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A graphical method is presented allowing the representations of “j-m" and “3u5” coefficients, spherical harmonics,
irreducible tensor operators, and rotation matrices. Rules are established which permit calculations on expressions with
the above elements. As the main difficulty of using “3;j”” Wigner coefficients is the construction of the phase, an algorithm
is proposed which simplifies this problem. Concrete examples are given for this general method.
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I. INTRODUCTION

The book of Yutsis, Levinson, and Vanagas! (YLV)
first attracted our attention to a graphical method for
describing “37”” Wigner coefficients. However it seems
to us that their work was not complete on two points.
First it does not permit the calculation of expressions
where both vector-coupling coefficients and spherical
harmonics are present. We have extended their graph-
ical method to spherical harmonics, irreducible tensor
operators, and rotation matrices. The second point was
that (YLV)’s method could be applied only after
writing a formal expression of vector-coupling coeffi-
cients and then transforming it in a graphical manner.
So we have given an algorithm which allows immedi-
ately a graphical representation of a scheme coupling
with its phase.

A similar method to (YLV)’s has been proposed by
Kotansky et al2 On the other hand, Yutsis et al.3®

1A. P. Yutsis, I. B. Levinson, and V. V. Vanagas, Mathe-
matical Apparatus of the Theory of Angular Momentum (Isragl
Program for Scientific Translation, Jerusalem, 1962).

2 A. Kotansky, Acta Phys. Polon. 26, 109 (1964).

3A. Yutsis, A. Banzaitis, and J. Vizbaraite, Lietuvos Fiz.
Rinkinys 1-2, 74 (1962).

4 A. Yutsis, A. Banzaitis, and J. Vizbaraite, Lietuvos Fiz.
Rinkinys 1, 91 (1962).

5 A. Yutsis, Z. B. Rudzikas, and A. Bandzaitis, Lietuvos Fiz.
Rinkinys 5, 4 (1965).

have published a graphical method based on the
Clebsch-Gordan coefficient representation for simpli-
fying phase considerations in a calculus. Our generaliza-
tion of (YLV)’s work has been done with the first
sort of conventions, because of their simplicity.

After a summary of (YLV)’s method we set out our
extension of this work and give a concrete example.

II. SUMMATION OF “njm” AND “3nj”
A. The “3;5m” Symbol

When coupling two angular momenta j; and js, one
obtains a vector J=j;+J», the coefficients which trans-
form one basis to another one are the Clebsch—-Gordan
coefficients;

| TM)=2_ {jums joms | TM) | jima) | jima).

mim2

We define a “3jm” coefficient which is the usual “35”
Wigner coefficient by

(fum joma | TM)
o Ja J

=(-—) .1'1—.1'2+:i"7‘( —)I—M ,
my mg —M
where J = (2j4+1)2. We call it the “3jm” coefficient
because it depends on the magnetic quantum numbers.
We keep the notation “3nj”’(n=1, 2+ +-) for coefficients
like “65”” which do not depend on .

The following formula recalls some symmetry proper-
ties of “3jm’ coefficients.

Ji J2 73 J8 1 Ja
my  me M3 mz w1 My
Je J1 Js
=(_)J'1+J'z+j3

% my Mg
Ja Js
= ( _.) sirtsatiz

—my —ms

288
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Yutsis, Levinson, and Vanagas! represent the “3jm”

coefficient
j 1 ]3
M1 m3

Je
ma

by the diagram

The three lines are called kinetic lines. Each of these
lines denotes a kinetic moment j and its free end the
projection m of j on the quantization axis. If >0, the
free line is directed outwards from the node, and if
m<0, the free line is directed inward.

The sign of the node denotes the cyclic order in
which the lines are read; that is, 4 sign if the order is
anticlockwise.

We denote the “3jm” representation

(o n 2)

Je g3

e
by the following:
Jl
+ 3
'jZ
The symmetry properties of “3jm” coefficients give
several topological rules:

A change in the orientation of three lines together

gives a phase (—)frtiztss,
(jx J2 ja> (jl
my e Mg, 1

>

m1

we can transform it into

J2

fs>
My M3

289

A change in the sign of a node gives the same phase
(—)dvkirtis,

It is forbidden to change the direction of a free line
alone.

A rotation or a geometrical deformation of a dia-
gram does not affect the “3jm” represented by the
diagram.

Particular cases. If one moment is zero

(j1 " 0) (jl
my —my O "y

is represented by

Jz

b3
"2

In the same way as in (YLV) we can extract the
node and its value 577%;,;,, we obtain the equivalence

.l
>jl = (_) jl—mlaﬂumz-
m

2

) =3\ ! ( - ) A 500 ym

If two moments are now equal to zero

i 00 i
=08100m10=
\m 0 O m,

B. Summation on “3jm”

#

By summation over a magnetic quantum number of
the expression
fl)

Js

J
F
me Mg

1 J2 73 i Je Ja Jo Js
(_)fmﬁjmaz(_)iz—ml = j1 . (1)
™ my me Mg —my  —me —Mg e Mg
On writing
Je I3 Ji Js
(=) A—matis—msf 1) =G 71
e W3 e Mg
we get
jl jz js jl j2 js j2 j3 .
Z(_)jl-ml =G W
ml my e W3 —my  —Me —Mg3 me M3
given by

g ; i
jm, 2 ) iy 2
E(-)‘ P -
m) 3 3
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Graphically we sum this expression by joining the ends of free corresponding lines; but the phase (—)# ™ must
be always present before a summation over m, and the directions of lines to sum must be opposite. So we obtain

for
J2  Js
G h
e Mg

Continuing the summation over . and ms of expression (1)

Z ( ._.) Je—metis—ms(y <]2 I3

mams My M3

j1> =F(j1j27s)

t he diagram representing F( 71727s) is

F(j1727s) equals one if | j1—j2 | <73<j1+72 and zero otherwise. We call F( 71 7273) a triangular delta { ji j: 3} and
note that it is the first “3n5”’ coefficient with z=1.

