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As a contribution toward the understanding of resonant scattering in general, we examine the potential-barrier reso-
nances which occur in a variety of simple one- and two-channel S-wave scattering problems. The models chosen have
familiar optical analogs which, together with the appealingly simple analytic properties of their scattering amplitudes,
facilitate a uni6ed discussion of such diverse phenomena as the peculiar S-wave "resonances" of a square potential well,
the occurrenceof "resonance circles" in both elastic and inelastic scattering amplitudes, and the large nonresonant maxima
which the descent of the background phase (as a function of energy) can produce in total cross sections.

I. INTRODUCTION

Because each branch of physics tends to develop
its own personal nomenclature, it is not uncommon
for the same physical phenomenon to occur in two
or more fields under entirely different. ames. Standing-
wave resonances provide a particularly striking ex-
ample, and it has long been recognized that the po-
tential-barrier resonances' of scattering theory, the
transmission maxima of a Fabry —Perot interferometer
(band-pass filter), and the appearance of standing
waves in waveguides, transmission lines, and musical
instruments are all manifestations of the same cavity-
resonator principle. Our purpose in revisiting them
here is threefold. First, by examining mathematically
simple models of such a resonator, it is possible to
exhibit in direct and appealing fashion the complex-
energy poles of the corresponding scattering amplitude
(transfer or response function in optical or circuitry
terms) which are "responsible" for the resonance
peaks the function exhibits at nearby real energies. '
Second, these same models show explicitly how the
sharpness of these resonances depends on the reQection
coefficient of the cavity walls, and so explain why a
potential well with a barrier at its edge can have
narrow resonances (below the top of the barrier)
whereas the poles for 8-wave scattering by a well with-
out a barrier hardly produce resonances at all. Third,
if the cavity (of linear dimension E) is highly reflecting
to waves incident upon it from the outside, the non-
resonant part of the phase shift which it induces in the
reQected waves will show a "hard-sphere" type of
energy dependence, 8 ., —AR, a descending back-
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Scientilc Laboratory during the summer of 1965.' But not the "compound nucleus" type of resonance, which
is best considered as an intermediate state in a closed channel,
and is not dependent on a geometrical barrier for its long lifetime.' Analogous analyticity properties are also discussed for similar
models by K. T. R. Davies and M. Baranger, Ann. Phys. (N.Y.)
19i 383 (1962).

ground phase shift which can cause broad "echo"
maxima in the scattering cross section at energies
between resonances. ' ' Consequently, if such a resonator
is coupled to two open channels, it provides a partic-
ularly clear example of the way in which these non-
resonant echoes come to dominate the total cross
section if the resonance is gradually decoupled from
the entrance channel.

Because our primary concern is with resonance
phenomena —including unusual examples such as those
of the square well —it is important to have a universal
and unambiguous de6nition of what we mean by the
(real) energy —or equivalently momentum —of a reso-
nance. A particularly helpful feature of the cases we
consider is that the "optical" approach provides ex-
pressions for all S-matrix elements, as well as for the
amplitude of the internal or trapped wave, in X/D
form, with the sttnte D(k) function (the Jost function
in one-channel cases) occurring throughout a given
problem. From a theorist's viewpoint the zeros,
k„=ks„iy„of—D(k) in the complex-momentum plane
provide the most natural definition of the (complex)
momenta of the resonating states, in customary Sreit-
Wigner fashion. More physically, this suggests using
Re (k ) = ks as the real resonance momentum. In every
case considered here, ko is very near those real mo-
menta at which (a) the internal wave amplitude,

~
A(k) ~, has a maximum, (b) the phase shift deriva-

tive d3/dk (eigenphase if more than one channel is
open) has a maximum, and (c) j D(k) j has a mini-
mum. Since these are all desirable attributes of a
scattering resonance, we adopt this as our dednition of
resonance momentum throughout the present paper.
Although for sufBciently low-energy resonances ko is
also the momentum at which 3—sr/2, there is of
course no reason for this to be true in general; practi-

' J. M. Peterson, Phys. Rev. 125, 955 (1962). See also S. Fern-
bach and R. Serber, and T.B.Taylor, Phys. Rev. 75, 1352 (1949).

4 K. W. McVoy, Phys. Rev. Letters 17, 42 (1965).
s M. Born and E Wolf, PrinoiPles of OPtics (The Macmillan

Co., New York, 1959), p. 662, Fig. 13.14.
6H. C. van de Hulst, &ght Scattering by Small Particles

(John Wiley tk Sons, Inc. , New York, 1957), p. 177.
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Fxo. 1. (a) Potential well and surface barrier, with wave func-
tion at a resonant energy. Note sharp bend of the wave function
inside the barrier. (b) Delta-function potential, showing break in
slope of the wave function at r=a.

cally speaking, a resonance appears as a sharp change
in the energy dependence of a cross section, which
may or may not occur at a maximum. Finally, by
antiresonance we normally mean an energy at which
the amplitude of the internal wave function has a
minimum.

In Sec. II we discuss the scattering properties of a
delta function potential barrier (partially silvered
spherical shell) and in Sec. III generalize this to the
two-channel case. Section IV considers the "resonant"
properties of 5-wave scattering by a square potential
well (glass ball in air) and barrier (air bubble in glass),
and Sec. V examines in detail the inelastic resonances
of a particular two-channel resonator which is the
scattering analogue of a Fabry —Perot etalon. To sim-

plify the algebra we adopt, throughout, units in
which A=c= i.

IE. ELASTIC S-WAVE RESONANCE

A. 5-Matrix Element for a Thin Barrier

Perhaps the simplest example which exhibits reso-
nances is the scattering of a train of ingoing S waves
by a thin spherical shell whose center is at their center
of symmetry. This is an idealization of S-wave scat-
tering by the Schrodinger potential of Fig. 1(a) (often
encountered in nuclear and molecular problems),
which consists of a central attractive region surrounded
by a repulsive barrier at r a. If the central region
is large enough to accommodate integral numbers
of internal half-wavelengths, E„a=ex, at energies
below the top of the barrier, the energies E„correspond-
ing to E„will be resonance energies, at which the
phase shift rises rapidly with energy and

~
f;~&/P, xe ~'

1/T, a number which can become arbitrarily large if
the transmission coefIIicient T of the barrier is made
small at E„.From a wave optics point of view the barrier
may be viewed as a thin spherical shell whose index of
refraction is much lower than that of the surrounding
medium, The two changes of velocity suITered by
waves traveling outguard through the barrier provide

the reQection necessary to trap them efhciently and
permit the buildup of a resonant state. Equivalently,
the barrier can be thought of as providing the high
frequencies and short wavelengths present in the sharp
bend the wave amplitude suffers where its large
internal resonant amplitude joins the small external
amplitude.

