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An elementary account is given of the representation theory for unitary groups. We review the basic definitions and
the construction of irreducible representations using tensor methods, and indicate the connection to the infinitesimal
approach. Special attention has been given to the detailed procedure to obtain Clebsch-Gordan series and to the problem
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I. INTRODUCTION

In these notes we describe some fundamental prop-
erties of the irreducible representations of SU,, the
special unitary group in # dimensions. We use, as basis
for these representations, tensors which satisfy certain
symmetry properties with respect to permutations of
their indices, and discuss briefly in this connection the
symmetric group. We also relate this global analysis
of the representations to the method based on the
infinitesimal transformations of continuous groups: the
Lie algebra of SU.,.

The unitary groups are very important in physics.
The best-known example is SU, which describes the
spin and isospin of particles. Recently unitary groups
in higher dimensions have been applied with success to
study the properties of elementary particles. Although
the mathematical theory of these groups and their
representations has been developed for a long time,
useful results are somewhat scattered in the literature.
We therefore have attempted to collect here some
formulas and tricks, and have computed several tables
that are useful in the application of unitary groups to
particle physics.

Throughout the text we have tried to give some idea
of how one derives the more important results; this
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should help the reader to remember them and also
serve to explain our notation. Some topics which we
have left out of our discussion include the construction
of explicit basis in each representation space in terms
of which to express the analogs of Clebsch—Gordan
coefficients, and formulas for the elements of the repre-
sentation matrices. There is no special reason for such
omissions which are useful in practical applications.
However, for low dimensional representations the tensor
methods which are described here can be successfully
used. The discussion of SU, can be extended with
minor modifications to the special linear groups
SL(n, R) and SL(n, C), the groups of #X» matrices
of determinant one with real and complex entries,
respectively.7

We have included a short list of books to which we
refer for omitted proofs, and some recent articles on
the subject.

The preparation of this report was supported by the
Atomic Energy Commission and the U.S. Air Force
Office of Scientific Research under contract AF 49(638)-
1389.

II. REVIEW OF UNITARY GROUPS

When dealing with symmetries in particle physics,
one is led to study the representations of some simple
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Mechanics (Dover Publications, Inc., New York, 1950).
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(Dover Publications, Inc., New York, 1963).

3 D. Littlewood, Theory of Group Characters and Matrixz Repre-
sentations of Groups (Oxford University Press, New York, 1950).

4 M. Hamermesh, Group Theory and Its Application to Physical
Processes (Addison-Wesley Publishing Company, Reading, Massa-
chusetts, 1962). .

5G. Racah, Group Theory and Spectroscopy (Princeton Uni-
versity Press, Princeton, New Jersey, 1951).

6 M. L. Whippman, “Branching Rules for Simple Lie Groups,”
University of Pennsylvania preprint (1964).

7 C.R. Hagen and A. J. MacFarlane, “Reduction of Representa-
tions of SUmn and SUpmyn with Respect to the Subgroup SUm,
SU,,” Syracuse University preprint (1965).
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groups. Here we are concerned mainly with the special
unitary groups in » dimensions, denoted by SU,. To
be precise, our group is the set of #X# matrices with
complex entries which are unitary and of determinant
equal to one. A typical such matrix will be denoted
by g. By a unitary transformation (which can be chosen
to be of determinant one) such a matrix can be diag-
onalized; hence, for a given g there always exists a g’
in the group such that

g'eg = : ; (IL1)

€n

where the ¢ are just the eigenvalues of g of modulus
one, and ee€--+e,=1. Any unitary matrix can be
written

g=et (I1.2)
where % is a Hermitian matrix. This is an immediate
consequence of Eq. (IL.1). Moreover, for g to have de-
terminant one, it is sufficient that % be traceless. Now an
arbitrary Hermitian matrix is given in terms of the »
diagonal elements which are necessarily real, and the
n(n—1)/2 complex elements above the main diagonal;
hence, this matrix depends on #? real parameters. If
we impose the condition that the trace be zero, we are
left with #?2—1 independent parameters.
The group SU, has three fundamental properties:

(1) It is compact. The precise meaning of this word
in this context is the following: If we are given an
infinite sequence of elements g, <+, g; ***, wWe can
always extract a subsequence which converges to an
element of the group.

We shall not investigate further the topological
properties, but mainly remark that the compactness
property has the important consequence that the irre-
ducible representations to be introduced below enjoy
the following properties: (i) They are all finite dimen-
sional. (ii) They are all equivalent to unitary represen-
tations. (iii) Any representation can be split in a direct
sum of irreducible representations.

(2) SU. is a Lie group. This means that certain
differentiability conditions (obvious in this case) are
satisfied. This reduces the study of such a group to
the study of the so-called infinitesimal elements, i.e.,
those close to unity. We discuss briefly this approach
in Sec. IV; however, we shall not emphasize this point
of view. ,

(3) Finally, SU, is a simply connected group. Con-
nected means that, given an arbitrary element g, one
can find a continuous set of elements in the group g(¢),
where 0<¢<1 such that g(0) is the identity e, and
g(1) =g. In a simply connected group two such “paths”
leading from e to g can be continuously transformed

in one another. In summary: SU, is @ simply connected
compact Lie group depending on n*—1 real paramelers.

In view of what has been said we need only define
representations in finite dimensional spaces. This is
always understood here. By representation of a group
G one means a correspondence which assigns to every
element g a linear operator 4(g) (i.e., a matrix once
a basis has been chosen) in some vector space, the
carrier of representation, such that the image of e is
the identity operator I, and the group law is preserved;
ie.,

A(g)A(g)=A4(gg).

The carrier space is assumed to be a complex vector
space, i.e., the matrices 4(g) have complex entries.
Two representations are equivalent if the carrier
spaces can be put in a one-to-one linear correspondence
x>x’ with the property that A (g)a<>A4'(g)«’. In the
following we shall be concerned with representations
up to equivalence; i.e., we shall identify equivalent
representations. If a basis has been chosen in the two
equivalent carrier spaces, and if 4 and 4’ denote the
matrices of the representations, the statement of equiva-
lence can be rephrased by saying that there exists a
nonsingular matrix B such that for every g in the group

A'(g)=BA(g) B™

A subspace of the carrier space is said to be invariant
if it is left unchanged by all operators 4 (g). The repre-
sentation is said to be reducible if such a proper in-
variant subspace exists; otherwise, it is called irreducible.
In our case, [G= SU.,] reducibility implies, in fact, a
little more, namely, if there exists a proper invariant
subspace, then one can find a complementary subspace
which is also invariant. In other words, the representa-
tion splits. In pictures, if all the matrices 4(g) have
the form

X | X
ol|x)
there exists a basis in which 4 (g) takes the form
X | o0
o|x)

we say that the representation is completely reducible.
Given a representation we can thus split it again and
again until we reach irreducible parts.