Whenever two nodes are joined by a line j we can change the direction of 7 but it is necessary to multiply the
result by (—)2.

We can find the second rule of orthogonality of “3jm” coefficients by noting that

. ‘ . . 1 Je Js 71 Je Js
(=) n—m’z—l—]s——m’az T2 (—)im = Omam’Omam’3
jim1 m me Mmz) \—m1 — m'y —m'y

which is given by

'
,m Jym'y

J 2
Z ?12 + 2 * = ( _') jz_m/zam'mz( -) 53—’"'36,”,3,,,3.
i J

jm"

™ 2

3™3 32

But we know that (—)Z"™25,,p, and (—)#™'35,,,,,s are represented by
™, 3
3
', m'y

The expression to sum must show the term 7;2 without any phase over 7. -

All the lines must be convergent at a node and divergent at the other one.

When these conditions are fulfilled we drop the line j; with its nodes and join the corresponding lines (with
the same kinetic moment).

So we have a rule of summation over j:

C. The “njm” Coefficients

We call an “njm” coefficient an expression obtained by the superposition of “3jm” symbols so as to obtain a tree.
This condition is fulfilled when for the coupling of # moments j, there are (#—3) intermediate moments Xj:

jl j2"'jn jl j2 Xl Xl jb‘ X2 Xn—S jn—l j’n
X1 Xps =Z(_)EiXi—xi ,
my Mt My a = my My X —x Mg X —Xn-3 Mn-1 My

where 4 defines the mode of coupling chosen. Graphically it is represented by

The “njm’ has orthogonality relations like “3jm’ coefficients which are given in (YLV).!
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If the structure of a diagram is not interesting for a certain problem, we can close it in a block which we call
a “closed block” (and we denote such a block by @ if inside it there are no free lines) ; and we call a block open
if inside it some free lines remain (denoted then by a).
Let us consider a diagram in which free lines are outside of a closed block @. (YLV) show that we can extract
an “njm” coefficient by closing all free lines with the aid of (#—3) intermediate moments X;. For example with
n=35

1 1 1
H =+
) -—T—z ) r x, .
B | R
"i’-‘ XX, "xz
—+—5 5
i
VT Js Ja 75 1 Ja J3 Js Js
F a G .((Sjm,’
m My —wz Me —Ms X, X
jl jz js j4 ja . a jl jz js j4 j5 jl j2 j3 j4 j5
F & =ZX12 2G X X2).
my M —M3 WMg —Ms X1X2 X1 X, my Mo —Mm3 Mg —Mp A

The signs of the nodes and the directions of the lines are opposite in the G block and in the “njm” diagram.
If a closed block &; is connected to a second block a; (@, can be closed or open) by # lines we can use the same
rule. That is, we close the first and the second block on the same intermediate moments:

ef

®l
s

o

.

i J2 J3 Ja Js ode gz ji Js
G= Y, (=)t tismsp, a |,
L ems + + - + - - + - +
o i e g e e s
G=) X2X2G a )G ),
X1Xo Xl X2 Xl X2
with
e fvoja Js Ja s v J2 Js Ja s
en a )= 62 (=) frmmrttigmms By o341 Xy X,
X1 Xe g + + - 4+ - - - + - + 4
e ods A . N JuoJe g3 Ju Js
G, a ) = Z (=) dmmtetis—ms o X X,).
X1 X, meme - = + - + + + - + - 4

These relations are reversible. In the case where
n=23 there are no more intermediate summations but
it is necessary for conservation of the phase that the
three lines have the same directions if tied.

1 1
> g
3

1
2i
5

When three lines are free,” we pinch them with their
respective signs but in the closed diagram we have to
put the three tied lines in the same direction.

&

b 1

LY
R

- 2 =

>3
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The rule of summation on a kinetic moment is not

affected by the existence of blocks.

D. The “3#j” Coefficients

Just as (YLV) have called “jm” coefficient a dia-
grammatic expression with free lines they call “j-
coefficient” a diagram with all lines tied. Such a
coefficient has 3% lines and 2% nodes. If it is separable
on no less than four lines it is called a “3n5”” coefficient.

For n=1 we find again the triangular delta {Ji 72 fs}.

For n=2 we get the so-called “65”” coefficient related
to the “3jm” coefficients by

J Jo Js
= Z (— ) Bedimitlimni

ll l2 ls ming
noJ2 g n koL
X
my My —M3 —my Ny N3
h I Js h J2 Is
X
n —MNe Mg —ny —my —MHg

and represented by the diagram

In the same way the “95”
1 Jz Js

is represented by

A complete study of these diagrams for >3 is given
by (YLV) with their diagrammatic representations.

