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A graphical method is presented allowing the representations of j-m" and "3nj" coeKcients, spherical harmonics,
irreducible tensor operators, and rotation matrices. Rules are established which permit calculations on expressions with
the above elements. As the main difhculty of using "3j"Wigner coefBcients is the construction of the phase, an algorithm
is proposed which simplifies this problem. Concrete examples are given for this general method.
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I. INTRODUCTION

The book of Yutsis, Levinson, and Vanagas' (YLV)
6rst attracted our attention to a graphical method for
describing "3j"Wigner coefficients. However it seems
to us that their work was not complete on two points.
First it does not permit the calculation of expressions
where both vector-coupling coeKcients and spherical
harmonics are present. We have extended their graph-
ical method to spherical harmonics, irreducible tensor
operators, and rotation matrices. The second point was
that (YLV)'s method could be applied only after
writing a formal expression of vector-coupling coeK-
cients and then transforming it in a graphical manner.
So we have given an algorithm which allows immedi-
ately a graphical representation of a scheme coupling
with its phase.

A similar method to (YLV) 's has been proposed by
Kotansky et al.2 On the other hand, Yutsis et al.' 5

have published a graphicaI method based on the
Clebsch —Gordan coeKcient representation for simpli-
fying phase considerations in a calculus. Our generaliza-
tion of (YLV)'s work has been done with the first
sort of conventions, because of their simplicity.

After a suxnmary of (YLV) 's method we set out our
extension of this work and give a concrete example.

II. SUMMATION OF "zjm" AND "3+j"

A. The "3jm" Symbol

When coupling two angular momenta j1 and j2, one
obtains a vector J=ji+j2, the coefficients which trans-
form one basis to another one are the Clebsch-Gordan
coeKcients;

!JM) =Q (jimij;m2! JM)!jimi)! jmp).

We define a "3jm" coeKcient which is the usual "3j"
Wigner coeKcient by

(jimijm~! JM)

where J=(2j+1)'I'. We call it the "3jm" coeKcient
because it depends on the magnetic quantum numbers.
We keep the notation "3'"(m =1, 2 ~ ~ ~ ) for coeKcients
like "6j"which do not depend on m.

The following formula recalls some syrrunetry proper-
ties of "3jm" coe%cients.

t'j
!

ml m2 m3 m3 ml m2

'A. P. Yutsis, I. B. Levinson, and V. V. Vanagas, Mathe-
maticaL Apparatus of the Theory of Angular Momentum (Israe}
Program for Scienti6c Translation, Jerusalem, 1962).' A. Kotansky, Acta Phys. Polon. 26, 109 (1964).

A. Yutsis, A. Banzaitis, and J. Vizbaraite, Lietuvos Fiz.
Rinkinys 1-2, 74 (1962).

A. Yutsis, A. Banzaitis, and J. Vizbaraite, Lietuvos Fiz.
Rinkinys 1, 91 (1962).

A. Yutsis, Z. B. Rudzikas, and A. Bandzaitis, Lietuvos Fiz.
Rinkinys 5, 4 (1965).

pi j j)
!=(—)"+' "l

m1 m3

(ji
=( )~i+J~~'l

&
—m m3
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Yutsis, Levinson, and Vanagas' represent the "3jm"
coeKcient

(i
! !

my m2 m3

by the diagram

A change in the sign of a node gives the same phase

(—) ii+le+98

It is forbidden to change the direction of a free line
alone.

A rotation or a geometrical deformation of a dia-
gram does not affect the "3jm" represented by the
diagram.

I'articular cases. If one moment is zero

The three lines are called kinetic lines. Each of these
lines denotes a kinetic moment j and its free end the
projection m ofj on the quantization axis. If m&0, the
free line is directed outwards from the node, and if
m&0, the free line is directed inward.

The sign of the node denotes the cyclic order in
which the lines are read; that is, + sign if the order is
anticlockwise.

We denote the "3jm" representation

(J~

mQ m2 m

by the following:

J3

The syrrnnetry properties of "3jm" coefBcients give
several topological rules:

A change in the orientation of three lines together
gives a phase (—) &'&+&'e+&e.

(i J, o) (J,
! =gg

—'( —) "~Q. 8~

&, —,o) &, —~)
is represented by

In the same way as in (YLV) we can extract the
node and its value g$ Bjyjg we obtain the equivalence

—( ) lying

If two moments are now equal to zero

(J, oo
(mt, 0 0j (my)

B. Summation on "3jm"

By summation over a magnetic quantum number of
the expression

we can transform it into

ZI
mj, mg m3 my mj m3 m2 m3

On writing

we get

given by

( ) t~wt~, p( );,-m i~I ~

m1 m2 m3 ml m2 m3

(i
(—)~'~e+t~eP

! i~ I

mm m3 m2 m3

(i~ i~ ie) (ii i~ ie ) (im
jJ~f

mj m2 m3 —my

Ji~l 2 jljV
(-) +

m J3
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Graphically we sum this expression by joining the ends of free corresponding lines; but the phase (—)" ' must
be always present before a summation over m&, and the directions of lines to sum must be opposite. So we obtain
for

ji I

m, m,

Continuing the sununation over m~ and mq of expression (1)

(j~ js
p ( ) jg m2+j3—

m3G! j l=F(j jj)
2 3 m2 ma

the diagram representing F ( ji j2j3) is

F(jij2ja) equals one if!ji—j2! &ja&ji+j2 and zero otherwise. We call F( jij&j3) a triangular delta I jij.j3} and
note that it is the first "3'"coefficient with e =1.

