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A Comparative Stuc.y o: Atomic Variationa.
Wave . .'unctions
JEREMIAH N. SILVERMAN, GEORGE H. BRIGMAN
Fort Worth Division, General Dynamics, Fort Worth, Texas

Rayleigh-Schrodinger perturbation theory and the variational principle combined furnish simple criteria for investigat-
ing and predicting the accuracy of arbitrary variational wave functions computed with a perturbed Hamiltonian operator.
This permits the a priori classification of all per'turbed variational wave functions into three broad categories which
differ in their asymptotic behavior as the perturbation approaches zero. Wave functions belonging to one of these cate-
gories have the desirable characteristics of yielding variational energies correct at least through Qrst order and other
expectation values correct at least in zero order. These conditions are not fu16lled in the other two categories. The classi6ca-
tion scheme is used to survey a wide variety of variational wave functions for atomic isoelectronic sequences. The construc-
tion of these wave functions determines their asymptotic category. A more systematic treatment of correlation energy is
proposed and various methods of introducing correlation are discussed. Some recommendations are made for future
progress in the calculation of accurate atomic wave functions.

I. INTRODUCTION'

At present there are available a large variety of
approximate solutions to Schrodinger's nonrelativistic
time-independent equation for atomic or molecular
systems. Many of these approximate wave functions
are obtained by application of the variational principle. '
Regardless of how they are obtained, all approximate
solutions for a given system can be arranged by the
variational principle in the order of increasing energetic
superiority. Such a classification is essentially an
a posteriori process, as, unless approximate wave
functions of the same or of a related form and structure
are considered, the variational principle gives no
a priori information as to the superiority of one wave
function over another. As a corollary deficiency, the
variational principle offers no u priori guidance as to
the most effective way of modifying a given approxi-
mate solution to improve its accuracy, i.e., which
additional parameters, terms, etc. would have the
greatest effect. Thus, for example, it follows from
the variational principle that the single-configuration,
closed-shel12 Hartree-Fock solution must be the best
energetic function of all independent-particle, single-
configuration, closed-shell functions. On the other
hand, it is not possible to predict from this the relative
superiority of this Hartree —Fock solution and, say, a
corresponding open-shel12 function in which the Hartree-
Fock orbitals have been replaced with simpler analytic
orbitals.

An additional complication arises in the common
case where the Hamiltonian operator may be treated
as a function of an external perturbing parameter
which may assume discrete or continuous values over
some range. Here the relative order of energetic

' It is assumed throughout that the variational principle
is applicable. For the application of the variational principle to
excited states, see K. A. Hylleraas and B. Undheim, Z. Physik
65, 759 (1930);J. K. L. MacDonald, Phys. Rev. 43, 830 (1933);
H. Shull and P. -O. Lowdin, Phys. Rev. 110, 1466 (1958); E. R.
Davidson, J. Chem. Phys. 41, 656 (1964); J. F. Perkins, tbid
42, 3927 (1965).' These terms are dered in Sec. III.

superiority of a group of diferent approximate wave
functions may be a function of the perturbing param-
eter, but the variational principle, taken alone, affords
no insight into this. We focus our attention upon an
important illustration, namely, atomic isoelectronic
sequences for which the variable perturbing parameter
may be taken as the inverse nuclear charge, Z '.

A first step toward resolving some of these diffi-
culties is presented in this comparative study of
variational wave functions for atomic isoelectronic se-
quences. The combination of Rayleigh —Schrodinger
perturbation theory and the variational principle
furnishes a simple but powerful tool for investigating
and predicting the accuracy of variationally obtained
wave functions computed with a perturbed Hamil-
tonian operator. The variational wave functions, as
well as expectation values computed with these wave
functions, are obtained in the form of expansions in
powers of the perturbation parameter. These expan-
sions afford a natural, general scheme for the a priori
classification of all perturbed variational wave func-
tions into three categories which diGer in their as-
ymptotic behavior as the perturbing parameter ap-
proaches zero. A theoretical ambiguity in connection
with the accuracy of arbitrary approximate wave
functions is then resolved by this classification scheme.

This method is illustrated by application to a
number of independent-particle model wave functions
for various atomic isoelectronic sequences. In particular,
a number of simple closed- and open-shell variational
wave functions for the ground state of the boron
isoelectronic sequence are examined in detail and
several apparently anomalous energy trends as a
function of increasing Z are noted. These energy
trends are interpreted by obtaining the perturbation
expansions of the various energies through the third
order. It is shown how the choice of orbitals and
configurations in these wave functions determine their
asymptotic category. Some peculiarities which arise
from the use of Slater-type orbitals are discussed.

A similar but less quantitative study is made of the
228
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effect on approximate calculations of increasing the
number of electrons E while holding Z fixed. For this
purpose, comparative closed- and open-shell ground-
state energy data for the isonucleic sequence F~+—F
are studied and interpreted. The limitations of the
various types of functions are discussed from the
standpoint of their Z and A dependency. An estimate
is made of the anticipated effectiveness with increasing
X of several types of open-shell calculations as com-
pared to the conventional Hartree-Fock solutions.

The Hartree —Fock solutions are examined from the
standpoint of their asymptotic classification. A de-
ficiency in the usual definition of correlation energy is
noted, an alternate definition is proposed, and numeri-
cal examples are given.

More elaborate atomic wave functions are then
discussed and compared. The advantages and dis-
advantages of various methods of introducing cor-
relation are contrasted.

One of the three previously mentioned categories of
perturbed variational wave functions is selected as
having the most desirable characteristics. It is recom-
mended that, as a minimum requirement, all atomic
wave functions be constructed so as to belong to this
category. This can always be achieved by a suitable
choice of orbitals and con6gurations. Such wave
functions automatically yield a variational energy
correct at least through 6rst order, and other expecta-
tion values correct at least in zero order; these condi-
tions are not fulfilled for the other two categories.

Some recommendations are made for future progress
in the calculation of accurate atomic wave functions.

II. THE PERTURBATION ANALYSIS OF THE
VARIATIONAL WAVE FUNCTIONS AND

ENERGIES

We use modified atomic units' of the type first
introduced by Hylleraas4 in his classic application of
perturbation theory to the He isoelectronic sequence.

A. The Perturbation Expansions

According to Rayleigh —Schrodinger perturbation
theory, ' s the eigenfunctions P and eigenvalues e of the
nonrelativistic Schrodinger equation,

for an atomic isoelectronic sequence with S electrons
about a nucleus of charge Z can be obtained as expan-

'The modified atomic units are obtained from the atomic
units of footnote 49 by replacing the electronic charge e with
eZ&; thus, the energy expressions in this section are to be multi-
plied by Z' to convert to atomic units. See H. Shull and G. G.
Hall, Nature 184, 1559 (1959).

4 K. A. Hylleraas, Z. Physik 65, 209 (1930); E. A. Hylleraas
and J. Midtdai, Phys. Rev. 103, 829 (1956); 109, 1013 (1958).' See, for example, A. Dalgarno, Qguntlm Theory I, E/ements,
D. R. Bates, Ed. (Academic Press Inc., New York, 1961),
pp. 171-209.

sions in powers of X =Z ':

it (x, )t) = Y f,(E)x',
jM

(2a)

e(1V, X) = get(E)Xt,
i=0

(2b)

(Sb)

respectively, so these quantities can be evaluated
analytically' for all N and for all states.

The analytic determination of the higher-order Pt
and e, is difficult, although highly accurate results
have been obtained for F= 2 by a variational-perturba-
tion method developed by Hylleraas4 for the deter-
mination of f& and es and recently generalized to higher
orders by Knight and Scherr. ~ There have been as yet
relatively few applications' of this method to systems
with more than two electrons. A simple numerical
procedure based on a differencing technique has been
devised for the direct recovery of the leading terms of
the e expansion from experimental energy data, and
has been used to determine good estimates of e~ and
e3 for the ground states of atomic sequences with
3&X&10 electrons. '

Consider now an arbitrary, variationally optimized,
normalized wave function, &p(E, X), and the corre-
sponding optimized energy, rt (X, X), for a given
isoelectronic sequence. " The Taylor expansions of

' See, for example, D. Layzer, Ann. Phys. (N.Y.) 8, 271 (1959);
J. Linderberg and H. Shull, J. Mol. Spectry. 5, 1 (1960); and
F. C. Sanders and C. %. Scherr, J. Chem. Phys. 42, 4314 (1965),
for such calculations for 2&N & 10.

~R. E. Knight and C. W. Scherr, . Chem, Phys. 37, 2503
(1962); Phys. Rev. 128, 2675 (1962; Rev. Mod. Phys. 35,
431 and 436 (1963); see also, J. Midtdal, Phys. Rev. 138, A1010
(1965) for a recent application of this procedure.' J. Linderberg, J. Mol. Spectry. 9, 95 (1962), has computed
variational approximations to pl and e2 for several states of
atomic sequences with X=2, 4, and 6 by this method.

9 C. W. Scherr, J. N. Silverman, and F. A. Matsen, Phys. Rev.
127, 830 (1962).' In this notation, which corresponds to that of Refs. 16 and
18, the use of a superior bar denotes a variationally optimized
quantity; the omission of the bar indicates an unoptimized
quantity.

where the P;(Ã) and e; (E) depend only on E and the
state of the system. These expansions correspond to
the decomposition of the total Hamiltonian B,

&=&p+) &a,

where the perturbing term II~ represents the Coulombic
electronic interaction. The zero-order functions, fp($),
solutions of the unperturbed equation,

(Hp —sp) its ——0,

are known, antisymmetrized products of normalized
hydrogenic orbitals. For normalized fp, the zero- and
first-order energy terms are given by
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these approximate quantities about ) =0, i.e. ,

(6a)

may be compared with the analogous perturbation
expansions of the exact quantities f and e in Eqs. (2) .
Similarly, the expansion of an expectation value
computed with the variation ally optimized wave
function,

where

(7b)

second order for a number of variational wave functions
for the He sequence by a limiting algebraic process
and Machacek and Scherr" have Inade similar cal-
culations for the Li sequence. Recently, Silverman and
van Leuven" have developed a general variational-
perturbation procedure for the term-by-term calcula-
tion and optimization of the y and q expansions, Eqs.
(6), as well as for the calculation of the (A. ) expansion,
Eqs. (7), to any desired order for arbitrary analytic p.
Thus, for example, the zero- and 6rst-order approxi-
mate energies, o)o and r)&, are given by Eqs. (Sa) and

(Sb), respectively, in which Po is replaced by po. 'r This
method has been applied" to a variety of variational
wave functions for several atomic isoelectronic se-
quences. The procedure is not limited to atomic se-

quences, however, as it may be applied in the case of a
more general Hamiltonian, H(X), with the expansion,

(3')

and A is an arbitrary operator independent of X, may
be compared with the corresponding expansion of the
exact quantity. " Such comparisons afford a useful
measure of the degree of convergence of the approxi-
mate wave function in question toward the exact
solution. Various approximate solutions may be com-
pared with one another in this manner to determine
their relative accuracy.