III. SPHERICAL AND MULTIPOLAR
HARMONICS
A. The Spherical Harmonics Functions

If the spherical harmonic ¥,(Q2) is written with
Dirac’s formalism, we obtain ¥;,(Q)=(Q|Im). So

Vin(Q) is the juxtaposition of the ket |/m) and the
bra (@] It becomes therefore natural to give for
Y1, (Q) the representation 5% .

The full line is the kinetic line and the dotted line
will be called the “angular line.” The properties of the
kinetic lines are those of the preceding section. For the
angular line we adopt the convention that an outward
direction denotes a positive solid angle 2= (8, ¢) and
—Q=(w—0, ¢-}7) is represented by an inward direc-
tion.8

As obviously Vi,(—Q) =(—) Y (Q), we say that a
change in the direction of the angular line gives a phase
(=)! in the result. On the other hand the relation
Y 1,.*(Q) = (—)"Y 1_n () permits a diagrammatic repre-
sentation of a conjugate spherical harmonic. We can
note that Yo(Q) =Ye(—Q) =(4r)"22, so that sup-
pressing a kinetic line of an YV, gives the constant
value (4)~12,

With these conventions and those of the preceding
section we now see how we can make an algebraic
summation or an integration.

As

DV 1*(Q) Vin(Q') = (2/47) P (cos(Q, 27) )
can be written
(=) Y 1 (Q) Vi (=) = (2/47) Py cos(2, @)
(YLV)’s convention for summation over m gives the
diagram

Q 2 Q’
e G = e on

which represents (12/4m) P;(cos(2, 2)).
Note that when 2=8'P;(cos(2, ') )=1 and

ks =0/4m.
The summation over / gives

> (12/47) P (cos(Q, ) ) =8(Q—)
7
and graphically
Sttt

For these calculations we have simply adopted
Yutsis’ conventions and rules.

Let us consider now the integration of three spherical
harmonics

a a
= @

/ Ylwu (9) Y lama (Q) Ylsmz (Q) aQ

AN h L I h L I
(41r)1/2 0 O 0 O (% .

6 J.-N. Massot, E. El Baz, and J. Lafoucriére, Nucl. Phys.
83, 449 (1966).




As the result does not depend on solid angle @ we
join the ends of free angular lines with the same
direction to represent an integration. Thus

<] Y
—te I ——
\ L, WA
2 qa _ L2 \0 1, 1y \\
dq ——e- D = --<—--->~;\ = - -»-30Q
- ,
L3 g s ¥ AN 4
——--— —

The last part of the above diagram has been obtained
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We therefore obtain
"l Ll
—_——t-—— —a
\ o' 3 a ‘3 q
[ z Y-t = -—<--
1, / 5
——a—p— 13 — 15 2
L2
4y
——- "‘l
a =Z(_)"3“’3 &) __‘;3_‘_2__
._.:z_.._>__ t3m3 Y2

by applying the rules of the preceding section. On
comparing the analytic result and the diagrams ob-
tained, it is easily seen that the value

l1l2l3 ll l‘Z l3
()" \o 0 o

must be attached to the diagram

For simplicity’s sake we replace it by a circle put on
the corresponding node, and call it a “marking circle.”
Therefore the integration of three Y. becomes very
simple graphically

When such a “marking circle” exists it is not necessary
to give a sign to a node since /;-+45-+7s is even because

of the “3jm”
h b b
00 0o

The integration is independent of the fact that
kinetic lines belong to a block or not. For the integra-
tion of less than three spherical harmonics if is sufficient
to take the preceding case and to drop the kinetic lines
equal to zero.

We shall now do graphically the composition of two
spherical harmonics of the same direction. As

Yll‘ml(ﬂ) lemz(Q) =/Yl1mx(9,) le‘m(ﬂ’)a(ﬂ_ﬂl) aQ’.

It follows that

——e-em e
4 uN Q' a
a = ’. g > -
L2 L, 4
—e P —

We saw before the equivalence

a o 13 a
—— Pt

that is analytically
Ylwu (Q) Ylmz (Q)

ll 12 l3 ll l2 l3
= Z % ( ( ) Y*14ms (2)
lsma( 7I') O 0 0 my M M3

more generally

Yy 0
'Ll |t = D=e
"3 Q
e —le @ [
T3 2 a
1y o — 3o

To integrate more than three spherical harmonics,
we can then group them two by two as before and
integrate after.

The result of the integration of five spherical har-
monics is, for example,

Ly

———p-- 2
L Q
1
L, <
— - 12
N t; a
4 ——e-»-- = |dn —e -
L L
Ly 172 L
—— = 4 L, a
-
ts 15
—— e

which is easily translated analytically.

B. Multipolar Harmonics

Since we have defined spherical harmonics by
(2| Im) with I being an integer, we can say that
{u | ajm) represents a monopolar harmonic where j can
be an integer or a half-integer, and | jm) is an eigen-
function of J%J,, the quantum number o completing
the chosen basis.

We note that (u | ajm)=M.;m(u) and represent it
graphically as

We continue by calling the dotted line an “angular
line” and the full line a kinetic line.

To keep the same phase convention as for spherical
harmonics and time reversal properties, we write

M* i (u) =(—) j_mMai—-rn(_u) .
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We put that
Mojm(u) = (=) IM ajm(—n)
so that

M ajm (1) = (=) "M ojm (1)

We can then extract the following rules:

We can change the direction of the # line by intro-
ducing a phase (—)*7 depending on whether the # line
is initially positive or negative.

