Eq.
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(2.7)]. Observing Eq. (2.13’) it is seen from Eq. (2.12)
that Hing(f) is (of course) self-adjoint.

If the radiation is switched on at =0 then the prob-
ability of a transition at time ¢ is given by time-de-
pendent perturbation theory
2

1
W(w: t) =ﬁ§

/0 " dt exp [ion—wn) AN | Him(0) | 1)

(2.14)
with wx—w,= (Ex—E,) /#. Or, using Eq. (2.12),

W (w, 1) =i—1’%§ ‘ /:dl {exp [i(tx—wu—w) I\ [ Ha | )

2

~+ exp [t(on—wutw) N | H, | 1)}

If we are considering an absorption process then
wn—w,>0. Since also w>0 only the first term in this
equation contributes appreciably to the transition
probability when w~~w\—w,. Neglecting the second
term and evaluating the time integral we get

W (w, t) =f;1;—;f KeNP: AP (Sin (wx—w,,—w)t/z)z-

W\— Wy —w

(2.15)

Formula (2.15) gives the transition probability for the
transition | u)—| \) if the incident radiation is mono-
chromatic with frequency » and intensity wkAg/8w.
If the radiation has a continuous energy distribution
I,(w) then the transition probability at time ¢ is

8w
kaoz ’

The time-dependent function on the right-hand side
of Eq. (2.15) is a sharply peaked function of w centered
at w=wy—w,. In this situation all the slowly varying
functions of w may be taken outside the integral and
evaluated at w=w\—w,= (Er—E,) /fi. We get

W) = f AW (0, ) 1.()

8w ® sin x1/2\2
D= L |0 Bl |
W) =g Lo | 0 el ) [ 2o (22
The integral has the value ir/2. Hence the transition

probability W () is proportional to ¢ and the transi-
tion probability per unit time is

w(u+ (&, &)—N)= 2 /f) L. (wn) (2m/k) | (N | Ho | ) |2
(2.2

Equations (2.2") and (2.2") are two formulas for_the
same transition probability. Comparing them gives

|V |, (5, ) 2= 2nhe/I#) | (\| Halls, ) | w) I
= (2hic/L%) | | Hu(l, 2) | \) .

(2.16)
using the relation H,=H,*.
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Equation (2.16) gives a formula for the square of
the matrix element appearing in formula (2.2") for the
absorption of a photon. If | \) and | ) are discrete nu-
clear states then the transition probability for absorp-
tion may be related to the transition probability for
emission using the principle of detailed balance as dis-
cussed at the beginning of this section. Both the emis-
sion and absorption [Eqgs. (2.2), (2.2'), and (2.2")]
were calculated using perturbation theory. The inter-
action V between nucleons and photons is self-adjoint.
The matrix elements which occur in formula (2.2) for
the emission probability of a photon (k, €) in the tran-
sition | A\)—| 1) and in formula (2.2’) for the absorption
of a photon with the same quantum numbers (k, )
in the inverse transition between the same nuclear
states |u)—|\) are related according to Eq. (2.5).
Hence we may substitute for the square modulus of
the matrix element of V from Eq. (2.16) into Eq. (2.2)
and obtain a formula for the emission probability of
a photon with wave number k and polarization e in
terms of the matrix element (A | H,(k, &) | ). The
quantities in this matrix element involve only nucleon
coordinates and the matrix element may be evaluated
if the nuclear wave functions | \) and | u) are known.

The alternative approach is to use an explicit ex-
pansion for V given by quantum field theory:

V=— (eh/ch) Z {Zglnpn'A(rn) +gsnsﬂ' GC(I'n) };

3¢(r,) =curl A(r,), (2.17)
where the vector potential A is now a field operator®
A(x) =Y, (2whc/L3k)Y2{e, exp (iK-T)ax,

kq

+&,* exp (—ike1)ax, ). (2.18)

In (2.18) ay,* and @y, are creation and annihilation
operators for a photon with wave number k and po-
larization e, (e; and e; are two orthogonal (i.e., &-&=0)
polarization vectors). If (2.18) is substituted into
(2.12) then ¥ may be expressed in terms of the opera-
tors Ha(k, ¢) and H,(k, £) given by Eq. (2.13),

V= Z (2ntic/ L3k) Y2 { Ha(K, ;) axy+He(K, ;) 0y} .
ky

(2.17")

The emission matrix element (u, (k, ) | V | A\) may
be evaluated by noting that the state | u, (k, €)) con-
tains a photon with wave number and polarization
(k, e,) and the state | \) contains no photon. Hence
only the term in V containing the creation operator for
the photon state (k, e,) contributes to the matrix
element. The matrix element of ax,* is unity, hence

(u, (&, &) | V| \)=(2whc/L¥%)"*(u | Ho(k, &) | N)
= (2nfic/L3k)V2(\ | Ha(k, ) | u)*.
(2.16")

3 The form of A and the normalization constant (2xfic/L3k)?
come from quantum field theory. [Cf. (Me 60), p. 898.]



310 Review oF MODERN PHysics - ApPRiL 1967
Taking the square modulus of both sides we recover

Eq. (2.16).

B. Time Reversal and the Relation between Emis-
sion and Absorption Amplitudes

The discussion of the previous section is adequate
if perturbation theory is valid and if the nuclear states
[ A) and | u) are discrete states. We assume throughout
that perturbation theory may be used. In some prob-
lems, however, the initial or final nuclear state may
be a continuum state, for example in the radiative
capture of a nucleon by a nucleus and the inverse
process of the photonuclear effect. The initial nuclear
state |\) in the capture process | \c)—| 1)+ (photon)
is not the same as the final state | A,) in the photo-
nuclear process because the states | \;) and | \,) satisfy
different boundary conditions. Then, Egs. (2.2) and
(2.2") must be modified accordingly by including ap-
propriate boundary conditions on the state |A). In
Eq. (2.2) |A)=]|A.) has incoming plane and outgoing
spherical waves and in Eq. (2.2’) |A)=|A,) has in-
coming spherical and outgoing plane waves. Conse-
quently Eq. (2.5) can no longer be used to relate
emission and absorption.

The approach based on quantum field theory is still
correct, however. Formula (2.17') is true and we may
use Eq. (2.16”) for the matrix elements provided the
continuum state |\) obeys boundary conditions ap-
propriate for the problem.

If the equations describing the nuclear structure and
the interactions of the nuclear particles with the electro-
magnetic field are invariant with respect to time inver-
sion we may always relate a photon emission process to
an absorption process by using a time-reversal trans-
formation.

We begin by giving a brief resumé of the time re-
versal invariance principle.* If ¢(r, £) is the wave func-
tion of a single particle without spin; i.e., ¥(r, #) is a
solution of the Schrodinger equation

H(x, )y(x, 1) =ih[0y(x, £) /ot], (2.19)
then the time-reversed wave function is
Yr(r, 1) =¢*(r, =) =0y(r, —1). (2.20)

This wave function can be interpreted as describing
a state of reversed motion. 6 is called the time-reversal
operator and in this case is simply complex conjuga-
tion. The time-reversed wave function satisfies the
original Schrédinger equation, provided

OH (1, —1)6-'=H*(r, —0) =H(r,1). (2.21)

If in addition yr(r, t=0) =¢(r, {=0) then the time-
reversed solution is identical with ¢(r, ) for all times.
If condition (2.21) is satisfied the Hamiltonian is said
to be invariant under time reversal.

4 For a more detailed discussion cf. (Wi 59).

In a more complicated system whose dynamics are
invariant with respect to time reversal it is always pos-
sible to define a time-reversal operator 8 with the follow-
ing properties:

(i) 6H(—t)61=H(¢) [Eq. (2.21)7;1i.e., the Hamil-
tonian is time-reversal-invariant.

(ii) 0 is equivalent to complex conjugation followed
by a unitary transformation; i.e., 8 is an anti-unitary
operator.

(iii) The time-reversed wave function Yz(r, §) =
0y (r, —f) is a solution of the Schrédinger equation of
the system if ¢(r, £) is a solution.

For example, in the case of a system of (nonrela-
tivistic) nucleons with spin, the Hamiltonian may de-
pend explicitly on the spin s, =34, of the single nucleons
(8 for example being represented by the Pauli spin
matrices o, oy, 0;) and l,, the orbital angular mo-
mentum of the single nucleons; then the time-reversal
operator for a nucleon can simply be represented by

0=0,K,, (2.22)

where K, means complex conjugation. [For many
nucleons, a product of all (s,), enters.] 0 of Eq. (2.22)
has the effect that 0p6—1=—p, 616~1=—1, 8s61=—s
but 6r6—'=r and 6 does not act on ¢.

Suppose | /M) is a discrete eigenstate of a time-
reversal invariant Hamiltonian H, which has only
angular momentum degeneracy. In general

0| aJM)=(—)"M|aJ—M),

where the phase R is independent of M but depends on
the choice of phase of the wave function | aJM). It is
always possible to choose this phase so that

0| aIM)=(=)"M|aJ—M).  (2.23)

Throughout this work we use this phase convention
for all eigenfunctions. The choice is invariant with
respect to angular momentum coupling. If the wave
functions | ) and | joms) transform under time re-
versal according to Eq. (2.23) then

| TMy= "3 | Goms) | Gama)(ujsmms | M)

mimy

does also, because
(frja—ma—ma | J—M) = (=) 55T fyjomme | TM),

if the phases of the vector coupling coefficients conform
to the Condon and Shortley convention [cf. Refs.
(Co 35), (Br62)].

We may get some information about the time reversal
of the photon state |k, ) by looking at the transfor-
mation properties of the classical electromagnetic
field. If we make the transformation {——¢; r—r, then
Maxwell’s equations are invariant provided we trans-
form the charge and current densities p and j and the
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fields E, 3¢, and A as follows:
p(r; t>__)p(r’ —t)y E(r; t)—)E(ry —t))
j(f, t)—)—j(l', _t): GC(I', t)_')—zc(r: —t);

A(r, )>—A(r, —9).
If

A(r,f)=4,Re {eexp [i(k-r—owt) ]}
=3Ao{eexp [{(k-r—wi)]

+e*exp[—i(k-r—owi) ]}, (2.7)
then
An(r, 1) =—A(r, —)
=1Ao{ —* exp [i(—Kk-T—cf) ]
—sexp [—i(—k-r—wf)]}. (2.24)

Comparing the last two equations we see that if the
field A is a plane wave with wave vector k and polari-
zation e, then the time reversed field Ag is a plane wave
with wave vector —k and polarization —e*. We re-
quire that the quantum numbers specifying the photon
state transform in the same way

k——k and e—>—s*

Formally we can include this classical transformation
property into a quantum-mechanical theory by a
time-reversal operator 67 for the total system of nu-
cleons and photons. Acting on a photon wave function
07 then has the property 0r | k, ¢)=| —k, —e*) while
on a nuclear wave function 07 has the same action as the
operator 0 defined in Eq. (2.22).

In the previous section we have related absorption
to emission using the principle of detailed balance. At
the beginning of this section we have said that it may
be sometimes necessary to use time reversal invariance
to establish this relation. In order to do this [and also
to derive the transformation properties of H,(k, )
and H,(k, ) under time reversal] it is convenient
to introduce the emission and absorption amplitudes

T—pt+(k, £))=(u, (k, &) | V|\) (emission),
(2.25)
T(ut(k, &)>N)=\| V |y, (k,2)) (absorption).

The transition amplitude 7' (u+ (k, £¢)—2\) for absorp-
tion of a photon with wave number k and polarization
e by a nuclear state | u) to form a final state | A\) may
be related to the transition amplitude for the (inverse)
emission process T'(A—u-(k, £)) by time-reversal
invariance

T (\—u+(k, &) ) =T (uz+ (Kz, €&)—\z)
(2.26)

=T (0r{u+(k, €) }—070).

Here | A\z) and | uz) are the time reverses of the nuclear

states | A) and | u) and | kg, &) is the time reverse of
the photon state | k, €).

Equation (2.26) can be proved by using the anti-
unitary property of any time-reversal operator, 6 =UK,
and the invariance of a scalar product under a unitary
transformation U

(09, 09) = (U™, UY*)= (™, ¥*)=(, ¥)* =, ¢).
(2.27)

It follows from this that the matrix element of an
operator B has the following property:

(60 | 0B~ | 0y)=(o | B|¥)*. (2.28)
The absorption amplitude for time reversed states is
T (urt (Kr, er)—Ae) =(0z\ | V | 0r{n+(k, £) })

by definition. Because V is invariant® under time re-
versal, i.e., 07V 07 2=V, it follows that

T (ur+(Kr, er)—Ap) ={07\ | 02VO77 | O02{pn+(k, &)} ).
Using relation (2.28) we obtain

T (ue+t (kr, er) )=\ | V | 4, (K, €))%,
and because V is Hermitian; i.e., V¥=V,

T (ur+ (kz, er)—A)={u, (&, &) | V[ 7),

which by definition is the transition amplitude
T(—p-+(k, €)) for emission. This proves Eq. (2.26).
The relation also holds if the transition amplitudes are
not calculated from perturbation theory. The pre-
ceding equations still contain the photon eigenfunc-
tions. However, for the absorption amplitude we have
already calculated that

| T(u+(k, £)—2) = (2x7ic/L%) | (N | Ha(k, ) [ p) [%
(2.16)

where wave functions and operators on the right-hand
side depend on nuclear coordinates only.

To use relation (2.26) we remember that 07 trans-
forms k——k and e——¢*, or in other words,

0r ]k7 €>=1 —k, _8*>r

therefore

T (—u+(k, &) )=T(0zu+ (—k, —*)—02)),
and consequently (2.16) can be written
| TO—ut(k, ) [2

= (2nfic/L%k) | (0N | Ho(—k, —e*) | 6u) 2. (2.29)
In this last matrix element 6 acts only on the nuclear
coordinates and may therefore be represented just
by 0=0‘,,K0.

We can simplify the expression on the right-hand
side of Eq. (2.29) by calculating H,(p, s, —k, —¢%)

5 For a possible, C,T noninvariance in the electromagnetic
interaction cf. (Be 65, He 66).
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explicitly and comparing it with the result obtained by calculating 0H,(p, s, k, )6~ explicitly (where now 0
just acts on nuclear coordinates and operators). Hq(p, s, k, €) was given by

H,(p, s, k, e)=H,(k, &) =(—ehi/2mc) {2g;p+ € exp (1k-1)+g,s-curl [e exp (sk-r)]}.

Therefore
H,(p, s,

= {Ha(P; S, k) 8) }+'
On the other hand, with 6=¢,K,

=_{Hu(p> S, k; S) }+'

Comparing the two results we see that

or in the shorter notation used previously

(2.13)
—k, —¢*) = (—efi/2mc) {2gip- (—¢*) exp (—ik 1) +g,8-curl [—e* exp (—ik-1)]}
0H,(p, s, k, £)01=—eli/2mc{2g,(—p) - ¢* exp (—ik 1) +g,(—s) -curl [¢* exp (—1k-1)]
0H.(p, s, k, £)07'=H,(p, s, —k, —¢*) =—{H.(p, s, k, &) }* (2.30)
0H,(k, e)0'=H,(—k, —*)=—{H,(k, ¢)}* (2.30)

and similarly for H,(k, €). In simple words: the operation with the time-reversal operator on H,(k, €) or H,(k, €)
is equivalent to reversing the signs of all quantum-mechanical operators related to momenta (p, 1, s) and taking
the complex conjugate of everything else [ “time-reversal rule (2.30)”7].

Using relation (2.30) we can now rewrite Eq. (2.29)

| TO—ut(k, e)) = (2nfic/L*%) | (O | 0Ha(k, £) 07 | 0u) [

which by relation (2.28) is

| TO—pt(k, 2)) = (2afic/L%) | (N | Ha(k, &) [ n)* [,

where the complex conjugation indicated by the as-
terisk of course makes no difference.®

In Eq. (2.29’) we have arrived at a relation for the
square modulus rather than for the emission amplitude
itself, because a semiclassical calculation of the ab-
sorption probability was made. Since H.(k, &)=
H,(k, £)t it follows that

T Ot (i, €) )= (2fic/ )1 | Holls, ) | N).

It is seen that it is purely a matter of convenience
whether the initial state | \) for the emission process
is written on the left or the right side in the matrix
element provided one uses the correct operator H, or
H,, respectively. Because H, depends in the plane
wave representation on exp(sk-r) while H, depends
on exp(—ik-r) we prefer to use the operator H, and
therefore have to use the convention of writing the
initial state of the emission process always on the left.
We feel—in view of a later expansion of the plane wave
into multipole fields—that using H, it is easier to keep
track of signs. ‘

The results of Sec. IIB may be summarized: Which-
ever way we approach the problem, we always obtain
the result that the transition probability per unit time
for the emission of a photon with wave number k and
polarization e associated with a transition from an
initial state | A) to a final state | u) is given by

wO—outk, ))=(/2rh) | (\ | Ha(k, &) [ ) 2. (2.31)
6In a consistent field theoretical treatment we would have
arrived at a relation for the emission amplitude

TO—nt (k, e))= (2xhe/ L)\ | Ho(k, €) | u)*.

(2.29)

The problem of calculating the transition probability
reduces to calculating the nuclear matrix element ap-
pearing in Eq. (2.31).

C. Time Reversal and Phase Conventions of
Spherical Tensor Operators

In the previous section we have stated the phase
convention for eigenfunctions which is adopted through-
out this work, namely, that under time reversal

0| aJM)=(—=)"M | aJ —M). (2.23)

This choice had the advantage of being invariant with
respect to angular momentum coupling.

In a similar manner we can fix the phase of spherical
tensor operators. Let Ty be a spherical tensor, i.e.,
a quantity of rank L represented by 2L--1 components
which transform according to the irreducible repre-
sentation DL of the rotation group’

TLN’ = E TLMﬁDMNL (aﬁ'y) (2.32)
M

(aBy) are the Euler angles of the rotation taking the
old, unprimed axes into the new, primed axes. Thus
Eq. (2.32) expresses a component 77y’ of the tensor

7 This definition is chosen to agree with the transformation law
for spherical harmonics on rotation of axes. Throughout this
work the Dy nL(aBy) as defined by Brink and Satchler (Br 62)
and their definition of Euler angles
Dunt(epy) =

(LM | exp (—iaJ,) exp (—iBJ,) exp (—iyJ.) | LN)

is used. The same definition is used by Messiah (Me 60).
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operator with respect to the new axes in terms of the
components 7z defined with respect to the old axes.
For the tensors under consideration

0T 120 = (—YEMTy_y, (2.33)

where the phase R is independent of M but depends on
the choice of phase of Tra. It is always possible to
choose this phase so that

0T 6 1= ( —-) L=MT; . (2.33’)

The choice of phase defined by formula (2.33") ensures
that the matrix elements of 7'z are real if the wave
functions transform according to Eq. (2.23). (In general
if R—L is even then the matrix elements of 7y will
be real; if it is odd they will be pure imaginary.)