If the optimized p and p are known analytic functions
of X, the expansions (6) and (7) may be obtained by
straightforward evaluation of the Taylor coefficients.
Two particularly simple examples of such variational
functions with theoretically known expansions have
been discussed by Kohn. ~ In one, p is taken as the
appropriate Po, which of course yields 'g=ep+srX In.
the other, p is again taken as fo but the accuracy of the
function is improved by the introduction of a varia-
tionally optimized scaling parameter which insures
that the virial theorem" is satisfied; this yields

where P is any external perturbing parameter.
The important special case of Hartree —Fock functions

and energies has previously been discussed by Lowdin, "
and Dalgarno" has developed a general analytic method
for the determination of the @Hp and qHp as expansions
in P. This method has been applied by several authors"
to Hartree —Fock calculations for various isoelectronic
sequences.

A valuable supplementary method for the deter-
mination of the first few terms of the q expansion, or
of an arbitrary &A. ) expansion, is the previously
mentioned numerical diff erencing technique' which
can be employed if the rl or (A ) values are accurately
known for several successive members of a given
isoelectronic sequence. Recently, Scherr and Silver-
man~' applied this numerical procedure to variational
data for the 2&Ã+4 sequences and obtained accurate
results as evidenced by comparison~ " with theo-
retically known or directly computed values.

rf =so+sr) +r)s) s, (Sa) B. The Asymytotic Classification
where in this particular case, the second-order approxi-
mate energy, g2, is given by

'92 el /4so) e2. (gb)

In all but such simple cases, however, it is impossible
or impracticable to obtain the p and g in closed form as
functions of X, so an explicit Taylor expansion cannot
usually be performed. On the other hand, Scherr and
Silverman" have determined the g expansions through

"C. W. Scherr and R. E. Knight, J. Chem. Phys. 40, 3034
(1964), have computed a large number of expectation values
correct through sixth order for the ground state of the He se-
quence. See, also, A. Dalgarno and A. L. Stewart, Proc. Roy.
Soc. (London} A247, 245 (1958); A2SV, 534 (1960};W. A. San-
ders and J. O. Hirschfelder, J. Chem Phys. 42, 2904 (1965)."W. Kohn, Phys. Rev. Vl, 635 (1947);see also Refs. 9 and 13."P.-O. Lowdin, J. Mol. Spectry. 3, 46 (1959}."C.W. Scherr and J. N. Silverman, J. Chem. Phys. 32, 1407
(1960).

In general there is no requirement that the g and g
expansions, Eqs. (6), derived from the optimization
of an arbitrary variational p should agree term-by-

"M. Machacek and C. W. Scherr, J. Chem. Phys. 33, 242
(1960).

'6 J. N. Silverman and J. C. van Leuven, Bull. Am. Phys.
Soc. 8, 615 (1963);extended manuscript in preparation.

"The simplicity of this expression for q& depends upon the
fact that g&o ) flo ) &px)+ g&i I &o ) po) vanishes. This is true in
general only for optimized Po or the exact |to,. see Ref. 16."J.N. Silverman, unpublished calculations; J. ¹ Silverman
and J. C. van Leuven {tobe published); J. N'. Silverman and D.
N. Peden (to be published).

"A. Dalgarno, Proc. Phys. Soc. (London) 75, 439 (1960).
0 J. Linderberg, Phys. Rev. 12ly 816 (1961); M. Cohen and

A. Dalgarno, Proc. Phys. Soc. {London) VV, 165 (1961); C. S.
Sharma and C. A. Coulson, ibid. 80, 81 (1962); C. S. Sharma,
ibid. 80, 839 (1962};M. Cohen, ibid. 82, 778 (1963); M. Cohen
and P. S. Kelly, Can. J. Phys. 43, 1867 (1965).

"C.W. Scherr and J. N. Silverman, J. Chem. Phys. 37, 1154
(1962).
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term with the corresponding exact P and e expansions,
Eqs. (2) . It is possible, however, to classify variational
wave functions into diferent categories, depending
upon the agreement or lack of agreement of corre-
sponding terms in the exact and variational expansions.
As this paper is primarily concerned with asymptotic
trends, it is sufficient here to deal in detail only with the
zero-order wave function and the zero- and first-order
energies.

By definition,
~0-=Q) i,=o,

then
to =40"'&A, (13a)

nalizing the matrix of the degenerate zero-order func-
tions, the $0&'i corresponding to the degenerate con-
Qgurations, over the perturbation operator. This is
equivalent to variationally optimizing the linear coef-
ficients of the configuration —interaction function,
formed from a linear combination of the Po&'&, in
respect to the total Hamiltonian H. Thus, if pp is
given by an arbitrary linear combination of the $0&'i or
in particular by any single Po"',

where pp may be obtained by optimization of the
integral,

no—= (n).=0= (v I
& I v»=o= (v IIfo I v ) (10)

but from the variational principle,

(13b)

(13c)
Thus, if the form of y is such that y becomes equal to
$0 for special values of the variational parameters
contained in the function, then in accordance with the
variational principle, the optimization of Eq. (10)
with respect to all these parameters will generate
just those special values as the optimum parameters.
Consequently, for such p,22

and from Eqs. (5),
&po= A~ (11a)

(11b)

(»c)
so the energies computed with these functions are
correct, at least through first order.

If the form of p is such that for no values of the
variational parameters can y become equal to $0, then
the optimization of Eq. (10) will merely produce the
variational approximation function yp. Here,

%+A&~

gp&ep,

'91+&1j

(12a)

(12b)

(12c)

thus, in general, energies computed with these func-
tions areirIcorrect, at least through first order. Although
there is no theoretical basis at present, it has been
found in all previous calculations" with inexact, but
scaled &po, that Eq. (12c) may be replaced by the
stronger relationship,

(12c')

Consequently, the energies computed with these func-
tions are correct, in general, only irl, sero order.

The statement is often made" that the energy of any
state may be calculated correct through first order
with my arbitrary approximate wave function. Thus,
let

so from Eq. (1) for Hermitian H,

n ~ = x(I &—~
I x &. (15b)

Equation (15b) is the usual formulation of the sta-
tionary quality of (iI—c) through first order in the
sense that it is second order in the correction function,

This interpretation requires qualification when
literally applied to the terms of a perturbation expan-
sion. For P given by Eq. (3) or (3'), and in analogy
with Eqs. (2) and (6), x may be expanded as

(16)

where p is an arbitrary, normalized, variationally
optimized approximation to P, x is a correction func-
tion and M is an over-all normalization factor for P.
There is no requirement that p be normalized or
orthogonal to p. Then, from Eqs. (6b) and (14),

The third category, in a sense intermediate to those
of Eqs. (11) and (12), arises when there is zero-order
degeneracy. According to degenerate perturbation
theory, '' the correct fo may be obtained by diago-

In general, if
xg=o,

then, from Eq. (15b),

0(J(p, (17a)

"In general, q may be a much more elaborate function than
p0, containing many more terms and parameters. For example,
p may be an analytic HF function, an open-shell function, con-
figuration-interaction function, Hylleraas-type correlated func-
tion, or some combination of these. Nevertheless, the conditions
of Eqs. (11) will be satisfied if f0 is contained at least implicitly
in p, as then the optilnizat&on of & over H0, Kq. (IO), @rill project
opt $0.

(8—~) = o(~'"+') ~ (17b)

Equation (17b) corresponds to a well-known theorem'
which, in this formulation, states that if the expansions

"See, for example, J. Goodisman and W. Klemperer, J. Chem.
Phys. 38, 7'21 (1963); these authors essentially limit their discus-
sion to the case where rpp=&0.
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of q and P should agree through the pth order, the
expansions of q and e would then agree through the
(2p+1) th order. In particular, for normalized Ps and

yp, if

then
Xp=o, X/0 for j&i,

ps=ps, P; Wy; for j&1, (18b)

a special case" of Eqs. (11). If, on the other hand,

then,
x,/0, j&0, (19a)

III. SIMPLE CLOSED- AND OPEN-SHELL
VARIATIONAL WAVE FUNCTIONS

In general, both closed- and open-shell variational
wave functions are based on the independent-particle
model and are constructed with antisymmetrized sums
of products of space-spin orbitals with the proper
multiplet symmetry for the system considered. In the
closed-shell functions, the radial orbitals of spin-paired
electrons are constrained to be identical, while in the
open-shell functions some radial correlation" is intro-
duced by relaxing this constraint. The proper symmetry
can often be obtained in the closed-shell procedure with
a single-determinantal wave function, but in the open-
shell procedure, a multideterminantal wave function is
always required. The Hartree —Fock functions obtained
in the conventional manner represent closed-shell or,
as they are sometimes termed, restricted Hartree —Fock
(HF) solutions. ss Open-shell, also termed unrestricted,
Hartree-Fock (UHF) functions have been discussed

by Nesbet, '5 Pratt, '6 and Lowdin ~ and various ap-
proximate UHF solutions have been derived by several
authors. '8 As yet no full-scale UHF calculation has been
performed because of the attendant di%culties, although

'4 See P.-O. Lowdin, Advan. Chem. Phys. 2, 207 (1959), for
a discussion of electronic correlation energy.

» R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).IG. W. Pratt, Jr., Phys. Rev. 102, 1303 (1956).
P.-O. Lowdin, Ann. Acad. Sci. Upsaliensis 2, 12'I (1958).

~8 See, for example, J. H. Wood and G. W. Pratt, Jr., Phys.
Rev. 107, 995 (1957); R. K. Nesbet and R. E. Watson, Ann.
Phys. (N.Y.) 9, 260 (1960); L. M. Sach, Phys. Rev. 117, 1504
(1960);R. E. Watson and A. J. Freeman, ~sbfd 120, 1125 (19.60).

A=Ibis(es+Xo) &6 (19b)

and the conditions of Eqs. (12) are ful6lled. In the case
of zero-order degeneracy, a similar argument may be
used to derive the conditions of Eqs. (13).These and
related matters pertaining to the expansions of arbitrary

q and g are discussed in greater detail elsewhere. "
The three asymptotic categories of approximate

wave functions described by Eqs. (11)-(13) include
all possible types of perturbed variational solutions
to uey Hamiltonian which may be written in the form
of Eq. (3) or (3'), where Hs is ind. ependent of X and X

is a parameter governing the strength of the perturbing
term or terms. In particular, the analysis is used here
to provide a natural scheme for classifying variational
wave functions for atomic isoelectronic sequences.