Whenever two nodes are joined by a line j we can change the direction of j but it is necessary to multiply the
result by ( —)'j.

We can find the second rule of orthogonality of "3jm" coeScients by noting that

(ji
( )j~m&g+j~ gg~ 2( ) ji~y!

m
which is given by

j lÃ1

1

3
1

fj m

&myn'g&mmmm'g~ m,),(—m, —m, —m;)

—( ) j2 m~2(, ( ) ja—m~3)

But we know that (—) j2 "8 ~, and (—) j& m'&8,„,are represented by

So we have a rule of summation over j:
The expression to sum must show the term g&2 without any phase over j&.
All the lines must be convergent at a node and divergent at the other one.
When these conditions are fulfilled we drop the line ji with its nodes and join the corresponding lines (with

the same kinetic moment) .

C. The "elm" CoeKcients

We call an "ejm" coefficient an expression obtained by the superposition of "3jm" symbols so as to obtain a tree.
This condition is fulfilled when for the coupling of e moments j; there are (e—3) intermedia, te moments X&.'

(ii j2 xi) (&i
) z;x;—,

!

m2' ' 'mn m$ m2 gg X] m3 $2

where A defines the mode of coupling chosen. Graphically it is represented by

Igx J!j
!.

X
ll 3 j

(x„,
!

(—S 3

The "jgjm" has orthogonality relations like "3jm" coeKcients which are given in (YLV) .'
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If the structure of a diagram is not interesting for a certain problem, we can close it in a block which we call
a "closed block" (and we denote such a block by cr. if inside it there are no free lines); and we call a block open
if inside it some free lines remain (denoted then by a) .

Let us consider a diagram in which free lines are outside of a closed block u. (YLV) show that we can extract
an "ejm" coeKcient by closing all free lines with the aid of (rt —3) intermediate moments XA. For example with
m=5

& 2 A2
l 2r

I

1

I

T
I

4 X,X

5

j4 jc

m2 —m8 m4 m5

(j j. j
!

"Sjm"
X, X, )

28

(j
cx ! =QXPX+G!

ml m2 m8 m4 m5

j~ je 24 Zel (i ~

!

X~ X2 ) (m~ m2 —me m4 ™4
J4

IlI

T

T

4

fs
I

I

Q

X X
2

XlX2

G

j4 ie ) (i~(ji
G —g ( ) ly—ms+ "+l4 m4P

%] ~ ~SAN &+

(j "j ) (j "j
G=g X&'X2'G&! u& ! G2! n2 !,

(X, X, ) (X, X,
with

X, X2
+

(ji" je

(X, X,
( ) rl NL1+'''+t4 m4p

tRI "m5

22 28J"2 J'3

(jt" jc

EX1 X2

) (j
-+ )E+

Xg Xg ! .
+

(ji
( ) i&—my+" +i4—m4p

ml -mg

J"2 j18 22 28

When three lines are free, we pinch them with their
respective signs but in the closed diagram we have to
put the three tied lines in the same direction.

These relations are reversible. In the case where
m=3 there are no more intermediate surrnnations but
it is necessary for conservation of the phase that the
three lines have the same directions if tied.

I

21

3JT 2

T
I

2

The signs of the nodes and the directions of the lines are opposite in the G block and in the "njm" diagram.
If a closed block ~~ is connected to a second block a2 (n2 can be closed or open) by n lines we can use the same

rule. That is, we close the first and the second block on the same intermediate moments:
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The rule of summation on a kinetic moment is not
affected by the existence of blocks.

j j2 j3
( ) Ziji mi+li ei-

msns

D. The "3'�"CoeKcients

Just as (YLV) have called "jm" coeKcient a dia-
grammatic expression with free lines they call "j-
coeKcient" a diagram with all lines tied. Such a
coefficient has 3e lines and 2e nodes. If it is separable
on no less than four lines it is called a "3nj" coefficient.

For m =1 we Gnd again the triangular delta fj~ jm jaj.
For e =2 we get the so-called "6j"coefficient related

to the "3jm" coeKcients by

Yq~(Q) is the juxtaposition of the ket l lm) and the
bra (Q!. It becomes therefore natural to give for
F'i (Q) the representation

The full line is the kinetic line and the dotted line
will be called the "angular line. "The properties of the
kinetic lines are those of the preceding section. For the
angular line we adopt the convention that an outward
direction denotes a positive solid angle Q= (8, @) and
—Q= (m

—0, p+m) is represented by an inward direc-
tion. e

As obviously Y'~( —Q) =(—)'Y'~(Q), we say that a
change in the direction of the angular line gives a phase
( —)' in the result. On the other hand the relation
Yi *(Q) = ( —) Y~(Q) permits a diagrammatic repre-
sentation of a conjugate spherical harmonic. We can
note that Yoo(Q) =Y~(—Q) =(4m) 'I, so that sup-
pressing a kinetic line of an I g gives the constant
value (4+)—'12.