Later we expand the transverse plane wave A in a
series of spherical vector fields Azy™ and Azy® and, by
this expansion, express the interaction Hamiltonian in
a series of tensor operators Try™ and Tru®. These
operators are essentially products of momenta p and
spins s with the fields Azy™ and Azz®. Since both p
and s change sign under time reversal, it is most con-
venient to adopt a phase convention for the spherical
vector fields which under time reversal yields a phase
factor (—)IM+, The vector fields Ary<"> act on
nuclear coordinates only and “time reversal” reduces
to just taking the complex conjugate. Then the expan-
sion terms Trx® and Try™ of the interaction Hamil-
tonian H,(k, e) will transform according to Eq. (2.33")
and therefore will yield real reduced matrix elements.
This matter of convenience also was the reason why
we have adopted the formula (2.8) to describe cir-
cular polarization. It leads in a convenient way to an
expansion in terms of “natural” sets Ary® and Apy™
which have the required property.

III. THE TRANSITION PROBABILITY IN TERMS
OF MULTIPOLE MATRIX ELEMENTS

A. Mathematical Definitions
The functions
Grar=1%(2L+-1)71(kr) Cra (6, ¢)

satisfy the scalar wave equation V?¢-4-£%¢=0 and form
a complete set.

The scalar plane wave in the z direction has the well-
known expansion in terms of ¢z

exp(tkz) = ; ¢L0-

(3.1)

(3.2)

The spherical Bessel functions j;(k7) can be ex-
pressed in terms of Bessel functions of half-odd integer
order

Jo(kr) = (m/2kr) 2T 1o (r)

and if k71 (long wavelength approximation) then
Jr(kr)>~(kr)L/(2L+1) 1.

(3.3)
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The modified spherical harmonics Cra (6, ¢) are used
throughout this article because of their convenient
normalization. They are related to the usual spherical
harmonics

Crm= (4w/2L+1)12V 1y, 3.4)
where
Yiu(0, $) =011 (0) P (9),
with
_ 2041 (L—M) 1T . _
0ue(0) = (- | 25 T | p@, itarzo;
O (6) = (—) MO (), if M<0;

By () = (2m) 72 exp (iM).

PrM(9) (M>0) is the associated Legendre polynomial
of Jahnke and Emde (Ja 45).

The definition of the Y (8, ¢) involves an arbi-
trary choice of phase and we follow Condon and
Shortley (Co 35). With this choice

Cou*=(—)MCr_» and Cro(6, ¢) =Pr(cosb).

The vector plane wave A which solves the vector
wave equation

V2A-+-EA=0

can be similarly expanded, remembering that the three
sets of vector fields

Vo, Lora, and V x Loy (3.5)

form a complete set of solutions of the vector wave
equation. Normalizing these three sets in the same way
as the ¢y are normalized, we have

Ay = (k) VL,

Apye={k[L(L41)]"2}7V % Lérn, (3.6)
Apym={[L(L+11"}"Lorm,

where
vV =e,(3/0x) +e,(9/dy) +e.(3/92), 3.7

and e, €, and e, are unit vectors along the #, y, and z
axes. Also

=—irXV. (3.8)

The choice of phase of the vector fields defined in Eq.

(3.6) is such that they transform under time reversal

according to the requirements discussed in Sec. 2.3.

Furthermore, the fields have the following properties:
VA= V'ALM'”’:O,

V xAry®=kALy™, V xArym=FkALn® (39)

L'ALM°=0, L'ALM’"=[L(L+1)]1I2¢LM.

The fields ‘Arx® and Ary™ are known as the electric
and magnetic multipole components of the transverse
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field; they are solenoidal and have parities (—)ZI+
and (—)Z, respectively. The fields Az are irrotational,
have parity (—)Z*! and are longitudinal fields.

The plane, transverse, circular polarized wave
e, exp (zk-r) may be expanded in terms of the Apy™
and Azy®. In particular

egexp (ikz) =—VZ1 ) (gArm+Ars), g¢==1.
7

(3.10)

We may pass from Eq. (3.10) to the expansion of a
general transverse plane wave €, exp (ik-r) by making
a rotation of axes

eq’ exp (’ik'l') =—v21 LZ (qALMm—'-ALMe) iDMqL(R) .
M
(3.11)

In Eq. (3.11) the unit vectors e, are referred to a set
of axes with 2’ axis parallel to k and the %’ and §’ axes
forming a right-hand set with respect to 2. R=(a, 8, 7)
is the rotation with Euler angles o, 8, v taking the z
axis to the direction of k (i.e., the 2’ axis).

B. Multipole Expansion of the Interaction

Inserting (3.11) into Eq. (2.13) gives H,(k, ¢) in
terms of Azy™ and Ary®. In order to reduce this mul-
tipole expansion to standard form we have to make the
long-wavelength approximation

Jr(kr)>~(kr)2/(2L+1) 1!
or
bLu~X1r*Cru (0, ¢),  Xp=(ik)L/(2L—1)!L
(3.12)
In this approximation
Apyt={X1/k[L(L+1) ]2}V x L[ Cr2 (0, ¢) ]
= (iX1/k) (L+1/L)'*V (r*Cru), (3.13)

where, in order to obtain the last line, we have used
the relation

V x L (rECpar) =i(L+1) V (+%Cuar).
Also
Apym={X1/[L(L+1) ]*}L(r*Crar)
= {iXp/[L(L+1) J"*} V (r“Crar) X1,
(3.14)

where the last line was obtained using Eq. (3.8). Sub-
stituting in Eq. (3.11) the long-wavelength expres-
sions for Az and Ary™ given by formulas (3.13) and
(3.14) and inserting this into (2.13) we obtain, after

remembering that
(V(r*Cra) x1) - p=V (r"Cprar) - (r %) =V (r*Cru) -1,
Ha(k, &) = — 2 {r*(QuartQra)

LM
Fgar(Mryu+Mia') }Du(R), (3.15)
where
ar’=[@k)L/ QL) W]J(L+1/20)12) apr=—iqr®
(3.16)
are the multipole expansion coefficients, and
Qru=—2g8(i/k) V (r*Cru) - D,
Qry’ = —gBLk/(L+1) JL(r*Cru) -,
Mran=2gB8(L+1)7V (r*Crar) -1,
My =gBV (r*Cru) - s (3.17)

are the electric and magnetic multipole operators?®,
B=¢efi/2mec is the nuclear magneton and 1, s, and p are
measured in their natural units of %, which has been
incorporated into 8.

If Ory stands for any of the operators (3.17), then

Oryt=(—)M0p_u (3.18)

with C=1 for the electric and C=0 for the magnetic

terms. The time-reversal properties of the operators
(3.17) are

000 1= ( —)R_MOL_M = ( '—) C_M+10L_M, (319)

again C=1 for the electric and C=0 for the magnetic
terms, i.e. R=0 and R=1, respectively.

For actual calculations of reduced matrix elements
of the operators (3.17) it is more convenient to write
the electric multipole operator Qru as

Qrau=2g1(mB/H?k) [H, r*Cra].

This expression is completely equivalent to the original
form of Qrx in Eq. (3.17), provided the nuclear po-
tentials are local and commute® with #ZCry. The equiv-

(3.17)

8 We have used the usual notation Qrm, MLy, etc. for these
operators, although they are not identical with the ones defined
in Ref. (Bl 53) (cf. Sec. VC).

9 The basic interaction between the nucleus and the electromag-
netic field must be gauge invariant, i.e., must be consistent with
the equation of continuity for charge and current. The inter-
action (2.6) postulated in this article does not have this property
if nuclear forces have an exchange character or if velocity-
dependent forces (for example spin-orbit forces) are present.
If velocity-dependent or exchange forces are present, the follow-
ing derivation of Eq. (3.17) in the text is not valid and also
the interaction (2.6) between the nucleus and the electromagnetic
field must be modified. Siegert’s theorem [cf. (Sa 53)] shows
that for the electric multipole terms these two changes com-
pensate one another. The electric multipole interaction Qru
is no longer represented by Eq. (3.17 a) because the interaction
is changed, but formula (3.17’) is still correct.
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alence can be easily shown using the result'

[T, f(r)1=—i(#*/m) (Vf)-p,

if T is the kinetic energy operator, V=0 and p is
measured in units of 7. Then

Qry=2g(mB/7k) [T, r“Cra].

We have proved Eq. (3.17") for one-particle systems.
The result holds for many-particle systems provided
H is the total Hamiltonian of the system and the tran-
sition operators 72Cry are summed over all particles.

The usual form for the electric multipole opera-
tors is just egr™Crar. Expression (3.17”) reduces to this
standard form, because for a matrix element between
eigenstates | \) and | u) of H we get

<>‘ [ QLM ‘ M>=28l(mﬂ/ﬁ2k) (E)\—E,,) O\ I rLCrum I M).

If the transition is from |\) to | u) emilting a gamma
ray then
E)\—'E,,,=ﬁw=h6k>0

and we obtain

N Quar | )= | (Qrar) et | u),

(QLM) eff =egl7'LCLMo

(3.17)
with
(3.17"")

However, it is wrong to conclude from (3.17”) that
QOryr=(Qrar)etr. The transformation property of the
effective electric multipole operator (Qrar)ess under
Hermitian conjugation is different from that of Qra.
If the Hermitian conjugate (A | Qra™ | 1) is taken, then
it is mot true that (\|Qrat|u)=Q| (Qrar)etst | 1),
but

N Qrar® [ w)=(u | Quar [ N)*
=2g:(mB/1*k) (Eu— Ex) (u | 72Crar | \)*
=2g(mB/W*k) (Ey—E») (\ | (r“Crar) ™ | )
=—{Q [ (QLM)eff+ l s

i.e. the factor (Ex—E,) changes sign.

Formula (3.17”) is valid only when E\>E,. It is
possible to make (3.17”") true in general by enforcing
transformation laws under Hermitian conjugation on
(Qrar) et (Qrar) ess™= (=) M+ (Qr—ar)ere] which are dif-
ferent from those of the spherical harmonics. This is
an artificial manipulation. One is likely to produce
errors in phase unless one uses Qry as defined by
Eq. (3.17"). This applies especially when one has to
“switch” the states in the matrix elements or when one
wants to describe nuclear states composed of many
particles as “hole states” in closed shells (compare Sec.

10 The relation follows simply by acting with the left side on
a wave function ¢:

[T, f1o=— (2*/2m) [V*(f¢) —fV*¢]
=— (12/2m) [ (V*))$+2(Vf) - (Vo) +/V¢—fV*¢]
=— (ih?/m) (Vf) - o,
where p=—4V and v*=0.
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TasLE I. Multipole expansion coefficients for L=1, 2, 3.

L art ar™

1 ik k

2 —k/2V3 ik2/2V3

3 —ik3V2/3.5V3 —k3V2/3.5V3

4.4). Using the operator Qra of Eq. (3.17") throughout
always gives the energy factor (Ex—E,) with the cor-
rect sign.

Because of the different transformation properties
of the electric and magnetic terms of Eq. (3.17) under
Hermitian conjugation and time reversal it is more
convenient to include the multipole expansion co-
efficients az;<"> of Eq. (3.16) into the definition of
the multipole operators and define in this way a set
of operators all having the same transformation prop-
erties. We call this set the interaction multipole operators
Tru<"> and define

Trw=0r*(Qru+Qra’),
TLMm=aLm(MLM+MLM’) . (320)

The multipole expansion coefficients oz <*> are listed
up to L=3 in Table I, and by the use of this table the
multipole operators of Egs. (3.17) and (3.17") can be
easily converted into interaction multipole operators.
The Hamiltonian H,(k, €,) can now be written [see
Egs. (3.11) and (3.15)]

Hu(k &) =— 2, ¢Tuar<™>Du (R). (3.21)
LMm

The summation runs over all possible L, M, = which
can contribute to the transition in question. The
T1u<"> are one-particle operators, and if the system
described by the eigenfunctions |A) and |u) is com-
posed of many particles an appropriate particle index
n has to be introduced and the summation extended
over all particles.

7=0 for electric interaction multipole operators.
The superscript (r=0) or (0) then simply means
“electric.”

m=1 for magnetic interaction multipole operators.
The superscript (w=1) or (1) then simply means
“magnetic.”

Writing the factor ¢7 in front of each operator leads
to a compact notation of the interaction Hamiltonian.
Because =0 for all electric interaction multipole opera-
tors the contributions of these to the Hamiltonian are
independent of whether ¢g=1 or —1. The magnetic
contributions are not independent of circular polari-
zation.!t

11 We could also have included the factor ¢, which occurs in
Eq. (3.15), into the multipole expansion coefficients az™ them-
selves. This would have led to an even more compact notation
of the interaction Hamiltonian (3.21). However, then the Tpy<™
would have depended implicitly upon ¢ and some of the sub-
sequent discussions would have become rather bulky because of

constant reminders to the hidden dependence.of the magnetic
interaction multipole operators on g.



316  Review oF MopERN PrYSICS « APRIL 1967

The interaction multipole operators Ty <"> have
identical transformation properties: under rotations
they transform like spherical tensors of rank L, while
their Hermitian adjoints are given by

Tra<r>t= (=) MH Ty <> (3.22)
and their time reversals
0T Ly <07 = (—) LMy <> (3.23)

in accord with Eq. (2.33"). Therefore the matrix ele-
ments of 77y <"> are real, provided that the choice of
phase for the eigenfunctions entering ‘the matrix ele-
ments is made according to (2.23).

For convenience we collect at the end of this section
in their final form all the expressions which enter
H,(k, 2g):

Multipole operators
Guu*=Quu+0ry’,  Gru™=Mru+Mry';
Qru=2g(mB/h*k)[H, r*Cry ],
Qua’ = —gBLk/(L+1) JL(r*Cru) -5,
Mpyu=2gB8(L+1)71V (r2Cru) -1,
M’ =BV (r*Cru) * s.
Interaction multipole operators:
Tim*=arGru’,
ar*=[(ik)*/(2L—1) IJ(L+1/2L)";

Tru™=or"Gru™,

Oth= —’iaLe. (320 ﬁnal)
C. The Angular Distribution Formula for Emission
of Gamma Rays from a Nuclear State Aligned
with Respect to an Axis of Cylindrical Symmetry

The states |A) and | u) may now be specified by
their total angular momentum quantum numbers. We
write the initial state, which decays by emission of
a photon, as | \)=| JiM;) and the final state as | u)=
| JaM3). The magnetic quantum numbers M; refer to
the axis of cylindrical symmetry. The probability for
a transition from a state | JuM) to a state | J.M,) with
emission of a circular polarized photon along the direc-
tion of k is given by Eq. (2.31).

Pi(k) = 3’; w(My) Pay?(k) = ME w(My) ME | Asrianst () [

The normalization is

(3.17 final) 4

In order to simplify the discussion in the following
paragraphs we introduce the probability amplitude
A2 (k) for emission of a photon along k with circular
polarization ¢ associated with the nuclear transition
| JiM1)— | JoM2). The probability amplitude is related
to the transition amplitude for emission introduced
previously by

Atyan,™ (k) = (LR A?i26) 2T (JuMy—T Mo+ (K, €5)).

Formula (2.31) can then be rewritten
w(hiM—T. Mo+ (k, €0) )= | Awpr,?(K) 2

After expansion of H,(k, e,) into interaction multipole
operators [cf. Eq. (3.21)]

AMleq(k) = (k/ZWh) 2
X 2o ¢ My | Toa< | JaMo)OuE(R).  (3.24)

LiMyw

The rotation R=(afy) takes the z axis to the direction
of k as described in Sec. IITA. Since we limit ourselves
to the case that the z axis is an axis of cylindrical sym-
metry there is no need to discuss specific representa-
tions of the Dy r provided only they follow the same
reduction laws as applied in the subsequent paragraphs.

If we do not observe the orientation of the spin J;
of the final system we must sum over M and the prob-
ability for emission w(\—u-+(k, ¢))=Pu,2(k) from
the initial state | J1M1) becomes proportional to

Z ‘ AM1M2q(k) [2-

M2

If linear and not circular polarization is observed
we must take a coherent superposition of g=z1
terms A 9. Thus v2~1(4 +=1— 4 =*) describes the emis-
sion of linear polarized photons with the plane of polari-
zation parallel to the «’ direction while V2-1(4 =14
Ae=t1) gives the respective description of the plane
polarization being parallel to 9’. A polarization insensi-
tive measurement requires an incoherent sum over g.

If the radiating system is in a cylindrically symmetric
environment so that M; is a constant of the motion if
the z axis is chosen along the symmetry axis, the total
radiative probability for photons along k is obtained
by weighting each Pi,?(k) with the population pa-
rameters (i.e., relative probabilities of population)
w(M;) of the substate My

(3.25)

2wl = 1.

M1

Using the Wigner—Eckart theorem

My | Toar | JoMoy= (=) 2E(JoLMoM | JiMy) (J1 || T || T2),
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and the reduction formula for a product of rotation matrices

DingngOimgng?? = Z ( J1femmamy [ KH) ( j1jamms | KN)Dpn®
KHN

and remembering that

ZDmnj* = ( - ) m—-n:D_m'"j;

we obtain

Py (k) =MZ | Aaryars? 2= (k/2uch) ZK (LL'q—q| KO)

LL!ww.

Do =Px(cos )

X > (=) M+(LL'M —M | KO) (JoLM,M | JyMy) (JoL'MoM | JiMy)

MM

X Pg(cos 0) g+ (J1 || To<m> || Jo) (J1 || To <> || Jo)*.

(3.26)

The product of the three CG coefficients which appears in the sum over M, and M can be reduced in the usual

way to a product of one CG and one Racah coefficient

[(214-1) 122 (=) T3 (Jo T My — My | KO)W (JWALL'; KJ5) (=) ¥/ —I47—Tr K
= > (=)M(LL'M—M | KO) (JoLMM | J1My) (JoL! MM | JiMy),

MM

and we obtain the angular distribution formula for the emission of photons from a state J; leading to a state J,

Pi(k) = (k/2a%) Y, Bx(J1)Pg(cos ) (—)eHIrtl/i—L=K (2], 1)V2(LL g—q | KO)W (JWJ1LL'; KJ5)

KLL!7w!

with

Bx(Jy) = gj w(My) (=)= (2J;4+1) 12 (JoJ M — My | KO),

Bo(J) =1, X w(My)=1.

M1

The reduced matrix elements in Eq. (3.27) are real
if the eigenstates | J;M;) and the operators T'r<m
transform under time reversal according to Egs. (2.23)
and (2.33'). Bg(J1) is a statistical tensor for the
cylinder-symmetrical case.

So far we have not made any special assumptions
about the states | J1M) and | Jo:M,) except that they
are composed of individual nucleons which interact
with the electromagnetic field according to Eq. (2.6).
We deal in Sec. IV with the calculation of reduced
matrix elements from a model, and give explicit for-
mulas for the cases when the states | J;) and | J2) can
be described as single-particle or two-particle states
outside closed shells or as ‘“‘single-hole” or “two-hole”
states in a closed shell.

To conclude this section we introduce the mixing
ratios in terms of the above reduced matrix elements,
which we shall also relate to the radiative width T,
of the transition. We finally rewrite the fundamental
formula (3.27) in terms of suitable coefficients and
compilations for the Bg(Jy) as given in the Appendix.
We also discuss various methods for producing an
aligned initial state | J1M,) and investigate the restric-
tions placed on the population parameter w(M;) or
Bx(J1) by the production process. The restriction
that the observed gamma ray is the one following di-
rectly from the decay of the initial aligned state will
be removed.