Stewart~9 has recently shown how a perturbation
expansion approach" ~P may be used to derive such
solutions. On the other hand, if a simple set of analytic
orbitals is used as an approximation to the UHF
orbital set, open-shell character may be readily achieved

by the variational assignment of diferent parameters
to spin-paired orbitals of the same functional form.
Such simple analytic, open-shell wave functions were
originally introduced by Hylleraas, 'P and, independ-

ently, by Eckart" for the variational calculation of the
energy of He. These calculations were extended by
Shull and Lowdin ' to He-like ions, and subsequently,

by Matsen and co-workers to Li,"Li-like, '4 Be" and
Be-like ions'6; and by Brigman and Silverman'~ to B and
B-like ions; in all of these calculations, the open-shell
wave functions were constructed with single expo-
nential Slater-type (ST) orbitals. Analogous open-shell
calculations have been made for Li and Li-like ions by
Ritter et al." and by Machacek and Scherr" with

analytic orbitals somewhat more Qexible4P than the ST
orbitals. In these open-shell calculations, the emphasis
has been on the use of a single-configuration wave
function with highly optimized, nonlinear variational
parameters (orbital exponents). For the two- to four-
electron systems considered, the initial results were

very encouraging, as these open-shell functions are
relatively simple and yield energies which are fre-

quently superior to the corresponding closed-shell HF
energies. A closer examination, however, reveals that
in some cases the HF energies become superior to the
open-shell results with increasing Z within an iso-
electronic sequence. Thus, recent HF calculations4'4'

have shown that ground-state, open-shell energies

computed with ST orbitals are superior for all Z for

's A. L. Stewart, Proc. Phys. Soc. (London) 83, 1033 (1964);
see also, C. Froese, Phys. Rev. 140, A1489 (1965)."E. A. Hylleraas, Z. Physik 54, 34'I (1929)."C. Eckart, Phys. Rev. 36, 878 (1930).

"H. Shull and P.-O. Lowdin, J. Chem. Phys. 25, 1035 (1956).
"G. H. Brigman and F. A. Matsen, J. Chem. Phys. 27, 829

(1957).
34 R. P. Hurst, J. D. Gray, G. H. Brigman, and F. A. Matsen,

Mol. Phys. 1, 189 (1958);see also E.A. Burke and J.E. Mulligan,
J. Chem. Phys. 28, 995 (1958).

N G. H. Brigman, R. P. Hurst, J. D. Gray, and F. A. Matsen,
J. Chem. Phys. 29, 251 (1958).

"R. P. Hurst and F. A. Matsen, Acta Cryst. 12, 7 (1959).
'r G. H. Brigman and J. N. Silverman, J. Chem. Phys. 44,

3136 (1966).
» Z. W. Ritter, R. Pauncz, and K. Appel, J. Chem. Phys.

35, 5'I1 (1961).
'~M. Machacek and C. W. Scherr, unpublished calculations

(1961).
The more flexible orbitals used in the Li sequence calculations

of Ref. 39 were previously used in corresponding closed-shell
calculations by E. B.Wilson, Jr., J. Chem. Phys. 1, 210 (1933);
these original closed-shell calculations were re6ned and extended
to larger values of Z by Machacek and Scherr.

' See C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev.
Mod. Phys. 32, 186 (1960) for accurate, restricted HF calcu-
lations for the He, Li, and Be isoelectronic sequences, and E.
Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Rev.
127, 1618 {1962) for the extension of these calculations to the
neutral 6rst-row atoms.

4'E. Clementi, J. Chem. Phys. 38, 996 and 1001 (1962).
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TABLE I. Comparison of ground-state variational energies (in a.u. ) for the boron isoelectronic sequence.

STb

Closed-shell

MYHc

Open-shell

STe
Exact'

5
6
7
8
9

10
15
18
19
20

—13.6749
23 ~ 7223

—36.5198
—52.0673
—70.3648
—91.4122

—115.2097
—275.4471
—404. 5895
—453.1370
—504.4344

—24.4984
—37.2528
—52.7614h
—71.0195
—92.0245'

-115.7758'
-275 ' 7093i

—504.2554'

—24.502'
—37.266p
—52.789'
—71.068p
—92.0995

—115.883p

—14.551g
—24.5291
—37.2922
—52.8158
—71.0947
—92.1267

—115.9108
—276.0957
—405.2118
—453.7509
—505.0402

—14.5814
—24.5226
—37.2748
—52.7820
—71.0382
—92.0407

—115.7888
—275. 7168
—404.6052
—453.0538
—504.2541

—14.6604g
—24.6538
—37.4312
—52.9670
—71.2570
—92.2993

—116.0929
—276.3203
—405.4598
—454.0066
—505.3034

Computed with Fqs. (8); see Ref. 12.
Unless otherwise indicated, these values are from Ref. 43.

o See Ref. 44.
~ See Ref. 42.
e See Ref. 37.

Nonrelativistic energies, Ref. 9.
I Estimates; see text and Refs. 9, 47, and 48.
h Interpolated.

Incompletely optimized; see Ref. 37.

the He isoelectronic sequence+ 34 and are superior
for Z&4 but become increasingly inferior for Z)4
for the Li" '4 and Be""sequences. For the B sequence, "
the HF energy is not directly available for Z=4, but
the ST open-shell energies also become increasingly
inferior to the HF energies for Z&4. On the other
hand, the open-shell energies for the Li sequence
computed' " with a 2s orbital more Qexible than the
ST 2s orbital are superior to the HF energies for all Z.

It is apparent that a straightforward application of
the variational principle is inadequate to interpret this
anomalous dependence on Z. It is possible, however, to
find a simple explanation in terms of the perturbation
analysis outlined in Sec. II. To demonstrate the pro-
cedure in detail, we select the 'I" ground state of the
boron isoelectronic sequence for which there is a wide
variety of closed- and open-shell comparative energy
data available. The choice of this system has an addi-
tional advantage in that all three categories (see Sec.
II) of perturbed variational wave functions are repre-
sented. In Table I, the single-configuration, closed-
shell calculations of Roothaan, 4' Tubis, 44 and Clementi4'
constructed with ST, Morse —Young —Haurwitzss (MYH)
and HF orbitals, respectively, are compared with the
recent corresponding single-configuration, open-shell
ST calculations'7 and the exact nonrelativistic energies. '

The closed-shell calculations are all based on the
configuration (1s'2ss2P) for which there is only one
doublet-spin-state function. The open-shell calculation,

however, is based on the configuration (1s1s'2s2s'2p)
for which there are five linearly independent doublet-
spin-state functions. Therefore the most general
single-configuration open-shell wave function would
have been a linear combination of five independent
functions with variationally determined coefBcients.
Only that doublet-spin function was used, ' however,
which uniquely pairs electrons in the same manner as
the closed-shell function because in the analogous
open-shell lithium sequence calculations, "'4 this pairing
scheme was found to make the major contribution to
the energy.

In order to illustrate the subsequent discussion of the
perturbation analysis, the energies computed with the
Kohn" double-configuration closed-shell function, con-
structed with scaled hydrogenic (SH) orbitals, are
also presented in Table I; this function, which is based
on a linear combination of the configurations (1ss2ss2P)
and (1s'2ps), is obtained from the zero-order perturba-
tion wave function by introduction of a variationally
optimized scaling parameter. The entries in Table I
for the HF and exact energy values for Z=4 are
estimates obtained from the exact energy for Be' and
the estimates of correlation energy by Clementi47 and
of electron afFinity by Edlen. "Unless otherwise speci-
fied, all energy data here and elsewhere are in atomic
units" (a.u.) .

Inspection of the energy data in Table I reveals
the following significant asymptotic trends with in-

4' C. C.J.Roothaan, Technical Report, Laboratory of Molecular
Structure and Spectra, The University of Chicago, pp. 24 6
(1955). These original closed-shell ST calculations (for Z=S,
6, and 8) were extended in Ref. 3i to larger values of Z by an
approximate optimization procedure.

44 A. Tubis, Phys. Rev. 102, 1049 (1956).
4' P. M. Morse, L. A. Young, and E. S. Haurwitz, Phys. Rev.

48, 948 (1935). These MYH orbitals differ from the Wilson
orbitals of Refs. 39 and 40 only in that the Wilson 2s orbital is
slightly more general.

4P This may be seen from the spin branching diagram; see, for
example, E. M. Corson, I'erturbatiog methods ie The Quantum
mechanics of n Electron Sys-tems (Blackie gr Son Ltd. , London,
1951),p. 189.

4' E. Clementi, J. Chem. Phys. 38, 2248 (1963).
4' B. Ed16n, J. Chem. Phys. 33, 98 (1960).
4p The atomic unit of energy is defined as 5~pe', where p is the

appropriate reduced electronic mass for the atom or ion in ques-
tion; see, however, Ref. 3 for the definition of modiled atomic
units.
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TABLE II. Comparison of ground-state variational g expansions' for the boron isoelectronic sequetllc6.

Function gp g3b

Closed-shell

SHc
STQ

MYHg
HF1*

Open-shell

STi
Exact"

(—1.375) s

(—1.37202 ~ ~ ) '

(—1.375)s

(—1.375)~

—1.373

(—1.375)

(2.32753 ~ )d
2.306

(2.33445 )s
(2.33445 ~ ~ )d

2.3282

(2.32753 ~ )

( 0 984978...)c
—i.545
—1.672
—1.709

—1.764
—1.843

(0)'
—0.91
—0.50
—0.38

—0.38
—0.18

~ Entries in parentheses are exact analytical values; entries vrithout paren-
theses have been determined by numerical differencing.

b The numerically obtained values of g3 should be regarded as little more
than empirical fitting parameters; see the relevant discussion in Ref. 9.' See Eqs. (8).

~ See Ref. 6.
Input energy data from Ref. 43.

f J. N. Silverman, unpublished calculations, Ref. 18.
~ Input energy data from Ref. 44." Input energy data from Ref. 42.
' Input energy data from Ref. 37.
' Equation (12c') applies here in the sense that gi is less than the correspond-

ing single-configuration exact value 2.33445 ~ ~ ~ .
~ See Ref. 9.

creasing Z:

(1) For smaller Z, the ST open-shell energies
display the anticipated improvement of about 0.02 a.u.
over the ST closed-shell values found in the analogous
calculations for the 2 &E&4 systems; this improvement
diminishes until at Z=20, the ST closed-shell value,
although not fully optimized, '74' is apparently slightly
superior to the ST open-shell value.

(2) The error in the ST open-shell energies,

2-I +sT open +exact +sT opens

increases rapidly in magnitude, while the quantity
AEsT gp /Z diminishes in magnitude at first rapidly
and then more slowly, apparently approaching a
limiting value+ at larger Z; the ST closed-shell energies
display the same general behavior.

(3) For Z=4, the ST open-shell energy is superior
to the estimated HF energy, while for Z&5, the HF
energies rapidly become increasingly superior.

(4) For Z(7, the ST open-shell energies are su-

perior to the MYH energies, but for Z&7, the former
become increasingly inferior and eventually even cross
to above the SH energies for Z& j.9.

(5) The HF energies retain an approximately con-
stant superiority over the MYH energies throughout;
the errors in both of these energies, ASH p and AEM~H,
increase in magnitude, although not as rapidly as
DEsT 0„„,while the quantities AEHF/Z and AEMYH/Z
diminish in magnitude, apparently approaching a
limiting value at larger Z.

