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This paper studies the possibility of applying the principles of the S-matrix theory to electrodynamics. Sy using an
approximation scheme diferent from that in the strong interactions, many results of quantum electrodynamics can indeed
be reproduced. While the calculations of electrodynamical problems can be carried out in a more straightforward and less
laborious way in the S-matrix theory, there still are some basic dif5culties. However, as far as scattering processes and the
anomalous magnetic moment are concerned, there is complete identity (up till fourth order) between the two methods.
The bound-state problem, infrared divergence, and the many-particle problem remained unsettled.

I. INTRODUCTIOH

The perturbation method of field theory has been
successfully applied to electromagnetic interactions.
Numerous amazing experimental verifications have
been obtained. The success of quantum electrody-
namics depends on a particular feature, characteristic
of the electromagnetic interaction, namely, the small-
ness of the coupling constant. This renders the per-
turbation method quite effective. Therefore, in spite
of the existence of certain mathematical difhculties
which still remain unsettled in the theory, quantum
electrodynamics is a satisfactory theory as it stands
right now. However, if the techniques of field theory
are applied to strong interaction phenomena, they fail
completely because either some of the theories are not
renormalizable, or even worse, because one cannot
construct perturbation solutions to the renormalized
Geld equations. The coupling constant is too large to
render the series convergent. During the past few
years, physicists have turned their attention to the
studies of S-matrix theory as a possible method for
strong interaction physics. Although so far the S-
matrix theory has no well-defined theoretical structure
and is still incomplete, its predictions in some cases
turned out to be in agreement with experiments, hence
it can sensibly be regarded as a promising alternative.

This work investigates the possibility of applying
the S-matrix theory to electromagnetic interactions.
The equivalence of the usual form of quantum electro-
dynamics and the S-matrix theory of electromagnetic
interactions will be demonstrated by displaying the
identity of the results of calculations for various
processes and diagrams. In Sec. II, a brief review of the
general principles of the S-matrix theory of strong
interactions will be given. Various assumptions will be
analyzed so that they can be readily applied to electro-
magnetic interactions in Sec. III. In that section the
unitarity condition will be used to generate a perturba-
tion series in powers of the coupling constant; in con-
trast to the corresponding case of strong interactions
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where this is impossible. Using these principles-
Lorentz invariance, unitarity, crossing symmetry, and
analyticity, we can show by explicit calculation that
in the S-matrix theory the finite contributions (which
correspond to primitive divergent graphs in the usual
theory) are the same as the renormalized results in the
Feynman —Dyson theory. Various lowest-order scatter-
ing amplitudes will be constructed. Higher-order radia-
tive corrections can be treated similarly; in certain
cases simplifications will result if use is made of the
Mandelstam representation and Cutkosky's rule. De-
spite the striking results given in Sec. IV, some un-
solved problems, peculiar to electromagnetic inter-
actions, remain. Section VI concludes the present
work with a general discussion of these problems
and the comparison of the S-matrix theory of electro-
magnetic interaction with the I'eynman —Dyson's ap-
proach. Although at present, the S-matrix theory of
electromagnetic interaction is not as satisfactory and
self-contained as the usual form of quantum electro-
dynamics, it is certainly interesting to see that many
significant results can be obtained via S-matrix theory
without resorting to the concept of Gelds and operators.

II. REVIEW OF THE GENERAL PRINCIPLES OF
THE S-MATRIX THEORY

A. General Observations

The traditional way to study quantum electro-
dynamics consists of the straightforward application
of the ideas of quantum theory to the electromagnetic
field. One of the many equivalent methods of quanti-
zation is applied to the classical electromagnetic field.
The essential new feature compared to quantum
mechanics is that the electromagnetic Geld, conceived
as a dynamical system, possesses infinitely many
degrees of freedom. It should be stressed that the
electromagnetic interaction in this framework is given,
either by giving the interaction Lagrangian or equi-
valently by giving the Heisenberg equations of motion
of the Geld operators. The knowledge of this inter-
action comes directly from experiment (via Maxwell's
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equations). It can be weri@ed that this interaction is
both gauge invariant or relativistically invariant. With
this given interaction, quantum electrodynamics pro-
ceeds in much the same way as ordinary quantum
I11echanics, the calculation of expectation values, transi-
tion rates, etc. This is the approach followed in most
organized treatises. ' ' It was noted early, "that most
processes in quantum electrodynamics, could be de-
scribed in terms of the S matrix —which (in principle,
in any case) could be found once the interaction
Hamiltonian is known. From the known interaction
one can again verify that the S matrix is unitary and
relativistically invariant. In the traditional form of
quantum electrodynamics, the S matrix thus possesses
the status of a derived notion. To be sure, it is a most
significant notion, which allows the direct calculation
of many experimental processes; but the physical
principles are not stated directly in terms of the S
matrix. In a pure 8-matrix theory by contrast, it is
precisely attempted to state the relevant physical
principles directly and exclusively in S-Inatrix terms.
Thus, in a pure S-matrix theory, the unitarity of the
S matrix is not a property which can be derived by
inspection of its explicit form, but rather, a condition
to be imposed (on physical grounds) to help determine
the S matrix. In a sense, one has here a rather curious
inversion: The general properties of the S matrix were
6rst obtained and inferred from the Lagrangian form
of 6eld theory. Now these properties, themselves, are
made primary and assume the status of principles. The
problem now is to deduce information about the
electromagnetic S matrix from them. The main part
of this discussion is concerned with the question of
whether and to what way, these general principles
determine the S matrix for specific interactions. This is
precisely the question to be analyzed in this paper
for the case of electromagnetic interactions. One
would hope that, in addition to a reformulation of
quantum electrodynamics, one would obtain a more
Qexible formalism which is easier to handle without
the necessity of carrying out renormalizations.

To start the discussion, it is necessary to state the
principles assumed in this S-matrix approach. Since
the S-matrix theory is most commonly used in strong
interaction physics, these principles must be adapted
and modi6ed so they can be used in the electromagnetic
case. To show the close relationship between the
axioms assumed, the generally accepted (more or less)
principles of the strong interaction S-matrix theory

I J. M. Janch and F. Rohrlich, The Theory of Photorss atsd
8/ectrons (Addison —%'esley Publ. Co., Inc. , Reading, Mass. ,
1959), 2nd printing.' N. N. Bogoliubov and D. V. Shirkov, Introdgction to the Theory
of QNantized Fields (Interscience Publishers, Inc., New York,
1959).' G. Ka,lien, "Quantenelektrodynamik, " in Hegdbgch der
Physik, S. Flugge, Ed. (Springer-Verlag, Berlin, 1958), Band V,
Teil. 1.' W. Heisenberg, Z. Physik 120, 513, 673 (1943).' F. J. Dyson, Phys. Rev. 75, 1"/36 (1949).

are given here' ~; their speci6c adaptation to the
electromagnetic case is given in Sec. III.

B. The Princiyles of the 5-Matrix Theory

1. Sytttrrtetry Properties

Relativistic imam, rialce. All theories constructed to
date assume the unrestricted validity of relativistic
invariance. This section contains the form which this
requirement assumes in an S-matrix theory.

A general S-matrix element representing the transi-
tion from an initial state i to a final state f can be
written as

(f [ S)i)=br;+i(2sr)'It&4&(PI P;) (f—) T ( S). (2.1)

Here (f ( T ( i ) is referred to as the T-matrix element
or the scattering amplitude. In this section we con-
sider the scattering of spin 0 particles. The generaliza-
tion needed to include charge and spin will be de-
scribed later. The Feynman amplitude divers from
the T-matrix element by a kinematic factor which
depends on the normalization of particle wave func-
tions in the states ) i) and

~ f).
Relativistic invariance required, in the erst instance,

that ) (f ) S ) i)P shall be invariant, or since a four-
dimensional tt function is factored out, that

( (f [ T [ i )(z

shall be invariant. Thus, the scattering amplitude
shall be a function just of the invariants formed by
the four-momenta of e incoming and outgoing particles,
p; (i= 1 ~ ~ I). Since the states are physical states, all
momenta are on the mass-shell, p,z=srt;z. It is well

known that for such a process the number of inde-
pendent invariants is 3e—10. For a two-in, two-out
process, pI+ ps~ps+ p4, the number of independent
invariants will be 2. They are, for example, the Man-
delstam variables which can be defined as

s (pI+ ps)

t=(p —p)'
st= (PI P4) ~

They are related by

s+t+I = gtwts.

The functional dependence of the amplitude on s, t, I is
in no way restricted by this invariaIlce.

Discrete trurtsforrrtIJtions. In strong interactions, the
scattering amplitude is assumed to be invariant under
I', C, and T transformations. This assumption again
imposes restrictions on the amplitudes. Actually, these
restrictions are always expressed as the absence of
certain invariant scattering amplitudes which possess
particular spin or isospin transformation properties.

4 G. F. Chew, S Matrix Theory of Strow-g INteractiols (W. A.
Benjamin, Inc., New York, 1961).

~ S. M@ndelstam, Rept. Progr. Phys. 25, 99 (1962).
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Consequently, the restrictions imposed by these in-
variances are best discussed in a formalism which
explicitly exhibits the spin and isospin character of the
amplitudes. This is shown in the Sec. IIIB4.

It is still interesting to note here that the C, P, and
T invariance principles manifest themselves only in
conditions on the invariant scattering amplitudes,
and these invariance requirements separately do not
put any restrictions on the unitarity condition (which
serves as the fundamental dynamical principle of the
S-matrix theory) . However, CI'T invariance has to be
maintained throughout the discussion. The validity of
the latter has not been questioned, in fact, we know
that it is a property of all relativistically invariant
local field theories.

Crossing symwt, Ay. The substitution law first explic-
itly formulated in electrodynamics states that certain
relations exist between the scattering amplitudes of
various processes. This same idea was extended to
strong interactions; for example, the scattering am-
plitudes for the following three processes will be related
in the sense that they are each others analytic con-
tinuation. The three amplitudes corresponding to the
three channels of any two-in, two-out reactions:

Pl+ P2~P2+P4

pl+ ( p8)~( p2) +p4

Pl+ (—P4)~Ps+ (—P2)

are then to be the boundary values of one and the
same analytic function. Energy-momentum conserva-
tion law is assumed for all processes. It should be
noted that the analyticity requirements needed to
carry out this continuation are conjectured to be true,
as, for example, expressed by the Mandelstam rep-
resentation. A further discussion is given in subsection 3.
A particular case of this law provides us with the free-
dom of bending lines in Feynman diagrams and thus
facilitates calculations.

2. UmitarAy

The unitarity condition contains a good deal of the
dynamics of the S-matrix theory. This combined with
the principle of analyticity (which will be given below)
forms the central part of the S-matrix theory. Together,
these permit the calculations to be carried out.

To obtain the explicit and very useful form of the uni-
tarity condition, one substitutes (2.1) into SS+=1
and obtains

i 'L(f I T
I 2)—&f I

T+ IiH
=(2~)' 2 &fl T+

I ~)&~ I
T I i»"'(p' —p-).