If this bend occurs over a 6nite distance, the es-
sentials of the phenomenon become obscured by the
details involving the exact height and shape of the
barrier. A useful and familiar idealization is obtained
by replacing the actual barrier by an in6nitely thin
shell, i.e., a delta-function potential, which bends the
wave function sharply at a single radial distance.
Although the inside attractive well is essential for
bound states, it is unnecessary for resonances, so we

dispense with it and take as our example a single
delta-function potential, 2m V(r) =c5(r—a) .

Such a potential (equivalent to two large velocity
changes in rapid succession) will partly reflect and
partly transmit any wave incident on it; optically it is
a partly silvered mirror. Consequently, 6nding the
radial wave function N(r) = rE(r) of the 5-wave
scattering problem is equi I/erst to obtaining the
standing-wave pattern established by waves incident
normally from the right on a partly silvered mirror
which is backed up by a perfect mirror Lthe node
boundary condition u(0) =Oj at a distance a behind it,
Fig. 1(b). This standing wave is readily found by the
technique customarily used to analyze the Fabry-
Perot interferometer. We find this approach more
useful than simply solving the Schrodinger equation
for a delta-function potential, not only because of the
light it sheds on the resonance mechanism, but also
because the important properties of the scattering
amplitude are more readily extracted by writing it as a
function of the reQection amplitude of the delta func-
tion, p(c), rather than directly as a function of c itself.

By the reflection amplitude we mean the (generally
complex) number p deflned by the condition that the
wave exp (—ikr) incident on a mirror at the origin
produce the reflected wave p exp (ikr) . If the re-
Qection takes place at r=a, the outgoing wave must
be p exp (—2ika) exp (ikr) in order that

pt exp (—2ika) exp (ika) g/exp (—ika)

will still be the ratio of rejected to incident amplitudes
at the mirror; the extra factor exp (—2ika) clearly
represents a reduction in phase accumulation due to a
shortening of the optical path length by the round-trip
distance 2a.' The reQection coefficient of the barrier,
R, which tells what fraction of the incident particles
is reflected, is

~ p j' for waves incident from either the
left or right.

7 If the incident wave is exp (ikr), approaching the mirror
from the left, the reflected wave is p exp (2ika) exp (—ikr).
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T'rovided the mirror does not have a dipole layer of
"charge" on it

I
e.g., V(r) = c6'(r —a) ], the wave

amplitude must be continuous through it. If the
incident wave exp (—ikr) produces the transmitted
wave r exp (—ikr) this means

r exp ( i—ka) = exp ( ik—a) + p exp (—2ika) exp (ika)

or

This is the continuity condition. T, the transmission
coefbcient of the barrier, is defined to be the fraction
of the incident particles which is transmitted; in this
problem T =

I
r I'. If in addition the mirror is non-

absorptive, so that the flux or current of the wave
system is continuous at r=a, the coeKcients also
satisfy the unitarity condition, '

I r I'+
I p I'= T+R= 1, (ib)

which together with (1a) implies

p+p*y2
I p I'=0. (2)

This in turn is equivalent to

I 1+2pI =1
i.e., the complex number p is restricted to lie on the
circle of radius —', which is centered at (——',, 0), Fig. 2.
As p—&—1 along the circle, v —+0 and the mirror becomes
a perfect reflector. Of course if there is absorption,
then

I
r I'+

I p I'(1; in that case
I
1+2p

I
(1.

The reflection and transmission amplitudes for the
delta function potential 2mV(r) = c5(r—a) are directly
found to be

FIG. 3. Multiple internal
reflections within the "thin
film" formed by a perfect
mirror (pp = —1) at r =0
and a partly silvered mir-
ror (delta-function poten-
tial) at r=a. The incident
wave is shown at the top
approaching from the right
with unit amplitude. The
amplitudes of successive
portions of the wave train
are indicated after vari-
ous numbers of reflections
and transmissions.
exp (2jka).

-Tp A.

+T~ X

T(pP. )

-=etc.

I =0 I. = a

implies p
—+—1 or v —+0; a potential this strong is a

perfect mirror. p and p* differ only in the sign of the
potential (assuming c real); an attractive potential
puts p in the upper half-plane. Because of the symmetry
of the potential, the reflection amplitude is the same
for waves incident from either the right or the left.

The steady-state scattering problem for a system
composed of a mirror with amplitudes (p, r) at r=a,
and a perfect reflector (—1, 0) at r= 0 is readily solved
in terms of p by the familiar method of following the
infinitely long wave train through its successive trans-
missions and reflections, as indicated in Fig. 3. The
essential feature of the solution is the "resonance
series" of internally reflected amplitudes,

1—p exp (2ika) +Lp exp (2ika) ]'—~ ~ ~

=
I 1+p exp (2ika)]-', (5)

in terms of which

n; &(r) = Lr/(1+PA)]I exp (—ikr) —exp (ikr)]
—ic/2k

1+ ic/2k' and

= —2iLr/(1+PA) ] sin kr, r(a (6a)

r(c, k) = (1+ic/2k) —' (4)
u,xt, (r) = exp (—ikr)+ I p)t '—

I r'/(1+PA) ]I exp (ikr)

which, of course, satisfy Eq. (1) (for real c and k). By
way of orientation we note that p vanishes when c
does, since no potential means no mirror, and c~~

7 =([+P)
Re(pl

FIG. 2. Complex reQection amplitude p for the delta func-
tion potential of Fig. (Ib), which lies on the circle

~
p+-, ~=

—, if the potential is real. The transmission amplitude r= j.+p is
also shown.

'Equation (Ib) is a general property of any nondissipative
barrier, but (1a) is clearly a special characteristic of an infinitely
thin one.

2ie" sin —(kr+o), (6b)

where 'A(k) = exp (2ika) . With the Jost function

f(k) = 1+pr '(1—X '), the internal amplitude A (k) =
r/(1+PA), is equal to 1/f( k) provided p/—r is an
odd function of k. This will be the case, for example,
if the potential energy is independent of momentum.

The amplitude of the external outgoing wave is the
reflection amplitude for the entire two-mirror system;
its negative is called the S-matrix element for the
S-wave scattering problem,

S(k) —= exp (2i8) = —PX '+Ir'/(1+PA)]
= (1+2p—p) ')/(1+p) ) (7a)

= (1+2P)L(1+P& ) */(1+P~)] (7b)

where p+p*+2
I p I'=0 has been used to obtain (7b)

which is valid only if c(and k) are real. For the re-
mainder of this section we consider only this case, for
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Fro. 4. Energy dependence of S-wave phase shifts for scattering
by a momentum-dependent potential of the form 2mV(r) =
c(k)h(r o), w—ith c=csk. The positive phase shift is for cp&0
and the negative one for co&0. co—+~~ gives the hard-sphere
phase shift S(k) = —ko(mode), and cs ——0 gives S(k) =—0. The
intermediate curves shown are for co= &7.

