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All of the x-ray emission wavelengths have recently been reevaluated and placed on a consistent A* scale. For most
elements these data give a highly overdetermined set of equations for energy level differences, which have been solved by
least-squares adjustment for each case. This procedure makes “best” use of all x-ray wavelength data, and also permits
calculation of the probable error for each energy difference. Photoelectron measurements of absolute energy levels are
more precise than x-ray absorption edge data. These have been used to establish the absolute scale for eighty-one elements
and, in many cases, to provide additional energy level difference data. The x-ray absorption wavelengths were used for
eight elements and ionization measurements for two; the remaining five were interpolated by a Moseley diagram involving
the output values of energy levels from adjacent elements. Probable errors are listed on an absolute energy basis. In the
original source of the present data, a table of energy levels in Rydberg units is given. Difference tables in volts, Rydbergs,
and milli-A* wavelength units, with the respective probable errors, are also included there.
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INTRODUCTION

Manne Siegbahn!? developed the first extensive
evaluation of atomic energy levels from x-ray absorp-
tion edges and emission lines. The energy of the well-
defined Ly absorption edge was chosen as the funda-
mental reference level for most of the periodic system;
K edges were used for the lower atomic numbers. Other
levels of each element were determined from the
wavelengths of the emission lines as suggested by
Idei?

As improved x-ray data have become available,
several reviews have appeared.® Different energy
units have been used to facilitate use by special groups.
Cauchois®’ improved the consistency of the rare-earth
evaluations by a series of controlled absorption meas-
urements. Theoretical calculations of many param-
eters often require ionization energies. Slater® has

* Present address: Physics Department, New Mexico State
University, University Park, N.M. 88070.

TM. Siegbahn, Spektroskaj)ze der Rontgensirahlen (Julius
Springer-Verlag, Berlin, 1931).

2D. L. Webster, W. W. Nicholas, and M. Siegbahn, Inter-
national Critical Tables, E. W. Washburn, Ed. (McGraw-Hill
Book Co., Inc., New York, 1929), Vol. 6, p.35.

3 S. Idei, Sci. Rept. Tohoku Univ. 19, 641 (1930).

4E. Saurl, Landolt—Bomstem,A Eucken, Ed. (Springer-Verlag,
Berlin, 1950) 6th ed., Vol. 1, p. 226.

5R. D. Hx]l E. L. Church and J. W. Mihelich, Rev. Sci.
Instr. 23, 523 (1952).

Y. Cauchois, J. Phys. Radium 13, 113 (1952).

7Y. Cauchois, J. Phys. Radium 16, 253 (1955).

8A. E, Sandstrém, Encylopedia of Physics, S. Fliigge, Ed.
(Sprmger-Verlag, Berlin, 1957), Vol. 30, p. 78.

97J. C. Slater, Phys. Rev. 98, 1039 (1955).

calculated these for all atomic numbers less than 42.
For the outer electrons he used optical data, for the
inner electrons, x-ray data.

Magnetic spectrometer'® measurements of the kinetic
energy of photoelectrons released by irradiation with
x rays of known wavelength furnish a method for
direct measurement of energy levels. Recently Kai
Siegbahn! and co-workers have used a high-precision
iron-free spectrometer to determine energy levels di-
rectly from x-ray photoelectron measurements. For
elements where photoelectron values are not available
and x-ray absorption edge values existed, the latter
are used to help complete the table; in other instances,
interpolated or extrapolated values are listed. All values
are given to the nearest eV.

X-ray emission wavelengths provide accurate data
for evaluating the atomic energy levels on a relative
scale,® but only recently? has full advantage been
taken of all the information available. The number of
available lines is usually considerably greater than the
number of energy levels involved. For such problems,
which yield an overdetermined set of linear equations,
the method of least squares furnishes a convenient and
consistent means of obtaining “best” values and also
probable errors for each of the values. Recently re-
evaluated wavelengths’® of the x-ray emission lines
provide most of the input data. In place of the x-ray
absorption edge values, previously used to establish
the absolute scale, photoelectron measurements are
substituted, wherever available.

1 H. R. Robinson, J. P. Andrews, and E. J. Irons, Proc. Roy.
Soc. (London) Al43, 48 (1933); H. R. Robinson: Proc. Phys.
Soc. (London) 46, 693 (1934); Phil. Mag. 18, 1086 (1934);
also see Kretschmar, Phys. Rev. 43, 417 (1933).

