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The use of Rayleigh —Schrodinger perturbation theory for obtaining accurate approximate wave functions for mole-
cules and crystals and particularly for the hydrogen molecule is discussed in some detail for a variety of approximate
+0's. Emphasis is laid on the nonunique choice of the zeroth-order wave functions, and the criterion of "goodness" is
suggested to include the ability to obtain higher-order corrections rather than just the expectatipn value pf the total
Hamiltonian. The calculation of electric and magnetic properties is also described and comparisons are made for the
few calculated values available. Problems of symmetry and spin in the treatment of weakly interacting atpms and ipns
as in "molecular" crystals are discussed at length and a few related topics are treated in Appendixes.

I. INTRODUCTION

This paper is concerned with approximate wave
functions for molecules and crystals and with pro-
cedures for improving these wave functions systemat-
ically utilizing the Rayleigh —Schrodinger perturbation
theory. There are often advantages to solving for
corrections to an approximate solution rather than
solving for the entire function itself and thus perturba-
tion theoretic procedures are of interest even though
it is well known that by using an expansion in a com-
plete set of functions and solving the secular equations
one can, in principle, obtain a wave function to any
desired degree of accuracy.

We are particularly concerned with the various
approximate wave functions for the hydrogen molecule
and their perturbation theoretic corrections, as models
for calculations on larger molecules and crystals. We
also examine the approximate wave functions for
crystals in the tight-binding picture and consider how
they may be improved by perturbation theory, but
we are not concerned with the various band descrip-
tions and the recent collective-excitation descriptions,
as they do not obviously gain much from analogies with
molecules. The perturbation theoretic approach dis-
cussed here may have some utility in improving the
band descriptions —as intimated in the studies using
pseudopotentials —but that is a subject for further
study. This paper was written on the assumptions
that perturbation theory can be a useful tool in studying
molecules and that the experience gained from studying
molecules can be useful in the study of crystals.

In Sec. II we give a discussion of Rayleigh —Schrodin-
ger perturbation theory from our own somewhat dif-
ferent point of view. In Sec. III we present the various
relatively simple wave functions for the hydrogen
molecule, construct Hamiltonians of which they are
eigenfunctions, and describe their corrections using
perturbation theory and the calculation of their
electric and magnetic properties. The simple product

and antisymmetrized product schemes for crystal wave
functions are discussed in Sec. IV and the generally
unsuspected difFiculties for improving these wave
functions are discussed.

for which H can be written as

(2.1)

H—=Hp+XHt, (2.2)

Hp is called the unperturbed Hamil tonian and P H&,
the perturbation Hamiltonian where ) is an arbitrary
(and sometimes, dummy) parameter.

II. PERTURBATION THEORY

A. The Inhomogeneous Partial Differential Equations

Since the present study is concerned with the ability
to solve for molecular and crystal electronic wave
functions using perturbation theory, it is pertinent to
give some discussion of perturbation theory itself,
particularly since we are interested in the explicit
so1utions to the partial differential equations (p.d.e. s)
themselves which may or may not involve infinite set
expansions as described in textbooks. Interest in
explicit solutions to perturbation theoretic problems
was revived some years ago by the work of Dalgarno
and colleagues, and Schwartz on a number of one-
and two-electron problems, although their work was
preceded by the work of others, notably Sternheimer,
dating back to the 1920's. An exhaustive review of the
subject was given recently by Hirschfelder, Brown,
and Epstein' which gives further references. The
present discussion is considerably narrower in scop-
dealing only with the time-independent Rayleigh-
Schrodinger approach —and has a rather diGerent
emphasis.

Consider the spin-free nonrelativistic time-inde-
pendent Schrodinger equation

*This wprk was partially supported by the National Science ' J.O. Hirschfelder, W. Byers Brown, and S.T. Epstein, Advan.
Foundation. Quantum Chem. 1, 255 (1964).
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I 0&+)(I1)+)o

I 2&+ ~ ~

E= Eo+XEI+X~Es+

(2.3a)

(2.3b)

where it is assumed that Po is a particular normalized
nondegenerate solution (not necessarily the ground
state) of

(2.4a)(&o—Eo) I
0)=0.

l(o does not have to be normalized but it does have to be
nondegenerate for otherwise one has to apply degener-
ate perturbation theory. This restriction prevents fo
from being complex, for since H is a Hermitian operator,
if fo*P const. X IPo then fo and Po* are linearly inde-

pendent solutions of (2.4a) possessing the same energy
eigenvalue. As an example, the two plane waves
exp (ikx) and exp (—ikx) are both eigenfunctions of

p, '/2tm of energy flak'/2m.
The expansions for f and E will, in general, con-

verge for
I
) I

&p, where the radius of convergence p is
a positive number or trivially zero. p can be crudely
defined as the largest value of ) for which

II» II & IIII. II (2.5)

where the norm is defined by

fgg2

Clearly since the usual perturbation, e.g., —ebs, is un-

bounded in the usual space, e.g., —~&s&~, the
relation (2.5) between norms cannot be satisfied for all
fGZ'. In other words, although the subject has not
been adequately investigated, it appears that for many
usual quantum-mechanical problems, the radius of
convergence is zero. Then the formal expansions for f
and E must be considered as asymptotic expansions
in the limit X~O, i.e.,

f= lim (Po+) PI+ ) fo+)QI+ ~ ~ ~ (2.6)

and similarly for E. (The symbol ~ signifies "asymp-
totically equal to".) In accord with the theory of
asymptotic expansions, for a given finite ) and for a
given range of the variable, e.g., @&X()t),a particular
N(X, )t) th partial sum of the sequence {P„}will be a
good approximation to f, i.e.,

(2.7a)

and similarly

E() )~E(n&)—ghiE. (2.7b)

where the symbol ~ signihes "approximately equal to"

A particular eigenfunction, f, of Eq. (2.1) and its
eigenvalue, E, can be formally expanded in powers of
the parameter )

&=go+&Pi+&Vs+ "

(IIo—Eo) I
2)= (EI—ffI) I 1)+Es I O&,

(&o—Eo) I
3)=(EI—PI) I 2)+E, I 1)+E, I 0),

(Ho—Eo) I 4)= (EI—III) I 3)

(2.4b)

(2.4c)

(2.4d)

etc.
+Eo I 2&+Eo I 1&+E4 I o&, (2.4e)

Since Ho is a partial diGerential operator, if these
equations are solved in sequential order, each equation
is merely an inhomogeneous partial differential equa-
tion for the appropriate correction to fo. We have thus

~ C. W. Scherr and R. K. Knight. Rev. Mod. Phys. 35, 436
(1963).

~& See, however, the demonstration by L. B. Mendelsohn
/Phys. Rev. 141, 113 (1966)j which shows that rP for the helium
atom is not analytic in s—1 as generally believed. The importance
of logarithmic terms has also been discussed by C. L. pekeris
Lphys. Rev. 146, 46 (1966)g.

and the partial sums are said to "semi-converge. "The
lack of absolute convergence of the expansions for (p

and E only means that it is not possible to obtain
solutions to any desired degree of accuracy. The
accuracy obtainable in practice is generally very well
within the region of experimental interest. For example
the energy of the helium atom has been calculated'
using perturbation theory to eight significant figures
and with apparent convergence through 13th order in
X. This means that the relation (2.5) holds for that
subset of 2' consisting of the Grst e elements of the
sequence {f„} and closely related functions. The
fact that p might well equal zero implies that eventually
there may come an eo for which

(4' o )('&IV o) & (4, &oV )

for some m&tto. At this point the partial sums of p
and E (tI&Iso) will begin to diverge. In any case,
questions of convergence are usually avoided —eo may
be as large as 100—and it is generally assumed that the
perturbation is suKciently weak that the first few
terms of the expansions of f and E adequately repre-
sent the corrections to fo and Eo. (We thus exclude
the problems of many-body theory for which the
energy is not an analytic function of )t.)"These correc-
tions would be linear, quadratic, cubic, etc. in a small-
ness parameter X, which might be the strength 8 of an
external electric field. It is more general however, to
set the parameter X equal to 1, and consider the small-
ness, and hence the semiconvergence incorporated into
the functional form of H~, as must be done in treating
atoms and molecules. We thus accept the results of
formal perturbation theory as explicitly valid and the
expansions are assumed to converge absolutely to the
highest order of interest.

When the expansions of (2.3) are substituted into
(2.1) we obtain the sequence of equations which
follow (2.4a),
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a=&olH Io&,

E2= &0 I Hl —a I 1),
Ee= &0 I Hl —a I 2)—E2(o I 1»
E4= &0 I Hl El I

3 )—ES (0 I
2 )—Ee &0 I »,

etc.

(2.5b)

(2.5c)

(2.5d)

El is thus obtained from (Ire and Hl alone without the
solution of any of the inhomogeneous p.d.e.'s. (Note
't}la't Ep+ El is merely the expectation value of the
total Hamiltonian, H, for the approximate or "trial"
function (Ie )Es, howeve. r, requires the solution, pl,
of the first p.d.e., and E3 apparently requires the
solution fs, etc. Actually, as shown by Hylleraas,
knowledge of the wave function corrections to order e
provide the energy corrections to order 2m+1, and
not to the apparent order rt+1. For example, since

and
&o I (H —a) = &1 I (E —Ho)

(Ee—Ho) I 2&=(H1—a) I 1&—Es I 0&,

the integral
&0IH1—al2&

replaced the Schrodinger equation —a single homo-
geneous eigenvalue equation —by a diGerent single
homogeneous eigenvalue equation plus a sequence of
inhomogeneous p.d.e.'s. We would only follow such a
procedure if, despite the greater profusion of equations,
the actual computational labor was, in fact, dimin-
ished. As it happens, the Schrodinger equation itself
can be solved analytically only for a few one-electron
problems, so that we must have recourse to other
methods, the most useful of which has been the Ray-
leigh —Schrodinger perturbation theory, Eqs. (2.4). In
using these equations the Ho is chosen so that Eq.
(2.4a) possess an easily obtained solution. (Or, one
does the reverse, and chooses the Pe first as in the case
of the hydrogen molecule wave functions, and then
determines the Ho of which it is an eigenfunction.
Incidentally, it is not, in general, necessary to find
Hp explicitly for such calculations. ) Thus once the leap

is obtained, the problem reduces to finding the cor-
rections, linear, quadratic, etc. in some parameter by
approximate means rather than trying to find an
approximate total solution in one fell swoop. It is
therefore usually worthwhile to look for a "quick and
dirty" Pv, if one exists, and to devote the greater efforts
to obtain the correction $1 instead of trying to find
the best possible fe with such a great deal of labor
that no time or interest is left to carry out the cal-
culation for the first correction term, P,.

The energy corrections are easily obtained from the
sequence of equations (2.4) by multiplying the suc-
cessive equations on the left by fv* and integrating,
i.e., multiplying on the left by (0 i. Since He is assumed
to be Hermitian, all the left-hand sides vanish, so that

in Ee can be rewritten, eliminating fs, as

« I H.—E. I1)—E.&1 I o)
to give

E,= &1iH,—ai1&—2E, &oi1&

in terms of only fe and $1. The general theorem is
demonstrated as follows. From Kqs. (5) E„ is given by

E.= &O i
H, —E, I n—1&—"

where the string of terms on the right-hand side

—QE;&0 I
I—4)

is not written explicitly, as they obscure the argument,
but which the reader can convince himself are ade-
quately taken care of. This energy can be transformed
through the sequence, identical with that for E3 above,

E = &1I Eo—
Holm —1)—~ ~,

= &1 IH1—a I ~—2)—".
= &2 I EQ—HQ I

rt —2)—~ ~ ~,

= &2
I

Hl —El i
tt —3)—"

which ends at either

E„=&(s—1)/2 I Hl El I (tl 1)/2—)—~—.
if m —1 is even, or at

E,.= &(rt/2 —1) I Hl El
I (rt/2) &-

= &(e/2) I
Hl —El I (e/2 —1) &

—~ ~ ~

if e—1 is odd.
In general we are only interested in the lowest orders

of perturbation theory, and often only the first non-
vanishing contribution, despite the above demonstra-
tion which has only been included for completeness.
An interesting procedure for obtaining higher orders
of perturbation theory connections in something like
a geometric progression is due to Hirschfelder. By a
transformation he finds the correction after Apl to be
X'f1+'A'Pe and, in general, from the ttth-order wave
functions he calculates immediately the wave function
correct through the (214+1)th order.

B. Approximate Methods of Solution

The p.d.e.'s of perturbation theory can be solved by
any of the usual methods for treating such equations. If
an exact solution in closed form can be found by trial-
and-error this is best of all. Otherwise various sub-
stitution, transform, and expansion methods can be
applied in search of analytic and series solutions,
and numerical and variational methods can be applied
in search of very accurate approximate solutions. In
some cases asymptotic series expansions can be found
whose leading terms, as in the saddle-point method,
are fair or good approximations to the exact solutions,
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D[N] =0 (2.8)

the boundary conditions of which can be expressed as

NDN =0

and

although not a great deal has been done in this direction.
The Ritz variational procedures —which is equivalent
to expanding the solution in a limited set of functions
is the most useful method of solution of the p.d.e.'s
and hence we discuss it here at some length.

The solution of the p.d.e.'s of perturbation theory by
a variational procedure is sometimes called Hylleraas-
Bethe-Salpeter variational —perturbation theory' (which
name is actually a misnomer since it is the usual
equations of perturbation theory that are solved ap-
proximately by the variational technique). As is well
known, a variational principle can be derived from
many equations —the Euler equations —of mathemati-
cal physics, just as equations of physics can be derived
from so-called physical variational principles (Principle
of Action, Principle of Least-Time, etc.). Thus if we
have a partial differential equation —which is homo-
geneous or inhomogeneous—

The functional L[$7 is often easily found. For the
solution to the Schrodinger equation —not using per-
turbation theory —the usual "Schrodinger variational
principle" writes

LLy]= (4 I
a

I 4 &/(414) (2.10)

for which satisfying Eq. (2.9) implies that P=f, the
solution to the Schrodinger equation (2.1) and

~= 9 l~l~&/(~I~)=LM
To illustrate the (albeit trivial) nonuniqueness of the
variational principle for a given problem, we choose a
different functional L'[P] by

L [~]= (~ I
~-~

I ~&

where, by the boundary conditions

&= 9 I &14 &/9 I &&

Thus, using the definition L$P] above

6L'[6=2(6&
I
& ~

I 4)—(4 I &&~L[&]

from which we see directly that

5L'[y]=o
implies that

and a functional L[p] of a general function Q such
that for any arbitrary variation of Q

6L[~]= 6~DL~]

then if g satisfies the condition

BL[g]= 0 (2.9)

it also satisfies the differential equation (2.8), so that

implies that I, is an extremum. The mathematical
descriptions of the variational calculus are to a great
extent concerned with the problem of finding whether
L is an extremal (an absolute maximum or minimum)
or an external (an inQection point) . This then involves
detailed discussion of the corresponding di6erential
equations —the Euler equations. For functions which
do not vanish at the boundaries, e.g., possessing
ingoing or outgoing wave boundary conditions, the
variational principle must be somewhat modified. )

[If, as is usually the case, the solution to (2.8) is
unique then

6L[y]=0
L[&]= (0 I

ufo —&o I 0&+2(0 I &i—@I4o& (2.11)

for which

implies that

which satisfies

5L[y]=o

(&o—&o) I1&=(&i—&i) I o&

where again, and to no great advantage, the extremum
value of Lfp] gives the desired energy:

satisfying the Schrodinger equation since we know that

oL[P]=0.