Narrow Resonance Broad Resonance

On
Re~ onance—

Sllqhtly Off
Resonance

FzG. S. Complex vector diagram indicating the addition of
successive amplitudes of waves reQected internally from the
walls of the thin film of Fig. 3. On resonance the ratio of succes-
sive amplitudes, o~&/o» is the real number

~ p I
which is nearly 1

for a narrow resonance (large sum) and «1 for a broad reso-
nance small sum). Slightly off the resonance energy the ratio
is still p ~

in absolute magnitude, but has a small phase. This
causes the sum to decrease drastically from its on-resonance
value because of destructive interference or "curling" in the
narrow case, but it decreases very little in the broad case.

which A(k) =1/f*(k*) = exp (ib)/I f(k) I. From, this
last form it is clear that

I
S I'=—1, or the phase shift 8 is

real, as it must be for a nonabsorptive scatterer. We
note that S=+1 (b=0) whenever X=+1 or ha=vs. ,
a peculiarity of this model, due to the fact that the
interaction is concentrated entirely at r = a, and causes
no scattering if the wave pattern has a node there.
The nonresonant term —p exp (—2ska) (due to the
initial reflection of the incoming wave) is the only one
to survive if p—&—1 and v —+0; this mak. es the delta
function a perfect mirror and so gives 8= —ku.

The more detailed properties of 8(k) involve the
energy dependence of p and would clearly be simplest
if p were constant. This is the analog of a frequency-
independent index of refraction. It is readily achieved
if we are willing to admit a momentum-dependent po-
tenttal strength, i.e., c proportional to k, so that the
tran&mission coeKcient T, which normally approaches
1 at high energy, is instead held constant. In the
inter. st of simplicity we examine this case, and obtain
the phase shifts of Fig. 4, which contain p simply as a

F&G. 6. Amplitude-squared of the internal wave function for
the thin film of Fig. 3 as a function of bombarding energy, showing
narrow resonances when the barrier is highly impenetrable
(cs= —6) and broad ones when it is transparent (cs= —1).

constant parameter. They are periodic in ka in this
case and vary between the extremes of the sawtooth
shape obtained for p= —1 (perfect reflector) and
5(k) =—0 for p=0.

The most significant property of this example is the
set of sharp resonances which occur for ka slightly
less than ns (approximating the bound state condition
of a node at r=a) if the barrier reflects strongly and
transmits little. The fact that low transmission will

yield a long resonance lifetime and hence a narrow
emitted line follows from the uncertainty principle
for an arbitrary resonator, but can be seen quite
dramatically for cavity resonators from the traditional
vector diagram of physical optics, Fig. 5, which follows
graphically the summation of the resonance series of
complex numbers (vectors), Eq. (5).

Although the summation of this series only affects
the phase. of the outgoing wave, it has a spectacular
effect on the wave inside the cavity, whose amplitude

A(ka) =r/I 1+p exp (2ika) )
can build up to an arbitrarily large value at a narrow
resonance.

The k dependence of
I A(ku) I', Fig. 6, is readily

understood from Fig. 7, which shows how
I 1+pX I

oscil-
lates as pX travels around a circle of radius

I p I
and

produces the amplitude

=
I
r I/(1 —

I p I) = LI r I (1+ I p I ) ]/I r I'

= (1+ I p I )/I r I, (9)

in the resonance region. Mathematically this amplitude

Fro. 'P. The path fol-
lowed in the complex plane
by p) as the energy in-
creases is shown as the
dashed circle; the p circle
of Fig. 2 is included for
comparison. Note that the
vector L1+pX(k) ], which
is essentially the Jost func-
tion for the potential of
Fig. 1b, becomes very small
at resonance (p) real and
negative) if ~p( is close to 1.
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becomes large as
~
r [~0 because i p i

—+1 and the series
(5) diverges. Physically, the successive terms of the
series are the amplitudes of successive rays traveling
in the same direction; at resonance (p) real and nega-
tive) they are in phase and add up to a very large
number if successive terms are nearly the same size,
which they can be only if the leakage out through the
delta function mirror is small at each reQection. In the
antiresonance region successive rays are out of phase
and the sum of the series is small by cancellation
(destructive interference). The phase-shift oscillations
can also be followed in Fig. 7 by noting from Eq. (7)
that (1+pX) is proportional to exp (—ib), so that
its phase is —5 to within an additive constant.

Since one is accustomed in potential scattering
theory to associating resonances with potential barriers,
it is somewhat surprising to note from Eq. (9) and
Fig. 4 that equally good resonances are obtained for
c)0 and c(0(p or p*), i.e., for a potential barrier
and a potential ditch. The only essential feature is the
high reQection and low transmission of the double
velocity change, which is provided as adequately by
the "attractive" potential as by the "repulsive" one.
As illustration, Fig. 8 shows wave functions for a
highly reflecting ditch (c(0), both at resonance
)where 5(k) passes steeply upward through s./2j and
at antiresonance Lwhere 5(k) passes slowly downward
through w/2$.

The other signi6cant feature of the phase shifts of
Fig. 4 is their behavior between resonances, which is
very like the phase shift due to a hard-sphere scatterer.
This "background" phase shift comes largely from the
6rst reQection of the wave from the outside of the
sphere and so can be expected from any scatterer with
a fairly strong external reQection coef5cient. The
momentum-spacing between resonances for this simple
delta-function barrier is A(ku) =w, which Fig. 4 shows
to be enough to permit this hard-sphere e6ect to bring
the phase shift down by just the amount of its rise at
the preceding resonance. Consequently, if the resonance
is strong enough to force the phase up through w/2,
it must descend through w/2 at a higher energy. As

=rIW

. . ka

lA l

„ka
2 II

Fro. 9. Sin'8(k) for the co= —'/ phase shift of Fig. 4, showing
resonance and echo maxima. The pole and zero position of the
S matrix are also shown, as well as the l A P curve of Fig. 6,
indicating that the internal wave function is smallest (anti-
resonance) in the echo region.

Fig. 9 shows, this gives sin'5, which is k' times the
partial wave cross section, a large, very broad, non-
resonant maximum between each pair of resonances,
located exactly at antiresonance fka= (a+sr)w, where

~
A ~' is at a minimum] for a highly reflecting barrier s

Just as the Wigner —Eisenbud interpretation of
do/dE's implies that the energy widths of the resonance
maxima in the cross section measure (inversely) the
time delay of a wave packet (or the lifetime of the
associated state) scattering at resonance, it equally
implies that the widths of the antiresonance maxima
measure the time advance of a packet scattering at
that energy. These antiresonances are a well-known
aspect of the scattering of light by dielectric spheres";
they also occur in energy-averaged neutron-nucleus
total cross sections, where they have variously been
called "Ramsauer maxima", ' "echoes'" and giant reso-
nances.