X+ Ty || To<™> || J2) Ja || To <> || T2)*, (3.27)

(3.28)

This leaves us with a set of formulas covering most
of the practical cases whenever a cylinder-symmetrical
environment is used to determine mixing ratios. Apart
from the definition of the mixing ratios in terms of ex-
plicitly defined matrix elements of interaction multi-
pole operators between states | J1) and | J2) of any com-
plexity, the mixing ratios may be looked upon as formal
quantities or parameters. Fitting the respective for-
mula to a set of experimental data one arrives at (posi-
tive or negative) values for these parameters. How and
if the mixing ratios are interpreted in terms of model
descriptions of the states | J1) and | J;) affects neither
the original definition nor the phase with which these
parameters stand in the distribution formula.

D. Gamma Widths

Integrating Eq. (3.27) over all directions of k and
summing over polarizations g gives the total transition
probability per unit time; i.e., the reciprocal lifetime
of a state | J;) for gamma decay. Remembering that
[Px(cos §) d2=0 unless K =0 (in which case it gives 4r)
and that the CG and Racah coefficients for K =0 are

(LLg—q|00) = (—)Ie(2L+1)"12
and

W (JWJLLL; OJy) = (—) v+ (27:41) (2L+1) ]2
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we obtain

%=Z / Pe(k) do

=2 & ST [ 1) P/ L) (329

because the integrated transition probability [Pe(k) dQ
is independent of ¢. For applications it is sometimes
more convenient to eliminate the energy dependence
of the matrix elements (J; || T.<*> || J.) by using the
effective electric and magnetic multipole operators
(3.17") instead of the T, <">. We then obtain the well-
known Weisskopf formula'?

(L+1)
év; LL(2L—1) 112

| (J1l] GL<m> || J5) 2
(2L+1)

—1

T 2 L+1

_2
Tk

(3.30)

and the gamma width of the state | J;) is given by
r,=#/r.

E. Mixing Ratios

For practical computations of angular distributions
it is most convenient to rewrite the basic formula (3.27)
in terms of suitable coefficients. This compact nota-
tion is still quite general; i.e., the only specialization
is [as for formula (3.27)] that the initial state has
definite J; and that the problem has cylindrical sym-
metry. We then restrict ourselves to the case that
circular polarization is not observed, introduce the
mixing ratios and rewrite the formula in terms of these
ratios. The section is concluded with a discussion of
two questions: (i) The question of alignment or po-
larization of the initial state and (ii) The question of
restrictions following from the assumption that all the
nuclear states involved have definite parity.!

To rewrite formula (3.27) in a compact notation we
introduce the coefficient

Rgt(LL'JJ5) = (—) et/ It I=I-K () ], 1) 12(2L4-1) V2 (2L 1) 112

Formula (3.27) then becomes

Pa) =

27Tﬁ LL!nmw!'K

We note that:

(i) Formula (3.32) is restricted to the case that
the initial state has definite J;. It does not necessarily
have to have definite parity.

(ii) The sum runs independently over all possible
L, L', w, v, and K. There is no fixed relation between
mand L or 7’ and L'.

(iii) K can be odd as well as even. The highest pos-
sible value of K is fixed by the well-known triangular
conditions governing CG and Racah coefficients con-
tained in Bx (]1) and RK‘I(LLI]1]2) .

(iv) The allowed (integer) values of L, L’ are
| Ji—To | <L, L'<J1Je. Of course L, L'=0.

(V) 8Ty <m>0 1= (=) MT; ,<r>and if 8| J1M;)=
(=)= | J;—M,), then the reduced matrix elements
are real. The asterisk may be omitted.

The coefficient Rg?(LL'J1J5) is symmetric in L and
L'. Also

Rx~9(LL'JJ5) = (—) KR a(LL'T,J5) . (3.33)

12 Strictly speaking, the contribution from Q' which is con-

tained in Gg° is still energy-dependent. But usually its contri-

bution to the reduced matrix element of G° is negligible when
compared to the one from Q.

> Bx(J1) Rx9(LL'J1J5) Px(cos 6)

X (LL'g—q | KOYW(IWJLLL'; KT5).  (3.31)

Gl Te<m> || J2) Jall T <> Jo)*
(2L+1)12 (2L/+1)12

X g™t (3.32)

With this definition the Rg?(LL'J.Js) coefficient has
the orthonormal property

Ry(LL'JJy) =8(L, L'). (3.34)

Due to the choice of normalization according to Eq.
(3.34) and due to the definition of multipole interaction
operators and reduced matrix elements as used in this
article® a slight aesthetic distortion is caused in Eq.
(3.32) by the appearance of square roots (2L-+1)'2
and (2L/41)2 (written in the denominator of the
reduced matrix elements). However, from a practical
point of view it is important #ot to avoid the appearance
of the square roots in Eq. (3.32). This is because the
modulus of the quantity (Ji||Tp<> || Ja2)/(2L-+1)12
may be thought of [except for a factor 4%, compare

13 The initial state need not have definite parity if it is a con-
tinuum state with an energy between overlapping resonances
of opposite parity.

4 The Tpry~™ are the “most natural” choice for the set of
multipole operators to be used in a phase—consistent treatment,
because they lead to the simple expansion (3.21) of the interaction
Hamiltonian and all have the same transformation properties
under time reversal and Hermitian conjugation. With the de-
finition of reduced matrix elements we are in accord with Refs.
(Br 62, Ro 57). Racah (Ra 42, 43), Edmonds (Ed 57), and
Messiah (Me 60) define reduced matrix elements, which have
the same phase but are (2J;41)*/ times ours.
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Eq. (3.29)] as the square root of the partial gamma
width due to the multipole transition (Z, 7). Thus,
the product of the two reduced matrix elements di-
vided by the corresponding (2L-41)V2 can, in modulus,
(apart from 4%) be interpreted as the product of the
square roots of two partial gamma widths. Conse-
quently the mixing ratio as defined in Eq. (3.39) will
be, in modulus, interpretable as the square root of the
ratio of two partial gamma widths. Some authors
[cf. (De 57), (Li 61), (Po 65)] define their mixing
ratio as the ratio of two reduced matrix elements. The
square roots then are absorbed into the reduced matrix
elements which are written (J3 || L || J,). We feel that
it would have been somewhat artificial to break with
the “natural” operators 7.y <™ in the present treat-
ment or modify a quite commonly adopted form of the
Wigner-Eckart theorem only to make the reduced
matrix elements equivalent (in modulus) to square
roots of gamma widths. In fact, since the phases of
matrix elements (Jy|| L||J.) anyway are not well
defined, and since it is usually difficult (if not impos-
sible) to discover the definition of this basic quantity
(and that of the ‘“operator L”, cf. Sec. V), it would
have been more appropriate to write just {I'y(L, 7) }\/2
and avoid the purely symbolic quantity (J, || L || Ja)-

Formula (3.32) gives the probability per unit time
and unit solid angle that the nucleus emits a gamma ray
in the direction k with polarization ¢. If the polariza-
tion is not measured then we sum over the circular
polarization quantum g

P (k) =P'(k)+P(k)

to get the total probability per unit time per unit solid
angle for the emission of a gamma ray in the direction
k. Using the properties of the coefficients Rx?(LL'J1/]5)
in Eq. (3.33) we get

P(k) _k > Bx(J1) Rx(LL'J1J5) Pk (cos 6)

27rﬁ LL/Knw!

il T~ || J>)

X {14 (—1) LHL+ntr/—K} RSV

Uil Too=r"> || Jo)*
(2L/41)172

The coefficient Rg(LL'JJ2) is the Rge(LL'JJ2) co-
efficient for ¢g=1 [cf. Eq. (3.31)]. Explicitly

RK (LL,]1]2) ERKq:l(LL'JI.Ig) — (_)1+J1—J2+L/—L—K
X{ (27 41) 2L+1) (2L +1) }12
X(LL'1—1| KO)W (JJLLL'; KJ5). (3.36)

It is related to the Fx(LL'JyJ;) coefficient of Ferentz
and Rosenzweig (Fe 55) by

Ry (LL'JJs) = (=) VHEFe (LL'ToJ1).  (3.37)
Tables for Rg(LL'J,J5) are given in the Appendix.

(3.35)

319

We now introduce the “mixing ratios.” The reduced
matrix elements occurring in formula (3.32) contain
the ‘“nuclear information.” They can be calculated
from a model, which gives eigenfunctions for the states
J1 and J.. Experimentally the sum of their square
moduli can be obtained from a lifetime measurement!®
[Eq. (3.29)]. Consequently one is only interested in
determining the ratios of the reduced matrix elements
from measurements of angular distributions. In other
words, when measuring angular distributions one wants
to interpret them in terms of ratios of reduced matrix
elements. The experiment gives from a sequence of
measurements taken at different angles § with respect
to the symmetry axis an angular distribution of the

form?6
Wesp(8) = Y, axPx(cos 6). (3.38)
K

We therefore rewrite Eq. (3.35) in terms of ratios of
reduced matrix elements and define the mixing ratios?”

5, <ro 2 Tl T || 12/ (2L+1) 1
AL = N AVIO) A Y

(3.39)

L, # stand for the lowest-order multipolarity occurring
in the transition Ji—J,. Using this notation we get
a formula for the angular distribution of gamma rays

15 In the case that the initial state is formed by particle absorp-
tion, an absolute yield measurement of the reaction (p, v),
(@, v), etc. is equivalent to this.

18 The coefficients ax may either be thought of as “attenuated
values”, i.e., it is assumed that corrections for efficiencies etc.
of the gamma detectors have been made, or—more convenient
for computer analysis and more logically related to a general
treatment of less special cases—the attenuation coefficients
Qk as used for example in (Li 61), (Po 65) may be introduced
as multiplicative factors into the theoretical distribution formula
itself. We leave this point with the reader.

7 The theorem which states that the ratio of the reduced matrix
elements of electromagnetic multipole operators must be real
[usually referred to as Lloyd’s theorem (Lo 51)7] makes use of
the invariance of the interaction Hamiltonian under time reversal
and assumes definite parity of J, and J.. It is also satisfied by
the operators Goy<™ [Eq. (3.17")7, which do #ot transform
under time reversal as the 7'y~ do. In other words, to make
the ratio of two reduced matrix elements of multipole operators
with equal parity real, it is neither necessary that the multipole
operators must transform as 07y~ 0" = (—) L MT /<= nor
that the eigenfunctions obey 0| JM)=(—)"M|J—-M).
These choices make the mixing ratio real a fortiori. Assumptions
about definite parities of J; and J» then do not have to be made,
i.e., also the ratio of two reduced matrix elements of multipole
operators of different parities will be real. This would not be the
case for the Gpy<> although they satisfy Lloyd’s theorem
in the above sense. That the reduced matrix elements of electro-
magnetic multipole operators themselves can be made real was
shown in a most general form by Biedenharn and Rose (cf. Bi 53).
We like to emphasize that the choice of phase of the operators
Try~™ is essential for a comparison of the mixing ratios with
model calculations. However, if the eigenfunctions do not trans-
form according to 0 | JM )= (—)""M| J—M) (but for example
according to 0| JM)=(—)?M| J—M) with p arbitrary)
then the mixing ratio is still real and its phase is not influenced
by this different choice. We can therefore omit all asterisks on
mixing ratios which are composed of reduced matrix elements of
the operators T'1y~™. It is still useful and desirable to adopt a
choice of phase for the eigenfunctions according to Eq. (2.23),
even for the case when formulas are quoted in terms of mixing
ratios.
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in terms of mixing ratios when circular polarization is
not observed

we) =

LL/ww'K

X[14(—=1) LHLrAmtn—KTs, <r>5; ,<a’>} /) Z | o< |2,
Lw

{BK (]1) RK (LLljljz) PK (COS 9)

(3.40)

The normalization of W (6) is chosen so that the co-
efficient of Py(cos f) in the expansion of W (8) is unity.

Formula (3.40) is restricted to the case that the
initial state has a definite J; and has an axis of sym-
metry. It may be polarized or aligned and it is not even
necessary that the initial state has definite parity.

We speak of an alignment of the initial state J; if

w(—M;) =w(M,)

and call this the alignment condition. If this condition
is satisfied then it follows directly from definition
(3.28) that all Bg(J1) vanish when K=odd. Conse-
quently only terms with even K can occur in the angular
distribution. This is true regardless of whether circular
polarization is observed or not [i.e., for Egs. (3.32)
(3.40)7].

If the alignment condition is not satisfied, i.e. when
for example the 4-M; substates are stronger populated
than the — M, ones, we speak of a polarization of the
initial state Ji. Then there is no restriction on K from
Bg(J1); K may be odd and even. If circular polariza-
tion is observed, then Eq. (3.32) must be used. Odd
order K terms can occur regardless of whether the
initial state J; (and the final, J,) has definite parity
or not, and in general the distribution of right-hand
circular polarized quanta will be different from that of
left-hand circular polarized quanta. However, the odd
order K terms can propagate into the angular distribu-
tion of the gamma rays when circular polarization is
not observed [i.e., into Eq. (3.40)] only when the
states do not have definite parity.

If the initial (and also the final) state has definite
parity, then formula (3.40) may be simplified. Because
the electromagnetic interaction conserves parity the
sum in Eq. (3.40) [as well as in Eq. (3.32) ] no longer
runs independently over all possible LL'wx’ because
there is a fixed relation between the L values and =
values which is:

(a) If J1 and J, have the same parity, then in com-
bination with 7=0 only even values of L can occur,
while in combination with #=1 only odd values of L
can occur.

(b) If J; and J, have opposite parities, then in com-
bination with #=0 only odd values of L can occur,
while in combination with 7#=1 only even values of L
can occur. In other words, for case (a) only M1, E2,
M3, etc. are allowed and in case (b) only E1, M2, E3,
etc. are allowed.

Hence all terms appearing in Eq. (3.40) have
L4-L'+n+47" =even. The factor [14 (—1) L+L/+mtr'—K7]
is zero if K is odd and 2 if K is even. Hence Eq. (3.40)
reduces to

w(9) =
{ Br(J1) R (LL'J1J5)8,<">81,<""> P (cos 6)}
Z | 6,<m> |2 :
2

(Lw)(L'x")
K even

(3.41)

Thus if polarization is not observed, and if all nuclear
states have definite parity, then the angular distribu-
tion contains only terms with even K, and the odd K
values drop out. The “unpolarized distribution” of the
gamma ray cannot reflect the polarization of the initial
state. Note that:

(i) Formula (3.41) is restricted to the case that
J1 and J; have definite parity.

(ii) The sum over (Lw) is over all multipoles con-
sistent with conservation of angular momentum and
parity. The allowed values of L, L’ are

| Ji—Ts| <L, 'S (i+7s), L, L'50.

(ili) The sum is taken over even values of K only.
Even if the initial state is polarized and not just aligned
[ie., Bx(J1)520 for K=o0dd] this is not reflected in
the “unpolarized” gamma-ray angular distribution.

With the above restrictions, we can also rewrite for-
mula (3.35) and obtain the transition probability per
unit time and unit solid angle in terms of “mixing
products”

P =~ >

Th (Lx)(L'x")
K even

Bk (]1) Rk (LL’Jlfz) PK(COS 5)

Uy I T || Ty (1 || To<m> || Ja)
(2L+1)2 r'+1)w

It is possible to remove from this formula the restric-
tion that J; has definite parity. One then has to equip
it with an “ad hoc recipe” of how to use it. This “ad hoc
recipe’”’ is sometimes worked into Z coefficients [ which
replace Rx(LL'J1J2)]. This approach can lead to con-
fusion of phases (compare Sec. V).

Clearly formula (3.41) consists of two multiplicative
parts. One, Bk (J1), depends on the nuclear alignment
only. The other,®

(3.42)

{RK (LL']lfg) 5L<"'>5Ll<”/> }

XL: | 5,<m> lz

Re(IWJy)= 2

(Lm)(L'wl)

(3.43)

depends only on quantities which characterize the
nuclear transition.

18 A similar notation was introduced in (Po 65).
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Formula (3.41) gives the angular distribution in
terms of mixing ratios for a gamma ray originating
from the decay of the state J;, whose alignment was
described by Bg(J1). Quite frequently the decay of the
state J, proceeds through a gamma cascade to the
ground state and it is desirable to obtain a distribution
formula for any one of the subsequent gamma rays in
terms of the initial populations w(M;) of the magnetic
substates of J;. We specify our notation in Fig. 1. The
observed gamma ray is the one without subscripts, the
others are assumed to be unobserved. For the case
displayed in Fig. 1 the state J, is the initial state and
J3 the final for the gamma ray to be observed. The
populations w(M,) of J, can easily be worked out
in terms of the populations w(M;) of the magnetic sub-
states of J;. Following closely the notation of (Po 65)
one can introduce the coefficient

Ug(JiJ2) =D, (80,0) U (Lo J2) / D, (61.)?, (344)
=~ Lig
where
W (J1JoJ1J2; LK)
L =(—)¥
Uk (LiJ1J2) = (—) W (JiJoJ1Ja; L1:0)
(3.45)

W(JIJIJZJ2; KL12)
W(]1J1J2Jz; 0L12) '

Tables of these coefficients are given in the Appendix.
Clearly Uo(le]lJz) =1, and UK(Lu]lJz) = UK(L12J2JI).
With the restrictions under which formula (3.41) is
valid, K=even and the phase factor (—)X may be
omitted. As a consequence of the nonobservation of
Ly, there are no interference terms between different
multipoles in Eq. (3.44). The distribution formula for
the second gamma ray, using the above notations, is
then

W(0) =Y Bx(J1) Ux(JuJ2) Rx (JoTs) P (cos8)  (3.46)
K

~(-)x

and a generalization of this formula in order to obtain
an expression for the nth gamma ray in a cascade
can simply be made by putting further coefficients
Uk(JiJ 1) into Eq. (3.46) for each preceding non-
observed gamma ray.

To conclude this section we make a final specializa-
tion to the most common case in practice when only

w (M) 5

’
F1c. 1. Notations for the Liz,brz2
case that the initially popu-
lated state J; decays via a
cascade. L, L’ is observed, B2

Lys, L1y is unobserved.

LL

T3

32

two multipoles contribute to the transition. Then
formula (3.41) becomes simply (L and L being the
lowest order multipoles in ascending order, respectively)

W) = ; By (J1) Px(cos 6)

% {Rx(LLJ1J2) +26Rx (LLJ\J ) +8Rx (LLJ\J5) }

(1+8)
(3.47)
with
=<J11|TL<”>“]2>/(21:+1)1’2. (3.48)
I Tl Jo)/ (2LA+-1) 2
Similarly Eq. (3.44) reduces to
{ Uk (LnoJ 1 J2) + (8115) 2Ur (L1oJ 1T 2) }
Uil = [1+ ()] !
(3.49)
with
(0110)%= 1 | Toy < |1 o)/ (Lt 1) 2 2. (3.50)

<J1 “ Tf412<ﬁz> “ J2>/(2f/12+1)1l2

F. Methods of Alignment and Population Parame-
ters in Special Cases

The coefficients Bx(J1) describe the nuclear align-
ment and depend on the population parameters w (M)
of the magnetic substates of the initial state Jy accord-
ing to Eq. (3.28):

Br(Jy) =2 w(My) (=) 70(27,+1) 12

My

X (JWJ1M1—M, | KO),

(3.28)
Bo(J1) =1.