Some of these trends appear surprising at first glance.
It follows from the variational principle that the
HF energies must be superior for all Z to any other
single-configuration, closed-shell calculation; similarly,

as has been pointed out by Slater, " the MYH closed-
shell energies must be superior to the ST closed-shell
results as the latter function is a special case of the
former. On the other hand, the ST open-shell function
has 6ve variational parameters while the MYH, ST,
and SH closed-shell functions have only four, three
and one, respectively, so the relative behavior of these
energies seems contrary to expectations.

As a guide in interpreting these asymptotic trends,
the p expansions of the variational energy data in
Table I have been determined through third order by
means of the numerical differencing technique" in
conjunction with analytically known' " ' expansion
terms. The various sets of I1;(5) so obtained are col-
lected in Table II where they are compared with the
exact' s;(5). Thus, in a.u. , both ST energy errors are
essentially quadratic in Z,

AEsT I s =—0.003Zs+0.022Z

—0.298+0.73Z '+ ~ ~, (20)

AEsT,p,
———0.002Z' —0 079+0.20Z '+ ~ ~ ~ (21)

while both d E»H and AEHF are essentially linear in Z
with the same leading term,

BEMYH =—0.0069Z—0.171+0.32Z-'+ ~ ~ ~ (22)

AEHF —0.0069Z—0.134——+0.20Z—'+ ~ ~, (23)

and only DE&H is essentially independent of Z,

MESH = —0.858—0.18Z '+ ~ ~ . (24)

These energy errors, Eqs. (20)—(24), are plotted in

'0 J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Co., Inc. , New York, 1960), Vol. I, pp. 332-372; see
also, E. B. Wilson, Jr., Ref. 40, for an analogous discussion.

s' In most cases, the scaled, i.e., shielded, form of the numeri-
cal analysis described in Refs. 9 and 21 was used.
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FIG. 1. Variational en-
ergy errors as a function of
Z for the boron sequence
wave functions of Table I.
Dotted or dashed lines
represent estimated be-
havior.
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'~ Equations (12) apply also to con6guration-interaction func-
tions constructed with ST orbitals provided the choice of con-
6gurations is such that the various configuration functions
cannot add together to yield po. For example, the ~S Li sequence
function, cr(1s'2s)+cs(1s'Bs), is described by Eqs. (12), but the
similar function, c&{1s'2s)+c&(is'1s'} contains tt0 implicitly, due
to the properties of determinants, and is described by Eqs. (11);
see footnote 80.

Fig. 1 as a function of Z. The important ASHY is
commonly called the correlation energy, " E„,.„and
Eq. (23) gives numerical results which are in good
agreement with the values for the 8 sequence ob-
tained by Clementi. 4~

The sources of error in the various sets of p; may
now be determined by classifying these approximate
wave functions in the three asymptotic categories of
perturbed variational solutions. According to Eqs.
(11.), the errors in fis and r)i vanish if ys fs. I——n terms
of Schrodinger perturbation theory, the Ps for atomic
isoelectronic sequences must be constructed with hydro-
genic orbitals. Therefore, only trial wave functions
constructed with orbitals suKciently flexible to be-
come hydrogenic by variation of the parameters can
yield the correct fs."

For the ST orbitals dined in the usual manner"
only the lowest function of each symmetry species
has the required hydrogenic form. As a consequence,
both the closed- and open-shell ST functions for the
8 sequence cannot yield the correct Ps due to the
presence of the ST 2s orbitals, and are thus described by
Eqs. (12). In some ST closed-shell calculations, 4' an
ST 2s orbital has been used which, for convenience,
has been orthogonalized to the ST 1s orbital. This
orthogonal ST 2s orbital cannot become hydrogenic
despite a superficial resemblance to the hydrogenic
2s orbital and, in fact, in these closed-shell calculations
yields the identical wave function and energy as would
be obtained with the usual nonorthogonal ST 2s
orbital. "In general, then, Eqs. (12) are applicable to
all single-configuration@ functions containing one or
more ST orbitals other than the lowest orbital of each
symmetry species. This explains, for example, why
Machacek and Scherr" found go)60 in their analysis
of ST functions for the Li sequence. In all such ST
calculations, there will be an energy error essentially

increasing with Zs, as in Eqs. (20) and (21)
Fig. 1. The opening of the shells of these ST functions
cannot eliminate the inherent zero-order error but
does improve the variational quality of qo by intro-
ducing more parameters. Thus, as may be seen from
Table II, the ST open-shell value of go is superior
to the ST closed-shell value. For the same reason, an
additional improvement in go would be obtained
if the four other linearly independent doublet-spin-
state functions were included in the ST open-shell
wave function for the 8 sequence; there is evidence,
however, that this eGect would be small. "

The orbitals of the remaining functions considered
in Tables I and II, the SH, MYH and the completely
Qexible HF, all possess the necessary form to become
hydrogenic, so therefore &0=&0 for each of these func-
tions. Due to zero-order degeneracy, the correct zero-
order function for the ground state of the 3 sequence is
obtained by taking the proper linear combination of
the 'I" zero-order functions corresponding to the
configurations (is'2s'2P) and (1ss2Ps). Consequently,
the MYH and HF functions, which employ only
the former configuration, contain the same Pp=Psio
and generate the same r), ()ei) in accordance with
Eqs. (13). The errors in the energies computed with
these functions have therefore the same essential
linear dependence on Z, cf. Eqs. (22) and (23) and
Fig. 1. The Z dependency of E„„for various states of
a number of atomic isoelectronic sequences has pre-
viously been discussed from the standpoint of zero-
order degeneracy by Linderberg and Shull. ' The
remaining SH function, derived by scaling the correct,
double-configuration fs, is the only function to satisfy
Eqs. (11);hence the error in the computed energies is
essentially independent of Z, ct. Eq. (24) and Fig. 1.

The expansions of Table II and Eqs. (20)—(24)
are also sufFicient to explain some of the finer details
of the energy behavior at moderate values of Z. For
example, the comparison of Eqs. (20) and (21),
neglecting terms higher than the 6rst order, leads to
the prediction that for Z 22, the ST closed- and
open-shell energies should become equal, and for
Z&22, the open-shell energies should again become
superior; this prediction is in qualitative agreement
with the data in Table I which suggests equality
somewhere in the range of 15&Z& 20, but, as previously
mentioned, the ST closed-shell energy is apparently
superior to the ST open-shell energy at Z=20. This
anomaly may be understood by suitably interpreting
the work of Machacek and Scherr'5 on similar functions.
For the Li sequence ST open-shell function, these
authors found analytically that at a certain large
Z(Z 34), the limiting values of the 1s and 1s' orbital
exponents become equal (and hence the closed- and

"For an example of this effect, compare the ST open-shell Li
sequence calculations of E. A. Burke and J. F. Mulligan with
both linearly independent doublet functions and of R. P. Hurst
et al. with only one of these functions, Ref. 34.
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open-shell energies coincide) and for still larger Z,
these optimum parameters become complex conjugates
to one another; the complex orbital exponents are
required for the open-shell energy to be superior to
the closed-shell energy above the critical value of Z.
From Eq. (10), it follows that complex orbital ex-
ponents can only occur in those yz which satisfy
Eqs. (12). Therefore, in this case, the peculiarity
arises solely from the use of the ST 2s orbital. The
energy data in Table I suggests that this also applies
to the ST functions for the B sequence, but with the
transition to complex parameters occurring at a smaller
Z. Since the numerical procedure used'~ for the deter-
mination of optimum parameters was restricted to
the domain of real numbers, the true open-shell minima
could not be located above the critical Z(Z 17). The
ST open-shell energies reported in Table I for 18&Z& 20
probably represent secondary minima'~ which neces-

sarily lie above the correct open-shell values and which

may therefore lie above the optimum closed-shell values.
The greater effectiveness of the ST open-shell cal-

culations at smaller Z is due in part to the peculiarities
of functions satisfying Eqs. (12).Thus, from Eqs. (12)
it is seen that the errors in go and q~ occur with opposite
sign so partial compensation takes place. In fact, if
the ST ye and the exact Pe are compared as variational
approximations to the total, exact/, the ST ys becomes
energetically superior to Ps for

and inferior to Ps for Z greater than this value. Equation
(25) applies in. all cases where the inequalities (12b)
and (12c') are valid. For the other types of functions

cps is either inferior to fs, Eqs. (13), or equivalent to

f&, Eqs. (11), for all Z. Another contributory factor
to the greater effectiveness of ST open-shell calcula-
tions at small Z is the significant negative contribution
of the sum of third- and higher-order terms in the g
expansion as may be seen by comparing the energies
summed through the second order with the total
energies. As a consequence of these effects, the data in

Table I indicate that the ST open-shell energies for the
B sequence become increasingly superior with dimin-

ishing Z to the corresponding HF closed-shell energies
for Z&4 in exact analogy with the Li and Be sequences.
With increasing Z, however, the inherent Z' error in
the ST energies rapidly overwhelms the favorable
factors.

Since the MYH and HF energies contain the same
linear error in Z, the only distinction between these
two functions lies in the superior contribution to the
total energy of the sum of the second- and higher-order
energies obtained with the HF calculations. The
superiority of the HF calculations is primarily due to
the superior HF second-order energy, since the energy
diRerence between~the MVH and HF energies is
practically independent of Z and is approximately

equal to the diRerence between the respective second-
order energies.

Although the simple SH function yields energies
correct through the first order, the error in the second-
order energy is so large that this function can compete
favorably with the other functions only at very large
values of Z. This suggests that the SH function repre-
sents a suitable point of departure for the construction
of more elaborate wave functions since any improve-
ment in quality would necessarily improve the quality
of the second-order energy.

The analysis presented above is perfectly general
and may be applied to any group of wave functions
for any atomic isoelectronic sequence. The first step
in the analysis is to determine the asymptotic behavior
of the wave functions with increasing Z by dividing
them by inspection into the three categories of Eqs.
(11), (12), and (13). For large enough Z, the wave
functions of Eqs. (11) must become superior to those
of Eqs. (13) which in turn must become superior to
those of Eqs. (12). For lower values of Z, this relative
order of superiority of the categories may change,
resulting in the crossing of energies with varying Z, as
is the case for some of the functions considered for the
B sequence, e.g. , Fig. 1.The second step in the analysis
is to compare the functions belonging to a given
category. It is anticipated that the relative order of
superiority of functions within any one category should
in general be independent of Z, as has already been
illustrated in the 8 sequence for the categories of Eqs.
(12) and (13). This behavior is particularly clear for
the functions of the category of Eqs. (11) for which
the second-order energies, g2, and the first-order wave
functions, y~,

'4 are the dominant factors in deter-
mining their relative accuracy. For example, all cal-
culations cited for the He sequence fall in the category
of Eqs. (11). In the order of decreasing accuracy of
q2 as well as of g, these calculations are the MYH or
ST (the MYH and ST functions are identical for the
ground state of the He sequence) open-shell, ""the
HF closed-shelV' "and the SH closed-shell function'2 ";
this relative order of superiority of p is found to be
independ. ent of Z. Analogously, for the Li sequence, the
functions of the category of Eqs. (11), arranged in
the order of decreasing superiority, are the open-shell
calculations of Ritter et al'. '8 and of Machacek and
Scherr, " the HF closed-shell calculations' and the
closed-shell calculations with the Wilson orbitals~; this
order of superiority is again found to be independent
of Z. On the other hand, the ST open- and closed-shell
calculations for the Li" '4 and Be""sequences belong
to the category of Eqs. (12) so that with increasing Z,

' In general, for a Hamiitonian operator given by Eq. (3),
'gs= (Po ~

Hi
~ y& ); see Ref. 16.

