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The symmetry group of the Hamiltonian plays a fundamental role in quantum theory in the classification of stationary
states and in studying transition probabilities and selection rules. It is here shown that the properties of the group may
be given a condensed and transparent description in terms of the convolution algebra, and that Schur’s lemma im-
mediately leads to the construction of the fundamental set of projection and shift operators. The projection operators
form a resolution of the identity which may be used to split the Hilbert space into orthogonal and noninteracting subspaces
of infinite order. The question of the splitting of the conventional secular equations is discussed, and the explicit form of
the decomposed equation is derived in terms of the convolution algebra and the characters. The theory is here discussed
only for finite groups, but the results may be generalized to the compact infinite groups having a well-defined “‘invariant

mean.”
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I. GROUP ALGEBRA AND CONVOLUTION
ALGEBRA

A. Introduction

In treating quantum-mechanical problems by solving
the Schrodinger equation, the symmetry group of the
Hamiltonian plays a fundamental role in classifying
states and in studying transition probabilities and
selection rules. From the very beginning, the theory
of group representations has been utilized to system-
atize the physical and chemical applications, and the
number of monographs and textbooks in this field is
very large. However, in spite of the numerous contri-
butions, there is one important theoretical tool which
has been surprisingly little used, namely group algebra
and particularly convolution algebra, and there is hardly
any quantum-mechanical text which lists this basic
concept in its subject index. Still convolution algebra
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is one of the simplest and most forceful tools for
handling the quantum-mechanical applications.

The purpose of this paper is to give a short outline
of the elements of group and convolution algebra and
to show the direct applications to quantum mechanics.
It is assumed that the reader is familiar with the
elements of set theory and linear algebra: the concepts
of linear independence, bases, linear operators, matrix
representations, similarity transformations, eigenvalue
problems, etc.! It is further assumed that the reader
has some elementary knowledge of group theory: the
group axioms, the concepts of subsets, subgroups,
cosets, conjugate classes, etc., whereas the fundamental
properties of representation theory are treated here.

B. Functions over a Group; Invariant Mean

Definition of Groups

A set G={g} of objects or elements g is said to
form a group, if the elements fulfill the following four
axioms:

(1) There exists a binary operation (for the sake of
simplicity here denoted by .) such that, if g and %
belong to the set, the result of the binary operation,
g.h, belongs also to the set, G.

(2) The binary operation is associative so that
(g.h)ke=g.(h.E).

(3) There exists a neutral element e, so that g.e=
e.g=g.

(4) Every element g has an inverse g%, such that
g.gl=glg=e.

In this form, the axioms are slightly redundant, but
the proper minimum definitions are given in most
elementary textbooks.

The binary operation is often called “‘multiplication.”
In general it is noncommutative, so that g.h#k.g. A
group characterized by the special property g.h=h.g
is said to be Abelian. The quadratic arrangement giving
the results of the binary operation g.% is said to be the
“multiplication table” associated with the group. This
table is characterized by the fact that, in each row and
in each column, each element occurs once and only once.

N/
g\ b e

“Multiplication Table”

This property is fundamental for the construction of

1See, for instance, “Linear Algebra and the Fundamentals
of Quantum Theory,” Technical Note 125, Uppsala Quantum
Chemistry Group, 1964 (unpublished).

the concept of the ‘“‘invariant mean’” basic for the
convolution algebra, and, for this reason, we will
repeat the simple proof: Every element % occurs at
least once in the row g, depending on the multiplica-
tion relation g.(g7'.k) =k; it occurs further only once,
since it follows from g.k1=g.hy=Fk by multiplication to
the left by g that ly=he=gL.k. A similar argument
holds for the columns.

The number # of elements g in the set G={g} is
called the order | G | of the group; for the group we will
sometimes use the notation G={gi, g, g, ***, g}. In
this paper, we essentially consider only finite groups,
but certain continuous groups are mentioned in the
discussion.

Functions Over the Group

A set of » complex numbers ou, @z, a3, ***, @, asso-
ciated with the elements g, g, gs, ***, g is called a
function over the group, and the set is denoted by the
symbol a=a(g). If similarly 3=8(g) is another func-
tion consisting of the numbers B, B, B3, ***, Ba, ODE
may define the sum a8 as a new function character-
ized by the numbers a;+B1, as+B2, as+Bs, *++, an+Ba.
If further ¢ is an arbitrary complex constant, the
symbol ca will denote another function consisting of
the numbers cay, can, cas, «* -+, co.

Having defined the concepts a8 and ca in this way,
we realize that all the functions a form together a
linear space closed under the operations addition and
multiplication by a complex constant. In order to
construct a basis for this space, we will consider the »
functions.

for

fk(g) = 1;
=0’

8= 8k
for g#g, (1)

i.e., the functions fy, fe, *++, fa consisting of the follow-
ing sets of complex numbers:

f1={1) O: O’ ""0}7
f2={07 L0, "':0}7

f"={07 0: 0;.“" 1}’

(2)

respectively. It is easily shown that these functions
are linearly independent and that, according to the
definitions, one has the expansion theorem

a(g) = gakmg), 3)

which means that the linear space associated with the
functions over the group is of order n= | G |.

Invariant Mean

The average value of all the complex numbers
ai, oz, as, +**, a, for the function a=a(g) is called the



mean & of the function over the group:

a=n"Yontostoazt--+ o)

k=1

= |G 7Y =Ma(y), @

and we will in the following particularly use the last
symbol. From the properties of the multiplication table
of the group, one obtains the relations

Ma(g) =Ma(gh) =Ma(hg) =Ma(g™)
=Moa(gh) =Ma(hg™), (5)

where 7% is a fixed element. For this reason, the quantity
M is often referred to as the invariant mean over the
group. It is here defined only for finite groups but, by
means of Haar’s measure, it may also be generalized
to compact infinite groups. For finite groups, we
further develop this concept below.

Group Algebra

The group axioms contain a usually noncommutative
binary operation which is called “multiplication” and
is denoted by a dot. In order to proceed, it is now
convenient to introduce a second binary operation
which is commutative and associative and is called
“addition” and is denoted by -, and the operation
“multiplication by a complex constant.” Any linear
combination

agit gt asgste g =D g, (6)
k

where ay, as, a3, * -+, @, is a set of complex numbers, is
called an element of the group algebra. The sum of two
such elements is defined by the relation

;akgk'l' ;bk_gk = ; (@x+bs) gr, (7)

and the multiplication by a complex constant ¢ is
defined by

e( Zk:dkgk) = Zk: (cax) gr. (8)

The group algebra is a set closed under these two
operations, and it forms hence a linear space. Since
this space is further spanned by the elements g, g,
g3, ***, &n, it is of the finite order = | G |.

It is now convenient to introduce the operation
“multiplication” of two elements of the group algebra
denoted by the symbol % by combining the distribu-
tive law and the use of group multiplication . in the
definition:

(Zk:akgk) x (;blg,) = kz;akbzgk-gz, 9)

which means that the result is again an element of the
group algebra. The linear space is hence closed even
under this operation.
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Convolution Algebra

An element of the group algebra is uniquely char-
acterized by a set of # complex numbers, i.e., by a
function over the group, and there is a one-to-one
correspondence (isomorphism) between the linear space
of the group algebra and the linear space formed by
the functions over the group, which are both of finite
order z= | G |. In order to develop the theory, it is
convenient to introduce the following connection be-
tween an element 4 of the group algebra anda function
a over the group:

A=n"angr ' args Hasgs o o Fanga )

=|G[|? kz‘;a(gk)gk_&Ma(g)g“‘, (10)
. g

where we have used the symbol M analogously to (4);
we note that it has still the same invariance properties
as in (5), and the “invariant mean” is going to be a
fundamental concept also in group algebra.

Let us now consider two elements of the group
algebra, A and B, defined by the functions « and 8
over the group, respectively, so that

Besg, |
B=Mﬁ(g)g_ly
g

Aoa,

A=Ma(g)g™, (11)

and let us ask for the function v associated with the
product 4 x B. Using the definition (9), introducing
the substitution s~ '=#"1(i.e., =us"), and using the
properties of the invariant mean, one finds

A xB=[Ma(s)s1]x [Jitlﬁ(t) ]
=]l;]lt[a(s)ﬁ(t) st
=Jl:1ﬂfa(s>ﬁ(us")u‘1
=M[Ma(s)B(us™) Ju
= 11:47 (au) w, (12)

where

v () =Ma(s)B(us™). (13)
The function v defined by (13) is called the “convolu-
tion product” of the functions « and 8 and will be
denoted by the symbol

y=aXp. (14)
This leads to the result:
- Aea, BOg,
A x Besy=akB, (15)

which means that the multiplication % in the group
algebra defined by (9) corresponds uniquely to the
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convolution multiplication> in the function space de-
fined by (13). The linear space formed by the functions
over the group extended by this operation is referred
to as the “convolution algebra.” It is easily shown that
the convolution operation>is associative and distribu-
tive; this operation is of fundamental importance for
the entire further development of this paper. In the
following, we use the convolution operation also for
matrices.

C. Stable Subspaces and Representations
Stable Subspaces

The linear space formed by all elements 4 of the
group algebra is denoted by V¢ and is of finite order 7.
A linear space W spanned by the linearly independent
elements Ay, 4s, +++, As of the group algebra is a
subspace of Vg, and W will be called a proper subspace
if it is not empty and not identical to Vg; it is evidently
of order f.

Such a subspace W is said to be stable under the
group G={g}, if all elements g x W still belong to W.
The existence of such stable subspaces is of great
importance in group theory, since they automatically
lead to representations of the group. Let

X={X17 X2y Yy Xf}

be a basis for the subspace W; for every element g of
the group G, one has

gxX= D X;Th(g), (16)
%

where the quantities T'x;(g) are the unique expansion

coefficients for the new element gX; within the sub-

space W; cf. Ref. 1, pp. 12-13. In matrix notation, this

gives

gxX=Xr(g), (17)

where I'(g) is the matrix formed by the elements
T (g). One has further

(g.h) xX=gx (hxX)=gxXT (k)

—Xr()T(h) =XT(gh),  (18)
which leads to the relation
I'(gh)=T(g)T(h). (19)

The matrices T'(g) have hence the same multiplication
table as the group G—with the binary operation . re-
placed by matrix multiplication—and they are then
said to form a matrix representation of the group.

For the neutral element e, one has particularly
eXX =X which implies that I'(e) is a unit matrix 1-a
property characteristic for the so-called proper repre-
sentations. In the following, *we often omit’ the multi-
plication symbol X.

Similarity Transformations

Let us now consider a nonsingular transformation «
of the basis X=(Xy, X,, +++, Xs) to another basis
Y=(Yy, Vo, ++-, ¥y):

Y=Xg, X=Yeol (20)

Denoting the matrix representations of g with respect
to the two bases by I'x(g) and I'y(g), respectively,
one obtains

gY=gXa=XIx(g) e=Ya Tx(g) ¢, (21)
which gives the relation
I'y(g) =o' Tx(g) . (22)

The transformation (20) leads to a similarity trans-
formation of type (22) for the matrix representations,
and these are hence by no means unique.

Characters

The simplest invariant associated with a representa-
tion I'(g) is the frace of the matrix, i.e., the sum of
the diagonal elements:

x(=Tr{r(g}= Xkﬁl‘kk(g), (23)

and this quantity is called the character of the repre-

sentation. For the trace of a product of two matrices,
R and S, one has the general rule:

Tr {R-S} =2 {R-S}u=2.0 RuSu

=> > SuRu= {S'R}uy= Tr {S-R}.

(24)
According to (22), this gives
Tr {Ty(g)} = Tr {e ' Tx(g) e}
= Tr {Tx(g) er &'} = Tr {Tx(g)}, (25)

ie., the trace is invariant under the similarity trans-
formation.

The character x(g) is a function over the group,
which has the special property that it is constant for
all elements belonging to the same conjugate class:

x(tgt) =x(g), (26)

i.e., the character x(g) is a class function. The proof
follows from (19), (24), and the fact that

T(tg) =TT (T, (27)

which gives
x(t1gh) = Tr (T(9) - T(9) T(5)}
=Tr{C(g T}
= Tr {T'(git1)}
=Tr {T(g)} =x(g).



For the neutral element e, one has particularly I'(e) =1,

and
x(e) = Tr {1} =f, (28)

where f is the order of the subspace and the representa-
tion. In the following, the value of a function over the
group for the neutral element e will often be denoted
by the index 0, and (28) is then written in the form
Xo=f.