With these conventions and those of the preceding
section we now see how we can make an algebraic
summation or an integration.

(i jj)(j
xl

ml ~ m3 m]

(lg lm

x! —Ã2 m3 —fSl

and represented by the diagram

j2

l) As
3

can be written

!

3

QY i„*(Q)F'i„(Q')= (P/4x) Ei (cos (Q, Q') )

g( —)' "F~(Q)Fi (—Q') =(l'/4')Ei cos(Q, Q')

(YLV)'s convention for summation over m gives the
diagram

In the same way the "9j"

jl j2 j3

~ li lg la ~

which represents (P/4~) Pi (cos(Q, Q') ).
Note that when Q=Q'Ei(cos(Q, Q') )=1 and

12 In

The summation over l gives

g(P/4~) Pi(cos(Q, Q") )=5(Q —Q')

is represented by

i kx ku ki J' and graphically

A complete study of these diagrams for n& 3 is given
by (YLV) with their diagrammatic representations.

III. SPHERICAL AND MULTIPOLAR
HARMOMCS

A. The Syherica1 Haxmonics Functions

For these calculations we have simply adopted
Yutsis' conventions and rules.

Let us consider now the integration of three spherical
harmonics

Yiimi(Q) Yi2mg(Q) Yhmg(Q) &Q

(4 )"'
&o o o) &m, m, ~,)

If the spherical harmonic Yi (Q) is written with 6 J.-N. Massot, K. El Baz, and J. Lafoucriere, Nucl. Phys.Dirac's formalism, we obtain Yi~(Q) = (Q! lm). So s3, 449 (]9Qj).
'
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As the result does not depend on solid angle 0 we
join the ends of free angular lines with the same
direction to represent an integration. Thus

0

We therefore obtain

0

0

0

The last part of the above diagram has been obtained
by applying the rules of the preceding section. On
comparing the analytic result and the diagrams ob-
tained, it is easily seen that the value

I
lg lz l3)

!

123

(4 )'"
&0 0 0)

must be attached to the diagram

--0s-Q 0
r

3

For simplicity's sake we replace it by a circle put on
the corresponding node, and call it a "marking circle."
Therefore the integration of three I'& becomes very

. simple graphically

I
0 ..~

CO
'
~

0 = ()3m

f m~p««3 3

4~ 4g 0

that is analytically

~n i(Q) ~~ (0)

|'l, l, /e) (lg lz lg)
=Z

-*(4 )"'
(O 0 O) (m, ~ m,)

more generally

43 5
~+as gy

To integrate more than three spherical harmonics,
we can then group them two by two as before and
integrate after.

The result of the integration of five spherical har-
monics is, for example,

When such a "marking circle" exists it is not necessary
to give a sign to a node since lq+lz+le is even because
of the "3jm"

(lg lz le)

&O 0 0)
'

&0 — — ~ = ~0

g4
L1L2

«p««

0

0

=p(-)"
L L

/'. )
43]l L

The integration is independent of the fact that
kinetic lines belong to a block or not. For the integra-
tion of less than three spherical harmonics if is sufhcient
to take the preceding case and to drop the kinetic lines
equal to zero.

We shall now do graphically the composition of two
spherical harmonics of the same direction. As

F'i, ,(Q) F'i~, (0) = F(,„,(Q') F), ,(Q') 8(0—0') dQ'.

It follows that

which is easily translated analytically.

B. Multiyolar Harmonics

Since we have defined spherical harmonics by
(0 lm) with l being an integer, we can say that
(I 0jm) represents a monopolar harmonic where j can
be an integer or a half-integer, and! jm) is an eigen-
function of J'J„the quantum number n completing
the chosen basis.

We note that (I!njm)=M; (I) and represent it
graphically as

0'
Q «g««

0e

We saw before the equivalence

0' 0

We continue by calling the dotted line an "angular
line" and the full line a kinetic line.

To keep the same phase convention as for spherical
harmonics and time reversal properties, we write

M~;„(I)= (—)~M.; (—I).
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We put that

M.;„(u)= ( —) fM.f„(—u)
so that

M*; (u) =(—)~M f (u).

We can then extract the following rules:
We can change the direction of the u line by intro-

ducing a phase ( —) +) depending on whether the u line
is initially positive or negative.

To obtain the conjugate of a monopolar harmonic
we have to change the direction of the kinetic line and
a,dd ( —) + depending on whether the final kinetic line
is positive or negative.