Given an irreducible representation 4 (g), the only
linear operators C which commute with every A4(g),
ie., CA(g)=A(g)C for all g, are multiples of the
identity C=AI (Schur’s Lemma). The converse is also
true.

Our first task will be to describe all the irreducible
representations of SU. up to equivalence. This con-
struction is entirely algebraic in nature and is carried



out in the next section. However, since the results are
often given an interesting meaning using some analytic
tools, we say a word on characters and integration on
the group.

Given a representation A (g), we can compute the
trace x(g)= ZiA +(g) which is basis-independent. The
(complex-valued) function x(g) is the character of the
representation. Immediate properties are®

x(g'gg) ==(g),

x(g™) =%(g). (IL3)

The second property stems from the fact that every
representation of the compact group SU, is equivalent
to a unitary representation. The importance of the
character lies in the fact that it determines the repre-
sentation up to equivalence: i.e., two representations
with the same characters are equivalent. Using Egs.
(1I1.1) and (II.3), one obtains the result that x(g) is in
fact a symmetric function of - - -€,, where € - - - ¢, are the
eigenvalues of g. Stated in an equivalent manner, x(g)
is a function of the coefficients (a;**+a,) of the charac-
teristic polynomial of g:

Qo= 1.

n
det (1—Xg) = D (—1)7a,)\?

Pl
(In fact @, is also equal to one, since det g=1.) Now
it is possible to introduce an invariant integration on
G= SU,. By this we mean the following: parametrize
in some way the group (in our case with #2—1 real
parameters) ; then there exists a measure du(g) on the
group, such that if g’ is a fixed element in the group,

du(g'g) =du(g)

du(gg) =du(g).

The measure dp is essentially unique up to a scale
factor. We use this freedom and the compactness of
SU, to normalize u(g),

-/(;du(g) =1.

In the case of SU, it turns out that a particular choice
of parameters is indicated. Let us go back to Eq. (IL.1)
and put e;= exp (#2w¢;). Then it is possible to make
the parametrization in such a way that

du(g) =[8(2 ¢ /9]
XIT | (ei—e¢;) | dprdss - +dpnder,, (IL.4)

2t

and

where dw, depends essentially on the matrix which
diagonalizes g and need not be considered further here,
and Q is a normalization constant.

8 A bar over a number means complex conjugation.
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Note that _
I1 | (e—e) | =A(0)A(e)

4]
with

Ae) = H(fi—éj) .

i<j
We shall denote the invariant measure du(e),
du(e) = (AB/Q) 6(2 ) dpir « - dm,
with @ determined by the condition

(IL5)

/ du(e) =1.
0<$1<1,0<g2<1- -

The following important orthogonality relations hold:
If xi(e) is the character of an irreducible representation
of SU,, then

/aﬁ(e)x(e) du(e)=1.

If 2(e) and %’(€) correspond to inequivalent irreducible
representations,

faz(e)x'(e) du(e) =0.

Applications of these formulas will be found in Sec. III.

III. DESCRIPTION OF THE IRREDUCIBLE
REPRESENTATIONS OF SU,

We consider the set of tensors, T'ys...s;, where the
indices 4y, %, ***, %, run from 1 to #. To each unitary
matrix g, we associate a linear transformation A(g)
in the space of tensors

Til---if"’T,il-ni!= A (g) il---i;;i’y--i’fTi’l---i’;, (IIIl)

where a sum over repeated indices is implied, and

A(g) irmvigiiryoeir = Ginira * * Gigirs -
In a more compact notation,

A(g)=gXgX---Xg, (I11.2)

which defines 4 (g) as the Kronecker or direct product
of matrices g.

The matrices 4(g) build a unitary, but in general,
reducible representation of SU,. They satisfy the
important property that they are bisymmeltric, that is,
invariant under a permutation of the indices 4y - -y
and the seme permutation on the indices i;+++4's. A
permutation p on f integers is denoted by

1 2 o f
p= )
20 2R )

where pipee -5 is a rearrangement of the ordered f
integers, and the permutation p of the indices is indi-
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cated by
P(il' ‘ 'if) = ('imim' * 'ipf)

or more briefly $(7)=(ip). The property of bisym-
metry of 4(g) is then expressed by the relation

A(8) (ipir p=A(8) i1 (I11.3)

It can be readily seen that if we take a linear combi-
nation of tensors satisfying some symmetry condition
with respect to the permutation of their indices, this
property is preserved under the transformations gen-
erated by 4(g). In general, these symmetrized tensors
span a subspace of the tensor space which is then
invariant under SU,, and therefore gives a representa-
tion of the group. The fundamental theorem on repre-
sentations of unitary groups states that there exists
maximal symmetry conditions which can be imposed on
the tensors, such that the resulting invariant subspaces
generate all the irreducible representations of SU,.°

We begin by giving a description of these maximal
symmetry conditions by means of Young tableaux. A
Young tableau consists of an array of f boxes with f;
boxes in the first row, f; boxes in the second row, and
fa—1 boxes in the (z—1)-th row, where the integers
f1, for * *fa— satisfy the relations

fizfaz fs= oo 2 fam

f=fitfatee fo (1I1.4)

For convenience of notation we include in some for-
mulas f,=0. In pictures, a tableau is usually drawn as
follows:

and

f i+l f‘+2

To this tableau corresponds the following symmetry
operation on a tensor T'...i.

(i) Symmetrize completely with respect to the first
/1 indices 2;° - +5,, the following fo indices 47,44 * * 271455
and so on, thus getting a tensor

T/'il‘"i!hif1+l""5!1+!2,""
(il) Then antisymmetrize the tensor 77 with respect

9 See Ref. 1, Chaps. IIT and IV for the full development of
this duality between the linear groups and the symmetric groups.

to the indices 41, 27,41, 4r147s01° * *, the indices s, 27,42,
rtsaret * o, and so on. The resulting set of tensors T
form the basis of an invariant subspace which generates
an irreducible representation of SU,.