(2.2)

One usually shows, using TI' invariance (which
asserts (i I

T I f)= (f I
T

I i)), that the unitarity

condition can be put in the well-known form:

&fl T
I )=L(2 )'/21Z&f I T'I &

&& (I I T I i)h"'(p' —p-) (2 3)

If however, one assumes just unitarity and no discrete
symmetries, just (2.2) is valid, not (2.3). Now, for
further applications, one needs to determine the
discontinuity across the cut along the positive real
axis of the complex energy plane. This can be obtained
from (2.3) but not (as it stands) from (2.2). However,
by a careful re-examination of the unitarity condition
in the context of 6eld theory, Olive' has shown that if
Tf; =(f I

T
I

—i) is the boundary value of an analytic
function of complex invariants, the limit of T~; from
above the real axis is equal and opposite to that of
T;I*=(f I

T+—
I i) from below the real axis (in the

complex energy plane). This result is independent of
any special invariance principles, of crossing symmetry,
of the type of process considered, but is just a con-
sequence of the CPT theorem. Kith this result, the
unitarity condition for the scattering amplitudes can
be put in the elegant form:

discontinuity of TI; i(22r) 4——g TI +T„;+8&4&(P; P), —

(2.4)

where + and —denotes the boundary values from
above and below the cut, respectively. In the 5-matrix
theory, this form of the unitarity condition is taken as
an independent principle. For the case of boson —boson
scattering, (2.4) will yield a relation between the
imaginary part of the amphtude of a process and the
product of scattering amplitudes of other processes.
Note that the unitarity actually yields an infinite set
of conditions, (2.4) holds for all f and i If ano.ther set
of relations could be found, (this is indeed the case,
see below), we could. in principle solve for the scat-
tering amplitudes themselves. The nonlinearity of this
infinite system (2.4) renders the exact solution almost
impossible, however, approximate and perturbation
solutions can be found.

3. Aealyticity

Formulae (2.2) or (2.4) give orle relation between
the matrix elements of T (or the amplitudes). As
noted, another relation is needed to provide a closed
system. The type of relation envisaged might, for
example, be a connection between the real and im-
aginary parts of a scattering amplitude. Mathematically
such relations are well known in the theory of analytic
functions. It is thus natural to make some assumptions
regarding the analytic character of the amplitudes
as a function of appropriate variables. Many more or
less different assumptions can be made. For example,
the scattering amplitudes can assume to be analytic

8 D. l. Olive, Nuovo pimento 26, 73 (1962).
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functions of the kinematic invariants in the space of
these variables. One assumes, in addition, that there
exists a "physical sheet" bounded by cuts and contain-
ing poles. This sheet contains a domain of analyticity
of the scattering amplitude as a function of its vari-
ables, which includes among its boundary all physical
points. Then, by means of Cauchy's theorem, we can
find a relation connecting the imaginary to the real
part of the amplitude (usually referred to as a disper-
sion relation). Once the analyticity of the scattering
amplitude is assumed, the dispersion relation can then
be written down. This, together with the unitarity
condition (2.4), forms a set of basic equations for the
scattering amplitude. It is this set of equations some
physicists believe to be the dynamical equations for
the strong interaction physics.

So far all the conjectured analytic properties of
scattering amplitudes postulated are suggested by
field theories. The dispersion relations which can
rigorously be proven have been very limited in number.
Landau and Cutkosky' have given general rules for
locating the singularities of Feynman graphs in per-
turbation theory; it is hoped that, although the
perturbation series diverges, we can still extract
information about the analytic character from its
series expansion. Alternatively, Chew has postulated
the principle of maximal analyticity which states that
the scattering amplitude can have only those sin-
gularities imposed on it by unitarity. In any case,
in this "pure" S-matrix approach, some analyticity
properties of the amplitudes must by postulated. One
can still argue about the precise form needed. In this
paper, analyticity requirements sufhcient to allow the
Mandelstam representation (thus, both single and
double dispersion relations) will just be assumed. If,
indeed, unitarity and analyticity can provide enough
information to determine the theory, " the remaining
problem will be to set up a workable approximate
scheme, since an exact solution would certainly be
impossible.

The unitarity condition (2.4), on the right-hand
side, should include in the summation all the possible
physical intermediate states that conserve energy,
momentum, spin angular momentum and all other
conserved quantum numbers. In strong interaction
physics, in order to obtain a tractable system of
equations, the infinite summation is replaced by just
a Gnite number of terms. It can be seen that the
location of the singularities in the amplitudes is deter-
mined by the total "masses" of the intermediate
states. The higher the mass, the farther out from the
origin the associated singularity occurs. It is assumed,
in the approximation scheme of strong interaction
physics, that lower the masses, the more important the
role; thus, the contribution to the unitarity sum is

9 R. K. Cutkosky, J. Math. Phys. 1, 429 (1960).
'0 It has never been proved that unitarity and analyticity do

provide a system of equations possessing a unique solution.

where the A; are scalar amplitudes formed by Lorentz
scalars, e.g., the Mandelstam variables s, t, u, etc. (The
index'' has nothing to do with transformation proper-
ties. ) We further require that A; be free from kine-
matical singularities. A systematic method of produc-
ing invariants for any scattering processes such that
the associated amplitudes are free from kinematical
singularities was given by Hearn. "

The requirement that the scattering amplitudes be
invariant under certain discrete symmetry trans-
formations will limit the possible forms of the invariant
operator functions T; that can appear in the scattering
amplitude. At the same time they impose reality
conditions on the scalar amplitudes A;. It can again
be shown, using Geld-theoretic technique, that, if

Tt;= QA;+(s) T;,

then
T;t* QA;-(s) T;. —— (2.6)

where
A;+(s) =A;(s&ie, t).

"A. C. Hearn, Nuovo CinIento 21, 333 (1961).

mainly controlled by "near-by" singularities. The
farther-away singularities would then have less im-
portance. It is hoped that, in most cases, the inclusion
of a few low mass states in the summation of the
unitarity condition should already give a very good
approximation. Thus, in this way, one can hope to
construct a systematic approximation procedure. In
actual calculations, one sometimes has to include a
large number of terms. In that case, we can try to keep
a reasonable number of terms and replace the neglected
ones by one or more empirical constants. Doing this,
one can not only save a lot of computational labor, but
also fit the experimental results quite well; the eGec-
tive range formula is an example. Of course, the
resulting theory is no longer a "fundamental theory"
in the sense of the S-matrix theory. This particular
type of approximation will not be made in the applica-
tion of the ideas of the S-matrix theory to electro-
magnetic phenomena. (At least in this paper. )

4. Generalization to Include Charge and Spin

When we deal with interacting particles with spin
and charge, the scattering process can no longer be
represented by just a single invariant amplitude;
rather, it must be represented by a linear combination
of a set of invariant operator functions, T,, which
can be formed from the four-momenta, p;, polarization
vectors, fermion spinors, y matrices, etc. These func-
tions T; can also contain spin and isotopic spin opera-
tors P;. A general scattering amplitude T can then be
expressed as
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Thus the unitarity condition gives the imaginary part of
the scalar amplitudes A; across the cut in the complex
energy plane. The scalar amplitudes themselves, are
obtained by applying dispersion relations.

This concludes the sketch of the needed principles of
S-matrix theory. In the next section, these same
principles will be adapted to electrodynamics. The
extent to which these ideas form a consistent and
practical basis for quantum electrodynamic calcula-
tions will be examined in the succeeding sections.

A. The S Matrix of Conventional Electrodynamics

In spite of the successes recently achieved in con-
structing an axiomatic finite formulation of quantum
field theory, the old-fashioned Feynman —Dyson ap-
proach to quantum electrodynamics remains a most
useful tool in practical calculations. Quantum electro-
dynamics has, of course, been treated in many standard
textbooks. Here we only recapitulate the needed ideas
and results.

A Lagrangian density of electrons interacting with
an electromagnetic Geld is postulated. The field equa-
tions are derived by using the action principle. The
Geld equations in the Heisenberg pictures are:"

(in —m) f(x) = eA(x) f(x—)
8„8&A (x) =j (x) = —eP(x)y P(x). (3.1)

The action principle determines (at least, to a certain
extent) the commutation relations for the free-field
operators. The commutation relations for the coupled
fields at arbitrarily space —time points can only be
obtained once the field equations are solved. It is easy
to check that, under C, I', T and gauge transforma-
tions, both the field equations and the commutation
rules are invariant. The S-matrix operator in the
Heisenberg picture is defined as the unitary operator
satisfying

y.„,(x) = S-t@;.(x) S, (3.2)

where P;„and P,„& are operators which satisfy the free-
Geld equations and the free-field commutation rules.
From a knowledge of S, Inost experimentally interest-
ing quantities can be obtained. It can also be shown
that the S matrix is invariant under C, I', T and

"We adopt the same notation as used in Schweber's book
(Ref. 19) except that here 0-„„ is dered as o.„,=y„y,—p,y»
and we use spinors u, o in place of m, where I"=z"and e"=w"+'
(r=2, 2). p„y& is written as p (boldface italic).

III. ELECTRODYNAMICS AS AN S-MATRIX
THEORY

In order to appreciate the elegance and simplicity
of the S-matrix method, we present it against the
background of the usual method of quantum electro-
dynamics. Thus, a very brief outline of the usual
procedures is given so that the methods may easily be
compared and contrasted.

S= 1+est&&+ ~ . (3 3)

Although conceptually quite straightforward, this is
not the way calculations are usually carried out. One
instead, goes over to the interaction picture to obtain
the familiar Feynman diagrams for each order. The
expansion (3.3) still holds good in that case. The
contribution S&") contains a large number of diagrams.
The general equivalence between these methods has
been demonstrated by Kallen" —but the relation be-
tween them is quite involved. The Feynman diagram
procedure is a good deal more tractable. In fact,
the description of a physical scattering process can be
carried in a much more natural manner in the inter-
action picture than in the Heisenberg picture.

It is well known that in the calculation of the various
diagrams divergences appear. To obtain physically
meaningful results, one has to, and one can carry out,
a systematic renormalization, splitting of the divergent
terms. The reeormalised physical constants (charge
and mass) are the ones to be identified with the experi-
mental charge and mass. This leads to the well-known
embarrassing fact that e and m in (3.1) are physically
undefined objects.

As a side remark, one can note that the analytical
structure of the various amplitudes can be obtained
from their explicit forms as given by the Feynman
integrals. Usually, these properties are obtained for
scalar particles; generalization to spinor and vector
particles is in principle straightforward, in practice,
often tedious. In any case, the analytic properties are

"R.B. Blumenthal et al. , Phys. Rev. Letters 14, 660 (1965).
4 G. Kallen, Arkiv Physik 2, No. 37, 371 I', 1950).

gauge transformations. The agreement of the theo-
retical predictions and the experimental observations
for various processes shows that both the field equations
and the commutation rules are substantially correct;
hence, the symmetry principles which are contained
in these are established to the same degree of accuracy.
At present, no indication of deviations of the basic
laws has been seen. (Compare, however, Pipkin's
experiment. ")

It should be noted that both Eq. (3.1) and the
definition of the Smatrix (3.2) are given in terms of the
Heisenberg picture. To find a useful expression for the
S matrix, one must resort to a perturbation-type
treatment. It is conceptually the easiest to carry out
this approximation scheme' by substituting the fol-
lowing expressions for f and A„ into (3.1):

y=p(o&+. sy(t&+$2/(s& q ~ ~ ~

A„=A„&0&+eA„&t&+e'A„&'&+~ ~ ~ .
Here P&'& and A~"& satisfy free-field equations and
free-field commutation rules. One can (at least in
principle) determine lf t'& p&'& ~ ~ and A„t'&, A t'& ~ ~ ~

by successive approximations. Utilization of (3.2) then
gives S as a power series in e:
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FIG. 1.Elementary interaction.

derived from the underlying theory —they are not
postulated.