The closure relation

Q&u'
i
njm) &njm t u) = t')(u —u')

adam

can be rewritten

Q( —)~M.f „(—u) M.,„(u')=8(u —u').
ejm

It gives graphically

U nJ u
u' g

6 (u-u') ~

ug

Both lines must be convergent or divergent at a node.
We can now de6ne multipolar harmonics by

&uiu2 u iyi j M)A Xl'''X —2J& —) """f"~' g ( —)" "'+"'+'"
mg. - mn

jn

~ - —m 3f
Xi "X--2

I &u, lg»ui& &u"„
I
.j„m„

where &ui. ~ u„i ji ~ j„JM&z is the multipolar har-
monic of u rank and &ui i jimi) ~ ~ rnonopolar har-
monics. A is a chosen mode of coupling; f~( ji ~ j„J)
is a linear combination of its parameters depending on
the scheme of addition A.

It can be easily seen that multipolar harmonics
have closure and orthogonality relations as monopolar
harmonics.

The graphical representation of a multipolar har-
monic will be, following its analytical definition,

j( ) fx(A" f~&)

u
n

The complex conjugate of a multipolar harmonic is
obtained by conjugation of all monopolar harmonics
it contains. This is expressed graphically by changing
the direction of all kinetic lines and the sign of the
nodes (symbolically represented by + on the above
diagram) and adding the phase (—)
( )-M

C&»" u- i ji"j-~M&~]*
= ( ) fz(fi fan)X X...X"J'( )

—~G

IV. IRREDUCIBLE TENSOR OPERATORS

The spherical harmonics &( (0) which we have
previously introduced are irreducible tensor operators
of / rank. Thus the graphical representation of F)„(Q)
must be that of an irreducible tensor operator. ~ Let u
be the coordinates of a certain space e where a tensor
T( (/ integer) is acting without going outside of e so
that

&u'
t T)„i u&=T(„(u)()(u—u').

Then T( (u) is represented by -' " . The sym-
metry and conjugate properties of T) (u) will be found
the same as for spherical harmonics; that is

T(+(u) =(—) T( (u)
shown by

We write T)„(u)=(—)'T( ( —u) which defines the
inversion of the direction of a u line.

A. The Wigner-Eckart Theorexn

Let us evaluate a matrix element of a Ti tensor
operator &nju i T) i nj''p'&. By writing it in the e space,
we get

&i) IT)-I i'')'&

Qudu njp u u Ti u u nj p
G

3 'z "z

'n "n
4

du ejp, u TE u u n'j'p, ' .

We see in the next section the advantage of such a
representation.

' E. Kl Baz, J.-N. Massot, and J. Lafoucriere, Nucl. Phys. 82,
i89 (1966).



MAssoT, EL-BAz AND LAPoUcRIERE Graphi cal 3fethod for Angular 3fomentum 295

Ke recognize here the monopolar harmonics which
we have defined in the preceding section. We get in
that way

«iV
e

The sign ( —) )' comes from the conjugation of the
monopolar harmonic &njzz I j).

We know that an integration consists in joining I
lines of the same direction. Thus
&nkp I T& [ nj''Iz')

not affect at all the result given in this part. It is even
possible to define M; "(zz) =(—)' M; (zz) so that
the marking circle takes the simplest value of the
reduced matrix element. The results obtained are
evidently identical to the preceding one.

We can simplify the graphical representation by
substituting in this diagram a marking circle" as in
the preceding section. I,et us note that if

u
'~-p-) +

so that the value

Note that the diagram remaining does not depend on
magnetic quantum numbers (as it is closed) . Therefore
we can identify it as being the reduced matrix element
of the tensor operator and to obtain the usual phase
of Wigner —Eckart we put

of the marking circle previously defin d is coherent.
The Wigner —Eckart is now written

To read this matrix element we have always to start
from the entrance kinetic line and to follow the cyclic
order given by the sign of the node.

B. Tensorial Product of Two Tensor Operator"

The monopolar harmonics are defined as to give usual The tensorial product II3 of two tensor operators
spherical harmonics when j becomes integer. It does T&, ,|."& and T), ,&') will be

m]m2

with "3jm" symbols it becomes

ltmtT 33m3

8$7Ãp

If TI')i, , acts in the ei space and T&')i, , in. the ez space, which can be identical of not, IIi will act in the e

space, tensorial product of e~ and e2.
')))1)'e obtain a clear representation of II3 (zzi, zzz)

ul

lm

This tensor operator has the same structure as a multipolar harmonic with v=2.
II,„being a tensor operator, we can apply to it the Wigner —Eckart theorem

Let us find the reduced matrix element of II3 with the aid of the matrix elements of Ti, , and T3~3 tensors.
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If TL~ ~ and TL~~ acts in the same space I&——N2
——I

(ju I II I 0)j''u') = ( —) " M, „(u)II (u) M; „(u)du

represented by
u

&~iu I II I ~i''u'& .(, - ;
Lm

))

1& «»g
2

"g Y
=-=—w4+

« lJ t

The intermediate kinetic line must have a direction as to permit the construction of reduced matrix elements
(at each angular node there must exist one entrance and two exit directions) .