We can write in compact notation

7 —
T Q1eeriy = YT,‘l...i,,

Y= 25:19?

is the Young symmetry operator associated with the
Young tableau. The sum in ¥ [Eq. (II1.5)] is carried
over all permutations p of integers in the same row, and
all permutations ¢ of integers in the same column of the
Young tableau, while §,is the signature of the permuta-
tion ¢; 84=-+1(—1) for g even (odd). The tableau has
no more than #—1 rows. This is a result of two facts:
first, that it is impossible to antisymmetrize more than
# indices each running from 1 to #, and, second, that
we restrict our attention to transformations of deter-
minant 1.10 To different tableaux corresponds inequiva-
lent representations. T'kere is a one-to-one correspondence
between the Young tableaux of no more than n—1 rows
and the irreducible representations of the group SU,. The
tableau with zero box corresponds to the identity repre-
sentation, i.e., to the representation which assigns to
every element of the group the unit operator in a one
dimensional space, and will be denoted by a dot. The
tableau with one box corresponds to the representation
by the group itself. Among other interesting representa-
tion, let us point out the following: _

(1) Representations with one row only, fi=f. They
correspond, according to what we have seen, to a
carrier space of totally symmetric tensors. The dimen-
sion of this representation is easily computed as the
number of ways one can choose f objects among »
objects allowing repetitions, namely,

_(n 1\ _(ntf-D!
N“( f >"ﬂ(n—1)z ’

(the familiar counting problem for
an Einstein—Bose gas).

where
(I11.5)

(IIL6)

There is an infinite number of such representations.

(ii) Representations corresponding to rows of length
1 or 0. In other words, the tableau is reduced to its
first column. Excluding the identity representation,
there are #—1 such representations

g f

0Tt is convenient to use the following convention. In some
cases we add to a Young tableau of no more than n—1 rows,
columns of # boxes on the left. These new tableaux will be con-
sidered as equivalent to those where these extra columns are
dropped. The dimension formula [see Eq. (III. 10)] is invariant
under that transformation.



They correspond to carrier spaces built up of totally
antisymmetric tensors. If ¢ is the length of the column,
the representation is of dimension

n n! .
N= (g)= - (the counting problem for a

Fermi-Dirac gas). (IIL7)

We shall give below a formula which gives the dimen-
sion of a general representation.

(iii) The representation with fi=2, fa=1, fs=1,++-,
fa—1=1. This is called the adjoint representation and is
very important, because its basis transforms like the
generators of the group. Let us briefly outline how one
gets this representation. Let 4 be an arbitrary, traceless,
nXn Hermitian matrix. The set of these matrices is
closed with respect to addition and multiplication by
real numbers; hence, they build up a vector space whose
dimension we have already computed to be #2—1. The
transformation

Il =ghg™,

where g is an element of SU,, is obviously a linear
transformation of our set of Hermitian matrices. We
thus get a representation of SU, in this space which
can be shown to be irreducible. This is the adjoint
representation. Its dimension is
N=un?—1, (111.8)
and with our choice of basis the representation consists
of real matrices only.
(iv) Finally, let us discuss contragradient representa-
tions. Given any representation of a group by the
correspondence

g—4(g),
one can define the contragradient representation!!
g—AT(g) =A77(g).

One verifies that it is a representation, and also that it
is reducible or not according to whether A4 is reducible
or not. If the representation A4 is unitary, so is the
contragradient representation which in fact is simply
the complex conjugate of 4, i.e., g—A(g) in that case.
Note in this connection that 7%;...;;, the complex con-
jugate of a tensor T'...;,, transforms according to the
rule 7= (§X§- - - X§) T which is used to define contra-
variant tensors by setting the indices as superscripts,
T#--+i, The relation to covariant tensors is obtained
through the Levi-Civita symbol €;,...s,, which is totally
antisymmetric in its » indices, and equals 41 of —1
according to whether 445+ « *4, is an even or odd permuta-

11 The superscript T on A4 denotes the transpose of 4.
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tion of the integers 1, 2,+ « +. It can readily be seen that
it is invariant under any unimodular transformations.
For each contravariant index 4, we multiply the con-
travariant tensor by €i,iy...in_i; and sum over 7 giving
rise to #—1 covariant indices. For example, if 7% is a
contravariant tensor, of rank 1, then
Ti1---in_1=€i1---i,._1iTi

is a covariant antisymmetric tensor of rank z—1.
Naturally, we can equally well construct contravariant
indices from any covariant tensor which contains z—1
antisymmetric indices. For example, if A;...;,_, i
totally antisymmetric in 4;+ * *4p—1,

Y= 6551...5,‘_114 i1eerin_1

is a contravariant tensor. The raising and lowering of
tensor indices by €;,...;, makes it possible to contract
these indices, e.g., the sum 2 _x#?is an invariant.

If a representation is equivalent to a representation
by real matrices, then it follows that it is equivalent
to its contragradient. For a given tableau of SU,
corresponding to a representation A4, one obtains the
contragradient representation by the following process:

(i) Draw the initial Young tableau.

(i) Complete the drawing to obtain a rectangle of
horizontal dimension f; and vertical dimension 7.

(ili) The complementary part is the desired Young
tableau if one rotates it by «. It is seen that the pro-
cedure is equivalent to saying that if f12>«++>
are the rows of the Young tableau corresponding to
the contragradient representation, then

fi=h—fu=h
fo=f—1uy
f,p =fi—fapt

In particular, representations equivalent to their con-
tragradient are such that

fo=f»=f—fopn
or
fotfopn=fi  p=1---n.
As an example we see that the adjoint representation
has this property. Obviously, a representation and its
contragradient have the same dimensions; thence, the
dimension formula has to be invariant with respect to
the transformation f—f5.
Digressing, we note that all the finite dimensional
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irreducible representations of the special linear group
on real numbers SL(%, R) can similarly be described in
terms of the tensor spaces used for SU,. The matrix
elements of these representations are polynomials in
the matrix elements of the element geSL(%, R). If we
extend these polynomials to complex values, we get a
representation of the special linear group on complex
numbers SL(#, C). The most general finite dimensional
irreducible representations of this group are obtained
by forming Kronecker products D’ X D", where D’ and
D" are representations of the type just discussed, and
D" is the complex conjugate of D"'.

As an example, the finite dimensional representations
of SL(2, C) which is in two-to-one correspondence with
the Lorentz group, can be labeled by fwo Young
tableaux consisting of one row of 2j; and 242 boxes,
respectively.

It must be emphasized that SL(zR) and SL(nC)
are not compact and that the finite dimensional repre-
sentations are #nol unmitary. In order to find unitary
representations one has to introduce infinite dimen-
sional Hilbert spaces, which we shall not discuss here.

We return to SU, and discuss the characters and
dimensions of the representations.

We have already quoted the fact that a representa-
tion is completely determined by its character. The
following formula!? gives the character for the presen-
tation belonging to the Young tableaufy, fs, <+, fo(=0)
as a symmetric function of the eigenvalues €« €, of
the general element gin SU, (Weyl’s character formula)

elf 1+n—1 elf 2tn—2 ... ¢ 10
62]' 1+n—1 52.7‘ r+n—2
frn—1 ) 0
€ €y
Xf1yeeefn— . (1119)

€ 1n~1 € 1n~—2 ces € 10

0

€ 2n—l € 2n—2 cee €

0

Gn"_l 6nn-—2 cee gy

From this formula one gets the dimension N by letting
€, ***, €, g0 to one, i.e., NV is the character of the
identity. The calculation must be made carefully be-
cause the denominator and the numerator vanish in
this limit.