The sum over M; runs from —J; to +J; and the nor-
malization of the population parameters w(M;) is such

that
Z W(Ml) =1.

M1

The values which the population parameters may
assume in a specific case depend on the specific process
by which the state | J1M) is formed. In general we can
only say that if the state | J1M;) is formed in a nuclear
reaction of any kind and if neither the beam of the in-
cident particles nor the target nuclei are polarized then
there usually will be alignment with respect to the beam
axis, if | J1M;) has definite parity and if the beam axis
provides an axis of cylinder symmetry.

The interpretation of gamma-ray angular distribu-
tions and correlations following particle-particle re-
actions in terms of undetermined population parameters
of the magnetic substates of the initial state J; and
the determination of these parameters from a combina-
tion of measurements in order to determine the spin
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of a nuclear state was first made by Warburton and
Rose (Wa 58). The method was then generalized and
extended by Litherland and Ferguson (Li 61) and
has since been applied to numerous determinations
of nuclear spins and mixing ratios of nuclear gamma-ray
transitions. The present treatment of the ‘“cylinder—
symmetrical case’ in terms of phase-defined operators
and reduced matrix elements, which has yielded for-
mula (3.27) (and its subsequent specializations), in
practice mainly applies to what is called “method IT”
by Litherland and Ferguson. In this method the number
of open parameters is quite restricted by the detection
of particles in the direction of the axis of cylindrical
symmetry. In the following paragraphs we discuss
some of the ‘“typical” practical applications of the
cylinder-symmetrical case, where the population pa-
rameters are rather restricted or even completely de-
termined. These are the cases: (i) The alignment is
achieved by particle capture. (ii) The alignment is
achieved by a particle-particle reaction. (iii) The
alignment is achieved by observation of a gamma
ray originating from a randomly populated state and
followed by further gamma rays (‘“‘source case”). We
do not describe methods of analysis in this paper. This
is done for the above cases in detail in a laboratory
report, in which also the technique of computer analysis
used at Oxford are described in detail (Ha 66). The
report is in all phases in accord with the present article.

1. The Alignment is Achieved by Resonant Capture of
a Particle from the Initial Beam

The resonant capture of a particle %; from the incident
beam by the target X leads to an excited state ¥* of
the compound nucleus ¥ so that Y'* is a state with
definite angular momentum J; and parity. If the beam
is unpolarized and the target nuclei are randomly
orientated then the beam direction is an axis of sym-
metry and may be conveniently taken as quantization
axis. If only one partial wave / and one channel spin
s contribute to the formation of the compound state
Y* then the population parameters are uniquely de-
termined. The channel spin s and the orbital angular
momentum / (m;=0) couple to give the compound
nucleus angular momentum (J3M7). Consequently

'ZE)(Ml)N(SlMlo ] J]_Ml) 2,

Remembering the normalization requirement

> w(M)=1

M
and the symmetry properties of the CG coefficients we
can write this as

?O(Ml) = (S]]Ml—"Ml ! l0)2. (3.51)

If more than one channel spin can contribute to the
formation of J; the contributions of different channel
spins add incoherently and we can introduce the channel

spin intensities 7°(s) to describe the relative contribu-
tions to the population parameters w(M;) by multi-
plying the respective contribution from each s by
T(s), i.e., (cf. Li61)

w(My) =, (s/iMi—My | 10)2T(s). (3.52)

We then obtain for the coefficients Bx(J;1) which de-
scribe the alignment with respect to the axis of cylinder

symmetry
Br(J1) =2 (=)= (2041) P (2]141) 12

X (100 | KO)W (JJ1ll; Ks)T(s). (3.53)
The normalization of channel spin intensities is
> T(s)=1. (3.54)

We can remove the condition that the state | JiM;)
is formed by one partial wave / of the incoming particle
beam only. Since in practice usually not more than
two partial waves need to be taken into consideration'
we avoid writing the formula in its most general form
(the extension to more than two partial waves is
trivial).

If two partial waves / and /' contribute to the forma-
tion with channel spin s then clearly

A+ (T My— My | VO)A () PT(s).  (3.55)

Here A(l) and A(V) are the amplitudes with which
the partial waves / and /' contribute to the formation
of | JiM;) through channel spin s. These particle ab-
sorption amplitudes are proportional to the reduced
matrix elements for absorbing a particle specified by
1, s from the incident beam by a target nucleus having
total angular momentum Jx to form J;. These matrix
elements are in general not real (nor pure imaginary)
but complex numbers and therefore A(!) and A(Y)
are complex, i.e.,

A =|AQ) | exp (ign);

AU) = A1) | exp (i¢r). (3.56)
The normalization is
| AQ) 4] A@) [P=1. (3.57)

Because the interaction which causes the particle cap-
ture is not known (unless specific models are assumed)
no specific conclusions about the (relative) magnitude
and phases of A(l) and A(/) can be drawn (unlike
the case of absorption or emission of electromagnetic
quanta, where the interaction is known). For model
calculations Eq. (3.55) is to be taken as a definition
of the amplitudes 4 () and A (7).

18 The assumption that | JiM:) corresponds to an isolated
resonance with defined spin and parity requires that |I—V | =

2, deee.
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From Eq. (3.28) we obtain for the coefficients Bx (J1), which describe the alignment with respect to the axis of
cylinder symmetry,

Bx(J1) =, { (=)L (2041) 12 (27,41) 12 (100 | KO)W (JJ1ll; Ks) | A (1) |2

4 (=)1 2(204-1) 2 (20 4-1) 12( 2T, 41) V2 (100 | KOYW (JuJudl'; Ks) | A(D) || A(V) | cos (dr—ow)

+ (=)L (21 +1) V2P (2J34+1) 2 (1100 | KO)YW (JoJJV; Ks) | A(Y) |P}T(s).  (3.58)

Equation (3.58) shows that for each channel spin which contributes, two undetermined parameters enter Bx(J1).
These are the relative magnitude of the amplitudes 4 (Z), 4(¥) and the cosine of the relative phases ¢; — ¢u.
With the notation

Sk (WJ1s) = (=) 71 (2041)12(20 +1) 12 (2T, +41)Y2(I'00 | KO)W (J1JAl'; Ks), (3.59)
we can rewrite Eq. (3.58)
Bi(J1) =2 {Sx(Uss) | A(}) 428k (UWT1s) | AQ) || A) | cos (d1—w) +Sx(WVTss) | A(V) T ().
(3.58")

The coefficient Sk (/'J1s) is tabulated in the Appendix. It is related to the various Z coefficients in use (cf. Table IT).
So(llJ1s) =1 and So(ll'Jys) =0 for 1. Therefore, because of | A(1) [24] A(¥) [2=1 and X T'(s) =1, it follows
that Bo(J1) =1. Sx (W' J1s) =Sk (I'lJ;s) for K =even.

An estimate of the relative phase ¢;—¢y can sometimes be useful. If we consider the target nucleus to be well
described by the model of a hard-core scatterer with a Coulomb field the relative phase is given by

¢1—¢y =—arctan [Fi(R) /Gi(R) J4a,+arctan [Fi (R) /Gy (R) ]—op+nm (3.60)

7 1s an integer, but one requires a phase—consistent theory of nuclear reactions to decide its numerical value. F;(R)
and G;(R) are the regular and irregular solutions of the Coulomb wave equation and ¢;=argument I'(I4-14-in),
n=(Z1Zs¢*/Tiw). The physics is now distilled into the choice of the channel radius R. However, the arbitrariness
of this choice is limited, and useful limits on ¢;—¢;» may be obtained in this way.

We may now go one step further in this case of particle absorption and remove the assumption again that | J1M)
has definite parity. Equation (3.55) shows that the alignment condition w(M;) =w(—M,) breaks down if | J1M1)

does not have definite parity. Calculating

w(—M1) =| (sJi—M M1 | 10) A (D)4 (sTi—M M | VO)A (V) |2
=| (=) (sT My—Mq | 10) A Q)+ (=) TV (sT M1—M | VO)A(V) } |2 (3.61)

and comparing it to Eq. (3.55) it is seen that only when
I—U'=even (i.e., definite parity of J1)w(—M;) =w(M;).
Consequently, if J; has mixed parity (i.e., {—7 can be
odd) the distribution of the right-hand circular po-
larized quanta P'(k) is no longer identical with that
of the left-hand circular polarized quanta; i.e., P (k) £
P-1(k) (compare Sec. IITE) and the nonpolarized dis-
tribution can no longer be represented by formulas

TaBLE II. Rg and Sk coefficients in terms of
previously defined coefficients.

(1) Rx(LL'J J,)

= (—)JrJrKiejl=mL='Z (LT L' Ji; JoK) /] (2J,41)12
(2) Re(LL'J1Jy) = (=) e NZy (LI L' Jv; JoK) /(2T +1)12
3) Rx(LL'J1J2) = (=)L V*KFg(LL'J2J)
(4) SgWJis) = (=) Tqt=v-EZ (ATl Jy; sK) /(21 +1)12
(5) Sg(WJis)=(=)rTZUJ ' Ji; sK)/ (2T +1)12

(3.41) or (3.42). One must go back to Eq. (3.40) or
(3.35), respectively.

However, remembering the discussion following
Eq. (3.40) we can determine the composition of the
angular distribution in this case of nondefined parity
when circular polarization is not observed. There will be
interference terms of multipoles with equal parity as
well as with opposite parity. The former occur in
combination with terms of even K only, the latter
only in combination with odd K. Looking now at
Eq. (3.58) for Bx(J;) and assuming that !—I!'=odd
(i.e., no definite parity of J1), we notice that the mixed
term containing | A(Z) || A(Y) | cos (¢1—¢r) will give
rise to odd values of K only, while the ones containing
| A (1) |2 and | A(Z) |? give rise to even K only. Con-
sequently in combination with the ‘“particle inter-
ference term” only multipole mixture terms of opposite
parity occur, and in combination with the ‘“clean”
partial-wave intensities | A(J) [2 and | A(V) | only
multipole mixture terms of equal parity occur.
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Formulas (3.41) and (3.42) describe the angular
distribution when polarization is not observed under
the restriction that the initial state J; is aligned (but
not polarized) and that J; has definite parity.

The above discussion shows that formula (3.41) and
likewise (3.42), although they are restricted formulas,
can still be applied provided one equips them with an
“ad hoc recipe” of how to use them. This recipe is:
Remove again the relation between L and 7 as fixed
by parity conservation; then, for all even K omit the
interference terms of all multipoles with different parity
but keep the ones with equal parity; for all odd K omit
the interference terms of all multipoles with equal parity
but keep the ones with different parity. This recipe
follows directly from Eq. (3.35) or (3.40). The exten-
sion to cascades for the usual case, that all nuclear
states have definite parity and that circular polariza-
tion is not observed, is again made using the Ux(JJi41)
coefficients as described in Sec. ITIE.

2. The Alignment is Achieved by a
Particle-Particle Reaction

By a particle-particle reaction we mean a reaction
of the type X (/uke) Y*, where X is the target nucleus,
= the incident particle and %, the outgoing particle
perhaps after the formation of some undefined com-
pound state) leaving the final nucleus in an excited
state Y* which is the initial state | J1M) for subsequent
gamma transitions.

If the particle %, is not detected, the cylindrical sym-
metry (in this case the beam axis) of the problem is
not destroyed. In order to predict the population pa-
rameters w(M;) uniquely in this quite general case, a
complete knowledge of the process itself would be
required, which usually is not available. If beam and
target nuclei are unpolarized and if J; has definite
parity, then always w(My) =w(—M,); ie., the state
J1 is aligned but not polarized. The alignment condition
w(M;) =w(—M,) and the normalization D w(M;) =1
together reduce the number of undetermined param-
eters entering the coefficients Bx(J1). If the spin J; is
integer then only J; open parameters remain; if J; is
odd, only J;—% ones remain.

The expression (3.28) for the coefficients Bg(J1)
can be somewhat simplified for the case of alignment.
With the normalization Zw(M1)=1 and w(M,) =
w(—M,) we can replace the summation from My=—J;
to M;=J; by a summation from M;=0 to M;=J; and
Eq. (3.28) becomes

Mi=J1
Be(J)= 2. w(My)(2—bdu0) (=)™
M1=0 or 1/2
X (2T 1) Y2 (J J M —M1 | KO)
Mi=J1
= 2 w(M)px(JiMy). (3.62)
M1=0 or 1/2

Obviously By(J1) =1 and Bg(Jy) =0 for K odd. The

coefficients
o (JiM71) = (2—8aryr0) (=) T (201 +1) 12

X (JWJ:Mi—M, | KO) (3.63)

are identical with the ones defined in Eq. (3) of Poletti
and Warburton (Po 65) [so is Bx(J1) with px(a) of
this reference’]. The px(J1M1) were tabulated by these
authors. For convenience we include in the Appendix a
tabulation for spin values in the range 0<J;<10 and
0<7,519/2.

In what is called “method II”” (Li 61) the particles
hs are detected at 0 or 180° with respect to the incident
beam of particles #; (polarization of %, is of course not
detected). Then neither the cylindrical symmetry of
the problem nor the alignment condition is destroyed.
The remaining undetermined population parameters
(cf. the preceding paragraph) have a further restric-
tion. Because of the detection of % coaxial with 7,
no contributions to the possible M, values can come
from orbital angular momenta; obviously then only
those magnetic substates M; can be populated which
fulfill

| My | <Tx+-snFsne

For example, if the target nucleus is a Jx=0 nucleus,
h a proton (or ®He) and the outgoing particle % an
« particle, then only My=-+% can be populated. Since
w(3) =w(—%), the population parameters are even
uniquely determined in this case. In less favorable
cases, when the outgoing particle 4. does not have s3,=0
or when Jx%0, all M; values permitted by Eq. (3.64)
can be assumed. However, even in these less favorable
cases the experiment can lead to conclusions about
spins and mixing ratios involved in the transition
J1—J 2 as has been widely demonstrated in recent years.
Sometimes the state J; shows further decay modes and
a determination of the remaining population param-
eters is possible from the observation of the angular
distributions of these additional gamma rays.

(3.64)

w(M,)=random

Iy
LyLy
w(Mz) 5
Lol
T3
Lag,Lad’
T

F16. 2. Notations for the case of a gamma cascade originating
from a randomly populated state Ji. The alignment of J: is
achieved by observation of the transition J;—Js.
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3. The Alignment is Achieved by Observation of a
Gamma Ray

By this we mean that an initial state J is randomly

populated and then decays by emission of a sequence
of two or more gamma rays (gamma cascade).

First we treat the simple case that the two gamma
rays which are observed (in coincidence) are the first
and second one in the cascade originating from the
decay of Jy. This case with the respective notations is
shown in Fig. 2. Again double subscripts mean that the
respective gamma rays are not observed. If J; is ran-
domly populated then no direction in space is preferred.
We may choose the direction of propagation of the
first gamma ray emitted as the axis of quantization
(z axis). The magnetic substates M; of J; may be
specified with respect to this axis and certainly the
eigenfunctions | J/;M:) can be chosen so that they are
eigenstates of J, (more elegantly—although we have
not made explicit use of the density matrix formalism
in this article, because it is not necessary for the treat-
ment of cylinder-symmetrical problems—the density
matrix pgar,7m 1S diagonal). The population pa-
rameter w(M,) is then just the statistical weight
(271 +1)7

The circular polarization of a gamma ray is specified
with respect to its direction of propagation. The first
gamma ray serves as quantization axis, therefore its
circular polarization quantum number ¢ refers to the
axis of quantization. Consequently the first gamma ray
can change the magnetic quantum number M; only
by =1, regardless of what its angular momentum fis.
Since in principle we could measure its circular polari-
zation we can in principle strictly relate to each value
M, one (and only one) value of M, namely, Mo+g=M,.
Since M; was sharp with respect to z, and ¢ is sharp

W (My)~(k/20%) 2T +1)1 D, 2

My LiLy/ miwy/

~(ka/20h) QA1) Y 2

M1 InLy/ w1/

X qlm-hu/ (]1 H TL1<1rl> ” ]2> (]1 ” TL1,<1r1’> ” ]2>*_
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with respect to z, so will then be M. Or in other words,
a set | JoMs) exists such that M, is an eigenvalue of
Jo. (again more elegantly, if psiar,surp is diagonal,
SO 1S psaas.enrer, provided there is no other preselected
axis in space but the one set by the direction of propa-
gation of the gamma quantum originating from the
transition J;—J,) . If only one of the further subsequent
gamma rays is detected (at an angle 8 relative to the
first one) then the above quantization axis is an axis
of cylindrical symmetry. Consequently the angular
distribution of the observed second gamma ray (Jo—Js)
can be described by formula (3.32), with the respective
replacements of J; by J,, and J; by Js. Again, most
importantly, the distribution formula is split up into
two multiplicative parts, one which depends on the
populations w(M;) of the state J, only, and another
one which depends on the observed transition Jo—J3
only. All that we are left with is to calculate the popu-
lations w(Ms).

After what we have said above this is easily done.
Take the probability amplitude A%u,(0) for a
transition from M; to M, with emission of a circularly
polarized gamma ray of polarization ¢ in the z direction
(compare Sec. ITIC). Since for a definite ¢ there is
only one M, corresponding to each M3, the probability
for populating M, from M, is obtained by taking its
square modulus, then weight each of these probabilities
with the statistical weight of M, i.e., multiply by
w(M;) =(2J;+1)1 and sum over all M;. This gives

wa(My)~Y (2714+1)" | A%ran(0) 2 (3.65)
My

The index ¢; indicates that this is the population
achieved if the circular polarization of the populating
gamma rays is measured. Using Eq. (3.24) we obtain

gt (TM (| Tryg<™> | JaMe) (JiMy | Trpg <> | JoMe)*

(] oL M 2q1 I JiM- 1) (] oLy’ M 21 l JM 1)

(3.66)

Again with the phase conventions for the eigenfunctions under time reversal according to Eq. (2.23) the reduced
matrix elements are real and the asterisk may be omitted.

The calculation of Bx(J,) is straightforward, observing that in the definition (3.28) the quantities J1, M, have
now to be replaced by Jy, Ms. Inserting w(M,) from Eq. (3.66) into the respective expression for Bx(Jz) obtained
from (3.28) and shuffling around some CG coefficients we obtain

>

Li'Ly/ ywylmy!

k
Bt (Ja)~g— (=) T (2T 1)1

X W(]2J2L1L1'; KJ1) Q1"‘+’1I<J1 ” TL,<"'1> ” ]2> <J1 ” TL1'<ﬂ,> ” ]2>*'

(LiLYgi—q1 | KO)

(3.67)

This is the “statistical tensor” for the cylinder—symmetric case as produced when the polarization ¢; of the popu-
lating gamma ray is observed. We can write formula (3.67) in a more compact form using the coefficient Rg2(LL'JJ)

as defined by Eq. (3.31). We get

k
Bz (J) ~

27I'ﬁ LiLy/ ,mimy/

( — )Lx—L1'+K Rqu( L Lllj?J 1) q1n+1r1’

(Jl ” TL1<ﬂ> ” ]2> (Jl ” TL1’<ﬂ,>”J2>*
QLA1) QL 1)

(3.68)
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If the proportional sign in Eq. (3.68) were replaced by an equality, Bx%(Js) would not be normalized in the way
required by Eq. (3.28), i.e., By?(Js) =1. We can make this normalization following along the lines which led to
Eq. (3.41), i.e., we introduce the mixing ratios according to definition (3.39). We restrict ourselves to the quota-
tion of formulas which are valid when all states involved have definite parity. We then obtain from formula (3.68)

Bxn(Js)= Y, (=) L+ Rpar(Ly Ly ToJy) qimmy 8y, <m> 87, 4™} /D (8, <m>)2, (3.69)
N1

(Limy) (L1 m1!)