1S, Hagstrém, C. Nordling, and K. Siegbahn, Alpha-, Beta-,
and Gamma-Ray Spectroscopy, K. Siegbahn, Ed. (North-Holland
Publ. Co., Amsterdam, 1965), Vol. 1, p. 845.

127, A. Bearden and A. F. Burr, Atomic Energy Levels, NYO
2543-1 (Federal Sci. and Tech. Inf U.S. Dept. of Commerce,
Spnngﬁeld Va. 122151).

187, A. Bearden, Rev. Mod. Phys. 39, 78 (1967), preceding
article. J. A. Bearden, X-Ray Wavelengths, NYO 10586 (Federal
?giz.lg.ild Tech. Inf., U.S. Dept. of Commerce, Springfield, Va.

).
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Fi1c. 1. Schematic of the principles involved in evaluating
atomic energy levels.

METHODS OF EVALUATING ENERGY LEVELS

The principles involved in evaluating atomic energy
levels are shown schematically in Fig. 1. The energy of
a Ka; emission photon is just the difference between
the K and Ly levels; similarly the Koy corresponds to
that difference between K and L. Usually the energy
difference between a pair of levels can be obtained in
two or more ways. For example, the difference between
Lir and Lpr can be evaluated from Koy—Kap (ex-
pressed in energy units). Alternatively it can be
found from LB;— Lay, which represent the LMy and
LinMiy transitions, respectively (omitted from Fig. 1
in the interest of simplicity). In the case of thorium,
ninety-nine equations (including sixteen photoelec-
tron measurements as discussed below) can be set up
with only twenty-five unknown levels. A least-squares
solution of this set yields the desired energy levels.

In order to determine these values on an absolute
scale, the energy required to raise an electron from at
least one energy state to the Fermi level energy (zero)
must be included among the input data. In the center
of Fig. 1 a K and an L1 absorption edge are indicated;
experimental measurements of these edges give (ap-
proximately) the energy difference between the Fermi
level and the K and L states, respectively. The
theoretical corrections that must be made to these
values for fine structure effects in the edges (due to
differing transition probabilities and other causes)
constitutes the principal uncertainty®'* in the use of
present x-ray absorption edge measurements.

The photoelectron method measures the energy of
various states relative to the Fermi level. In this case
the incident photon (usually originating from an x-ray
spectral line) has an energy /v, normally much larger

4T, G. Parratt, Rev. Mod. Phys. 31, 616 (1959).

than that of the energy level under study. If, for
example, the photoelectron comes from the K level,
it emerges with an energy (sw— Ex). To determine the
exact kinetic energy, a work function correction is
required. This is more amenable to analysis'® than the
corrections to x-ray absorption measurements. This
fact constitutes a major advantage of this method.
This procedure is discussed in a later section.

EXPERIMENTAL MEASUREMENTS

X-Ray Measurements of Wavelengths and
Absorption Edges

The principles of precise measurement of x-ray
wavelengths have been summarized in the foregoing
paper.® Absorption edge wavelength measurements
require the same techniques, but are subject to addi-
tional complications. The thickness'® of the absorber
can displace the observed edge and, of course, the
chemical state of the absorber is important. However,
in spite of the uncertainty in the correction for fine-
structure effects and difficulties of precise x-ray meas-
urements, a number of the results are in excellent
agreement with the photoelectron values. Thus it
appears that with sufficient care the x-ray absorption
measurements could be made competitive with the
photoelectron method.

X-Ray Photoelectron Measurements

The precision B-ray spectrograph developed by Kai
Siegbahn? and his collaborators at Uppsala provides
an instrument of high accuracy for the measurement
of photoelectron energies. The precision of these meas-
urements is approximately one hundred times that of
the older magnetic spectrometer values?; for some
elements they are an order of magnitude better than
existing x-ray ones.

i

X—-RAY SOURCE

B-SPECTROMETER
-4
Ekin

F16. 2. Schematic of the use of a 8-ray spectrometer for deter-
mining energy levels.

15 E., Sokolowski, Arkiv Fysik 15, 1 (1959).

16 0. Beckman, B. Axelsson, and P. Bergvall, Arkiv Fysik 15,
567 (1959).

7K. Siegbahn, Alpha-, Beta-, and Gamma-Ray Spectroscopy,
K. Siegbahn, Ed. (North-Holland Publ. Co., Amsterdam, 1965),
Chap. III.
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The use of a B-ray spectrometer for determining
energy levels is shown schematically in Fig. 2. X rays
strike the material under study (the converter) and
release photoelectrons, whose kinetic energy is measured
by the spectrometer. In its simplest form Einstein’s
photoelectric law states that E,.e=hv— Eg, where E,.
is the kinetic energy of the photoelectron, v that of
the incident photon, and Ep the binding energy of
the electron.