Regular Representation

The simplest example of a space stable under the
group G={g} is the entire space Vg associated with
the group algebra. If 4 is an arbitrary element of Vg,
the result of the operation gx A belongs again to Vg
according to (9). The space Vg is spanned by the
elements gi, g, g3, ***, g, Which may be considered as
the basis X. According to a previous section, the stable
space V¢ leads automatically to a matrix representation
of the group which is called the regular representation
and is denoted by the symbol R. According to the
multiplication table of the group, the result of the
operation g is contained in the row associated with the
element g:

g%{g, g, 80 gt =1{g1, 8% 85 -+, &a}, (29)

and, since this row contains each element of the group
once and only once, the effect of g is equivalent with a
permutation P, of the basis. The associated matrix
representation I'(g) is defined by (16):

gxX,;= ZXkPkl(g) ’ (30)
k
and relation (29) implies that
Tu(g) =1, if g=gg™,
=0, otherwise, (31)

which gives the explicit form of the regular representa-
tion. We note that, in a given I'(g), each row and
column contains the matrix element 1 only once
whereas all other elements are zero. For a given pair
(%, 1) of indices, the matrix elements I'y;(g) are further
all zero, except for a single element g=gig;%. A simple
way of forming all the matrices in the regular repre-
sentation is hence to construct the “modified” multi-
plication table gi-g;/ ™!, which immediately gives the
distribution of the nonvanishing matrix elements 1
over the matrices I'(g) according to (31).
Putting I=F in (31), one obtains particularly

Tu(g) =1,
=0, (32)

which relation shows that only the matrix I'(e) has
diagonal elements which are nonvanishing. This gives
for the trace of the regular representation

x(©=1G|,
=0’

if g=e,

otherwise,

if g=e,

otherwise. (33)
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The character of the regular representation is hence
vanishing over the entire group, except for the neutral
element. In the following, we see that this simple
result provides an important key for understanding
the deeper properties of representations in general.
Formula (29) provides also a one-to-one mapping of
each element g on a specific permutation P, of # objects:

(34)

where the permutations P, form a group having the
same multiplication table as the original group. All
permutations of # objects form a group, which is called
the symmetric group S, having the order =!. The
relation (34) implies now that

gPy,

any finite group G of order # is isomorphic
with a subgroup of the total symmetric

group S, of order 7! (35)

This important theorem found by Cayley implies that
the number of possible nonisomorphic groups of a
certain order # is certainly finite depending on the
fact that, since the total symmetric group S, of all
permutations is finite, it has only a finite number of
subgroups.

Reducible and Irreducible Subspaces

A stable space is said to be reducible under the group,
if it contains a proper subspace which is also stable
under the group. If this is not the case, the space is
said to be irreducible.

In order to show that these definitions are meaning-
ful, it is sufficient to consider a single example, namely
the one-dimensional subspace W4 spanned by the single
element

A1=(1/n) (e tgtgt---+gn). (36)

According to (29), one obtains directly gd;= 4, which
shows that the subspace W, is stable under the group.
The existence of this stable subspace contained in Vg
shows that the entire space Vg is reducible. Since
further the one-dimensional subspace W; does not
contain any proper subspaces whatsoever, it is certainly
irreducible, and one has hence examples of both types
of stable spaces and subspaces in the group algebra.

A representation I' associated with an irreducible
stable subspace is said to be an irreducible representa-
tion, whereas a representation I' associated with a
reducible stable subspace is said to be reducible. As an
example of an irreducible representation, we will con-
sider the representation associated with the one-
dimensional subspace W; defined by (36). From (17)
and the relation g4,=4,, it follows that

(g =[1], - (3D

i.e., the representation consists of one-dimensional
matrices containing only the number 1. This irreducible
representation is called the identity representation and
is denoted by the symbol J.
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Let us now consider a reducible stable subspace W
in greater detail; it is of order f, it is spanned by the
elements A1, As, A3, +++, Ay, and the introduction of
this set as a basis X leads to a certain representation
I'(g) according to (17). According to the definition,
the space W contains a proper stable subspace W’ of
order f’<f, which is spanned by the elements 4'1, 4%,
A's, -+, A’y and which leads to the new representation
I''(g). Let us now introduce a new basis Y for the
original space W, which consists of f linearly inde-
pendent elements chosen so that

Y={A4"1, A, A3, v, A'pr; Aprya, =+, A'g};5

the new basis is related to the old one by the trans-
formation (20), which leads to the similarity trans-
formation (22) for the associated representations. In
studying the result of the operation g¥Y=YI'y(g), we
note that, depending on the stability of the subspace
W', one has particularly

fl
gd"1=2 A" T"u(g),

(38)
k=1
which means that I'y has the form
/ l’//‘//
y= ( N -:Z/% ) (39)
0 n///

This implies that, by means of a change of basis and
the associated similarity transformation, it is always
possible to bring a reducible representation to the
specific form (39) containing a zero matrix in the
lower left-hand corner. One says that this form of the
representation is partly reduced.

Reducible and Decomposable Representations

Let us start by considering some properties of the
partly reduced representations. For the sake of sim-
plicity, we use a notation in terms of submatrices:

I'u(g) Te(g
r'(g= )
0 I'»(g)

One has directly

(40)

r(gr (k)
Tu(g) Tu(k); Tu(g) Tie(h) +Te(g) Tn(h)
- l: 0; T (g) Ta (k) ]
=T'(gh), (41)
which leads to the relations
T'u(gh) =Tu(g) Tulh),
Tn(gh) =T(g) Tu(k),
Ti(gh) =Tu(g) Te(h) +Te(g) Ta(k). (42)

In addition to Iy, the matrices Ty form hence a
representation of the group. The meaning of the third
relation is clarified below.

In connection with the study of reducibility of a
space, it is natural to ask the question whether it would
be possible to choose the elements A’sr41, A2, <+, A’y
in such way that they also span a stable subspace of
order (f—f’). The existence of ome stable subspace
would then also imply the existence of a second stable
subspace, and one says that the space W is decom-
posable into two stable subspaces. In such a case, the
form (39) would contain a zero matrix also in the upper
right-hand corner.

One could also ask the question whether there exists
a nonlinear transformation

1n op 1y —op
a= ; o l= , (43)
0 122 0 122

which brings the matrix (40) to block-diagonal form.
One has

T (g)
I'n(g); Tu(g) entTn(g) — el (g)
0o ; I'z(g)

which leads to the condition
I'u(g) ar+Ti(g) — enlx=(g) =0, (45)

for all g. It follows from the third relation (42) that
there exists a constant matrix ez which satisfies this
condition, and that the solution has the form

o= Tk ey)o=MTyu(h) Ta(k™). (46)
h

Multiplying the third relation (42) to the right by
T2 (%71), one obtains
Ti(gh) Tu (k™) =Tu(g) Te(h) Tn(h™) +Te(g). (47)

Forming the invariant mean over %, one gets further
Fu(g)]';[ Tp(h) Tn(h™) +Tr(g)

=ﬂh4 T (gh) T (k™)

=]‘u4 Iz (u) T (07'g)

= {{ltﬂ‘m(u) Fa(u™)}jT2(g),  (48)
which proves that the quantity e defined by (46)

satisfies the condition (45) for all g. From (44), it
follows that

I'u(g) 0
oI (g) a= ’ (49)
0 TIx(p)

and the representation has been partly decomposed.



For every finite group, a reducible representation is
also decomposable; this important result is known as
Maschke’s theorem. It implies that every reducible
stable space is also decomposable into stable subspaces.
We note that the equivalence between reducibility
and decomposability is not directly extendable to
infinite groups.

Transformations of Proper Representations to
Unitary Form

Let us start this section by repeating some elementary
concepts in matrix theory. Let R= { Ry;} be an arbitrary
quadratic matrix of finite order; the Hermitian adjoint
matrix RT is defined through the relation

{RT}ri=Ru*. (50)
A matrix R is said to be normal, if it commutes with
its adjoint matrix RY, so that RRf=R'R. A matrix R
is further said to be self-adjoint, if Rt=R. All matrices
may by a similarity transformation be brought to
“classical canonical form”; see Ref. 1, p. 32. The
normal matrices belong to an important class of
matrices which may be brought to diagonal form; they
are characterized by the fact that they have in general
complex eigenvalues and orthogonal -eigenvectors,
whereas the self-adjoint matrices have real eigenvalues
and orthogonal eigenvectors.

A matrix U is said to be unitary, if it satisfies the
relation:

UtU=U0U0"=1. (51)
Such a matrix is a normal matrix having orthogonal
eigenvectors and its eigenvalues are situated on the
unit circle in the complex plane.

We now prove the fundamental theorem that, with-
out loss of generality, any proper representation I'(g)
may by a similarity transformation be brought to unitary
form. For this purpose, we consider the matrix S
defined by the relation:

S=MTr(g){r(e}'. (52)

If the representation is unitary, one has simply S=1.
The matrix S satisfies the relations
St=8§, S>0,

r(7)S{r(h)}'=S, (33)

for all elements %z of the group. The first relation says
that S is self-adjoint, the second that it is positive
definite, and the last one follows immediately from the
properties of the invariant mean in (5):

C(h)S{r (k) }T=MT (hg) {T (hg) }T=S. (54)

Since the matrix S is self-adjoint, there exists a unitary

PER-OLOvV LOWDIN Group Algebra and Quantum Mechanics 265

matrix U which brings S to diagonal form s:

S1

§2

UiSU=s= (55)

l s1)
where s>0. A proper representation is characterized
by the fact that I'(e) =1;, and one has hence the
matrix inequalities S> | G [T (e) {T'(e) }T= | G [1+1;
and
s=U'SU> |G |-1;, (56)

which imply that all the eigenvalues of s are positive
and larger than 1/z.

The matrices s¥/2 and s~'/2 are defined as the diagonal
matrices having the positive elements s;/2 and s;772,
respectively. Let us now consider the similarity trans-
formation a«=Us!? so that

T(g) =o' (g)e
=s"12UTr (g) Us™2, (57)
Using the fact that UsUT=S, one gets immediately
r(g{r(g}
=g 12Ut (g) Usti2. sH2UH T (g) } TUs 12
— U () S{T(g) } s
=s2PTSUs =525 112=1, (58)

Since we are dealing with finite matrices, this relation
implies that the representation I'(g) is unitary, and
one has

{T(@}1={T(®)}=T(gM. (59)

The existence of the unitary representations leads to
an important property for the characters. According
to (59), one has

Tu(g™) ={Tu(g)}*

and, putting /=% and summing over %k, one obtains
the relation ‘

(60)

x(g™) ={x(®}* (61)

which holds quite generally irrespective of any choice
of special form of the representation.

In this connection, it is of interest to consider a
special property of certain of the conjugate classes. A
class C, associated with a specific element g is said to
be ambivalent, if it contains also the inverse element g1
This implies that, if it contains the element r=s"1gs, it
contains also the element 1= (s1gs)1=s"g"%s. Since
the characters are class functions, one has x(g) =
x(g™) ={x(g) }* and one obtains the theorem that the
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character for any ambivalent class is necessarily a real
quantity.

D. Schur’s Lemma and the Convolution Relations

Schur’s Lemma

In this section, we start by considering the general
theory of linear spaces of finite order and their opera-
tors. Let ¥ be a linear space, let 4 be a linear operator
defined on this space, and let W be a subspace of V.
The subspace W is said to be stable under the operation
A, if AW belongs to W; in such a case, W is also said
to be an invariant subspace under 4. We note that the
eigenvalue problem AC=aC is equivalent with the
problem of finding all the possible one-dimensional
invariant subspaces.

Let us now consider a set of linear operators
{Ay, As, +++, A,} which do not necessarily commute.
The space V is said to be reducible under the set {4},
if there exists a proper subspace W of V which is also
stable under the set {4;}. If no such invariant proper
subspace W exists, the space V is said to be irreducible
under the set {4.}. We note that these definitions are
completely analogous with those previously introduced
in the group algebra.

Schur’s lemma deals with two linear spaces, V7 and
Vs, and two sets of operators {A;, Ay, +++, 4,} and
{By, By, +++, B,} which act on V7 and Vs, respectively.
The operator T represents further a linear mapping of
V1 on Vs, which is illustrated in the diagram below:

Schur’s lemma is then the following theorem:

If TA;=B,T for all t=1,2, -+, p, and the
spaces V3 and V. are both irreducible
under the set of operators {4;} and {B,},
respectively, then either 7'=0, or 7!

exists. (62)

The lemma is one of the most fundamental theorems
in the theory of linear spaces, and particularly the
applications to group algebra are of a deep-going
nature.

For the proof, we denote the elements of V; and V,
by x and y, respectively; the linear mapping has the
form Tx=y. Let K be the subspace of V; which is
mapped on the zero-element 0 of V:

K={x| Tx=0}. (63)

We note that K is a linear space for, if #; and «» belong
to K, then the elements cx; and (x;4x,) belong also
to K. The subspace K is further invariant under {4.},

since one has

which proves our statement. However, since Vi is
irreducible under the set {4;}, this implies that K
must be an improper subspace, and one has either
K=V;or K=0.

If K=7V,, one has TV;=0, which means that 7" has
the effect of a zero operator: 7'=0.

If K=0, one can prove that the operator I corre-
sponds to a one-to-one mapping of the space V1 onto
the space Vs, and that the inverse mapping 7" hence
exists. Let us first prove that 7 maps V7 uniquely onto
V, or onto a subspace W of V,: let us assume that the
elements x; and & are both mapped on the same
element y. Since K =0, one has

Txl:y:
T(xl—xg) =6,

xl—-x2=0,

Txy=y,

(65)

which shows that the mapping is unique. Let us now
consider the subspace W, defined by the relation
W=TV,or:

X1=Xo,

W={y|y=Tx, x€ Vi}. (66)

We note that W is a linear space for, if 3, and y, are
elements of W, then ¢y; and (y1+7y.) are also elements
of W. The subspace W is further invariant under the
set B;, since one has

yeEW, By=BTx=TAx=T(4dx)=T%', (67)

which proves the statement. However, if the space V,
is assumed to be irreducible under the set {B.}, the
space W must be an improper subspace of Vs, and one
has either W=0 or W="V,. In the former case, one has
TV1=0 or T=0, and, in the latter case, one has
TV1=V,, which means that 7" is a unique one-to-one
mapping of the space V; onto V,, and the inverse
mapping 7! exists. This proves Schur’s lemma.