We set Ii=fi+n—1, la=fo+n—2, +++. In order to
take a proper limit we first relax the condition ¢+ + re,=1
and choose
€a=€"2e 0

e=€" 1, , €e=¢.

12 See, for instance, Ref. 1, p. 201.

With e—e®®, and $—0, we have

(e)n1  (h)n—2 (eln)n—1
(n)n2  (el2)n2
N=lim (> (& (etn)0
-0 (en—-l) n—1 (60) n—11|
(en—l) n—2
(emyo (et
We now use the classical result that
x 1n-—l X 2n—~1 xnn—l
A(xl, eee Ovn) = |x" 2 a2 X2
x : xn®

= (w1—x2) (%1—x3) * * * (%1—xn) (He—a3) + -
=1 (xi—xy).
i<j
Hence, taking into account that
(eli—eli) 2 i®(l;i—1;),
&0
we obtain

A,y v, 1,=0)
A(n—1,n—2, -+, 0)

(II1.10)

Note that A(n—1,#—2, «++,0) = (n—1) {(n—2)1- -+ 1!}

We illustrate, as an example, the calculation of the
dimension of the regular representation of SUs which
we know already to be of dimension 62— 1=35.

_(23457)(1235)(124) (13) (2)
T (12345)(1234)(123)(12) (1)’

N=35.

It is sometimes convenient to label differently the



representation. Let A; be the number of columns of
length one, A, of length two, etc., of a Young tableau.
Then

h=N+N+--+Aatn—1
lo=NoF- - +At+n—2

ln—l = )\n—l+ 1
1,=0

_ D) ot 1) - - Qaat 1) (atAe+2)
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and
Li—ly=N41,
h—l=N1+N\12,
h—li=M+++Natn—1
lo—l3=N+1,
la—l=Nat2s 12

Hence,

. (7\~n-—2+>\n—1+2) s ()\1"*‘)\2' st At n— 1)

N

1121..

(n—1)!

Finally, if # is much larger than the number of rows 7 of a Young tableau, we write

_A(Vl) Vg, *c 0y Vf)

(ntn—7) l(votn—r) 1+ e« (votn—r)!

N

vilvglesep, !

where v;=f;+7r—¢ and 7 runs from 1 to 7 only. Asymp-
totically :
A(Vh Ve, *°°, 1’1‘) P

NN
= w,
vilvgle s op,!

which gives a quick estimate of V.

IV. THE GENERATORS OF SU,

We have already noted that any g belonging to SU,
can be written in the form

g=e" (Iv.1)
—ﬂ_l
—_ n—l
Hi'_‘ .
(n—1)nt
with
> H;=0. (IV.3)

=1

Next we introduce matrices Ej'\Y and Ex® for all

(n—1) {(n—2)1ses(n—r)!

—nt) | 0

)

where % is a Hermitian traceless #X# matrix. It will
be convenient, in order to get a parametrization of the
group, to choose a basis of #2—1 linearly independent
such matrices called the generators of the group. For
SU, these are the famous Pauli matrices corresponding
to spin. Of fundamental importance are the commuta-
tion relations satisfied by the generators; a matrix
representation of the generators which satisfies these
relations yields a representation of the unitary group.

A convenient choice of basis introduces #? traceless
Hermitian matrices with one constraint. We define
first # diagonal matrices Hy, Ha, «++, H, such that H;
has diagonal elements —1/% except for the ith element
which is equal to (z—1) /n,

= . — 1] (IV.2)

j <k, which are generalizations of the Pauli matrices

01 0 —:
g1= and ag9= 5
10 7 0

E;D (Ej®) has zero entries except at the intersection
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of the jth row and the kth column where it is 1(—1),
and the kth row and the jth column where it is 1(+41),

B k
3 [ S S W
Epw= i ,
B\ --1---i--]-
7 k
{--i---c0 |
Fp® = | | (IV.4)
[ R -

The set of matrices H;, Ej®, and E;® together
with the constraint (IV.3), form a basis in terms of
which we can expand an arbitrary traceless Hermitian
matrix 4.

Let us compute the commutation relations of these
matrices. For that purpose, we introduce column vectors
eW...e@™ guch that the only nonvanishing component
of et is the ith componet equal to 1. Then’one obtains

[H‘i; HJ':I =0,
[Hi, Ep® ]=i(e\?—e®) :Ep®=1(8:— 0rs) En®,
[Hi, Ej®]=—i(e—e®) Ey®
= —1(8i— 0ks) Ei®,
LE&®, Emn®]=—1(8imEin® ~+ 80 Eion® + Skn Ejm®

+8m Bun®),

LE#®, Emn®@]=1(8mEin® — 8iaExm™® — S1n E ji®
+imE®),

LEi®, Emn®@]=1(8imEin®@+ 8jnEtm® — SinEim®
—bimE®), (IV.5)

where for convenience of notation we have set

E;0=2H;, E®=Ey®,
and

Ep®=—Ey® for j>k. (IV.6)

This set of commutation rules constitutes the “Lie
algebra” of the group SU,. The elements of this algebra
are the generators of the group. Actually the relations
(IV.5) can be written in a simpler form due to Cartan.
Introduce the non-Hermitian matrices E j, for j#k with
zeroes everywhere except at the intersection of the jth
row and the kth column,

(Iv.7)

In terms of Ej, we have
Ej®O= Ej+ Ey,
Ejk(2) = '—1/(E]k'— Ek]) . (IVS)

Note that Ej is no longer Hermitian. Then the com-
mutation relations take the canonical form

[H:, Hi]=0,
[H:, Ep]=[eP—e® ] Ep= (86— ba) E,
I:Ejk, Emn]= Ejnékm— Emkaj,,, where Ei,;: H,. (IV9)

The vectors [¢®—e] are the roofs of the algebra.
If we denote in #-dimensional space the components of
a vector by #;,+ - -, a, the roots are seen to satisfy the
equation %;+ 2« ++x,=0. Hence the roots are n2—#
vectors in an (#—1)-dimensional space. For #=3 we
get the following six roots == (e’ —e®@), 4 (e@—e®),
4 (e®—e®). These are all of length v2, and they sub-
tend among themselves angles which are multiples of
w/3 since the cosine of this angle is &=1 or ==1. The
over-all scale factor is irrelevant. The resulting diagram

is well known from the eightfold way of Gell-Mann
and Ne’eman. Generally, cosines of the angles between
roots will take only the values 41, 4%, 0. This is
illustrated in the root diagram for SU, which is drawn
in the 3-dimensional hyperplane x;+%+23+x,=0 [the
roots join the center of a cube to the midpoints of its
12 edges in agreement with the fact that there are
n2—n=(4)2—4=12 roots .