To obtain the conjugate of a monopolar harmonic
we have to change the direction of the kinetic line and
add (—)*" depending on whether the final kinetic line
is positive or negative.

The closure relation
2 | ajm)(ogm | wy=8(u—u')
ajm
can be rewritten
22 (=)Mo (—10) Mo (') =8 (u—at').
ajm
It gives graphically

— o wy,
w & S

e Bren Gt = D = » = & (u-u') o
2 u g

L3

Both lines must be convergent or divergent at a node.
We can now define multipolar harmonics by

a1ty | o= fud MYa=Xye o+ Xy oJ (=) aGrdnd) 3~ () dtmteetinma

M1 mp

x(

where (w1« 4y, |f1***juJ M )a is the multipolar har-
monic of # rank and {u |fim):++ monopolar har-
monics. 4 is a chosen mode of coupling; fa( 71+ jnJ)
is a linear combination of its parameters depending on
the scheme of addition 4.

It can be easily seen that multipolar harmonics
have closure and orthogonality relations as monopolar
harmonics.

The graphical representation of a multipolar har-
monic will be, following its analytical definition,

Koo Ko (=) aGrind) ] & [577%7
) u
RIS

The complex conjugate of a multipolar harmonic is
obtained by conjugation of all monopolar harmonics
it contains. This is expressed graphically by changing
the direction of all kinetic lines and the sign of the
nodes (symbolically represented by + on the above
diagram) and adding the phase (—) mme—ma=
(=)™
[{was = 2ttn [ G1e * <G M)a T*

= (—)faGinD X Xy o+ Xy of (—) MGy

——0--2J.

3 L > o>

03 = ———] iz Yy
n “n

e -

We see in the next section the advantage of such a
representation.

—mye e —m, M

]'1...]'” J

X 'Xn—2> <M1 lj1m1>’ o (un ljnmn>y
A

IV. IRREDUCIBLE TENSOR OPERATORS

The spherical harmonics Y ;,.(Q2) which we have
previously introduced are irreducible tensor operators
of I rank. Thus the graphical representation of ¥, ()
must be that of an irreducible tensor operator.” Let
be the coordinates of a certain space ¢ where a tensor
T (I integer) is acting without going outside of € so
that

@ | Tom | 4y =Tm(w)d(u—0').

Then Ty, (u) is represented by -%..2.. The sym-
metry and conjugate properties of 7',(%) will be found

the same as for spherical harmonics; that is

Tt (u) =(=)""T1_n(u)
shown by
( _)—m ——;——o--:--
We write Tyn(u) =(—)T1(—u) which defines the
inversion of the direction of a # line.

A. The Wigner-Eckart Theorem

Let us evaluate a matrix element of a T, tensor
operator {aju | Tm | @’f’u’). By writing it in the e space,
we get

(g | Tom | &f'u")
=/fdu (g | wY o | Tom | ') at’ | o0’

= [ e | )T a0) G | ).

7 E. El Baz, J.-N. Massot, and J. Lafoucriére, Nucl. Phys. 82,
189 (1966).
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We recognize here the monopolar harmonics which
we have defined in the preceding section. We get in
that way

u
@ e -ee

(o | Tim | oy =(—=)» [

L .

[

The sign (—)™* comes from the conjugation of the
monopolar harmonic {aju | 7).

We know that an integration consists in joining u
lines of the same direction. Thus
(kp | Tom | &'5'u’)

o

-
- AN
=(_) # —Ld-—o-»"-, ™
«'j! ,4"
—e—g’
IRAN A
= (=) L

—u om u')

Note that the diagram remaining does not depend on
magnetic quantum numbers (as it is closed). Therefore
we can identify it as being the reduced matrix element
of the tensor operator and to obtain the usual phase
of Wigner—-Eckart we put

< = (=) e | o] ')

The monopolar harmonics are defined as to give usual
spherical harmonics when 7 becomes integer. It does

not affect at all the result given in this part. It is even
possible to define M *(u) =(—)7"M;_,(u) so that
the marking circle takes the simplest value of the
reduced matrix element. The results obtained are
evidently identical to the preceding one.

We can simplify the graphical representation by
substituting in this diagram a “marking circle” as in
the preceding section. Let us note that if

212223 h b I
(“4m)"™\o o o
ANA

A
@™ \o 0 o

of the marking circle previously defined is coherent.
The Wigner-Eckart is now written

Tl2m2E Yl2m2

WYy ly=(=)n

so that the value

(o | T | @Y= (=) &

To read this matrix element we have always to start
from the entrance kinetic line and to follow the cyclic
order given by the sign of the node.

B. Tensorial Product of Two Tensor Operators

The tensorial product [ [um of two tensor operators
T1ym® and T m,® will be

H = [T(l) limy ® T(Z) lzmz:' m= Z <l1m1l2m2 ) lm>T(l) llmlT(2) lomg
lm

mimg

with “3jm” symbols it becomes

[1=13 (—)umtirm

im mimg

h

—m

l I
T® llm1T(2) lomage
m — Wl

If T®y,,, acts in the ¢ space and 7'®;,,, in the e space, which can be identical of not, Hlm will act in the €

space, tensorial product of ¢ and e.
We obtain a clear representation of [ [ (e, us)

L i —
) "
11 (o, wa) =1 "“< .
im A
.