However, the measured photoelectron energy is
decreased by the work function of the converter,
¢. Since the converter and the slit are electrically
connected, their Fermi levels are identical. Thus, if ¢,
is the work function of the spectrometer slit system,
there is an increase in kinetic energy, ¢—¢,, due to
contact potential. With these corrections, the photo-
electric equation becomes

Epe=h1’_ EB_¢+ (¢—¢s) =hy— EB—¢3-

Hence the net correction involves only the work
function of the slits (oxidized Cu) and is independent
of the work function of the converter.

In general, intense K lines were used to produce
photoelectrons. Each x-ray line ejects photoelectrons
from all levels whose energies are less than hv—¢ in
absolute value (e.g., photons energetic enough to
remove K electrons also eject these from Ly, L1, L,
and other levels). The observed B-ray spectrum is
composed of a number of lines due to the multiplicity
in both the primary x-ray wavelengths and the energy
levels of the converter. The resolution of the spectrom-
eter was sufficient to exclude the influence of the a
lines on «; measurements.! Likewise the electrons
undergoing discrete energy losses did not displace the
observed spectra to lower energies.

Calculation of the electron energy in terms of the
observed current in the magnetic coils of the spectrom-
eter requires an involved procedure which has been
discussed in several papers and recently reviewed, in
detail, by Kai Siegbahn.”” This treatise should be
consulted for theory, procedures, and resulting ref-
erence standards, which are used for all subsequent
measurements.

Hagstrom and Karlsson'® showed that the method is
not limited to conductors or even semiconductors.
They found that, if the sample under study was in-
sulated with thin mylar from the aluminum backing
plate, (which was electrically connected to the spec-
trometer slit), the intense ionization due to the direct
x-ray beam kept the potential of the insulating sample
constant. Hence, even in this case, the observed bind-
ing energies were still measured with respect to the
zero or Fermi energy. Thus insulating compounds
could be attached in thin layers directly to the alumi-
num backing plate and their level energies measured
in this manner.

18 S. Hagstrom and S.-E. Karlsson, Arkiv Fysik 26, 451 (1964);
and S. Hagstrom, Z. Physik 178, 82 (1964).

INPUT DATA USED IN EVALUATING ENERGY
LEVEL VALUES

A separate least-squares evaluation was carried out
on each element for which an overdetermined set of
data was available. Wavelengths and probable errors of
emission lines (all expressed in eV units) are taken
from the previous paper.® If photoelectron measure-
ments are available for two or more levels, they are
included in the least-squares adjustment for that
element. If only a single level is determined by the
photoelectron method, this establishes one energy
level; the others are found from energy differences
obtained by a least-squares adjustment of the emission
line data.

Wavelength measurements'® of critical absorption
edges are used to establish the absolute scale for eight
elements for which no photoelectron measurements are
available. In a few cases, where neither photoelectron
nor x-ray measurements exist, a Moseley diagram of the
final output values of adjacent elements is used to
establish one level of the element. The remaining
levels are then calculated with emission lines as above.
If two or more absorption wavelengths are available
for an element, these are also treated by the least-
squares method.

The values of the x-ray photoelectron measurements
used are listed in brackets in Table I, together with
references to the original publications. The published
values have been adjusted slightly to make them
consistent with the new x-ray emission wavelengths®
and more recent values of the atomic constants.! In
the original data most of the errors are 2¢ values;
these have been changed to probable errors as shown
in Table I. For comparison, all the more accurately
measured x-ray absorption wavelengths (converted to
eV by the factor 12398.1 A*—eV) are listed in paren-
theses in Table I. The x-ray absorption data are used
for establishing the absolute energy level scale in only
eight elements; the other listed values are for com-
parison only.

EVALUATION OF THE ATOMIC ENERGY LEVELS

Since nearly all elements involve many emission
line measurements interconnecting a lesser number of
energy levels, an overdetermined set of equations
results. As indicated above, a least-squares adjustment
provides an appropriate way of solving this set of
equations in order to obtain maximum information
from the available data. Justification for this procedure
and derivations of the equations involved have been
presented in many sources.?22 A clear explanation of

B E. R. Cohen and J. W. M. DuMond, Rev. Mod. Phys. 37,
537 (1965).