G. W. Kellner, Z. Physik 44, 91 (192'I); the Kellner calcula-
tions for He include the erst application of an SH closed-shell
function and one of the 6rst applications of the method of con-
Gguration interaction. See also, J. C. Slater, Proc. Natl. Acad.
Sci. (U.S.) 13, 423 (192'7).
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TABLE III. Comparison of ground-state variational energies (in a.u.) for 2=9 and 2 &%&9.

State System
Closed-shell

MYH or
Wilsonb

HFo

Open-shell

Wilson
Exact&

1g
2g

2PQ

4S'

2pO

P7+

p'+

F6+

75 473e
—82. 195e
—87.818g

92.025
—95.208
—97.454
—98.558
—98.942

75 473e
—82.266'
—87.92h

—92.100
—95.259
—97.488
—98.579
—98.954

—75.486
—82.279
—87.934
—92.127
—95.320
—97.609
—98.832
—99.409

75 497e

82 213e

-87.832~
—92.041'

—75.497e
—82.290'

-75.532
—82.331
—88.102
—92.299
—95.501
—97.806
—99.092
—99.734

Unless otherwise indicated, these values are from Ref. 43.
Unless otherwise indicated, these values are from Ref. 44.

o See Ref. 42.
~ Nonrelativistic energies, Ref. 9.
e See Ref. 34.

f See Refs. 39 and 56.
~ See Ref 36; unpublished data from these calculations." Interpolated value; see Ref. 56.
' See Ref. 37.

Fre. 2. Variational en-
ergy di6erences as a func-
tion of N with Z=9 for the
closed-shell wave functions
of Table III.

.32-

.28-

.24-

.20-

tII .16-

.12-
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/
COCC ~
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6sAccurate MYH closed-shell energies have been computed
for Li and Be by E. Holoien, Proc. Phys. Soc. (London) A68,
297 {1955),but do not seem to be available for other members of
the three- and four-electron atomic sequences due to errors in the
initial calculations of Ref. 45; see W. E. Duncanson and C. A.
Coulson, Proc. Phys. Soc. (Edinburgh) 62, 37 (1944); and Ref.
44. Wilson closed- and open-shell energies, Refs. 39 and 40, are
available, however, for the Li sequence and may be expected to
differ but slightly from the corresponding MYH results due to
the close similarity between both sets of orbitals.

the ST open-shell energies rapidly become (for Z&S)
inferior to the corresponding HF closed-shell energies.

The effect on approximate energy calculations of
increasing E while holding Z fixed, may also be ex-
amined. In Table III are collected all available single-
configuration, ground-state energy calculations with
ST, MYH or Wilson, "and HF orbitals, as well as the
exact nonrelativistic energies for the 2&X&9 electron
atomic sequences at Z=9, i.e., for F7+—F. From these
data, the quantities EsT,i»,q

—EM~I, EM~I —EH~,
and —E„„have been determined and are plotted
as a function of A in Fig. 2.

In accordance with the variational principle, com-
parison of the closed-shell ST and MYH (or Wilson)

energies shows the latter to be superior for E&2.
Further, as has been noted by Slater" for the similar
case of atomic and ionized 0, the superiority of the
MYH results is slight for the neutral atom, and gen-
erally increases with decreasing E.This effect may now
be interpreted as it is in parallel trend with the relative
number of nonhydrogenic orbitals employed (in this
case, the ST 2s orbital). For the 3&X(10 electron
atomic systems in their ground state, the ratio of the
nonhydrogenic orbitals to the total number of orbitals
in ST calculations is a minimum at X=10, mono-
tonically reaches a maximum at X=4 and decreases
again for S=3. Therefore, for any Gxed Z, it is anti-
cipated that the superiority of the closed-shell MYH
(or similar) energies over the corresponding ST energies
would be smallest for E= l0 and increase steadily with
diminishing Ã to become greatest for %=4. The
previously discussed dependence on Z of the ST energies
may be tak.en into account by noting that the shift to a
smaller, 6xed Z, with varying X, would diminish the
superiority of the MYH energies for each E, while
the shift to a larger, axed Z would enhance this superi-
ority. As a consequence, the ST open-shell values can
compete favorably with the MYH closed-shell energies
only for negative ions, the neutral atom and the first
few positive ions of a given atomic isoelectronic se-
quence, i.e., for Z&E and Z S.These predictions are
con6rmed in Tables I and III and Figs. 1 and 2, as well
as in all other cases where data are available for
comparison. There is no difhculty in extending this
analysis to excited states and to systems with 1V &10.

It is of greater interest to assess the relative accuracy
of various open-shell calculations and the corresponding
HF closed-shell calculations as a function of Z and E.
At the time of revival of interest in open-shell functions,
it was hoped that the open-shell technique, when
applied to simple, analytic orbitals, would provide a



RKviz%'s oz MQDERN PHYsIcs ' JANUARY 1967

TABLE IV. Comparison oi some ground-state variationai single-con6gurat'ion closed- and open-shell energies' ('in a.u.).

State
MYH or
Wilsonb

Closed-shell

Q c HFd Q c

Open-shell

MYH or
Wilson'

++2c

2PQ

4S'

2
3

5
10

3

5
6

10
30

5
6

10

5
6

10

6
10

7
10

—2.8477—7.2227—13.5977—21.9727—93.8477

—7.4192—14.2640—23.3625—34.7127—102.6178—982. 1583

—14.560g
(—24.225)
(—36.396)

(—11O.O98)
—24. 502—37.266—115.883
—37.628—120.483
—54.276—123.982

—0.0140—0.0137—0.0136—0.0135—0.0134—0.0133'
—0.0135—0.0134—0.0135—0.0134—0.0133—0.0134

—0.013
(—o.o13)
(—o.o13}
(-o.o13)
—0.027—0.026—0.028
—0.061—0.061
—0.125—O. 122

—2.8617—7.2364—13.6113—21.9862—93.8611

—7.4327—14.2774—23.3760—34.7261—102.6311—982. 1717

—14.5730—24.2376—36.4085—110.1110
—24. 5291—37.2922—115.9108
—37.6886—120.5435
—54.4009—124.1041

—0.0140—0.0123—0.0117—0.0113—0.0107—O. O1O1'

—0.0123—0.0115—0.0110—0.0106—0.0099—0.0088

(—0.012)
(—o.oi 1)
(—O. 011)
(—o.oio)
(+0.003}
(+o.oo3)
(+o.oo5)

(+o.o37)
(+o.o38)

(+0.101)
(+o.o99)

—2.8757—7.2487—13.6230—21.9975—93.8718

—7.4450—14.2889—23.3870—34.7367—102.6410—982.1805

(—14.585)
(—24.249)
(—36.420)

(-11O.121)

(—24.526}
(—37.289)

(-115.905)

(—37.652)
(—120.506)

(—54.300)
(—124.OO5)

—0.0280—0.0260—0.0253—0.0248—0.0241—0.0234'
—0.0258—0.0249—0.0245—0.0240—0.0232—0.0222

(—o.o25)
(—o.o24)
(—o.o24)
(—0.023)

(—o.o24)
(—o.o23)
(—o.o23)

(—o.o24)
(—o.o23)

( —0.024)
(—0.023)

Entries in parentheses are estimates (see text); other entries have been
variationally determined.

For N=2, see Ref. 34; for N=3, see Refs, 39 and 40; for N=5, 6, and 7, see
Ref. 44.' b, x is the improvement of the HF energies over the closed-shell MYH ox

Wilson energies; Ap is the improvement of the open-shell MYH or Wilson ener-
gies over the HF energies.

d See Refs. 41 and 42.
For N=2, see Ref. 34; for N=3, see Refs. 39 and 40.
These entries are given by the differences in the respective values of gg,.

see Refs. 12, 14, and 19.
I E. Holoien, Ref. 56.

simple method for computing energies" " and other
expectation values" ' " superior to the conventional
HF results. From the results of this study, it is now

apparent that this promise has not been fulfilled for
the ST open-shell energy calculations, aside from the
special case of %=2. As shown, the relative eGective-
ness of ST single-configuration open-shell calculations
diminishes so rapidly with increasing Z and S that
for Z&5 and N&3, the corresponding HF energies
become superior. For analogous reasons, the expecta-
tion values of other properties computed with ST
functions necessarily have an incorrect asymptotic
behavior but insufhcient data are available at the pres-
ent time for a quantitative study.

It remains to be determined to what extent the ef-
fectiveness of open-shell energy calculations can be
extended by replacing the ST orbitals with simple
orbitals of hydrogenic form. This can be estimated by
comparing the MYH or Wilson and the HF closed-shell
energies in Table III and Fig. 2. This reveals that the
superiority of the HF energies is approximately con-

» R. P. Hurst, J. Miller, and F. A. Matsen, Acta Cryst. 11,
320 (1958).

» F. T. Ormond and F. A. Matsen, J. Chem. Phys. 30, 368
(1959).

'9 J. N. Silverman, O. R. Platas, and F. A. Matsen, J. Chem.
Phys. 32, 1402 (1960).

"Q.R. Platas, J. Chem. Phys. 3/, 2755 (1962).

stant in the range 2&/&4 but increases rapidly for
g&5. From this it is evident that the MYH 1s and
2s orbitals are reasonably good approximations to
the corresponding HF orbitals but the MYH 2p
orbital is not sufficiently flexible to match the HF
2p orbital. Therefore, if the MYH or Wilson orbitals
were employed as an improved basis set for single-
configuration open-shell calculations, it is anticipated
from the data in Tables I and III that the MYH or
Wilson open-shell energies would be superior to the
corresponding HF closed-shell energies for 2&X&4
for all Z but would become increasingly inferior with
increasing E for S&5 and Z&E."This estimate is
based on the observations that the gain in radial
correlation energy obtained with open-shell wave
functions is derived primarily from opening the 6rst
shelP' and that for a given Z, this energy improvement
is relatively insensitive"-" to the number of outer-
shell electrons. As a consequence, with increasing Ã,
the energy improvement obtained with MYH or
Wilson open-shell wave functions can no longer com-
pensate for the superiority of the higher HF orbitals.
This situation is illustrated in Table IV for the 2&X& 7

"For negative ions with $&5 and suKciently low Z, there
are indications that the MYH or Wilson open-shell energies
would become superior to the HF energies; cf. the entries for
2=4 in Table I.
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systems by comparing calculated or estimated single-
configuration ground-state energy data for the MYH
or Wilson closed- and open-shell functions.