This tensor operator has the same structure as a multipolar harmonic with n=2.
I1.. being a tensor operator, we can apply to it the Wigner-Eckart theorem

{ajne | IZIJa’J"#'>=(-—)"“ “h

J

(2)

'

Let us find the reduced matrix element of ][ ;. with the aid of the matrix elements of T'yym; and T'ym, tensors.
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If Timy and Tipm, acts in the same space wy=us=u

(o | T 1 ') = (=) [ M 00 LT ) M)

represented by
o .
——e-> g+

A

(o | TL@5'w') 5 4 by ~< J-»

N/
—_—a-N 4
«ljt u

The intermediate kinetic line must have a direction as to permit the construction of reduced matrix elements
(at each angular node there must exist one entrance and two exit directions).
@D+
X,
(o | H | &5'u)= (=) "ZZ( - x 3

By comparing (2) and (3) we get
Cl I;I Il a’j’>=l(—)”"’+’%<aj I TulloB) R | Tl ')}
“ ik

If now u;7£us, that is, T®, and T'@p,,, act on different spaces, in place of monopolar harmonic we have to
introduce bipolar harmonics before integration over #; and u, coordinates. This easily gives the result

{aju | H | &/f'uy= (=) —wteirk2i 313", D,

o
ay | Ui
u
J2%2 \\\‘
L P2t
A +
D =

\,
\,

L !

' —<—< X

L, SN YA
+ - /V
171 7 vy
!L'j' Ry
22

1
7

J

(g | T | /f'w') =7 (=) w2ty e
im

We get the reduced matrix element of [ as previously done:
v oh
(e freee focrf || H I o122y =307 o ju | T || @' 1) en o | Tos || @252} G2 7> bo
L7 7 ¢
C. Tensorial Product of n Tensor Operators

As we have constructed a tensorial product of two tensor operators, we can generalize the method now to ob-
tain the tensorial product of # tensor operators after the choice of a coupling scheme B has been made

I1=[790m®T®1n;®@ - - @T® ;1 Jim =K1+ + - X sl (=) 7BGre D 3 (=) limrkeeokln—ma
Im

m1es-mp

Lievoly
X XioooXns ) TOpme s« T® ..
B

— Myt —Wip |
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If we characterize an e space as one where each of these tensors acts, we obtain the graphical representation

!
I
A A v B <<—e->---
I I =X1‘ . .Xn_zl(_)fs(ll'“lnl) — o u,
Im X, N u
1 n n
s - 22ee

To evaluate the reduced matrix element of such an operator, we have to introduce multipolar harmonics (Sec.
III) the order of which equals the number of independent spaces where tensor operators Tym; act, and to join
corresponding lines in threes with (#—p) intermediate moments K;

(ju | o | &’y = (=) Ko o - XpaVie e e Voo¥'se o e W7l (= )4G0 i0d) (=) 74/ (1w 30T ) (— ) S B2+ Tal)

where G5 has the representation

> (jmemeD,

Ky1++-Kn—p

G5=

In the last block of this graph we find all “marking
circles”; that is, all reduced matrix elements.

V. ROTATION MATRICES

It now remains to give a graphical representation
of rotation matrices in order to have a complete
description of the elements of rotation group Rs.

Let D, (p) be an element of a matrix®

D(p) (jm|D(p) | jm'),

where p is related to a reference system. [For instance
p=(a, B, v) if the system taken is that of Euler’s
angles. |

We say that the graphical representation of Dé,.(p)
is

where the dotted line is still an “angular” line and the
full lines are the kinetic lines, attached now to a same

8 E. El Baz, J.-N. Massot, and J. Lafoucriére, Nucl. Phys.
86, 625 (1966).

-
x(J

jl
- m ul) Gs,

kinetic moment 7; this is the reason why we note it
(mm’) and no longer j. The indices are read from the
angular line by following the cyclic order given by
the sign of the node.

The complex conjugate D?*,,.(p) being equal to
(=) #mti='Di_,,_..(p) it will be easy to have a repre-
sentation of it.

D#*,0 (p) = (=) Fmti—m’ >;

S

We represent by —p the angular coordinates ob-
tained for the inverse rotation R1. Thus

Dim'ﬂb( —p) =D7*,. (P)
and graphically

m
[ . - m
j-m+j-m 3
- - = (.) J + PeeBeon
m' m'

The above equality gives the rule for changing the
direction of an angular line:

We must change the sign of the node and the direc-
tion of the kinetic line.
Also we add the phase (—)% ™+ to the result.

For integration we keep the same method as for
spherical harmonics. The relation

/Djlmlm’l(l’) Dhmzm’z(P) Djsmm’a(ﬁ) dp

j]. j2 js 4 jl jZ j3
=8
my me ms) \m'y m'y m's

is represented by joining angular lines of the same
direction.

We can close this diagram on its kinetic lines in the
usual manner but it must be carefully noted that two
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kinetic lines issuing from the same node are a pro-
jection of the same j. They cannot be tied together.
Thus we bave to tie only corresponding lines (lines
issuing from different nodes with the same order
starting from the angular lines). Thus we get

The identification with the analytic formula attrib-
utes the value 8x? to the closed diagram.

A generalization can be given for the integration of
# rotation matrix elements.