2 E. Whittaker and G. Robinson, Tke Calculus of Observations
(New York, 1944), 4th ed., Chap. 9.

2 1. F. Sokolnikoff and R. M. Radheffer, Mathematics of Physics
and Modern Engineering (McGraw-Hill Book Co., Inc., New
York, 1958), Chap. IX, Sec. 11.

2 E. R. Cohen, Rev. Mod. Phys. 25, 709 (1953).
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J. A. BEARDEN AND A. F. BURR

the procedure followed here is given by Bearden and
Thomsen.?

Two methods are used to check the consistency of
the input data with the output data. The first is the
use of the x? test, where

x=2.(di/a:)?, (1)

with d; representing the difference between the ith
experimental input value and that computed from the
adjusted energy levels, and o; representing the cor-
responding standard deviation. It is well known? that,
in any least-squares adjustment of data with Gaussian
error distribution, x2 can be expected to equal the num-
ber of degrees of freedom; that is, the difference be-
tween the number of equations and the number of
unknowns which the system possesses. When all the
data for all elements are considered as a group, the
resultant system possesses about 1300 degrees of free-
dom and a x? of approximately 3300.

The procedure discussed above is strictly applicable
only when the errors are known to be Gaussian.?
A second check is made by calculating the ratio, 7, of
the residuals, d;, to the value to be expected from
consideration of the input errors. This ratio can be
estimated by following and extending the arguments
presented by Cohen and DuMond.? Let y stand for a
particular energy level difference and p stand for the
corresponding probable error. Let a subscript 1 indicate
the experimental input value, either an emission line or
a photoelectric measurement, subscript 2 indicate the
least-squares output value, and subscript 3 indicate
the output value of a least-squares adjustment made
without including the experimental datum 4;. The
probable error of the difference y;—y; is desired,;
however, this error cannot be found directly, since the
fact that y; was included in the set of data which
produced y, means that their errors are correlated.
However, y; can also be obtained by an appropriate
average of y; and ys. Since y; is obtained from a set of
data which excludes y;, they are independent, and
y2 and p, can be computed by simply taking a weighted
average of y; and vy, with weights inversely proportional
to the squares of the probable errors. Hence the sum
of the weights is

1/ p?=1/p2+1/ps? (2)
and
yo= [ (31/ pi2) + (33/ p5) J. ©)
From (2) one obtains
pot= pi*ps?/ (pi*+ps?) (4)
and
p?=pi2p/ (p2—p2%). ©)

23J7 A. Bearden and J. S. Thomsen, Nuovo Cimento 5, 267
(1957).

% J, S, Thomsen, Bull. Am. Phys. Soc. 10, 547 (1965).

% E. R. Cohen and J. W. M. DuMond, Proc. of International
Conference on Nuclidic Masses 1963, W. H. Johnson, Jr., Ed.
(Springer-Verlag, Wien, 1964).
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Since y; and y; are independent, the probable error
squared of the difference y—y; can be written down
immediately as p.2-+ps%, but the probable error squared
of the difference y;—y, must be computed by first
expressing y1—9. in terms of y; and y;. By using (3)
and (4) to express y, we obtain

yi—ya=[p2/ (p2+p2) 1(31—s) . (6)

hence p12?, the probable error squared of y;—ys,, is

pro*= [/ (p2+ ps?) P(piP+p?) . (7

Substituting (5) into (7) to eliminate ps? gives the
desired probable error in the form

pr= (pii—p2)h (8)

Thus the desired ratio  between the actual difference
and its statistically expected value is given by

r=(y1—92)/ (p2—pP) 1. 9)

A study of 7 as calculated for each input datum reveals
the extent to which each datum fitted in with the data
as a whole. If the input errors are chosen properly, then
according to the definition of probable error, fifty
percent of the ratios should be less than one. For all
the elements as a group, the actual percentage of error
ratios less than one is just 50; the extremely close
agreement is doubtless partly fortuitous.

The conclusion from this percentage is that the errors
assigned to the input data, including the data from the
previous article, are substantially correct. On the
other hand, from the fact that x? exceeded the degrees
of freedom, it would appear that there are a greater
number of large deviations than would be expected
from a Gaussian error distribution. The likelihood of
this had been emphasized by the authors.

Not only are half the error ratios less than one for the
whole mass of the data, but the figure for each element
individually is usually close to 50%; hence output
errors as calculated directly by the computer (on the
basis of internal consistency) are used. In a few cases
(32 Ge, 33 As, 34 Se, and 80 Hg) the percentages are
unusually low; in order to avoid understating any
errors, all errors for these elements are reported on the
basis of external consistency.