The extremum value of L'[p] vanishes, i.e.,
L'M=O

and does not equal the energy value E, as contrasted
with the extremum of L(p] which equals E. This
variational principle would presumably not be used
since it is, formally at least, more complicated. The
fact, however, that the extremum of the functional
must not necessarily equal the desired energy eigen-
value, is of some practical importance. 4

For the solution to the first-order perturbation
theory equation Eq. (2.4b) the "Hylleraas —Bethe-
Salpeter variational principle" writes

3 E. Hylleraas, Z. Physilt 65, 209 (1930);and H. A. Bethe and
E. E. Salpeter, Handbuch der Physik, S. F10gge, Ed. (Springer-
Verlag, Berlin, 1957), Vol. 35, p. 208. See also Ref. 41 below. 4 J. I. Masher, Ann. Phys. (N.Y.) 32, 416 (1965).
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Similar variational principles can be written for any
successive order of perturbation theory, where it must
be remembered that the energy corrections to order e
should be solved for t Eqs. (4)] before using the
variational procedure for P„.

The usual method for obtaining the variational
solution to the perturbation theory equation is by the
application of the Ritz procedure. "P is expanded in a
subset of a complete set of functions with arbitrary
coeKcients

P= gc„P,
n=1

where the P„are polynomials, transcendental functions,
or the products of such functions with an exponential
such as ito, etc. Substitution of p into the variational
principle for fr, Eq. (11), gives

BQ Pc„*c (n ( Ho Eo j rrt )—

+2c *(I
i

Hr —Er i 0)]=0
which, when the coeKcients of the independent varia-
tions bc„* are set equal to zero, gives the system of
linear equations for the c

gc„(N [H,—Zo im)+(~ [ H,—Z, [0)=0

N=O, 1, ~ ~ ~, 1V. (2.12)

This procedure is no diGerent from letting

and substituting directly into the first-order perturba-
tion theory equation itself, to give

Q(Ho &o)c 4 =(@——Hr)4o
m=1

which when multiplied on the left by P„* and inte-
grated gives Eq. (12). Thus when the Ritz procedure
is applied, the term variational solution is somewhat
of a misnomer, since the same result is obtained by
expanding the solution directly in a limited set of
functions. Furthermore, when the g„are eigenfunctions
of Ho of eigenvalue E„, then the coeQicients of Eq.
(2.12) are obtained immediately as

c„= (~ ) H, Z, )0)/(Zo —Z„)—
just as in textbook first-order perturbation theory.
This shows that utilization of only a one- or two-term
"trial function" in a "variational" calculation is es-
sentially no diGerent from utilization of one or two
"excited states" in a usual perturbation theory cal-

' (a) W. Ritz, J. F. Reine Angew. Math. 135, 1 (1909).For a
discussion of the important problem of the rate of convergence
of such variational expansions see C. Schwartz, Methods in
Compltational Physics (Academic Press Inc. , New York, 1963),
p. 241. (b) L. Panling, Proc. Roy. Soc. (London) A114, 181
(1927).

culation. Since the inclusion of only a few excited
states in a perturbation theory calculation is known
to give highly inaccurate results, by implication the
inclusion of only a few terms in a variational trial
function —even though one might choose the important
arbitrary functions P„more judiciously than one can
choose the important excited states —should be treated
with the greatest caution. Obviously the accuracy
obtainable using a simple trial function depends on
the degree to which the exact function can be approxi-
mated by the terms of the trial function with the best
choice of linear parameters, and this in turn depends
on the exact nature of fo, Ho, and H&. A trivially poor
set of functions to describe the perturbation of a
ls -hydrogen atom by an external field, with II&= —ebs,
would be

A= (s'+»' I-' )4o

since fr, must have the same symmetry as sfo and
hence must be of the form (assumed regular in r at
the origin)

A= E(&/&)+b+«+" 3&6.

In fact the exact solution in this case is 'b

(1 P-,'r) sg,

so that a single-term variational trial function

Pr = azgo =bHrgo

can represent the exact function relatively well. This
accounts for the success of simple trial functions —and
the Unsold approximation, which is in a sense equiva-
lent.—in some perturbation theory calculations. An
example where this type of trial function would be
highly inadequate is the ls-hydrogen atom with II~~
8(r)/r', the nuclear hyperfine interaction. The exact
solution is

Pr cc $(a/r) +br+ c log rffo

any single term of which is not likely to exhibit the
proper behavior, and certainly a function of the form

6- ah~(r)/"36= bH 0o

would give a decidedly poor approximation. It is clear
that the correct solution must be of the form

6" (a/r) A+ (b/&) 1tr',

where Pr' is everywhere nonsingular. No linear com-
bination of nonsingular functions can adequately repre-
sent fr in all regions of space.

When we refer to variational solutions to the equa-
tions of perturbation theory we generally assume that
calculations are performed until a defined degree of
convergence is obtained. This is generally done by
increasing the size of the set of functions until con-
vergence is obtained. It is easier in practice to follow the
convergence of the energy rather than that of the wave
function, especially when the expansion is in non-
orthogonal functions. To date calculations of this
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kind have only been performed for the helium atom,
the hydrogen molecule as discussed below, and the
London —van der Waals interaction of two hydrogen
atoms.

Those with experience in solving for the total P by
the Schrodinger —Ritz variational procedure should note
the important simplification in using the Hylleraas-
Bethe —Salpeter variational principle for the perturba-
tion theory corrections. The former involves an un-
known eigenvalue as well as the unknown wave func-
tions, and hence the first step is the solution of a
determinantal equation for the allowed values of E.
The latter involves no unknown other than the wave
function which is obtained by the solution of a simple
system of E linear equations. The labor involved in
obtaining perturbation theory corrections is thus much
less than in obtaining accurate total wave functions
directly.

III. HYDROGEN MOLECULE

Z=2~gn(1)P(2) —P(1)n(2) j (3.3)

so that only the symmetric spatial solutions of Eq.
(3.2b) can multiply Z(d) to give an allowed 0 (x, d).
On the other hand, if Z(d) is one of the 1:hree eigen-
functions of 82 having eigenvalue S=1, then it is
symmetric, and only the antisymmetric spatial solu-

s For a general discussion of the hydrogen molecule, see M.
Kotani, K. Ohno, and K. Kayama, Haedbech der Physik, S.
Pliigge, Ed. (Springer-Verlag, Berlin, 1961}, Vol. 35, Part 2,
p. 1.See A. D. McLean, A. Weiss, and M. Yoshimine, Rev. Mod.
Phys. 32, 211 (1960l for a bibliography of hydrogen molecule
calculations.

A. Zeroth-Order Wave Functions'

The Hamiltonian for the hydrogen molecule in the
Born—Oppenheimer approximation, for which the two
nuclei are fixed at A and 8, separated by a distance
E. 1S~

H(+) = (VI +~2 ) rlA rIB r2A r2B

+rI2 '+& '
(3.1)

where the constants A, ns, and e have been set equal to
one. Since the Hamiltonian is spin-independent the
solution to the two-electron Schrodinger equation

H@(x, d) = M (x, d) (3.2a)

is separable in the coordinates of space and spin, so
that @(x,d) can be written as the product of a spin-
independent function g (x) which is an eigenfunction of

Hf(x) = EP(x) (3.2b)

and a spin function Z(d), which is an eigenfunction of
S2, such that the total wave function %(x, d) is anti-
symmetric under exchange of the particle space and

spin coordinates. When Z(d) has eigenvalue S=O,
then it is antisymmetric, and

tions of Eq. (3.2b) can multiply Z(d) to give an
allowed 4'(x, d). Thus the eigenfunctions of H lie in
two disjoint sets, one of which multiplies the S=O
eigenfunctions, Eq. (3.3) to give the singlet manifold
of functions 4'(x, d), and the other multiplies the set
of S=i eigenfunctions to give the triplet manifold.
We are interested in the singlet %(x, d) of lowest
energy which describes the hydrogen molecule in its
ground electron state, and are concerned with various
approximations to the spatial part of this function
and with ways of improving these approximations
using perturbation theory. For purposes of illustration
we also brieQy discuss approximations to the lowest
state in the triplet manifold.

The first wave function to be used for the hydrogen
molecule was that of Heitler and London, ' the so-called
Valence Bond function (unnormalized)

go(VB) = /A(1) IflB(2) +PB(1)Qg(2), (3.4)

where &A(i) and @B(i) are the 1s-hydrogen-like wave
functions for eRective charge Z

pN(i) = (Z'/Ir)'* exp ( Zr;N)— (3.5)

The subscript zero on the fs(VB) refers to the fact
that this is an approximate wave function, there being
no subscript to indicate that we are treating the ground
state. Also neither the Z dependence nor the 8 depend-
ence is indicated explicitly except when a particular
choice of these parameters has been made.

Inspection shows that fs(VB) is an eigenfunction of
the zeroth-order Hamiltonian

Hp(VB) = T (Tfs)/leap+ constant —(3.7)

where the constant is most conveniently taken as the
eigenvalue, 2EB, of the Hamiltonian of (3.6) .

The other popular wave function for the hydrogen
molecule is that based on the molecular orbital picture
of Hund and Mulliken, although the first explicit
calculations using this were first published in the

7 W. Heitler and F. London, Z. Physik 44, 455 (1927).
8R. M. Sternheimer, Phys. Rev. 80, 102 (1950); 84, 244

(1951);96, 951 (1954); 115, 1198 (1959); and 127, 812 (1962).
See also R. Makinson and J.Turner, Proc. Phys. Soc. (London)
66, 857 (195').

HP(VB) = T—L1+PIsj

&& f&(Z/r»)+(Z/r») j4A(1) OB(2) IA-' (3 6)

of eigenvalue 2E&(Z), twice the energy of the hydro-
gen-like orbitals, where 8~2 permutes the indices 1 and
2. Note that Hp cannot be written as the sum of single-
particle operators because of its explicit dependence
upon fs. Since this Hs is the unique local Hamiltonian.
(up to a constant) of the form Hs T+Vs, the po-——
tential term could have been found by Sternheimer's
procedure' and thus Hp could have been written
equivalently as
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late thirties by Hellmann and Coulson. This so-
called Molecular Orbital wave function, is (unnormal-
ized)

4o(MO) = (4A+4s) (1) (4»+4'&) (2) (3 g)

using the same notation as above. It is an eigenfunction
of the separable Hamiltonian

Ho(MO) —= lto(1) +ho(2)

=~-Z — . +-Z yA(i) Z yg(i)
1 r'A (QA+QB) (i) r'B (O'A+4B) (i)

also of eigenvalue 2Err(Z) and which could also have
been obtained by Sternheimer's procedure.

An even simpler wave function for the hydrogen
molecule was recently proposed by the author. "This
Non-Symmetrical wave function, which was rejected
by Heitler and London on the grounds of its poor
binding and its lack of electron symmetry, is

pp(NS) =@A(1)y~ (2) . (3.10)

and it is an eigenfunction of the separable but non-
symmetrical Hamiltonian

Hp(NS):—Itp(1) +Itp(2) = T (Z/rrA) ——(Z/terr) '(3.11)

with eigenvalue 2Err(Z). Contrary to some expecta-
tions the nonsymmetrical nature of fp(NS) does not
introduce any special problems into calculations using
perturbation theory as long as the total Hamiltonian
is spin-independent.

An interesting and neglected wave function for the
hydrogen molecule, proposed by Wick" which can be
called a Geometrical-product Molecular Orbital wave
function, uses products of atomic wave functions on
each atom, and is (unnormalized)

approximate function Z'~-,'. This emphasizes the fact
that @A(1)gn(1) is a fair approximation to the Hs+
molecular-ion, and that clearly the electrons should
not feel the effect of the entire nuclear attraction since
they should serve to screen each other from the nuclei.
This wave function could, therefore, also have been
called an Approximate Ion wave function.

In 1931Hylleraas" proposed a nonsymmetrical wave
function using exact H2+ molecular-ion wave functions
which was never actually used in computations.
Hylleraas suggested that the second electron of the
hydrogen molecule should be superimposed on the
solution for the Hs+ ion (Z= 1) and therefore experience
an effective Z for each nucleus of -', . The Non-Sym-
metrical Ion wave function is (unnormalized)

Pp(INS) = fr(1, Zr)gr(2, Zs), (3.15)

where gr(i, Z;) is the exact solution to a (pseudo-)
hydrogen molecular-ion of nuclear charge Z; for the
ith electron, and ltp(INS) is an eigenfunction of the
nonsymmetrical Hamiltonian

~.(1)=~.(1,Z)~.(2, Z) (3.17)

which is an eigenfunction of the separable Hamiltonian,
which contains the electrons equivalently,

Zg Z] Z2 ZQ
Hp(INS) = T —— —— —(3.16)

~hi ~1B ~2A f2J3

Wallis and Hulburt'I have studied in detail the use of
Ion functions suggested by Hylleraas and they retained
the electron symmetry by not using two different
values of Z in (15) but rather determined the optimum
single value of Z in

fp (GMO) = pA (1)ps (1)QA (2) pg (2)

= exp I
— Z(P, +P,)) (3.12)

fZ Z)
Ho(I) = & —ZI —+ —

I
~

t 1 (riA &iBJ
(3.18)

giving its explicit form in terms of a single confocal
elliptical coordinate for each electron, $;= (r;A+r;n) /2,
where Z'=EZ. Qp(GMO) is an eigenfunction of the
separable (non —hermitian) Hamiltonian in spheroidal
coordinates

Hp(GMO) = —(1/R') $(c)'/ct&P) + (8'/c)&s') j (3.13)

but also, and more interesting, an eigenfunction of the
(Hermitian) separable Hamiltonian in Cartesian co-
ordinates

H, (GMO) = r+ P[ (Z/.;,) (Z/. ..)— —

+I O'A(t)4a(t) j '&4A(s) .&rIB(s) I (3 14)

of eigenvalue Ep 4Err(Z) so that fo——r this to be a good

P (a) H. Hellmann, Einfnehrnng in Cie Qnanlenchemie (Deu-
ticke, Vienna, 1937). (b) C. A. Coulson, Proc. Cambridge Phil.
Soc. 34, 204 (1938)."J.I. Musher, J. Chem. Phys. 42, 2633 (1963)."G. C. Wick, Nuovo Cimento 10, 118 (1933).