It is straightforward to show that the representations
of the unitary group obtained from transformations in
the tensor space can also be expressed in terms of
generators satisfying the commutation relations (IV.5)
and (IV.9). We note simply that the reducible Kro-
necker product is given by

eihxeihx cos Xeihz-eiH’
where

H=hX1X+++ X1®1IXAX1X "+
X1@++-@1X1X-++Xh.



An important point is that the representations of H
obtained from the irreducible representations of the
group are clearly irreducible representations of the Lie
algebra, and that the converse is true. This is the basis,
for example, of the well-known method in quantum
mechanics to obtain the irreducible representation of
SU. by constructing the representations of the spin
operators satisfying the ‘“angular momentum commu-
tation relations.” '

The H; commute among themselves; hence, they can
be simultaneously diagonalized. The set of 7 eigenvalues
Hau=mu (with vanishing sum) is called a weight of
the representation. T'he irreducible representations are
uniquely characterized by their highest weight. The adjec-
tive highest refers to an ordering of the weights in
which (m-++m,) is said to be higher than (/s « +m/’,)
if the first nonvanishing difference m;,—m/'; is greater
than zero. To each weight we can associate a vector
mae;+ + + + +maqe, in the (n—1) -dimensional space which
already was used for the roots. One can show that in
our case, apart from the condition

Zmi: 0:

1
we must also have m;—m=integer. In fact, the m/s
are at most fractions with denominator »# which differ
by integers. The highest weight appears as a linear
combination with nonnegative integral coefficients of
n—1 fundamental ones®

n—1 —1 —1
Mo=[(=— = ...,__>’
n ' on’ n

n—2 n—2 —2 —2
M(2)=(-—-—,—-——,—-—, ...’__.),
n n n n
M<3)_(”—3 n=3 w3 3 :_3>
- ”n ’ n ’ " ’ 7 3 I n ’
M(p):(fl_—_p. j e .__P)
n ) b n b b n )
M(n—n=(n~1 oo, m __<”;1))
’ n

First we recognize in the weight M® the set of eigen-
values of the operators Hy, +++, H, corresponding to
the eigenvector ;

1

0

n=
0
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in the defining #-dimensional representation of the
group. (We define analogously the coordinate vectors
Yo+ + +9yn.) It is clearly the highest possible weight and
corresponds to the Young tableau 0. We shall use the
compact notations of exterior calculus to denote anti-
symmetric tensors. Then consider the second-rank anti-
symmetric tensors and examine the result of H; acting
on y1Ay,. If g acts as

g(y18y2) = (g31) A(gy2),
then with g=~1-+ieH (e small) H acts as
H (y1Ay) = (Hy1) Ayet+-y1AH (32).
Using the explicit form of H; given above, one finds

n—2
ViAYs,
n

n—1
Hy(yi1Ayy) = " ylAy2'+‘( )ylAy2=

n

n—2

(n—1)
yiAy,= " YiAya,

—1 n
Hy(y1Ays) = 7y1Ayz+ -

—1 -1 -2 )
H;(y1Ay,) =—n-y1Ayz+—;-ylAyz=7y1Ayz, i>2.

The weight just obtained is in fact the highest weight
of the representation. Hence the second weight M®
corresponds to the representation previously described

in terms of antisymmetric second rank tensors or B .

There is obviously no difficulty in using the previous
technique to prove that M® corresponds to the repre-
sentation in terms of antisymmetric tensors of rank p:

i

Accordingly, the #—1 representations of SU, ob-
tained in terms of antisymmetric tensors of rank 1,
2,3, «++,n—1are the »—1 fundamental representations
of the group. Once these representations are known it
is possible to form direct products of representations
(see below) in such a way that at each step one gets
only one new representation.

We recall that to each Young tableau (that is, to
each representation) we attached two series of n—1
numbers, (i) fi, fa* * *fa—1 (fn is always identically zero),
giving the number of boxes in each row fi=>fa+ * + > fao,
and (ii) A1, Ag* * *An—1, A1 being the number of columns
of length one, and so on ---. This second set is in
direct relation to the highest weight of the representa-
tion which is equal to

p boxes.

M=NMOFNMO 4o oo p- N, M D,

Before leaving the subject of infinitesimal transfor-
mations, it is interesting to notice that among the
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special unitary groups, SUs and SU,, turn out to be
“‘somorphic in the small” to the rotation groups in 3
and 6 dimensions. This means they have the same Lie
algebra. The first fact is of constant use in the study
of the 3-dimensional rotation group. In terms of group
theory, the second homomorphism SUs—Rs can be
understood as follows: both SU; and Rs depend on 15
(real) parameters. If we look at the representation of
SU, in terms of antisymmetric tensors of rank two,
we find the representation to be of dimension 6, equiva-
lent to its complex conjugate (see above). A little
algebra shows that indeed in that case one can find a
basis in terms of which the representative matrices are
real so that they correspond to rotations. It is then a
simple matter to show that one gets all six dimensional
rotations in that manner.

More generally, it can be shown that all groups having
the same Lie algebra as SU, are isomorphic to SUs,
divided by a subgroup of its center. The center of SU,
is the discrete abelian group which consists of multiples
of the identity with determinant one, #:

u.= exp [ 2w (r/n) ]I,

where r=1, 2+ 5.

V. DECOMPOSITION OF THE PRODUCT OF
TWO REPRESENTATIONS OF SU,

Let O and V@ be the carrier spaces of two ir-
reducible representations of a group G, A®(g), and
A® (g). Then the Kronecker product VW QUV® is the
carrier space of the product A®(g) ® A®(g) which is
generally a reducible representation of the group. In
many applications the question arises to decompose
AD® A in its irreducible parts.

There exist various ways to solve this problem. We
will concentrate here on the description of a particularly
simple method adapted to the case of SU,. In this
case the carrier spaces VW and V® are composed of
of tensors S and T with certain symmetry properties.
Consider a typical element of the product

S‘il'"zfx le“'jlz‘

It may be considered as a tensor with fi-+7, indices.
As such we have a universal procedure to decompose
it into parts of maximal symmetry (see Sec. II). If
S and T were not already satisfying certain symmetry
conditions, we would thus get each representation
with a Young tableau of fi4f2 boxes a certain number
of times (in fact, a number of times equal to the dimen-
sion of the representation of the symmetric group in
fi+fa objects which corresponds also to the same
tableau). However, we must take into account the
conditions imposed on S and 7. It is clear that the
following statement will be true in any case. The only

representations of SU, which appear in the decomposi-
tion of the product of two representations corresponding
to Young tableaux with f; and f, boxes are those corre-
sponding to tableaux with fi+fs, fit-fo—n, fit+fo—2un,
-+« boxes.