The comparison of the residuals (differences between
the input values and the corresponding values as
calculated on the basis of the adjusted energy levels)
with the statistically expected differences proved very
useful in other ways. When this error ratio is very
large, a renewed investigation of that input often
revealed a misprint, misidentification, or other mistake.
However, in some cases this ratio is uncomfortably
large, and no specific reason can be found for rejecting
that input item. Those items which have an error
ratio greater than 5.0 are rejected.!?

There appears to be no significant pattern in these
rejected input data. Almost as many have negative
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error ratios as positive ones; no level or pair of levels
predominates in the list. The rejected data are distri-
buted among the K, L, and M, and photoelectron
categories roughly in proportion to the amount of
input data in each category. As one progresses up the
periodic table, it seems that the initial measurement
of various lines is often accompanied by high errors.
This is not surprising, since these lines are weak and
sometimes diffuse, making their identification and
detection unusually difficult and subject to errors
which are easy to underestimate.

It is interesting to note that no Koy, Kae, nor any
of the best measured L lines appear in the rejected
group, despite the fact that they had been assigned
the lowest errors. Furthermore, in no case did the error
ratio for these lines become suspiciously large. A few
difficulties, particularly with the value of the Ly level
in the light elements, did appear, and are discussed
further in the detailed energy level report.!?

ENERGY LEVEL TABLE

The adjusted values for the various energy levels,
together with the respective probable errors, are listed
in Table I. These errors are primarily due to three
causes: (1) those due to the photoelectron measure-
ments, which may be subdivided into two parts:
(a) random variations introduced by counting statistics
which affects evern the spacing between levels of a
single element, and (b) systematic errors in the main
calibration line (usually common to a group of ele-
ments) and the spectrometer slit work function, which
affect the absolute accuracy relative to the Fermi level
energy and amount to approximately 0.3 eV for all
elements; (2) the probable errors in the x-ray emission
wavelengths relative to the W Ko, standard and that
of the primary standard to the absolute angstrom
scale (5 parts per million); (3) the probable error in
the wavelength to energy (VA=12398.1040.13 eV—
A*) conversion factor.

Recently?® photoelectron measurements of the ILp
energy in the elements sodium (Z=11) to copper
(Z=29) have been reported. The values from sodium
(Z=11) to vanadium (Z=23) have been used to
replace the interpolated values shown in our previous
report.? The remaining new values have been used
with the older K-level values to redetermine new
level energies for the elements vanadium (Z=23) to
copper (Z=29). The K-level energies of the elements
from sodium to chromium were also redetermined.
Agreement with previous values®® to within 0.5 eV was
obtained for all elements except titanium. The new
value for titanium is 1.2 eV higher than that of the
earlier work, and while no explanation of the dis-
crepancy is available, this new value has been sub-
stituted for the older value. This indicates a need for

% R. Nordberg, K. Hamrin, A. Fahlman, C. Nordling, and
K. Sieghahn, Z. Physik 192, 462 (1966).

further redeterminations of all the older values as a
check on the estimated accuracies and on unsuspected
experimental variations. .

For some elements the K level alone has been used
to determine the absolute values. In these cases when
new photoelectron measurements are available, all
the remaining levels can be adjusted by the difference
in the new and old values for each element. However,
three or more level energies have been measured for the
heavier elements (sixteen for thorium) and when
new measurements are available for these, a new
least-squares readjustment will be necessary to obtain
corrected energy level values for an element.

Some energy levels were obtained by interpolation
or calculation. The interpolation was performed by
passing a fourth order polynomial through the nearest
fifteen energy values. The level for atomic numbers
96 and 98 through 103 were obtained from a relativistic
self-consistent Slater-Dirac energy level calculation.?
The results of an extrapolation vary greatly with the
order of the polynomial used, and therefore should be
considered rough values only.

The best of the x-ray absorption edge measurements,
listed in parentheses ( ), are generally in good agree-
ment with the photoelectron values. From these it
would appear that the x-ray measurements have been
made relative to the Fermi energy level with higher
accuracy than previously estimated. New x-ray meas-
urements with modern techniques should certainly be
competitive with the photoelectron measurements.