&~j~ I II I
~'j'u'& = (—)-"&g(—)-'

Lm )l

By comparing (2) and (3) we get

IIIIII "&=&(—) '"'Z& ll~ II "»& "~ll~. ll
"&

~'~ k
If now N~&u2, that is, T&')L, , and T~')L~, act on different spaces, in place of monopolar harmonic we have to

introduce bipolar harmonics before integration over N~ and u& coordinates. This easily gives the result

&-~. I II I-~'&=(-)-"'""-~- D.

2J2

+
p+

'll /

(wu I II I
~~'u') =ztJ'( ) "+"'~'"«—-

G4 ——-

J 2

We get the reduced matrix element of II) as previously done:

&~~ j~«j~~j II II II
~'~ j'~~'~ j'2~'j') =&V"'(~~j~ II ~) II

~'~ j'~&(~~ j~ II T) II
~'~ j'~& ' j~ j'~

L

+1' ' 'xs—2
I
+ liana)'

' ' + )„m„.

C. Tensorial Product of n Tensor operators

As we have constructed a tensorial product of two tensor operators, we can generalize the method now to ob-
tain the tensorial product of e tensor operators after the choice of a coupling scheme 8 has been made

II=P""), ,8~"))~,8" 8T'")). .]) =X".x. d( —)' ')'")"" Q (—)"
Lm yg] ~ ~ e~~

( Eg
~ l„

xl
~ ~ ~mg PZ~

I B
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If we characterize an e space as one where each of these tensors acts, we obtain the graphical representation

g —X&...X 2$( ) fo(4 t"rt
ltn X

i2 2

in "n

To evaluate the reduced matrix element of such an operator, we have to introduce multipolar harmonics (Sec.
III) the order of which equals the number of independent spaces where tensor operators Tt, , act, and to join
corresponding lines in threes with (e—p) intermediate moments E;

(aJttlllt lng'tt')=( —)
—

&Xg ~ X„3'"Y„2Y'3"Yr,tJJ'( —)»&t3 "&"~&(—)»"&'3'"&'" "(—)ro"'"t""xl, Gs,
m tt'

D2—

A

2
1

Jp

B
K~

2

n

A'

J 2
'3

Y3.
1

J p

where Q5 has the representation

G — P ( )
K3+".tea —o,D

XI. ~ Xet, —~

kinetic moment j; this is the reason why we note it
(mm') and no longer j. The indices are read from the
angular line by following the cyclic order given by
the sign of the node.

The complex conjugate D&'* (p) being equal to
(—)' +r 'D' (p) it will be easy to have a repre-
sentation of zt.

Dt3c, (P)
—( ) r'-33+~i -3—

jt

We represent by —p the angular coordinates ob-
tained for the inverse rotation R '. Thus

D'- -(-P) =D'*- (P)

In the last block of this graph we find all "marking
circles"; that is, all reduced Inatrix elements.

and graphically

3J-m+j- rn
(-) +

m3

V. ROTATION MATRICES

It now remains to give a graphical representation
of rotation matrices in order to have a complete
description of the elements of rotation group Rs.

Let D' (t3) be an element of a matrixe

D(p) &JmlD(p) l jm'),

where p is related to a reference system. /For instance
p=(n, P, y) if the system taken is that of Euler's
angles. j

We say that the graphical representation of D' ~ (p)
1s

P a

where the dotted line is still an "angular" line and the
full lines are the kinetic lines, attached now to a same

E. El Baz, J.-N. Massot, and J. Lafoucriere, Nud. Phys.
80, 625 (1966).

The above equality gives the rule for changing the
direction of an angular line:

We must change the sign of the node and the direc-
tion of the kinetic line.

Also we add the phase (—)t +t ' to the result.

For integration we keep the same method as for
spherical harmonics. The relation

D nayni3(P) D f3333'3(P) D m3|3,"3(P) t1P

(Ji J i ) (ii
mg m2 m3 g m$ m2 m3

is represented by joining angular lines of the same
direction.

We can close this diagram on its kinetic lines in the
usual manner but it must be carefully noted that two



298 REvIEw oz MoDERN PHYsIcs APRIL 1967

kinetic lines issuing from the same node are a pro-
jection of the same j. They cannot be tied together.
Thus we have to tie only corresponding lines (lines
issuing from diff erent nodes with the same order
starting from the angular lines) . Thus we get

] ~+p

/

3 //

m

3

+

1

p

/

The identifj. cation with the analytic formula attrib-
utes the value Sx' to the closed diagram.

A generalization can be given for the integration of
n rotation matrix elements.

the corresponding lines with "ejm" coeKcients, we get

m
1

m ~
A

111 2

]3

p/

//

&2X.
1

A
2

p

The closed diagram here also gets the volume of
rotation group Sm'.

Ke can write the unitarity of rotation matrices as

Z( —) D'=---(p) D'- (p) = (—)
fn

represented by

m"

)(m

(i3"i-
X]. "X33—g lm, ."~„Xl'''X 3

)~

The extraction of the node from the erst graph gives
the value j to the second one and

(i1"i-
x~

lml m~

zn j
X,".X„,).