They also studied the symmetrical wave function
made by symmetrizing Po(INS) for two screening
constants Z and Z'

fo(IS) =br(1, Z)A(2 Z')+br(1, Z')4r(2, Z) (3.19)

which is the exact analog of the Valence Bond wave
function only using Ion functions of different Z's
instead of atomic functions of different nuclei. This
type of wave function has also been referred to as an
Open Shell function (which has been symmetrized) by
analogy with calculations on the helium atom. The
Hp for fp(IS) is analogous to the Hp(VB) of (3.6)
so we do not write it explicitly.

The Hartree and Hartree —Pock wave functions for
the hydrogen Inolecule are one and the same. By
definition they are the approximate solution to the

's E. Hylleraas, Z. Physik 71, 739 (1931).
» R. F. Wallis and H. M. Hurlbut, J. Chem. Phys, gg& 'f74

(1934).
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e*(i)e(i )Ke(')6(')=~(') ~-
rij

(3.21)

respectively, then

&p(H) =hpH(1) +hpH(2) —= T Q$r;A '—+r;B ' Je(i) j—

and
(3.22)

Hp(HF) =—hpP (1)+& (2)

—:2"—p fr,A I+r;B I 2'(i)+—Ke(i) j. (3.23)

The eigenvalues Ep(HF) = Ep(H) of these Hamil-
tonians are not the Hartree or Hartree-Fock energies,
EH= EHF since the latter are given by the expectation
value of the total Hamiltonian (0 ) H

~ 0) and not just
that of Hp(HF) or Hp(H).

The energies for the various Pp's, def'Ined by the
expectation value of H, (0 ~

H
~ 0), and equivalent

to Ep+EI in a perturbation theory scheme, are given
in Table I. The values are given both for the optimum
value of Z as determined variationally, as well as for
Z=i, except for the NS wave function for which
optimizing Z had negligible eGect on the energy and
for which three value of Z are given for purpose of
illustration. It can be seen that all the energies save
that for the NS (Z=0.8) and GMO (Z=1) wave
functions are within 20% of the experimental value
indicating that they shouM be reasonably good starting
functions for perturbation theory calculations.

B. Perturbation Theory Corrections

Since each of the Pp's can be considered the leading
term in an expansion for the exact f of the form

p=gp+&ltI+ ", (3.24)

where X is a dummy index, the first-order corrections,
II', can be found as solutions to the inhomogeneous
partial differential equations t Eq. (2.4a) j

(&o E)O = (E. If.)ao— —
"R. J. Dickson and J. SokoloG, Phys. Rev. 141, 32 (j.966).

A recent calculation of F. W. Byron and C. J. Joachim LPhys.
Rev. 146, 1 (1966)j has shown the different types of convergence
of the two expansions, one being monotonic and the other being
0&&@p.tory.

Schrodinger equation of lowest energy of the form

A(H) =A(HF) =4'p(1) A(2) ~ (3.20)

The Hartree and Hartree —Fock Hamiltonians are
di6erent, however, as was recently emphasized by
Dickson and Sokolo8. '4 If the Coulomb and exchange
operators are de6ned by

l~(i) I'
Je(i)8(i) =8(i) dr;

rij

where )Bi is dined by

(3.27)

Since Bo is not separable in the coordinates of the two
electrons, this equation cannot be simpli6ed into one-
electron or single-particle excitation terms and two-
electron or two-particle excitation terms. Equation
(3.27) does not possess an exact solution and pre-
sumably it can only be solved variationally. De6ning
a function

f(12)=i/I/pp (3.28)

which does not, in general, belong to 2', and an operator

G(12)—=—(2) Ig(iypV;2+2V;lt .V;) (3.29)

the left-hand side can be rewritten as

G(12)f(12) (3.30)
and the variational equivalent of (3.27) becomes

&P(0 (f'Gf (0)+2(0 (f(&1—E1) [ 0))=0. (3.31)

Furthermore, because of the properties of inhomo-
geneous partial differential equations, f(12) can be
written as"

f(12) = Zfp(12)

where the fp are the solutions to

(3.32)

G(12)f~= &2 (3.33)

"The equation for the total correction to ipp (&B), i.e., &,where tt =$0+x, was given by Heitler and London. 7
'2 An inhomogeneous partial differential equation Lplg=p of

specified boundary conditions possesses a unique solution if
(N0, p) =0, where uo is the solution to the homogeneous equation
LLNj=0. Therefore if the solution to the inhomogeneous equation
LLN) =221+$2 exists, it can be obtained as 21=NI+u2 in terms of
the solutions to the two equations L/NI$=2pI+kf and $212)=
p2 kf, where f is oey fu—nction satisfying the same boundary
conditions as e and the p with k the appropriately determined
constant. One has only to be careful about singularities which
occur in @& and @2 separately but which cancel out in p&+g2,e g , as when g& ——. (.e'/r12)a(r~) p(r2) and 222= —(e lr~2)a(r2) p(r1)
on the surface r&=r2. One way to handle this would be to use the
same set of expansion functions for both ei and e2, which un-
fortunately would remove the utility of the separation in the
erst place.

(3.26)

The expansion in 'A is also parametrically dependent on
both R and Z, but whereas the partial sums /defined
by Kqs. (2.'7)j f&"& and Et"& for I large are essentially
independent of Z (assuming that they converge) they
remain, of course, dependent on Ej.

Thus the erst-order correction to the Valence Bond
wave function is the solution to the two-electron
equation"

t a, (Va) —E,(VS) jy, (Va) = (E,—;;—Z- )g.(Va)
Z—1 Z—1+ (1++12) r28 +rlB yA(1) $B(2)

rlA re
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The (nonunique) division into the Ap, for example, as

A2= Pl2A3
A z

——(Ez' —rzs-' —R—') (3.35a)

z—j. z—1Ez"+rzA +rlB $A(1) QB(2),
~2B

(3.35b)

and the sum of the As are the right-hand side of
(3.27), i.e.

+As= (Ez—Hz) fp. (3.34)

where El' and El" are derived from the boundary
conditions, may prove useful due to the more rapid
convergence of the variational equivalents of the
equations for the fp than that of the equation for f
itself.

The 6rst-order perturbation theory equation for
the remaining simple wave functions can be separated
into one- and two-particle excitation terms because
the corresponding Ho's are separable, i.e., they can be
written as the sum of two one-particle operators,
hp(i) .For example, the erst-order correction to Pp(MO),
which is the solution to

(&p—Ep) Pz(MO) = (Ez—r,s-' —J)'-') Po(MO)

can be written as

Z—1& (, Z—1)
+L1++lsj (r» '— le(1) + l

«» ' — le(1) (yAyyB) (»
rzB i r» i

A= Lf(1)+f(2)+f'(12))4'o,

(3.36)

(3.37)

where the f(i) are solutions to the one-electron equations

G(Z)f(Z) —=——',L(pA+pB) (i) V p+2V;(rI)A+rI)B) (i) ~ V;5f(Z)

= L1+J'AB] I [E&'+r;A '—( (Z—1)/r;B) g(i)—]gB(i) }
and f'(12) is the solution to

L(PA+PB) (2)G(1)+(QA+$B) (1)G(2) jf'(12) = LEz"—rzs '—R '+g(1)+g(2) $))t p

with the g(i) de6ned by

s(~) =f(a~+ca)'(i)"

(3.38)

(3.39)

(3.40)

Thus the Molecular Orbital wave function can be written as

( } 1+))f+ @(&')j(4A+4B) I (1) I L1+))f+ (l(X') )(4A +rtpB) }(2) +'Af'(12) lt'o+ 8()),') (3.41)

and the Non-Symmetrical, Geometrical Molecular Orbital, and Ion Pp s can be written in the same form as well.
The Hartree and Hartree —Pock functions, however, by virtue of their de6nition which excludes single-particle
excitations to 6rst-order, can be written as

t A+ &()')j(1)L4 +6(&')3(2)+V'4o(1)A(2)+ t)() '), (3.42)

(1+)f) (4A+pB) =4o=Xo (3 44)

where the f' is either f'(H) or f'(HF). The Natural relatively small (dummy) quantity for the MO, HF,
Orbital description of a molecular wave function due and H expansions (as well as for the GMO, NS, and I
to Lowdin and colleagues, 'z which is of some popularity, expansions),
writes the exact (spatial) wave functions as

g =xo(1)xo(2)+ gx*(1)x'(2)
i=1

(3.43)

in which the term xp(1)xp(2), the 6rst "Natural
Orbital, " presumably provides the dominant contri-
bution to f. It is trivial to observe that since X is a

'7 P.-O. Lowdin, Svenska Kern. Tidskrift 67, 369 (1955);
P.-O. Lowdin and H. Shull, Phys. Rev. 101, 1730 (1956); H.
Shull, J. Chem. Phys. 30, 1405 (1959).

so that the single-particle orbital plus the erst-order
single-particle corrections in the various approximate
schemes all give good approximations to the erst
Natural Orbital and thus also to the Hartree —Fock
orbital. '8 This provides a noniterative procedure for
ending approximate solutions to the Hartree —Fock
equation for the two-electron system of the hydrogen

"See also G. V. NazaroQ and J. O. Hirschfelder, J. Chem.
Phys. 39, 715, 3155 (1963).
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TAnr. z I. Hydrogen molecule energies (2=2.4op).

fo g(n) a

VBb
VBe
MO~
MQe
NS'
NS'
NSf
GMON

GMOg
INSb

I'
HF"

"Exptl" '

1
1.166
1
1.197
1
1.2
0.8
1
0.597
1, 0.5
1

0.7825

—30.4
—31.0
—29.9
—30.7

27 ~ 3
—26. 7
—16.3
—18.3
—30.1

(Ep —26.4)
—29.2

~—30.70
—30.84

~ ~ ~

—31.254 (2)
—32.198 (2)

~ ~ ~

—31.957 (5)

—31.957

The number in parenthesis gives the order in perturbation theory, and the
energies are in eV.

W. Heitler and F. London, Z. Physik 44, 455 (1927), Y. Sugiura, Z. Physik
45, 484 (1927).

S. C. Wang, Phys. Rev. 31, 579 (1928).
H, Hellmann, Einf@hrung in die QNantenche7nie (1937), p. 133, reevaluated

by the author at 2=1.4ao.
C. A. Coulson, Trans. Faraday Soc. 33, 1479 (1937).
J. I.Musher, J. Chem. Phys. 42, 2633 (1965).

g B. Liu, W. D. Lyon, and W. Byers Brown, J. Chem. Phys. 44, 562 (1966)."E. Hylleraas, Z. Physik V1, 739 (1931).Hylleraas discusses only the non-
symmetrical wave function but does not calculate the energy. The E0 given
here is estimated by the author. R. F. Wallis and H. M. Hurlbut symmetrize
this wave function to get the f0 (IS) with energy of~—30.89, in J.Chem. Phys.
22, 774 (1954).

R. L. Matcha, thesis, University of Wisconsin (to be published). Matcha
has recalculated the H2+ wave functions to give the necessary accuracy. He
also obtains E(» of -31.931 which is probably slightly more accurate than the
value of —31.940 determined by B. Kirtman and D. R. Decious, J. Chem.
Phys. 44, 830 (1966).

R.F.Wallis and H. M. Hurlbut, reference given in i above. The approximate
sign~ is due to the fact that they take only the first two terms in one of the
expansions for the H2+ functions.

~ W. Kol'os and C. C. J.Roothaan, Rev. Mod. Phys. 32, 205 (1960).This is a
correction of 0.01 eV over the value of C. A. Coulson, Proc. Cambridge Phil.
Soc.34, 204 (1938).

The best calculated nonrelativistic value in the zeroth-order Born-Oppen-
heimer approximation is from W. Kolos and C. C. J. Roothaan, Rev. Mod.
Phys. 32, 219 (1960).This is the number with which comparison should be made.

molecule. Schwartz and others" have shown explicitly
that the bare nucleus wave functions for simple atoms
corrected to include the erst-order single excitations"
gives good agreement for both energies and physical
properties with the (zeroth-order) Hartree —Fock solu-
tion.

The fact that the erst-order perturbation theory
corrections to the Hartree —Fock. solution of an electron
gas could be written in terms of two-particle inter-
actions was known in the 1930's when it was shown

" (a) C. Schwartz, Ann. Phys. (N.Y.) 6, 156 (1959). (b) A.
Matulis, U. Safronova, and V. Tolmachev, Lietuvos Fiz. Rinkinys
4, 331 (1964) and works cited therein. (c) D. Layzer. Z. Horak,
M. N. Lewis, and D. P. Thompson, Ann. Phys. (N.Y.) 29, 101
(1964). (d) Z. Horak, 3fodere Quantum Chemistry (Academic
Press Inc. , New York, 1965), Vol. II, p. 7. (e) G. G. Hall, L. L
Jones, and D. Rees, Proc. Roy. Soc. (London) A283, 194 (1965).