B. The S-Matrix Theory of the Electromagnetic
Interactions

This section contains the adaptation of the principles
of the S-matrix theory to quantum electrodynamics.
It is the purpose of this discussion to provide a self-
contained framework, which will follow the principles
of the S-matrix theory as closely as possible; while at
the same time, reproducing the results of quantum
electrodynamics. In principle, it should be possible
to develop all of quantum electrodynamics starting
from the ideas and assumptions given here. Some of
the postulates are, of course, peculiar to quantum
electrodynamics, while others just express the ideas
of general S-matrix theory. In the interest of clarity
we will list a/l the assumptions here, discussing them
as we go along.

(1) We are dealing with two types of particles,
electrons (e+ and e ) and photons. Observations can
be made on these free particles only —the totality of
these free-particle observations can be described by
the free Dirac and free Maxwell equations. The charac-
terization of states is always in terms of free-particle
wave functions, such as the spinors N, v, and plane
waves for the photons.

(2) The interactions between the electrons and
photons are described by the transition amplitudes

(b( S)u) or (bl T[a), where [b) and )a) are
arbitrary complicated free-particle states. The purpose
of the further postulates is to provide a means of
determining (b

~

T
~
a). It is clear that assumption

(1) is peculiar to quantum electrodynamics, while (2)
just expresses a typical S-matrix idea.

3. Loreets and Discrete Ieeariaece

We require the scattering amplitude (b ~
T j a) to be

Lorentz invariant, and invariant under C, P, T,
transformations. In electrodynamics, we are dealing
with spinor particles and vector particles. Hence, the
scattering amplitude can again be expressed as a linear
combination of invariant operator functions T; as
mentioned in the last chapter. The requirement of
invariance under any of the discrete symmetry trans-
formations will limit the possible independent forms of
the invariant operator functions that can appear in
the combination.

4. The E/ememtary Jmterac6oN ie Electrodynamics

We assume that the elementary interaction in
electrodynamics involves three particles. This inter-
action then describes the vertex, corresponding to
e++s=+y,"
(y ]

T&'&
[ e+, e-)=Le/(24r)'"g(mrms/ErEs)'"

&&(1/(2(u) '~')8(p&) p„e"(0)44(ps), (3.4)

where p~, p2, m~, m2, and E~, E2 are the momentum,
mass, and energy of e+, e, respectively. co and
lr(= p&+p&) are energy and momentum of the photon
The numerical factor in front comes from normaliza-
tion of wave functions. (Fig. 1). This is also the
simplest possible interaction allowed, if each one of
the particles is to participate in the elementary inter-
action. In principle, elementary interactions involving
more particles could exist, but is explicitly assumed
that they do not.

The justification of this assumption and just what it
involves can be seen as follows. Consider any three-
particle vertex of the electron-photon interaction then,
just requiring Lorentz invariance, we can write down
this vertex as a superposition of four linearly independ-
ent invariant operator functions:

(p ~

T
~
s+, s )=g»(pr)p„e"(p&+ps)N(p2)

+gst (pl)&pv& (pl+ps) (pl+ps) 44(p2)

+gs4 (pr) V,Vse" (pr+ ps) N(ps)

+g44 (p&)o Vse (p&+ps) (p&+ps) 44(ps) . (3 3)

Here, g&
~ ~ g4 can be arbitrary functions of (p,+p,)';

however, for elementary interaction, these are as-
sumed to be constants. For nonelementary interactions,
these are the form factors. It is interesting to compare
this, term by term, with the interaction Lagrangian
density in quantum electrodynamics:

~r=f107s~ V+fsk&p~F""4+'fskVpVs~V+f4$&s~75F""4'.

(3.6)

The last two terms in both expressions are dropped by
the requirement of P invariance; while the Grst two
terms survive the requirements of C, P, (and gauge)
invariance. The second term in the Lagrangian density
is deleted in the usual theory because it is a derivative
coupling type interaction which is unrenormalizable
and leads to divergences in higher-order perturbation
theory. The 6rst term in (3.6) is the coupling of the

'5 To be sure, although this vertex is denoted by a T-matrix
element, it does not represent a physical process —three external
lines of this vertex cannot be put on the mass-shell simultaneously,
if the particles involved are real ones. The basic question is pre-
cisely to build up to the scattering amplitudes for physical pro-
cesses starting from this elementary vertex. The problem is that
in the study of physical processes, such vertices will occur as
parts of diagrams, where the particles are not all physical par-
tides. The same form (3.4) will nonetheless be assumed. The de-
tailed discussion of this point is given in Sec. IVA.
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form j„AI' and it is the only term needed to account
for the interaction of charged particles with photons;
this choice is usually referred to as the principle of
minimal electromagnetic interactions. That we choose
only the 6rst term in (3.5) as the elementary vertex
is in fact, a reQection of this principle. (Actually if
we also took the second term into our calculation,
this would cause trouble. As its counterpart in 6eld
theory is an unrenormalizable interaction, in the
S-matrix theory it will presumably bring in more and
more subtraction constants in the dispersion relations
as we go to higher order calculations. ) By (3.4), one
has electively introduced an interaction without,
however, the explicit use of interaction 6elds.

0' out&-+ 0 in:

p' out~ q in:

q'out~ p in:

k'~ —k,

p' &-+ —
q,

P~

N(P') ~ s(q)

s(q') ~ ~(p).

(3 &)

With this rule, all elementary interactions are defined,
for example,

(e I T '
I

e ~ y&=Ce/(2~) "j(mims/E, Es)'I'

X(2 ) '" (P)v. "(h)N(p). (3.g)

(Although, of course, the rule is more general than that. )

6. Gauge variance

In the usual form of quantum electrodynamics,
ga,uge invariance is considered as an independent
principle. In terms of an S-matrix theory, the important
quantities are the amplitude T=g;A; T;. When
dealing with processes where there are (external)
photons, the invariant operator function T; will always
contain the photon polarization vectors e&, so that
T;=e„M;".Now gauge invariance means that k„M;I'= 0,
where k is the momentum of the physical photon.
This expresses gauge invariance directly in terms of
the amplitudes. The elementary interaction is trivially
gauge invariant and so is the interaction (3.5). Thus,
gauge invariance will not let one eliminate the terms
other than the first in (3.5) .

Zwanziger' claims generally that for the purpose of
constructing the necessary amplitudes and reducing
the number of invariants, the principle of gauge in-

"D. Zwansiger, Phys. Rev. 133, 81036 (1964).

5. Cross~lg Symmetry

If in a reaction, certain particles participate and in
another reaction the same particles or antiparticles
participate, crossing symmetry establishes a relation
between the amplitudes for these reactions. The only
new feature added in quantum electrodynamics is
that to relate incoming and outgoing electrons and
photons, one has to make the following replacement:

variance adds no new restrictions. Thus, for the
construction of amplitudes, Lorentz invariance alone
can be shown to be equivalent to the usual prescrip-
tion which includes both gauge invariance and relati-
vistic invariance. Since we have already assumed
Lorentz invariance as one of the basic principles of the
S-matrix theory, it is presumably no longer necessary
to impose gauge invariance as a separate requirement.

7. Unitarity, Aealyticity, aed
the A pproximation Scheme

The general requirement of unitarity and analyticity
of the S-matrix elements applies in the S-matrix
theory of electromagnetic interactions without any
change. Thus, again, we can write the unitarity condi-
tion as

disc. Tf;=i(27r)' g T~„(+)T ( )3(4)(p; p). (3.9—)

where e denotes the set of on-the-mass-shell inter-
mediate states that conserve energy, momentum, spin
and charge, etc. Here and in the following, when the
unitarity condition is used, it is always understood
that the scattering amplitude T,~ be written in the
form (2.5) as a linear combination of a set of invariant
operator functions T;, and the unitarity condition
gives the imaginary part of the scalar amplitudes A;
across the cut in the complex energy plane as mentioned
in Sec. II.

At this point, it should be noticed that the approxi-
mation scheme used in strong interaction physics
cannot be applied here since photon has zero mass.
In strong interactions the sum in (3.9) is replaced by
just a few terms, corresponding to the lower mass
intermediate states. Since the strong interactions are
of short range and mediated by quanta of finite mass,
this makes sense. In electrodynamics, the quanta has
zero mass and produces a force of in6nite range. Here
the analytical structure is such that a pole is located
at the beginning of in6nitely many cuts superimposed
on one another. To treat these in6nitely many cuts at
the same time would certainly be impossible; we have
to resort to a diferent approximation scheme.

We recall that the usual formalism of quantum
electrodynamics has been quite successful expanding
the scattering amplitude in powers of e or (r (the fine
structure constant). As (r=1/137«1, the perturba-
tion series converges rapidly. Here we shall employ
the same technique in the S-matrix theory by ex-
panding both sides of the unitarity relation in powers
of e. This is suggested by the expansion of S in powers
of e as given by (3.3). Thus, the unitarity condition
in the jth order becomes

disc Tf, (i) —i(2s)4 g g. T (+)0)
l=l n

g T„,.(—)(i-))3(4)(p, p ) (3 10)
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If the scattering amplitudes are known to a given
order in this perturbation scheme, then the disconti-
nuity of the scattering amplitude across the cut in
the next higher order can be determined using the
unitarity condition. It was stated before, but should
be mentioned at this point, that the necessary analyti-
city conditions to allow single and double dispersion
relations will be assumed. The dispersion relation
resulting from the assumed analyticity will then be
used to 6x the scattering amplitude. Thus, in principle,
we can start out from the elementary interaction given
in Sec. III B4 to construct scattering amplitudes of
given initial and 6nal states to arbitrary high orders by
repeatedly using the unitarity condition and dispersion
relations. Unfortunately, the analytical properties of
scattering amplitudes in general higher than fourth
order, have not yet been fully explored. Dispersion
relations are hard to write down, at least they will
be much more complicated than the Mandelstam
representation, if initial or 6nal states involve more
than two particles. This is certainly a handicap in the
present calculation scheme of the S-matrix theory;
hopefully, it can be removed eventually. Actually,
this does not constitute a very important restriction
to electrodynamics, since higher-than-fourth-order ef-
fects are too small to be observed experimentally
anyway. The corresponding calculations in the Feyn-
man —Dyson method are also very tedious.

Before concluding this chapter, an important re-
mark should be made about the photons. They appear
in the S-matrix theory as massless vector particles
(spin 1). As a result of their vanishing mass, the
formalism should be gauge invariant. This has been
taken into account by constructing gauge invariant
scattering amplitudes to begin with. This was shown
to be possible as a consequence of just I.orentz invari-
ance (as was stated before). However, another con-
sequence of the zero photon mass appears as the
problem of infrared divergences in practical calcula-
tions. In all the calculations that we shall encounter
in the next chapter, a small photon mass X will be
assigned whenever infrared divergences appear; 'A will
be made to approach zero as limit at the end of the
calculation, so that no ambiguity would arise. Another
question intimately connected with the infrared di-
vergence problem is the possibility of emitting in-
6nitely many soft photons in a scattering process. In
the present scheme, it is obviously impossible to
treat this problem adequately since we do not know as
yet, how to tackle the problem of three, let alone, an
in6nite number of particles. We discuss this problem
later in Sec. V.

IV. CALCULATION'S IN THE S-MATRIX THEORY
OF THE ELECTROMAGNETIC INTERACTIONS

general ideas of the S-matrix theory outlined in Sec.
III. These calculations can, and have, of course, been
carried out using traditional 6eld theory. It is precisely
the purpose of the following calculations to show in
detail just how these same results are obtained within
an 5-matrix framework. We shall start out with
second order processes.