In this analysis of MYH (or similar) open-shell and
HF closed-shell functions, the inhuence of zero-order
degeneracy has not yet been taken into account. For
example, among the 2&%&10 atomic systems, the
ground states of the 4&X&6 sequences display such
degeneracy. ' Therefore, single-configuration closed- or
open-shell functions for these systems, constructed
with generalized hydrogenic orbitals such as the MYH,
Wilson, or HF, belong to the category of Eqs. (13)
and generate the same first-order errors in the energies,
in analogy with Eqs. (22) and (23). In principle,
these first-order errors can always be corrected by
employing a variational configuration-interaction func-
tion containing just those configuration functions
required by degenerate perturbation theory; the
orbitals used in constructing the various functions
must be suKciently Qexible to assume the appropriate
hydrogenic form upon variation of the parameters.
For convenience, such a configuration-interaction func-
tion is designated as the mirtimum cortfigur-atiort (MC)
function. In case of nondegeneracy, the MC function is
taken to mean the appropriate single-configuration
function. Since the optimization of the MC function
(or of a more elaborate configuration-interaction func-
tion containing the MC function) in respect to Hp,
Eq. (10), would yield gp, 22 such functions necessarily
satisfy Eqs. (11). MC calculations could readily be
performed with MYH or Wilson open-shell functions
and it is estimated that the effectiveness of such simple
open-shell functions in surpassing the single-configura-
tion HF closed-shell solutions mould be extended in
this manner to X=5 for all Z. For S&6, however,
a basis set of orbitals more elaborate than the MYH
or Wilson (particularly in respect to the 2p and higher)
orbitals would be required to construct MC open-shell
functions superior to the conventional HF solutions
for all Z."

IV. MCHF FUNCTIONS

It has been seen that there are definite advantages
in the use of variational wave functions satisfying
Eqs. (11). It is of interest to examine HF solutions
and the correlation energy in greater detail from this
standpoint.

The simplest function satisfying Eqs. (11) is IIrp.

For very large Z, Pp is a sufficient approximation to P.
With diminishing Z, however, this approximation be-
comes increasingly inadequate and higher-order terms
must be introduced. In the usual variational approach,
the higher-order terms are introduced indirectly by
constructing a total approximate wave function, q.
There is no difficulty in satisfying Eqs. (11) if Pp is
taken as a starting point in constructing y.""Thus,
fp can be modified by replacing one or more hydrogenic

parameters with variationally determined parameters.
For example, within the framework of the closed-shell
functional form. , the introduction of a single optimum
scaling parameter yields the SH" function, Eqs. (8),
while the successive introduction of additional opti-
mized parameters yields the functions used by Eckart, i

Green et ul. ,
"Guillemin and Zener" MYH, "Wilson, "

and Holoien" with increasingly accurate results. In the
case of nondegenerate IIrp, which are always represented
by a single-configuration function, this process of
introducing additional variational parameters and Qexi-
bility in the hydrogenic orbitals, subject only to the
constraints that the function retain its closed-shell
form and that all orbitals remain orthonormal, would
ultimately culminate in the single-configuration or
conventional Hartree —Fock solution with the maximum
accuracy for functions of this form. The HF solutions
corresponding to nondegenerate fp automatically satisfy
Eqs. (11) and consequently their correlation energy
is a second-order eGect. The analytical expansion
method devised by Roothaan" has provided a powerful
and convenient tool for obtaining accurate analytic
approximations to single-configuration HF solutions
for atomic and molecular systems. The previously
mentioned HF calculations"" were performed in this
manner and are representative of the rapidly growing
number of such calculations for numerous atomic
systems by Roothaan, Clementi, and co-workers. '

In the event of zero-order degeneracy, Pp cannot be
represented by a single-configuration function. In such
cases, all single-configuration HF functions which are
derived from one of the degenerate configurations,
necessarily belong to the category of Eqs. (13) and thus
yield energies which are in error at least in 6rst order
while other expectation values are in error at least in
zero order. " Consequently the correlation energy for
these HF solutions has the undesirable property of
being a first-order rather than a second-order effect, e.g. ,

+ccrr +excct EHF (e1 rtI, HF) Z

+ (e2 rts, HF) +0(& ') . (26)

An extreme example is given by the ground state of the
Be sequence; here, the simple double-configuration
SH function, obtained by scaling the correct Pp, yields
energies which become increasingly superior for Z&28

"L.C. Green, M. M. Mulder, M. N. Lewis, and J. W. Woll,
Jr. , Phys. Rev. 93, /57 (1954).

63 V. Guillemin, Jr., and C. Zener, Z. Physik 61, 199 (1930);
C. Zener, Phys. Rev. 36, 51 (1930).

ct C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951); 32,
179 (1960); C. C. J. Roothaan and P. S. Bagus, Methods in
Contpntattonal Phystcs (Academic Press Inc., New York, 1963),
Pol. 2.

6' See C. C. J. Roothaan and M. Synek, Phys. Rev. 133, A1263
(1964); and E. Ciementi, J. Chem. Phys. 41, 303 (1964) for
recent Roothaan —Hartree —Pock calculations and for compre-
hensive references to earlier calculations of this type.

'6 This has been noted by M. Cohen, A. Dalgarno, and J. M.
McNamee, Proc. Roy. Soc. (London) A269, 550 (1962), who
give numerical illustrations for the Be sequence.
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to those obtained from the much more elaborate HF
function" based on the single degenerate configuration
(1s'2s') .

Due to the importance of the HF solutions in pro-
viding a "benchmark" for the independent-particle
model, one would like to relieve this anomalous be-
havior for zero-order degeneracy. For example, from
the conceptual point of view, it does not seem appro-
priate to designate the entire energy error in a single-
configuration HF calculation as the minimum error due
to lack of correlation of the electrons when the first-
order portion of this error can always be removed by
use of the degeneracy-corrected Ps. From this stand-
point, a more suitable measure of correlation energy
would be to use HF calculations satisfying Eqs. (11)
so that the correlation energy would always have the
form)

Z'..„=&...e—&'HF=(es —8s,HF')+0(Z '), ( )

where E'HF is the HF energy determined from the
MCHF function. In principle, the MCHF function
would be obtained from the appropriate Ps by varying
to self-consistency not only the orbitals but also all
linear configuration-coupling coefficients subject to the
constraints that the function retain its closed-shell
form, that the orbitals remain orthonormal, and that
the total wave function remain normalized. In the case
of nondegenerate fp, this procedure reduces to the
usual one, i.e., EH+= E'HF, and the correlation energy
is also given by Eq. (27) .

At present a general method for obtaining fully self-

consistent configuration-interaction wave functions does
not seem to be available although an extension of the
Roothaan —Hartree —Pock procedure to such calculations
appears feasible. Approximate configuration-interac-
tion HF calculations have been discussed by Nesbet"
and various approximate configuration-interaction HF
functions have been derived by Kibartas and Iutsis, "
Glembotskii et al. ,'~ Kibartas et al. , Nesbet and
Watson, "Watson, "and Donath. ~'

67 V. V. Kibartas and A. P. Iutsis, Zh. Kksperim. i Teor. Fiz.
25, 264 (1953).

68I. I. Glembotskii, V. V. Kibartas, and A. P. Iutsis, Zh.
Eksperim. i Teor. Fiz. 29, 617 (1955) t English transl. : Soviet
Phys. —JETP 2, 476 (1956)j.These authors consider the MCHF
function ci(1s'2s'2p)+ca(1s'2p') for B (U"); there appears to
be a transposition of digits in Table II of the translation for the
one- and two-configuration HF energies as both results are impos-
sibly low, i.e., it is assumed that the computed values are —24.526
and —24.559, respectively, instead of —24.562 and —24.595.

'9V. V. Kibartas, V. I. Kavetskis, and A. P. Iutsis, Zh.
Eksperim. i Teor. Fiz. 29, 623 (1955) LEnglish transl. : Soviet
Phys. —JETP 2, 481 (1956)g.

7o R..K. Nesbet and R. E.Watson, Phys. Rev. 110, 1073 (1958).
7' R. E. Watson, Phys. Rev. 119, 170 (1960).In these calcula-

tions for Be ('S), successive orthogonalized configurations were
added to the single-configuration HP function for (1s'2s'); as
anticipated from degenerate perturbation theory, the greatest
single improvement in energy per configuration added resulted
from the addition of (1s'2p') to form the MC function.

"W. E. Donath, J. Chem. Phys. 35, 817 (1961); 38, 3032
(1963).

In general, approximate MCHF calculations pro-
vide a lower bound for the degeneracy-corrected
correlation energy, E'„„.' An estimate of E'HF or
E'„„can also be obtained via Eqs. (26) and (27), i.e.,

+ corri+carr (ei Ill,HF) Zi (28)

V. MORE ELABORATE WAVE FUNCTIONS

Although the degeneracy correction provides a more
systematic basis for the evaluation of HF solutions,
it is well known that, in general, the HF formalism is
inadequate for obtaining highly accurate energies and
other expectation values. This is demonstrated for
energies in Table VI where a comparison is made
between E'Hp and E, „t, for the ground states of the
neutral atoms with 2&%&10 and for several excited
states for /=2. There is a real need for wave func-
tions superior to the MCHF functions. We define any
wave function which yields energies superior to the
MCHF energies as a correlated wave function. The
previous discussion shows that regardless of how the
correlation is introduced, it is always possible to insure"
that the correlated variational wave function satisfies
Eqs. (11). In all subsequent discussion of correlated
wave functions, it is assumed that these conditions
have been fulfilled, unless otherwise specified. For
such functions, correlation may be taken to mean the
improvement of the quality of the p;, j&1, and the
p;, j)2, so that these terms become superior to the
corresponding degeneracy-corrected HF terms. This
common feature permits meaningful comparisons to
be made among these functions.

The three "classical" variational methods for intro-
ducing correlation in a wave function are the previously
discussed open-shell procedure, ~~39 the method of

» Approximate MCHF functions will satisfy Eqs. (11) exactly,
even if complete self-consistency is not attained, provided that
each configuration function is fully optimized separately and then
held Axed while variationally determining the linear coefficients;
such calculations provide an upper bound to g'2 Hp, Eq. (27).

where e~ and g~,Hp can be computed'' from Eqs.
(Sb) and (13a). Approximate MCHF calculations, as
well as Eq. (28), have been used to obtain the entries
in Table V in which E„„and E'„„are compared for
the degenerate ground states of the neutral atoms for
4&N &6. The degeneracy correction reduces the cor-
relation energy for Be by 48%, for B by 27%, and for
C by 12%; with increasing Z within an isoelectronic
sequence, the degeneracy correction becomes increas-
ingly important. Tables IV and V also show that
MCHF calculations are inferior to MC open-shell
calculations with MYH or Wilson orbitals for X&5
but become increasingly superior with increasing Ã
for Ã&5 and for all Z.6'
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TAnLz V. Comparison of E„„and E'„„(ina.u.) for the ground state of some degenerate atomic systems.