For comparison, Fig. 10 shows the scattering proper-
ties of a strongly repulsive, egergy indepemde-mt delta-
function potential. Because the reQectivity of this
barrier decreases with increasing energy, the p)-circle
of Fig. 7 becomes a decreasing spiral, and the oscilla-
tions in b(k) damp out as the energy increases. The
resonance maxima in the internal wave amplitude
(which persist even when the phase shift no longer
oscillates through —90') of course broaden with in-
creasing energy.

Incidently, it is interesting to note that if the total
intensity

~

S ~s of the reflected waves were measured
(as, e.g., in a one-dimensional thin film interference

Vfr) Vfr)

Resonance Anti —resonance

FIG. 8. Wave functions for a highly reQecting potential ditch,
at resonance and at antiresonance. The phase shift is approxi-
mately +s/2 in both cases.

9 If the wave in the internal region had momentum E, the
resonance spacing would be determined by n(Ea) =s. If E»k
and the well has many bound states, n (ka) = (E/k) n (Ea)»s;
and several antiresonance maxima will occur between resonances;
whereas if X&A (repulsive potential), h(ku) &x and there are
no such maxima between resonances.

~o L. Eisenbud, dissertation, Princeton University, June 1948
(unpublished); K. P. Wigner, Phys. Rev. 9g, 145 (1955)."See, e.g., the discussions in Refs. (5) and (6) .
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and

case; since
) p exp (2ikva) (

= 1 and in general ( p )(1,
they will lie in the lower half k plane. The limiting
case p—+—1 is discussed below.

From the pole condition

exp ( 2—sk~a) = —p=—( p ~
exp (ig), (10)

(with P)0 for a barrier, /&0 for a ditch) it follows
that the pole positions k~=ko —iy are given in terms
of the phase and magnitude of p by

kpa = —,'rtIa rIIr—

.l2- (P

.10-

.09.

.07.

.05

ka/~ the last approximation being valid if
~
r

~
&& 1, i.e., low

barrier transmission and narrow resonances. " The
corresponding pole in the complex energy plane is at
Ev =k„s/2m= (kp' 7s) /2m— i kpy/m—, so the energy
width of the resonance is I'/2 =kp7/res and its lifetime is

1/I"= rII/2k, 7 (2a/s, ) i ]
-', (12)

.04.

.03

.Ol.

0
0

-.03
. .02
- .OI

2 3 4 5 6 7 8 9 IO

ka/m
Figure fO

Fro. 10. Scattering characteristics of the energy-independent
S-function potential 2mV(r) =ce(r —o), with ca=+40. (a) Phase
shift, (b) square of internal wave amplitude and (c) cross sec-
tion, all as functions of the bombarding momentum. The reso-
nance maxima are distinct from the echo maxima (which pre-
cede them in this case) only as long as the reQection at the bar-
rier is strong enough to cause the amplitude of the phase shift
oscillations to exceed 90'.

experiment), it would show no energy dependence at
all, for the system absorbs nothing and

~
S(k) ~'—=1.

Both resonances and antiresonances appear in the
three-dimensional case only because a detector outside
the incident beam measures the intensity

~

1—S ~' of the
scattered part of the outgoing wave (which depends
on the phase 25 of S); the "1"represents the incident
beam in the three-dimensional interpretation. It is
basically the ability to distinguish the scattered
spherical wave from the incident plane wave which
makes the phase of S readily measurable in three-
dimensional scattering, and so produces both the
resonant and the nonresonant maxima in sin' B(k).

B. Analyticity of the S Matrix in the Case that p is
Indeyendent of 0

The relation of the scattering resonances to the
complex poles of S(k) is very straightforward, for the
poles occur at those complex momenta at which
$1+p exp (2ika)j vanishes, and it is evident from
Fig. 7 that it very nearly vanishes at the real momenta
corresponding to resonances, provided that the reso-
nance widths are narrow. The pole momenta k~, in
other words, are only slightly o6 the real axis in this

i.e., longer than the free-particle transit time across the
sphere by the factor 1/~ r ~s. Incidently, since p depends
only on

~ p ~, the width of the resonance is the same for
an attractive (c(0) and a repulsive (c)0) well.

The complex zeros of S(k) are obtained in similar
fashion and are found to be at the conjugate positions
to the poles, k.=k„*,"as they must be for any elastic
interaction. Consequently, the pole-zero pattern for
the S matrix of a frequency-independent spherical
mirror is the very simple periodic one shown in Fig. 9. If
p~o, the poles and zeros move o6 to ~i~, where they
exactly cancel the essential singularity exp (—2ika),
and 8(k) =—0. Conversely, if p—+—1, the poles and
zeros move onto the real axis, where they annihilate
each other in pairs. leaving only the hard-sphere term
in S, 8= —ka. It is only if A ~

r ~s&&rr that the resonance
widths will be much less than their spacings, allowing
the poles to produce distinct peaks in A(k) and in
the cross section.

III. THE GENERAL THREE-REGION OR
TWO-CHANNEL PROBLEM

Before discussing further examples, we pause briefly
to work out the solution to a slight generalization of

"The relation ) p(k) P+) r(k) s= l, valid for real k, cannot be
analytically continued into the complex k plane and so is not valid
at an arbitrary pole position. However, if (r ~&&1, the pole is
very near the real axis; by continuity the relation is nearly satis-
Qed in this case, and has been used in Eq. (11b).» The momentum dependence assumed for the potential
strength has destroyed the time-reversal invariance of the Schro-
dinger equation and removed the customary symmetry of the
pole-zero distribution about the imaginary k axis. This "doc-
toring" of the barrier to make it equally reQective at all energies
also accounts for the fact that all resonance widths are equal.
For a barrier of finite energy height Ez, e.g. , those poles with
Re Ez&L&& would be far oG the real energy axis, i.e., have very
large widths and so be swamped by the "background phase",
bbgd ———ku. The only resonances seen in the scattering cross
section would occur for E&&E~, where the transmission coeKcient
of the barrier is low.



McVoY, HELLER, AND BQLsTERLI Potentiat We/l Resonances

the above two-mirror situation, which solves a variety
of problems in one fell swoop.

The generalization (Fig. 11) gives the wave a
momentum E in the internal region which may be
diferent from its external momentum k, '4 so that the
transmission amplitude v-~ across the interface from the
inside out is in general different from v~, the trans-
mission amplitude from the outside in. In addition the
reQection amplitude p2 of the mirror or interface at
r=0 is allowed to be different from —1 so that the
waves can leak through to the r(0 region, giving a
net Aux through the system. Looked at as a one-
dimensional problem, it is a simple thin film or Fabry-
Perot etalon. Considered as the radial part of a three-
dimensional scattering problem, the r(0 region is
not to be ascribed geometrical reality; it is merely a
familiar"" device for representing a second scattering
channel, so that not all the Qux incident from the
right (channel 1) returns to that channel. If —Su
exp (ikr) is the reflected wave in channel 1 and
S» exp ( ikr) the—wave transmitted into channel 2,

the unitarity condition (assuming the system non-
dissipative) is'r

S» lsg
I S» (13)

] p /s+ (k/E) f
r [s=1

for a wave traveling from E to k, or

f p /'+ (K/k) f

s= )'= 1 (14b)

for one going from k to K. ( p ~'=
( p ~s=1 r*i —are

well-known consequences of time-reversibility, which
together with (14) imply that

r= (k/K) r.