In the case that the population of the initial state was determined by the absorption of a particle from a non-
polarized beam the expression for Bx(J;) was governed by a coefficient Sk (I/'J1s) . This coefficient was proportional
to a CG coefficient (/00 | KO) and the appearance of odd K values was bound to J; not having definite parity
because (#'00 | KO) =0 for I4+V'+K =odd. The coefficient Rg?(LL'J»J;) which regulates the population of the
state Jo [Eq. (3.69)] now reflects that the corresponding statistical tensor Bx?(J2) depends on the (circular)
polarization of the populating gamma ray. It is proportional to a CG coefficient (LL'¢—q | KO). This coefficient
has finite values for L4 L'+K =even integer as well as for L+L’+K =o0dd. Consequently, even under the re-
striction of definite parity, odd values of K are allowed. This reflects that the observation of circular polarization
of the populating gamma ray leads effectively (i.e., for the observation of subsequent gamma rays in coincidence
with the populating one) to a polarization of J.. When the circular polarization of the populating gamma ray is
not observed, this effect must vanish.

If circular polarization is not observed we sum over ¢; in formula (3.69). This gives

BK (]2) — Z { [( — 1) L1—L1’+K+ ( _ 1) ﬂ+ﬂ,:|RK(L1L1,]%71) 5L1<1r1> 5L1,<1r1f>}/2 Z (6N1<7r1>) 2, (3'70)
N1

(Lim1) (Ly/m17)

Parity was assumed to be definite for all states. Therefore, if L;— L' =0dd, also m+m’=0dd (=1). Consequently,
unless K =even, the respective terms vanish. Similarly, if L;— L’ =even, m+m’=0, and again K must be even.
We therefore obtain

Be(J)= > {(=) L Ry (LyLy'ToJ1) 81,<m> 61, <m>} /> (63, <m>)2
N

(Lym1) (Ly/717)
if K=even, and =0 if K=odd. (3.71)
Formula (3.71) is restricted to cases where all nuclear states have definite parity.

The usual case is again that only two multipolarities need to be considered in formula (3.71). Then we get,
with Iy and L, being the lowest possible multipolarities in ascending order,

B (J2) = {Re (InLnJoJy) + (=) B2 261 Re (L LoJoT0) 8¢ Rec(LaLaToTh) } / (148,
with
_ Ul To<m> (| 1o)/ (2L A1)
Gl To > Ja)/ @LaA-1)

(3.72)

1

Inserting Bx(J2) as given by Eq. (3.71) or (3.72) into Egs. (3.41) or (3.47) gives the formulas for the angular
distribution of the gamma ray associated with the transition Jo—.J; with respect to the direction of observation of
the gamma ray associated with the transition Jy—J,, when J; was randomly populated. We quote it, using for-
mula (3.47), for the usual case that the populating and the subsequent gamma ray are contributed to by two
multipolarities

W(6) ={Rg (z1f11]2]1) +( —)E‘_l" 26,Rx (ZlLlfzfx) +8:2 Rg (LiL1J2J1) } (146:2) 1
X {Rg (LnLaToJs) +26.Rk (LnLaT o] 5) 4822 Rk (LaLaT T 5) } (146:2)~1 Px(cosB). (3.73)

The extension to the observation of the nth gamma of matrix elements written in the same order, i.e.,
ray in coincidence with the one originating from the T Ty <m> || TN/ (2L,4-1)1/2
transition J1—J, is made easily using the Ug(J:J 1) 51=< 3l TI-4<’71> I 2>/(2I_41+1)1/2 ,
coefficients as described in Sec. ITIE. Gul Tz Il J2)/ (2La+1)
Equation (3.73) shows that the term arising from and
the mixture of two multipoles in the populating transi- T Ty<m2> || J.)/ (2L41)12
tion is multiplied by a phase factor (—)Zr~Z1. Both 62=< - :ITI:2<;2> I Ta)/¢ f;+1)1’2 .
mixing ratios & and 8, are of course defined in terms 211 Tz I173)/ (2LA4-1)
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The initial state for each transition stands always on
the left.

Biedenharn (Bi 60) has followed the convention of
writing the intermediate state (in this case J;) always
on the right. In view of Eq. (3.73) this was a logical
convention, because it makes the distribution formula
more symmetric. The order of the spins entering the
Ry coefficients is for the populating (or the “first”)
gamma ray (in the cascade) anyway Js, J1. When the
operators transform under Hermitian conjugation as the
T1y<™ do [cf. Eq. (3.22)] or in a way

TLM<7r>+= ( _) L—M-+const TL_M<1r>’

where const is independent of L, M, w, hent “switching
around” the reduced matrix elements in §; produces
a phase factor (—)Z* 2. Rewriting Fq. (3.73) in
terms of Fg coefficients (which Biedenharn (Bi 60)
uses) all extra phase factors cancel. However, the price
one pays for this is that the mixing ratios entering
(3.73) have now got different definitions. This would
not be so serious if there were only gamma-gamma cor-
relations to be investigated. One could adopt it as a
convention. However, when triple cascades have to

¢ investigated logic begins to fail already. But more
seriously: even in a cylinder-symmetric environment
the mixing ratio of the populating gamma transition
in the gamma-gamma correlation may be determined
from two different experiments:

(a) Ji1is for example populated in a particle-particle
reaction [case (i) of this section]. Then the transition
Ji—J is described by formula (3.41). In this formula
the order is Jy, J» in the Rx coefficient and “logically”
also Jy, Jo in the reduced matrix elements composing
the mixing ratio.

(b) The mixing ratio of the multipoles composing
the transition J,—J; may sometimes also be determined
from a gamma-gamma “correlation” experiment to
be described by formula (3.73). It is therefore important
to have a unique definition of mixing ratios throughout,
regardless of whether Eq. (3.41) or (3.73) describes
the experiment in question (compare also Sec. VB).

IV. REDUCED MATRIX ELEMENTS

A. General Remarks

In favorable cases it is possible to extract the multi-
pole mixing ratios 6,<™ from experimental gamma-ray
angular distributions. The mixing ratios are ratios of
reduced matrix elements of the multipole interaction
operators 7'zy<™ [cf. definition (3.39)] and these in
turn are defined by the Wigner-Eckart theorem
as stated in Sec. ITIC from the matrix elements
(1M1 | Trar<™ | JoM,) between the initial nuclear state
| JiM1) and the final state | JoM,). Generally these
nuclear wave functions are not known exactly but are
represented by a model and the method of calculating
the matrix elements depends on the model. It is not
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possible to summarize results for all models in this
review. We consider some general questions and then
give in Sec. IVB the reduced matrix elements for
single-particle transitions explicitly. In Sec. IVC we
then give the reduction formula for two-particle cases
in j—j coupling to single-particle reduced matrix
elements and a conversion formula from L-S to j—j
coupling. Sometimes the complex states J; and J; can
be described as hole states in closed shells. In Sec.
IVD we show how reduced matrix elements between
such states can be evaluated in a phase-consistent
manner.

The choice of the over-all phase of the wave func-
tions | J1M;) and | JoM,) is not important. A change
in phase of the wave functions only produces a phase
change in the transition amplitude A%s,(k) [Eq.
(3.24)7]. This phase cancels when the amplitude is
squared to obtain the transition probability P(k)
[Eq. (3.25)7]. Alternatively the gamma-ray angular
distribution depends only on the mixing ratios 6,<™
which are ratios of reduced matrix elements [Eq.
(3.39)]. Any alteration in the phase of the wave func-
tions of the initial or final state cancels in the mixing
ratios. On the other hand the reduced matrix elements
are real if the wave functions are required to transform
under time reversal according to Eq. (2.23) and, other
things being equal, it is good to satisfy this condition
consistently. We do this in the special cases considered
later in this section.

The choice of phase of the multipole operators is
of vital importance. Equation (3.27) for the angular
distribution is likely to give the wrong results unless
the choice of phase of the operators I'zy<"> defined
in Egs. (3.16), (3.17), and (3.20) is adhered to. The
definition of reduced matrix elements is also important.
Ours are defined by the Wigner-Eckart theorem of
Sec. IIIC. The reduced matrix elements of Racah
(Ra 42, 43), Edmonds (Ed 57), and Messiah (Me 60)
are a factor (2J;+1)'2 times ours, but have the same
phase. The numerical factor (2J141)? cancels in the
mixing ratios. The order of the states in the matrix ele-
ments is also important. In our convention the initial
state always stands to the left and the final state to
the right (cf. Sec. IT). Because our operators I'zy<™
have the Hermitian property given in Eq. (3.22) the
order of the initial and final states in the reduced matrix
element may be changed in a well-defined way. In
general for any Hermitian tensor operator Oray which

satisfies
Orut=(—)"MOr_yn

we have the relation
(21 4-1)12(Jy || O || J2)
=(—) 70 (20, 4+-1) (5 || O | J)*. (4.1)

The phase C is arbitrary unless the phase Oy is speci-
fied. For the operators 77y<"> we have [cf. Eq. (3.22)]
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C=L-+1. Hence
(27341)2(J || T || o)
= (=) T T @A (T A1) V2], || TS || Jo)* (4.2)

and when the order of states is changed in the defini-
tion of the mixing ratios the relation is

_ [T [ Jo)/ (2LA-1)2
RRTATE TS WAVICT AR

o | Tr<=> || J1)*/ (2L4-1)12
o || Tz || T/ (2L +1)v2

The ratio of the reduced matrix elements (cf. Ref. 17)

=(-)F

(4.3)

(W3 711l (Qr)est || b3 ja) =egil (L) bys,
(W31 || Q' || b3 j2) =348k (L) (a1—a2) bis/ (L4-1),
(W1 || My || bog fo) =2B8gitt2(—) 12T (L—1)

is real because of the time-reversal properties of the
operators Try<™ [Eq. (3.23)7; but the factor (—)&L
must be included if the initial state is written on the
right of the reduced matrix elements.

B. Single—Particle Reduced Matrix Elements

Writing the wave function for a spin-} particle with
spin-orbit coupling in a central field

| Limy= > | 1YY 18, §)Wom—ao | jm)  (4.4)

where 7! is included to give the required time-reversal
properties [Eq. (2.23)7], we can calculate the reduced
matrix elements of the operators 77,<™. We obtain
(cf. Br 62) in terms of the operators (3.17")

X (W01 | LYW ( filsfolo; 5L) [(272+1) (2h+1) (204+1) L(l+1) LT[ (2L4-1) (L41) 1772,

(W31 || ML || b} jo) = 5881 (L—1) (L—a1—a5) by,
where I(L) is the radial integral
I(L)= / w1 () s (r) dr,

and

(4.5)

by =it (=) #12( 2, 1) Y2 (2L+1) 2 fuji —} | LO),

ay=(h—j) (2j1+1).

The sequence of coupling of angular momenta and spins
is 14-s as can be seen from the CG coefficient in Eq.
(4.4). The single-particle reduced matrix elements of
the operators Gry<™ are according to Egs. (3.20)
simply the sums of those of Mry+M 1y’ or Qra+Qra’.
The matrix elements of the operators 7'z, <™ are readily
obtained from Egs. (4.5) by remembering the defini-
tion (3.20) and using formula (3.16) or Table I for the
multipole expansion coefficients «z<">. To conserve
parity L4117, must be even for electric operators and
odd for magnetic ones, and it is easily seen then that
indeed all reduced matrix elements of the operators
Ty turn out to be real.

We do not enlist reduced single-particle matrix ele-
ments for the special operators M1, E1, and E2 as
done in (Br 62). In this reference these especially simple
cases are evaluated from Eqs. (4.5) for transitions
j—4, 7—7+1 or j—j+2. Sometimes the reverse order,
for example j4-1—7, is wanted, and “‘switching around”

(4.6)

the order of states in the specialized formula implies
that the transformation properties of the operators
have to be carefully observed. In a phase-consistent
treatment the switching operations might be a source
of errors while inserting the states in the correct order
(“initial one left”) into Egs. (4.5) is a ‘“foolproof”
operation. The first of the matrix elements (4.5) is
that of the operator (Qra)esr. It is equal to the one
of the “correct” operator Qry only when the state to
the left is higher in energy than that of the state to
the right (compare also Secs. IIIB and IVD).

C. Reduction of Two-Particle Reduced Matrix
Elements

In this section we give reduced matrix elements for
transitions between two-particle states. These may be
derived from the general reduction formula for a system
composed of two parts [cf. (Br 62)]:

(Ga(D3pT 1| T2 (1) +T2(2) || 5o(1)ja(2)J"y= (2T 1) 12 =) demivt
X {8004 (=)7 (2at1) W (ool 7"5 L) {a || Ta(1) 11 52)
+8( o) (=) Qo 1) W (o jadJ'5 Lja) (s || T2(2) 115}
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The two components of the system have angular mo-
menta j,, 75 coupled to J in the initial state and j., 74
coupled to J’ in the final state. The electromagnetic
transition operator is Tp<">(1) for the first component
and Tz{™ (2) for the second.

We avoid explicit use of isobaric spin quantum num-
bers in labeling single-particle states and isobaric spin
dependence of operators. (The total isobaric spin
quantum number is used only in order to distinguish
between symmetric and antisymmetric two-nucleon
wave functions.) This is to avoid unnecessary com-
plications especially when transformation properties
of operators are concerned; also it seems unnecessary to
erect a further formalism in a section of which the aim
is mainly to provide formulas for practical applications.

The wave function of a system of two nucleons must
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be symmetric or antisymmetric with respect to ex-
change of the two particles in order to give eigenstates
of isobaric spin. A symmetric wave function has isobaric
spin 7=0 while an antisymmetric wave function has
isobaric spin 7’=1 (only the antisymmetric 7'=1 state
is allowed for identical nucleons). The symmetrized
wave functions are

[ jufsTMTY=N{|ja(1)7s(2)TM )
+ ()T 172 (1)IM)}.  (4.8)

The normalization coefficient N of the symmetrized
states depends on whether the single-particle states
ja and 7, (or 7, and 74) are identical.

and similarly for | 7,(2)7»(1)JM ), the normalization constant N is easily determined from

1= G/ MT | juJMT)
=2V {14+ (—-1)T 3]

mampma'mp’

As
| 7a(1)s(2)TM )= Zb (Jagomamy | TM) | ja(1)ma(1) ) | 55(2) m5(2) ), (4.9)
(Fagsmmarns | TM) ( Jagsma'my’ | TM) { fa(1)ma(1) | 7o(1)ms’ (1))
X (76(2)me(2) | ja(2)ma' (2) )} (4.10)

For j,5%7, we simply obtain N =1/v2 and for j,=75, N =%. In this case it also follows from evaluating the right-
hand side of Eq. (4.10) that for 7=0 only odd J, and for 7’=1 only even J values are allowed. Combining the
results obtained for the normalization coefficient N we can write

N =V2[14+3( fags) T2
After symmetrizing and normalizing correctly, we get
(JadoJ T || To(1) +T2(2) || jojal T") = (=) H3e=3 (27" +1) 12 F{[148( fa i) J1+8( e ja) 1} 72
X A8( o a) (=) (24a+1)"W (fa G T'5 Ljs) M ( a je) +8( Jage) (=) T+ (25s+1) W ( jo jalT'5 Lja) M ( o ja)
+8(Jaja) (=) 2o+ 1) W (G joIT"; Lia) M (G ) +06( o je) (=) TH"H 41 (2f+1) W ( fa jal T’ Ljs) M (Jaja) },

(4.11)

(4.12)
where
M (jaje) =L{Ja |l To(1) [l 7o)+ (=) (a [ T£(2) [|76)]- (4.13)
If nucleon “1” is a proton and ““2”” is a neutron, then
M (jaje) =[{ja |l To(p) [l o)+ (=)™ {fa || Te(n) || e)] (4.14)

where T1(p) and Tz(#) are the multipole operators for protons and neutrons, respectively. It is arbitrary in this
case of a proton-neutron two-body problem whether we call nucleon “1” the proton and “2” the neutron or vice
versa. A relabeling in the opposite manner introduces an over-all phase change (—)7*"" of ¢ll matrix elements
(4.13) and therefore is irrelevant. Only, once nucleon “1” is called the proton and nucleon “2”’ the neutron then
this labeling must be kept in the evaluation of all matrix elements (4.13).

On the other hand, if the two nucleons are identical we must have 7=7"=1 and

M(]a]c) =2<ja “ TL(P) ”.7&)

2(7e |l Ta(n) |l 7e)

Sometimes wave functions for “two-body’” nuclei are available in Z-S coupling expansion. To apply the formula
(4.12) it is then necessary to convert them into a j—j coupling expansion.

for two protons (4.15)

or

for two neutrons. (4.16)
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If 1, and I, are the orbital angular momenta of the two nucleons, s; and s, are their spins, coupled such that
L,4+1,=L and s;+s,=S, then

lls1j1
| WloL, 51528, TM Y= > A| lLsajs || bsifs, bass o, JM) (4.17)
Jije
LST
or
l151j1
| lisyfu, losa fo, TM Y= D A| bsoja || bloL, 515:S, TM), (4.18)
LS

LST

where 71 and j» are again the total angular momenta of the individual nucleons and J is the total angular momentum
of the system. The A coefficient is the one of Kennedy and Cliff (Ke 55) and tabulated by them. It is related to
the X coefficient of Fano (Fa 51) or Wigner’s 9— symbol by

l131j1 l1S1j1
Al bsegp | =L(2L41) (25+1) (21+1) 2+ T2 XY bszjo (4.19)
LSJ LSTJ

For the calculation of reduced matrix elements from eigenfunctions given in the literature it is necessary to
know the coupling scheme used by the author. This is important for two- (or many-) body systems when several
configurations can contribute to the eigenfunction or when the coupling situation is an intermediate one. Also,
extreme care must be exercised when for example matrix elements for a transition from a particle-hole state in
a (doubly) closed shell | ¢) to another particle-hole state in the same (doubly) closed shell | ¢) are to be calculated.
A similar procedure which led to formula (4.12) has then to be applied, starting from particle-hole wave functions

l JajotJMT)=V2"1 Z ( Ja Jomamy l IM) (=) %™ 4, mPajm?+(—) T @ Qi ] | ¢)

mamb

which now replaces formula (4.8). One arrives at a
result which replaces formula (4.12) and it is seen
that in fact formally the result is identical with (4.12)
when only the terms with 8( 7. 7.) and §( j»7ja) are re-
tained. This result is physically obvious, because in the
first term the “hole” and in the second the particle
makes the transition. The matrix elements which occur
now in the formula corresponding to Eq. (4.12) are
those of Eq. (4.14). However, only when the hole acts
as a bystander then the single-particle elements (4.5)
can be substituted as they stand, while when the par-
ticle acts as a bystander the electric multipole matrix
element (Qr)err of formula (4.5) must be substituted
with the opposite sign (cf. Sec. IVD).