The operators 4; and B; are connected through the
relation 74 ,=B;T. We note that, if the mapping 7 has
an inverse 7, one obtains

A,'=T'—1B:5T, (68)

and the operators 4; and B; are said to be similar or
equivalent operators on the two spaces Vi and Vs,
respectively.

In the case when the two spaces are identical, i.e.,
V1=V, and A;=B,, one obtains the following special
form of Schur’s lemma.:

If T is a linear mapping of V; on Vy, if
TA;=A.T for i=1, 2, «-+, p, and if the
space Vy is irreducible under the set {4},
then 7" must be a multiple of the identity

operator 1. (69)



The proof follows from the fact that one has also

(T—c)A;=A(T—cl), (70)
for arbitrary values of the complex constant ¢. Accord-
ing to the general form (62) of Schur’s lemma, this
implies that either 7’—¢I =0 or (T'—cI)™ exists. How-
ever, since the field of complex numbers is algebraically
closed, there exists at least one complex number A such
that | T—NI | =0. For the value ¢=N\, the operator
(T—X\-I) has certainly no inverse, which leaves only
the other alternative open, i.e., T—\-I=0, or

T=X\-1. (71)

This concludes the treatment of Schur’s lemma.

Convolution Relations

A representation of a group G={g} is a definite set
of objects {4 (g)} associated with the elements of the
group which has a binary operation | leading to a
“multiplication table’” analogous to the original one:

gA(g), AR LAMR)=A(gh).  (72)
It is easily shown that the set {4 (g)} satisfies all four
group axioms and is again a group.jThe most common
representations of finite groups are either linear opera-
tors acting on a certain “carrier space” or the associated
matrices, in which case the second binary operation L
is simply operator or matrix multiplication, respec-
tively.

Let us start by considering the representation of the
group G={g} by means of the set of linear operators
{g} acting on the group algebra V¢ through the binary
operation x defined in (9). If the carrier space is
instead restricted to a stable subspace W of V, we will
sometimes characterize the operator g by the special
symbol I'(g) and, according to (16), the introduction
of a specific basis leads then automatically to a matrix
representation I'(g) of the same order f as the sub-
space IW:

g —T(g)—I(g

Ve W  orderf. (73)

Let us now consider two subspaces We and W?¥ of
the group algebra which are assumed to be stable and
irreducible under the group G={g}, and let their
dimensions be f* and f#, respectively. Let us denote the
operator g when it acts on the carrier spaces W= and
W5 by the symbols I'*(g) and I¥(g), respectively.
After introducing a proper basis X* and X? for each
subspace, one obtains automatically the irreducible
representations T and I'? according to (17).

Let further 4 be an arbitrary linear operator which
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maps W# on W#; in terms of the bases X* and X5, 4 is
represented by a rectangular matrix of order f*Xj®.

{T#)} A
—_—>
AW
__—__1._.—-—————)

We will now introduce the fundamental operator T
through the following invariant mean:

T=MT=(s)ATE(s1), (74)
and we note that T is a linear operator which maps the
subspace W* on the subspace W< Depending on the
properties (5) of the invariant mean, one obtains

TTH(g) =MT=(s) AT?(s7g)
=MT*(gu) AT8(u™1)
=T=(g) MT*(u) AT#(u)

=I*(g)T, forall gcgG, (75)

which means that the operator T satisfies the properties
required by the mapping in Schur’s lemma. (62), if one
chooses {4;} and {B.} to be {I¥(g)} and {I(g)},
respectively. Hence, this leads to the conclusion that
either 77=0 or 7! exists.

In the case when T exists, one has I=7-I*T,
which means that I'¥ and I'* are equivalent representa-
tions. If the subspaces W# and W= are different from
each other, this case is usually considered as compara-
tively “uninteresting.” One focuses instead the study
on the case when W? and W« are identical, which
according to (69) leads to the conclusion 7'=\-12, and
on the case when W# and W= correspond to non-
equivalent representations, which according to (62)
leads to the conclusion 7’=0. In order to treat both
these cases simultaneously, it is convenient to intro-
duce a special Kronecker symbol:

§8=1,
=0’

Ire=r%,

I'* and I'® are nonequivalent.

(76)

We note that the equivalent case is not included and
has to be treated separately, if desired. Schur’s lemma
in the form (62) and (69) leads now to the conclusion
T =§6-\-I% and one obtains the result

T=MT*(s) ATA(s71) =8\ I, (77)
where I is the identity operator acting on the subspace
W=, In this relation, it remains to determine the value
of the constant \ in the case when W=W=. Taking
the trace of both members and using (24) and the
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general properties of representations, one obtains:

Aefe=M Tr {T%(s) AT*(s) }
=M Tr {AT*(s)T(s)}

=M Tr {AT%(e)} = Tr {4}, (78)
which gives
A=(f*)~*Tr {4}. (79)

Substitution of this value into (77) leads to the relation
MT2(s)ATA(s71) = (f*)~16%8 Tr {A}-1¢  (80)

which is the fundamental formula in the theory of
irreducible representations; we note that it is an
immediate consequence of Schur’s lemma.

In the following, we rewrite formula (80) in many
different ways which are all variations of one and the
same basic theme. Putting 4 =4'T%(g), one obtains,
for instance:

MT=(s) A'TP(gs™") = (f*) 168 Tr {A'TP(g) }-1=. (81)

We note that, according to (13), the left-hand member
is an operator depending on the fixed element g which
may be considered as a convolution product of the
operators I'* and I, and one may write this relation
symbolically in the shorthand form

Tk A'T8 = ( f*)—15% Tr {A'T8} - I, (82)

where A’ is an arbitrary mapping of W# on We. This
is probably the most condensed form one can give the
fundamental theorem.

In order to proceed, we will now introduce the bases
X2 and X8 for W= and W¥, respectively. One has

TXzﬂ=ZXkaTkl, (83)
P

which uniquely defines the rectangular matrix T = { Ty}
of order f*xff. Introducing the rectangular matrix
A'={A"n} of order f*xff associated with the arbi-
trary mapping 4’, one may write (81) in matrix form

MT(s)A'TA(gs™) = ()79 Tr {A'TP(g) }-1=.  (84)

Taking the (%, I) element of this rectangular matrix
and writing out the matrix multiplications, one obtains

ZMI‘kma () A'mn T (gs™)
= Z ( fa) 154 L (g) ore. (85)
Since the matrix elements A’., are completely arbi-

trary, the coefficients for 4’n, in both members must
be equal, and this gives finally the relation

MTi(s) Tnt (g571) = (f*) 760 (g) . (86)

This is the fundamental theorem in the theory of irre-

ducible representations expressed in terms of the matrix
elements themselves; we note that it is usually easier to
memorize the form (84). Using the notation (13), it
may also be expressed in the convolution form

I1Icmcl>,< I‘nlB = (fa) ~16aﬂ6klrnmﬂ; (87)

which shows the importance of the convolution algebra
in this connection. As we shall see later, the form (87)
forms a convenient basis for the applications of group
algebra to quantum mechanics.

Some Consequences of the Convolution Relations

Let us now study some of the immediate conse-
quences of the basic theorem (86). Putting =8 and
m=n and summing over m, one obtains

MTy(sgs™) = (f*) 7 0x*(8) s (88)

or

M (sgs™) = (f*)7'x*(g) - 1% (88")
If the variable element s runs over the entire group G,
the variable sgs™' runs over the conjugate class C,
associated with the element g; if the entire class
contains %, elements, every element will further be
repeated | G |/k, times in the summation over s, and
one obtains the formula

My (sgs™) =h 21 (1),

teCyg

(89)

for any quantity f which depends on the elements of
the group. Formula (88') implies then that, if an irre-
ducible representation T is averaged over a conjugate
class, the result will be proportional to a unit matrix with
the factor (f*)7'x®. It is rather interesting to check
this simple theorem with the existing tables of irre-
ducible representations.

Let us now return to the fundamental theorem in the
form (87). Putting m=Fk and summing over &, one
obtains

Xa* Pn.lﬁ= (fa) —laaﬂrnlﬂ-
Putting »=17 and summing over /, one gets further
X3k = (f*)15xP. (91)

This is the basic convolution theorem for the characters of
the irreducible representations. The relation (91) may
also be written in the form

Mx=(s)x"(gs7) = (f*)716*x* ().

(90)

(92)

For g=e, one obtains the special formula

Mx=(s)xP(s71) =58, (93)
which is called the orthogonality relations for the char-
acters; it may be written in the condensed form
(x*%kx#)o=0%. In this connection, the relation (61) is
also very useful. We note that the orthogonality



relations are hence a special case of the convolution
relations, but that the latter may not be derived from
the former. Schur’s lemma and the associated general
convolution relations (87) reveal some very deep-going
properties of the irreducible representations, which are
not easily found in some other way.

E. Properties of Irreducible Representations

Spectral Analysis of Arbitrary Representations

Let W be an arbitrary stable subspace of the group
algebra having the basis X leading to the representa-
tion I" according to (17). An important problem is to
investigate whether the subspace W is irreducible under
the group G={g} or whether it is decomposable into
irreducible subspaces.

For this purpose, we first assume that the space is
reducible which means that it is also decomposable,
according to Maschke’s theorem. This implies that
there exists a similarity transformation e which brings
the representation I' to block-diagonal form:

FI‘al

re:
o Ta=

(94)

)

e

where the diagonal blocks are assumed to be irreducible.
A specific irreducible representation I'* may occur »*
times in the right-hand side, and »* is said to be the
frequency of I'* in I'. Forming the trace of both
members of (94), one obtains

x(g) =2 x*(g), (95)

where x= Tr {I'} is the character of the given repre-
sentation I'. Using (91), one gets further

XK= 2 ekl =3 v ( [*) TloebxP

=" )% (96)

Putting g=e, one obtains particularly (x> x?)o=18, or

= (kx*)o=Mx(s)x*(s), (97)

which relation determines the frequency »®, provided
that one knows the characters of the irreducible
representations.

A very interesting relation is obtained by considering
the ‘“square” of the character x in the convolution
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algebra. Using (91), one gets directly
xokx=(2orx) % (fﬁ_‘,vﬁxﬂ)

= > vebxakxs
a B
=202 A (f) o
a g

=D (7)2(f*) Iy (98)

Putting g=e, one obtains particularly

(xkx)o=2_(»")2. (99)

This relation shows that, a necessary and sufficient con-
dition that a representation T is irreducible is that its
character x salisfies the equation

(xkx)e=1. (100)

The necessity follows, of course, also from relation
(91), but formula (99) shows also the sufficiency. We
note particularly that the quantity (x>kx). is always
an integer.

Completeness Relation

In order to proceed, it is now convenient to intro-
duce a special function over the group E(g) defined
through the relation

E(g) =[G, if g=e
0, if ge. (101)

From the definition (13) of the convolution product
follows immediately

b

EXa=aq, (102)

for an arbitrary function « over the group, and the
function E may hence be characterized as the identity
Jfunction in the convolution algebra.

Let us now apply the analysis in terms of irreducible
subspaces to the entire space Vg of the group algebra.
This space is associated with the regular representation
I'r which is explicitly defined by (31), and its character
xe given by (33) is apparently identical with the
identity function:

xe(g) =E(g). (103)

The frequency analysis of the regular representation is
now easily performed. Substitution of (103) into (97)
gives

ve=(EXx%)o=x"(e) =f*, (104)

i.e., the frequency of the irreducible representation T* in
the regular representation Tr equals the order f* of the
representation: v*=f=. Substituting this result into (95),
one obtains

E(g) =2 fx*(g), (105)

which relation will be described as a “resolution of the
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identity” in the convolution algebra. Putting g=e, one

obtains particularly

|Gl =22(/4 (106)
which is often referred to as the completeness relation
for the irreducible representations.

The functions f*x* serve the purpose of “projection
operators” in the convolution algebra. One may write
relation (91) in the form

Fxek ol =55, (107)
which means that they are idempotent and mutually
exclusive and, according to (105), they form also a

resolution of the identity. In Sec. I.F, we return to this
problem and utilize these important properties.

Square Form of Character Table

The characters x*(g) are class functions, and it may
be convenient to list them in the form of a rectangular
table, where the rows are labeled by the irreducible
representations oi, as, *++, oy and the columns are
labeled by the conjugate classes Cy, Cs, *++, Cy:

\C
a\| G Cy Cs oo Cy
a | x1(C)  x(C)  x(Cs) x*(Cw)
ay | x2(C)  x2(C)  x=2(Cy) x*2(Cx)
as | x2(C1)  x®(Cy)  x*3(Cs) x*(Cw)
an [x*#(Cr)  x*M(Cy) x*M(Cs) x*¥(Cy).
(108)

The number of irreducible representations is M, and
the number of conjugate classes is V. According to
(93), one has the orthonormality relation

Mx=(s) {x5(s) } ¥ =06, (109)

which may also be written in the form:

M

DA /] G)¥2x=(Ce) H (/| G 1) 2B (Ci) =58,

b=1

(110)

where #; is the number of elements in the conjugate
class Cy.

The functions over the classes form a linear space of
order N, which may be spanned by a basis consisting
of N linearly independent functions. The characters
x% (C) form a set of M orthogonal and hence linearly
independent functions, and one has directly the in-
equality M <N, since the number of linearly independ-
ent functions can never exceed the order of the space.