The transmission coeKcient of the interface is

so that in general
~

Srr ~'(1, i.e., Su(k) [as well as
S»(k) ) lies inside the unit or unitary circle.

The p's at both interfaces are defined exactly as
before, as are 7- and v at the r=0 interface. At r=a,
however, we choose the phases of r~ and v=~ so that the
K-to-k transmitted wave is rr exp [s(K—k) a] exp (ikr)
and the k-to-K wave is 7r exp [i(K k—) al exp (—iKr) .
This makes all p's and 7's independent of a and preserves
the form of the continuity condition r=1+p(and
=r1+p). The Aux-conservation condition at either

interface becomes

T= (k/K) [ T
[
= (E/k) ]

r['(16)

Repeating the above argument, the steady-state
(traveling, not standing) wave pattern is

r=O

FIG, 11. Generalization of the thin~6lm of Fig. 3 to the two-
channel situation in which both interfaces are partially trans-
parent and the internal index of refraction is different from the
external. The incident wave again enters from the right (chan-
nel 1) with unit amplitude. The transmission amplitudes from
the external channel regions into the cavity have a tilde, those
from the cavity out to the channels do not. ~ = (A/X) & =
exp Li(E—k) oj.

and

lt r = exp (—ikr) —Str exp (ikr),

P;„t——A[exp (—iKr)+ps exp (iKr) j, (17)

Ps= S» exp (—ikr),

Su(k) = —p&X —[F&psrr/(1 —p&ps'. )$(h/X), (18a)

'4 If the dispersions in the two regions are given by the non-
relativistic expressions E(k) =re (k) =k'/2m and co (k) =
E'/2ra+V, the group velocities are v, =k/m and s,=E/m, i.e.,
the "particle velocities. " The phase velocities, on the other hand,
co/k and &o/E, are inversely proportional to the wave numbers,
for or=a™)by energy conservation. In drawing analogies between
optics and potential scattering it is the phase velocities which
are to be compared, since they govern both the direction of re-
fraction and the accumulation of phase over a given path length.
An attractive square well, for instance, corresponds to an optically
dense object, for even though the group velocity is higher inside
than out, the phase velocity is lower.

"C.E. Porter, dissertation, Massachusetts Institute of Tech-
nology (1954).

"W. Tobocman and D. E. Bilhorn, Phys. Rev. 115, 1275
(1959). It should be recognized that this model of a two-channel
situation su6ers from a certain lack of generality, in that the
absorption out of channel 1 is localized geometrically at the origin,
r=0. This does not seem to strongly influence the scattering
amplitude S»(k), whose properties are very similar, e.g., to
those of a surface-absorption potential (Ref. 4).

A (k) = [;,/(1 —p,&,X)j(a/) )'*,

S»(k) =rsA (k);

(18b)

A= exp (2iKa), X= exp (2ika). (18c)

The most important general property of the solution
is that its resonances, determined by the condition
that

~
1—prps exp (2iKa) ~

be minimized, occur at those
energies which make the phase of prps exp (2iKa)
approximately equal to 2w, provided

~ prps
~

is not
varying rapidly with energy. This is the eminently

u More generally, ) Su P+(ks/4) ( Ss& )=1, where k& and ks
are the "channel momenta" in the two outside regions. By
choosing &1=02=k, our simple model makes the channel thresh-
olds equal: at any positive energy the system both rejects and
transmits.
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Q= (2't+2's) ', (20)

where T= (k/E) I
r I' is the transmission coefficient

of an interface.

IV. THE SQUARE WELL AND BARRIER

A. S-W'ave "Resonances" in a Square Potential Well

A deep square potential well, V(r) = —Vs for r&u
(a sphere of high index of refraction in optical terms),
is an example of a cavity resonator whose Q value is
large, but which does not have S-wave scattering
resonances in the usual sense. By this we mean that
its S-wave phase shift exhibits no resonance rises as a
function of energy, as shown in Fig. 12, so that by the
Wigner-Kisenbud interpretation of de/dE there are
no energies at which the wave is trapped by the cavity
for a significant length of time.

This is because, although the velocity change (im-
pedance mis-match) at its surface produces the external
reQection amplitude

p= (k—E)/(k+E), (21)

which approaches —1 (good reRection) if k/E'«1, the

reasonable condition that the total phase acquired by a
wave in one round trip between the reQectors be 2x, so
that the incident wave and that reQected internally
are in phase and add constructively. In the delta-
function example of Sec. II p2= —1, and p»

—1 if it is
a good reQector. The resonance condition is then
Eu +, a node near the erst reflector (half-wave plate) .
However, if pt is real and positive (as it is, e.g., for an
attractive square potential well), resonance requires
exp (2iEa) =—1, the quarter-wave plate condition of
an antinode at the first interface. Such a cavity,
depending only on impedence mismatch (a single
velocity change at the interface) for its reflections,
leaks so badly it cannot develop substantial scattering
resonances, as we discuss in detail in the following
section.

Finally, we note that a consideration of the proba-
bility-conservation equation fj dA = —(d/dt) fpd'r =

dP/dt, —for the case that P(t), the total probability
inside the cavity, decays exponentially in time LP(t) =
Pp exp ( t/t) j,—yields the important result that the
lifetime t of an isolated narrow resonance is given in
terms of the (inside-to-outside) transmission am-
plitudes by the two-channel generalization of Kq. (12),

fs/(I rt
I + I rs I') (19)

where fs=2u/v=2am/k is the round-trip time inside
the cavity at the external or free-particle velocity.
Stated in other terms, Kq. (19) says that the Q value
of the cavity, defined as the number of internal round
trips the particle makes (at velocity E/m) in one
lifetime t, is

inferna/ reQection coefficient of the same barrier is

p= (E—k)/(E+k) (22)

which approaches +1 under the same conditions.
Consequently, the IC-to-k transmission amplitude,

v =2E/(E'+k), (23)

approaches 2 rather than zero as k/E~O. rs According
to Kq. (19) (with rs =0 fo—r this one-channel potential),
the lifetime of a "resonance" in this region is only half
the free-particle transit time across the interaction
region —and this in spite of the fact that the Q value
of the cavity, Kq. (20), is very large. The number of
internal reflections, m E/k, although indeed "large, "
is only large enough to compensate for the higher
velocity of the particle inside the potential, so that the
interaction introduces no net trapping or delay time.