D. Hole Matrix Elements

The angular distribution formula (3.27) holds for
states J; and J, of any complexity. Only the total
angular momentum properties of the states J; and J,
were used. The reduced matrix elements occurring in
formula (3.27) or the mixing ratios in formula (3.41)
are of corresponding complexity, i.e., the operators

Tz{™ may be sums over many individual particle opera-
tors of multipolarity L. All that matters for the sym-
metry of the angular distribution formula are the total
spins J; and J,, the multipolarities L, L involved and
the ratios of the formal quantities called mixing ratios
8>, regardless of whether these latter quantities are
interpreted in terms of a model at all or, if so, in terms
of which model. In certain cases the many-particle
states J; and J» can be well described by a simple model
of one- (or two-) hole states in closed shells. If this
simple model is applicable then the many-particle
reduced matrix elements may be expressed in terms
of single- (or two-) particle matrix elements. This
reduction can also be made using the formalism of
fractional parentage (not speaking of “holes” at all),
but in the case of one or two-hole states in a closed
shell it is simpler to apply the particle-hole conjuga-
tion symmetry [cf. (Br 56)].

Let | 0) denote a closed-shell state in which certain
levels are filled but the subshells 7;- -7, are empty,
and let | ¢) denote the state in which these levels are
also filled. Both the states | 0) and | ¢) have zero total
angular momentum. We denote the creation operator
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for the single-particle state | jm) by @, and the cor-
responding annihilation operator by @;.. The state
ajn* | 0) describing a single particle outside the closed
shell | 0) has the same angular momentum and trans-
formation properties as the single-particle state | jm).

If the closed-shell state | ¢) contains # particles then
the state aj» | ¢) represents a state of »—1 particles.
As it is formed by removing a particle with angular
momentum ( j, m) from the state | ¢) with zero total
angular momentum, it has angular momentum (§, —m).
However, its phase is such that it does not transform
like a state |7, —m) under rotations. On the other
hand, the n—1 particle state

| (n—=1)jm)=(=)""a;m | c) (4.20)

has the correct transformation laws for a state with
angular momentum ( 7, m). Often such (z—1)-particle
states with one particle removed from a closed shell
are called “one-hole” states. It is sometimes convenient
to define “hole” creation and annihilation operators

(4.21)

The operators b;,+ and b;,, have the same anticommuta-
tion relations as aj,* and aj, and the (z—1)-particle
(or one-hole) state

l (n=1)jm)=bjn* | c)=(=)T"t;m [¢) (4.22)

has the correct transformation properties for a state
with angular momentum ( jm).

Before going on to more complicated systems we
first consider the case that the states J; and J, may
be well described as “one-hole” states in a closed shell,
i.e., we consider a tensor operator

bimt=(=) "0 m,  bjm=(—)"a;_n".

i=(n—1)
Ow= 2, Oru(d)

=1
which is a sum of single-particle operators, and express
its matrix elements between closed shell minus one-
particle states [(z—1)-particle states or “one-hole”
states] in terms of single-particle matrix elements.
More exactly we show that

((n=1)jvm1 | Orar | (n—1)72mz2)
= (—) L jymy | Orar | joma)*
=(—)BCH( jym; | Ora | joma), (4.23)

if the transformation law of the operator Oy under
Hermitian conjugation is

OLut=(—)"M0r_n, (4.24)

and if the operator Oy transforms under time reversal
as

00y 0= (—)E MO p. (4.25)

(The matrix element is real if L—R is even, and pure
imaginary if L—R is odd.)

In Eq. (4.23) the operator on the left-hand side is
(as stated above) a sum over (z—1) individual particle
operators Ory (), while on the right-hand side the
operator is simply a single-particle operator and the
respective matrix element simply a single-particle
matrix element. Consequently Eq. (4.23) simpli-
fies the calculation of the reduced matrix element
{((n—=1)411] O Il (n—1)7.) considerably, provided that
the states | (n—1)7) are “good single-hole states.”

Equation (4.23) may be proved as follows. Because
Ory is a sum of individual particle operators we can
expand it in terms of single-particle matrix elements
and creation and annihilation operators,

Ou= 2 apm*ajm(jm| Oy |j'm'),

jmj/ml

(4.26)

where | ym) and | j'm’) are single-particle states. Using
the definition of the one-hole states (4.22) we get
((n=1)gsmy | Orar | (n—1)jams)

= 2 (=)imtirma( jm | Opy | j'm’)

imim!
X{e | @ j1my@F im@itm @spms | )
= (—)dmrtirmetl( jo o | Opar | f1—m).
(4.27)

In this equation the additional factor of —1 comes
from the anticommutation law for the creation and
annihilation operators. We now remember that m;—
me=M and use the Wigner—Eckart theorem

<j2—m2 f OLm |j1—m1>
=(jL—md | ja—mz) {jo || Ol jr),

and the symmetry relation for vector addition co-
efficients

(HL—=mM | joa—mz) = (=) =2( j1Lm—M | jams),
and obtain
((n—=1)jums | Oar | (n—1)joms)
= (=) 21 fomy | Op-ar | ). (4.28)

If the transformation property of Ora is that of Eq.
(4.24) then

((n—=1)jumy | Oy | (m—1)79ms)

= (=) jomy | Orar | juma)*,  (4.29)

and correspondingly for the reduced matrix elements
((n=Dj1 [ Oz |l (n—1)72)

= (=)L ] Oz || 7)™

These equations (4.29) and (4.30) reduce to a very
simple form for the electromagnetic transition opera-
tors Trm{™. These operators satisfy the Hermitian

(4.30)
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conjugation property (4.24) with C=L-+41 [cf. Eq.

(3.22) ], hence
((n=1)jsmy | Trar=™ | (n—1)72ma)

= (g | Tear<™ | joma)*.

(4.31)

Also the operator 7'y <"> transforms according to Eq.
(4.25) with R=L under time reversal. Thus if the
single-particle states | /i) have standard transforma-
tion properties (2.23) under time reversal then the
single-particle matrix elements are real and we get

((n=1)jum | Trar<™ | (n—1)gama)

=g | Toar<™ | joma). (4.32)

In other words, the matrix elements of the electro-
magnetic interaction multipole operators (3.20 final)
between one-hole states are identical with those be-
tween one-particle states.

Great care must be exercised when using relation
(4.31) or (4.32) because the relations were derived
assuming certain specific transformaiion properiies for
the operators and states, namely those of Eqs. (3.22),
(3.23) and (2.23).

For evaluating the reduced matrix element

((n=1)j1 || Te=> || (n—1)72)
={All T || 72), (4.33)

from the single-particle model a difficulty arises for
the electric multipole matrix elements. This is because
Siegert’s theorem is always used for this evaluation.
More precisely, the electric multipole operator 7'7y°=
arQrar with Qryr defined by Eq. (3.17’) is used for the
evaluation. The application of the operator (3.17)
introduces new operators which do not have the re-
quired transformation property (3.22). Also, the energy
factors which occur through the application of the
Hamiltonian H from formula (3.17’) require careful
consideration.

We illustrate these points using the example of a
“single-hole” transition before going on to establish
relations between matrix elements of many-particle
and many-hole states. Let us assume that » particles
form a closed-shell state ¢ and let us consider the rela-
tion between the energy states of the (z—1)-particle
system and the related [in the sense of relation (4.33) ]

one-particle system. To have a concrete example we
assume that the (z—1)-particle states under considera-
tion are “‘one-hole” states in the doubly closed p shell,
ie. aji=4% and a jo=% hole in O®. To outline the prin-
ciple it is sufficient to assume that the total energies of
the 15-particle system are composed according to the

independent particle model. Then,
E3/2 = 46 (51/2) + 76 (173/2) +4€ (pl/z) = Eols —€ (p3/2)
Eyjp=4e(s172) +8e(p312) +3e(P112) = Eon—e(pyy) .

All independent particle energies e(:) are negative.
The energy difference

Esp—Eyjp=—e(p3s2) +e(pry2) (4.34)

is positive.
There are two ways to evaluate the matrix element

((n=1)jumy | Tra® | (n—1)7ems):

(i) Insert for Tru® the expression ar®Qrar with Qru
defined by Eq. (3.17). Observe that the operator
Tru® or Qry® is a sum over 15 single-particle operators
and correspondingly H is the Hamiltonian of the 15-
particle system. Then act with the Hamiltonian on the
(n—1)-particle states 7, and 5, get the corresponding’
energies in front and use relation (4.29) [and not rela-
tion (4.32)!] to convert the remaining matrix element
of (Qrm)esr=egr™Cry into a single-particle matrix
element.

(ii) Use relation (4.32). Then insert for Trx¢=
ar®Qry with Qry defined by Eq. (3.17'). But Qry is
now a single-particle operator and H is a single-particle
Hamiltonian. Act with H on the single-particle states
71 and 7 and the corresponding single—particle energies
occur in front of a single-particle matrix element of
(Qrar)ets=egr®™Cry. The energy difference of the
single-particle energies (which for themselves are
somewhat fictive) must be equal in magnitude but
opposite in sign to the energy difference (Esp—Fyp)
as obtained using (i).

Probably (i) is the “more physical” approach,
because the Hamiltonian H from (3.17’) is that of the
total 15-particle system and the energies produced by
it are the true energies of the states under observation.

Proceeding as stated under (i) we get

((n—1)gimy | Trae® | (n—1)7ame) =2g1(mB/ k) (Ey—Es) ((n—1)jim | ar"Crar | (n—1)72ms)
=2g1(mB/?k) (E1— Es) (=) jamy | orr®Crar | joms)

= —ay’egi( jrm | rLCrar | jama).

The second line is true because ar#~Cry transforms
with C=L [cf. Eq. (4.24)7. The asterisk originating
from the application of formula (4.29) has been omitted
in this calculation, because the operator az#“Cry
transforms under time reversal with R=L [cf. Eq.
(4.25)7] and the eigenfunctions are assumed to obey
0 | i )= (—)% ™ | jy—my). This latter assumption is

(4.35)

observed in the calculation of the single-particle matrix
elements given in Sec. IVB.
Proceeding as stated under (ii) we get

((n=1)jsms | Trwe | (n—1)gama)
=(gjum | Tru® | joma)
=2g1(mB/1°k) (a—€2) s jymy | r2Crar | jama)  (4.36)
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which is because of (4.34) the same result as arrived
at by using (i).

The “hole” operators b+ may be used to establish
a correspondence between more complicated particle
states and hole states. For example the (#—2)-particle
state (two-hole state)

| (n—2)TM )= 2 (jrjamma | TM) b jiib* joms | €)

mima

is conjugate to the two-particle state
| JM) =Z (Jrgagmams | TM )@ jum@ jgms | 0).

mime

(4.37)

This concept of particle-hole conjugation may be
extended to more complicated states in an obvious way.
In general a state | 7A) of 7 particles outside a closed
shell | 0) may be written as a polynomial in the particle
creation operators @t acting on | 0). The conjugate
state | (n—7)A) may then be defined by the poly-
nomial in the d;," with the same coefficients acting on
the state | ¢).

Let Orx be a multipole operator which is a sum of
single-particle operators and whose Hermitian con-
jugation and time-reversal properties are related by

00110 1=(—)E(Orm)™. (4.38)

It is possible to show that
((n—r)A | Orar | (n—7)B)=(—)"B*(r4 | Opar | rB)
(4.39)

if (n—7)A4 and (n—r)B are the states conjugate to 4
and 7B and provided the single-particle states have
standard time reversal transformation properties
[Eq. (2.23)].

To prove relation (4.39) we replace the operators
atjm; and @jgm, in (4.26) by the corresponding opera-
tors for holes from Eq. (4.21) and use the relations
(4.24) and (4.25) between the Hermitian conjugation
and time-reversal transformations of Ory and obtain

OLM: ('—)C—Rﬂ Z b+f11n1bizmz<jlml [ OLM l]2m2>

Jimy, jamg

(4.40)

except for the phase (—)¢~%+, Ory has identical ex-
pansions in the particle creation and annihilation opera-
tors and in the hole creation and annihilation operators.
Matrix elements of Ory between r-particle states | 74)
and | #B) may be evaluated using Eq. (4.26) and the
anticommutation relations of the particle creation and
annihilation operators. Matrix elements between the
conjugate hole states may be evaluated in an analogous
way. Because the expansions of Ory in Eqs. (4.26)
and (4.40) have the same form and the anticommuta-
tion relations for hole operators are the same as those
for particles, the matrix elements between conjugate
states are identical except for the phase (—)C¢—E+i,
The relation which we calculated explicitly for one-hole
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states is a special case of this general result. The discus-
sion in this section did not specify the type of particle
and therefore may be applied separately to protons or
neutrons. To treat states composed of protons and
neutrons one must introduce either creation and annihi-
lation operators a**, @? and @"*, a” etc., separately for
protons and neutrons, or—in more complicated cases—
the isotopic spin formalism. Then the operators of
Egs. (3.17) must be reformulated accordingly using
isotopic spin operators. The simple two-particle case
involving proton-neutron states discussed in the pre-
vious section can of course still be treated without
making use of isotopic spin formalism. One arrives
at Eq. (4.12) by using the two-particle eigenfunctions
written in second quantization formalism and can show
by making a particle-hole conjugation that for the
calculation of mixing ratios formula (4.12) also holds
for two-hole states. Of course, care has to be taken
again when matrix elements of the electric interaction
multiple operators are converted into matrix elements
of effective electric multiple operators as described
above.

V. COMMENTS
A. General

We begin this section by quoting from an article by
Huby (Hu 58).

“There have been many extensive papers and collec-
tions of formulae on the theory of angular distribu-
tions, using highly developed mathematical techniques,
but in making practical applications of the formulas,
the writer has encountered the following difficulties:

(1) The conventions of various authors differ
greatly. Often different authors use essentially the
same symbol for different quantities, e.g., the “radi-
ation parameter” ¢ (LL') as defined by Racah (1951)
and Biedenharn and Rose (1953) differs from the
6:(LL") of Frauenfelder (1955) and Devons and
Goldfarb (1957); the relation (if the wave functions
used are the same in each case) is:

¢ (LL") (Racah)

= (—)%Hk=rc%,_(LL') (Frauenfelder).

(2) Often it is very difficult to discover the basic
definitions of quantities used. This applies particu-
larly to reduced matrix elements, such as are written
Iy || L] 1,), or multipole mixture ratios 8, which one
may wish to calculate from a model.

(3) A number of compilations contain errors (not
surprisingly). These difficulties become serious if, for
example, one wishes to compare the sign of a measured
v-mixture ratio 6 with that predicted by a model. This
and other questions of phase are significant mainly
in processes which involve the mixture of several
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channels. It would be desirable to carry out the follow-
ing program:

(1) Point out the various crucial stages in the
theoretical development at which a choice of
convention has to be made, and compare the
choices of different authors.

(2) Give a fresh systematic development of angular
distribution formulas, explaining all the con-
ventions used carefully.

(3) Take the symbols (e.g., reduced matrix elements)
appearing in the final angular distribution
formulas of the various authors, and present
expressions for them in the form needed for cal-
culating them from a model.”

Huby (Hu 58) then presents some comparisons of
phase conventions of different authors. We have
quoted from his paper because it points out why a
“fresh approach” had to be made and why this had
to be done in a rather explicit form. The method of
dealing with each formula from the viewpoint of popula-
tion parameters w(My) (which can be positive numbers
only!) should enable the reader to see clearly what
factors can influence his phases. The approach starts
from first principles. All conventions which have to
be made are explicitly stated. The electromagnetic
vector potentials Azy® and Azy™ are terms of a con-
sistent expansion of a plane (circular polarized) wave
e, exp (7k-r) which interacts with the nucleus. The
choice of the relative phases of these two quantities
is of no importance as long as the expansion is correct.
A consistent perturbation treatment of the plane wave
interaction starting either from field theory and cal-
culating an emission process, or from time-dependent
perturbation theory calculating an absorption process
and relating this one via ‘“detailed balance” or ‘“time
reversal” consistently to the emission process, leads
to a set of interaction multipole operators, which are
terms of an expansion of a definite and well-defined in-
teraction Hamiltonian. The set of interaction multipole
operators is explicitly defined and has well-defined
Hermitian and time reversal properties. When the
initial state of a transition is always written on the
left of a matrix element and when this set of inter-
action multipole operators is consistently used then
an emission process is described. One arrives at an
angular distribution formula in terms of reduced matrix
elements of the interaction multipole operators which
have well-defined relative phases and which are cal-
culable from nuclear models. There are two more im-
portant features to be included into this retrospective
summary. Firstly, to define mixing ratios the inter-
action multipole operators 7T7,<™ must be used for
reasons of internal consistency. Secondly, the electric
interaction multipole operator Trau®=0az*Qry should
not be reduced to “standard form’ of the operator

Qru, namely (Qru)ess=egr“Crar but should always
be written as the commutator

QLM = Zgz (mﬂ/h%) [H, 7'LCLM]-

Otherwise the correct transformation property under
Hermitian conjugation is lost and one produces errors
in phase, especially when “switching” of the order of
the states is needed or when a calculation of reduced
matrix elements from nuclear models is made using
the concept of “hole states”.

When it comes to the point of comparing different
authors, three types of problems arise.

(a) The same types of experiments were carried
out by different authors on different transitions. For-
mulas from different papers on angular distribution
theory were used for analyzing the data. How can one
compare the phase of the mixing ratios?

This is “the trivial case” of comparison. The mixing
ratios ¥ or 6 may be treated as formal quantities, i.e.,
as parameters of distribution formulas, which were
used to fit the data. Provided each author has stated
which angular distribution paper he has used to fit
his data, the comparison can simply be made by com-
paring the final formulas.

(b) Different types of experiments were done to
determine mixing ratios. For example, one mixing
ratio may have been determined by using “method
II” and applying Litherland and Ferguson’s formula
(23) (Li 61), and another one may have been de-
termined from a gamma-gamma correlation measure-
ment using formulas of Biedenharn (Bi 60) or Ferentz
and Rosenzweig (Fe 55). How do the phases compare?

(c) A comparison is wanted of a mixing ratio (which
was extracted from the fit of an angular distribution
formula to experimental data) with the prediction
calculated by another author from a certain nuclear
model. How can one compare the phases?

In order to solve (b), first one ought to write both
formulas using the same coefficients. Then it is neces-
sary to know the relation between mixing ratios and
reduced matrix elements. The states in the reduced
matrix elements appearing in the two formulas de-
scribing the two different experiments then have to be
arranged in the same order and a unique relation has
to be established throughout between mixing ratios
and reduced matrix elements. For rearranging the
states (if necessary) one must know the transforma-
tion properties of the operators under Hermitian con-
jugation. Finally apply faith: If the operators in the
reduced matrix elements [such as are all written now
for example (5| L | a)] are not defined in boik theories
(and they are not), then hope that they originate from
the expansion of the seme Hamiltonian [in our ter-
minology either H,(k, €) or H.(k, £)] in both cases,
i.e., that they differ only by an over-all phase, inde-
pendent of multipolarity.