In order to study whether there is any orthogonality
between the columns of the character table, we start

by considering the lemma:

x*(r)x*(g) =f*Mx*(rsgs™). (111)

The proof follows from (86) and the fact that
JeMx=(rsgs™) =f*M ;Tkk" (rsgs™)
=f “%‘4{4 T (r) Tue(sgs™)
= %:I‘kf‘(r) dux*(g)
= ;Fkk"‘(f)x" (8)

=x*(r)x*(g). (112)

Putting g=¢", summing over all &, and using (105),
one obtains

2xe () x () =MD fox(rstis™) ]

=ME((rst7is71). (113)
The identity function E is nonvanishing only if
rst-lsi=e, i.e., r=s"4s, which means that  and ¢
belong to the same conjugate class. If  and ¢ belong
to different conjugate classes, one has hence the result:

ox(r) {xa () }*=0, (114)

which shows that different columns of the character
table are orthogonal. Let us now consider the case when
r=t; since r=s"s for | G |/k, elements s, one obtains
from (113) that

; I x=(r) P = |G |/h,

where 7. is the number of elements in the conjugate
class C,. One may combine the relations (114) and
(115) into the single orthonormality relation:

2 (/] G )2 (Co) H (/) G ) Y2x=(C1) ¥ =,

[+

(115)

(116)

which is the counterpart to (110) for the columns of
the character table.

One may now introduce the functions f(a:) over all
irreducible representations having the symbol «; as
argument; it is evident that these functions form a
linear space of order M. The characters in a given
column forms such a function over the irreducible
representations. Because of the orthogonality relations
(114), one has N linearly independent functions of
this type which leads to the condition N <M.

Since we have previously obtained the condition
M<N, one has apparently M =N, i.e., the character
table has square form, and the number of the irreducible
representations equals the number of classes. We note
that the proof given here depends on the “resolution
of the identity” as expressed in (105).



Dual Representations

In the previous section, it has been seen that the
character table is square, and we will now show another
elementary “symmetry property” in this table. For this
purpose, we will consider the dual or contragradient
representation A to an arbitrary representation I' de-
fined through the relation:

A(g) =Tt(g™),

where I'** denotes the transpose of I' obtained by
interchanging rows and columns, so that I'y*=Ty.
That A is a representation follows from the fact

AQAMW) =Te(g)T=(r) =[F () T(gH ]
=L (g™ 17=T[(gh) "] =A(gh).

(117)

(118)
For the trace, one obtains according to (61) :
Tr {A(g)}= Tr {r*(g)}
= Tr {T(g™)}
=x(g™) ={x(@}* (119)

which means that the dual representation A has a
character which is the complex conjugate of the char-
acter of the representation I'.

The spectral content (94) of an arbitrary repre-
sentation I' is characterized by the frequencies »*
which are completely determined by the character
x= Tr {I'} according to (97). A representation T is
said to be self-dual, if the dual representation A is
either identical with I'" or equivalent with I'. In both
case, one has

x(g) ={x(g)}*%

which means that the associated character x is neces-
sarily real. On the other hand, if a character x is real,
the dual representation A and T" have the same char-
acter, and they are hence equivalent. This leads to the
theorem that a representation is self-dual, if and only if,
the associated character is a real function over all classes.

Let us now consider the irreducible representations
I'* and their dual representations A%. It follows from
(100) that, if (x>kx)e=1 for x=x2, then the same is
true also for the complex conjugate character x = (x*)*;
this means that the dual representations A* are also
irreducible. Considering the frequency of I'* in A<,
one obtains by using (97):

(120)

ve=Mxa(s)x*(s7) =Mx*(s)x*(s), (121)

ie.,
M{x=(s)}2=1, if T<self-dual,

8

=0, if TI<*notself-dual. (122)
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Summing over all the irreducible representations, this
gives
M {x=(s) ) =n2,

where #* is the total number of self-dual representations.

It is now possible to rewrite the double sum in (123)
in another way. Starting from the orthogonality rela-
tion (116), one has

2 (/] G )x*(Ci) {x*(C1) }*=6pa.

If Cy is a specific conjugate class, we will let us the
symbol C’;, denote the class of the inverse elements. If
Cx=C"t, the class is said to be ambivalent. According
to (61), one has

x*(C) = {x*(Cu) 1%, (125)

which gives the previously mentioned theorem that
ambivalent classes have real characters. From (124),
one obtains further

2 (/) G )x*(Ce)x*(C")

(123)

(124)

=1, if Cisambivalent
=0, if Cyisnotambivalent. (126)
Summing over all classes, one gets finally
;ﬂsf{x“(S) J=n,, (127)

where 7, is the total number of ambivalent classes.
Comparing (123) and (127), one obtains n*=n, and
the theorem that the fofal number of self-dual irreducible
representations equals the number of ambivalent classes.
One can also express the theorem in the statement that
the character table contains as many real rows as it
has real columns.

Let us now study the dual representations in some
greater detail. If I'* is self-dual, A* and I'* are related
through a similarity transformation S:

A=S"TS, (128)

where, for the sake of simplicity, we have temporarily
omitted the index a of the irreducible representation
under consideration. According to the definition (117),
one has further

A= (T )tr= ()1, (129)
Combining (128) and (129), one obtains
= (A1)t = (S-1r8) tr= Str (1) tr(§-1) r
=SHA (S1)tr=StrS-IrS (S-1) tr
=[S(S)=I'r[S(s™)¥], (130)
e [S(S)*]r=r[S(S)+], (131)

Since [ S(S71)#7] commutes with all the matrices T'*(g)
of the irreducible representation «, Schur’s lemma (69)
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says that [S(S™)*] must be a multiple .of the unit
matrix 1¢:

S(S“l)"’=c-‘l. (132)

Taking the determinant of both sides, one obtains
d=18|]S[1=1, (133)

which relation shows that the possible values of ¢ are
limited to be the unit roots of order f*. In the special
case when A =T, one says that I" is self-dual in an
identical sense, and one has then S=1 and ¢=1.

In order to proceed, we now consider a/l irreducible
representations I'® irrespective of whether they are
self-dual or not. Let I'* have the dual representation
A2, which is equivalent with the representation I'*/, so
that one has

A*=S71T¥S, (134)
We note that S has the special property (132), only
when I'® is self-dual, so that &’=a. According to the
definition (117), one has Ap®(s) =I'»*(s™1). Using the
definitions and the convolution relation (87), one
obtains the following transformation:

My (sgs) =M D T (sgs)
s s k

=MD Tu(s) Tu(gs)

s ki

=D MAu=(s) Tu=(gs)
kl s

=D Ap*kTye
kl

=2 (SIS} Iy
kl

= ZZ (S_l) lmrmnalsnk* P[ka

kl mn

= ZZ (S—l) lumna,* I‘llca nk

kl mn

=22 (S i ( /) %0 T 12 (g) Sut

kl mn

=( fa) —laalazrlna (g) Sm (87) ¥y

lmn

= (f*)7%%« Tr {T*(g) S(S)t}. (135)
For o' #a, the right-hand member vanishes. For o/ =¢,
one can use the relation (132), and this gives the
final formula

Mx*(sgs) =c( f*)16**x*(g), (136)

where the coefficient ¢ enters. Taking the complex
conjugate of this relation and observing that it holds
in the same form for g~! instead of g, one gets further
c*=c, i.e., the constant ¢ must necessarily be real.
Since one has also ¢/=1, this implies that one can only
have the value ¢=1 for odd orders f*, whereas one can

have ¢=1, if f*is even:
odd,

even.

=1,

jo=
Je= (137)

The constant ¢* is through the relation (136) directly
connected with the characters, and the question is

what conclusions one may draw from its value. Putting
o’ =a and g=e into (136), one obtains particularly

c*=Mx(s%), (138)

=1,

i.e., ¢ is the average value of the character x* over the
“diagonal” of the multiplication table of the group.
Since the value of ¢* is independent of the choice of
the form of the representation, it may be convenient
to study the wumitary representations in some greater
detail. For such a representation, one has particularly

A=(r)tr=0r% (139)

i.e., the dual representation A is identical with the
complex conjugate representation I'*. If the matrices T’
are unitary, the same applies to the matrices A, and
we will now prove that the matrix S in the trans-
formation (128) is unitary except for a constant factor.
From A=S-1I'S and I'=(SAS™)t, it follows that

I'= (r—l) T= (SA-—IS—I) T= (S—l) TAST

= (S8")-18-Irssf=(SS")-r(Sst), (140)
and

(SSHr=r(Ss?), - (141)

i.e., SST commutes with all the matrices I'*(g) of the
irreducible representation «. According to Schur’s
lemma (69), one can then draw the conclusion that
SS* must be a multiple of the unit matrix:

SSt=A-1¢, (142)

Taking the (%, k) element of this relation, one obtains
A=2_1Sul,

which shows that A is a ;;ositive constant. Introducing
the new matrix U=X"12S, one has

A=U"TU, UiU=1, (143)

ie, A and I' are related through a unitary trans-
formation U. According to (132), one has further:

U(UY)tr=¢.1, (144)
or
UU*=c¢-1, (145)
where ¢==1 is the characteristic constant to be
investigated.

Let us now consider the special case when a unitary
transformation T has only real elements or is equivalent
with such a real representation: One has -

A=T*=T, (146)



i.e., the representation is self-dual in the identical
sense, and one has U=1 and ¢=-+1. One can now also
prove the reverse theorem that, if c=--1, there exists
at least one representation of I'* which is completely
real.

For this purpose, let us consider an arbitrary irre-
ducible representation I'* having c¢*=-1. Let us
further introduce the similarity representation:

To=(U*—ei¢: 1) T*(U*—ei#-1)~,  (147)

where the complex number e is chosen so that it is
not an eigenvalue of the matrix U* which satisfies the
relation UU*=1. One obtains directly

T#=(U—¢#.1)T*(U—e¢-1)1
=(U—e 1) A(U—gi¢-1)~1
=(U—¢#-1)U-rU(U—ei¢-1)-1
=¢~#(¢i#+1—U1) T (ei6-1— 1) leid
=(U*—¢*-1) I (U*—e-1)~1=T, (148)

which implies that the representation ' is real. By
means of the procedure outlined in Sec. I.C, it is then
also possible to construct a real unitary representation
of ',

The case ¢=-1 occurs always for self-dual irre-
ducible representations of odd order f*, and such
representations can hence always be written in real
form. The case ¢c=—1 may occur only for even orders f=,
and it is evident from the theorem given above that
such representations can never be brought to real form
by any similarity transformation. It may be shown by
some simple examples that this case really occurs in
the theory of finite groups.

In summary, we can say that, if a row in the char-
acter table contains any complex member, the irre-
ducible representation is certainly #of self-dual, and one
has the theorem:

Mx2(sgs) =O0. (149)

8
If, on the other hand, a row in the character table
contains only real numbers, the associated representa-
tion is certainly self-dual. For representations of odd
orders, one has the additional theorem that they can
always be brought to real form by a_similarity trans-
formation. One has further

Mx>(sgs) = (f)x*(g),

For representations of even orders, one should investi-
gate the quantity

fe=odd. (150)

c*=Mx*(s?

which has only the values c*==1. If ¢*=-+1, the
representation can always be brought to real form,
whereas, for ¢*=—1, this is not the case. One has the

additional theorem
Mx*(sgs) ==£(f)x*(g), (151)

f*= even.
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This exhausts the possibilities contained in the relation
(136) . A study of the dual representations gives hence
some rather interesting additional information about
the properties of the character table and the associated
irreducible representations.

The derivations in this section about dual repre-
sentations are essentially inspired by Sec. 5.8 in Chap-
ter II of Laurens Jansen’s monograph “Introduction
to the Theory of Finite Groups with Applications to
Quantum Chemistry and Solid-State Physics,” but the

-treatments are by no means identical, and the reader

may find many additional points of view by consulting
Jansen’s paper. (Preprint from the Battelle Memorial
Institute, Geneva.)

F. Splitting of the Group Algebra
Basic Projection and Shift Operators

In Sec. I.C, we have shown that every reducible
stable space may be decomposed into stable subspaces
(Maschke’s theorem), and we will now study the
decomposition of the entire space Vg associated with the
group algebra into irreducible subspaces. The spectral
analysis of the regular representation in the previous
section shows that there will be f different subspaces
which all lead to the same irreducible representation
re.

For this purpose, we recall that there is an isomor-
phism A<>a between the group algebra Vg={A4} and
the linear space {a} formed by all functions & over
the group expressed in relation (10):

A=Ma(s)s™ (152)
We note further, if A<>a and B<>8 are two elements of
the group algebra, one has the product rule (15):

A x Bo>y=aXKp. (153)

Let us now consider the elements Pi,* of the group
algebra which correspond to the matrix elements I'in*
of the irreducible representation I'* considered as
“functions over the group.” It turns out to be con-
venient to introduce an extra factor f%, so we will use
the definitions

-PkmaHfaI‘kma,

Prn® ="M Tn(s) s (154)
In Sec. I.D, we have shown that, as an immediate
consequence of Schur’s lemma, one obtains the convo-
lution relation (87), which may now be written in the
form

farkma *fﬁrnls =5aﬂ6klfarnmﬂ- ( 155)

According to (153) and (154), this implies that the
elements Pp,* have the following basic multiplication
rule

P xPnlp=6aﬂakanmﬁ- (156)

This rule is also of main importance in the later appli-
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cations to quantum mechanics. In the following, we
will often omit the multiplication symbol x.