A
It is easy now to obtain expressions where both

Graphically, by joining the angular lines and shutting rotation matrices and "3jm" coeKcients are present.

Q3 —Q X32( ) &~1'1—ma+1'1—m'aD1'i, (p). . .D1'n, (p)

shown by the following graph

(
xi

ml''' mn

(
X,."X„,

[ ]

1ml ' m
X1 "X„3

~

)~

%+no+

has 1 for value as'

l ( J' ~.
X'~

)

g l213'1. ~ e'„—M

(i~ "i.
D11 ~ (p) D1n I (p)

—P g2X 2( ) 1 M+JM— X3
~

D'MM (P)

A graphical integration over angular variables of the preceding diagram gives to the graph the previously
obtained value of 8x'.
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Let us show how the smrimation over kinetic moment must be done. For this purpose let us consider
the expression:

(i
G, gys ( ) r-~+4—~~!

my m2 m my m2 m

If we remember that magnetic lines represent the
same j we shall have to apply (YLV)'s rule simul-

taneously on both lines and join the corresponding
lines that remain

P

tion matrix becomes a spherical harmonic. Following
the phase convention adopted by Rose, ' Messiah, '
Brink" or Rose,"%igner, "Fano, '4 Racah '5 Edmonds'6
we obtain the equivalence

&'-o( W) =L(4 )"'/GJ'*-(& )

D'~ (~Pe) =L(4~) "'/&3 (—)"'I"*4-(P~)

G7=D mrm'r(p) D 4444m, 's(p) ~

P

with the first conventions.
V/ith the second sort of conventions we get easily

(4~)»'
D'..( ~v)=(-)- - J (~ )

This method is not affected by the presence of a
block tied to the kinetic lines

m
Q a

m'
I(

()=(It. )
(4 ~)

(4sr)»s
D' (-~v)= - J (~~)

mfa

An immediate result is

/ jr
x! —tli —ttts —tls)

By using this rule we can find some other simunation
like

G g ( ) 44~4+j~gDj4, (p) Dts, (p)

%'e go from the second convention to the 6rst by a
simple change in the direction of kinetic lines.

This graphical method applied to rotation matrices
of the same angle p does not present any difhculty.
However when problems use diAerent angles p~p2 the
manipulation of the diagrammatic representation of its
rotation matrices must be done carefully, expecially
when one is finding the product of two rotations.

VI. VECTORIAL DIAGRAMS AND THEIR USE FOR
THE COUPLING OF ANGULAR MOMENTA

st 3

P

+e

3

So far we have talked about "ejm" coe%cients
without specifying the coupling scheme which was
enclosed in a block diagram. When the coupling
scheme has been chosen we can And analytically the
phase (—) I&&&'4"'&'"1 and the form of the tree enclosed in
the block. As a graphical method is faster to use than

Q s- szs)
+m' 3 4

Thus we get the value of Gs

(ii
&s= Q( —)' '!

!
D"- (P).

M3 my mg ms

Before the end of this section we note that when j is
an integer (say l) and when ttt' equals zero, the rota-

9 M. E. Rose, Elementary Theory of Angular Momentum
(John Wiley 8z Sons, Inc. , New York, 1957).

~0 A. Messiah, Mhcanique"Quantize (Dunod Cie, Paris, 1960).» D. M. Brink and G. R. Satchler, Angular Momentum (Oxford
University Press, London, 1962).

"M. E. Rose, Multipole„'"Fields (John Wiley R Sons, Inc. ,
New York, 1955)."E. P. Wagner, Group Theory and Its A ppHcation to the Quan-
tlm Mechanics of Atomic Spectra (Academic Press Inc. , New York,
&959).

'4 V. Fano and G. Racah, Irre4tge4bte Te44soreat Sets (Academic
Press Inc. , New York, 1959).

'5 A. R. Edmonds, Angular Momentumin Quantum 3Eeghenics
(Princeton University Press, Princeton, N.J., 1957),

'4 D. Robson, Nucl. Phys. 22, 54 (1961).
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an analytical method, we have constructed a method
resolving the above problem.

A. Clebsch-Gorman CoefBeients and Triangular

Diagrams

The basic idea is to associate to a ket
l jm), or a

vector J an oriented line. The following diagram will
correspond to

the + sign shows that it represents a ket and not a bra
(de6ned by —sign. )

The orthogonality

(j'm'
l jm& =s,;.s„..

will be represented by

graphical "3jns" coeKcient starting from a triangular
diagram:

To each triangular diagram we tie a node inside it.
From this node go out three lines cutting the side

of the triangle. These lines are the so-called kinetic
lines.

The sign of the node follows the cyclic order of the
triangular diagram.

The direction of a kinetic line is given by the sign
attached to the side of the triangle cutted.

To each entrance arrow is attached the phase ( —)
&'

The remaining phase is given by (4) or (5) relations.