To solve (c) it is necessary to know two things in
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addition. First, on behalf of the angular distribution
theory, that the operators are originating from the
correct interaction Hamiltonian to describe an emission
process, i.e., for example from H,(k, €¢) when the initial
state is always written on the left. Second, that the
operators and reduced matrix elements occurring in
the angular distribution theory as well as the ones used
in the theoretical calculation are explicitly defined.

There is only one ‘‘safe way’’ of making comparisons
of types (b) and (c), and that is: Take a consistent
theory in which things are well and explicitly defined,
and which covers for comparisons of type (b) the
practical cases in question, either explicitly or to a
degree from which the case in question can be worked
out without losing track of phases. In other words,
take the final formulas of the present approach which
describe the types of experiments to be compared.
Then rewrite these formulas in terms of those co-
efficients in which the other formulas are given. Now
identify by direct comparison the meaning of mixing
ratios in terms of the well-defined reduced matrix ele-
ments of the present approach.

In the following section we make some comparisons
of this kind, rather to illuminate the method than to
achieve completeness. Nevertheless these comparisons
should cover frequently occurring practical cases where
mixing ratios are extracted from measurements taken
in cylinder-symmetrical environments. In Sec. VB
we relate the signs of mixing ratios when extracted
from an experiment of the type “method IT” by applica-
tion of Poletti and Warburton’s (Po 65) [or Litherland
and Ferguson’s (Li 61)] formulas to those of the
present theory. Furthermore, when gamma-gamma
directional correlations were used by application of
the formulas of Biedenharn (Bi 60) or Ferentz and
Rosenzweig (Fe 55), we also relate this to our theory.
This comparison will also give the mixing ratios of
these authors in terms of our reduced matrix elements,
i.e., it will redefine them in terms of explicitly defined
and therefore calculable quantities. In Sec. VC we give
relations between our operators and reduced matrix ele-
ments and those used by Lane (La 60) and Alder
et al. (Al 56).

We realize that we have restricted the discussion
to the simplest case, i.e., a cylinder-symmetrical en-
vironment. However, the basic difficulties of a phase-
consistent approach have been overcome, once Eq.
(3.24) of the present treatment has been established.
The extension of the present treatment to noncylinder—
symmetrical cases (i.e., “method I”) requires only
straightforward application of density matrix for-
malism, starting with Eq. (3.24).

B. Comparison of Mixing Ratios

In Sec. IV we have given formulas which are adapted
to three major experimental methods of determinations
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of mixing ratios, when a cylinder-symmetric environ-
ment is used. Of these three methods the one which is
called “method II” by Litherland and Ferguson (Li 61)
is probably the most widely used technique in nuclear
structure work. The basic formula to fit experimental
results obtained by ‘“method II” is formula (23) of
Litherland and Ferguson (Li 61). This formula has
been rewritten in terms of Fg coefficients by Poletti
and Warburton (Po 65) and thus been brought into
a most suitable form for the analysis of experimental
data. Formula (1) of (Po 65) is identical® with for-
mula (23) of (Li 61), and therefore the phase con-
vention of Poletti and Warburton is that of Litherland
and Ferguson. Phase conventions, referring to earlier
work, means always and only that the formal quan-
tities called mixing ratios occur with a certain sign
in the distribution formula. The formal quantities %
of these authors are defined as ratios of reduced matrix
elements (4 || L || a). It is difficult to trace down the
exact definition of these matrix elements and of the
operators “L”.

When mixing ratios § are extracted from experi-
mental data using our formula (3.47) [substituting for
Bx(J1) expression (3.62)] or Eq. (11) of Poletti and
Warburton (Po 65), the mixing ratios 6 will agree in
sign and magnitude for the case of electric radiation
of multipole order (L+41) mixed with magnetic radi-
ation of order (L).

Because of the use of Z; coefficients in the treatment
of Litherland and Ferguson (Li 61) there is in formula
(23) of (Li 61) and formula (11) of (Po 65) a de-
pendence of the phase of the mixing ratios § on whether
the mixed transitions are ‘‘naturally occurring ones”
or not. Thus in formula (11) of (Po 65) ¢=0 for
E(L+1)/M (L) mixture, while

M(L+1)/E(L).

Consequently for ¢=1 the mixing ratios extracted
from the experiment using formula (11) of (Po 65)
have the opposite sign to those one would get using
our formula (3.47). No attention ought to be paid to
the interpretation of the mixing ratios in terms of
reduced matrix elements such as are written (5 || L || a)
in Eq. (5) or (6) of (Po 65) or (Li 61), respectively.
We have shown how the mixing ratios x or § used in
these papers are related to ours. Hence they may be
expressed in terms of our reduced matrix elements.
Some confusion about “phases” has arisen from the

o=1 for

20 Tn fact this statement of (Po 65) is only true apart from an
overall phase. When formula (1) of (Po 65) is derived from for-
mula (23) of (Li 61) the phase factor (—)J/r M1 in the statistical
tensor pg(a) of (Po 65) [px(ae) is identical with our Bg(J1)]
is not arrived at, but one gets (—) /1M1, This in turn means that
there is an overall phase difference (—)2/1 between formula (23)
of (Li 61) and formula (1) of (Po 65), which has of course no
consequences for the signs of mixing ratios. Nevertheless, formula
(1) of (Po 65) is more correct, not only because it agrees in
overall phase with our formula (3.63) but because formula (23)
of (Li61) can lead to negative counting rates.
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use of Zy coefficients into which imaginary powers
had been incorporated. The reason for working these
powers ¢/~ —I+mHK+2 into them seems to be that re-
stricted formulas like our formulas (3.41) and (3.42)
can be “made to work” in more general cases than
they have been derived for, if one equips them with
what we have called in Sec. IV an “ad koc recipe.” The
complex factor just makes those contributions dis-
appear, which one does not want when the formulas
are applied to a case where the initial state does not
have definite parity. The price which one has to pay
for this “automatization” is that the “ad hoc factor”
iLi—=—Ltm+E+2 yields opposite signs for “naturally oc-
curring” and “unnaturally (?) occurring” mixtures.
In later work [cf. (Fe 65)7] the imaginary powers were
cut out again and Z; coefficients were introduced.
Similar things happened to the Z coefficient which
appears in the case where particle absorption followed
by gamma rays is to be described. It contained orig-
inally a factor %2 which worked in combination
with the imaginary powers of the Z; coefficients. The
factor s%~ 1K then disappeared from the Z coefficient
for the reason ““of a correction to the wave functions”
(Fe 65).

We now compare our formula (3.73), which describes
gamma-gamma directional correlations, with those
presented previously by Biedenharn (Bi 60) and
Ferentz and Rosenzweig (Fe 55). These authors write
their formulas for a transition from a state J; to a
state J» with multipolarities Z; and L, and from J,
to a state J3 with multipolarities Ly and L’

W(6) =Y Ax(1) Ax(2) Px(cos 6)
K

with
Ar (1) =Fg(LiLiJJ2) +28:Fg (L1L,/J+J )

+62Fx (L' LT+ JT5),
Ak (2) =Fg(LsLoJsT2) +26oFk (LiLy'J3)5)

+62Fx (Ly' L' T3T5).

Rewriting our formula (3.73) in terms of Fx coefficients
[compare relation (3.37)] we find that
61(Bi) =81 (ours) and 8(Bi) =(—)Lr L §(ours).
(5.1)
We can go even one step further and establish from
these relations a correspondence between Biedenharn’s
(Bi 60) operators T(LM) and our Trxyf™.
From relation (5.1)-it follows that

all Toyr<m> || Jo)/ (2L 1)1

(il To <> || Ja)/ (2L 1) 7

(o || Try<m> || J3)/(2Ls'+1)'?
(Jo || Tr,<m> || J5)/ (2Lo+-1)12

&1(Bi) =

62(Bi) = (’“)LrLz’

Rearranging the states in the second expression we can
write

Jall Try<m>|| 1,)/(2Ly'+1)12
s ll Tr<m> || Jo)/ (2La+1) V2 °

8(Bi) =

Biedenharn states that his mixing ratios & and &8, are
defined differently in terms of his reduced matrix ele-
ments. He always writes the intermediate state J, on
the right; i.e.,

. _<]11L1'1-72> . _<f3’L2'lfz)
5‘(B‘)_<111L11J2> 52(3‘)_<131L2112> :

From comparison we can therefore conclude that
(Jl I L ! ]2>Biedenharn=N<J1 H TL<7r> ” J2>/(2L+1)l/2
| (5.2)

where IV is an over-all normalization factor which is
independent of L and . _

The mixing ratios of Ferentz and Rosenzweig (Fe 55)
are the same as those of Biedenharn (Bi 60), although
they are not defined in terms of reduced matrix ele-
ments. Knowing that the Wigner-Eckart theorem used
by Biedenharn (Bi 60) is the same as ours, we can
conclude from Eq. (5.2) that his operators 7'(LM)
must have the following relation to ours?

T(LM) =NTry<>/(2L+1)2,

We conclude this section with Table II in which the
relations of the coefficients Rg and Sg used in the
present paper to the various coefficients in use are
stated. We have introduced.the Rg coefficient (and
tabulated) to avoid any unnecessary phase factors in
the formulas of a phase—consistent treatment. '

C. Multipole Operators

In Sec. VB we have shown how to relate mixing
ratios of other authors to reduced matrix elements
of our operators 7'7<™. These matrix elements may
be calculated from model wave functions and the theo-
retical predictions compared with measured mixing
ratios. A calculation of electromagnetic transition
matrix elements may already exist in the literature, but
the operators used would not in general be the same
as the T'ry<"> used here. Such a calculation may be
used to give matrix elements of the T7,<= if the opera-
tors can be related. In order to facilitate comparison
with existing theoretical - calculations we relate our
operators 7'z, <™ with other operators in common use.

1 This relation holds for the operators of Biedenharn (Bi 60),
but not for those of Biedenharn and Rose (Bi 53). There the re-
lation is

T(LM7) =N'(=)E(Try<™)+/ (2L+1)12,
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The transition operators used by Bohr and Mottelson
(Bo 53) and by Alder et al. (Al 56) are written SW(EN, u)
for electric radiation and 9(MN, u) for magnetic radi-
ation. They are related to our operators by

M(EN, u) = (2N41/4m) 2(Qx) st
= (2A+1/47) 2 (Gr?) et
neglecting the small spin contribution to Gy.?, and
OM(MN, u) = (2A+1/4m) 12Gy ™

The definition of the reduced matrix element used
by these authors has the same phase as the one used
here but differs by a factor (2I;41)v2;

(I: || (EN) || 15)u

A1 \2
=(m> (L] (QWete Il 17)
(I || (N || 1)mar
A1 \2 N
=(m) Ll Gy |1 1)

The reduced transition probability defined by (Bo 53)
and (Al 56) is

B\, I—=Iy) =[(2\+1) /4x] | T | G || 1) |2

The operators used by Lane [Eqgs. (31), (32), (33) of
(La 60) ] are identical with those of Bohr and Mottel-
son. Those introduced by Blatt and Weisskopf (Bl 52)
are the Hermitian conjugates of those of Bohr and
Mottelson.

One should remember that the matrix element of
Qett In a v emission process is equal to a matrix element
of Qry only if the initial state is written on the left
of the matrix element (cf. Sec. IIIC). In Table II re-
lations (1) and (4) hold only when K is even, L and
L' are integers and correspond to multipole transitions
of equal parity. Relations (2), (3), and (5) are re-
stricted to K, L, L’ being integers.
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Al 56
Be 65
Bi 53
Bi60

BI 52

Bo 53
Br 56
Br 62
Co 35

De 57

Di 47
Ed 57

Fa 51
Fe 55

Fe 65

Ha 66

He 66
Hu 58

Ja 45
Ke 55

La 60
Liel

Lo 51
Me 60

Mo 48

Po 65
Pr 62

Ra 42
Ra 43

Ro 57
Sa 53
Sc 49
Wa 58
Wis9
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Angular Distribution Coefficients Ui(L12J1J2) and Ux(L1s+1J1J2)
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Ji J2 k=2 4 6
1 1 —0.5000 0.1000
2 0.5916 —0.5916
3 0.4899 —0.6124
4 0.4432 —0.6205
5 0.4163 —0.6245
3/2 32 0.2000 —0.6000
52 0.7483  —0.1069
72 0.6547  —0.2182
9/2  0.6055  —0.2752
1172 0.5752  —0.3097
2 2 0.5000 —0.2143 —0.6667 0.2857
3 0.8281 0.2070 0.4179 —0.6268
4 0.7491 0.0749 0.2847 —0.5694
5 0.7037 0.0000 0.2271 —0.5300
6 0.6742 —0.0482 0.1953 —0.5023
5/2 5/2 0.6571 0.1000 —0.1429 —0.5000
7/2 0.8748 0.4082 0.5803 —0.4513
9/2 0.8092 0.2795 0.4349 —0,5140
11/2 0.7687 0.2010 0.3624 —0.5296
13/2 0.7412 0.1482 0.3192 —0.5320
3 3 0.7500  0.3167 0.1667 —0.5000  —0.7500  0.4167
4 0.0047 05428 0.6814  —0.2271 0.3227  —0.5809
5 0.8498  0.4249 0.5436  —0.3624 0.1853  —0.4633
6 0.8142  0.3489 0.4675  —0.4230 0.1308  —0.3924
7 0.7891  0.2059 0.4195  —0.4545 0.1026  —0.3463
7/2 7/2 0.8095 0.4667 0.3651 —0.3333 —0.3333 —0.3333
9/2 0.9250 0.6367 0.7495 —0.0292 0.4714 —0.5571
11/2 0.8787 0.5311 0.6245 —0.1990 0.3060 —0.5415
13/2 0.8473 0.4600 0.5501 —0.2881 0.2295 —0.5048
15/2 0.8246 0.4088 0.5010 —0.3410 0.1864 —0.4715
4 4 0.8500 0.5734 0.5000 —0.1494 —0.0500 —0.5136 —0.8000 0.5091
5 0.9394 0.7045 0.7977 0.1330 0.5742 —0.4306 0.2629 —0.5257
6 0.9000 0.6107 0.6861 —0.0490 0.4053 —0.5066 0.1300 —0.3715
7 0.8723 0.5452 0.6157 —0.1539 0.3179 —0.5167 0.0820 —0.2868
8 0.8517 0.4968 0.5674 —0.2207 0.2656 —0.5090 0.0588 —0.2352
9/2 9/2 0.8788 0.6515 0.5960 0.0152 0.1515 —0.4848 —0.4545 —0.1818
11/2 0.9500 0.7551 0.8332 0.2635 0.6492 —0.2830 0.3963 —0.5792
13/2 0.9161 0.6718 0.7340 0.0816 0.4868 —0.4219 0.2261 —0.4973
15/2 0.8915 0.6118 0.6684 —0.0306 0.3954 —0.4730 0.1533 —0.4239
17/2 0.8729 0.5666 0.6220 —0.1055 0.3378 —0.4918 0.1150 —0.3691
5 5 0.9000 0.7103 0.6667 0.1538 0.3000 —0.3821 —0.2000 —0.4462
6 0.9580 0.7938 0.8601 0.3686 0.7059 —0.1412 0.4947 —0.5230
7 0.9286 0.7196 0.7718 0.1930 0.5537 —0.3184 0.3118 —0.5300
8 0.9067 0.6649 0.7113 0.0790 0.4625 —0.4008 0.2237 —0.4921
9 0.8899 0.6229 0.6672 0.0000 0.4023 —0.4426 0.1738 —0.4519
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Angular Distribution Coefficients Uy(L12J1J2) and Ux(L1o+1J1J3) (Continued)

Jl ]z k=2
11/2 11/2 0.9161 0.7554 0.7203 0.2687 0.4126 —0.2587 —0.0070 —0.5105
13/2 0.9643 0.8240 0.8809 0.4538 0.7498 —0.0136 0.5705 —0.4253
15/2 0.9385 0.7578 0.8022 0.2874 0.6091 —0.2117 0.3869 —0.5069
17/2 0.9189 0.7079 0.7465 0.1750 0.5202 —0.3161 0.2901 —0.5095
19/2 0.9036 0.6689 0.7050 0.0946 0.4595 —0.3760 0.2321 —0.4913
6 6 0.9286 0.7909 0.7619 0.3636 0.5000 —0.1364 0.1429 —0.4805
7 0.9692 0.8481 0.8974 0.5235 0.7845 0.0981 0.6302 —0.3151
8 0.9464 0.7887 0.8270 0.3676 0.6552 —0.1092 0.4521 —0.4521
9 0.9288 0.7431 0.7758 0.2586 0.5700 —0.2280 0.3513 —0.4918
10 0.9149 0.7069 0.7369 0.1786 0.5100 —0.3014 0.2879 —0.4973
13/2 13/2 0.9385 0.8192 0.7949 0.4423 0.5692 —0.0231 0.2615 —0.4077
15/2 0.9732 0.8675 0.9107 0.5810 0.8124 0.1948 0.6782 —0.2056
17/2 0.9529 0.8140 0.8474 0.4357 0.6939 —0.0140 0.5086 —0.3809
19/2 0.9371 0.7723 0.8004 0.3313 0.6129 —0.1414 0.4068 —0.4515
7 7 0.9464 0.8422 0.8214 0.5079 0.6250 0.0786 0.3571 —0.3177
8 0.9765 0.8835 0.9216 0.6290 0.8352 0.2784 0.7174 —0.1025
9 0.9583 0.8351 0.8645 0.4940 0.7266 0.0727 0.5574 —0.3026
10 0.9439 0.7968 0.8212 0.3946 0.6501 —0.0591 0.4568 —0.3975
15/2 15/2 0.9529 0.8611 0.8431 0.5630 0.6706 0.1686 0.4353 —0.2235
17/2 0.9792 0.8967 0.9305 0.6693 0.8541 0.3506 0.7499 —0.0079
19/2 0.9628 0.8528 0.8788 0.5440 0.7545 0.1509 0.5998 —0.2228
8 8 0.9583 0.8768 0.8611 0.6096 0.7083 0.2478 0.5000 —0.1316
9 0.9814 0.9078 0.9381 0.7036 0.8699 0.4132 0.7770 0.0777
10 0.9667 0.8678 0.8910 0.5873 0.7784 0.2211 0.6367 —0.1447
17/2 17/2 0.9628 0.8899 0.8762 0.6494 0.7399 0.3173 0.5542 —0.0449
19/2 0.9833 0.9172 0.9444 0.7328 0.8833 0.4676 0.7999 0.1546
9 9 0.9667 0.9011 0.8889 0.6835 0.7667 0.3784 0.6000 0.0353
10 0.9850 0.9253 0.9499 0.7580 0.8947 0.5151 0.8195 0.2235
19/2 19/2 0.9699 0.9107 0.8997 0.7129 0.7895 0.4322 0.6391 0.1087
10 10 0.9727 0.9189 0.9091 0.7385 0.8091 0.4797 0.6727 0.1735
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Population Tensor Si(I'J;s)
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} v Ji s k=0 2 4 6 8

0 0 0 0 1.00000 oo

1 1 1 0 1.00000 —1.41421

2 2 2 0 1.00000 —1.19523 1.60357 oo

3 3 3 0 1.00000 —1.15470 1.27920 —1.74078 cee

4 4 4 0 1.00000 —1.13961 1.20687 —1.34840 1.85110
0 0 1 1 1.00000 .