A. Second-Order Scattering Processes

We 6nd the Compton scattering amplitude in the
second order. As noted in the last section, a general
scattering amplitude can be written as a linear com-
bination of the product of scalar amplitudes A; (s, t, N)
and invariant operator functions T; Lsee Eq. (2.5)7.
The T s for the case of Compton scattering can be
constructed following the procedures given by Hearn
as mentioned earlier; it can be demonstrated that
there are six independent invariant operator func-
tions for the Compton scattering process of any order.
It is precisely our purpose to 6x those (six) scalar
amplitudes associated with each T; for the case of
second-order Compton scattering process using the
5-matrix methods. Here, instead of writing down all
the invariant operator functions explicitly and then
proceeding the calculation, we adopt a slightly diGerent
approach which is physically more instructive.

The expanded version of the unitarity condition in
second order takes the form

disc. (eg—,y2 I
T&'&

I eg-, y4)

=pi(2m)4(ez, &2 I
T+ ' IN)(N I

T'
I e3 jl)

o"'(P-—P.,—Pv, ) (4.1)

e e
r

P3

e v

P

pt

e e

1. Comptoe Scotterigg

The diagram for Compton scattering is shown in
Fig. 2(a). The Mandelstam variables are then dined
as

s (pg+g2) ~

In this section, the amplitudes for the various
scattering processes and the finite contributions of the
higher order vertices will be obtained, using just the

(a)

s-channel

(b)

FIG. 2. Compton scattering.

u-channel

(c)
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This expression for disc {e1,y2 ~

T&s&
~ es, y4) contains

a sum of terms of matrix elements of the elementary
interaction T&'& between the states

~
e, y) and

~
e).

By assumption, the only nonzero matrix element is
{e,V I

T"'
I

e ) and this is glvell by (3.8). Tlllls,
the disc {e&,p& ~

T&'&
~
e4, &4) can be evaluated by

summing over the polarization states and integrating
over the momenta of this one-particle (in fact, one-
electron) intermediate state which is on the mass
shell (pSS=m"). Thus

continued unitarity condition is still valid; this is what
is usually referred to as the "generalized unitarity
condition. " Whenever a one-(stable) particle inter-
mediate state is involved, it is always necessary to
carry this continuation out in order to construct the
amplitude. This unitarity condition yields

Im A1(s, t, I) =pe'/2(2~)'55(s —m')

Now, applying a dispersion relation, we get

d1sc. T&'& te (p&)+p(qm)~e (p&)+p(q4), s channel5 A1(s, t, u) = n.-' " Irn A1(s', t, I)
dS

-m
z8 m 1

(24r) 4 (g1gs) 1/2 (2co22co4) '/& ~(ps) e(q4)

(p1+ q&+m') e(q&) N(p1) 8(s—m"). (4.2)

It was noted before that, although the elementary
interaction (3.8) was written in terms of physical
free-particle wave functions, the three lines of the
elementary vertex cannot be on the mass shell sirnul-

taneously if the law of conservation of four-Inomentum
holds. In other words, this vertex does not represent a
physical process, if p12=p42=mm and q2s=O in the
lower part of Fig. 2(b) . However, if the particle in the
intermediate state were a "heavy" electron, i.e., we
assume p42=m")mm, then this could be a possible
physical process which then is assumed to have a
corresponding T-matrix element. Equation (4.2) was
obtained exactly under this assumption.

Now (4.2) immediately suggests that one of the six
invariant operator functions is

m 1

(g g),/2 (2 2 ),/s (P ) (q)

(p1+qm+m) e(qs)44(p1). (4.3)

= (e'/(2s. )') (m' —s) '. (4.6)

It is clear that A1(s, t, I) possesses a pole at s=m'.
Recall that Aq was obtained starting from the con-
tribution of Fig. 2(b) to the Compton scattering, using
just unitarity and analyticity. The result for A& can
be (and is usually) expressed by observing that a
single-particle intermediate state in a given channel
yields a pole for the amplitude at s=m', where m
is the mass of the intermediate particle and $ is the
center of mass energy of that channel. We will use
this terminology from here on out. It should be noted
that, in the present, this represents merely a convenient
way of description; no new assumptions are made,
no new physics is thereby obtained.

Except for the first term on the right-hand side of
(4.4), the other A; and T; remain so far undetermined.
It should be noted at this point that, if only the 6rst
term in {4.4) were present, the scattering amplitude
would not possess crossing symmetry. In fact, the
crossing symmetry requires that the same T&'& given
in (4.4) should also describe the I-channel process,
i.e., e (p1)+7(—q4)~e (pS)+y( —q2), after the sub-
stitution Lsee (3.7)5:

The numerical factor is the normalization constant
for the wave functions, included for convenience.
Then the brompton scattering amplitude in second
order can be written as

/It2~ —
g4p

e(q2) ~e(q4),

with I, unchanged.

T42/ =A1(s, t) I) T1+QA, (s, t, I) T;.
j=2

(4.4)

Using (2.6), (4.2) and the linear independence of the
T;, we get

Im A1(s, t, 44) =pe'/2(24r) '5t/(s m"), —

Since crossing symmetry is one of our basic require-
ments, it must be imposed. This requires a term
A2(s, t, I) T2 to be included in (4.4), where Ts is
obtained from T& by the above substitution, viz. ,

m

(B1E2)"' (2co22co4) '/'

valid for m') m. (4.5) X~(ps) e(qm) (p1—q4+m) e(q4) N(p1)

Now, imagine the unitarity condition (4.2) as a
function of m' is analytically continued from m") m'
to m'2=m2. In that process, the intermediate state,
though still on the mass shell, is no longer a physically
possible state. It is assumed that this analytically

A2(s, t, I) =$e'/(2s. )'5(m' I) '—(4.7)

Collecting all the results (4.4), (4.6), (4.7), we

and As(s, t, I) = A1(N, t, s), as a consequence of crossing.
By (4.6), we immediately get
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(b)

FxG. 3.Second-order electron self-energy.

amplitude found in this way is identical with the usual
result. The amplitude for Bhabha scattering can again
be obtained by invoking crossing symmetry. Since
these results are well known and the method used is
a straightforward adaptation of the one just described
for Compton scattering, this brief indication should
suKce to demonstrate that the S-matrix method here
is of comparable simplicity to the usual Feynman-
Dyson method. For later purposes we record that for
Manlier scattering

obtain the second-order Compton scattering amplitude
as

m'e'

(2s-) ' (EIEsEsE4) 'I'

T&@fe (PI) +y(qs)-+e (Ps) +y(q4) $

e' m

(2n) ' (EIEs) 'i' (2(us2co4) 'i'

X
u(Ps) e(q4) (PI+ qs+rN) e(qs) N(PI)

(pI+qs) '—n4'

~(ps) ~.N(ps) ~(P4) V"N(PI)

(P P)'—
and for Bhabha scattering

T~'&tc (PI)+c+-(p,)~e (p,)+e+-(p4) j

(4 9)

&(Ps) e'(qs) (PI—q4+n4) e(q4) N(PI)

(pI—q4)' —n4'

m'e'

(2') ' (EIEsEsE4) I~s

~(P4) v.~(PI) 8(ps) v"s(P4)

(PI—PS)
'

in agreement with the usual result.
In passing, we note that in the t channel (s++s-~27)

the lowest-order contribution to the unitarity condi-
tion comes from the fourth order, hence its effect is
neglected in this approximation. Other terms than
J=1, 2 in (4.4) are therefore redundant to this order
of approximation.

2. Pair AeeiItilatiors arId Pair-Prodlctiorl, Processes

Once the Compton scattering amplitude in second
order is obtained, the scattering amplitudes for the
two-photon free-pair annihilation process and the two-
photon pair-production process in second order can
readily be found by a direct application of crossing
symmetry; one has to use the necessary substitutions
as specified in (3.7).

3. &Plier Scattering and Bhabha Scattering

Following the same method, we can get the second-
order scattering amplitude of Mpller scattering:
e (pI) +s (p,

—
) +s (p-s)+e-(P-4). We -note that in this

case the scattering amplitude in second order can have
a photon pole in both the t and the I channel. As noted
earlier, the generalized unitarity condition has to be
used; thus the photon in the intermediate state is
treated as a massive vector meson —the mass is taken
to be zero at the end of calculation. The scattering

~(ps) v,F(P4) ~(ps) v"N(PI)

(PI+PS)'
(4.10)

B. Electron Self-Energy Diagram of Second Order

It is well known that the electron self-energy dia-
gram, Fig. 3(a) gives rise to a divergent integral in
field theory. The method of renormalization was used
to extract the 6nite, physically meaningful part from
this infinite quantity. In the S-matrix theory we do
not use the renormalization technique, instead the
finite part of the electron self-energy is supposed
to come out of the formalism automatically. This is
an important advantage of the dispersion theory. To
illustrate the technique, we consider the effect of the
self-energy diagram in the radiative correction of the
Compton scattering case, Fig. 3(b). We see that the
Qnite part contributing to this diagram is exactly
the same as that predicted by 6eld theory. Although
we use Compton scattering as an example, the same
result would be obtained if other similar processes
are considered.

Fourth-order Compton scattering gives rise to six
diagrams in the s channel (see Fig. 10). In the present
calculation just the contribution of Fig. 10(a), here
given as Fig. 3(b), is considered. The others are dis-
cussed later.

The discontinuity of this particular scattering ampli-
tude can now be found by invoking the unitarity con-
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dition to fourth order.

disc. T,&'&[pi, qs~ps, q4)=i(23)'S(ps, q, (
T+&'&

) pr, qs)(pr, qs )
Tt'&

( p, , qs)8&'&(p, +qs —p,—q,). (4.11)

Here, and in the following, S denotes the integration over the three-momenta and the summation over the spin
and polarization states of the intermediate particles. The intermediate state in (4.11) is a state of one electron
(pr) and one photon (qs) . The choice of this intermediate state, and no others, corresponds precisely to the choice
of a particular diagram. Inserting the direct terms in the second-order matrix elements as obtained from A (1)
into the right-hand side of the unitarity condition, we get

g2 2 1S2
disc. Tu "[pi, qs~ps, q4j=s(23)'S, „„«~ 5"'(pt+qs pr —qs)—

u(ps) e(q4) (p3+ q4+m) e(qs) 34(pr) u(pr) e(qs) (pi+ qs I-m) e(q.)u{pl)

(ps+ q4)
'—m' (pi+ qs)

'—m'

—ie4 nz

„,~()'~)~(4) f 4'p~ f 4'4&4(&p —~')4()r)
2% 2 EiEsa)se)4

X&(qs' —lt') 0(qs) &"'(pt+qs P7 qs)

(s+m') (s+m' —X')
X 2m(s+m'+'A')+ 8m'— (p+ q) e(q )u(p ) (412)

s

where the sum on the spin states has been carried out by using

+34(Pr) u(Pr) = (Pr+m)/2m,
and that over the polarization states by

~ . ~ e(qs) ~ ~ ~ e(qs) ~ ~ ~ =—...~ ...~s. ..IP i
s is dined as

s= (pi+ q,) '.