ERROR CORRELATION AND ENERGY
DIFFERENCES

The errors shown in Table I are not statistically
independent and hence can not be combined without
some knowledge of the correlation coefficients. For
example, consider the Ly—Lyx energy difference of
chromium. As in the case of other lighter elements,
the K level energy was determined by the photo-
electron method. The error involved in this measure-
ment, item (1) in the first paragraph of the preceding
section, is considerably greater than that in the emis-
sion line wavelengths, item (2); consequently all
stated errors are strongly correlated through this
common source. Thus, since in Table I the value of the
Lyr level is (583.74-0.3) eV, and that for the L
level is (574.54-0.3) eV, one might erroneously con-
clude that the difference is (9.24-0.4) eV, which would
be true only if the major errors were uncorrelated.
However, the wavelengths of chromium Ke; and
Ko, emission lines which connect the Lpr and Lyt
levels to the K level are known with probable errors of
ten and one parts per million respectively; hence
most of the errors in both the Ly; and Ly levels come
from the errors in the absolute value of the K level.

n ] T. Waber (private communication, 1964) ; D. Liberman,
J. T. Waber, and D. T. Cromer, Phys. Rev. 137, A27 (1965).
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TasLE II. Examples of energy level differences and corresponding probable errors for the case of 24 chromium. Entries above
the principal diagonal represent differences while those below give corresponding probable errors.

Energy level differences in electron volts

24 Cr

K L1 L2 L3 M1 M23 M45
K 5292.77 5405.51 5414.72 5915.09 5946.71 5986.93
L1 0.70 112.74 121.95 622.31 653.93 694.16
L2 0.05 0.69 9.21 509.58 541.20 581.42
L3 0.07 0.70 0.05 500.36 531.98 572.21
M1 0.21 0.72 0.20 0.19 31.62 71.85
M23 0.08 0.69 0.06 0.07 0.21 40.23
M45 0.18 0.71 0.17 0.17 0.26 0.18
24 Cr Energy level difference errors in electron volts

Energy level differences in Rydberg units

24 Cr

K L1 L2 L3 M1 M23 M45
K 389.022 397.308 397.985 434.762 437.086 440.043
L1 131 8.286 8.963 45.740 48.064 51.021
L2 5.1 6152 0.677 37.454 39.778 42.735
L3 10 5700 5179 36.777 39.101 42.058
M1 33 1158 387 385 2.324 5.281
M23 10 1057 106 139 6497 2.957
M45 28 1028 289 304 3603 4403
24 Cr Energy level difference errors in ppm Rydberg units

Energy level differences in wavelength (mA*)

24 Cr

K L1 L2 L3 M1 M23 M45
K 2342.459 2293.606 2289.703 2096.01 2084.86 2070.86
L1 131 109975 101666 19922 18959 17860
L2 1.3 6152 1345646 24330 22908 21323
L3 8.7 5700 5179 24778 23305 21667
M1 33 1158 387 385 392094 172564
M23 9.6 1057 106 139 6497 308210
M45 28 1028 289 304 3603 4403
24 Cr Energy level difference errors in ppm A*

Indeed the correlation coefficient between these two
levels is almost unity. When this is taken into account,
the value of the above difference becomes (9.214-0.05)
eV.

Thus energy level differences and corresponding
errors can not in general be accurately obtained from
the data in Table I alone. For this reason the original
report included three tables of energy level differences,
in units of electron-volts, Rydbergs, and equivalent
wavelength in milli A* (abbreviated mA*). Table IT
shows examples of each, presented in matrix form, for
the specific case of chromium (Z=24).

For example, the LpLir difference which was
discussed above is found in the first matrix at the
intersection of the L2 row and the L3 column, above
the principal diagonal, and is 9.21 eV. The correspond
ing element in the lower half of the matrix gives the
probable error (calculated with proper consideration
of error correlation), viz. 0.05 eV. The last two matrices
are similar in form, but errors are given in parts per
million rather than absolute units.

It will be noted that the equivalent wavelength
values in the mA* units carry the smallest probable
errors. Since all the x-ray emission line input data used
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in this report were given in A*, values on this scale
involve little or no error due to conversion factor
uncertainties. These energy level differences represent
possible x-ray emission lines; therefore this table should
be of value to investigators looking for new lines or
seeking possible identification of observed lines. One
should note, however, that all possible differences are
listed, no matter how the transition may be forbidden
by selection rules. The values in this table will differ
slightly from the corresponding entries in the pre-
ceding article,'? because the latter values are a weighted
mean of the actual observations on a given line, while
the former represent values based on all the available
information for the given element. Usually any dif-
ference is within the experimental error; in the few
cases where a definite disagreement arose, the value

based on direct observation was discarded in this
work.
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