The possibility of subtracting the columns of # boxes
explains the statement of the previous proposition.
Following Hamermesh,! we now give the recipe for
solving the decomposition problem. (The reader might
find it useful before using the general method to solve
the problem for the simple case of the product of an
arbitrary representation with [1 and then compare.)

General Recipe

(i) Let

=

o]
lz.

be the two representations. Choose one of those as the
trunk on which the representations contained in the
product will be built. Then label the boxes in the first
row of the second tableau a, the boxes in the second
row b, the boxes in the third row ¢, and so on.

(ii) Add one box labeled @ to the first tableau in all
possible ways so that it remains a tableau, i.e., the first
row of length greater than or equal to the second row,
etc. Then add a second box labeled ¢ (if any) always
requiring that the resultant object be a tableau. When
the “/a’s” are exhausted, use the “d’s,” then the “c’s,”
and so on.

(iii) In the process described in (ii) never let two
boxes with the same label stand in the same column.

(iv) At the end of the process keep only those
tableaux with no more than # rows. (Later on the
columns of # boxes will be dropped; as we have already
mentioned, for SU, the columns of # boxes are irrele-
vant and can be added or omitted without destroying
the meaning of the tableau.)

(v) Among the tableaux with no more than # rows,
some will be dropped and some others will be kept.
In order to decide which are the relevant ones (which
correspond to irreducible representations contained in
the decomposition of the product), the following device
is used. Take some resultant tableau. Reading from
right to left and from the upper end to the lower,
collect the labels of the boxes. In the process of recollect-
ing, one should always find a number of “a’s” greater
or equal to the number of ‘“d’s,” a number of *“b’s”
greater or equal to the number of “c’s,” and so on.
Hence, only certain tableaux satisfying the previous
criteria survive—they give the desired decomposition.

It is worthwhile to note that at the end some of the
tableaux obtained might be identical (i.e., the corre-
sponding representation appears several times); how-



ever, with attached labels some identical tableaux must
differ by the disposition of the letters. For instance,

Oe [(M-O11 @ B]
and not
Oe[M-0O0®2 B:]
as one could at first have thought. For following the

process described above, we label the tableau with two
boxes

,

then attach an “a” to [, thus obtaining
m@. o [ ,

then a second “a”
[Ie]q]

OI',,

while

is forbidden by the rules. However, the two tableaux

differ neither by the tableau nor by the labels

and therefore must be treated as a single tableau. This
illustrates a second point: that a check on the dimen-
sions is generally useful. If Ny and V ; are the dimensions
of AW and A®, and if N® denotes the dimension of
the irreducible constituents of 4®X A®, we must have

N1N2=‘ ZNO\).
(0]

A last comment before turning to an example—it
concerns the case when a diagram contains two rows of
the same length, then one must label the two rows
differently and proceed as before. As an example, con-
sider the problem of decomposing the product of two
adjoint representations of SUs;

@%

We follow the rules, and label the boxes of one tableau,

i

=

[e]=]e]o]e]
L]
.

C. ItzyksoN AND M. NAUENBERG Uunilary Groups 105
First Stage
L]
L]
LJ
Second Stage
[olq] [d] [q]
] [fe] ]
u H -
Third Stage
It is impossible to put a “b” before all “a’s” or ““c”

before “d” [see (v)], and we do not want columns
longer than 6, so the only possibilities are

T Tola] ofo]  []]q] [Ta}
o] b [ [alb] afb
e 3 [ L] 1]
[ [d] d | d] [ 1d]
mO [Te]
(&
a] q]
a o]
el ]
[_[c] [[q]
d e
B

This is the desired decomposition. The final seven
representations (with their attached labels) satisfy all
the desired criteria. Writing for the symbol of a repre-
sentation D¥(A1, Az, A3, A, As), We have obtained the
result:

D%(1,0,0,0,1)XD%(1,0,0,0,1)=DY0,0,0,0,0)
+2D%(1,0,0,0,1)+D%(0,1,0,1, 0)
+D%(2, 0,0, 1, 0)+D%(0, 1,0, 0, 2)

+D45(2, 0,0,0,2).

Indeed, one verifies that

35%35=1-+35+35+189+4280+280-+405.

The bar recalls the fact that the two representations

(2,0,0,1,0) and (0, 1, 0, 0, 2) are contragradient to
each other,

It is clear that in some sense one could have kept the
tableaux with more than 6 rows if, instead of dealing
with SUs, one were dealing with some SU,, #>6. Part
of the result previously obtained would still be valid.
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Hence, it seems desirable to tabulate once and for all
the result of the operation relaxing the condition on
the number of rows. When applying the result to a
given SU, one should only keep the tableaux with no
more than # rows. This corresponds in fact to solving
a related problem for the symmetric group on fi-+f.
objects: namely, the decomposition of the product of
two tensors with given symmetries (described by Young
tableaux of f; and f; boxes) into tensors (of rank f;4f2)
of given symmetry (in terms of Young tableaux with
fi+f2 boxes). This is the so-called decomposition of
the “outer product” of two representations of the
permutation groups on f; and f; objects. Some tables
are given in Sec. VII.

VI. THE (SU,, SU,) CONTENT OF IRREDUCIBLE
REPRESENTATIONS OF SU,. AND SUpnn

The direct product (SUn, SU.) of two unitary
groups SU, and SU, in a subgroup of SU,, and
of SUpyn This can be seen by relating (SUn, SU.,)
to the corresponding linear transformation in the Xro-
necker product or in the direct sum of two vector
spaces of dimension m and %. It is clear than an ir-
reducible representation of any group is also a repre-
sentation, in general reducible, of its subgroups. In
this section we consider the problem of finding the
irreducible representations of (SU,, SU,) which are
contained in an irreducible representation of SU, or
of SUnmin, that is, its (SUn, SU,) content. This has
become an important question in applications of groups
to the study of elementary particles; for example, we
are interested in the (SU,, SU;) or isospin content
of SU;=SUj1 and in the (SU., SU;) or spin-unitary
spin content of SUs=SUss. We shall discuss these
two decompositions separately.