The photon mass is assumed to be finite () ) for purpose of this calculation. After we carry out the integration
in (4.12), disc. T,t4& (Pt, q,—+Ps, q4) as a function of s can be put in the form

where

M te
disc. T.'4&(s) =—, u(P3) e(q4) [B&(e)(Pi+'qs+m) +Zt(~) he(qs) u(pi)

8 24I EtE3»Mg
(4.13)

(s+m') (s+m' —h') I [s—(m+X) '][s—(m—X) '$ }'"
Bt(s) = 8m'— 8[s—(m+X) '],

s s(s—m') '

(s+m') (s+m' —Xs) I [s—(m+X) q[s—(m —) )'j}'I'
Zt(s) = 2m(s+m'+l~') —m 8m'— 8[s—(m+x) 3).

s s(s—m') '
(4.14)

Now write T,&4&(s) as a linear combination of invariant amplitudes

T,&'& = B(s) [m/(EiE3) ' '][1/2 (»e)4) 'I'ju(ps) e(q4) (pi+ qs+ m) e(qs) u(pi)

+Z(s) [m/(EiE3) '"3[1/2 (»») 'I'lu(ps) e(q4) e(qs) u(Pi) + ' '
~ (4.15)

(See Ref. 17.) Again other amplitudes are not listed since they do not occur here.
With the definition (4.15), (4.13) gives

Im B(s) =[—es/(24r) sj-', rrBi(s),

Im Z(S) = [—es/(24r) 'g'4nZt(S) . (4.16)

'~ Previously T has been written as Z,A; T;. In this case, A&,A3 are called B (s) and Z(s), respectively. The choice of T; is clearly
suggested by (4.13).
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If B(s) and Z(s) again satisfy a dispersion relation, then they can be calculated as

Im B(s')
B(s)=m-', ds',

S S

Im Z(s')
Z(s) =~', ds'.

s —s
(4.17)

Since 8& and Z& are explicitly given, the integration can be carried out; it is quite straightforward but very tedious.
Special attention should be paid to the term, contained in Bq(s ), which gives rise to the infrared divergence.
It has the form:

Bg(s') = ~ ~ —L4/(s' —m') 2j{Ls'—(m+) ) ')Ls' —(m —X) ') I'" (4.18)

A photon mass ) has been included just for the purpose of carrying out this integral. The results of these calcula-
tions are

—82 n 2 3p
Z(s) = —Lm(1 —p)$ ~ 1— ln p

(2m.) ' 4~ p

(4.19)

where

—e' a f 2 p'+4p —4
L2(1—p)] ' 2 p+- lnp +1—2

(27r)' kr & m'p p

dx
7

g/m

(4.20)

p=—1—s/m' n= e'/4r.

The scattering amplitude of interest then becomes

g2 nsT.&'&(s) = „,~(P~) e(m) ~~(P~+c~) e(cm) N(P~),
27f EyE32M22634

(4.21)

where Zf(P) stands for

2 3p
~f(P) = ln p2s.m 2 (1—p) 1—p

P+m 1

mp 2(1—p)

p~+4p —4 dS
2—p+ ln p +1—2 — . (4.22)

1 p p/ g

in complete agreement with the results of quantum electrodynamics. In passing, we note that the corresponding
results obtained in Refs. 1 and j.8, using Feynman —Dyson technique, are in error. It is observed that a wrong
sign appearing in Eq. (9.24) of Ref. 1 has exactly caused this mistake.

It is still interesting to observe that no renormalization was necessary; the actual integrals encountered in this
computation are de6nitely di6'erent from those occurring in the Feynman —Dyson theory, although the Anal result
is identicaL No question of crossing symmetry can be raised at this point, since what is calculated is only a Part
of a scattering amplitude.

C. Photon Self-Energy Diagram in Second Order

The contribution of the photon self-energy diagram in second order, Fig. 4(a), can be obtained in the S-matrix
theory in much the same way as we did for the electron self-energy.

We have seen that in the lowest order of the scattering of a positron by an electron a pole occurs in the s channel,
»g. 4(b). If a two-particle intermediate state, such as an electron —positron pair, is included in the unitarity
condition, Fig. 4(c), we would get the analog of the photon self-energy modi6cation of the "photon propagator. "

The second-order s-channel scattering amplitude of an electron by a positron is, as we mentioned earlier,

2'."'LP~, 72~PS, 143= Li/(2~)'jLm2e'/(a%a&4) "j[(Pi+P2)'1-'~(PS)v,~(p4) ~(P2) v N(pi). (4.»)
The discontinuity of the fourth-order scattering amplitude, corresponding to Fig. 4(c), is again given by the

"A. I. Akhiezer and V. B. Berestetskii, Elements of Qgantzsm E~/ectrodynumzcs (English Translation) (Oldbourn Press, London,
1959), 2nd revised edition.
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unitarity condition,

Z m2e4
d'sc &''IPi P2 P3 P4j=

) 2
Sd P5d p6 e "(p5+pa —pl p2)

(2gr) ' (EiE~E~E4) '" Er,E6

X
~(P3)v.e(P4) ~(P6) v"~(P5) ~(p~) v.e(P6) ~(p~) v"N(pi)

5 6 1 2

Z 4e4m4
d'P5 d'P68(p5' m'—)e(p5) b(p6' m'—)8(pg)

(2s.) (E,E2EHE4) 'I

&& ~'"(P6+P6—Pi—P2) ", , —,LP5"P~" ~PS"P6" g""(P—sp~+m') j (4 24)
~(P3)v.~(P4) i (P2) v"N(pi)

(Pi+P2) '(Ps+P6) '

The spin sum has already been carried out in (4.24) .
Following the previous pattern, de6ne A"" by

here s= (pi+p2)', etc. Then (4.24) yields

m'e' 1 u(p~) yp(p4) 8(p2) r,N(pi)

(EiEgESE4)"' (2s)' (pi+pm)'
(4.25)

e'
4

2
Im A~"=

2(2') ' d'p d'p &(p '— ') &(p ) &(p6' — ') &(p6) &&"(p~+ p6—pi —p~)
—(q"q"—g""q'—4Q"Q")

2
(4.26)

where we introduced the new variables

P&+P6 Pi+ P»

e=l(p-p). (4.27)

Thus the integration in (4.26) is facilitated by observing that Q&e" is a tensor. The number of tensors which
can be constructed from g» and ql', q", is very restricted. In the integrand QI"Q" can be replaced by:

eff

Qe =-.'( --:q)Lg"-(qq/q) j
Thus

g2
Im A'"= d'q d'Q~I (kq+Q)' m'IhI (iq Q)2 m

Ke then get after integration
&&0(2q+Q) ~(kq —Q) &"'(q—Pi—p2) (4/3q') L1+ (2m'/q') 3(q"q"—q'g"") (4 2g)

e' s—4m' 2ns') q&q"
Im A»(s) =— 1+

I
g» — 0(s—4m')

12K s Sj q2

=—Im A (s) I
g&"—(q&q"/q') j (4 29)

A(s) =~ ' L(s'—s) '—s '$ Im A(s') ds'+A(0)

e' 1 1+2 sin'8 f 8

4ir' 9 3 sin' 8 E tan 8]
(4.30)

This defines the Im A (s) explicitly.
Note that as s—&~, Im A(s)-+1, hence if A(s)

satis6es a dispersion relation at all, it must be a sub-
tracted dispersion relation. Assuming this, A»(s) can
be found as

where we defined sin' 8=s/4m', and set A (0) =0. Thus

a 1 1&2 sin'0 f 0 ( q&q"l
A»(s) = — —— . I

1—
I
g""—

x 9 3sin2g & tang & q2 j
(4.31)

This is exactly the renormalized polarization tensor
which can also be obtained by field theory. (Compare,
for example, Reference 19, p. 553.) It would seem

"S. S. Schweber, Introduction to Relativistic Quantum Field
Theory I', Row and Peterson, Evanston, Ill., 1961).
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(b)

FIG. 4. Photon self-energy diagram.

(c)

F(s), of one variable. This function is the matrix
element (v I

T
I

e+, e ) between a virtual photon of
mass s'i" and a physical state consisting of an electron-
positron pair with total energy s'~', where q'=s=
(Pi+P2)'.

Just from invariance arguments (Lorentz and C, P,
T, invariance), one can write for (v I

T
I

e+, e )

(v I
T

I
e+, e-)= F(s)

=el:~/(~i~m) "'jL1/(2~) 'je(pm)

&(I Fg(q') v„+F2(q') o„,q")N(Pg) a". (4.34)
that this follows in quite a straightforward manner
from the S-matrix postulates.

The separation of A&" into the factors A(s) and
g&"—(q&q"/q') corresponds to a particular decomposi-
tion of T into scalar amplitude and invariant operator
function. H one were to write instead

Irn A&"=—Im (A(s)/q2)(gpvq2 qPqv) (432)

which the invariance arguments certainly allow, one
would assume an unsubtracted dispersion relation for
A(s)/q'=A. (s)/s, which would give the same result.

If (4.31) is substituted into (4.25), the scattering
amplitude corresponding to Fig. 4(c) is obtained:

T."'Lp~, v2~pa, u4 j= T.'"LP» nips, &43

n 1 1+2 sin'0 / 8X— 1- 4.33
7r 9 3 sin'8 & tang/

where sin' 0= (p~+P2)'/4m'

D. The Third Order Vertex Part With External
Electron Lines (Electron Form Factors)

We now consider the determination of the third-
order vertex part using dispersion techniques. A general
vertex corresponding to the annihilation of an electron—
positron pair is shown in Fig. 5(a).

In the center of mass system of the electron-positron
pair, the vertex part can be expressed by a function,

(For a transverse photon, a&= (2~)—'~'(2~) '~'e&.) F&
and F2 are usually referred to as the charge and mag-
netic form factors of the electron. When s=0, the
photon becomes a real one with zero energy; the
matrix element (v I

T
I

e+, e ), or equivalently F(s),
will then become the elementary vertex introduced in
Sec. III, Eq. (3.4):

m 1
T t e+, e-&,=p=- e

(EgE2) '~' (2(o)"' (2~)"'

+6(p&)v N(p&)e" (4 35)

In field theory this condition is used to renormalize
the divergent vertex part. It will be used in a similar
vein in the S-matrix theory to fix the undetermined
constant in the once subtracted dispersion relation for
the charge form factor of the electron. By insisting on
(4.35) in Geld theory, one actually Axes the charge e.
In dispersion theory, this same condition 6xes a sub-
traction constant. These constants govern the asymp-
totic behavior (for high energies) of matrix elements.
Thus there is some similarity between the physical
significance of the use of (4.35) in both approaches-
but they do not appear to be rigorously the same.