In studying the consequences of (156), we will
start with the “diagonal’ elements Pi®. Putting m==Z,
n=1[ in (156) and modifying the right-hand member

slightly, one obtains
P % P =5§986,,P 8, (157)

ie, {Pu*}?=Pu® and Pu2xP;2=0 for k>#l. The
diagonal elements are hence idempotent and mutually
exclusive, and they form a set of projection operators
which are of fundamental importance in splitting the
space Vg of the group algebra. They form further a
“resolution of the identity”:

e=2.> Pus,
a k

where e is the neutral element in the group which
serves as the “identity element” in the group algebra.
The proof follows from the fact that the neutral ele-
ment e in the group algebra corresponds to the identity
function E defined by (101):

e—E.

(158)

(159)
According to (105), one has further

E=) fx*= sz:f“I‘kk"‘,

which corresponds to the relation (158) in the group
algebra.

(160)

The space V¢ of the group algebra is of order | G |
and, according to (106), one has

|G| =2 (/)
It is remarkable that there is a total of
2 (=16

elements Py, defined by (154), and the question is
whether they are linearly independent and may be used
to span the group algebra. For this purpose, it is con-
venient to study an element 4 which may be written
as a linear superposition of the elements Pp,*:

A= ZZP *m” @om™

a km

(161)

(162)

where we will now determine the coefficients az,®.
Multiplying to the left by a specific element P, and
changing the dummy indices in the summation, one

obtains
Pin® X A =P % > > Prfart

B In

= > 6 PP

B In
= ZP m*
7

=f* 2 MT0(s) aus™. (163)
l s

Putting the coefficients of the element e of both sides
equal, one obtains

ami®= ( f*)H{ Prm® X A} (164)

The result implies particularly that, if 4 =0, one has
necessarily all @;».*=0, which proves that all the
elements Pj,* are linearly independent. Since their
number equals the order | G | of the space, the elements
P, may be used as a basis for the group algebra, and
an arbitrary element A may now be expressed in the form
(162). If the element A corresponds to the function a
through the mapping A<>a, one obtains from (164)
the following expression for the expansion coefficients

Apem™ = { Pmka*a}ﬂ. (165)

The quantity Agm®=Pi.*am* will be described as the
“component” of the arbitrary element 4 along the base
element Pi,% and we note that A;,* may also be found
from the formula

Ama=PmmaAPkka’ (166)

where Pu~ is one of the fundamental projection
operators.

In discussing the basic elements P, it is often
convenient to arrange them in terms of a series of
matrices:

Py, Pyp®, P, Py~
Po*, Pyp® Py® +++ Py
Pe: (167)
Py, Py, Ps® <o Py
\Pre, P, P, Py

of order f*x %, one for each irreducible representation
I'*, Let us now consider the subspace W;* spanned by
the elements {P,*} in a specific row:

Wi: {Pra®, Pus®, Prs®, <+ +, Pis®}. (168)

According to (166), this space is characterized by the
projection operator Pp* acting on the right-hand side
of the elements of the group algebra. We will now see
that the space W3 is siable under the operations of
the group G={g}. By using the properties (5) of the
invariant mean and the definitions, one obtains

gPim® =M T (s) gs™

=f"ﬂ:-’ Ten(1g) £
=f°‘1‘:-’ ;I‘kz“(t) Tim(g) L

= ;sz"rzm“(g) )
which proves the statement. The representation asso-
ciated with the stable subspace W, is further the

irreducible representation I'®. The subspaces W;* asso-
ciated with the rows of the matrices (167) give hence

(169)



the desired decomposition of the space V¢ of the entire
group algebra into stable irreducible subspaces:

Vo= ZZW}J"
a k

We note that there are f* different irreducible subspaces
Wy for k=1, 2, 3, -+, f* which are all associated with
the same irreducible representation I'*; this result
corresponds to the previously found frequency theorem
(104).

According to (168) and (169), a single row {Twm®}
of an irreducible representation a determines the stable
subspace W;* and hence the entire representation I'.
This means that a single row of an irreducible repre-
sentation determines also all the other rows—at least
implicitly. One can better understand this result, if one
studies the consequences of the general convolution
relation (87). For «=p and k=1, one obtains

I‘nma =fal"kma b S Pnk‘x, ( 17 1)

which relation gives an arbitrary matrix element
explicitly expressed in terms of a single row %2 and a
single column k. For a unitary representation, one has
further Tp2(s™) ={T%:(s) }*, which means that the
elements of the column & may also be derived from the
elements in the row %, and relation (171) gives then
the explicit formula desired. According to (88), the
characters x* may further be found from the special
relation

(170)

x*(g) =f*M T (sgs™)
=(f/hg) 2_Tue(t),

teCg

i.e., the characters may be found from the diagonal
elements T2 in the row . Relations of the type (171)
and (172) may be of importance in connection with
problems where it is essential to store information about
the irreducible representations in smallest possible
space, e.g., in group theoretical calculations by means
of electronic computers.

According to the fundamental relation (156), one
obtains directly

(172)

Pmna’(Pkm‘J‘:Pkﬂa, (173)

and the operator P,.,* may hence be characterized as a
shift operator m—n which takes one from the mth
element in the kth row to the nth element in the same
row. They are of fundamental importance in the
quantum-mechanical applications.

In concluding this section, we will finally consider
also the subspaces Ry* spanned by the elements in a
column {P,2} of the matrix (167) for fixed k. Such a
subspace is characterized by the projection operator
P acting to the left of the group algebra, but we note
that it is nof stable under the operations of the group
G=1{g}, and that it is hence of smaller interest in
connection with the decomposition of the group algebra.
The subspaces Ri* are, however, of importance in the
quantum-mechanical applications.
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Character Projection O perators

In the previous section, we have described the
complete decomposition of the group algebra Vg into
stable irreducible subspaces W;* by means of the
elements Pj,* associated with the irreducible repre-
sentations I'*. We now investigate how far one can
proceed with the decomposition, if one knows the
characters x* alone and not the complete matrices.
For this purpose, we introduce the operators:

0= 2P =fMx(s)s™, (174)
which means that Q* is the element of the group
algebra associated with the function f*x®, so that
Q*—fex, From the relations (105) and (107) follows

immediately
e=2.0",

Q% x QP =0, (176)

it is the elements {Q*} form a set of projection operators
which are idempotent, mutually exclusive, and form a
resolution of the identity. Using the fact that the
characters x*(s) are class functions and putting s =g~g,
one obtains

8O =f*Mx(s) gs!

(175)

=feMx*(gUg)tlg=0Qx g, (77
¢

which shows that Q% commutes with all elements g of

the group, and that it hence belongs to the so-called

center of the group algebra. For the space V* defined by

=, one has particularly

Va=QVs0m
=Q*Ve=VeQ" (178)
and, according to (170) and (174), one obtains
Ve fk_‘,W,,a, (179)

i.e., the space V* is the direct sum of all the f* irreducible
subspaces Wi* associated with representation T'*. This
implies that the space V< is stable and reducible and
of the order (f*)?2, and this is also about as far as one
can go in the decomposition of Vg, if one knows the
characters only. In order to proceed further, one needs
additional tools. As we shall see later, the character
projection operators play anyway an important role in
the quantum-mechanical applications.

Class Operators

The conjugate class associated with the element g
has previously been denoted by the symbol C,, where-
as C’; denoted the class of the inverse elements. In this
connection, it is further convenient to introduce the
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class operator C(g) through the relation:
C(g) =Msgs=h" 2,

teCyg

(180)

where %, is the number of elements in C,. Using the
properties of the invariant mean, one obtains directly

hC(g) =Mhs igs=M (sh™)"g(sh™) I

={Mt7gt}h=C(g)h, (181)
¢t

i.e., the operators C(g) commute with all the elements
of the group. This means that the operators C(g) all
belong to the “center’”” of the group, which may be
spanned by either the projection operators Q* asso-
ciated with the irreducible representations or the class
operators C(g). The fact that the number of irreducible
representations and the number of conjugate classes
must both be the same as the order of the space asso-
ciated with the “center” of the group algebra gives
the deeper reason why the number of irreducible
representations equals the number of classes, i.e., why
the character table has the form of a square.

Let us now consider the class operators in some
greater detail. According to (174), one has

Q*=fMx*(s)s

=(f/G l)z::,hkx"‘(c'k)c(k), (182)

where the index % goes over the conjugate classes. This
relation gives the explicit expression for the coefficients
of the expansion of Q% in terms of the class operators.
Using (124), one obtains further

()T (Cy)
=Zk?Z(hk/l G N x*(C) x*(C1) C(F)

= ;5141(: (k) =C(), (183)
which gives the inverse relation
C(R) =22 (f™x*(Cr) Q. (184)
Of particular interest is the product
C(k)Q*= z_‘,(f"’)"lx" (Co)Q®
= ; (A %P (Ce)59Q°
=(f)"x*(Cr Q" (185)
or
C (k) Q= (f)7x*(Cu) 0 (186)

which relation shows that the elements Q* are the
eigenelements of the class operators C(k) and that the
associated eigenvalues are (f*)~'x*(C). This implies

that the class operator C(g) satisfies the characteristic

equation
II{c(® - (f)x()} =0,

[+

(187)

for a fixed element g.

Formula (176) gives the multiplication table for the
projection operators Q% and we will now derive also
the multiplication table for the class operators. Accord-
ing to (184), (176), and (182), one obtains

C(R)C()
= %(f"fﬂ)“x“(ck) x*(C1) Q°Q°
= ;(f“)"zx“(ck)x“(cz) o=
= ;;(f“)“ (/| G [)x*(Ci) x2(C1) x*(C'm) C (1)
= ;{;(f“)“(km/l G Nx*(Ce)x*(C)x*(C'm) }C(m),

(188)
which gives the result

C(R)C(1) =2 a(k, 1, m)C(m),

a(k, 1, m) = (hm/] G |) 22 ()~ x*(Ce) x*(C)) x*(C'm) -
(189)

This is the multiplication table for the class operators
with the coefficients a(%, I, m) expressed in terms of
the characters.

We note that both the class operators C(%) and the
projection operators Q% are utilized in describing the
center of the group algebra, i.e., the set of all elements
of V¢ which commute with all elements g of the group,
and that the two descriptions are unified in the eigen-
value relation (186).

II. APPLICATIONS TO QUANTUM MECHANICS

A. Approximate Solution of the Schriédinger Equa-
tion; Groups as Constants of Motion

Basic Principles of Quantum Mechanics

The fundamental problem in quantum mechanics is
the solution of the Schrédinger equation

HY =— (h/275) (3%/31), (190)

where H is the Hamiltonian of the physical system
under consideration and ¥=¥(X) is its wave function
in the configuration space associated with the composed
coordinate X = (%1, %3, 3, *++, 2x). The quantity N is
the number of particles, and %= (7, {x) is the com-
bined space—-spin coordinate for particle k. The solution

of (190) is often expressed in the form
¥ =U{¥,, (191)

where U=U (i, &) is the evolution.operator which takes



the system from its initial state characterized by the
wavefunction ¥, at =1, to its final state at time ¢ If
the Hamiltonian does not contain the time ¢, the
evolution operator has the simple form

U= exp {—(2mi/h) Hop (¢ —1) }. (192)

Most physical interpretations of quantum mechanics
are built on the concept of “expectation values.” A
physical quantity is represented by the_linear operator
F, and the expectation value of F in the physical situa-
tion characterized by the wave function ¥ is defined by
the expression:

F=(¥ | FO)/{¥ | ¥)=(Fop), (193)

where (¥ | ¥,) is the scalar product of the two wave
functions ¥; and ¥,. :

The fundamental superposition principle in quantum
mechanics says that, if ¥; and ¥, are wave functions
representing physical states, one can also give physical
significance to the wave functions (¥;4¥,) and ¢¥y,
where ¢ is an arbitrary complex constant. The set {¥}
of all wave functions forms hence a linear space, and a
study of (190) and (191) shows that the evolution
operator U is a linear operator defined on this space.

A “scalar product” (¥;|W¥,) is a complex number
associated with two elements of a linear space which
fulfills the following four axioms:

(1) (T | Cot-¥a) = (T2 | ¥2)+ (T | ¥s),

(2) (W c¥a)=c(¥1 | To),

(3) (W1 | W) =(T:2 | ¥1)*,

(4) (¥|¥)>0, and (¥|¥)=0, onlyif ¥=0.
(194)

In “abstract quantum theory,” these four axioms take
about the same place as the group axioms in the theory
of “abstract groups.” We note_that the fourth axiom
is of particular structural importance and that it
immediately leads to the Schwarz inequality, the
triangular inequality, and, the famous uncertainty rela-
tions characteristic for quantum mechanics. In treating
infinite spaces, one adds two more axioms about con-
vergence properties and denseness, and the space {¥}
has then the character of an abstract Hilbert space.

The Hermitian adjoint F of an arbitrary linear
operator F is defined through the relation

(U1 | F) = (¥, | F¥1)*=(F¥, | ¥y),  (195)

which is often referred to as the “turn-over-rule,” one
has (F+G)T=F'+G' and (FG)'=G'F'. An operator
which satisfies the relation FT=F is said to be self-
adjoint or Hermitian, but we note that, in the theory
of ‘the infinite Hilbert spdce, this concept is much
more complicated than is indicated here depending on
the fact that the domain of the operator has to be
properly included in the discussion of the operator
properties.
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It is generally assumed in quantum mechanics that
the Hamiltonian H is self-adjoint, so that H'=H.
Using (193), (190), and (195), one obtains for the
time derivative of an expectation value:

dF/dt= (2wi/h) (HF —FH )+ (0F/08) n, (196)

which is Heisenberg’s equation of motion. Time-inde-
pendent operators A which commute with the Hamil-
tonian, so that

HA=AH, (196")

have expectation values A which remain constant in
time, and such operators are referred to as constants of
motion.