The high Q does imply that the system has good
internal or cavity resonances, i.e., sharp maxima in
the amplitude of the internal wave LKq. (18b)j,

I
A I'= L1+ (Es'/k') cos' Eag', (24)

(E'=Ess+k' and Es'=2mVs), as seen in Fig. 12.
Because p +1 (no phase change upon internal reflec-
tion from the surface), the system is equivalent to a
quarter wave plate, with resonances I Kq. (24)j
whenever

Eu= (e+s)a., (25)

the condition for an antinode at the surface, which
makes the internal and external amplitudes equal. We
note that if (in order to get sharp cavity resonances)
t/ pc is so chosen that Epu Xx))m," then the mo-
mentum spacing between the lowest resonances is
A(ka)~fm(2N)'* where f is of order unity and de-
creases (resonances closer together) as k increases.
This spacing can be many times m. Because of the
high external reQection, the phase shift descends at
nearly the hard-sphere rate, 8(k) 1@a—ka, so that
it passes downward through e/2 roughly (2X)& times
between resonances, meaning that both sin' 5(k) and
o(k) are dominated by the many Ramsauer or echo
maxima which occur between each pair of resonances.

The reason that the resonances of this potential
produce nothing more than small shelves on the Qank
of the descending background phase shift is readily
understood from the well-known fact" that the poles of
the Smatrix in the range (1Vs.)&« Re (k„)«1Va., which
are directly "below" the resonance peaks in

I A(k) Is,

are not arbitrarily close to the real axis but rather lie
nearly on the line Im(k) = s/a Beca—use th. is makes

"Of course the outgoing Qux (k/m) ~
r P—4, but only because

the external wave comes to a halt in this limit.
+ If (N ft) s'(Igloo(—(N+~s) s; the potential has N bound

states.
~ H. M. Nussensveig, Nucl. Phys. 11,499 (1959).
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Fro. 12. (A) S-wave scattering properties of a (very deep) square potential well, Eoa=25.4999 z. (a) The square of the amplitude
of the internal wave (for an incident wave of unit amplitude), Eq. (18b), showing its well-separated resonances in the low energy region
where k«X, and their relation to the zeros of S(k); the pole positions, not shown& are conjugate to the zem positions, with the ex-
ception of the one responsible for the 6rst maximum, which is on the negative imaginary k-axis. Note that the momentum widths of the
lowest resonances are all equal to 1/a. (b) The S-wave phase shift Bp(k) .For k«Kp, it descends at very nearly the Wigner hard-sphere
limit between the "resonances, "which appear as small shoulders of width A(ka) =1 on this descending curve. 80(k) descends through
6s (six echos) between the first two resonances. (c) sin'bo(k), showing the many echo maxima produced by the descent of the phase
thmugh vr/2. The "resonances" do not appear as maxima, but merely as slight irregularities in a sin' (ka) pattern. Note that the first
maximum falls short of unity because the value of 80 (k) at its maximum is less than z/2. (d) The S-wave total cross section, showing
echo-maxima and resonance "shoulders. "

(B) S-wave resonances produced by a square potential barrier. (a) Resonance maxima in ) A P at energies just above the barrier;
the in6nite peak exactly at the top of the barrier is not a resonance but a spurious consequence of the de6nition of A. Note that the
poles are closer to the real k axis than in 12 (A). (b) The S-wave phase shift, showing resonant rises at the pole momenta. Because the
barrier used is rather low, Too=1.8z., the resonances are broad, and the change in the background phase (—ka) over a resonance width
is large enough to reduce the net rise in 80(k) considerably below z., even for the first resonance. (c) sin'8, . The strongest resonance
appears as the sharp dip caused by the phase rising through —z at ka/z. =2.
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the resonance widths" small compared to their spacings,
the one-pole or Breit—Wigner approximation for S(k)
is valid near each resonance,

(k —kp —(i/a)
S(k) exp (—2ika)

~
. (26)4 —kp+ ia

Writing 8(k) = —k4s+8s(k) corresponding to these two
factors, and noting that bs'(k)(+a, we see that
8'(k) (0 in this approximation, with zero slope occur-
ring exactly at the resonance momentum ko. In other
words, the internal rejections from the velocity change
at the cavity surface do give Bs(k) a resonant-type
behavior, but one so weak it is barely able to halt the
descent of the phase shift due to the nonresonant
hard-sphere scattering. " Of course, if there were a
barrier (e.g. , centrifugal) at the surface of the well as in
Fig. 1(a), the resonances could be made much stronger,
just as the transmission resonances of a Fabry —Perot
etalon are sharpened by silvering its faces.

In summary, if a resonance is to produce a significant
maximum in an elastic scattering cross section, its
mometstsem width must be small compared to (a) the
resonance momentum ks, (b) the spacing Ak between
resonances, and (c) 1/a, the reciprocal of the range of
the interaction. The square well potential (and any
other of the same general shape, such as the Woods—
Saxon well of nuclear physics) is an example of an
interaction whose "resonances" can satisfy (a) and
(b) but not (c), corresponding to the fact that their
"lifetimes" are actually shorter than the free-particle
transit time across the well."

B. The Square Barrier

The basic reason the square well fails to develop
scattering resonances is that such a cavity, although
nearly impenetrable from the outside at low energy, is
leaky from the inside. Exactly the reverse situation is
obtained if the well is inverted to make a repulsive

»Their momentum widths I/u are nearly equal, but their
energy widths I'~key/m decrease as the resonance momentum
kp decreases.

"The tails of other resonances actually conspire to give S(k) a
slight maximum at k=kp, but it is entirely insigni6cant for all
resonances but the erst, at which 8(k), with the help of a second
pole at —ke —4/44, can rise by as much as 4r/2. One might well ex-
pect this lowest-energy resonance to produce a resonant rise of
~4r in B(k), but the boundary condition at r=44, E cot Ea=
k cot (ka+8), implies that b=(n+~)m —ka whenever Eu=
(e+-,') x, so for small ku, 5 is slightly less than an odd multiple
of ole-half 4r at resonance; a slightly more elaborate argument
shows that the initial rise of B(k) never exceeds 4r/2. The boun-
dary condition also shows directly that db/dk= 0 whenever Er4=
(n+~)x, an alternative indication of no time delay at "reso-
nance. " Incidentally, the initial rise of b(k) never causes a maxi-
rnum in 0.(k), which falls monotonically from k=0 to the first
echo.

"In one dimension, the transmission cross section (into the
channel 2 region, r(0) for a square well does exhibit maxima
at the pole energies, for S»(k) =~2(k) A (k) and v2(k) is slowly
varying. Because of their very short "lifetime, " it is @ moot point
whether they should be called resonances,

barrier, V(r) =+Vs, r(a (optically, an air bubble
in glass).