Following the by now usual procedure, the imaginary
part of F;(s) or the discontinuity of (v I T

I
e+, e )

in third order can be determined by the unitarity
condition:

disc. (q I
T&'&

I pg, p2)= i(2x)'S(q I
T&'&+

I e)(N I

T&'&
I pg, p, )8«(p„—p,—p,), (4.36)

where e is a set of physical intermediate states which conserve energy-momentum and all other quantum numbers.
It is seen that the only possible choice for n is the state of one electron —positron pair, with momenta q1 and q2.
Hence

e3 ms
disc (q I

T"'
I Pi, u2&=i(2~)', Sd'qi d'qm „, ~"'(P~+P2—qi —qm) f(q2) v.g(e)

+1E2 6162

~(q~) v.g(p~) e(P2) v"~(q~)

(P~—qm)'

u, (q&) v„v(q2) v(pm) v"N(pj)

(pi+ p2)'
(4.3/)

where use has been made of (4.10). The two terms in (4.3/) correspond to diagrams 5(b) and 5(c). For To&

one uses

(q I
T"'

I qi qm)=eL~/(~i~2)'"jL1/(2~)'30(qs) v.m(q~) ~".
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The spin sums in (4.37) can be carried out; there results

ie3 m
disc. (q ~

&&'t
~ p&, ps)= d'q& d'qs8(qr' m—') 8(qs' —m')8(qr)8(qs) &"'(pr+ps —

qr
—qs)(2or)' (ErEs)'ts

Xa"(q)
&(Ps) v" (qs—m) v. (qr+m) v.N(pr)

(pr —qr)
'

8(ps) 7"N(pr) Tr E(qr+m) V.(qs—m) V.j
(pr+ps)'

4ie' m

(2s)s (ErEs)'t'
tf'Qbg(-, q+Q) '—m'j 8((-' q

—Q) s—m/8( —'q+Q) 8(-,'q —Q) a"(q)

p=-:(p.-p ),
Q=-'(q —

q ).
Comparing (4.34) and (4.39), we get

d'Q8I:(sq+Q) '—m'j8L(sq —Q) '—m'j8(sq+Q) 8(sq —Q)Im F, (q') y„+Im Fs(q') o„„q"=—

( ~~q' —Q' 2mQ„ 1 2 QP„'""' ~~'+(P-e) '"+(P-Q) '"" (P-Q) "q '(P-Q) ""' "'"
where we have defined the new variables:

Vo o(p-e) '" (p-e) " (p-e) q (p-e) 4.40

It is to be understood that this equation holds as an equality for matrix elements taken between 8(ps) ~ ~ N(p&),
where e and I are free-particle states. Sirnplifications result if use is made of the following relations:

v(ps) pN(pr) = —8(ps) mN(pl)

8(ps) q~(pr) =0.
Using these we can show, after some straightforward but lengthy calculations, that (4.40) can be written as

e2
Im F&(q')p +Im Fs(q') „„q"=— d4Q6$( ', q+Q)' —m'jhow(—,'q Q)' -m—'j8( ,'q—+Q)8(—-', q—Q)

&q2 Q2 . ( 1 2) Pses (P Q)2

(P—Q)
'—'A' &(P—Q) ' qs) 2P'

P Q ( 1 2) P'Q' —3(p Q)'
Ps(P e), 1 (P Q),

—
q&I 2P,

In the above equation, the term L(eqs —Q')/(P —Q)'$y„ in the integrand will cause an infrared divergence, if
the integration over Q is carried out. Drell and Zachariasens' have calculated the charge form factors using dis-
persiop. technique, however, the infrared divergence has not been treated stdficiently carefully. To study the infrared
divergence more carefully here, a photon mass X is introduced. Now the integration over Q can be performed
unambiguously with the result:

e' (q' —4m''l't' 1 q' 2m' 'i« t'&—"i doc —13 2m'
Im F,(q')p„+Im F,(q )~„„q"=—

I

4or & qs J 2q —4m zsts z " 12 "
3q

m2 0 v

y„+ 4r m
" 8(s—4m') . -(4.42)

q2 —4m2 g2 4m2

Denote s= q2. Im F~ and Im F2 can be written as functions of s.

e' s—4m' 1 s—2m' s—4m' 13 2m2
Im Fr(s) =— 8(s—4m') ln

4m s 2 s—4m2 )' 12 3s

2 (s) = (e'/4n. ) ,'m$s (s 4m—')j'ts8—(s 4m')—
eo S. D. Drell and F. Zachariasen, Phys. Rev. 111,1727 (1958).

s—4m'

(4.43)
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Fs(s) and FI(s) themselves, can then be found by using disPersion relations. For Fs(s), we have an unsubtracted
dispersion relation since Im Fs behaves as 1/s for s—+ee,

Fs(s) =s. ' Im Fs(s')
ds'

s —s

= (e /4Ir) (8m'. ) '(28/sin 28), (4.44)
where we defined sins 8= s/4m'.

Since the anomalous magnetic moment of the electron is de6ned as the magnetic form factor of the electron
at zero momentum transfer, except for a factor 4m, we immediately get the anomalous magnetic moment as

iI=4mFs(0) =n/2Ir. (4 45)

To get FI(s), we observe that Irn FI(s) approaches a constant as s goes to infinity. This forces us to use a sub-
tracted dispersion relation. Hence

Im FI(s')
PI(s) —Fi(0) =s. ' s ', , ds'

s'(s' —s)

2m & 28 2 "ln (s'—1)
+8 tan 8+ ds tan 0—tan 201n 2

j tan 28 tan 28 s'+tan' 8

n 1 1+2 sin'8 ( 81— 4.46
9 3 sin'8 & tan 8

Fi(0) is, of course, arbitrary; however we will put Fi(0) equal to zero. This is actually necessary for we require,
as stated at the beginning, that Lsee (4.35)j

(y ~
T

~
e+, e ),=e——elm/(EIEs) I~'j{ 1/(2E.) 'jv(ps) y„u(pi) a&

Up to the third order

(y ( T [ e+, e )= (y )
T&'&+ T(') [ e+, e—)

=eLml(EIEs)"'X1/(2~)']v(ps) {{1+PI(s)jp„+P (ss)o„„q"IN(p,)a~

Hence, for q=0 or s= 0, we must have
Fi(0) =0 (4.47)

and the subtraction constant is in fact, determined by (4.35). The result (4.46) can be compared with that ob-
tained from field theory, e.g. , Ref. 19, pp. 543, 553. They indeed agree, since we can prove the following (non-
trivial) equality by a series expansion

ln (s'—1)
tan 0 ds —ln 2 tan 20=2

s'+ tan' 8

28
X tang dX—ln 2 tan 28

~

1—
tan 28j

E. Magnetic Moment of the Electron

We have seen in Sec. IVD how the electron form
factors can be obtained by using dispersion techniques.
These techniques can, in fact, be used to compute the
form factors to higher orders by including in the right-
hand side of (4.36) other intermediate states. While
it is simple in principle, the actual computation would
be rather tedious and difBcult. However, for the cal-
culation of the anomalous magnetic moment of the
electron, simplifications result since the dispersion rela-
tion requires no subtractions and, moreover, just the
magnetic form factor at sera momentum transfer is
of interest. A calculation in fourth order in e has been
carried out by Terent'ev" using this technique. The

2'M. U. Terent'ev, Zh. Eksperim. i Teor. Fix. 43, 619 (1962)
LEnglish transl. Soviet Phys. —JETP 16, 444 (1965)g.

result obtained is in complete agreement with the
previous ones, e.g., by Petermann, 22 using quantum
electrodynamics. The advantage of the dispersion
method in this case consists in the fact that the problem
can be reduced without much labor to double inte-
grations over rational functions and logarithms. Hence,
the computational labor is somewhat less than in the
usual method using I"eynman techniques.

In the following we shall, instead of presenting all
the details of the calculations, give the contributions
from various dispersion graphs (Fig. 6). These will

be compared with the corresponding contributions of
I'eynman diagrams.

The anomalous magnetic moment of the electron
in fourth order of e can be separated into a sum of

s' A. Peterinann, Fortsehr. Physik 6, 505 (1958).
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terms, each corresponding to a particular dispersion
graph:

(4 48)
where

6

p(»= /pe(» and p(» —2/pp(»

The superscripts indicate the number of particles ap-

pearing in the intermediate state of the unitarity con-
dition, and the 4th terms in the sums correspond to
the graph MI, in Fig. 6. Those lines which contain a
cross, represent the intermediate particle states which
should be put on the mass shell according to unitarity.
Since to each diagram M~(3), there exists a correspond-
ing symmetrical counterpart, a factor of two appears
in p, (3).

The results of dispersion calculation are listed below:

Summing up, we get

pz") = (~'/~') ("'—-'~')

tc2(»= (ces/4sr&) [zazl. (3)—sr~ ln 2+zsr2 —7—ln lw, (3—zsr )j
P3( ) —P2( )

p4("= (~'/~') (~'/32)

p, = (ce'/4sr') [—"-g(3)—(9sr'/2) ln 2+—"sr'—-'+2» X(&+-'sr') )
pe(»= (ces/4sr2) [~zsg(3) —acta~2 ln 2+ e ssrs —ee7e+2 ln y(2sr —3)j
tcz(» = ((z'/2sr') [—(sr'/18) +-P+ ln X$

tc2(s) = (o2/2sr2) [—Tzzerg(3) —zz esr&+ e7r2 ln 2+eve —
2zln g(l+ z7r2) j

pe(»= (ce'/2sr') [——",-g(3)+(Ssr'/6) ln 2—(7sr'/36)+ —,",—-,'ln X(-,'sr' —1)$

p4
s = (n'/2sr') [——',|(3)+sr' ln 2—(10sr'/9) +—",,'——,

' ln X(-;sr'—3)]. (4 49)

ts= Q pe("+2 P pt("

= (a'/sr') [',"+(sr'/12) +—l. (3)——,'sr In 2],

where X is the photon mass and g(x) is the Riemann function.
Using Feynman techniques, Petermann obtained the contributions p; from each graph M; in Fig. 7.

pz = (n'/sr2) (-', +z're sr2+~el (3)——',sr' ln 2)

pzz. = ( '/ ') [-'-'+( '/&8) j
pzz, = (n'/sr') [—~,'+ (sr'/18) —-,'f(3) +-,'m' ln 2——,

' ln (X'/sss') )
pzzd= ( '/ ') L:"—( '/ ) +-.'( '/ ') j
pzz = (~'/~') (~V—s~').

(4.50)

(4.51)

tc =p ( )+p ( )+2p ( )

pn. =2ps")+p2")+pe")

PIIa= 2@X()&

PIIe= Pl ~ (4.52)

These relations can be understood immediately by
tracing "their background" to the diagrams. A given
Feynman diagram can be evaluated by using the

The sum of these five terms coincides exactly with
the dispersion results.

It is easily seen by inspection that various terms in
both calculations are indeed related:

pz =pe($ +2p4(»

dispersion relations and unitarity. The unitarity con-
dition requires that all possible intermediate states
be summed over; thus, to a given order, it is equivalent
with the procedure of cutting the diagram into two
halves with the lower half representing a physical
scattering process and the upper half is then a vertex.
The lines being cut now representing physical particles
must be on the mass shell. Hence, we have the set
of relations (4.52) .

It is perhaps pertinent to note that in the actual
integrations, important differences occur. In the dis-
persion theory, all the intermediate integrations are
on the mass shell —hence more easily performed than
those in the Feynman —Dyson theory, which are oG
the mass shell.



REvIEws oF MoDERN PHYsIcs ~ JANUARY 1967

F. The Third-Order Vertex Part for a Single External
Electron Line

Consider next, the vertex with one photon line (q)
and one electron line (p) both regarded as external
or free, while the other electron line (p+q) may or
may not be free. Ke shall again compute the contri-
bution of this kind of vertex using the S-matrix

theory. The dispersion diagram for this case is shown
in Fig. 8 where the intermediate particles (photon with
momentum k, and electron with momentum pI) have
to be on the mass shell.

Following the same procedures as before, we can find
the discontinuity of the matrix element, (p pq I

T I p, q),
representing the vertex under consideration.