State

gpo

System

Be

exact a

—14.66743

—24.65379

—37.84503

Ebb

—14.57302

—24. 52905

—37.68861

bEcorr

0.0944

0.125

0.156

E corr

0.050s(0.048)

0.092'(0.090)

~ ~ ~ (0.138)

a Nonrelativistic energies, Ref. 9.
Single-con6guration HF calculations, Ref. 41.' Entries without parentheses are upper bounds from the indicated, ap-

proximate MCHF calculations; entries in parentheses are estimates obtained

with Eq. (28).
~ See Ref. 67.
~ see Ref. 68.

The open-shell procedure, taken alone, is the most
limited in scope of all the methods of correlation since
it cannot be extended Per se to yield any desired degree
of accuracy. 7' In general, the effect of open-shell cal-
culations is to improve the corresponding closed-shell
energies by an amount approximately independent of
X, while, on the other hand, the correlation energy
increases rather rapidly with increasing E (cf. Tables
III, V, and VI and Fig. 2). Thus it is anticipated that
even the best open-shell calculations, i.e. , the UHI'
functions, would prove increasingly inadequate with
increasing X. Nevertheless, the open-shell procedure
provides a valuable supplementary technique for
gaining some correlation energy when used in con-
junction with other types of correlated functions.
This has been demonstrated for open-shell con6gura-
tion-interaction functions by the calculations of Taylor
and Parr" and subsequent authors"" for the He
sequence and by the elaborate calculations of gneiss ' '
for the He, Li, and Be sequences. Analogously, the
open-shell technique has been e6ectively combined
with correlating factors containing r;; by Hylleraas, "
Chandrasekhar, ' Green et al. ,

" and Roothaan and
gneiss~ in calculations for the He sequence. Since
most of the improvement in energy results from open-
ing the first shell, '~ it is probably sufficient in such
open-shell calculations to split only the 1s orbitals.

There are theoretical grounds" to believe that the
con6guration-interaction and the Hylleraas-type pro-
cedures are both general methods capable of yielding
variational solutions which converge to the exact
nonrelativistic solutions with any desired degree of

configuration interaction'5" ~ ~' and the method of
explicitly including interelectronic coordinates" ~ r;;,
in the wave function, all of which were employed
by Hylleraas" ~4 in his important early work on the
He atom. In what follows, all functions explicitly
containing terms in r;; are designated as Hylleraas-
type functions. In contradistinction to these three
indirect methods of improving the quality of higher-
order terms in a given variational p and g, there is
the variational-perturbation procedure, ' ' ' also due to
Hylleraas, 4 for the term-by-term calculation of the
perturbation expansions of f and e; this direct procedure
automatically satisfies Eqs. (11). This comparative
study is concluded with a survey' of these methods
and some suggestions as to how future progress may
be made.

"Open-shell wave functions may be regarded as specialized
configuration-interaction expansions; see Refs. 32 and 78.

"Although ST orbitals were used to construct the open-shell
configuration-interaction functions of A. W. Weiss (which
contain the MC functions), Ref. 76, sufficient configurations
were included to produce the effect of more Bexible orbitals
(cf. footnote 52) and thus to satisfy Eqs. (11);this may be veri-
fied in a simple manner by noting that the exact zero- and first-
order energies were found to be contained in the total variational
energies, Ref. 21."S. Chandrasekhar, Astrophys J. 100, 176.(1944)."L. C. Green, M. N. Lewis, M. M. Mulder, C. W. Wyeth,
and J. W. Woll, Jr., Phys. Rev. 93, 2'/3 (1954)."C. C. J. Roothaan and A. W. Weiss, Rev. Mod. Phys. 32,
194 (1960).

r' E. A. Hylleraas, Z. Physik 48, 469 (1928).
r'S. F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950)

(part I); A201, 125 (1950) (part II); M. J. M. Bernal and S.
F. Boys, Phil. Trans. Roy. Soc. (London) A245, 139 (1952)
(part VIII'); S. F. Boys, Proc. Roy. Soc. (London) A217, 136
(1953) (part IX); A217, 235 (1953) (part X); S. F. Boys and
V. E. Price, Phil. Trans. Roy. Soc. (London) A246, 451 (1954)
(part XI) and the other papers in this series.

7s For additional studies of atomic configuration-interaction
functions, see for example, G. R. Taylor and R. G. Parr, Proc.
Natl. Aced. Sci. (U.S.) 38, 154 (1952);L. C. Green, C. D. Chand-
ler, and P. P. Rush, Phys. Rev. 104, 1593 (1956); L. C. Green,
E. K. Kolchin and ¹ C. Johnson, ib/d. 139, A3'/3 (1965) and
earlier papers by L. C. Green and collaborators; P.-O. Lowdin,
sbtd. 97, 1474 (1955); Advan. Phys. 5, 1 (1956); P.-O. Lowdin
and H. Shull, Phys. Rev. 101, 1730 (1956);H. Shull and P.-O.
Lowdin, J. Chem. Phys. 23, 1362 and 1565 (1955); 30, 617
(1959);E. Holoien, Phys. Rev. 104, 1301 (1956); D. H. Tycko,
L. H. Thomas, and K. M. King, ~ibid 109, 369 (. 1958); A. W.
Weiss, sbid. 122, 1826 (1961); A. L. Davis, J. Chem. Phys.
37, 1508 (1962);39, 1183 and 1827 (1963).

~~ For additional studies of atomic functions containing inter-
electronic coordinates, see for example, H. M. James and A. S.
Coolidge, Phys. Rev. 49, 688 (1936); L. R. Henrich, Astrophys
J. 99, 59 (1944); S. Chandrasekhar and G. Herzberg, Phys.
Rev. 98, 1050 (1955); J. F. Hart and G. Hersberg, sbsd 106, .
79 (1957); Z. Physik 171, 83 (1963);T. Kinoshita, Phys. Rev.
105, 1490 (1957); 115, 366 (1959); C. L. Pekeris, ibid. 112,
1649 (1958); 115, ,

1216 (1959); 126, 143, 1057, and 14'/0 (1962);
12'7, 509 (1962); W. Kolos, C. C. J. Roothaan, and R. Sack,
Rev. Mod. Phys. 32, 178 (1960); E. A. Burke, Phys. Rev. 130,
18'/1 (1963); J. F. Perkins, J. Chem. Phys. 39, 687 (1963);
B.Schiff et at. , Phys. Rev. 137, A1672 (1965);140, A1104 (1965).

's See J. C. Slater, Quarlturg Theory of Atomic Structure (Mc-
Graw-Hill Book Co., Inc. , New York, 1960), Vol. II, pp. 31-50,
for a detailed discussion and comparison of correlated wave
functions, and pp. 383-4M, for an extensive bibliography.
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TABLE VI. Comparison of several computed energies (in a.u.) for some light atoms.

E System State K/'exact +3a +CI c&exact,

He 1'S
2'S
2'S
23P
2'P

—2.75000—2.12414'—2.03635'—2.04854'—1.98026'

0.947
0.977
0.949
0.960
0.932

—2.86168-2.17425g-2.14344g-2.13143g-2.12246g

—2.90332—2.17399'—2.14612'—2 ' 12982'

—2.90344'I—2.17523h
14594i—2 13313'—2. 12378'

—2.90372'—2. 17523e—2.14597'—2. 13316&—2. 12384~

—2.90372e—2.17523e—2.14597'—2.13316&—2. 12384~

Ll

0

2S

1S

2PO

'P

3p

2PO

—7.05658

—13.76290

22&73737

—34.44681

—49.15027

—66.70478

—87.66599

0.944

0.938

0.922

0.910

0.900

0.889

0.879

—7.43273

—14.619m

—24. 564m

37 707m

—54.40091

—74.80936

—99.40929

—7.4702

—14.653

—24.616

—37.781

—54.49

—74.92

—99.53

—7.47710l —7.4779gl —7.47807

—24.600'

—37.747.

—24.65379

—37.8450

—54.589

—75.068

—99.734

—14.66090~ —14.6337' —14.66743

10 'S —112.29170 0.871 —128.54701 —128.65 —128.7414p —128.94

a See Eq. (29) and text; unless otherwise indicated, computed with e& from
Ref. 9.

Unless otherwise indicated, see Ref. 41.
Nonrelativistic energies; unless otherwise indicated, see Ref. 9.

~ See D. H. Tycko, L. H. Thomas, and K. M. King, Ref. 76.
See C. L, Pekeris, Phys. Rev. 126, 1470 (1962).

f See R. E. Knight and C. W. Scherr (1963), Ref. 7.
See E. R. Davidson, J. Chem. Phys. 42, 4199 (1965).

"See A. L. Davis (1963), Ref. 76.

' See L. C. Green et al. (1965), Ref. 76.
' See C. L. Pekeris et al. , Phys. Rev. 126, 1057 (1962).
"See A. W. Weiss, Ref. 76.

See E. A. Burke, Ref. 77.
Computed with Eq. (28); see Table V.

See Ref, 85 ~

See S. F. Boys (Part X), Ref. 75.
~ See Ref. 72.

accuracy by the inclusion of sufficient terms. For
E=2, this has been amply demonstrated by the con-
figuration-interaction calculations" of Green and co-
workers, Lowdin and Shull, Tyck.o, Thomas and King,
Weiss, Davis, and others, and by the extraordinarily
accurate Hylleraas-type calculations" of Kinoshita and
of Pekeris. These calculations also illustrate the general
conclusion that for a given Ã, the configuration-
interaction functions converge much more slowly than
the Hylleraas-type functions. Boyd7~ has shown that
the configuration-interaction technique can be readily
extended to calculations with E)2, and a limited
number of such calculations in the range 3&%&18
have been performed by Boyd and co-workers, 7'

Watson, ' Donath, ' Weiss, ' and others. Unfortunately,
as clearly shown by the recent large-scale calculations
of Weiss, 7' the already poor rate of convergence of
con6guration-interaction functions diminishes rapidly
with increasing E which necessitates the use of very
long expansions for larger E to maintain comparable
accuracy. On the other hand, the computational
difhculties associated with the extension of the more
rapidly convergent Hylleraas-type procedure to E&2
have been considered so formidable that few calcu-
lations of this type have been attempted. In fact, the
only accurate Hylleraas-type calculation presently
available for E&2 is for the ground state of Li; here
the early calculation of James and Coolidge77 has re-

cently been refined to near spectroscopic accuracy by
Burke. 7 In a series of papers, Szasz" has considered
the general problem of A-electron Hylleraas-type cal-
culations. Contrary to previous opinion, he has con-
cluded that such calculations are feasible for larger 3~
if a large computer is used. In demonstration of this,
Szasz" has computed the ground-state energy of Be
with a Hylleraas-type function and obtained a result
superior to the Hartree —Pock energy but considerably
inferior to that obtained by Watson ' and Weiss7' with
configuration-interaction functions. The present pertur-
bation analysis provides a simple explanation for this
rather disappointing result. Inspection of the Szasz
Be function 5 shows that it is based on the degenerate
single-con6guration function for (ls'2s') and thus
belongs to the asymptotic category of Eqs. (13). An
estimate of the resulting inherent error, computed in a
manner analogous to Eq. (28), indicates that if the
Mc function were used with the Szasz correlating
factor, the energy obtained should be superior to the
best configuration-interaction result.