1 1 0 1 1.00000 ... .o

1 1 1 1 1.00000 0.70711 .

1 1 2 1 1.00000 —0.83666 .

2 2 1 1 1.00000 —0.70711 ... .

2 2 2 1 1.60000 —0.59761 —1.06904 .

2 2 3 1 1.00000 —0.98974 0.67006 .

3 3 2 1 1.00000 —0.95618 0.53452 cee .

3 3 3 1 1.00000 —0.86603 0.21320 1.30558

3 3 4 1 1.00000 —1.04464 0.87163 —0.56183

4 4 3 1 1.00000 —1.03098 0.82235 —0.43519 oo

4 4 4 1 1.00000 —0.96866 0.60344 0.06742 —1.48088
4 4 S 1 1.00000 —1.07052 0.96275 —0.77424 0.48656
0 2 1 1 1.00000

1 3 2 1 0.29277 —1.30931 oee

2 4 3 1 0.14286 —0.52753 1.50756

0 0 2 2 1.00000 coe oo

1 1 1 2 1.00000 —0.14142 cee

1 1 2 2 1.00000 0.83666 oo

1 1 3 2 1.00000 —0.69282 ...

2 2 0 2 1.00000 o .

2 2 1 2 1.00000 0.70711

2 2 2 2 1.00000 0.25612 0.45816

2 2 3 2 1.00000 —0.24744 —1.00509

2 2 4 2 1.00000 —0.89540 0.45657 .

3 3 1 2 1.00000 —0.56569 e .

3 3 2 2 1.00000 —0.23905 —0.80178 oee .

3 3 3 2 1.00000 —0.36566 —0.63960 —0.72532 .

3 3 4 2 1.00000 —0.62678 —0.29054 1.01130 .

3 3 S 2 1.00000 —0.98131 0.69532 —0.32260

4 4 2 2 1.00000 —0.85373 0.34362 ...

4 4 3 2 1.00000 —0.61859 —0.27412 0.78335 oo

4 4 4 2 1.00000 —0.65342 —0.18025 0.69259 0.94238
4 4 5 2 1.00000 —0.80289 0.16046 0.58068 —0.97313
0 2 2 2 1.00000

0 4 2 2 oo 1.00000

1 3 1 2 1.03923 o

1 3 2 2 0.71714 0.53452

1 3 3 2 0.45356 —1.02353

2 4 2 2 0.45816 —0.85373

2 4 3 2 0.39123 —0.77051 —0.82572

2 4 4 2 0.25612 —0.71234 0.96424

0 0 3 3 1.00000 oo

1 1 2 3 1.00000 —0.23905

1 1 3 3 1.00000 0.86603

1 1 4 3 1.00000 —0.62678

2 2 1 3 1.00000 —0.20203 oo

2 2 2 3 1.00000 0.68299 —0.11454

2 2 3 3 1.00000 0.45363 0.67006

2 2 4 3 1.00000 —0.08954 —0.91314

2 2 5 3 1.00000 —0.84112 0.36422 .

3 3 0 3 1.00000 oo e .

3 3 1 3 1.00000 0.70711 .

3 3 2 3 1.00000 0.43825 0.53452 e .

3 3 3 3 1.00000 0.19245 —0.21320 0.29013 .

3 3 4 3 1.00000 —0.11396 —0.60750 —0.91936 .

3 3 5 3 1.00000 —0.49065 —0.46355 0.80650

4 4 1 3 1.00000 —0.50508

4 4 2 3 1.00000 —0.08537 —0.68724 oo

4 4 3 3 1.00000 —0.11247 —0.57315 —0.71214

4 4 4 3 1.00000 —0.24716 —0.57209 —0.20839 —0.47119
4 4 5 3 1.00000 —0.44556 —0.44787 0.37968 1.04799
0 2 3 3 eee 1.00000 .ee

0 4 3 3 oo oo 1.00000
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Population Tensor Sx(l1l'J1s) (Continued)

1 v 7 s k=0 2 4 6 8
1 3 2 3 . 0.93805  —0.11664 .
1 3 3 3 0.80178 0.72375 ..
1 3 4 3 . 0.52480  —0.89214
2 4 1 3 . 1.04978 e .
2 4 2 3 . 0.80992 0.60368 .. .
2 4 3 3 0.67006  —0.11247 0.32141
2 4 4 3 0.51224  —0.59362  —0.96424
2 4 5 3 0.31944  —0.75448 0.73510

0 0 4 4 1.00000 .- .

1 1 3 4 1.00000 —0.28868 .

1 1 4 4 1.00000 0.87750

1 1 5 4 1.00000 —0.58878 ‘oo .
2 2 2 4 1.00000 —0.34149 0.01273 .
2 2 3 4 1.00000 0.61859  —0.22335 .
2 2 4 4 1.00000 0.52910 0.74711 .
2 2 5 4 1.00000 —0.84984 ]
3 3 1 4 1.00000 —0.23570 .
3 3 2 4 1.00000 0.59761  —0.17817

3 3 3 4 1.00000 0.57735 0.62668  —0.07913

3 3 4 4 1.00000 0.35708 0.07924 0.51076

3 3 5 4 1.00000 0.02265  —0.51109  —0.93058

4 4 0 4 1.00000 ceos s e ces
4 4 1 4 1.00000 0.70711
4 4 2 4 1.00000 0.50448 0.56229 .es .-
4 4 3 4 1.00000 0.35241 0.07476 0.39563 .ee
4 4 4 4 1.00000 0.17020  —0.28152  —0.48561 0.18123
4 4 5 4 1.00000 —0.05147  —0.51840  —0.48390  —0.74856
0 2 4 4 ces 1.00000 ces eee cee
0 4 4 4 . .- 1.00000

1 3 3 4 . 0.88641  —0.21822

1 3 4 4 . 0.83324 0.78680
1 3 5 4 . 0.56569  —0.81650

2 4 2 4 . 0.89540  —0.18202 ...

2 4 3 4 . 0.86504 0.66792  —0.08299 ...
2 4 4 4 . 0.74711 0.17020 0.54091
2 4 5 4 0.57735  —0.45455  —0.94901 .-
0 0 12 172 1.00000 .
1 1 172 1)2 1.00000 .
1 1 32 12 1.00000 ~1.00000

2 2 32 1)2 1.00000 —1.00000 cee

2 2 52 1/2 1.00000 —1.06904 0.92582

3 3 52 1/2 1.00000 —1.06904 0.92582 ...

3 372 1)2 1.00000  —1.09109 1.02565  —0.87039

4 4 72 1 1.00000 —1.09109 1.02565  —0.87039 .-
4 4 92 12 1.00000  —1.10096 1.06436  —0.98473 0.82784
0 0 32 32 1.00000

1 1 /2 32 1.00000 ee

1 1 32 32 1.00000 0.80000

1 1 572 32 1.00000 —0.74833

2 2 172 32 1.00000

2 2 32 32 1.00000 .
2 2 52 32 1.00000 —0.38180  —1.05808 .
2 2 72 32 1.00000  —0.93522 0.53724 oo .
3 3 32 32 1.00000 —0.80000
3 3 52 32 1.00000 —0.58797  —0.46291 ...

3 3 12 32 1.00000 —0.72739  —0.11396 1.16052

3 3972 32 1.00000 —1.00922 0.76871  —0.41030

4 4 512 32 1.00000 —0.95450 0.59517 e

4 4 72 30 1.00000  —0.81052 0.14652 0.69631 .
4 4 92 32 1.00000 —0.87577 0.33866 0.42523  —1.20413
0 2 3/2 3/2 1.00000
1 3 32 30 . 0.60000 .- .

1 3 52 372 . 0.39279  —1.13389
2 4 572 32 . 0.28057  —0.80992 e
2 4 712 3n 0.20012  —0.65526 1.16775
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} ¥ Ji s k=0 2 4 6 8
0 0 5/2 5/2 1.00000 . .
1 1 3/2 5/2 1.00000 —0.20000 oo .. oo
1 1 5/2 5/2 1.00000 0.85524 . oee
1 1 7/2 5/2 1.00000 —0.65465 . .
2 2 1/2 5/2 1.00000 ..
2 2 3/2 5/2 1.00000 0.71429 ..
2 2 5/2 5/2 1.00000 0.38180 0.59517 . oo
2 2 7/2 5/2 1.00000 —0.15587 —0.95510 oee
2 2 9/2 5/2 1.00000 —0.86504 0.40266 o cee
3 3 1/2 5/2 1.00000 oo e oo ces
3 3 3/2 5/2 1.00000 0.20000
3 3 5/2 5/2 1.00000 0.03563 —0.46291 e
3 3 7/2 5/2 1.00000 —0.21822 —0.64578 —0.87039 oo
3 3 9/2 5/2 1.00000 —0.55048 —0.39600 0.89521 s
4 4 3/2 5/2 1.00000 —0.71429
4 4 5/2 5/2 1.00000 —0.38180 —0.59517 oo oee
4 4 7/2 5/2 1.00000 —0.39959 —0.51948 0.14243 oo
4 4 9/2 5/2 1.00000 —0.53618 —0.35248 0.53713 1.05361
0 2 5/2 5/2 oo 1.00000
0 4 5/2 5/2 . 1.00000
1 3 3/2 5/2 . 0.97980
1 3 5/2 5/2 . 0.77143 0.65983
1 3 7/2 5/2 . 0.49487 —0.94761 e .
2 4 3/2 5/2 . 0.69985 cee

2 4 572 5/2 . 0.59517 —0.38180 oo

2 4 7/2 5/2 . 0.46238 —0.68051 —0.93891 s
2 4 9/2 5/2 . 0.29161 —0.74037 0.82988 s
0 0 7/2 7/2 1.00000 . oo
1 1 5/2 7/2 1.00000 —0.26726 . oo
1 1 7/2 7/2 1.00000 0.87287 oo oo
1 1 9/2 7/2 1.00000 —0.60553 . o
2 2 3/2 7/2 1.00000 —0.28571 .
2 2 5/2 7/2 1.00000 0.64906 —0.17635 oo
2 2 7/2 7/2 1.00000 0.49878 0.71632 e
2 2 9/2 7/2 1.00000 ~0.03932 —0.87852 oo
3 3 1/2 5/2 1.00000 oo
3 3 3/2 7/2 1.00000 0.66667 oo oee
3 3 5/2 7/2 1.00000 0.53452 0.61721 s
3 3 7/2 7/2 1.00000 0.29096 —0.04144 0.42201 oo
3 3 9/2 7/2 1.00000 —0.03670 —0.55906 —0.93251 .

4 4 1/2 7/2 1.00000 .

4 4 3/2 7/2 1.00000 0.28571 .

4 4 5/2 7/2 1.00000 0.20131 —0.21643 oo

4 4 7/2 7/2 1.00000 0.05668 —0.42624 —0.63301 oo
4 4 9/2 7/2 1.00000 —0.13583 —0.55717 —0.39079 —0.64838
0 2 7/2 7/2 1.00000
0 4 7/2 7/2 1.00000 .
1 3 5/2 7/2 ..o 0.90914 —0.17496 .

1 3 7/2 7/2 .. 0.82065 0.76190 .

1 3 9/2 7/2 .. 0.54772 —0.84984 o

2 4 3/2 7/2 .. 0.95831

2 4 5/2 7/2 . 0.84946 0.66877 cee

2 4 7/2 7/2 . 0.71632 0.05668 0.45455

2 4 9/2 7/2 .. 0.54908 —0.51831 —0.96161 .
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Statistical Tensor Coefficients px(J1M;)

hA k M,=0 1 2 3 4 5 6
1 2 —1.4142 1.4142
2 2 —1.1952  —1.1952 2.3905
4 1.6036  —2.1381 0.5345
3 2 —1.1547  —1.7321 0.0000 2.8868
4 1.2792 0.4264  —2.9848 1.2792
6  —1.7408 26112  —1.0445 0.1741
4 2 —1.1366 —1.9373  —0.9117 0.7977 3.1909
4 1.2069 1.2069 —1.4751  —2.8160 1.8774
6  —1.3484 0.1348 2.9665  —2.2923 0.5394
8 1.8511  —2.9618 1.4800  —0.4231 0.0529
5 2 —1.1323  —2.0381  —1.3587  —0.2265 1.3587 3.3968
4 1.1767 1.5689  —0.3922  —2.3534  —2.3534 2.3534
6  —1.2524 —0.7515 2.2544 1.8161  —3.0059 0.9393
8 1.4085  —0.5634  —2.7365 2.9377  —1.2475 0.2012
6 2 —1.1282 —2.0951 —1.6116  —0.8058 0.3223 1.7728 3.5456
4 1.1609 1.7689 0.3040  —1.4925 —2.6534  —1.8242 2.7363
6  —1.2098  —1.2098 1.3308 2.6010 0.4830  —3.3269 1.3308
8 1.2041 0.3697  —2.6251  —0.7025 3.2907  —2.0336 0.4067
7 2 —1.1256 —2.1306 —1.7688 —1.1658  —0.3216 0.7638 2.0904
4 1.1514 1.8916 0.7646  —0.7585  —2.1444 —2.6470  —1.3068
6  —1.1863  —1.4829 0.5931 2.3370 2.0879  —0.6525  —3.3928
8 1.2411 0.8865  —1.9502  —2.2055 1.1134 2.9431  —2.6736
8 2 —1.1239  —2.1541  —1.8732  —1.4049  —0.7493 0.0937 1.1239
4 1.1453 1.9725 1.0817  —0.1909  —1.5271  —2.4815  —2.4815
6  —1.1717  —1.6600 0.0301 1.8162 2.4997 1.2604  —1.5233
8 1.2109 1.2109  —1.2801 —2.5256  —0.8649 2.2488 2.2488
9 2 —1.1227  —2.1706 —1.9461 —1.5718 —1.0479  —0.3742 0.4491
4 1.1411 2.0287 1.3083 0.2421  —0.9682 —2.0402 —2.6107
6 —1.1621 —1.7818  —0.3768 1.2835 2.3805 2.1745 0.4120
8 1.1918 1.4301  —0.7151  —2.3495  —1.9409 0.5108 2.7581
10 2 —1.1219 —2.1825  —1.9990  —1.6930 —1.2646 —0.7139  —0.0408
4 1.1381 2.0693 1.4753 0.5748  —0.4982  —1.5558  —2.3567
6  —1.1552 —1.8694 —0.6931 0.8083 2.0552 2.4539 1.6141
8 1.1787 1.5859  —0.2572  —1.9931  —2.3710  —0.8857 1.5824
11 2 —1.1212  —2.1915  —2.0386 —1.7838  —1.4270  —0.9683  —0.4077
4 1.1350 2.0997 1.6019 0.8340  —0.1112 —1.1041  —1.9779
6  —1.1503 —1.9345  —0.9379 0.4030 1.6699 2.4011 2.2152
8 1.1694 1.7009 0.1112  —1.5925  —2.4259  —1.7593 0.2145
12 2 —1.1207 —2.198  —2.0690 —1.8535 —1.5518 —1.1638  —0.6897
4 1.1342 2.1229 1.6999 1.0390 0.2062 —0.7059  —1.5783
6  —1.1465 —1.9843  —1.1304 0.0627 1.2873 2.1863 2.4280
8 1.1624 1.7883 0.4088  —1.2038 —2.2816 —2.2150 —0.8773
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Statistical Tensor Coefficients p;(J1M1) (Continued)

T E M=1)2 3/2 5/2 7/2 9/2 11/2 13/2
3/2 2 —2.0000 2.0000
5/2 2 —2.1381  —0.5345 2.6726
4 1.8516  —2.7775 0.9258
7/2 2 —2.1822  —1.3093 0.4364 3.0551
4 2.0513  —0.6838  —2.9630 1.5954
6  —1.7408 3.1334  —1.7408 0.3482
9/2 2 —2.2009 —1.6514 —0.5505 1.1010 3.3029
4 2.1287 0.3548  —2.0105  —2.6018 2.1287
6  —1.9695 1.4771 2.4618  —2.7080 0.7385
8 1.6557  —3.3113 2.3652  —0.8278 0.1183
11/2 2 —2.2125 —1.8332 —1.0746 0.0632 1.5803 3.4768
4 2.1678 0.9291  —1.0065 —2.55490  —2.0904 2.5549
6  —2.0684 0.4137 2.5854 1.1376  —3.2059 1.1376
8 1.8992  —2.0077  —1.7635 3.228  —1.6550 0.2984
13/2 2 —2.2188  —1.9415 —1.3868  —0.5547 0.5547 1.9415 3.6056
4 2.1904 1.2778  —0.2637 —1.8659  —2.6772  —1.5617 2.9003
6  —2.1221  —0.2653 1.9629 2.4086  —0.1167  —3.3847 1.5173
8 2.0121  —1.0061  —2.6157 0.2817 3.1791  —2.3743 0.5231
15/2 2 —2.2220 —2.0112 —1.5878 —0.9527  —0.1059 0.9527 2.2229
4 2.2048 1.5049 0.2683 —1.1782 —2.3448 —2.5781  —1.0616
6  —2.1550 —0.7183 1.2930 2.4998 1.6953 —1.1206  —3.3618
8 2.0767  —0.2967  —2.4327  —1.5783 1.7681 2.6226  —2.9311
17/2 2 —2.2257 —2.0587 —1.7249  —1.2241  —0.5564 0.2782 1.2798
4 2.2145 1.6609 0.6543  —0.6040 —1.8119  —2.5668  —2.3655
6  —2.1767 —1.0340 0.7173 2.1718 2.3796 0.8361  —1.8651
8 2.1178 0.2118  —1.9665 —2.3296  —0.1513 2.5716 1.8455
19/2 2 —2.2276  —2.0926 —1.8226 —1.4176 —0.8776  —0.2025 0.6075
4 2.2214 1.7726 0.9405  —0.1440 —1.2846 —2.2195  —2.6215
6  —2.1919 —1.2620 0.2491 1.7282 2.4666 1.9122 0.0077
8 2.1459 0.5852  —1.4631  —2.4663  —1.4392 1.0928 2.8306
21/2 2 —2.2201 —2.1177 —1.8947 —1.5604 —1.1146  —0.5573 0.1115
4 2.2264 1.8553 1.1576 0.2220 —0.8183 —1.7856  —2.4579
6 —2.2030 —1.4319  —0.1271 1.2837 2.2750 2.3640 1.2964
8 2.1659 0.8664 —0.9997  —2.3064 —2.1187  —0.3244 1.9769
23/2 2 —2.2302 —2.1367 —1.9495 —1.6688 —1.2945  —0.8266  —0.2651
4 2.2302 1.9183 1.3257 0.5147  —0.4211  —1.3560  —2.1367
6  —2.2113 —1.5618  —0.4299 0.8777 1.9688 2.4475 2.0232
8 2.1809 1.0828 —0.5957 —2.0186 —2.3839  —1.3345 0.7115