The unitarity condition gives us, to third order in e,

drsc &p+ q I
T"'

I P, q) =~(2~) 's &P+q I
T"'+

I » PI & &k, PI I
T"'

I P~ q)e"'(k+PI P q—))—
where we can use

&p+q I
T'I'+

I » pI&= Le/(2+)'j(m/EI2co)'~V(p+q) e(k) u(p, )

(4.53)

as the 6rst-order vertex. The appropriate term for T&'& is one of the terms in the Compton scattering amplitude
(4.8), namely,

e' m 1 u(PI)e(q)(p —0+m)e(k)u(p)
(2E.) ' (EEI)'I' (2co2a)I) I" (p—k)' —m'

The summation over spin and polarization can be carried out as usual; hence, we have, after integrating over p~,

ie' m) I~' 1
disc. (P+q! T&"

I P$ q)= —
! |P(P+q) d'kb(k' —M)8(k) 8! (P+q —k)' —m')

(2s)' Ei (2a))"'

&&8(p+q—k)! (p—k)' —m'1 '(L2e(X'+2pq —mq) —4(p, e) q+4m(p e) j
t-k„I2ef 2(p+q—)&+ q7"$+4(p e) yi" +4qe& 4mel'} —4e&7'k„k—„)u(p). (4 54)

The integrations can be performed, thought they are quite lengthy; the results can be put into the following form:

where

ie' I m )I~'
dIsc. &p+q I

T&"
I p, q)= I I 4(p+q)C~Ie+J3Ieq+cI(p e)+DI(P e) qlu(p)

(2E.)' gcuEj
(4.55)

(s+ms X'—
AI ———E.8LS—(m+X) f Ls—(m+x) 'jLS—(m —x) 'j }I~'

&2s(s—m')

m' —X' s+m' —X'+ I Ls—(m+X) MLS—(m —X) ')}""I
ln

s m' s+m' X' I—
I
s—(mph')']—Ls——(m —X)q}'"i

J3I (s.m/s) 8(s—m')——

CI ———2ms I (3/2s) —(m'/2s') j8(s—m )

xm2
+27r

$2

m' s
ln —+ 8 (s ms) . —

(s—m') ' m' s—m'
(4.56)

If one writes &p+q I
T&3~

I p, q) as a linear combination of invariant amplitudes:

m»2
&P+q I

T"'
I P, q&=,—— „,4 (P+q) L~e+~eq+ &(P, e)+D(P, e) qju(P), (4.57)

then A, 8, etc., as a function of s, can be determined again through dispersion relations. For A, again a once-
subtracted dispersion relation is required, as for the other vertex part discussed in Sec. IVD. A straightforward
and tedious calculation gives,

AI(s') ds', AI(s') ets'
2 s =E=I

I
—Ã'

$ —s s —m2I

=1+in (X/m) —IsL(2—p)/(1 —p) $ ln p+I(p, ) ),
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where

I(p, X) —=
( 1 1 ) ( m' —)P s'+m' —X'+ {$s'—(m+'A)')$s' —(m —'A)') I'~

ds'
I

&„+))2 &s'—s s'—m2j &
s'—m' s'+m' —X'—{Ls' —(m+X) ')Ls' —(m —X) ') I'" '

B(s)=m '(p —1) ' ln p,

D(s) =——
ng2

where

C(s) = —m '{—(p—1) '+L(3p —2)/(p —1)')» pf

1 2 (p—2) (2p—1) 2+ —— » p ——P'(p —1)—F(—1)),
p—1 p p(1—p)' p2

(4.58)

Lln (1+u)/I] dl

and
p= (m' —s)/m'.

The corresponding results are obtainable from 6eld
theory; the only place these results are given is by
Akhiezer and Berestetskii. ' The two results do agree
except in A (s) where it remains to be shown that the
integral I(p, X) is equal to 1+In (X/m) —p 'LF(p —1)—
F(—1)). This is presumably true, because if X is set
to be 0 before the integration is carried out, one does
get p'(F (p 1) —F( 1))—.—How—ever, keeping Rnite
renders the integration quite dificult, and the identity
of the two expressions remains to be shown. This is
really of some importance, for this is the 6rst instance
in which the S-matrix theory and 6eld theory do not
give manifestly identical results.

G. Photon-Photon Scattering

We present in this section the procedures involved
in deriving the scattering amplitude for photon—
photon scattering from the S-matrix theory. " In the
usual Feynman —Dyson theory, the calculation was
quite cumbersome, since it is a fourth-order process.
The corresponding calculations in the S-matrix theory
can be carried out by following the same prescription
we have been using. Knowing the amplitudes for
pair creation and pair annihilation, the imaginary part
of the photon —photon scattering amplitude can be
obtained through the use of the unitarity condition.

The Mandelstam variables in this case are de6ned as

s= (kg+ k2) '/4,

t= (4&+kB) '/4,

I= (kg+ k4) '/4, (4.59)

By using dispersion relation, the calculation would
follow the usual pattern. However, in view of the
symmetry that this particular process possesses, the
calculation can be carried out in a much simpler
way in the S-matrix theory by using the Mandelstam
representation and the Cutkosky rules, although the
standard procedure would certainly work.

The Feynman diagram for the process is shown in
Fig. 9, the corresponding amplitude is denoted by
M(o. This is one of the six possible diagrams. Two
others )with amplitudes denoted by M&'& and M&3~)

are obtained by the interchange 2~4, 3~4. The
other three differ from these only by reversing the
arrow direction in the closed loop; therefore they add
nothing new, except a factor of two to the total ampli-
tude.

The photons have four-momenta k;, satisfying the
conservation law:

Q k, =0 (i=1, 2, 3, 4).

(b) (c)

where the factor 4 is introduced for convenience, and
s, t, e are connected by s+t+I =0.The total scattering
amplitude M can be written as

M=M&" (s, t)+M&2&(s, t)+M&4'(s, t),

3E('& and 3f(3& are the contributions of the crossed
diagrams, or equivalently

M=M&'&(s, t) +M&"(u, t)+M&'&(s, I). (4.60)

FIG. 5. Thirci-order vertex part for external electron Hnes.

» B.De Tollis, Ngovo Cimento 32, 757 C', 1964}.

Thus it is clear that M is totally symmetrical with
respect to s, t, and N. M(o, in the Feynman —Dyson
theory, is given by the following expression (apart
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from a constant):

P+m (P—k2) +m
M(I) =2 d'p Tr ei e2

p' —m2 (p—k )'—m'

(P+AI+AS)+m (P+Iti)+m
Xe3 e4

(p+ki yk2) '—m' (p ski) '—m'

This integration is dificult to perform.
In the following, for the sole purpose of illustrating

the technique of the S-matrix theory, we assume the
scattering takes place in a plane and the polarization
vectors all point perpendicular to the scattering plane.

The whole problem is, as always, the determination
of the amplitudes. The analyticity condition allows
integral representations of these amplitudes. The inte-
grands contain a special function whose determination
now becomes the central problem. Cutkosky has
found general rules giving these spectral functions.
For the special case of the square diagram) which is
the one needed here, the rule just asserts that each
one of the four lines shall be simultaneously put on
the mass shell. In other words, the Feynman propa-
gators in (4.61) must just be replaced by () functions.
Thus the Mandelstam double spectral function A&')

which occurs in M"~ can readily be written down as

4 e&(s &} = f 4'p Tr (e(p+m) e(p —)»pm) e(p+)»+)&&+m) e(p+)&+m) )

&&()(p2—m2) l)L(p —k2)' —m]I)$(p+ki+k2)' —m2]()L(p+k )'—m2] (4.62)

This integral is easily performed with the result

Thus, the Mandelstam representation gives (with this value of A("(s, t)

2

s+tj (4.63)

M(')(s, t) =
A(') (s', t')

ds (9 )(s' —s) (t' t)— (4.64)

where the region of integration is defined by st s t) 0—Si—nce (4..64) diverges, we are forced to use a once sub-
tracted dispersion relation, i.e.,

ds' f(s') dt' f(t') A(I) (s', t')
M(') = C+s —, , +t —, , +st . . . , ds' dt'

s' s' —s t' t'—t s t'(s' —s) (t' —t)
(4.65)

The subtraction constant, C, is zero, for if s and t are both zero, one must expect that there is no scattering, hence
M should vanish. The single spectral function f has the same form for both dispersion integrals as a consequence
of the symmetry of M with respect to s and t. It follows from (4.65) that as t p0 one obtains the single spectral
function f(s):

f(s) =Tr ' Im M(')(s, t=0)

2 -', Tr[ ~ ]
d4p I)L(p i-k ) 2 m2]I)L(p k2) 2 m2]

(p' —m') ' (4.66)

This integral can again be performed without any
dd5culty, yielding

f(s) =2L1+(4ls)](1—s ')"'—51+(2/s)] cosh ' (s)"'.

(4.67)

With (4.63) and (4.67), M&i) can indeed be put into
the same form as the results obtained by Karplus
and Neuman'4 using perturbation theory. This is by
no means surprising, since we know that the fourth
order scattering amplitude satisfies the Mandelstam
representation. Vet in the S-matrix theory approach,
the computations are much simpler and more straight-
forward.

~R. Karplus and M. Neuman, Phys. Rev. 80, 380 {2950);
83, 776 (1951).

Incidently, we remark that although the transcen-
dental functions defined in the De Tollis' paper appear
formally different from the corresponding one in
Karplus and Neuman's paper, they are in fact identi-
cal as can be shown by partial integrations.

H. Higher-Order Radiative Corrections to Scattering
Processes

Ke have obtained the scattering amplitudes for
various lowest-order scattering processes using only
the basic principles cited in the last chapter. The
higher-order scattering amplitudes can be generated
from the l.ower-order ones by repeatedly applying
unitarity and dispersion relations. So, leaving out the
difhculties associated with having three or more par-
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tices in in or out states which renders the dispersion
relation quite complicated (or practically impossible),
we can, using our present techniques, calculate at least
for any two-in two-out process to fourth-order without
any difhculties. Thus, the fourth-order radiative cor-
rections to any of the scattering processes discussed
in Sec. IVA can be worked out. We pick out the
Compton scattering as an example to calculate its
fourth-order radiative corrections.

The dispersion diagrams for fourth-order Compton
scattering in the s channel are given in Fig. 10.

The complete scattering amplitude in fourth order
can again be obtained following the usual procedure.
The unitarity condition asserts that

disc. (ps, q I

'"
I p» qs&= '(2')'fs &ps) q4 I

T+"
I p, q )

X (P~, qs I
T

I Pi, qs&~ (P7+qs Pi —qs)—

+ (Ps, q4 I
T+"'

I ps) (Ps I
T"'

I P» qs)~'" (P~+qs —Ps)

+ s(p„q, I
T o~

I p, ) &p, I
Tt

I p„q, )ot (p, +q, +p, ) l .

(4.68)

Now, if the second-order Compton scattering ampli-
tude, (4.8), which contains the "direct" and the
"exchange" terms, is substituted into the first term
on the right-hand side of the above equation, one gets
four terms out of it. The "direct —direct" term corre-
sponds to Fig. 10(a), the "direct —exchange" term to
Fig. 10(d), the "exchange —direct" term to Fig. 10(c)
and the "exchange —exchange" term to Fig. 10(f).
The second and third terms on the right-hand side
of (4.68) arise from the one-particle intermediate
state, for which the generalized unitarity condition
has to be used. The second term thus corresponds to
Fig. 10(b), and the third term to Fig. 10(e) ~ After
the imaginary parts of the scattering amplitude cor-
responding to each diagram in Fig. 10 are obtained,
the amplitudes themselves can again be obtained by a

3
g(2)

5

FIG. 6. Dispersion graphs in magnetic moment calculations.

direct application of the dispersion relation, a pro-
cedure which is by now a routine one.