To obtain the (SUn, SU.) content of an irreducible
representation of SU., we consider two vector spaces
Vi and V™ of dimensions m and #, respectively, in
which SU,, and SU, operate. The group (SUn, SU,)
corresponds to unitary transformations in the tensor
product space V@™ XV®, with the scalar product
defined by

(W™ X W™, pm X y™) = () y(m) () ™)

which leave (%™, v™) and (w®*, v*) invariant, where
w® and v are vectors in V®, i=m, z, and (w®, 9(?)
is the scalar product of w® and v®. It is then clear
that (SUm, SU,) is a subgroup of SU.. which oper-
ates in Vm XV ®,

The components of a vector in V™ X V™ can be
written in the form V(;,4), where ¢ runs from 1 to m
and « from 1 to . Hence a tensor of rank f has the
form

T i1a) (i) -+ Gigep)»

To obtain the carrier space of an irreducible repre-

sentation of SUnm. we have to impose a “maximal
symmetry condition” on the indices of 7' (see Sec.
IIT). In applying this symmetry condition to 7 we
have to permute pairs of indices (7j, ;) at the same
time. On the other hand, the carrier space for the
irreducible representations of (SUn, SU,) is obtained
by imposing a maximal symmetry condition on the
indices 7 and « separately. Hence to get the (SUy, SU,)
content of an irreducible representation of SUn. we
have to decompose the tensors which satisfy symmetry
conditions with respect to the permutation of pairs of
indices (%, @) into the sum of tensor which satisfy such
conditions for separate permutation of the indices %
and a.

Consider as an example the representation of SUun,
corresponding to the Young tableau:

4.
It is described in terms of tensors
Tirar,i000= Tisas,izar-
One can obviously write
Tilax,iza2= %(Tixalviwz'{’ Tizal,iltm)
+21"( Tilal.izaz_ Ti2a1.i1a2) .

The first parenthesis is symmetric in the interchange of
of 4; and 4p; it is also invariant with respect to the inter-
change of ay, as. The second is antisymmetric in the
interchange of 4;, 75, and separately in the interchange
of a1, a2. The symbolic notation for the decomposition is

(@ e e (g ° g

We can make a check on the dimensions. On the left
we have a representation of SU,, [and hence of
(SUnm, SU,)] of dimension

(mn+1>_ (mn+1)mn
2 /) 2 )

On the right we have a representation of dimension

(m;l—l)(n—;%): (m-Zl)m (n~;1)n

and another one of dimension

(n)o)-mentnen

Hence we should have

(5 )-C2 WG

which is indeed satisfied. Now it is apparent that the




following general statement is true: “Given an irreduci-
ble representation of SU,, whose Young tableau con-
tains f boxes, the only irreducible representations of
(SUn, SU,) it contains are those with f—Am and
f—N\'n boxes, respectively, where A and A’ are integers.”
Again this stems from the irrelevance of columns with
$ boxes added to the Young tableaux of an irreducible
representative of SU,.

The decomposition of tensors of high rank involves
a considerable amount of labor. If we are mainly inter-
ested in finding the (SUnm, SU.) content of SUnn we
can use a simpler method based on the observation
that this decomposition is directly related to the reduc-
tion of the Kronecker product of two representations of
the symmetric group =;. We note that for fixed values
of the indices 7 and «, the tensors T(ijay),(isan--- With
maximal symmetry conditions for permutations on
and o separately, are also basis for the Kronecker
product of two representations of ;. The decomposi-
tion of these tensors into tensors with maximal symme-
try conditions under simultaneous permutations of ¢ and
a leads to the reduction of the corresponding Kronecker
product into irreducible parts according to Z;. This
leads to the following procedure:

Suppose we want to know whether a representa-
tion (D,XD,) is contained in a given representation
Dy of SUpmn symbolized by a Young tableau with f
boxes. First, as explained above, one can add to the
Young tableau of D,, (D,) a certain number®® of columns
of length m (%) on the left in order to bring them to a
form where it contains f boxes. The Young tableaux
obtained in that fashion describe also two irreducible
representations of the symmetric group Zy. Then the
given representation Dy, of SUns contains the repre-
sentation (D, D,) of (SUn, SU,) as many times as
the corresponding representation of 2y appears in the
decomposition of the product of the representations of
2y corresponding to the Young tableaux of Dy, and D.
In other words, what one has to do is to obtain the
Clebsch-Gordan series of the corresponding representa-
tions of Zy. An important advantage of this method is
that it allows us to forget essentially the subscripts m
and #. The tabulation of the Clebsch-Gordan series
can in fact be made only with reference to the sym-
metric group. To use the tables for specific m, %, one
only has to disregard Young tableaux of more than
m (n) rows, and columns of length m (%) (see Sec. VII).

We now turn our attention to the problem of finding
the (SUn, SU,) content of a representation of SUnyn.
For this purpose we form the vector space sum V¢
V™ in which the scalar product is now defined by

(w(m)_l,w(n)’ tv(m)—f—q)(’ﬂ)) = (w(m), 'U(m)) + (w(n), 7)(")) .

The transformations (SUn, SU,) in this space form a

13 This number can of course be zero.
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subgroup of SUm4ny which leaves (w®™), y) and
(w™, v™) separately invariant. The components of a
vector in V™ 4-V® are now written in the form V;,
where ¢ runs from 1 to m-# with the convention that
fori=1-+-m(i=m+1,- -+ ,m+n) these components be-
long to V™ (V). Then for a tensor of rank f we write
Tiy...ip» Now if we want to build irreducible representa-
tions of (SUm, SU.) we need to consider only tensors
in which the index 4; runs either from 1 to m or from
m~+1 to m~+n and impose maximal symmetry condi-
tions among indices of the same kind. These sym-
metrized tensors can also serve to induce a representa-
tion of SUmyn if we adopt the convention that they
have zero components for the absent values of the
indices. The representation obtained in this way is
reducible and corresponds to the Kronecker product of
the two representations of SUnis labeled by the two
Young tableaux which previously referred to SU,, and
SUy,. The decomposition problem has been solved in
Sec. V. This is the basis for the method of obtaining
the (SUm, SU,) content of SUny, which we now
describe.

Given a representation of (SU,, SU,) we can asso-
ciate with it two Young tableaux, one for SU,, and one
for SU,, for instance,

(-

Then we know from Sec. V how to decompose the
“outer” product of the corresponding regresentations of
the symmetric groups, namely,

<EP-D:|>——H—‘—U@H:|—J®:|J$EB;

we refer the tableaux of the right-hand side to represen-
tations of SUmin. Then the given representation of
(SUm, SU,) appears in the decomposition of the
representations of SUmys which appear on the right-
hand side as many times as their multiplicity indicate
(in our example 0 or 1).

Note that to the Young tableaux for the given repre-
sentation of (SUn, SU,) we can add « columns of
length m, and B columns of length #, respectively. In
our example we have

a 5

T=m =3

Hence this representation of (SUn, SU,) will also
appear in the decomposition of representations of SUmin
with am-pBn extra boxes. In general a given representa-
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tion of SUqn with a Young tableau of f boxes contains
only those representations of (SUm, SUn) for which
the number of boxes of the two Young tableaux, call
them f; and f,, are such that

fitfetamtpBn=f.