Thus we obtain
(&-
( % j

+ ~ J(—) h in'( ) jx~— z-+ja-mg
+I r

I r& lI p&

Also, an elementary projector on a state with j 6xed

Z l jm)( jm I
=l

is shown as

+ .-' J(—) ix—ja+J( )J 3E—
j

1

The preceding remarks may be generalized to a
coupling of (( angular momenta: J—j(—jn ~ j„=O.We
symbolize this by

+3 -J ~

A ket
l

JM) eigenfunction of J'Js is related
to

l j&m(& !g2m2& eigenfunctions of J&'J(,J2'J(,, when J=
j&+j2 by the relation:

IJ~)=Z l~. .~.~)(~' ~'. !J~&
m]mg

and the associated diagram wi11 be

mlm2 m m

gt is clear that the C—G (j(m& j2ms l JM) is attached
to the triangular diagram

m

n-1J
n

J +
t
IlI II

J ~& 2r j

Let us take a concrete example with m=3. Wt
obtain then the "generalized Clebsch —Gordan"

and this triangular diagram obviously represents a
"generalized Clebsch —Gordan" as we can see

which is read in the direct order; the last moment being
read must be that of the "unique" sign (for instance
here J).
(jymyj2m2 l JM)=J(—)" '~ (—)

xl (4)
Em, m, -~)

(~,m, ~,m, l J~&=J ( —) ~~—~~J (—) J~~~+~~2

xl (5)
&-m, —~ ~)

Prom these equations we can get the rule giving a

jl

We can now give it with elementary triangular
diagrams by using an adequate projector. If we choose
X=j(+j2 and J=X+j( we get

$3 $3

j 2

that is

(j (m,j.m j,m, l ( j,j,j,)XJ~)
=g(j(m(j2m2 l Xx)(Xxj(m( l JM)

and we can give the above diagram with "3jm" coeS.-
cients by using relations (4) or (5) .
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With the other coupling scheme js+js=Y J=jl+Y Let us translate this symbol analytically. It comes
we would have obtained with (5)

j Ã z

fi
lr( ) js-js-Y!

( jl—Jf ( ) rp( ) jl™2+j~s+j~SQ( )
Y—

—m&

with ljl=jI+j, js J —2Y.——
Graphically it is not necessary to decompose all these steps and even to give the analyticaI expression

represented.
%e go immediately from the triangular representation to the "ejnz" representation with the preceding rules.

Thus

2 —JI (—) jl ml+j~s+j~s( —) 22

j2
I

J
I

L

We see later how to obtain easily the phase ( —) o.

Ke can then write

, !jljtzI)! jstrt2)! jsjms)

or

! (ilare) FJM) =ZJY( —) &'I ml+j~~j~&( )O Ij I~Ij s~j Sm—a} D

For more complicated problems the result can be
easily found when a coupling scheme has been chosen.

For instance if J=jl+js+js+js+js, one gets

B. An Algorithm for 6nding the E Coefficient

The name E coefficient designates one which permits
the transition from a triangular diagram to a "ajar"
coefficient.

We can hand E step by step, following the (5) and

(4) relations.

Q —J( ) jl Xl J+jl~lX ( )X2—Xs—Xl

L Ih
i 4 II )

r
1

Qg 2( —) 2R 28 Xs+2~2+jS mS

& i4—is—X3+j4~4+jg—mfs

Q =J+Ig~S( )jl+jsjS+is i S J2X2 2Xs-——'— '—

X (—)jl~l+j~S+j~a+j4~4+jS mS—
The E coeKcient will be defined with the help of Itwouldbe convenient tohave a general rule for finding

next paragraph. it directly.



302 REVIEW OF MODERN PHYSICS ~ APRIL 1967

Let us make a few remarks here:
(a) All free entrance kinetic line j bring a factor

( )~
(b) All kinetic lines j or X whose direction is

"unique" when we consider the three lines all together,
bring a factor J or X.

(c) All kinetic line j or X whose direction is "unique"
and positive bring a phase ( —) ' or ( —) x.

Let us ca,ll 1 the "unique" line (if positive it will be
1+ and negative 1 —). When starting from this line
and following the cyclic order given by the sign of the
node we meet a second line (called 2+ or 2 —according
to its direction) and a third one (3+ or 3—) .

(d) All kinetic lines j or X which are of the 3+ type
bring the phase ( —) 'or ( —) X.

Kith these remarks it becomes easy to find the
resulting E factor.

This noted it is suKcient to number the 1& 1+ 3&
and free negative lines. This work may be done directly
on the triangular diagram because it is simpler.

Thus we construct the following table (K table):

The phase on X will be a sum of all 2X;, dropping
the X; which appears only once in columns 1+ or 3&.

C. ExamIIIle of Ayylication

Let us give a concrete example: we want the ket of a
momentum J sum of five moments.

J=jr+ j2+js+]4+js

with the coupling scheme imposed

~ =
~ L(1+2)+31+(4+5) I.

The corresponding triangular diagram will be

To get the K factor we immediately construct the
E table

A ( )j—m ( ) 4(j) ( ) 4(*) ( —) 4(&) (—)4(*)

1& Free negative

The 6rst column gives y or X coefficients.
The second column gives ( —)" "' phase.
The phase on J will be a sum of all j, and J with the

( —) sign if we meet them in columns 1+ or 3+.