/Dﬁmlmﬁ(P) e Ding, i (p) dp

. . J10fm
=872 Z X2eo o X, 8 XiooXnos
Xl"'Xnk2 mlo.vmn A
1
X X’l...}(n_3
”Z’lccum,n A.

Graphically, by joining the angular lines and shutting

Ge= Y Xi2(—)ZisimetiimniDiv o, (p)« s Ding, v (p)

the corresponding lines with “njm’ coefficients, we get -

™y
——
my ™2 A A my
WaN - + +
N\, m
s N 2R\
= N m, —<] ™, N
m, N TS
2 N R2 B NN
Ay = X5 m', \5
s . 0
' d my n 4
2 X
,4 3 ™, A A +
m / < s
n / m
+ - + n
.
m mt
" ——]

The closed diagram here also gets the volume of
rotation group &=2. .
We can write the unitarity of rotation matrices as

Z( _) DIy (P) Dy (P) = ( _) S -

8 R N SN -
mj ‘ . >m -
m' ._>9__ = m' Q«’p‘“
The extraction of the node from the first graph gives
the value j to the second one and

represented by

g
m' m g 42

+ 0P
It is easy now to obtain expressions where both
rotation matrices and “3jm” coefficients are present.

B . .
]1---]" jlnoo]n
X Xl"'Xn—3 X1‘°"Xn—3
._—mloot—mn A ——m’loot—m’n A
shown by the following graph
A
A
has 1 for value as!
) Jeege T Jeede T
Djlmlm'l(p) ° .Djnmn‘m'n(p> = Z ?2Xk2( ___)j*ﬂl—{-J—M/ X,k X,k DJMMI (p) *
TR My oy, M a \myeeem’, —M 4

A graphical integration over angular variables of the preceding diagram gives to the graph the previously

obtained value of 872
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Let us show how the summation over kinetic moment must be done. For this purpose let us consider

the expression:
Ja
D

gman! My M

If we remember that magnetic lines represent the
same j we shall have to apply (YLV)’s rule simul-
taneously on both lines and join the corresponding

m/) \m'y

o7 .
DY (p) -

m’2 m’

tion matrix becomes a spherical harmonic. Following
the phase convention adopted by Rose,” Messiah,®
Brink™ or Rose,'? Wigner,”® Fano," Racah,’> Edmonds®

lines that remain we obtain the equivalence

m D,o(ay) =[(4m)V2/1]V*1n(Ber)

Dl (aBy) =[(4m) V2/1] (=)™ V¥ s (BY)

- with the first conventions.
>,;’__ With the second sort of conventions we get easily
I’n'z

G

i
|
E
i
i
1
§
I

Gr =Dyt () Dotmanes(p)- Dhsalefy) =(=)" 77 VinlBe)
This method is not affected by the presence of a Db, gt
block tied to the kinetic lines m'f m'o 7
(4m)

o Tom (eBy) = 5 Vw8

" s ,

) " - M, L ot L ot
m'z m' - mo 2

We go from the second convention to the first by a

By using this rule we can find some other summation  simple change in the direction of kinetic lines.

like This graphical method applied to rotation matrices
. f the same angle p does not present any difficulty.

= fmiti-maDa Dy, o gle o P y y
Gs= mlzmz( ) ma(p) s (p) However when problems use different angles pp; the

. . . manipulation of the diagrammatic representation of its
1 J2 J3 . . .
% _ rotation matrices must be done carefully, expecially
when one is finding the product of two rotations.

VI. VECTORIAL DIAGRAMS AND THEIR USE FOR
THE COUPLING OF ANGULAR MOMENTA

So far we have talked about “mjm” coefficients
without specifying the coupling scheme which was
enclosed in a block diagram. When the coupling
scheme has been chosen we can find analytically the
phase (—)74Gr i) and the form of the tree enclosed in
the block. As a graphical method is faster to use than

9M. E. Rose, Elementary Theory of Angular Momentum
(John Wiley & Sons, Inc., New York, 1957).

16 A, Messiah, Mécamque Quantzque (Dunod Cie, Paris, 1960).

1D, M. Brink and G. R. Satchler, Angular M omentum (Oxford
d University Press, London, 1962).

2M. E. Rose, Multipole'Fields (John Wiley & Sons, Inc.,
New York, 1955).

BE. P. Wagner, Group Theory and Its Application to the Quan-

Thus we get the value of Gs

i Je tmgz J;[ echanics of Atomic Spectra (Academic Press Inc., New York,
— — ) iz—m3 Dis , . 1959).
Gs %( ) my mls m's e z(p) 14V. Fano and G. Racah, Irreducible Tensorial Sets (Academic

Press Inc., New York, 1959).

BA.R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N.J., 1957),

16 D. Robson, Nucl. Phys. 22, 34 (1961)

Before the end of this section we note that when j is
an integer (say /) and when ' equals zero, the rota-
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an analytical method, we have constructed a method
resolving the above problem.