If the Hamiltonian H does not contain the time ¢, one
may separate the variables X and ¢ in (190), and one
is lead to study the time-independent Schrédinger
equation

HY;, = Ep¥y, (197)

subject to the proper boundary conditions for discrete
and continuous states. For self-adjoint Hamiltonians,
the set of the eigenfunctions {¥} is orthonormal and
under rather general assumptions complete, and this
set may hence be used as a basis for the Hilbert space.
Letting the evolution operator (192) work on both
sides of the resolution of the identity D & | Wi )(¥; | =1,
one obtains

U= ; exp [ — (2m3/h) B (t—10) ]| W) (Wi |, (198)

which is the ‘“‘spectral, resolution” of this operator.
Substitution of this expression into (191) gives finally

V(X, ) =zk) exp [ — (2mi/h) Ex(t—1to) T (X) (3, | W),

(199)

which is the well-known ‘“expansion in stationary
states.” We note that the relations (198) and (199)
should be interpreted symbolically, that one should
sum over the discrete eigenvalues Ej; and integrate
over the continuous part of the spectrum, and that
the series expansions imply only “convergence in the
mean”—which is the only type of convergence of
importance in quantum mechanics.

Variation Principle and Secular Equation

From the relation (197), it follows that (¥ | H¥; )=
Ek<‘I’k I \I’k>, i.e.,

Ep= ¥ | HY:)/ (¥ | ), (200)

which relation implies that the eigenvalue E; is the
expectation value of H with respect to the physical
state characterized by the eigenfunction ¥;. Let us now
consider the integral

I=(®| HE)/(® | ®)=(Hop)n,  (201)

for arbitrary trial wave functions ®. Putting & =¥;-}-4®,
using the relation (H — E;)¥;=0 and the turn-over rule
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(196) for the self-adjoint operator (H— E), one obtains
I—FEy=(® | H—E | ®)/(®| ®)
=0 | H—E; | ®)/(®|®)  (202)

where the right-hand member is quadratic in 6% and
hence of the second_order in the variation. Since the
first-order variation is missing, one has 67 =0 or

6<Hop>kv =O, (203)

which relation is referred to as the variation principle.
An important consequence is also that the integral I
forms an upper bound for the ground state energy:

I>E, (204)

The variation principle is of particular importance in
determining approximate solutions to the Schrodinger
equation (197). Let us assume that one has a basic set
{®r} of finite order M characterized by the metric
matrix A= {Ay;} having the elements

A= (@k [ ¢'1>, (205)

and that one has the problem of determining the
coefficients ¢ in the expansion

d=> Bicx, (2006)
*

so that ® becomes an approximate eigenfunction which

is as accurate as possible. Introducing the energy

matrix H= { H};} having the elements

Huy=(&; | Hb;)= (3 | H| &1), (207)
one obtains for the expectation value (201):
I=(2 | H2)/(2| ®)
= (%:ck*@»k | H@l)cl/kzlck*(% | ®:)c1)
= Z%*kaz/ DA
kl kl
=cHc/ctAc, (208)

where ¢ is the row vector ¢c={¢}, and ¢’ is the column
vector ¢t ={¢;*}. Varying the coefficient ¢ and putting
0I=0, one obtains

(H—I-A)c=0, (209)
which is a system of linear equations of order M. If
all the functions ®; are really linearly dependent, this
system has a nontrivial solution, if and only if the
determinant of the coefficients is vanishing, i.e.,

|H—1I-A] =0. (210)
This so-called secular equation has M solutions for the
parameter I, say I=8&;, &, &, -+--, &u. These are
approximate eigenvalues and, according to the separa-
tion theorem, one has

&> Ex, (211)

i.e., the solutions to the secular equation form in order
upper bounds to the true eigenvalues.
If the basis ®= {®;} is orthonormal, i.e.,

A={(®|®)=1,

one has no problem with the linear independence of
the basis. However, in many quantum-mechanical
applications, the basis ® occurs naturally in a non-
orthogonal form, and one should then study the
properties of the metric matrix A in greater detail.
This matrix is positive definite, i.e.,

A>0, (212)

which follows from the fact that, for any set a={a}
of complex numbers, one has

atAa= Zak*Aklal = de* (@k l ‘1’1)(11
kl kl

= (;@kak ‘ Z@lal)>0. (213)
p

We note that the relation atAa=0, according to the
fourth axiom in (194), necessarily implies Y x®a:=0,
i.e., that the functions {®:} are linearly dependent. The
smallest value of the quantity a'Aa, subject to the
condition afa=1, is called the measure of linear inde-
pendence of the set ®={®P,}. Observing that the metric
matrix A is self-adjoint, i.e., AT=A, one can now by
means of the variation principle identify the measure
of linear independence with the smallest eigenvalue uy
of A.

This result shows that it may be of importance to
study the eigenvalues pi, pg, *<+, pua of A, which we
assume will be arranged in increasing order. Let U be
the unitary matrix which brings A to diagonal form u:

(1 ]

UtAU=y= . (214)

e )

In order to construct an orthonormal set from the
basis @, one may use the classical procedure by Schmidt
in which the functions are introduced successively in
order ®;, Py, P53, +++, Py. The author has suggested
two more orthogonalization procedures: the symmetric
orthonormalization (1948) based on the linear trans-
formation

d=BA, (213)

which gives
(o] $y=A"12{D | P)A2=A"2AA2=],

and the canonical orthonormalization (1956) based on
the transformation

&' =oUy e, (216)



which gives
(¢ | ¢)=p U@ | &)Uy
= u 12yt AUy 2= 9—1/299—4/2 =1.

One may write this relation in the form

&'k = () 2D & U, (217)
7

and, for the square of the coefficients of the elements

P,, one obtains

22| Un/ (u) 2 p=p. (218)
i

This implies that, if the eigenvalues pi, pe, ---, are
small, the sum of the absolute square of the coefficients

become correspondingly large.

If the system ® has approximate linear dependencies,
i.e., if the smallest eigenvalues uj, s, ** *, are negligibly
small in the accuracy used in the study, which is often
the case with the systems conventionally used in the
quantum-mechanical applications, one cannot simply
remove the difficulty by an arbitrary orthonormaliza-
tion, since the coefficients are going to ‘“blow up,” and
one is going to lose significant figures. On the other
hand, if one has approximate linear dependencies in the
basis, the secular equation (210) will be almost identi-
cally vanishing for all values of the parameter I, and it
will become very difficult to determine the actual
eigenvalues & with any degree of accuracy.

In the case of approximate linear dependencies, it is
hence necessary to reduce the order of the space ®=
{®}, and this can be performed in an optimum way
by using the canonical orthonormalization (217) in
which the resulting functions ¢'; are arranged after the
measures of linear independence u. If the value of wy
is too small for the accuracy required, we will remove
the function ¢’; and consider the next eigenvalue uo,
etc. In this way, one can systematically diminish”the
order of the space, until one obtains a meaningful
secular equation (210).

There is another way of festing the linear independence
of a set ®, which will now be mentioned for the sake of
some later applications. Since the determinant of a
matrix is invariant under similarity transformations,
one has

M
| Akt =H#k20,

k=1

(219)

where the equality sign holds, if and only if the set ®
is linearly dependent. For M =2, relation (219) reduces
to Schwarz’s inequality

(B1] @1y (P1] B2)
>0, (220)
(@2 B1) (2| B2)

and for M =3, 4, 5, + -, etc., one obtains interesting
generalizations of this theorem. We note that all the
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principal minors of the metric matrix A will necessarily
be nonnegative, and that such a determinant will
vanish only if there is a linear dependence between the
basic elements involved. One can now use this theorem
to construct a procedure for determining the order # of
the space spanned by the elements

D={P1, Py, +++, Par},
where n<M.
For this purpose, it is convenient to introduce a set
of successive quantities Dy, Dy, D3, «-+, Dy, defined
through the relations:

DF;(% | ®x);

~ (B | Be) (B | o) .

BUA®y | @) (D] B2)
(Be | D) (Ba| 1) (e | Bm)
Da=k§< (Br] Be)  (Pe|Br) (D] B |;

(B1] @1y (D1 B2) (@1 ] @ar)

Dy=| (@2| ®1) (B2|B2) -+ (o] Bar)|. (221)

@ | D) (O | D) oo (| D)

We note that Dy is simply the sum of all different
Graam’s determinants of type (219) which may be
obtained by selecting % elements out of the set {®;,
®y, «++, ®y}. One has the inequality D>0, and the
equality sign holds if and only if every selection of %
elements is linearly dependent, i.e., £>#%. This implies
that, in the sequence Dy, Do, D, «++, Dy, the order of the
space is given by the index of the last non-vanishing
quantity D, i.e.,
D, =0,

Dn+1=Dn+2= e =0. (222)

Even in this procedure, one may notice the existence
of approximate linear dependencies, since the quantities
D, may turn out to be exceedingly small from a certain
value of the index %, even if they are not exactly
vanishing.

In conclusion, we observe that the order # of the
space spanned by a set of elements {®;, ®p, +++, Py}
equals the number of non-vanishing eigenvalues ux of
the metric matrix A or the number of non-vanishing
quantities in the set {Dy, Dy, «++, Da}.

Groups as Constants of Motion

For many of the applications to quantum mechanics,
it is not necessary to specify any particular realization
of the scalar product (¥ | ¥2), as long as this quantity
satisfies the four basic axioms (194). In conventional
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theory, one is often using the particular definition:

@] )= [T DB @),  (22)
where the integral goes over the entire configuration
space with the coordinate X = (&1, %2, %3, + -+, ¥x), but
it will not be necessary for us to confine ourselves to
this special realization.

Let g be a linear operator which acts on the composed
coordinate X = (w1, %2, <+, %y) in a specific way, so
that X’'=(a'y, 2’5, + <+, 25) =gX. Such an operator will
be called a symmetry operator, if it leaves the volume

element invariant
(dX") =(dX), (224)

ie., if the Jacobian of X’ with respect to X equals
unity. As examples of symmetry operations, we will
here only mention reflections in a point or in a plane,
rotations a certain angle around an axis, permutations
of the particle coordinates, etc.

Let us now further define the action of g on an arbi-
trary wave function ®=&(X) by means of the relation

82(X) =2(gX). (225)

This definition is almost universally used, since it is in
accordance with the definition of an operator product;
one has

gh®(X) =g{h®(X) } =g@(h'X)
=g{h (X))} =2{h (g X)}
=®{h g X} =0{(gh)IX}.  (220)

Putting X""=g"1X, one obtains for the scalar product
of two such functions

(g8 | g%s) = [ B (¢1X) By(g-1X) (dX)

= [ (X @(X") (X" = (21| @), (227)

ie.,
(®1] g'g—1] 2:)=0, (228)

for all functions &, and ®,. This is possible, only if
g'g=1, which means that the symmetry operators are
unilary with respect to the scalar product (223):

g'g=gg"=1. (229)

In the following, we will say that an operator g is a
symmetry operator if it fulfills relation (229), irrespec-
tive of the particular realization of the scalar product.
Let us now assume that there exists a set of sym-
metry operators which form a group G={g} and that,
for every function ®=®(X), one has gH®=Hgd
according to the definition (225). In such a case, one

has
gH=Hg, (230)

and one says that the group G consists of a set of
constants of motion. ’
The constants of motion are used in quantum theory

to classify the stationary states, and in Ref. 1, the
author has shown how one may carry out a component
analysis of an arbitrary trial function with respect to a
single constant of motion A or with respect to a set of
such constants (Aj, As, Az, +-+) which commute be-
tween themselves. The component analysis is based on
a resolution of the identity into a sum of projection
operators Op which are idempotent and mutually
exclusive, so that

02=0i,  0:0;=0(k1), 1=2.0:, (231)
%

and it is shown that this analysis always leads to a

lowering of the expectation value of the energy.

If the group G={g} is Abelian, one may directly
apply this technique. In a more general case, however,
the procedure has to be modified to take into account
the fact that the elements g of the group usually do
not commute. In this connection, the importance of
the group algebra introduced in Sec. I.B becomes
suddenly clear in a new way, since we are now going to
use the definition:

(;akgk) ®(X) = ;ak@(gf‘X )s

which implies that the commutative operation of
“addition” in the group algebra is going to correspond
to the ‘“addition” of wave functions according to the
superposition principle.