"The description of Hall et al. is in density matrix language but
does not differ from the usual wave function description in any
nontrivial way.

that this second-order perturbation theory energy
diverges. In the 1950's this divergence was removed,
following the work of Brueckner, by summing selected
parts of the higher-order perturbation theory terms,
thus indicating that the energy of the electron gas was
not analytic in the perturbation parameter, X(or e').
The fact that perturbation theory corrections to the
solution of a separable zeroth-order Hamiltonian
could be written in terms of solutions to two-particle
equations was apparently not appreciated by atomic
and molecular physicists, who regularly use the sepa-
rable Hartree —Fock Hamiltonian, until Sinanoglu"
pointed this out in 1961.Until that time perturbation
theory corrections had only been applied to the two-
electron systems of the helium atom and helium-like
ions. Since then, Kelly, has performed very accurate
calculations of E2 and some higher-order terms for
beryllium" and for the open shell atom, oxygen, " and
Sinanoglu and co-workers have obtained approximate
solutions to the pair-correlation energies of Be'4 which
compare relatively well with those of Kelly. Within
the past year perturbation theory has, at last, been
applied to molecules and the H2+ molecular ion—forcing
the rewriting of an earlier version of this article com-
pleted in the summer of 1965—by Hirschfelder, Byers,
Brown, Kirtman, and their colleagues. ""

Liu, Lyons, and Brown" have calculated the first-
order corrections to Pp(GMO) for two values of Z:Z= 1
and that which minimizes Ep+Er, Z=0.598. These
are also given in Table I.They use double perturbation
theory, separating )Ht(GMO) into the electron re-
pulsion part

W= 1/rrs

and the one-electron part

V =H Hp (1/rrs), — —

(3.45)

(3.46)

where their Hp differs from our (3.14) by the constant
4Err(Z). They thus did not separate fr into single
and double excitations before performing the double
perturbation theory —which might have converged
even faster —but rather took advantage of the closed-
form solution to the equation first-order in V and only
had to determine the solution to the first-order equation
in TV variationally. In the same way, one could hand

the first-order corrections to the Pp(MO) using the
first-order H2+ calculations of Sanders et at'." for the

"O. Sinanoglu, Proc. Roy. Soc. (London) A260, 379 (1961).
s2 H. P. Kelly, Phys. Rev. 131, 684 (1963).
2' H. P. Kelly, Phys. Rev. 144, 39 (1966).
~ D. F-T. Tuan and O. Sinanoglu, J. Chem. Phys. 41, 2677

(1964).
"W. D. Lyon, R. L. Matcha, W. A. Sanders, W. J. Meath, and

J. O. Hirschielder, J. Chem. Phys. 43, 1095 (1965)."B.Liu, W. D. Lyon, and W. Byers Brown, J. Chem. Phys,
44, 562 {1966).' B. Kirtman and D. R. Decious, J. Chem. Phys. 44, 830
(1966).

2s R. L. Matcha, thesis, University of Wisconsin (1965).
"W. A. Sanders, W. J. Meath, and J. O. Hirschfelder, Uni-

versity of Wisconsin Theoretical Chemistry Institute Report
No. 44 (1964).



JEREMY I. MUsHER

APProri

mat 8'ave Functions

Finkelstein —Horowitz wave function —which is the
same as the one-electron orbitals of po(MO), justifying
the statement that the MO wave function is also an
Approximate Ion type of function —and only having
to solve for the 1/ri2 perturbed correction variationally.

Both second-order energies are in good-to-excellent
agreement with the best calculated Born-Oppenheimer
value of KoIos and Roothaan and therefore give every
indication that perturbation theory ought to converge.
Moreover, (a) the partial sums E"' are essentially
independent of Z for these two rather diverse values
of Z; (b) the "natural" value of Z for this wave
function is 2 & and not 1, as the latter gives Ep=4EII
instead of 2EII which is in the vicinity of the exact
total E; and (c) there is considerable advantage in
choosing Z judiciously —some 14 kcal/mole better
agreement for E&"—but the fact that the wave func-
tion with Z= 1 gives a decidedly poor Eo& by no
means precludes its ability to give accurate values
for the higher partial sums.

Matcha" has used the exact H2+ ground-state wave
functions in a variational calculation for the wave
function through second-order and the energy through
fifth order which is given in Table I. Decious and
Kirtman~ have used an accurate approximation to the
exact H2+ wave function to calculate the first-order
wave function variationally and the energy, through
third-order which is also given in Table I where
Matcha's somewhat more precise third-order result
is given for comparison. The agreement of Matcha's
fifth-order result with that of Kolos and Roothaan"
is nothing short of spectacular while the agreement of
the third-order results is at worst excellent. This
demonstrates explicitly the convergence of a perturba-
tion series expansion for a molecule, which is the first
time such a convergence has been demonstrated. The
fact that such rapid convergence was obtained using
Z=1 instead of the optimal Z=0.7825, for which
E&'& is 1.5 eV lower, illustrates the lack of sensitivity
to the particular choice of Z, as long as it is a reasonable
such choice. In practice, one should choose where
eRort is better expended: in optimizing Z or in per-
forming higher-order perturbation theory calculations.
One sees immediately that for the hydrogen molecule
it is usually better to choose Z arbitrarily and cal-
culate fi rather than to optimize Z and not obtain
Pi at all.

C. Generalization to Larger Molecules

It is unfortunately true that of all the wave functions
for the hydrogen molecule discussed here, only two,
+,(HF) and ~IO(I), bear easy generalization to large
molecules for use in perturbation theoretic procedures.
For systems of more than two electrons 4'0(VB) be-
comes particularly unpleasant —which has led to its
neglect over the past thirty years —but more important,

"W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219
(1960).

the solution for the first-order perturbation theory
equations is not expressible in terms of pair-correc-
tions. The +p(NS) and the%'0(H) are only legitimate
starting points for perturbation theory calculations
for two-electron systems for which the space and
spin variables are separable since a valid +p must be
an eigenfunction of S' and S, if the + obtained via
perturbation theory is to be. The @0(GMO) might be
generalized to larger molecules if one could find a way
to generate excited states, but the behavior for large
internuclear distances, at least at first glance, makes
such a description seem rather unreasonable. A fully
antisymmetrized intuitive%'0(MO) for a large molecule
can be written down as a single determinant, and
using a procedure outlined by Epstein a separable but
nonlocal Ho(MO) of which @p(MO) is an eigenfunc-
tion, could be constructed. Perturbation theory could
then be applied, but the labor might be prohibitive.
The use of Vo(HF) in perturbation theory calculations
is now well appreciated since the work of Sinanoglu"
even though no such calculations for molecules have
yet been reported. This is unfortunate in view of the
fa,ct that the first-order correction to %0(HF) is proba-
bly easier to obtain that%'0(HF) itself.

We are particularly hopeful for the utility of the
generalization of @0(I) to large molecules, a prospect
which has been neglected until very recently —despite
a Sinanoglu paper of some years ago"—when several
research groups" have initiated studies on atoms and
on the hydrogen molecule. The beauty of the gen-
eralized +o(I) is that the lowest (X/2) one-electron
solutions to the bare ion problem for given nuclear
charges I Z;I can be easily obtained numerically
without any two-electron integrals or iteration pro-
cedures. Then the major effort can be devoted to
finding the first-order corrections, which itself should
not be too dificult. We consider it to be of primary
importance that the f Z;f are chosen judiciously,
since the charges on a given nucleus must affect al/ the
electrons alike. Such a choice might be the weighted
average of the Slater shielding parameters for the
electrons on the atom in question in the limit of large
internuclear separation.

The significance of an arbitrary separable Hp fol
atomic and molecular calculations has apparently not
been appreciated previously, and a discussion of this
is given in Appendix E. We feel, in fact, that the
emphasis on finding self-consistent 4"s has obscured
the utility of solutions obtained from other separable
Ho's—of which +0(I) is an example and we have
the highest hopes for calculations using an Hp similar
to the Hartree —Pock Hamiltonian but not containing
any nonlocal operators at all.

Hall and Rees" have outlined a nonsymmetrical

' O. Sinanoglu, Phys. Rev. 122, 493 (1961).
"The research groups of A. Dalgarno and E. B. Wilson, Jr.,

besides those of Refs. 19 and 25-28."G. G. Hall and D. Rees, Theoret. Chim. Acta I, 448 (1963).
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perturbation theory procedure for diatomic hydrides
which bears mentioning here. Their procedure writes
the zeroth-order wave function for the molecule X—H
as an E-electron atom with no interelectronic repul-
sions centered on X of variable charge, with the
remaining Coulombic terms as the perturbation. This
procedure corresponds to treating the hydrogen mole-
cule as a helium atom of variable charge and a proton
in zeroth-order. In view of the success of second-order
perturbation theory for the H2+ molecular-ion with the
zeroth-order wave function that of an H-atom plus a
proton, this procedure might well be useful. As yet,
however, the erst-order wave function corrections and
second-order energies have not been obtained for any
of the diatomic molecules.

D. Convergence

Although the calculation using 4's(I) has demon-
strated the convergence of a perturbation theory
expansion in a particular case, some general comments
are in order.

The question of convergence is a dif6cult one for
all atomic and molecular problems involving perturba-
tion theory since one rarely has to deal with bounded
operators. The strongest statements that one can make
in general —and these are based more on intuition
rather than on proof—are: (1) the infinite expansions
for the energy and the wave functions converge only
in the limit that the perturbation parameter ) ap-
proaches zero; (2a) the partial sums of the leading
few terms of the expansions for the 1('s are very good
approximations to the exact f's for large regions of
function space and the perturbation expansion might

be asymptotic to the exact solution in the limit of
certain variables approaching limit points; and (2b)
the partial sums of the leading few terms of the energy
expansion (as well as for the expectation value of any
other operator) are approximately equal to the exact
result. Notice, however, that if the argument of Ref. 2a

applies to molecules as well, then convergence of a
given series does not guarantee that the series sum

is a good approximation to the exact solution.
The nonsymmetric perturbation theory procedure"

provides a very simple demonstration of the question-
able convergence of the perturbation theory expansion.
The term —1/r~ is included in Hs while the term
—1/riB is included in liHi. Both of these terms take on
the same values, although in diferent regions of

r& space, and it is therefore not obvious why one

can be considered small relative to the other. How-

ever, in the perturbation theory procedure ) H& never

appears by itself but always multiplies

its = exp L
—(rr~+ rsB)$

and so what should be compared is the ratio ri~/riB
in the region in which its is large, i.e., around center A.
In this region the ratio is quite small, approaching

zero at A itself. Thus an expansion up to lt; which is
large in a region where ri~/riB 1 will provide a good
approximation to the exact ip and the corresponding
expectation value of the energy and other operators
will provide good approximations to the exact values.

The Non-Symmetrical wave function raises a dif-
ferent question of convergence: can a nonsymmetrical
wave function converge to a wave function which is
either spatially symmetric or antisymmetric by apply-
ing perturbation theory? The answer clearly must be
yes, since in the absence of accidental degeneracy the
convergence of the nonsymmetrical perturbation series
to a solution of the Schrodinger equation requires
that it converge to a solution of one symmetry or the
other. '4 At large values of E, the lowest singlet state is
nearly degenerate with the lowest triplet, so that
convergence is not likely to be attained —such is the
only possibility for the perturbation theoretic procedure
to lead to a state of mixed symmetry. The validity of
this type of argument rests on the separability of
spatial and spin coordinates which only happens for
two-electron systems or for 1V-electron systems of
S,= ~E/2. In these cases alone, total symmetry
(or anti-symmetry) is required of the spin-independent
solution to the Schrodinger equation.

Therefore one should not be concerned that fs does
not satisfy the Pauli principle. Since its is only an
approximate wave function, the Pauli principle, which
is a property of the wave function, just as is the ex-
pectation value of r' or 1/r, should also only be satisfied
approximately. For the singlet wave function, this
says that for the nth partially summed spatial wave
function,

i=0
(3.47)

(3.48)

instead of identically vanishing for all e as it does for
the various symmetrical wave functions. In performing
perturbation theory calculations on Ps(NS), however,
one must be careful to obtain a solution of the desired
symmetry. Just as in any perturbation theory calcula-
tion one is not guaranteed to approach the ground
state starting with a given its, here starting with a
given nonsymmetric fs, one is not guaranteed to
approach a spatially symmetric state which, if it were
the lowest such state, would be true ground state,
of the system.

E. Excited State fs's

Because of the historical role played by the Valence
Bond and Molecular Orbital wave functions, it is
often assumed that a particular choice of a ground

'4 The convergence of a nonsymmetrical perturbation theory
procedure and a bare proton has been recently demonstrated by
P. B. Bailey /Proc. Phys. Soc. (London) 85, 1127 (1965)g over
a large range of E.
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thus requiring
L'A(NS)+t Vi(NS)+" j)= O(},t )

(4.(NS), 4,(NS) )=0
and thus giving the only obvious choice of '4p(NS)
to be

Vp(NS) =4~(1)4~'(2) —4~'(1)4~(2)

where 4~' and 4n' are the 2s-atomic wave functions.
But this, too, gives trouble, and the answer to the
problem is not obvious.

The GMO singlet wave function does not suggest a
possible triplet, or at best, suggests the p4p(VB) by
use of the second spheroidal coordinate. Some triplet
states for the Ion, Hartree, and Hartree —Fock wave
functions can be obtained using the single-particle
wave function of the ground singlet, but only by
including an additional orbital generated from the
zeroth-order Hamiltonian.

state 4p affords information about the first excited
state. However, this particular argument is unique
to the VB and MO schemes, as for both of these
there is an obvious spatially antisymmetric function
which is thus orthogonal to the approximate ground
state function and which can be associated with the
6rst excited triplet state. Furthermore, even in these
cases, one has no evidence that the suggested function
is a good approximation to the exact function.

The spatial part of the triplet VB function is (un-
normalized)

Qp(VB) =4g(1)4n(2) —4ii(1)4g(2) (3.49)

which is also identically equal to the spatial part
of the MO function (unnormalized)

4'p(MO) = (4g+q s) (1) (4~ 4' )n(—2)

(4'& 4'&) (1) (4'&+4'&) (2) ' (3 50)

These wave functions are eigenfunctions of the non-
separable Hamiltonian

PPo(VB) = PHo(MO)

L1 ~ls1L(»~ '+»2& ) 4'&(1)4'n(2) j(Vo)
(3.51)

so the corrections cannot be separated into single
and double excitations as was possible for the singlet
A(MO).

The spatial part of the triplet NS wave function,
cannot be simply obtained from the functions included
in the singlet wave functions. It might have been
thought that the NS spatial zeroth-order triplet should
equal the spatial zeroth-order singlet, the one being
corrected to give a symmetric function and the other
an antisymmetric function. However this is not reason-
able since the two exact wave functions must be
spatially orthogonal, so that

(Lgp(NS)+}~4'i(NS)+' ' ' j

Since it is not possible in general to relate the
lowest triplet wave function to the functions used in
the lowest singlet wave function, we feel the MO
hypothesis which uses E atomic functions to generate Ã
Molecular Orbitals to be arbitrary and probably un-
justiGable. Also we consider with suspicion the assump-
tion that a single function"" C(1, 2) can be used to
generate both a singlet and a triplet 4o in a nontrivial
manner and attempts in this direction are discussed
in Appendix A.

F. Electric and Magnetic Properties

It is often of interest to know the electric and
magnetic properties of a molecule or a crystal as well
as its energy and wave function. We discuss brieQy the
way of obtaining some of the simple properties, electric
polarizability, magnetic susceptibility, etc. for approxi-
mate wave functions of the hydrogen molecule, and
give a few examples of explicit calculations.