A. Clebsch—-Gordan Coefficients and Triangular
Diagrams

The basic idea is to associate to a ket |jm), or a
vector J an oriented line. The following diagram will

correspond to
J
M>: +

the -} sign shows that it represents a ket and not a bra
(defined by — sign.)
The orthogonality

(F'm" | jm)=08;bpmm

will be represented by

Also, an elementary projector on a state with 7 fixed
2 | jmy(jm | =1
m
is shown as

A ket | JM) eigenfunction of J%z is related
to | i) | jams) eigenfunctions of J13/1,75%/5, when J=
ji+j. by the relation:

| ]M>=Z | Jim Jama)( jamy joma | TM )

mimil

and the associated diagram will be

w 2

+J +J

= J j f
m % mm, -y

It is clear that the C—G {jimy joms | JM ) is attached
to the triangular diagram

J2

which is read in the direct order; the last moment being
read must be that of the “unique” sign (for instance
hereJ).
(G jamms | TM y=J (=) di=iwk7 (—) =
n g J
X (4)
my my —
{fxmy jams | TM Y =J (=) e ( —) dt—mrtir—ma
J1 JaJ
X .
—my —my M
From these equations we can get the rule giving a

(5)

graphical “3jm” coefficient starting from a triangular
diagram:

To each triangular diagram we tie a node inside it.

From this node go out three lines cutting the side
of the triangle. These lines are the so-called kinetic
lines.

The sign of the node follows the cyclic order of the
triangular diagram.

The direction of a kinetic line is given by the sign
attached to the side of the triangle cutted.

To each entrance arrow is attached the phase (—) 7.

The remaining phase is given by (4) or (5) relations.

Thus we obtain

jZ
J =
[ iy
J
J =
j1
The preceding remarks may be generalized to a

coupling of # angular momenta: J—j;—ja*+ +jo=0. We
symbolize this by

and this triangular diagram obviously represents a
“generalized Clebsch—Gordan” as we can see

Let us take a concrete example with #=3. We
obtain then the “generalized Clebsch-Gordan”

We can now give it with elementary triangular
diagrams by using an adequate projector. If we choose
X =ji+j» and J=X-+j; we get

3

I3
- . 3 jZ
3
3+ Sl = E z
. z x J %iz: JD xl> ’
n x X 7
i) 1

it

that is
{ ima joma jsms | (G172 73) XTM)
=D Guma fams | X)X ojams | TM)

and we can give the above diagram with “3jm” coeffi-
cients by using relations (4) or (5).
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With the other coupling scheme j:+js=Y J=3ji+Y Let us translate this symbol analytically. It comes

we would have obtained

J3

“3
B Y I .
3]+ -[3,= E 3 B2 = Z J Y
- Y y N iy
4

B

fY T

S J (=) ir—I (=) smtr—y <

_yM

—m

v

JY (=) #(=)irmrtirmetizms ()T < -

with [ =j1+j2—'j3—]— 2Y.

—m

with (5)

i~ I~ J

1 v isd 3

-J = K3 \> \>
2 » <

224§ LN da

%
+

. a5 Y
Y( _) Jr—j—Y ( _) Jr—matjg—ms3
—me —mz Yy

Y ]><j2 ’ Y)
-y M) \—my —mz y

Graphically it is not necessary to decompose all these steps and even to give the analytical expression

represented.

We go immediately from the triangular representation to the “ujm” representation with the preceding rules.

Thus

iy

We see later how to obtain easily the phase (—)¢.
We can then write

| TM)=22 |
Y

or

ARG A K =jf7(_)jr-mx+f2—-m'd-ja~ma(_)w 3

J AN

o | jima) | jama) | jams)

| (Grjajs) VIMY=> J ¥ (—)irmrtirmetisms(—)e | jimy jyms jms)-D
Yy

For more complicated problems the result can be
easily found when a coupling scheme has been chosen.
For instance if J=ji+ja+js+jsa+js, one gets

The K coefficient will be defined with the help of
next paragraph.

B. An Algorithm for finding the K Coefficient

The name K coefficient designates one which permits
the transition from a triangular diagram to a ‘“njm”
coefficient.

We can find K step by step, following the (5) and
(4) relations.

K=J(-) X THiemE (— ) XXX
XX2( — ) drdXotjz—matis—ms
XX:S( —) di—dXstjrmatis—ms
K =JX X X3( —) frtiristiisF—2X1—2Xs
X ( __) Ji—mitjr—matjs—matjs—matjs—ms

It would be convenient to have a general rule for finding

it directly.
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Let us make a few remarks here:
(a) All free entrance kinetic line 7 bring a factor
_) m

(b) All kinetic lines J or X whose direction is
“‘unique” when we consider the three lines all together,
bring a factor J or X.

(c) All kinetic linej or X whose direction is “unique”
and positive bring a phase (—) 7 or (—)=X.

Let us call 1 the “unique” line (if positive it will be
14 and negative 1—). When starting from this line
and following the cyclic order given by the sign of the
node we meet a second line (called 24 or 2— according
to its direction) and a third one (34 or 3—).

(d) All kinetic lines § or X which are of the 3= type
bring the phase (—)=7or (—)X.

With these remarks it becomes easy to find the
resulting K factor.

This noted it is sufficient to number the 1= 14 34+
and free negative lines. This work may be done directly
on the triangular diagram because it is simpler.

Thus we construct the following table (X table):

The phase on X will be a sum of all 2X;, dropping
the X; which appears only once in columns 1+ or 3.

C. Example of Application

Let us give a concrete example: we want the ket of a
momentum J sum of five moments.

J=htitististis
with the coupling scheme imposed
A={[(142)+3]+(4+5)}.