If the group G={g} is non-Abelian, one cannot use
the group elements in general to classify the stationary
states. However, the class operators C(g) defined by
(189) commute with all the elements of the group and
hence also mutually:

C(g)C(n) =C(r)C(g). (233)

According to (229), one has gf=g and this implies
that the class operators are self-adjoint only for the
ambivalent classes. Using (181), one could now con-
struct the product-projection operators as defined in
Ref. 1, but we note that these eigenoperators are also
defined in (186). In analogy with (231), one has

QB =5°608, e= 0%
and we note that the operators Q= are self-adjoint:

(@) T=0Q~ (235)

Let us now derive the Hermitian adjoint to an
arbitrary operator Pi,* defined by (154). For a com-
plex number ¢, one has simply ¢'=c¢*. Using the
definitions and the fact that s*=s"1, one obtains

(Pin®) = (f*) M {Tim=(s) }* (st

= (J) ML (578) 5= P,

(232)

(234)

(236)

ie.,
(Prn®) T =P (237)

This implies that the diagonal operators P are self-



adjoint. Since they further satisfy the relations
PP yf =565, P 1P, e= EZPkka, (238)
a k

analogous to (231), one could expect that the set
{ P} could be used for a component analysis of a, still
more deep-going nature than the one based on the set
{0*}. We will now show that, for the non-Abelian
groups, a new feature exists depending on the existence
of the shift operators, and that this leads to a discussion
of the important phenomenon of degeneracy of the
energy levels.

Splitting of the Secular Equation by
Means of Group Algebra

Let us now study the classification of the eigenstates
of the Hamiltonian H under the assumption that
G={g}={g, g, g, ***, g} is a group of constants of
motion satisfying (230).

Let us further assume that a single trial wavefunction
& =& (X) is given and should be subject to “component
analysis.” For this purpose, we introduce the associated
functions

which are formed from & by means of the symmetry
operations g.. We will now consider the space Vs
spanned by the set {®;, &, <+, ®,}, where n= |G |.
The metric matrix has the elements

A= {(D; | ®;)={(g:® | 2:®)
=(®| g 'g®)
=A(gg0),

where we have introduced the notation A(g) =(® | g®),
which defines a function over the group which will be
called the metric function. It consists of » complex
numbers which all enter the rows of the matrix A in
various permutations depending on the multiplication
table of the group. One obtains further

Algh) =(2| g'2)=(2| g'®)=(s2 | @)
=(2|g®)*={A(g)}*

For the matrix elements of the Hamiltonian, one
obtains similarly

Hy= (% | H®;)={(g® | Hg:®)
=(®| & Hg®)=(? | Hg'ai®)
=H(gk_1gl) P

where H(g) = (® | Hg®) is the Hamiltonian function over
the group. Since the Hamiltonian is self-adjoint, one
has also the property

H(g™") =(®| Hr'®)=(gH® | @)
=(®| Hgd)*={H(g) }*

(240)

(241)

(242)

(243)
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In the following, it is convenient to introduce the
operator K=H—8&-1. and the associated function
K(g) =(®| (H—&-1)g®) which both contain the energy
parameter &.

Let us now first assume that the space Vs is of order
|G |. In such a case, one says that the trial wave-
function is completely without symmetry properties.
The secular equation (210) takes now the form

| K(g'gn) | = [(@| H—8-1| g'gi®) | =0, (244)
and is of order | G| X | G |. The question is to what an
extent this secular equation can be simplified by using
the splitting properties of the constants of motion
G={g} and particularly the projection operators P2
in the relations (238).

The order of the space Vs is determined by the
number of non-vanishing eigenvalues of the metric
matrix A defined by (240) or by the number of non-
vanishing quantities in the series Dy, D, Ds, +++, de-
fined by (221). If the order is smaller than |G|, one
says that ® has certain symmetry properties, and, if
gP=7> for all g, one says that ® is totally symmetric.
Even the question of the order of the space Vs may be
essentially simplified by the use of the group algebra.

Starting out from the resolution of the identity in
(238), we will first introduce the component analysis:

P=ed=(D D Pu)d=2. > dus

where we have used the symbol ®u*=Pr*®. Intro-
ducing the general notation

(245)

Bp® = Pion®® = M T () 51, (246)
we observe that, according to (173), the functions ®ym®
in the kth row may be obtained from the ‘“diagonal”
function $p*=Pr*® by means of the shift operator
Prm®:

Prm® = Prm®Pra®. (247)

There is a total of

2 (f2=1|G|

functions &%, and they are conveniently arranged in
terms of matrices analogous to (167):

ren®, Pp*, Pu® P25
Do, By, Do, Py
®: (248)
B3, P, Pz, By
B, Pp, Pp s

where f=f1is the order of the matrix. These functions
span also the space Vs, which is easily shown by
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considering the relation

g®=g(Z;Pkk“)<I>
=[Z%Pkl"‘1‘m"‘(g) I
= ZZI‘zk"‘(g) B2,

a ki

(248")

Let us now study the metric matrix formed by the
functions ®;,,2. Using (237) and (156), we obtain

(Brn® | B} = (Piem*® | PraP®)
= <‘I) l Pmk”‘PlnﬂqD>
= (‘I) ] 6aﬁ&mnplka I (I>>

=5“55m7,<‘1> l Py~ ‘ q>>. (249)

The occurrence of the Kronecker symbols 6 and 6ma
shows that functions associated with different irre-
ducible representations are automatically orthogonal,
and that functions associated with different columns of
one and the same representations are also orthogonal.

Since the Hamiltonian commutes with all elements g
of the group, it commutes also with the operators Pin*
algebra. For the matrix elements of the Hamiltonian,
one obtains

@i | H | 91f) = (Pin® | H | P1f®)
=(® | Ptn*HP,,? | ®)
=(® | HPjn*P1,P®)
=565, (® | H | Puo®).  (250)

This implies that functions &~ associated with differ-
ent irreducible representations are noninferacting with
respect to the Hamiltonian H, and that the same
applies also to functions associated with different rows
of one and the same representation.

In summary, one obtains for the matrix elements
entering the secular equation:

(Ben | K | 21°)
568 (® | H—8-1 | Pyod)
=6“ﬁ6m,,f°‘MI‘lk°‘(s) <CI) | H—&-1 l S_I(I)>

=8 fEMTu*(5) K (s71)

=6“55m,.f°‘{Plk”>l<K}o, (251)

i.e., each nonvanishing matrix element is essentially a
convolution product between the function f*I'y* and
the function K.

In order to proceed, it is now necessary to discuss
the order of the space Vs, since any linear dependence
between the basis functions is going to lead to secular
equations which are identically vanishing. Let us first
observe that, if any diagonal component ®.* is not
identically vanishing, the entire row ®;,* is non-

vanishing and consists of f* mutually orthogonal func-
tions. From (249), one obtains particularly

(Bim® | By ={(P | P | ®)
= (B | D), (249')

which relation shows that all functions in the same
row have the same norm. The orthogonality property
is a consequence of the general relations (249). We
note further that, according to (169), the functions in
such a row form a basis for the irreducible representa-
tion I'%, i.e.,

gk = Zl}b“mr,m (g). (252)

The functions &, associated with different irre-
ducible representations are both orthogonal and non-
interacting with respect to H. It is perhaps even more
remarkable that the same applies also to functions
associated with different columns of one and the same
irreducible representation; each column forms, so to
say, a little isolated world by itself. For the matrix
elements between functions associated with the mth
column, one obtains according to the general formula
(251):

(Bp® | H—8+1 | ®p®)=(® | H—8+1 | Pyp2®)

=f*{Tn*k K}o, (251)
which means that the result is going to be independent
of the value of m=1, 2, 3, ---, fo.

Our study shows that the splitting of the space Vs
by means of the basis {®.%} leads to orthogonal and
noninteracting subspaces associated with the different
irreducible representations and different columns with-
in one and the same representation. Each such subspace
corresponds further to a “block” of the secular equation,
and we note each one of the columns of I'* gives rise
to an identical block, which is thus repeated f* times.
This implies that every eigenvalue associated with such
a block is going to be repeated f* times; the eigenvalue is
hence degenerale of order f*. This is an important conse-
quence of the non-Abelian properties of the group,
which is here demonstrated for the approximate eigen-
values associated with the simplest possible secular
equation, and we will later show that a similar
degeneracy theorem holds also for the exact energy
levels.

In order to construct the secular equation for the
problem explicitly, it is necessary to study the order
of the space Vg and its subspaces in greater detail. Let
n* be the order of the space Vg*=(Q*Vs, which is
spanned by the functions

0%, =Q%g® = £, 0*® = g, *, (253)

where

=P =f*Mx*(s)s71P. (254)
Let further #,* be the order of the space Vg%, m=
PV associated with the mth column of the matrix
@ in (248). Since all the column spaces are orthogonal



and have the same order, depending on the existence
of the shift relation (247), one obtains

ne= ana p— fanma’
m

which shows that the order of the space Vs* must be an
integer multiple of f¢, i.e., n*=0, f¢, 2f*, 3f*, «++, (f*)2
Let us now calculate the order #,* of the column
space Vg by studying the associated series of num-
bers Dy, Dy, D, «++, Dy defined by (221). The set of
elements to be investigated is {®un} for k=1,2, ««+, 12
so one has M =j*. Using (249), (246), and the defini-
tions, one obtains
D1= Z(q)kma I (I)kma>

= Zk:@’ | D)
=f°‘;MI‘kk°‘ (S) (@ | 8—1‘1))
=fMx*(s)A(s™).

(255)

(256)

(ékma I ékma> <CI)kma l élma>

D,=
k<l

(q’lma l q’km“) <q)lma [ lea>
(@] Pu) (@] Pu®)

k,l

(@] ®u2) (@] 2u)

=%(f°‘)2§,Mﬂt4[Pkk“(S) Tu(H AT ALY
—Tu() T () A ALY ]

=%(f“)2Mﬂ:-’{x"(8)x“(l)—X"‘(St)}A(S“)A(f"I),

(257)
and similarly
Ds=(31)7Y( f"‘)aMﬂ‘lM{x“(S) x* () x*(u)
—x?(8) x> (tu) —x*(£) x*(us)
—x*(u) x*(st) +x* (stu) +x=(sut) }
XA DAY A(u™). (258)

It is now easy to generalize this result. Following W.
Byers-Brown? we now introduce the following special
functions of the characters:

B(s) =x*(s),
By (s, £) =5 {x*(s)x*(t) —x=(st) },
By (s, t, u) = (31 {x*(s)x*(t) x*(u)
—x(8) x*(tu) —x=(t)x= (us)
—x*(u) x*(st) +x= (stu) +x*(sut) },

B(s1, 82, 00, 8,) =(r !)—IPZ(— 1DPX(P,). (259)

2W. Byers-Brown, in Quantum Theory of Atoms, Molecules,
and the Solid State, A Tribute to John C. Slater (Academic
Press Inc., New York, 1966), p. 123.
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Here P is a permutation of the elements si, so, *++, s,
and, if P has the cycle structure P= (1) (3) (254):--,
one has the definition

x*(P) =x*(51) x*(55) x* ($25554) * * +, (260)

with one character-factor for each cycle. Using these
functions, one obtains the general formula

.D7‘=(fa)TMM' * 'MBTa(sl: S2, *° Sr)

81 82 87

XA(sr ) A(ss™) -+ A7), (261)

It is perhaps somewhat surprising that the quantities
Dy, Dy, D, +--, which are associated with a column
{®im} depend only on the characters x* and not on the
elements of the irreducible representation I'®. This can
perhaps be understood, if one realizes that the quanti-
ties D; for the basis {g:®*} for j=7f* are proportional
to the f*th power of the quantities D,. The explicit
proof above is due to Byers-Brown.

One can now repeat the same arguments for the
determinants formed by the matrix elements between
the functions {®,*} in the column m with respect to
the operator K=H—&-1. Let us introduce a series of
quantities

Dy(K) = Zk:(q’km" | K | ®1m),

(B | K | Bin®)  {Bpm® | K | Bim)
Dy(K)=Y,

5 (@15 | K | @) (1| K | Bi)|
(262)

If the order of the space Ve n* is #.2%, it is evident that
all the quantities D,(K) are going to vanisk identically,
ie., for all values of the parameter &, if r=n,%+1,
%2, «+-. The reverse theorem is also true, depend-
ing on the fact that the operator K is positive definite,
K>O0, for §<E,. For r=n,%, the quantity D,(K) is
going to vanish only for certain values of the parameter
& equal to the eigenvalues &, &, -« -, &.. Repeating the
same simplification as before, one obtains

DT(K) =(fa)rMM,. 'MB,(Sl, S2y *

81 82 8r

XK(S1_1) K<S2—l) b 'K(sr_l) )

*y )

(263)

which is Byers-Brown’s formula. It should be observed
that the eigenvalues &, &, -+, & associated with a
specific column depend only on the characters x* but
not on any individual elements of the irreducible
representation I'®. In this connection, it is also interest-
ing to study the quantity D;(K) associated with the
basis {g:®?} for j=fn,*. We note that the eigenvalues
&1, &, *++, & in the total secular equation are going to
be repeated once for every column, and that the
corresponding energy levels are hence degenerate of
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order f¢, provided that the values &, &, «--, &, are all

different.