The accuracy that has been attained with these

34L. Szasz, Z. Naturforsch. 14A, 1014 (1959); 15A, 909
(1960); J. Chem. Phys. 35, 1072 (1961); Phys. Rev. 120, 169
(1962); J. Math. Phys. 3, 1147 (1962); Phys. Rev. 132, 936
(1963);seealso, Y. Ohrn and J. Nordling, J. Chem. Phys. 39,
1864 (1963);and J.Hinze and K. S. Pitzer, ibid. 41, 3484 (1964).

8~ L Szasz, Phys. Letters 3, 263 (1963).
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correlated functions, as well as the relative paucity of
such calculations in general, is illustrated in Table VI
where the best available con6guration-interaction and
Hylleraas-type energies, Ecr and EHv~, are compared
with E'Hp and E, „~ for the lighter atoms. All of these
results, with the exception of the aforementioned
EHy& for Be," were obtained with wave functions
belonging to the category of Eqs. (11).Although, in
general, Ecr is considerably superior to E'Hr, there is
much room for improvement with increasing E. The
work" of Weiss, of Davis, and of Green et al. indicates
that the convergence problem of configuration-inter-
action calculations is not as acute for certain excited
states (e.g., the 2'S state of He, Table VI) so such
functions may prove adequate for selected excited
states for E)2. In general the Hylleraas-type functions
are clearly superior in those few cases where full-scale
calculations have been performed. This is a strong
indication of the need for further study and applica-
tion of the Hylleraas —Szasz procedure.

The direct variational-perturbation procedure4 ~ ' for
introducing correlation has as yet received little applica-
tion. To judge the potential eKcacy of this method for
systems with larger X, it is convenient to use the
truncated perturbation energy expansion, E„, where
in a.u. ,

E„=Z'Qe, A'. (29)

With the exception of Ei, E„is not an upper bound' to
E „& but must converge reasonably rapidly with in-
creasing e if this method is to have any practical
value. This type of convergence has been termed
perturbational convergence by Knight and Scherr7 in
contradistinction to ordinary variational convergence.
In Table VI are collected the values of Er, Er/E, „~,
and E3p computed with the known values of the 6j.'»
The simple Er furnishes 87% of E,„„„for %= 10 and
this contribution increases with decreasing X to
98% for 2'S He. The more rapid, variatiortal con-
vergence of configuration-interaction calculations for
2'S He and other excited states is apparently due in
part to the relatively large value of Er/E, „& for such
systems. Although the results in Table VI appear
promising since in most cases E3 is superior to E Hp and
in some cases to E~i, it is obvious that E must be
computed to several orders higher in order to surpass
the most accurate configuration-interaction calcula-
tions. For example, from the data' for 1'S He, E5=
—2.90367 and is thus superior to the best E~~ while E7=
—2.90372 which is equivalent to EHyi to the same
number of significant digits. The need for longer per-
turbation expansions does not present a serious barrier
since the work' of Knight and Scherr and of Midtdal
indicates that the variational calculation of the suc-
cessive f, and e, can be conveniently systematized. The

fact that one set of calculations yields the energies' and
other expectation values" for all members of a given iso-
electronic sequence to a high degree of accuracy is
another advantage which offsets the disadvantage of
an expansion formulation. Further, the necessary
orthogonality of excited state wave functions' to lower
states of the same symmetry species is obtained
automatically in this procedure. ~ Schwartz" and Som-
merville and Stewartm have shown that the conver-
gence problem of configuration-interaction functions
persists when applied to the variational calculation of
P; (in particular, fr of 1'S He) and that the best results
are obtained with Hylleraas-type functions. Thus, the
extension of the variational-perturbation procedure as
well as of Hylleraas-type calculations to larger S
depends to a great extent upon the successful applica-
tion of the Hylleraas —Szasz or similar method.

The Schrodinger or hydrogenic perturbation expan-
sion discussed in this study corresponds to one arbitrary
partition of the Hamiltonian operator [cf. Eq. (3)j.
An alternate perturbation approach consists of treating
the conventional HF function as the zero-order term
in a perturbation expansion of the exact wave function
where the perturbing operator is taken as the difference
between the total Hamiltonian and the HF operator.
This approach was originally proposed by Brillouin"
and the formalism of this method has been discussed
by Mgller and Plesset, ' Peng, " Nesbet, ' Allen, "
Cohen and Dalgarno, " and Sinanoglu. " In the HF
expansion, the sum of the zero- and first-order energies
is given by EHp while the sum of all higher-order
energy terms corresponds to E,.„,.

In extension of the HF perturbation scheme,
Sinanoglu" has developed a theory for the approximate
calculation of E„„via a variationally derived, cor-
related correction function to the HF function; this
theory and the approximations involved have been
discussed by Krauss and Weiss."

The use of the HF function as a starting point in
either of these two approaches does not appear to have
any clear-cut practical or theoretical advantages over
Hylleraas-type calculations coupled with the hydro-
genic perturbation expansion or with a total varia-
tional wave function of the category of Eqs. (11). Thus,
although EH+ is considerably better than the corre-
sponding Er in the hydrogenic expansion (cf. Tables V

"C. Schwartz, Phys. Rev. 126, 1015 (1962).
7 W. B. Somerville and A. L. Stewart, Proc. Phys. Soc. (Lon-

don) 80, 97 (1962).
88L. Brillouin, Actualites Sci. Ind. Nos. 71, 159, 160 (1933—

1934).
ee C. Mttller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
» H. W. Peng, Proc. Roy. Soc. (London) A178, 499 (1941).' L. C. Allen, Phys. Rev. 118, 167 (1960).
em M. Cohen and A. Dalgarno, Proc. Phys. Soc. (Londonl

77, 748 (1961).
9'O. Sinanoglu, Proc. Roy. Soc. (London) A260, 379 (1961).
"O. Sinanoglu, J. Chem. Phys. 36, 706 and 3198 (1962).
"M. Krauss and A. W. Weiss, J. Chem. Phys. 40, 80 (1964).
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and VI), Weiss and Martin" found for the ground
state of the He sequence that E3 in the hydrogenic
expansion is superior to the corresponding summation
in the HF expansion. For some operators, the situation
is reversed and expectation values computed through
first order in the HF expansion' are superior to the
hydrogenic first-order expansions. (Indeed, from the
Brillouin theorem, ~" it follows that the expectation
values of any one-electron operator is obtained correct
through 6rst order" in the HF expansion when com-
puted with the conventional HF function. ) On the
other hand, the sixth-order hydrogenic expectation
values of Scherr and Knight" are far more accurate
than the 6rst-order HF values'6 and are in good agree-
ment with the "exact" values computed by Pekeris~
with large-scale Hylleraas-type functions. The results
of higher-order HF calculations are not as yet avail-
able. '~ Tuan and Sinanoglu' and subsequently, Geller,
Taylor, and Levine" have applied the Sinanoglu
theory" to the calculation of E„„for the ground state
of Be with highly accurate results. In view of the
approximations"" involved in the theory, it is dificult
to evaluate the general significance of these calculations.
Two additional objections have been advanced to the
HF approaches: (1) the HF zero-order functions are
known only approximately"; (2) the use of correlating
functions containing r;; in either HF approach intro-
duces the same difEcult three-electron integrals95'699

as occur in Hylleraas-type calculations for X&2." In
short, the correlated HF methods are at least as dificult
and appear to offer no greater potential accuracym than
the Hylleraas-type approach with functions satisfying
Eqs. (11).

VI. CONCLUSIONS

On the basis of this study, it is proposed that Eqs.
(11) be adopted as the minimum criteria to be satisfied
whenever possible in the construction of variational
wave functions. These criteria can always be fu16lled
for atomic isoelectronic sequences since the exact
zero-order wave functions in the Schrodinger perturba-
tion expansion are known for such systems in all states
and for all lV. Variational wave functions satisfying

"A.W. Weiss and J.B.Martin, Phys. Rev. 132, 2118 (1963).
Note added in proof. Recently, R. J. Dickson and J. Sokolo6,
Phys. Rev. 141, 32 (1966) have shown that Weiss and Martin
obtained the Hartree rather than the Hartree —Fock expansion;
this proves to be immaterial, at least for these energy calculations,
as subsequently Byron and Joachain, Ref. 97, found the energy
summed through third order to be very nearly the same in both
of these expansions.

» F. W. Bryan, Jr., and C. J. Joachain, Bull. Am. Phys. Soc.
10, 1208 (1965), have reported HF expansions through 61th
order in E„„for He and Be but details have not been published.
Note added in proof. These authors have now published their
He calculations, Phys. Rev. 146, 1 (1966); they Gnd that E&——

—2.9036 which may be compared to the hydrogenic value of—2.9037 from Ref. 7. These results tend to confirm our conclu-
sions regarding the relative merits of the HF and hydrogenic
expansions.

ss D. F.Tuan and O. Sinanoglu, J.Chem. Phys. 41, 26/7 (1964).
ss M. Geller, H. S. Taylor, and H. B. Levine, J. Chem. Phys.

43, 1727 (1965).

Eqs. (11) have the desirable characteristic of yielding
energies correct at least through first order and other
expectation values correct at least in zero order. For
all such functions, the variational principle assumes
the form,

(30a)

and correspondingly,
(30b)

Any improvement in the quality of functions of this
categorv is automatically concentrated where it belongs,
namely, in improving the quality of second- and
higher-order energy terms. As previously indicated,
the absolute error in the energies computed with even
very simple functions of this type (e.g., the SH func-
tion in Fig. 1) is quite insensitive to Z and is essentially
given by (es—res). The relative error in the energies
computed with such a function for an isoelectronic
sequence diminishes as Z ' while the relative error of
other expectation values diminishes in general as Z '.
Thus, if satisfactory results can be obtained with a
given variational function of this category for a neutral
atom, this asymptotic behavior insures increasingly
accurate results for the higher members of the iso-
electronic sequence. This is in marked contrast to the
asymptotic behavior of the functions satisfying Eqs.
(12) and (13) which may yield good results for lower
values of Z, where partial cancellation of error among
various orders can occur, but which must inevitably
yield diverging results with increasing Z.

In calculations where moderate accuracy is sufficient,
simple MC closed-shell functions satisfying Eqs. (11)
may be employed with the most accurate results for
calculations of this type being obtained with the
MCHF functions. The accuracy of such MC closed-
shell calculations can be improved somewhat by using
the corresponding MC open-shell function but the
relative effectiveness of the open-shell technique di-
minishes rapidly with increasing E. For greater ac-
curacy, more drastic methods of correlation must be
employed. On the basis of the available evidence,
Hylleraas-type functions appear to offer the most
promise. It is recommended that the Hylleraas —Szasz
or similar procedure be further explored either by
combining simple MC functions such as the SH function
with correlating factors or via the hydrogenic varia-
tional-perturbation expansion. It is evident that the
field of atomic calculations is far from being a closed
book and that much remains to be done.
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