Consider an isolated molecule whose wave function
and energy eigenvalue are expanded in powers of a
parameter ). If this molecule is subjected to a weak
external Geld, e.g., a magnetic Geld I, then the wave
function and the energy of the interacting molecule
are expandable in a double power series in ) and H.
A typical property of the molecule such as its scalar
diamagnetic susceptibility

g= —H '(clE/8H) I H p

can be obtained from the terms in E bilinear in H and
to all powers of ). Thus the total susceptibility is

X=zp+}Xi+&'Xs+ " .
It is easily seen that go is the susceptibility calculated
for a molecule of wave function 4p,

. gi is the suscepti-
bility calculated for the wave function 4p+X4i but
subtracting off yo as well as the term quadratic in ),
etc. Similarly the ground-state expectation value of an
operator, e.g., r, which is related to the electronic
dipole moment can be expanded in a series in X

While the calculation of the zeroth-order term in the
expectation value expansion only requires the zeroth-
order 4o, the calculation of the zeroth-order term in
the susceptibility requires the solution to the in-
homogeneous partial differential equation linear in I
or the equivalent inhnite sum. Thus the zeroth-order
scalar diamagnetic susceptibility xo is given by

xo=-'(o
I Z(»' —R')'

I
o &

+i (0 I g(»;—R;) x V; ~
I 01), (3.52)

"P.-O. Lowdin, (a) Rev. Mod. Phys. 34, 80 (1962), (b) J.
Appl. Phys. Suppl. 33, 251 (1962)."C. Herring, Rev. Mod. Phys. 34, 631 (1962); C. Herring
and M. Flicker, Phys. Rev. 134, A362 (1964).
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TABLE II. Zeroth-order electric and magnetic properties of the hydrogen molecule. '

Xp exp 0'p Xp pHF

NS
NS
NS
GMQb

VB
VB
MO
MO
Wg

HF
Exptl.

1.2
1.0
0.8
0.594
1.166
1.0
1.197
1.0

—0.69
—1.0
—1.56
—0.84
—0.87"
—1.09e
—0.82d
—1.12e

—0.854
—0.83~, —0.86'

4.3
9.0

22.0
6.070&0.005
4.9e

10.2e

6.Oe

12.0o

5.3
6.5'
31(5 0) o

24.4
21.7
19.0

24. 6e

24.4'
25.5e

22 7'

26.51

26.5m

—8.2
—6.7
—49

—5.0'
—4.Oe

5.5'
3 9e

—5.7i
6m

0.17
0.17
0.17
0.003~0.001'
0.024~

0.065e
0.020~
0.029e

0.014"
0.014~

~ The units are: go(e'ao'/mc~), ao(aoo), 0'o(10 o), where the subscript H refers
to a proton which served as the origin in the calculation, Xo,oa (e2ao'/mc')

where the second subscript, 0, refers to the bond midpoint which served as
the origin.

M. N. Adamov, T. K. Rebane, and R. A. Evaryestov, Teor. i Eksperim.
Khim. 1,588 (1965).The limits given correspond to the upper and lower bounds
for these properties. The parallel and perpendicular components of no were
determined separately, and we give only the average here. Xo is obtained by
combining the calculation of G. C. Wick, Nuovo Cimento 10, 118 (1933) with

Xo oHF of these authors. The Z divers slightlyfrom that reported in Table I
since these authors use R=1.417 ap instead of 1.4 ao.

G. C. Wick (see footnote b) obtained 0.019 using the "average energy ap-
proximation" with 68=16.6 eV. The correct result shows that the true AZ)&80
eV. W. Weltner, Jr. [J.Chem. Phys. 28, 477 (1958)] gives other examples using
this "approximation. "

J.Tillieu and J. Guy, Compt. Rend. 240, 402 (1955}.A two-term variational
function was used and the second term made no change in the results to the
accuracy reported. Parallel and perpendicular components were obtained.

T. P. Das and R. Bersohn, Phys. Rev. 115,897 (1959).A single-term varia-
tional function was used. Parallel and perpendicular components were obtained.

f T. P. Das and R. Bersohn, Phys. Rev. 104, 849 (1956) very slightly modified
in Ref, e. A single term variational function was used.

~ W refers to the, vave function of S. Weinbaum [J. Chem. Phys. 1, 593
(1933)J which is not discussed in the text. This calculation by M. G. Veselov
and M. N. Adamov [Dokl. Akad. Nauk (SSSR) 57, 235 (1947)] utilizes a two-
term variational function and parallel and perpendicular components were also
obtained. Das and Bersohn (Ref. e) obtained 4.97 using a single-term varia-
tional function.

h M. Karplus and H. J. Kolker, J. Chem. Phys. 38, 1263 (1963).A four-term

variational function was used, although the fact that the gauge of the vector
potential was chosen at a proton, rather than at the bond midpoint, makes
this not much better than a two-term variational function and the degree of
convergence was fair. The parallel and perpendicular components were also
obtained. The value of Xo,oHF was deduced roughly from these data by the
author. This calculation neglected the nonlocal potentials in the Hartree-Fock
operator so that the value reported is actually the Hartree Xo and only the first
term in an expansion for Xp(HF) as discussed in the text,

' H. J. Kolker and M. Karplus, J. Chem. Phys. 39, 2011 (1963) using the
same procedure as in Ref. h.

' H. J. Kolker and M. Karplus, J. Chem. Phys. 41, 1259 (1964) using the
same procedure as in Ref. i.

~ A. P. Wills and L. G. Hector, Phys. Rev. 23, 209 (1924).
1 EI. H. Landolt and R. Boernstein, Zahlenmerte und Fmnktionen (Springer-

Verlag, Berlin, 1951).
m J. I.Musher, Advan. Magnetic Resonance (to be published in 1967}based

on A. Saika and H. Narumi, Can. J. Phys. 42, 1241 (1964).
Deduced by I. Espe [Phys. Rev. 103, 1254 (1956)l from the experiments

of N. F. Ramsey and co-workers. Espe has obtained accurate values for the
independent-electron contribution to Xo,oHF for twomo's using four-term varia-
tional functions which show relatively good convergence. The Nordsieck Po
gave 0.015 and the Newell go, 0.016.

This is the theoretical value of E. Ishiguro et. al. , Proc. Phys. Soc. (London)
65, 180 (1952) for R=1.4 with which the simple calculation should be com-
pared. For comparison with the experimental value, one should average over
the vibrations, and when this is done these authors obtain no=5.3280. No such
accurate calculation is available for the other molecular properties, so that
comparison can only be made with the deceptive experimental values.

When Ho can be expressed as a sum of one-electron
operators —as in the MO, NS, GMO, I, H, and HF
procedures —then A& only involves single excitations
and only one-particle partial differential equations
need be solved. In order to 6nd xo for the singlet MO
wave function, the one-electron equation

Lhp(~) - 2 &pgAi(~) —=G(~) f(~)

using the notation of subsection 8 above, with

A (i)= (if)(4 +4 )(i)
must be solved so that

(3.55a)

A~= I:f(1)+f(2)]A(Mo). (3.55b)

On the other hand, in order to find go for the singlet

where
I
01)=—A~ is the solution to

(Hp —Ep) I
01)=-—ir(r; —E;) x V,gp. (3.53)

A~= f(12)A(vtl) (3.57)
must be solved.

Accurate calculations for zeroth-order electric and
magnetic properties have been performed only for
A(GMO) for which Adamov, Rebane, and EvaryestovP'
have bounded no and xo from both above and below,
and for A(NS) for which np, yp and some other prop-
erties can be obtained analytically (Appendix 3) .
These values are listed in Table II, where three dif-
ferent screening parameters are used for A(NS) in
order to illustrate the Z dependence of the zeroth-
order properties, The severe Z dependence observed
suggests that calculations of electric and magnetic
properties must be carried through at least 6rst-order
in X before they be given any credibility. Also given in

'7 M. N. Adamov, T. K. Rebane, and R. A. Evaryestov, Teor.
i Eksperim. Khim. 1, 588 (1965).

VB wave function the two-electron equation

G(12)f(12) =~+(r,—R;) x V;@p(VB) (3.56)
with
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Table II are the approximate value of electric and
magnetic properties for fp(VB) and fp(MO) with two
diferent screening parameters obtained by Tillieu
and Guy" and Das and Bersohn" using one- and two-
term trial functions in variational calculations for the
f's of (3.55) and (3.57), etc. These results are also
strongly Z-dependent, and closely parallel the Z
dependence of the properties based on fp(NS). More
recently Karplus and Kolker" have calculated approxi-
mate values for these properties for Pp(HF) using
four-term variational calculations and these are also
given in Table II. Unfortunately no real convergence
of the variational expansion was obtained, so that
we do not know the accuracy of these zeroth-order
results despite the good agreement with experiment.
Also, these calculations neglected the nonlocal poten-
tials in the Hartree —Fock operator4 so that the proper-
ties given are actually the Hartree properties and only
the erst term in an expansion for the Hartree —Fock
properties (see also Refs. 58 and 68 below). Notice
also that agreement with experiment is not expected
to be better than 10% since for Pp(HF) the dummy
parameter X is of that order, while the Hartree —Fock
energy is accurate to As~1%%. A previous statement
(Refs. 58 and 68) to the effect that agreement should
be accurate to X'was due to a trivial error and is in-
correct.

A brief historical postlog is in order. The first dis-
cussion and calculation of electric and magnetic molec-
ular properties in terms of an accurate solution to a
variational problem with tPt=fiPp was in a paper by
Veselov and Adamove' in 1947. These authors wrote
down what we have, perhaps unfairly, called the
Hylleraas —Bethe —Salpeter variational principle, took
fp to be the Weinbaum function for the hydrogen
molecule, and calculated the electric polarizability
using a two-term variational function. In 1952 Guy
and Harrand" wrote out the same variational procedure
for the many-electron atom polarizability and in 1956
Tillieu and Guy'8 used this procedure to calculate the
magnetic susceptibility of hydrogen for both Pp(VB)
and Pp(MO) with a two-term variational function,
demonstrating that adding the second term did not
change the calculated result. Since the studies of these
two groups —in which time the methods used by them
became widely known through the work of Dalgarno
and Schwartz, and the previous related work of Stern-
heimer" —no more accurate calculations on the hydro-
gen molecule appeared until last year when the Adamov

"J.Tillieu and J. Guy, Compt. Rend. 240, 402 (1955).' T. P. Das andjR. Bersohn, Phys. Rev. 104, 849 (1956).
4PM. Karplus and H. J. Kolker, J. Chem. Phys. 38, 1263

(1963);39, 2011 (1963); and 41, 1259 (1964).
4'M. G. Veselov and M. N. Adamov, Dokl. Akad. Nauk

(SSSR) 57, 235 (1947).
42 J. Guy and M. Harrand, Compt. Rend. 234, 616, 716 (1952).

Although the many-electron treatment presented here is not
exactly correct. See Ref. 4 above.

4'See J. I. Musher, Ann. Phys. (N.Y.) 24, 133 (1963) for
references.

and colleagues'7 calculated bounds to no and xo as
discussed above, using the method of Rebane. 4' The
calculation of secular properties, such as the frequency-
dependent polarizability, requiring time-dependent per-
turbation theory, was also pioneered by Adamov, 4'

who in 1956 used the differential equations for these
properties subsequently rediscovered by Dalgarno and
Schwartz and their followers. " Probably the most
detailed and accurate variational calculation for a
molecular property was that of Ishiguro et a/. ,

" who
in 1952 calculated crp for the James and Coolidge
wave function, expanding ft in terms of the same

type of functions. The convergence obtained with a
nine-term function for o,& is excellent, while that for a
ten-term function for o.

~~ is good.

IV. CRYSTALS

A. Introduction

It is of interest to describe atomic (and molecular)
crystals in terms of their weakly interacting sub-
stituent parts, the atoms themselves. 4' This type of
description is called the tight-binding or Heitler-
London picture, and there are two accepted ways of
constructing the crystal wave function. The 6rst takes
+o as the simple product of the atomic wave functions
while the second antisymmetrizes this product wave
function. Both of these choices are arbitrary guesses at
approximations to the exact wave function and their
validity must be examined in detail just as we have
done for the hydrogen molecule. Furthermore they
only provide zeroth-order functions, and so methods
to improve them, if possible by perturbation theory,
are of importance. (But it should be remembered that
for large systems the total overlap of 40 with the exact
4 approaches zero). In this section we show how the
simple product function can be improved by pertur-
bation theory —even though it does not contain the
spin correctly, and thus perturbation theory can never
lead to an eigenfunction of 5'—and we show the

44T. K. Rebane, Vestn. Leningr. Gos. Vniv. , p. 20 (1965)."(a) M. N. Adamov and I. S. Milevskaya, Opt. i Spektro-
skopiya 2, 399 (1957). The a(w) for a ground-state hydrogen
atom was reported in~ M. N. Adamov, Dokl. Akad. Nauk SSSR
133, 315 (1960). (b) E. Ishiguro, T. Arai, M. Mizushima, and
M. Kotani, Proc. Phys. Soc. (London) 65, 180 (1952).

4' See J. I. Musher, Ann. Phys. (N.Y.) 2'7, 167 (1964) for
references. The above discussion shows that the "Dalgarno-
Schwartz sum-rule technique" was indeed unknown to Adamov
as was suggested in the Addendum to this article.

47For general discussions of crystal wave functions see, for
example, F. Seitz, Moderl Theory of Solids (McGraw-Hill Book
Co., Inc., New York, 1940); R. S. Knox, Theory of Excitols
(Academic Press Inc. , ¹wYork, 1963); and P. W. Anderson,
Colcepts iN Solids (W. A. Benjamin, Inc. , New York, 1963),
along with various review articles in the Seitz and Turnbull
Solid State Physics series. Recent works of interest are, for exam-
ple, A. Gold, J. Phys. Chem. Solids 18, 218 (1961), Phys. Rev.
124, 1740 (1961); T. H. Keil and A. Gold, Phys. Rev. 136,
A252 (1964);and S. Webber, S. A. Rice, and J. Jortner, J. Chem.
Phys. 41, 2911 (1964). The recent ver promising calculations
of J-L. Calais, using the AMO method Arkiv Fys. 28, 479, 511;
29, 255 (1965)j should also be noted.
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greater difhculties involved in improving the anti- given by the sum of atomic Hamiltonians,
symmetrized function.