Secular Equation in Terms of Convolution Algebra

It is now possible to simplify the expressions (261)
and (263) still further by using convolution algebra.
The convolution multiplication>kdefined by (13) is
associative and, considering a fixed element g, one has

akB=Ma(s)B(gs™);
akfky=MMa(s)B(is™)y(gt™);

akBkyko=MMMa(s)B(ts™)y(ut)s(gu™);
8 t u

(264)

Convolution products are usually noncommutative, so
that B%k a7 akB. However, depending on the properties
of the invariant mean, one has always (B8%a)o=
(a%pB)o. Since the operator Q*—f*x* commutes with
every element A«<>a of the group algebra, i.e., Q*4 =
AQ>, one obtains for the associated functions

x“ka=aXkx?, (265)

where a is an arbitrary function over the group.
In the formulas (261) and (263), one has sums of
the type

Mx(s)A(s™),  MMx(s)A(sHA@ET), =+

which we can now rewrite in terms of convolution
products:

Mx(s)A(s™) = (x*k A)o,

MMx(st) A(s)AEY) = MMx*(u) A(bu™) A(+7)

= (x*k Ak A),,
MMMx*(stu) A(s DAY A(u™)
s t u
=MMMx*(s1) A(sas™) A(sss2™) A(ss™)
81 82 83
=(x*kAXAX%A),. (266)

From (256)-(258), one gets

Dy=f*(x**%A)o,

Dy=3(f)* (x*k A)*— (x*k A%k A)o},

Dy= 3D} (x*kA)*—=3(x*k A)o(x*k A%k A)o

+2(x=k Ak A% A)o},
(267)

By means of (261), one obtains the general formula

S,
D,=<r1>—1<fa)';(—1)mp, (268)

where A, is defined below; if P belongs to the conjugate
class characterized by the cycle structure 1M2M3%...
one has simply

Ap=(x*k A) M (x®k Ak A)*2(x ¥k Ak Ask A)Hse » «

= (XK Q)M (kAP )2 (x kA ) Pae - (269)
where we have used the special symbol ! to denote a
“convolution power”: a!® =akakaxk-:*ka. A still
further simplification is possible, if one observes that,
according to (107), the function f*x* is idempotent in
the convolution algebra

(fox®) = faxe. (270)
Using (265), one obtains
X*RAKXA=(f)7H(foxkA) % (fox*kA)
=(f)(fxka)
XFRAKARA= ()71 fxkA) ¥
.ee, (271)

Introducing the special function

Ax=foxek A=fMx*(s) A(gs™)
=fMx*(s) (2| g | ®)=(®| g| %), (272)

one obtains finally

Ap= (fa) —QA1rHAgtAgteee)

X (AY) P (A% AY) P2 A%k A%k A%) Mo ee,  (273)
It should be observed that the function A* contains
the same numbers as the overlap matrix associated
with the basis {g®*}.

In order to study the secular equation, it is con-
venient to introduce the special function

Ke=foak K=f*Mx*(s) K (gs™)
=f*Mx=(s)(® | H—&-1| gs7'®)

=(®| H—-&-1] g2%), (274)
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which may be described as the “projection” of the
function K on the space associated with the irreducible
representation I'* in the convolution algebra. For the
matrix elements of (H—&-1) with respect to the basis
{gx®*}, one obtains

(g | H—8-1| g@)=K*(g7'gr),  (275)
i.e., the rows of this matrix consists of various permu-
tations of the numbers associated with the function K=.
However, instead of studying the sum D;(K) of all the
principal minors of order j=f*n,* we will consider the
quantity D,(K) for r=#,% Simplifying the expression
(263) by the methods outlined above, we obtain the
final formula

S
D.(K)=(r !)“(f"‘)';(—l)”KP"‘,

P=(1M2M30..0)

Kp*=(fo)~Orfhathst-)
X (K M (K2k K2) 2 ( K2k Kak K*) 3¢ <«
(276)

It is hence possible to evaluate D,(K) for various values
of the parameter &, if one knows the function K¢ and its
powers in the convolution algebra. One has particularly

Ke*=(®| H—8-1| &%),

(K*kK*)o=M | (2| H—8-1] g2*) I,

(277)

It should be emphasized that the formulas obtained
are essentially of principal interest, and that the proper
modifications of these formulas for numerical purposes
have to be studied in greater detail. One should be
particularly careful to avoid such approximate linear
dependencies as may destroy the accuracy of the
numerical result. The best way to approach this prob-
lem is probably to evaluate the measures of linear
independence of the column set {®p.%}, i.e., to deter-
mine the eigenvalues of the associated metric matrix.
This may be performed by studying the quantity D,(L)
for L=1—pu-1 and r=#,% If the smallest eigenvalues
w1, M2, **+, are almost negligible in the accuracy under
consideration, it may be worthwhile to carry out a
canonical orthonormalization according to (217) and a
reduction of the order of the space Vs n* before pro-
ceeding. The practical problems involved will be the
subject for further investigations.
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B. Symmetry Properties of the Exact Eigenfunc-
tions of the Hamiltonian

General Degeneracy Theorem

In the previous section, we have studied some
special properties of the approximate solutions to the
Schrodinger equation which are direct consequences of
the fact that the Hamiltonian H commutes with all
the elements g of a group G={g}. We will now investi-
gate the corresponding properties of the exact eigen-
functions to the Hamiltonian.

Let us assume that ¥ is a normalizable function
which satisfies the time-independent Schrodinger equa-
tion

HY=EV. (278)
Let us further introduce the functions
Yim® = Prm®¥, (279)

and arrange them in terms of matrices of the type
(248). Since gH=Hg, one has further Pin*H=HPyn°,
i.e., the elements Py, are also constants of motion.
One obtains directly

HY,,* = HP;,,*YV = P HY = Py, E¥

= EPjn¥ = E¥p®, (280)
which implies that every non-vanishing function ¥pn,*
is also an eigenfunction to H associated with the eigen-
value E.

In order to discuss the degeneracy problem in greater
detail, we will start from the component analysis

U =¢¥= (Z;Pkk"‘)‘lf = Z};‘I’kk“

(281)

Since the functions in the right-hand member are all
orthogonal, one obtains

(¥ | ¥)= Z§<wkka | )0, (282)

which means that at least one of the norms || ¥y || has
to be non-vanishing for a specific pair of values (e, %).
In such a case, the entire kth row may be created by
means of the shift operator:

Un® = Prm® Vi, (283)
and we note that all these functions have the same

norm || ¥ || = |[[¥m? || #0. The row functions {¥m*}
are further orthogonal (and hence linearly independent),
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and they form a basis for the irreducible representation
Ire:

g\I’kma = Z\I/knarnma(g) . (284)

If || Wi || 5£0, one can hence draw the conclusion that
the energy eigenvalue E has a degeneracy of at least
order f*, and that the associated eigenfunctions trans-
form according to the irreducible representation I'*.

In the ideal case, only a single term || ¥y2 ||2 in the
sum (282) is nonvanishing, which means that ¥ =¥°.
Starting out from this function, we have constructed
the entire row {¥,*} according to (283), and these
functions span a certain linear space of order f* asso-
ciated with the eigenvalue E. If all the eigenfunctions
to H having the eigenvalue E belong to this linear
space, one says that the degeneracy is completely
classified by the group G={g}. The eigenfunctions are
then interrelated through the symmetry operations g,
and the order of the degeneracy is exactly f*.

There is, of course, nothing which prevents two or
more norms in the sum (282) from being nonvanishing,
and, in such a case, the degeneracy is of a more com-
plicated nature being associated with two or more non-
vanishing rows in the matrices (248). The degeneracy
is still classified by the two symbols (, k), but the
eigenfunctions in different rows are no longer inter-
related by the symmetry operations g which only
connect functions within one and the same row. In
such a case, one speaks of an accidental degeneracy. The
systematic occurrence of accidental degeneracies is
usually taken as an indication that one has not found
all the possible constants of motion g, that there may
exist additional symmetry operations which connect
the seemingly noninterrelated wavefunctions of differ-
ent rows, and that the group G={g} is a subgroup of a
larger group which niay classify the degeneracy com-
pletely. In this connection, it may be convenient to use
a slightly different approach.

Unitary Group of the Hamiltonian

Let us consider the set {g} which consists of all
unitary constants of motion of the Hamiltonian:
Gu={g|gH=Hg, g'g¢=gg'=1}.  (285)

One has immediately the theorem that the set Gy
forms a group. If g and % are two operators belonging to
G, one has

(gh)H=g(hH) =g(Hh) = (gH)h= (Hg)h
=H(gh),
(gh)(gh) =h'g'gh=h"h=1, (286)

which means that also gk belongs to Gy. Multiplying
the relation gH = Hg to the left and to the right by g,

one obtains

Hg'=g"'H, (287)

which means that g belongs to Gg. Since further the
set Gy contains the identity operator 1 as neutral
element, the set Gy forms a group called the unitary
group of the Hamiltonian.

Let us now introduce the set Wg of all normalizable
eigenfunctions ¥ of the Hamiltonian H associated with
the eigenvalue E:

We={V | HY=E¥; (¥ | ¥)= finite}. (288)

This set forms a linear space which is stable under all
the operations in the group Gz={g}, since one has

H(g¥) =g(HY) =g(EY) =E(g¥),
(g | g¥)=(¥ | V). (289)

The arguments in the previous section lead us now to
the following hypothesis:

The unitary group Gy of the Hamiltonian
is complete, if all the subspaces Wg are

irreducible under Gy. (290)

If the subspace Wk is irreducible under Gy, it must be
possible to span the space by using the functions
{¥in?} in a single row, which means that they are all
interrelated by the symmetry operations. If, on the
other hand, the subspace Wz is reducible under Gy,
one must apparently use functions from two or more
rows {¥i,%} to span Wg, which means that there are
functions associated with the degeneracy which are
not interrelated by the operators {g} under considera-
tion. In such a case, one should look for new symmetry
operations commuting with H, which should connect
the previously noninterrelated spaces.

It is probably very hard if not impossible to prove a
theorem of type (290) in general; instead one has to
work through the examples of systems having acci-
dental degeneracies one-by-one to find the complete
unitary groups of the Hamiltonian. Important examples
have been treated by McIntosh and by Moshinsky,
who have also shown how accidental degeneracies may
be utilized for other purposes in quantum mechanics.

The conjecture expressed in (290) may also be for-
mulated so that “there are no accidental degeneracies”
and the development has shown that this is a valuable
working hypothesis in the study of degeneracies by
means of the unitary group of the Hamiltonian. The
cases investigated so far have shown that, in solving
the Schrodinger equation, all degeneracies may be
completely classified by the group Gy ={g} consisting
of all unitary constants of motion.

C. Summary and Discussion

In this paper, the splitting of the quantum-mechani-
cal secular equation by means of group theory has been



discussed. Starting from the isomorphism between the
elements A of the group algebra and the functions «
over the group, A<, expressed in terms of the in-
variant mean (10):

A=Ma(s)s™, (291)
we derived the multiplication rule (15)
Aoa, B,
A x Boy=akg, (292)
with the convolution product defined by (13):
v(g) =Ma(s)B(gs™). (293)

After the definition of the concept of irreducible stable
subspaces of the group algebra and the proof of Schur’s
lemma, we reached the relation (77):

T'=MTe(s) AT(s71) =g+ \- I, (294)
where the constant has the value A=( f*)~! Tr {4}.

Putting 4 =A4'T%(g), we obtain the convolution rela-
tion (82):

Tesk A'T8 = ( fo)—16e8 Tr {A'T8}-T=,  (295)

where A’ is an arbitrary constant operator. In terms
of the matrix elements, this gave relation (87):

Tien®k Tt = ( %) 710%861: T’ (296)

For the basic elements of the group algebra defined
through the equivalence Py,*—f*Ti,%, this lead to the
fundamental multiplication rule:

Prm® % P i =8811P . (297)

For symmetry operators satisfying the relation sst=
sts=1, we obtained (Pp,*)"=Pmu* according to (237).
Combination with (297) gives then the following two
relations:

F’IcmmJr xPlnﬂ=6aﬁ5mnPlkﬂ;

Pion®t % HP 1, =898, HP 48, (298)

which are equivalent with the formulas (249) and
(250) basic for the quantum-mechanical applications.
These relations show that functions ®x,*=Pr.*® asso-
ciated with different irreducible representations or with
different columns of the same representation are not
only orthogonal but also noninteracting with respect
to H; products associated with the same column
(e=B, m=n) are further independent of the index m.
Functions ®,* in one and the same row are further
mutually orthogonal and form a basis for the irre-
ducible representation I'*.

The secular equation associated with the functions
$y,® In a specific column 7 was finally shown to be
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dependent only on the characters x* and not on the
individual matrix elements of I'®, and explicit expres-
sions for the characteristic equation in terms of the
convolution algebra were derived. The technique used
seems to be simple and forceful, and the direct connec-
tion between Schur’s lemma (294) and the two basic
formulas (298) in the quantum-mechanical applications
becomes clear and transparent.

The treatment is here confined to finite groups, and
the fundamental tool is the invariant mean. This con-
cept may be generalized to compact infinite groups, and
many theorems here proven for finite groups may in
this way be extended also to the infinite case.

In this connection, it is perhaps worthwhile to
observe that, in the quantum-mechanical applications,
there are two types of continuous groups which are of
essential importance, namely those associated with
translational and rotational symmetry. The main
problem is again to find a resolution of the identity in
terms of a set of projection operators which are idempo-
tent and mutually exclusive. The projection operators
associated with the primitive translations in crystal
symmetry as well as those associated with angular
momenta have been treated in Ref. 1 and in a series of
published papers, and it seems as if all the essential
physical results could be obtained by using these
elementary tools.

In the studies of the spectral resolution of the
Hamiltonian carried out by von Neumann and other
specialists on the theory of Hilbert space, the ‘“resolu-
tion of the identity” in terms of a set of projection
operators plays a fundamental role. We have here used
a similar approach also in studying the constants of
motion, and the “component analysis” of a trial wave-
function turns out to be a valuable tool in the quantum-
mechanical applications.

These ideas are also of importance in generalizing the
independent-particle model, and for a more detailed
study of “The Projected Hartree-Fock Method,” the
reader is referred to an article by Lowdin.?
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