The scattering amplitude for Fig. 10(a) has been
obtained in Sec. IVB, (4.21); no more discussion is
necessary. Figure 10(f) can be calculated in essentially
the same way as Fig. 10(a), only a little bit more
complicated. Actually Fig. 10(f) is a square diagram;
one can again use, as in Sec. IVG, the Mandelstam
representation and Cutkosky rules to simplify the
calculation. One gets the same result as in perturba-
tion 6eld theory. Therefore, we do not present the
calculation here.

Figures 10(b)—(e) are symmetrical. We demonstrate
how the contributions from (b) and (c) can be added

up to give the same result as in Feynman —Dyson
theory.

The discontinuities of the scattering amplitude cor-
responding to Fig. 10(d) and (e) are denoted by
disc (ps, q4 I

Tat+
I p» qs& and disc (ps q4 I

T
I p] qs&,

respectively.
disc (ps, q4I Tat"

I pq, qs&, which can be obtained
from the unitarity condition using a two-particle
intermediate state, has essentially the same form as
(4,55) in Sec. IVF, except for the replacement p~p~,
q~g2, and

Thus we have

=(p.) "(q ) (p.+'+-)
P q~

(2~)' (gs (2co4) &/s (p&+q )s—rms

disc. (ps, q4I Ta&4&
I pg, qs)=—

ie4 m 1 1
(Ps)e'(q4) (p~+qs+ )

XLA&(s) e+B&(s) eqs+C&(s) (p, e)+D&(s) (p& e) qsftt(p&). (4.69)

Disc. (ps, q4 I
T,&4&

I p&, qs) can be obtained from the "generalized unitarity condition" since it has a one-particle
intermediate state. Hence,

disc. (Ps q4 I
T '

I P» qs)=i(2~)'S&ps q41T+"'
I P.)(P. I

T"'
I p~ qs»'"(P~+qs P.)—

ie4 m 1
„,8(s—trt') u(ps) e'(q4) (pg+ qs+rrt)

XI:A(s) e+B(s)eqs+C(s) (pt e)+D(s) (p& e) qsftt(p&), (4.70)

where use is made of (4.68) and (4.57), and the summation and integration can be performed as usual.
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Now, applying the dispersion relation to the scalar functions in (4.70), we immediately get,

e m 1 1
(P~ q412"" IP~ q2)=

(
„. . . „, ~(pa)e'(q4)(P~+q2+~)

X[A(~")e.+B(~')eq,+C(m') (p, .e)+D(m') (p, .e) q71(p), (4.71)

where A (m') =0, according to Sec. IVF.
If the once-subtracted dispersion relations are applied to the scalar functions in (4.69), we note that,

Ag(s') ds' 1 A, (s') ds—
$ —sIs —m' s —s s—m'/ l

A g(s')
ds

$ —m

A (s)

B,(s') ds' 1 B,(s') ds-
s —m' s —s s—m' s —sl

B,(s')
dss'—m'

1
, [B(s)—B(m') ].

Similarly,

and

Hence

&p3, q4 I
&a"'

l pi, q2)=—

C&(s') ds' 1
[C(s)—C(m') ]s'—m' s' —s s—m'

Di(s') ds' 1
[D(s) —D(m') j.

s —m s —s s—m

e4 m 1 1

2(2')' (E E )'~' (2' 2GD )'I' s—m'

X [A (s) e+B(s)eq2+ C(s) (p& e) +D(s) (p& e) q& B(rn') eq& ——C(nP) (p& e) —D(m') (p& e) q2jg(p&) . (4.72)

Thus the contributions from Figs. 10(e) and (d) are

e4 m 1 1
(P~ q4 I

2'."' »."'
I Pi, q2)=—, „, „, , ~(p8) e'(q4) (P~+e+~)

X[A(s) e+B(s) eq2+C(s) (p~ e)+D(s) (p~ e) q2/u(p~). (4.73)

This is exactly the result of the Feynman —Dyson
theory contributed by a Feynman diagram which looks
like Fig. 10(d) or (e).

In exactly the same manner, one can get the con-
tributions from Figs. 10(b) (c) .

Now, if one adds up all the scattering amplitudes
arising from Fig. 10, one would get Compton scattering
amplitude in the fourth order only for the "direct"
term. Again, it does not satisfy the crossing symmetry
as we have seen in Sec. IVA1. To get the complete
scattering amplitude, we have to add to the final
result a term obtained from it by the replacement

e'~e and q2~ —q4. Then one would get the complete
Compton scattering amplitude in the fourth order
which is in agreement with the field-theoretic perturba-
tion results. (Compare Reference 1, p. 243.) However,
it is again clear that, in the 5-matrix theory, the
calculations are straightforward, without renormaliza-
tions. And since we are dealing with physical in-and-out
particles throughout, we do not have to (in fact are
not allowed to) consider those diagrams corresponding
to "radiative corrections of external lines. "The physics
seems to be more transparent in the 5-matrix theory
than the usual field-theoretic approach.
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FIG. 9. Feynman dia-
gram for photon —photon p~ It.',

scattering.

Fn. 7. Feynman diagrams contributing to the magnetic moment
in second order in 0..

V. THE COMPARISON OF THE S-MATRIX
THEORY OF ELECTROMAGNETIC INTERAC-
TIONS AND THE FEYNMAN-DYSON THEORY,

DIFFICULTIES AND CONCLUSIONS

We have presented in the preceding sections various
results which one can obtain from the S-matrix theory
of the electromagnetic interactions. Although the
starting points, or the basic principles, differ signifi-
cantly from the usual formalism of quantum electro-
dynamics, all the results we obtained are in agreement.
Here, in the S-matrix approach, we forsake altogether
those notions used in the Geld-theoretic approach,
such as the existence of state vectors and field operators,
the concept of bare and dressed particles, as well as
the program of renormalization. Recently, new form-
alisms"" using field-theoretical approach without re-
normalization have been suggested to avoid some of
these defects; comparison of these theories with the
S-matrix theory is not immediately obvious. On the
other hand, the S-matrix approach which we have
presented bears a great similarity to the Feynman-
Dyson approach. The agreement of results for lower
order processes in both approaches is by no means
accidental; in effect, the basic principles of the S-
matrix theory have been extracted or suggested by
Geld theory. Here, in the S-matrix approach, though
no Lagrangian or Hamiltonian has been introduced,
the interaction was effectively brought in by postulating

(b) (c)

the elementary interaction. Unitarity and analyticity
principles, which the dynamics of the S-matrix theory
is based on, again emerge from field theory. In fact,
the usual theory is indeed both unitary and analytic
in each order of e. Since we have expanded the scatter-
ing matrix element in power series of e, we can almost
expect that the same results would emerge from the
S-matrix theory as from the usual theory. However,
in this approach, there are some merits. The cal-
culations are in most cases, more simple and straight-
forward. In the S-matrix theory, we deal only with
physical particles with their mass, charge, and other
quantum numbers given. Thus, no renormalization
is necessary in this program, although a similar, but
certainly not identical, method, viz. , the subtraction
technique, is used to regulate the asymptotic behavior
of certain functions. The subtraction technique is
simple in concept, and easy to work with. In field
theory renormalization can be classified as mass,
charge, and wave function renormalizations. In the
S-matrix theory, all these are absent as such, hence its
physical basis is more straightforward. As far as low-
order calculations (not higher than fourth order) are
concerned, the S-matrix theory technique is more
convenient (as can be seen from the various examples
given in Sec. IU); this stems from the simple analytic
structure of the lower-order Feynman diagrams.

FIG. 8. The third-order
vertex part for a single ex-
ternal electron line.

~H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 1, 205 (1955);6, 319 (1957).

~ R. E. Pugh, Ann. Phys. (N.Y.) 23, 335 (1963).
FIG. 10.Dispersion graphs for fourth-order Compton scattering

in the s channel.
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It is undeniable that at the present stage the S-
matrix theory of electromagnetic interactions has some
diS.culties. Unless these could be resolved, the theory
cannot be properly regarded as "rigorous" or "com-
plete. "

(a) We require the scattering amplitudes to be
analytic in the complex plane of kinematical variables.
This is apparently an empty statement if the analytic
properties are not bee by the theory. For lower-
order processes, these are known from perturbation
theory by studying the Feynman diagrams correspond-
ing to each order. We can therefore write down single
or double dispersion relations satisfied by the scattering
amplitudes. This is not true for higher-order processes,
so the needed analyticity properties are not even known.

(b) Closely associated with the objections mentioned
above, is the problem of handling many particle
processes. Although this is a problem with the S-
matrix theory in general, it does not plague strong
interaction physics very much. There, in general, the
two-in two-out processes are of primary importance;
many-particle intermediate states are generally less
important (at least this is assumed) in the approxi-
mation scheme used. In electromagnetic interactions,
however, production processes for photons are irn-

portant even at low energies, therefore, a practical
way to handle these processes should be investigated.

It is certainly true that higher-order calculations
in the Feynman —Dyson theory are more tedious and
lengthier than the lower orders, but there is never
any question of principle involved. However, the dis-
persion relations for more complicated processes are
certaintly profoundly different from those of two par-
ticles in and out. In fact, nobody really has constructed
the analogue of the Mandelstam representation for
two particles in and three particles out, let alone
more complicated processes. This would not appear
to be a mere increase in complexity —matters of prin-
ciple are, by contrast to field theoretic situations, most
likely involved.

(c) The problem of infrared divergences and soft
photons. The problem of the infrared divergences is
characteristic of the electromagnetic interaction. It
arises from the fact that the photon has zero rest
mass. In any finite resolution experiment, it is always
energetically possible for an arbitrarily large number
of low-energy photons to be emitted without being

detected. This has been a problem in quantum electro-
dynamics for quite a long time. The essential difficulty
associated with this problem comes from the fact
that the probability of soft photon emission does not
decrease sutficiently fast with an increasing number of
photons. Thus, strictly speaking, an approach using
successive approximation does not work for soft
photons. However, some progress has been made using
field-theoretic methods in recent years. One can indeed
prove (Ref. 1, p. 390) that when the appropriate terms
in the iteration solution are combined, the infrared
divergences completely disappear for any process and
any order. More recently, Yennie et ul." and Chung'
have intensively studied this problem. They were able
to factor the infrared singularities from the remaining
expression. This is quite useful in estimating radiative
corrections due to the emission of soft photons.

In the S-matrix theory of electromagnetic inter-
actions, we encounter the same old problem of infrared
divergence again as well as the emission of infinitely

many soft photons. In all of our previous calculations,
wherever an infrared divergence appeared, a small
photon mass, t, was included; the limit X—+0 was
taken at the end of the calculation. However, we
did not (and could not) show that the infrared di-

vergence does in fact cancel for any process and to
any order. Moreover, we do not have any idea of
how to handle the soft photons. Yet the field-theoretic
result does provide us with some clues as to how to
solve the problem. It is likely that we can show that
the factorization of the infrared singularity is also
possible in the S-matrix theory. We hope to return
to these questions including the bound-state problem
in a later paper.

In conclusion, the S-matrix theory of electromagnetic
interactions at the present is still far from satisfactory;
however, because of its simplicity in carrying out
practical calculations in lower orders and its well-

defined conceptual basis, it is certainly profitable to
pursue further studies. Even though the S-matrix
approach can probably not replace the already well-

established theory of quantum electrodynamics, it at
least provides an alternate and physically different
way of looking at the same phenomena.

~7D. R. Yennie, S. C. I'rautschi, and H. Surra, Ann. Phys.
(N.Y.) 13, 319 (1961)."P. Chung, Phys. Rev. 140, 81110 (1965).