Ho=He= Ho" (B')+" +HoN(22;)+" ~ (4.11)

f2 = 0',[v1(221)v2(222) ~ ~ ] (4.2)

which is an eigenfunction of the atomic Hartree-
Fock Hamiltonian

H2N ——QhN (i) (4.3)

B. SimjPle Product 0p"

Consider a crystal containing identical atoms at
fixed points in a lattice. The total Hamiltonian for this
system is

H=QT; —gr;N '+pr;; '+p rNN' ', (4.1)—
i,N

where the sums are over electrons and nuclei. Assume
now that each atom E (when isolated) possesses a
Hartree —Fock (or other) single-determinant (nonde-
generate) approximate wave function

+0=Q~¹ (4.12)

The total interaction Hamiltonian, )Hl, is given by

XH1= H —Ho —QH——1N+ V, (4.13)
N

where QH1N contains the intra-atomic potential cor-
rections due to the use of an approximate, single-
determinant, solution for isolated atoms, and V con-
tains the interatomic interaction potentials El is then
given by

(4.14)

For example, consider a lattice of hydrogen atoms
(with parallel spins, although this restriction is not
necessary) with

+2=~(1)P(2)V(3)". (4.15)
and where the single-particle orbitals v, (i) are eigen-
functions of hN(i) of eigenvalue ep, i.e.,

[hN(i) —e,"]v,(i) =0.

in which n, P, y, ~ ~ ~ are 1s orbitals of parallel spin cen-
tered on the various atoms of the lattice, A, 8, C, ~ ~ .

(4 4) The interaction Hamiltonian is

Although it is not necessary, the functions v; are
usually made to be orthogonal. The total atomic
Hamiltonian H~ can be written as

HN=H N+H N= Q/1 (2)+Qg~N (4 5)

and corrections to $2N, which will not be considered
here, could be found by the usual perturbation theory
procedure. The zeroth-order and 6rst-order energies
of atom Ã are given by

(4.6)

XH1 ——V= —gr A
'—Qr B '—

i/2

+Jr" '+ g rNN ' (416)

which provides the attraction of electron 1 to all
centers other than A, etc. plus the interelectronic and
internuclear repulsions. In general V can be written
as a sum of interactions between pairs of atoms,

V= Q VNN', (4.17)

where each term V~~', is analogous to that for the
I-atom lattice, i.e.,

where the Hartree —Fock energy is UAB flB f2A +f12 +fAB (4.18)
N +Ni gN— (4 8)

As a zeroth-order crystal wave function we take
the simple product of approximate wave functions of
the isolated atoms:

(4 9)

the )Hl of the hydrogen molecule in the Non-Sym-
metrical f2. VNN' can thus be interpreted as the non-
expanded London —van der Waal's interaction potential
between atoms E and E'.

Let +I be the 6rst-order perturbed wave function
due to the interatomic interaction, V. By (4.17) +,
can be written as

Since@p does not contain all the electrons equivalently,
the Hp, of which +p is an eigenfunction such that

g g NNI

N&¹
(4.19)

(Ho—&o)+2= 0
where

(4.10) g NNI p NN~(p NP N~) 1+-(4 2o)

also does not contain the electrons equivalently, and
is therefore not symmetric under interchange of elec-
trons between different atoms X. This IIp is simply

This subsection is based on the author's treatment of inter-
molecular "forces" in Opt. i Spektroskopiya 20, 793 (1966).

with $1NN' the solution to the equation

[+hN (2) +ZhN ( i) —&2"—&2"']&1""'

= [&1""' VNN']go 42"' (4 2—1)
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where

(0I V Io)= g ZPN'. (4.22)

For the case of the H-atom lattice this is simply the
London —van der Waals' (unexpanded) interaction
between two H-atoms, and is a two-electron equation
possessing both single- and double-excitations. For the
general molecular case fp ' can be written as a sum
of corrections due to the pairwise interactions of
electrons one in each molecule. As shown in more
detail elsewhere~ PPN' can be written as

P NNv —Qpvvv (4.23)

where v and v' are orbitals in molecules X and Ã',
respectively, and

with

F""'= 8[a(1) ~ ~ f""'(e)v (e) ~ ~ ~ ] (4.24)

f""'(e)= 0',[n'(1') f""'(n e')v'(n') ]. (4.25)

The two-electron function f""'(e, n') is the solution
to the two-electron partial differential equation

[ho(n) +ho(n') e„e„—]f""—'(n, e') v (n) v'(n')

= [Eg""'—V(ne') ]v(e) v'(n'), (4.26)

where V(nn') is the two-electron interaction potential
which for atoms of nuclei X and N' is uniquely written
as

V(en') = r„N ' r„.N—'+r„„—'+rNN '. (4.27)

For molecules V(en') can be written in a unique,
slightly more complicated way, but in practice it will

be most useful to divide V; ~ into nonunique terms
V(nn') according to the localization of the orbitals v

and v'. The sum of the V(ee') must equal V.
The functions f""'(ee') can be divided into terms

corresponding to single excitations and double excita-
tions as described above for the hydrogen molecule.
It can be seen, therefore, that with the solution of
a series of London —van der Waals' equations —it must
be emphasized, in their unexpanded form —which in-
volve only one and two electrons at a time, +&, and
therefore the interaction energy to second-order in V
alone and to 6rst-order in the coupled inter- and
intra-atomic interactions,

(%g I V—(0 I
V

I 0)+2+ (HP —EP) I
0 ) (4.28)

N

can be readily obtained for the simple product 40.
This fact makes the simple product +0 a desirable
starting point for accurate calculations were con-
vergence of the procedure assured.

Thus we return to the question as to whether a
perturbation theory expansion converges or semicon-
verges. It is unfortunately true that when simple
product, i.e., nonsymmetrical, wave functions are used
for systems which contain more than two electrons the
situation is fundamentally different from that dis-

cussed in Sec. IIID above and perturbation theory
can never converge to a true solution unless all the
electron spins are parallel, so that the wave function is
separable in the coordinates of space and spin. The
reason for this is easily seen. Since XB& contains no
spin coordinates it cannot mix in states whose spin
(symmetry) differs from that of 4o, even though it is
nonsymmetric in spatial coordinates and can mix in
states of different spatial symmetry. Thus the appli-
cation of perturbation theory to a nonsymmetric
many-particle 40 will never enable the reaching of the
state of correct many-particle symmetry. Said in other
words, since XH~ does not involve spin itself and can
therefore not perturb the spin coordinates, 0'0 must
contain spin, and therefore, particle symmetry exactly,
i.e., the spin coordinates of all electrons must appear
in +0 equivalently.

This argument can best be appreciated by the
supposedly simple problem of two weakly interacting
helium atoms. Let the nonsymmetrical%'0 be

Vo(1234) =go" (12)Zp(12) PoE(34) Zo(34) (4 29)

with PpA(12) and PpE(34) the exact spatial wave
functions for the "isolated" helium atoms on centers
A and 8, respectively, separated by a distance R, and
the Zo's the singlet spin wave functions. The 4'0 is a
nondegenerate eigenfunction of the Hamiltonian

Hp =hg (12) +hE (34) (4.30)

the sum of separate helium atom Hamiltonians and
the perturbation )B~ is the obvious interaction among
the respective nuclei and electrons. Now it is true
that the exact four-electron 4' can be written as a
sum of products of total wave functions for the two
helium atoms

4(1234) =pc;;ptP "(12)ZI, (12)f E(34)Zt(34) (4 31)

of which Vp(1234) is one term of the complete set of
functions in 1234-spatial and spin space on the right-
hand side. However since XII~ is independent of the
spin coordinates, if perturbation theory were applied
to Vp(1234) one could only obtain a 4'(1234) of the
form

0"(1234) =Zp(12) Zp(34) gc;;P;"(12)Pts (34) (4.32)

which is clearly not the complete set expansion of
Eq. (4.31). Thus there is no possibility of using the
simple product wave function for a convergent pertur-
bation theory expansion even for the simple example
of two weakly interacting helium atoms. In fact, to
our knowledge, the Erst rigorous (antisymmetric)
description of interacting atoms in terms of their
isolated-atom wave functions has only recently been
presented.

We have made one further remark on the use of
nonsymmetrical wave functions elsewhere. ~ If it means
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anything to say that the two atoms are weakly inter-
acting then the spins of the two systems can be con-
sidered as weakly coupled. Thus the operator of total
splnp aP

p
for the combined system is approximately

equal to the sums of the spin operators of the separate
atoms, i.e.,

So~si'+s2'+2sI s2+s22+s4'+2so s4 (4.33)

or equivalently that the operators

sl' so sl' s4 82' so and s2 s4 0. (4.34)

This implies that 4'o(1234) is almost an eigenfunction
of total spin S'. In the limit of R= ~ or before the
application of XHi, it does not make sense to treat the
spin-coupling operators as nonvanishing —which is
another way, at least in part, of applying the Pauli
principle. It is perhaps not unreasonable to suppose
that a perturbation theory wave function through
erst- or second-order based on the nonsymmetrical
zeroth-order Vo(1234) will actually give a relatively
good estimate of physical properties of the weakly
interacting system, despite the lack of any possible
semiconvergence to the true antisymmetrical solution.

It has often been pointed out that noninteracting
systems, e.g., two helium atoms at infinity, can be
described by a nonsymmetrical wave function. " If,
however, the wave function is to be an eigenfunction
of S', this is only true if the Hamiltonian is taken to
be nonsymmetrical utilizing the fact that electrons
can be distinguished when they are infinitely far apart,
e.g., electrons 1 and 2 are infinitely far from electrons
3 and 4. This then implies that the Eqs. (4.33) and
(4.34) are exact equalities since the coupling terms in
5' must be dropped in order to be consistent with the
nonsymmetrical choice of the Hamiltonian. When,
however, the Hamiltonian is taken to be symmetrical,
not utilizing the distinguishability of the electrons
then although a nonsymmetrical wave function is an
exact eigenfunction of H, it is not an eigenfunction of
5', which must, in this case, contain all the cross
products 8;-8;. It is the condition, that the wave
function must be an eigenfunction of S' which speci6es
which linear combination of the degenerate nonsym-
metrical eigenfunctions of H is appropriate. Such a
statement, however, is only true for noninteracting
systems since it is only for these that the nonsymmetri-
cal functions are all exact eigenfunctions of the total H,
so that the degeneracy in energy can never be split
by diagonalizing in spin space.

C. Antisymmetrized Product 0'p

The problem of obtaining a good antisymmetrical
wave function for a crystal is decidedly nontrivial and
although numerous approximate wave functions have
been discussed there has been no serious attempt to

"For example in D. M. Mattis, The Theory of Magrjet~sm
{Harper and Row, New York, 1965).

improve such a function systematically. The possibility
of performing a very large "con6guration interaction"
calculation on a crystal seems doubtful, so that it is of
interest to see how the antisymmetrized tight-binding
wave function,

4'o—= Sc'o = sly'oN
N

(4.35)

Ho ——+12o(i), (4.37)

where the ho(i) contain nonlocal potentials constructed
from the various atomic functions of Cp. As the pro-
cedure for obtaining the ho(i) is diflicult to perform,
the utility of this method has not yet been demon-
strated. If the procedure is actually tractable then the
separability of Hp will enable 4& to be expressed as a
sum of two-particle corrections exactly as in the
Hartree —Pock case and thus this would be a most
valuable method.

Epstein and KarP' have taken the Hamiltonian of
(4.36) which they have written as

&o= &—(~o)~'+&. (4.38)

following Sternheimer, ' and have removed the spins
in the denominator by adding spin-projection operators
to the T%'p in parenthesis. A slight modification of
their procedure would expand Cp in terms of space

'0 S. T. Epstein, J. Chem. Phys. 41, 1045 (1964); see also G. C.
Ghirardi and A. Rimini, J. Math. Phys. 5, 722 (1964).

~' S.T. Epstein and J.H. Karl, Theoretical Chemistry Institute
of the University of Wisconsin, Report No. 90 (1965).

using the notation of the previous section, can be
improved by perturbation theory.

In the search for an Bp for which Cp is an eigen-
function, we 6rst looked for a differential operator, i.e.,
one containing no nonlocal potentials, since this would
be unique up to a constant, and have the nice properties
discussed above in the case of the hydrogen molecule.
Such a Hamiltonian was not found, and analogy with
the hydrogen molecule example led only to the operator

Bo= SLBcC'o]/SCo, (4.36)

where the Hq is defined in. (4.11). This Hamiltonian,
however, contains spin functions in the denominator,
unless S=&S,=X/2 so that Vo is separable in space
and spin, and since the inverse of a spin function
is not defined, such an Hp can have only a formal
interpretation. Only if perturbation theory corrections,
e.g., 0'&' were to contain 0p explicitly, which they
cannot do, could this Hp be used in practice.

Recourse must therefore be had to Hp's containing
integral operators —which can be considered to include
spin projection operators —and we discuss brieQy some
of the various possibilities, each of which will have
different convergence properties.

Epstein" has given a construction for a separable
Hp for%p a single determinant which is the case here as
long as the i' are single-determinant approximate
atomic wave functions. This Hp is thus of the form
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and spin-separable functions (in a nonunique manner)
as

(4.39)C'o = Zv '(*)x'(~)

and define projection operators I'; such that

(4.40)

Since the p; are independent of spin, a set of unique
local E-electron H; can now be found such that

(H' —Eo) q;=0 (4.41)

by analogy with the Valence Bond Hamiltonian, or
using Sternheimer's procedure, so that

[QH'J"—Eo]+o=o. (4.42)

which separates into equations for the spatial functions,
~.0)

(4.44)(H, Eo) p;&'& =—(Ei H+H;) y;, —
where

+i= go '"'(~)x'(~). (4.45)

There is some question as to how to ensure that +& is an
eigenfunction of 5' and 5, as is%p—see the discussion

by Epstein and Karl—but although we have not suc-
ceeded in proving it, we feel that this should take care
of itself since we have not lost any generality in defining
4i by (4.45).

There are other Possible nonlocal Hp such as

H, = r r I o)(o I
y—E, (4.46)

which looks like the Sternheimer-type Ho of (4.38),
and

(4.47)H, =E.Io)(oI
where for both

E,=(oIHIo) (4.48)

and +p is assumed normalized, but the utility of these
is sometimes questionable. For example, using the Hp

of (4.47), @i orthogonal to +o is found exactly as

e,=E;i(H—E,) I o&
giving

Es= Eo ' (0 I
Hs

I 0)—Eo

so that the second-order partial sum is

E(»=E;i(0
I

Hs
I o&

(4.49)

(4.50)

(4.51)

and the Ep's cancel out. The higher-order wave func-
tions and energies can also be found exactly with

E'"=Eo '(o
I
H'

I o)—E; (o I
H'

I
o&+E„etc.