Xl
X2
X3

free (0
jl
j12

J".3

j4
$5

The E factor will be.

1+
J
Xl
X2
X3

3&
X3
j2
j3
j5

A A A A

Q —JXX~ ( 5 jZ ms+jS ms—+ja mS—+j4 m4—+jS~S—( 5+jr jS jS+j4—jS J( —3 2X—4+2XS+2XS
1 34

Now we write the dual of the triangular diagram

vP
J X3l/

+ r
I

r +2 I

.I r - JI v

and obtain Anally

I (jijsjsj4js)~XiX2X&~&= Z (j»»j2~2js~sj4~4js~sI (ji"js)~Xi" Xgj)(1& Ij,m, &
~ ~

I j,~,&

m1. ..m5

(j»» .j52225 I (ji ~ ~ j5)/xixsxsfff(I& =I(
tl ]

I(. =JX,X~S(—)(4~4+" +iS—mS( )
S'4 iSiS+i4 iS &( ) 2Xi+2XS—+2X-S——

If the analytical result is desired it is easy to write it.
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Instead of a conclusion, let us now give as a general concrete example: the calculus of angular distribution in a
reaction A (dp) 8 when spin —orbit potentials are included in the entrance and exit channels.

The amplitude for the reaction A (dp) 8 using distorted waves is given by"

Isr, ~, —— f~(k„r'„S„)*xr,sr, ((r„S„)*V„„(Ir„—r„I)g&(r„r~—)fa(k&r„r„S„S)xr,~, (() d7.

If we write

7t*r,sr, ((r„S„)=(Is%& I gr„)

we have the coupling I& ——I&+1+8„andthe imposed intermediate coupling j=1+S„.
It is easy with the aid of the rules given in this section to write the state (IsIrI& I.

S
n

= K

with

So that

—j g ( —)JB JJB(—) JB+r~+l Sn—

Mgmpn

Writing

(I~~sIgr)= +&i ' = ' «mlr)(I~~~I()(sl I.
eg

u~m~~ &A

We find easily

gr
(IsMs I gr„)=QZx

~~p~ f A

By the integration of (6) over ( internal variables we get

S gg~~~ d — EyQ g f e j) S p
Pts / A

When a spin —orbit potential is introduced in the entrance and exit channels, we obtain in the same way the
wave functions in these channels. Thus the outcome is

I(P lJdIrIBIrIA) 4 g p &e*,BL L J J G(9) .
ljLyLgJyJg

(a) g is a factor introduced by the choice of the interacting potential

V, (I r, —r„t)p&(r„—r„)=g 8(r„—r~).

"D. Robson, Nucl. Phys. 22, 47 (1961).
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(b) Z is the so-called E factor, the value of which is found to be

f—J2J'Q~ 8 I, 21P ( )sy+sa+L p+za+z~ ( )8gyp+1.-a Ms—

(c) 6,~ is the reduced width obtained by integration over internal coordina, tes (.
(d) Rz, z,,~,~, is the radial integral

(e) G(9) is the geometrical part represented by the diagram

S

L

gB
kd

After lines (JzjJ~) have been directed in the same way [giving a phase ( —)'~'j we cut G(9) on these lines,
getting G(10) and G(11)

G(9) = ( —) ""G(1o)G(11)

kd

So we get
I(Iz,lz&MzzM~) =4 g g B*j(RQ Q J J K( )' "G(10)G(11)

LpLgJ pJg

a (8) ~ (4~) 'g' Q 8*,)BpgRz„z,,g~,R*z,z;g ~.,
LpL~p JpJIpJgJ~Q

y ( )»~»"EE" g G—(10)G(11)G(10') *G(11')*.
ypygMgMg
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G(10) and G(10') *being independent of magnetic moments we can extract them from the sum and put:

G(12) = Q G(11)G(11')*,
pyp~~M~

G(]2) ~ g'4

G(12) = ( )~It IIII—Isj }G(13),

G(13) —1t~r( )De+2Io+2I~e 5g~, D

We get thus
G(13) = ( —)' o+' '4+~"IP'I'g, (cos (kd, ko) )G(14)

G(14) =

W'e obtain then

(g) g2 Q Q*, te, tgL L I I R*L, L, I, I,g~ J 2J 2g2J 2J 2f 4I 4J2g 2I 2I 2( )L (HL i+Io+I~-—
&II,pl.pr I,&I,&'

pJ.4'.pr J-~r

t'La L'a &a) Po I o &a) Po ~ I-a2 P o
xl

(0 0 0) (0 0 0) (0 0 oj(O 0 0)
'I., I.

„

1 ] 'I.', I,',
Jn L~ ~n

X
J'd I.'g Zd J'~ J'g Zd L'„J'„ Se S„S ~ S~ S„S„EL,(cos(kJi:e) ) .

J& J„jJ'& J', j
We are indebted to Professor Sarazin for the opportunity of this work and B. Castel for very helpful discussions.