If the incident energy is just greater than the top
of the barrier, it is now p (internal reflection) rather
than ™pwhich is near —1.As discussed in Sec. III, such
a cavity is a half-wave plate. The long wavelength
is on the inside, and true scattering resonances can
develop whenever a node occurs in the wave function
near r = u. The phase shift and other relevant quantities
are shown in Fig. 12, which indicates that the system
behaves like a nearly perfect external reflector (8 —ku)
for energies below the barrier, but exhibits rapid
resonance rises in 8(k) just above the barrier. These
resonances are very narrow if the barrier is high

t Im (k„) 1/Esa'j, "but overlap more and more as the
bombarding energy is increased above the barrier,
merging into the smooth asymptotic behavior 5~0
required at high energy by Levinson's theorem. '4

Although the cross section of course has echo maxima
at energies below the barrier, in the resonance region
the poles are too closely spaced Ph(ka) (xj to permit
them to occur.

V. TWO-CHANNEL OR FABRY-PEROT
RESONANCES

Re (k,a) = ——,'(4tr+Ps) anvr

Im (k,a) = —,
' log

~
p,ps ~

= —,
' log Rt+-,' log Rs

(2/a)

4T] 4TQp (27b)

the last approximation being valid only if both Tj«1
'4 Equation (24) becomes ( A )=[1—(Ee'/k') coss E44j ',with

IC'=k' —Kp' in this case. Consequently A —& at k=X&, but this
maximum is "spurious" and merely indicates that E=0(N (r) =
const. Xr for r(u) at this energy. Unless Epu=1V'm, thc 6rst
resonance is at the seco44d maximum in

~
A )'.

Many general properties of inelastic resonances are
conveniently illustrated by the Fabry —Perot etalon or
two-channel cavity of I'ig. 11. In particular, since its
elastic scattering cross section exhibits echo maxima,
it provides an example of the way in which these
nonresonant peaks can dominate the elastic (and total)
cross section if the true resonances are decoupled from
the entrance channel.

The simplest possible model is obtained by using a
"hollow" cavity, E=k, whose "walls" are delta-
function potential barriers with strengths proportional
to k, so that both pi and p2 are independent of k and lie
on the circle of Fig. 2 described by ~

1+2p,
~

= 1.
The partial widths for the decay of a resonance into

the two channels are obtainable, e.g., from the positions
of the poles of the S matrix. Since these occur at the
zeros of the denominator of the S;;, which according to
Eq. (18) is 1—p&ps exp (2ika), they are located at
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and Ts«1"; Q, is the phase of p, . Consequently, in
agreement with Eq. (19), the total energy width of a
narrow resonance is

exp (—2ik, a) = —(1+2p,) (p,/p, ) .

They lie directly above the poles, "at a distance from
the real k axis given by

Im (k.~) = l log (ns/pt) =-'(Ti—Ts) (30)

and so are in the upper half k plane if F~) F~ and in the
lower half if F&(F2,. if the cavity is coupled equally
to the two channels, the zeros of S~~ occur at real
energies (in fact, exactly the resonance energies) .
Note that E,—E„—iFj, the entrance channel width.

These properties agree, of course, with the Breit-
Wigner approximation for S~~ near a resonance,

Sii(E) = exp (2ig)
~

1 —i E —Es + i(F/2) j

E —Ep+ iL(F/2) —Ft]
E —E, + i(F/2)

(31)

whose zero and pole have the same real part Eo and are
separated by the energy iF&,' the zero is on the real
axis if the resonance is half in the entrance channel,
Fi——F/2. (g is the slowly varying background phase. )

Alternatively the B—W approximation can be written
in terms of the resonant part of the eigenphase con-
cerned, defined by the pole parameters according to

tan b, (E) = F/2(Es —E). (32)

As a function of 5„, the Breit—Wigner expression is

S-s= exp (2') I ~-tt+ (F-*F8'/F) Lexp (»~ ) —13I.

(33)

Since 5„(E) rises from zero to a. over roughly the energy
interval 2F, Eq. (33) indicates that the complex
"This is a general property of narrow resonances; the fact that

it holds for all resonances in this case is a peculiarity of the model.

where Is=2am/k is the free-particle transit time across
the dimensional cavity. The partial widths are con-
sequently

(29)

i.e., proportional to the transmission coefficients into
the corresponding channels.

As for zeros, Sst(k) has none and those of Sii(k)
occur at the solutions of

number S s(E) travels around a circle of radius
(F Fp)'*/F(&-', for cr/P) over the same energy range.
At antiresonance, 5„=0 or m, this circle passes through
the origin in the S p plane for off-diagonal elements,
and is tangent to the unitary circle tat the point
exp L2+(Es)]I for diagonal S-matrix elements. In
S it coincides with the unitary circle for an elastic
resonance, and shrinks in size as the entrance channel
is decoupled from the resonance.

These properties are clearly illustrated by Figs. 13
and 14, which show the complex trajectories followed by
the S-matrix elements of Eq. (18) as the bombarding
energy is varied, as well as the corresponding elastic
(1—+1 reflection) and inelastic (1—+2 transmission)
cross sections. Because p~ and p2 are independent of k in
this model, Sii(k) and Sst(k) are again periodic, so their
complex trajectories close after one period.

In Fig. 13 the entrance channel barrier is taken to be
highly impenetrable (Ti=0.1), and the three columns
correspond to different choices for the "inelastic"
barrier. ' More exactly, we have chosen Im p&) 0
(ditch) and Im ps&0 (barrier). This corresponds to
the boundary conditions of a Fabry —Perot etalon and
makes the resonances occur exactly at ha=a~ in the
symmetric case, Fi ——Fs(pt ——ps* or Qt

———Ps) .
In Fig. 13(1) both barriers are highly reflecting, the

second even more so than the first, so the resonances
are narrow and have their widths predominantly in
channel 1. S»(k) shows a nearly elastic resonance
circle )rapidly increasing phase, caused by the second
term of Eq. (18b)j followed by an echo circle Lslowly
decreasing phase, due to the first term of Eq. (18b)j,
while S»(k) (which would vanish identically if Fs
were zero) has only a small resonance circle. The
elastic cross section,

~
1—S,i ~', has alternating reso-

nance and echo maxima as a function of energy, while
the reaction cross section or 1—+2 transmission coeffi-
cient ) Sst j'=1—

( Sii ~' shows small resonance peaks
but of course no echoes, since they are caused by the
phase of S~i, to which the transmission cross section
is insensitive.