(4.52)

The first-order perturbation theory correction can be
obtained from the solution to

[gH I Eo]e'i —'[Ei Hy gH 'I ]Co (4.4'3)

but this expansion which looks simple appears to be
nonconvergent, although an attempt should be made
to sum it formally. If &Ip were an eigenfunction of a
differential operator contained in H, then this pro-
cedure gives

'ky = Ep Hy@'p (4.53)

which has an artificial similarity to the Unsold approxi-
mation and one-term variational expansions. An
example is shown in Appendix D for which E&') is an
imProvement on Eo but for which E~s& diverges. (The
general lack of convergence of these series is expected
since Ho I

N)=0 for NWO so that Hi
I
e—1) cannot

be considered to be small. )
An important implication of the above discussion is

that when +p is taken as an antisymmetrized product
function of the form (4.35) then it is not possible to
describe rigorously the interaction between atoms in
terms of the London —van der Waals' interaction,
since the total Hamiltonian is not separable into an
isolated atom Hp and a interatomic interaction po-
tential, H~.5' It is important, therefore, to appreciate
the fact that almost without exception tight-binding
calculations in solids are concerned only with evaluating
the expectation value of H over the +o of (4.35)—
giving Eo+Ei—the accuracy of which is unknown, as
this @p is an arbitrarily determined zeroth-order func-
tion; thus one should not be disturbed (or impressed)
by the poor (or good) agreement with experiments
obtained in such calculations. Also, it can be under-
stood that the contributions to the lattice sums of E&

from beyond a certain radius are significantly smaller
than the error from not calculating the important
terms of E2 in any approximate scheme.

The question as to whether the improvements on
the energy of the antisymmetrical 4p can be described,
at least in part, in terms of a London —van der Waal's
interaction, inspired the investigation of this problem
by a non-Rayleigh —Schrodinger scheme. The author,
in collaboration with Salem, " recently discussed the
interaction energy of two molecules using a technique
based on Feenberg perturbation theory which shows
that, indeed, there is a term in the energy, which
corresponds to a London —van der Waals interaction.

We demonstrate this as follows. Consider any com-
plete set of antisynnnetric functions of appropriate
quantum numbers, 4„, where 4'o is defined by (1).
Such a set couM, for example, be constructed from
the set of functions C„de6ned as in (4.9) in the direct-
product space of the complete sets of atomic wave

"There is some confusion in the literature on this point and
many authors refer to the Van der Waals interaction as intro-
ducing corrections to such a %0. Furthermore some calculations
assume orbitals on one atom to be orthogonal to orbitals on the
other atoms in the presence of this interaction giving rise to terms
only involving the r;; perturbation. When this is done by
Schmidt-orthogonalization, the picture is even more confused']
because then the zeroth-order Hamiltonian, even for the simple
product Co, can no longer be expressed as the obvious sum of
atomic Hamiltonians."J.I. Musher aiid L. Salem, J. Chem. Phys. 44, 2943 (1966).
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to give an energy of accuracy equivalent to second-
order in perturbation theory of

I
(0'I gHP+v —E, I

Eo+K—Q
n+0 jv„—jvo

where E„ is the eigenvalue of

(He —E„)C„=o (4.57)

analogous to (10) and using the definitions Eqs. (11)
and (13), but where Er is defined differently as

E,= (o'
i QHp+ v i o) (4.5s)

so that Ep+ Er is the same as for the %p of (4.35) .
)Note the assumption that the C„of (4.57)—including
Co—are all eigenfunctions of the same sum of atomic
Hamiltonians. )

Since the sum in (4.56) contains matrix elements
of QHP+V —Er squared there will be terms in E
quadratic in the inter-atomic potential, V, which is
the London —van der Waals interaction, terms, effec-
tively an inter-atomic interaction, which are bilinear
in V and QHP, the intra-atomic potential, as well as
intra-atomic terms. Since@'„can be written as

functions for each atom, by

i
~)=e„=ec„—= e i e'),

where the single index rt denotes the ordered multiple
(i,j, ~ ~ ) specifying atom 1 to be in the ith state,
atom 2 in the jth state, etc. The energy in the vicinity
of Eo is obtained by approximately solving the secular
equations

p(m ~
H—E

~
e)C„=O m=O, 1, " (4.55)

When it is not possible to divide H into H~ as done
here, the procedure of Musher and Salem" can also
be used to give the energy as

, I
Ho.—Hop&~ ('

Hoo —Q'
n 00

(4.61)

in an obvious notation, where (4.61) corresponds to
their E&"&, which is a slightly more accurate energy
then that used in. (4.56) above. However the direct use
of an infinite sum procedure might only be possible for
some simple problems, such as those of the cohesive
energies of a hydrogen lattice or a helium lattice."

Incidentally for the evaluation of the rather small
cohesive energies, one must be careful that the pertur-
bation procedure is carried to a suitably high degree
of accuracy. Thus, just as it is unrealistic to expect
the energy of%'0 to give the cohesive energy, it must be
investigated whether a second-order or third-order
energy will suffice for a given problem. (One of the
ways to improve the convergence is to use an orthog-
onalized set of functions C„since this has the effect
of including some of the higher-order terms. )

Some of the ideas in the above discussion can be
applied to descriptions of excited states in atomic
and molecular crystals. We would only like to make the
observation that the approximate wave function de-
scribing a localized excitation on one site is not neces-
sarily an eigenfunction of the Ho describing a localized
excitation on another, and hence the two 4g's are not
necessarily degenerate in the sense of perturbation
theory. Application of these ideas, however, are either
straightforward or nontrivial if useful at all and it
would be uninteresting to discuss the former, and
premature to discuss the latter at this time.

i e)=a
i
e')+ (n—n) i

e') (4.59)
V. CONCLVSIONS

part of the sum in (4.56) can be written as

i
(0'[ QHP+V E

i
e') (s—

(4.60)
ngO

which is identical with the second-order energy cal-
culated for the simple product crystal wave function
and obtainable from sums of pair interactions equivalent
to the infinite sum. It might well be, as is often argued,
that the "exchange-like" terms coming from the
integrals over ((R—n) ~

I') are significantly smaller
than the "non-exchange-like" terms included in (4.60) .
Thus a correction (and perhaps the dominant correc-
tion) to the energy of the antisymmetrized %p is due
to an effective London —van der Waals interaction. We
feel, however, that such questions must be examined
carefully, and, in particular, that the generally ac-
cepted descriptions in terms of "Coulomb" and "ex-
change" contributions cannot be used when accurate
descriptions are called for, since they are based on an
oversimplified picture of both the isolated systems and
their interactions.

We have reviewed the various simple wave functions
for the hydrogen molecule and for molecular crystals
and have considered in detail the means of improving
them by a perturbation procedure and the possible
convergence thereof. It is hoped that this discussion
of well-accepted and certainly well-known material
will aid in the appreciation of some of the more Gne,
and therefore, more interesting points involved. In
the five Appendixes we make a number of remarks
which we consider pertinent to the present discussion.

'4Yaris has recently and independently treated the general
problem of improving a wave function +0 by expanding in eigen-
functions of an arbitrary Hamiltonian, II@,using the wave-opera-
tor procedure of scattering theory. His energy is given by

E= (0 i H@+V+HP(%'p) (p —H@) 'P(+p)H+. ~ ~
i 0),

where H is the total Hamiltonian, e a constant which in general
must not be an eigenvalue of Hg, and E(+0) is a projection
operator which projects out 0'o. Equation (4.56) is obtained by
letting e=EO which is possible when the term with zero in the
denominator also has a zero numerator. (R. Yaris, '„J. Chem.
Phys. 44, 3894 (1966)j.
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'P(12) =-', (1+8»)4 (12)

'P (12) = -', (1—P») 4 (12)

using the identity

(A. 1a)

(A. 1b)

4(12) =siLC'(12)+4'(21)3+ist 4'(12) 4'(21)j

and therefore

4 (12) ='(t (12)+'y(12).

(A. 2a)

(A. 2b)

Such an argument, and the corresponding definition
of J, are based on the Nescreeeed valence bond proce-
dure discussed above for which, if

(A. 3a)
then

and
(A. 3b)

(A. Bc)

In other words a single 4(12), using the projection
operators of Eq. (A. 1), gives two relatively good wave
functions, the lowest singlet and triplet valence bond
functions.

Consider now a brief counter example which shows
that if we try to improve both wave functions '@ and
'p then 4(12) no longer possesses a nontrivial defini-

tion, or equivalently, if we try to improve one of the

APPENDIX A. HYDROGEN MOLECULE USING
PROJECTION OPERATORS

In discussions of the exchange integral, J, of the
hydrogen molecule, de6ned as the energy of the lowest
singlet minus the energy of the lowest triplet, Lowdin"
and Herring's among others have considered a single
spatial trial function 4(12) possessing no particle
symmetry and have de6ned molecular wave functions
by means of projection operators operating on C.
Thus, for a given 4 (12) they define two wave functions,
a singlet, 'P and a triplet 'p by means of

wave functions, say 'P, alone, retaining the simple form
of 4 (12), then we do not in general improve sg.

One simple way to improve the VB wave functions
is to introduce screening constants Z~ and Z3 which
minimize the energy for 'Ps and '))f () respectively,
equivalent to making the two functions satisfy the
virial theorem. ss It is clear that Z)WZs (except at
R—&~) so that the only definition of 4 (12), for which
the (t's of Eq. (A. 2) equal the improved fs's, is the
trivial one

4'(12) ='A(Zi) +Vs(Zs) (A. 4a)

4(12) =P~,z, (1)gz,z, (2) (A. 5)

except that now 'PW'P()(Zs) and is not necessarily an

improvement on the unscreened 'Pe. Thus either 4 (12)
is the trivial sum of the two wave functions LEq.
(A. 4a) j or it is not consistently good in defining both
the approximate singlet and triplet wave functions:
from a single trial function it is not reasonable to
obtain two good solutions to the Schrodinger equation,
even solutions of diGerent symmetry.

In Lowdin's generalized Hartree —Pock scheme"
which utilizes diGerent orbitals for diGerent spins,
projection operators of the form

ys LS'—k (k+ 1)

LS(S+1)—k(&+1)j (A. 6)

are used to project from a single determinant, which
is not a spin eigenfunction itself, the spin eigenfunction
of multiplicity 2S+1.As with the two-electron example
just given, a single determinant D will not give equally
valid wave functions for diferent S from the rela-
tionship

(A. 7)(2s+1)@—(ss+1)QD

but instead a new D must be dined as the sum of
determinants

such that

D—Q(2s+1)QD
8

(2S+1)+—(2S+l)QD —(2S+1)QDB

(A. 8)

(A. 9)

For a particular S, (' +')4 is given by Eq. (A. 7) for
a single determinant DD.e., D= DB of Eq. (A. 9)j but

55 See p. 82 of Ref 35(a)."P.-O. Lowdin, Phys. Rev. 9'I, 1509 (1955).

which written out explicitly is

4'(12) = s (&+i ») 4'~, zl(1) &z,zl(2)

+-', (1—Rg) Qg z, (1)Pz z, (2) (A. 4b)

and thus contains four terms instead of the one of Kq.
(A. 3a) . We could have, of course, defined C (12), such
that 'P equals the screened 'fs, and retain the simple
form of Eq. (A. 3a), i.e.,
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by the present arguments the same equation does not
adequately define (2S'+1) for S'& S.o'

APPENDIX 8, ZEROTH-ORDER ELECTRIC AND
MAGNETIC PROPERTIES FOR fp(NS)

The zeroth-order electric polarizability np, magnetic
susceptibility, xp, and nuclear magnetic shielding Qp,

for Pp(NS) of the hydrogen molecule can be obtained
exactly from the solutions to

Lho( ) —l&ojf.(') 4 ( ) =—'& ( ) (B 1)
and

with r;~=
I r,—RN I, a radial coordinate centered on 1V.

0-~' ~s easily seen to be

a„o,rr P (0 I Rs~/rs~o I 0

= —rsl R '—(R '+2Z+2Z'R) exp (—2ZR))

(B 8)

and it is clearly negative as found experimentally.
The rotational magnetic moment lsJ/I has been

shown by Wick' " to be related to an expression
which can be written formally as part of the magnetic
susceptibility x. This relationship is

Lho()--. @jf (')~ ()='(r'-R') ~'~ () (B 2)

Thus f, (i) are the same as for hydrogen atoms and the
zeroth-order electric polarizability is

e'Rp'E, f '2p, ' lsd&

12mc' i. Mprv I i
(B.9)

o= (o1(sr+s ) Lf.(1)+f.(2)j I o&

=2(o
I »f.(1) 10&=9Z-' (B 3)

or the sum of the polarizabilities of two H atoms of
screening parameters, Z. If the arbitrary constants
RI and R2 are taken as Ez and E&, respectively, then
both frr(i) vanish identically, and the zeroth-order
magnetic susceptibility is'

in Ramsey's notation where E is a vibrational cor-
rection and xnF, which is simpler to treat than lsd/J
itself is that part of p de6ned by

x =7f+-', (01K»;p 10& (B.10)

with r,p=
I
r;—Rp I

a radial coordinate centered at the
electronic center of charg- the midpoint of the H2
bond. ppH~ is easily seen to be

xo=-', (01rr~'+rsrr 10)=Z ' 7fpnF =R'/12 (B.11)

or the sum of the susceptibilities of two H atoms of
screening Z. The scalar nuclear magnetic shielding
for the nucleus at A is

E lsrv 2sr(ls Rp) c~
&N

61M~ Ep My~
(B.6)

in Ramsey's notation where E' is a vibrational correc-
tion and o-~H~ at nucleus 1V, which is simpler to treat
than c„ itself, is that part of 0-~ de6ned by

o~nv orv ,'(0——
1
Qr—re-'10) —(B.7)

'r A series of papers by A. T. Amos and L. C. Snyder D. Chem.
Phys. 41, 1773 (1964); 43, 3670 (1965), el seg. g discusses the
utility of wave functions which are not eigenfunctions of 5'.
These authors use spin projections in the reverse sense, to sub-
tract oG the unwanted spin components."This is described in a somewhat diferent way in J.I. Musher,
Advan. Mag. Resonance 2 (to be published in 1967).This article
also gives a few corrections to Ref. 4 above.

"N. P. Ramsey, Molecular Beams (Oxford University Press,
London, 1956).