The corresponding triangular diagram will be

To get the K factor we immediately construct the
K table

~

A (=)im (=)eW (—)s@ A (—)dimi (—)eW (—)¢@
1=t Free negative 1+ KEE 1+ free (0 1+ KES
. .es I cer J 71 J X,
Xy Ja X, Je
X Js X Js
R X3 Ja X3 Js
The first column gives 7 or X coefficients. 7s

The second column gives (—)7~™ phase.
The phase on J will be a sum of all j; and J with the
(—) sign if we meet them in columns 14 or 3=.

The K factor will be.

K =J XXX 3( — ) smrtirmetis—mstiemetis—ms ( — )i iivtieisJ (— ) X rH2Xrt2Xs,

Now we write the dual of the triangular diagram

and obtain finally

| (rjegsjags) aXaXoXaT MYy= D {jummn joms jsms jumagsms | (i« <js)aXue - XoT M) | fumi) +++ | jsms)

12223
MY..Mp

K =JX X, X5(—) drmubetis—ms () siirishii—is—7 ( — ) 2X1+2Xr42Xs

If the analytical result is desired it is easy to write it.
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Instead of a conclusion, let us now give as a general concrete example: the calculus of angular distribution in a
reaction 4 (dp) B when spin-orbit potentials are included in the entrance and exit channels.
The amplitude for the reaction 4 (dp)B using distorted waves is given by"

VTSSO =/‘l’p(kprlpsp) *xr 5015 (E00Sn) *Vnp(| 1p—10 |) $a(tn— 1) Ya(kalpTnSpSn) X1 4204 (¥) dr.

If we write
X*IBMB (ErnSn) = (IBMB l Ern>

we have the coupling Iz=14+14-S, and the imposed intermediate coupling j=14-S,.
It is easy with the aid of the rules given in this section to write the state (IzpMz |.

S

j : \‘k +n I IB S
1 o fltek, 1 Xy =K AN "
B 1 B AN 1 +
¥ W, 1, \
with
K =f33\( —)IB=MB( ) IBH 4+1—Sn,
So that
\lp s, /
Ty | = ¥ K 3—»—< (m | (TaMa | (Sutn |
M gmpn /WA t
(IsMp | )= 2. K >"J*‘< (Im | £a){TaMa | €)(Subtn |.
M gmun Ta +
Writing

<lm [ rn) = <lm I Qn>(l l rn} =V*m (Qn) M*l(rn)
=(=)""Y 1 m(—) w*(ra)

TaMa | &) =x1,0,()*
We find easily

XB Sn

<IBMB ] Ern>=MZ Kl *IA j . : %*l(rﬂ)X*IAMA(E) (Sn n l (6>

\\ a,
AY
\

By the integration of (6) over £ internal variables we get

lB Sn

/X*IBMB(EI'%S”) XIAMA(E) d‘E:ZKlu*l(rn) e*il<Snﬂn [ *IA . A !

Hn

When a spin-orbit potential is introduced in the entrance and exit channels, we obtain in the same way the
wave functions in these channels. Thus the outcome is

I(uppaM M) =dmg D, KO*3Ry,1,5,5.G(9).

UiLpLal pTd
(a) gis a factor introduced by the choice of the interacting potential

V(| 15— 10 ) pa(tn—1,) =g 8(ra—1,).

17, Robson, Nucl. Phys. 22, 47 (1961).
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(b) K is the so-called K factor, the value of which is found to be
K =ijp2jd2.’7\S’dﬁdzzpz( —)SwtSatLot B4 —)Sy-uptl B-M3B,

(c) ©%*; is the reduced width obtained by integration over internal coordinates £.
(d) Rg,r47,5.1s the radial integral

f S50, (ko)1 (7) fraa,(kar) 72 dr.

(e) G(9) is the geometrical part represented by the diagram

After lines (J47J,) have been directed in the same way [giving a phase (—)%¢] we cut G(9) on these lines,
getting G(10) and G(11)

G(9)=(—)¥4G(10)G(11)

G(11) =

So we get
I(upuaMsMa) =4wg D, ©*uRp,r.,0.K(—)¥G(10)G(11)

LpLaJ pJa

o(0) o= (47)%g? > 0%10;1RL 1oy s R¥ L7 y 1005 174

LypL!pJ 7/ plal!a

X (—)¥eKE” Y G(10)G(11)G(10)*G(11)*

ppudM BM 4
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G(10) and G(10")* being independent of magnetic moments we can extract them from the sum and put:
G(12)= Y, GUNGU1)*,

pprdM BM 4

G(12) = K" -

G(12) = (—)"8{II35}G(13),
G(13) =K' (—)&£at2pt2l'd 5 0.+ D,

We get thus
We obtain then
@) «g D O00aRL 1 R L s LT AT T 2T LA AL RL AL S (— ) VLt st 4
FlLyLy' LgLg’
JpJaJ p'Jd"

Li L'a 8\ [Ly L'y £\ [(Ly | L\ (L, | L'
X {14715}
0 0 0 0 0 0 0 0 0 0 0 0
Ly L, 1) (Ls Lp 1
Ld Jd Sd

Jd ]p .7 Jp Lp Sp

X

Ja L'y £4 ]’p Ja £4 L,p ],p £q

Ja Jp J) e T j
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Si Sp Sut 1Ss S, Sa} Pes(cos(pka)).

We are indebted to Professor Sarazin for the opportunity of this work and B. Castel for very helpful discussions.