Figure 13(2) shows a good Fabry —Perot etalon or
band-pass filter. Because the cavity is coupled equally
to both channels, Sii vanishes (and

~
Sst

~

=1) exactly
at resonance, so the transmission is perfect, and
nothing is rejected into the entrance channel. '~ Further-
more, both partial widths are small so the transmission
peaks are narrow and well-separated in energy. Since
the resonance circle in S~~ has shrunk to half its elastic
size, however, the resonance peaks in the elastic cross

'6 We have chosen the case of 6xed FI and increasing F2 as an
illustration because it corresponds closely to the way in which the
partial widths predicted by an optical potential vary as the ab-
sorptive part of the potential is increased from zero.

'r The scattered intensity in channel 1,
~
i —S„~', is of course

not zero in this case, but in fact equal to the intensity in channel 2.
Cf. the comparison of the one-dimensional and three-dimensional
interpretations at the end of Sec. IIA.
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Fxo. 13.Two-channel scattering properties of a Fabry —Perot etalon with a strongly silvered front surface (Tx =0.1);both the front
and rear transmission coefficients are taken frequency-independent. In column (1), 2'& ——0.01 and the resonance is predominantly in
channel 1; in column (2) (Ts = T&) it is equally coupled to both; and in column (3) (2's= 0.97) it is predominantly in channel 2. Row
(a) indicates schematically the relative strengths of the delta function potentials at the faces of the device for these three cases. (b)
The path followed in the complex plane by Sn(k) as the energy increases. The resonance and echo energies are indicated along the
trajectories; in addition the points at which ka/z =zero, 0.03 and 0.3 are marked by (0) and the two arrowheads, which are repeated on
the other diagrams as well. In column (3), "E"indicates the point at which k.=Re (k„),where the weak maximum occurs in the reac-
tion cross section. The resonance circle appears clearly in columns (1) and (2), but has vanished from S» completely in column (3);
it would of course appear in Sss. (c) The Ssx trajectory, showing a resonance circle which is largest in the case of equal coupling to the
two channels. (d) The S-wave elastic scat tering cross section (times k'), indicating how the narrow resonance maxima disappear as the
partial width is transferred out of the entrance channel; the nonresonant echo is largely unaffected. (e) The reaction or transmission
cross section Lwhich is also proportional to

~
A P, Eq. (18c)j, showing resonance maxima which broaden as the poles and zeros (also

indicated) move downward. Perfect transmission is possible only when Px=I'&.
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Fro. 14. Same as Fig. 12(A) but with the front surface of the etalon weakly silvered (2'r=0.8). Since the cavity leaks through the
entrance channel, it cannot develop narrow resonances for any value of F2. The arrowhead on all diagrams marks the pole momentum,
k=Re (k„), and k=0 is indicated by 0.

section are down by a factor of 4; the nonresonant
echo maxima are not greatly aGected by the opening
of the second channel.

In Fig. 13(3) the cavity is allowed to leak strongly
into channel 2. This broadens the transmission peaks
until they overlap, and moves the resonances so
heavily into channel 2 that they are in eGect decoupled

from channel 1 altogether (I't/I'((1), with the con-
sequence that S» executes almost pure echo circles.
t ps-+0 removes the resonance term of Srt in Eq. (18a),
leaving Srr(k) = —pt exp (—2ika) exp (—2ika) j
The only significant structure remaining in the energy
dependence of the elastic (and total) cross section is
provided by the echoes, i.e., the system scatters
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almost exactly like an impenetrable (hence nearly
elastic) sphere. "

Figure 14 shows the less interesting situation in
which the entrance-channel barrier is very transparent
(Fr=0.8), so that good resonances cannot develop
no matter what I's is. In 14(1), I"s is chosen practically
zero to give nearly elastic scattering in channel 1, but
because of its leaky barrier the phase shift only rises a
few degrees before falling again, giving only the weakest
indication of "resonance" maxima in the cross sections.
Figure 14(2), with equal coupling to the two channels,
is again a Fabry —Perot etalon, but this time with only
weakly silvered faces, so both its transmission and its
reflection resonances overlap. In 14(3) both widths
are large, but the "resonance" has been shifted so
predominantly into channel 2 that S» shows only
echo circles. In this case the entrance barrier is only
weakly reflecting, so 5» ——

pr exp (—2ika), with

~ pr ~&& ~, and even the echo circle is small.
Finally, we mention an alternative model for in-

elastic resonances which is the exact analogue of the
optical model, namely the single delta-function po-
tential of Fig. 1(b), with a complex coefficient, c=
cr+ics For .appropriate choices of cs/ct, its cross sec-
tions look much like those of Figs. 13 and 14, but the
pole-zero structure of the S»(k) it predicts is some-
what more bizarre. p lies inside the circle of Fig. 2
if cs(0 (absorptive potential) and on the real axis
if et=0. Re (k,) = Re (k~) only if cs ——0 or c&

——0, in
this case, and for cs large enough [(cs/k)') 2+ (cr/k)s
in the case that c is chosen proportional to kj, the zero
lies below the pole in the k planeI Needless to say, a
cavity this inelastic has no significant resonances.
Equation (4) shows that p—&—1 as c~~ in any
complex direction, corresponding to elastic hard-sphere
scattering, with the zeros and poles of S» cancelling
each other in pairs on the real k axis; even a purely

' It is worth noting that although T2=1 in the particular
example used in Fig. 13(3), the absolute magnitude of T2 is not
significant. Only the ratio Ts/T& counts, and the same degree oi
resonance decoupling from channel 1 could have been achieved,
e.g. , by the choice of TI=0.01 and T2 ——0.1—i.e., with only very
weak coupling to channel 2.

imaginary b-function potential is a perfect reRector if
it is strong enough.

SUMMARY

The principal unifying thread which has emerged to
connect these diverse examples of resonating systems
is the so-called background phase, whose inhuence on
elastic cross sections is seen to be disconcertingly
great when the resonances are not suSciently narrow.
In the present models, whose interactions are con-
centrated on a spherical shell, it is evident from the
ray-tracing technique that this background phase
arises principally from the instantaneous ("direct in-
teraction") reflection of the incident wave from the
surface of the target; this reQection causes the largest
spatial advance in the scattered wave and so the largest
negative contribution (—u) to the slope of 8(k) .
Although a background phase of this nature will not
appear if the interaction is too "soft" to define a
target surface (e.g., the Coulomb potential), it is to be
expected for any "finite-ranged" potential [r"V(r) +0-
at large r, for any e).A wide variety of nuclear reactions,
e.g., have shown that the round-edged nucleon —nucleus
potential (with its Yulcawa tail) produces a hard-
sphere background phase, B~(k) —kR, with E ap-
proximately equal to the nuclear "radius. "

Although it can only be of major significance far
from sharp resonances, this decreasing component of
the phase shift not only eliminates resonant peaks
from the S-wave scattering by a square potential well
altogether, but in many instances even adds non-
resonant peaks of its own to elastic cross sections.
Reaction cross sections, on the other hand, are in-
sensitive to the phase of the corresponding S-matrix
element, and so are never plagued by confusing back-
ground-phase eBects.
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