—S2gR
0 rr~. '+

~2A

= srZ[1+ exp( —2ZR) (1+ 2ZR)] (B.5)

or the sum of the shielding due to an H atom at A plus
the long range shielding due to a second H atom.

The spin-rotational interaction at a given nucleus,

c, has been shown by Ramsey" to be related to an
expression which can be written formally as part of
the nuclear magnetic shielding 0. This relationship is

and thus independent of Z.
The calculated values for these properties are pre-

sented in Table II and agreement with experiment is
certainly good despite the strong Z dependence of
the results. Note that yp"~ is ten times larger than
experiment and shows no Z dependence, but contrast
this with the only other really accurate value, that for
po(GMO), which is five times smaller than experiment.

We had hoped that Pp(NS) could be used to give an
exact value for the Fermi-contact term (and the
other terms) of the electron-coupled proton —deuteron
interaction in the HD molecule. "The problem requires
solution of the equation

Lhp(1) +ho(2) —Zp+pP
= —i'rsrI, ~I Se(1)b(rrrr) +S,(2) 3(rsrr) ]Op(NS)

(B.12)

where the spin is included in%'p(NS) and in @pp, and
there is a similar equation involving I D and S3(rn) s.
It can be seen that +p~~ can be written as

~lrpP=xsI, (B)2 fLn(1)P(2)+n(2)P(1) ffpP, (B.13)

where tlpP is a linear combination of the spatial part
of triplet functions and is the solution to

[ hp (1)+ho (2) —Epggp,

$8(rrrr) —3(rsH—) )fp(NS) (B.14)

6' 6-C. Wick, Z. Physik 85, 25 (1933).
o' J. L Musher, Phys. Rev. Letters 15, 1015 (1965).
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This equation, as it stands, has no solution because
the inhomogeneous term is not orthogonal to Pp(NS),
the solution to the homogeneous equation on the
left-hand side. This is due explicitly to the nonsym-
metrical nature of fp(NS) since the right-hand. side
would automatically be orthogonal for any symmetrical
fp. In our calculation" we wrote Ppz as the sum of
two terms and in doing so we added and subtracted
constants to the square brackets on the right-hand
side of (B.14). Had Pp been symmetrical these con-
stants would have been equal and there would have
been no problem. Here, however, the constants were
not equal and it was as if (B.14) had the additional
constant that would have enabled its solution. We do
not really appreciate the significance of the error in
adding this constant, but it seems likely that there
is no way to justify it or correct for it.

whereas V, which is de6ned by the explicit form of
f& can be written symbolically as

V„=—Q(1/~ r—8'
j ) exp) —zk (R'—r) jbtztt,

(C. 4b)

where the Rgb is to operate inside the sum of eI,. Thus
clearly the true Bloch functions Pp and the delocalized
(or Bloch) tight-binding functions are different. The
fact that for large systems the crystal Hartree —Fock
solutions approach the Bloch functions is irrelevant
to this problem since we are discussing here Slater
determinants made up of free-atom Hartree —Fock
solutions as in Sec. IV and not Hartree —Fock solutions
for the entire crystal.

The problem can be inverted by comparing the
Wannier functions

APPENDIX C. TIGHT-BINDING THEORY VERSUS
BAND THEORY aR ——Q exp (ik R)yg(r) (C. 5)

It is well known that for a crystal containing atoms
in closed shells (or such that

~
zrza

~

= 8), a localized
or tight-binding description as given in Sec. IV is
exactly equivalent to a delocalized description such as
in the band theory of Bloch. The purpose here is to
emphasize a rather obvious point which is sometimes
not appreciated: these delocalized tight-binding states,
constructed in terms of atomic functions by

ft, (r) =g exp (ik. R)ga(r —R), (C. 1a)

where the Pa are, e.g., the 1s-hydrogen atom orbitals
on center R in the parallel spin example of Sec. IV,
are not the same as the usual Bloch wave functions
which are eigenfunctions of the equation

L
—-'7'+ V(r) gpp (r) = p~P~(r) (C. 1b)

in which V(r) possesses the periodicity of the lattice.
This is easily seen explicitly by considering the func-
tions ez and Nz which possess the periodicity of the
lattice and are de6ned by

$1,(r) = exp (zk r) g exp (zk (R—r)g$(r —R)

CR= C RR' R' (C. 6)

but it is not true that it can be expanded in terms of
a single orbital, one on each center, i.e.,

GRW p CRR'4 a'.
R~

(C. 7)

APPENDIX D. EXAMPLE OF NONCONVERGENT
EXPANSION FOR Hp OF EQ (447)

with the tight binding function gtz. While it is true
that the aR are localized, they are of course not neces-
sarily —even in any limit —equal to the Ptt. The non-
equivalence of these two functions cannot be attributed
to the lack. of orthogonality of the hatt's and thus the
use of Lowdin-orthogonalization, although simplifying
the expression for the energy, cannot affect the in-
herent diGerence between tight-binding theory and
band theory. It is true that a given az can be expanded
in the complete set of functions Pa', on a single nucleus
R' not necessarily equal to R

and

—= exp (zk r)vt, (r) (C. 2a)
Hp ——Ep [ 0) (0 [ (D. 1)

In Sec. IV the perturbation theory expansion with

pg(r) = exp (zk r)Nt, (r)

and which satisfy the equations

and

(C. 2b)

(C. 3a)

(C. 4a)

L:,'(—zV+k)'+V„ggg ——et~a. (C. 3b)

An obvious although arbitrary choice for the Bloch
potential V„would be the one-electron Coulomb
attraction to each center

was shown to be exactly soluble for all /ps a fac't

which alone should make it suspect. Actually, this is a
legitimate expansion, but it is probably only con-
vergent in exceptional cases and at best P and E show
the properties of an asymptotic expansion and a
semiconvergent series, respectively.

To illustrate this procedure we try to obtain the
known exact solution for the 1s-hydrogen atom from
a zeroth-order wave function which would be exact
for a screened nuclear change. Thus we take

Pp(Z) = (Z'/n)' exp ( Zr)—(D 2)
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TABI.E III. Approximate hydrogen atom energies. are excluded since it is seen from (C. 5) that the
energy E&'& is positive (nonbinding) in that region,
while values of Z &1 are excluded since E&@ decreases
monotonically and rapidly for Z between 1 and 2. One
can say that the procedure works well in the range
that it does because E(2) has turning points at Z=1
and Z~~~, but this is in a sense tautological. This
procedure can also be applied to other problems, such
as that of the London —van der YVaals interaction.

APPENDIX E.THE GENERALIZED SEPARABLE Hp

The most general separable, or independent particle,
approximate Hamiltonian for an X-electron closed-
shell molecule, containing nuclei A of charge Z~, is

H, (V) = Qhp(V, i) =Q L
——',V'P —Q(Zg/r, g)+V(i) ),

~ For Z=1 fo=iP and 84=E, the exact solutions.

for an arbitrary value of Z&I which has energy of

Ep(Z) = (0 i
H

i 0)=-', LZ(Z —2) iEy, (D. 3)

where II is the exact Hamiltonian of the hydrogen
atom. From (4. 49) fi is found to be

fi L2(Z—1)/——Z(Z —2) j(Z'/m)l(r '—Z) exp ( Zr)—

where V(i) is an arbitrary one electron operator. The
lowest eigenfunction of Hp(V) is the single-deter-
minant

+p( V) = Ca. ( V, 1)P( V, 2) ~ ~ ~ (E 2)

constructed from the E spin orbitals of lowest energy,
ti(V, i), which are eigenfunctions of hp(V, i) of energy
p„(V), satisfying

Lhp(V, i) —p„(V) ]p, (V, i) =0. (E 3)
which gives the second-order partial sum (Ei——0)

E&'&= Ep+Ep ——LZ(SZ' —12Z+8)/2(Z —2) j. (D. 5)

The third-order energies, however, contain divergent
terms which arise from the cube of the Coulomb
potential and also from the product (1/r)V'(1/r).
One can speculate that this deceptively attractive
perturbation theory expansion gives divergent results
for all E&"& with e finite for all values of the parameter
) in the artificial Hamiltonian

H =E i0p)(O S+X(H—Epi 0)(0 [ ) (D. 6)

so that the problem has zero radius of convergence
in the usual sense of the term, unless Z=1, for which

pi and all higher corrections vanish identically. It
might however be possible to obtain a finite result by
formally summing the entire infinite series.

It is still possible that E&') give a fair approximation
to the exact energy E and this is seen in Table III
where Ep and E~2& are tabulated for a number of values
of Z. For all values within the range

P &Z&f

E&'& is a very good approximation to the exact result,
and is a considerable improvement over Ep except when
Ep is not a bad approximation itself. Values of Z&2

The corrections to%'p are found by solving the equations
of perturbation theory with X„Hi( V) defined by

y,Hi(V) =H Hp(V) = Q—(1—/rg) —QV(i)

and, as is well-known, the corrections to first-order in
) involve only the solutions to a series of two-electron
inhomogeneous partial diGerential equations.

It is significant that the formal solution to the
perturbation theoretic problem is independent of the
particular choice of the one-electron potential, V(i),
since whatever terms introduced into Hp( V) are
identically subtracted out in Are(V). The conver-
gence of the expansion will depend critically on the
particular choice of V(i) but if the expansion con-
verges for one choice of V(i) it should converge as well
for a wide variety of V(i)'s which are in some sense
similar. Thus a criterion such as "best possible Cp,
has little meaning when a perturbation expansion is
envisaged, and the choice of V(i) should be based on
expediency rather than on an arbitrary criterion such
as minimizing the total energy. LKeLLy (Ref. 23 and
earlier papers cited therein) has described and used
procedures which amount to choosing an expedient
V(i) for the perturbative part of the calculation, after
%p is determined, Kelly shows that this is equivalent
to partially summing certain sets of diagrams while
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neglecting others. The author has related a similar
procedure to a Taylor series expansion (Ref. 68 below) .]

The various schemes for choosing V(i) discussed in
the literature are: (1) the Hartree —Fock scheme in
which the potential V(i) contains integral operators
as well as functions of position; (2) the bare nucleus
scheme discussed by Sinanoglu, "Dalgarno" and others
in which V(i) =0; (3) the screened bare nucleus
scheme in which

with the s~ chosen as discussed in the text above;
(4) Slater's" approximation to the Hartree —Fock po-
tential in which the "exchange" or integral potential is
"approximated" by an eRective exchange potential;
(5) Gaspar's" and Kohn and Sham's'4 approximation
and improvement to the Hartree —Pock potential in
which the "exchange" potential is replaced by an
eRective exchange potential diRering from Slater's"
by a numerical factor of -'„and in which an additional
"correlation" potential is added '

Therefore as long as Vo(V) will be improved upon
using perturbation theory, there are no inherent ad-
vantages to a self-consistent-field solution, and there-
fore the fully-iterated solutions to the coupled equa-
tions of schemes (1), (4), and (5) are not significantly
better than, say the first iteration, to justify the
additional computing time. Since the simplest scheme
with a reasonable V(i) will be the most practicable,
both the 6rst-iterated Slater or Kohn and Sham
schemes —and it makes little difference which of the
two—will be chosen over the Hartree —Pock scheme.
The bare nucleus scheme (2) will probably not con-

"J.C. Slater, Phys. Rev. 81, 385 (1951).
ss R. Gaspar, Acta Phys. Hung. 3, 263 (1954), et seg.
'4 W. Kohn and C. J. Sham, Phys. Rev. 140, A1133 (1965).
'5 See J. C. Slater, M. I. T. Solid-State and Molecular Theory

Group Quarterly Progress Report, October 1965 (unpublished)
for a critical discussion.

"This correlation potential cannot be considered an improve-
ment on the Hartree —Pock B0 in the sense of making lite contain
some "correlation" since according, at least, to the accepted
criterion of minimum energy, the "best possible" single-deter-
minant p0 is the Hartree —Fock p0. These authors do not consider
as their total energy the expectation value of H but rather the
expectation value of H. plus a "correlation" potential. Thus even
if the wave function were not to contain correlation the energy
would, although in a somewhat ad hoc fashion. We feel it is cer-
tainly a reasonable possibility that the Kohn —Sham p0 is "better"
than the Hartree —Fock p0 in the sense of being closer to the exact
P, but that the comparison of the "energy, " which includes the
expectation value of the correlation potential, with the Hartree-
Fock energy is misleading.

verge, but a reasonably screened nucleus scheme (3)
should, as would also a scheme based on any reasonable
guessed-at V(i) such as the sum of Thomas —Fermi
atomic potentials.

We feel that the simplest and most accurate pro-
cedure would take as V(i) that obtained by the first-
iteration of the Hartree —Pock procedure mitholt im-

cludirtg the exchange termat a,K LSince the Slater and

Tong and Shain" results (excluding correlation)
differed by less than 0.1%, leaving out the entire
exchange term in Hp can only change the total energy

by ~0.2%, and the convergence should certainly not be
aRected. Notice, however, that the total "exchange
energy" will not be significantly affected —it will still
be large —as there will only be a small change in the
orbitals. It might be necessary to multiply the Coulomb
term by (X—1)/X in order not to "over-screen" the
nucleus so that there are at least 1V bound. spin orbitals. )
The absence of nonlocal potentials in Hp, besides sim-

plifying the calculation of%'p, 0'&, etc. will also simplify
the calculation of molecular electric and magnetic
properties. We have discussed elsewhere" the fact that
there is no advantage in obtaining approximate self-

consistent molecular properties, where the self-con-

sistency refers to the interaction with the external
field since the self-consistency corrections identically
vanish to all orders. The present discussion shows that
the only advantage of self-consistent calculations of
atomic and molecular wave functions is that more

rapid convergence might thereby be aRorded. No
general proof exists, however, that the Hartree —Pock
scheme provides the most rapid convergence of all

possible independent particle schemes. @ (See also Ref.
14 above. )

We have discussed the problem of separable Hp s
from the point of view of the molecular theorist for
whom first-order perturbation theory corrections are
a practicable possibility. The solid-state theorist, who

is in general only interested in the "best possible 0'p

and corresponding energy, should, however, appreciate
the observation that there is no "higher virtue" what-

ever to a self-consistent procedure. Thus, for example,
a sophisticated theory which would be rendered im-

practicable by making it self-consistent is nevertheless
to be preferred over a simple-minded theory which

is constructed from the start to be self-consistent.

"B. Y. Tong and L. J. Sham, Phys. Rev. 144, 1 (1966).
68 J. I. Musher, J. Chem. Phys. 46, 369 (1967).
"For a discussion of Hartree-Fock and "best possible" wave

functions, see Refs. 17 and 65.