A special case of this decomposition is Weyl’s
branching law which gives the SU,—; content of a
representation of SU,. Indeed, it corresponds to the
(SU,—1, SUy) content of SU,, where SU; is a trivial
group reduced to one element. Its representations are
all the unity matrix, but may be represented by
arbitrary Young tableaux with one row. Suppose we
are given a representation (fi, fo, «*+, f'n—) of SUn.
First we allow for an arbitrary number of extra columns
of length #—1 by writing it

(f’l+a’f,2+a7 e '}f’ﬂ-—2+a7 @).

Then consider a “representation” of SU; (8) and
decompose the outer product

(f1ta, flata, <« fasta,a) (B)

according to the rules of Sec. V; @ and $ are chosen in
order to find (fy, * « +, fa—1) in the decomposition. Clearly
a necessary condition is that

frtee oA fasta(n—1)+B=fitfot ++fou

Then we shall have in the process of decomposition
tableaux with rows of length

frtatp
~ ’2+a+52

{iJeca
Ta

a

Ll ia
a

E)
'
————

f,n—2+ o+ Bn»2
a"l’ﬁn—l

with 81+« ++4Bs—1=48, and due to the process of con-
struction (“‘two a@’s cannot be in the same column”)

fetatBeL fiita
fstatB:<fota
atBaaX flasota.

We also want

fitatpBi=1
fatatBa=f

f’n—2+ a+Br2= f n—2

a+Bar =fn—1-
So

at+fi'=fi—B:1<fy,
fz =f2'+a+ﬁzﬁf'1+a,

and analogous inequalities for f’s, f’s++-. The result
reads:

felat+f1<fi
JinZatfi<fi

OEfnSann——l'

This set of inequalities is the content of Weyl’s branch-
ing law: the representations (f'y+«*f'ss) of SU,1 con-
tained in a representation (fi-««f,—1) of SU, are those
for which there exists a positive integer (or zero) a such
that the previous inequalities are satisfied. It appears
as a special case of the general method outlined above.
In practice it is better to tabulate the decomposition
of “outer” products of representations of the sym-
metric groups. We are thus able to use these tables to
solve two different problems pertaining to the unitary
groups. The details are discussed in the next section.

VII. TABLES

We give below tables which are useful for the various
decomposition problems of both the symmetric group
Zs and the unitary group SU, (see Secs. V and VI).
We shall next discuss their use.

A. Dimension of representations.

From SU; to SU;. we give the value of the dimension
of the representations up to Young tableaux with 8
boxes. The first column gives the dimension of the
corresponding representation for the symmetric group
o

B. Decomposition of the “outer product” of two
representations of 2, and Z, with respect to =y, and
Clebsch~Gordan series for the product of two repre-
sentations of SU,.

The tables first refer to the decomposition of the
“outer product” of two representations of =y, and Xy,
or, what is equivalent, to the decomposition of the
product of two tensors with given ‘“‘maximal” sym-
metries in the f; and f; indices, respectively, into ten-
sors with “maximal” symmetries in the fi-+f, indices.
Hence, they also solve the problem of decomposing
the product of two representations of SU, (see Sec. V).
As an example, the following representations of =3 and
25 induce the following representations of Z; as read
in the tables

(HvHJ_U)*tH_LU@HJ_U_I@:HHI@?]j.

Notice that reading from Table A the dimensions of
the corresponding representations of the symmetric
groups, one finds,

1X4—14+15+4-354-20=284.



The dimensions on both sides are not equal, but the
left-hand side always divides the right-hand side.!4
When labeling the representations we have used
JiZ=fa= oo s 2 fa1; “f’s” equal to zero are omitted and
when
fosi= e =fptr=s

instead of repeating ‘s’ 7 times, we have written s".

In using the tables to decompose the Kronecker
product of two representations of SU,, it is necessary
(i) to ignore Young tableaux with more than # rows
(ii) to consider as equivalent two Young tableaux
when they differ only in the fact that one has extra
columns of # boxes.

Examgple: Using the tables for SU; one gets
(o e e e

(The dot indicates the one-dimensional representation.)
This also reads in familiar language

(8) X (8) = (27)+ (10)+ (10) +2(8) + (1).

The dimensions are equal on both sides.
If we turn to SUs the same decomposition problem
now leads_to

E}j@Bj=LUH€B JI—IEBI:Hj
S 2 e ®
e

[l ?
or in terms of the dimensions
(70) X (70) = (1134) - (840) + (490) +2(896)

+(175) +(280) + (189).

Finally, the tables are also used ‘““vertically” to find
the (SUnm, SU,) content of an irreducible representa-
tion SUm+s (Sec. VI). In order to do this, select the
column of ;the given representation of SUmyn corre-
sponding to a Young tableau with f boxes in the table
fitfe=].

Each entry in the column is equal to the number of
times the representation of (SUn, SU,) appearing on
the left occurs in the given representation of SUmin.
The two partitions corresponding to the Young tableaux
appearing on the side of the table correspond to repre-
sentations of (SU,, SU,) in two ways: (i) the first
partition refers to SUn, and the second to SU,, and
(ii) the first partition refers to SU, and the second
partition refers to SUn."® The only exception to this

1T

1 This is due to the following fact. The representation of
(241, Zgy) of dimension #me induces a representation of sy,
.of dimension equal to 7mme times the number of cosets of (=7,
E,,} in E);,_,_;,, i.e., (fi+f2) I/fil f2!. In our example this is 1X4X
(71/2151) =84,

16 Even if m=un.
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rule is when the two partitions are identical in which
case one reads them only once. The table for fi+fo=f
must be trivially completed by extra rows correspond-
ing to O+f=F, that is, the outer products of the repre-
sentations of Z; by those of a group reduced to the
identity thus inducing the same representation of Z.16
As customary we disregard tableaux of more than
m (n) rows for SU, (SU,) and columns of length
m (n). As an example, consider the representation

O of SUg and let us find its (SU,, SU,) content.
Using the table for fi+f,=3 we find!’

[T~ (,CO0)+(0,.)+(3, Co)+(3 , ),
(SU(;)'—)(SUz, SU4),

or

(56) = (1, 20)+ (4, 1)+ (2, 10)+ (3, 4).

C. These tables give the Clebsch~-Gordan series for
the symmetric group, and the content of an irreducible
representation of SUn, in terms of its (SUn, SU,)
subgroup (Sec. VI) up to Young tableaux with eight
boxes.

Reading “horizontally” one finds the Clebsch—Gordan
series of the product of two representations of Zy.
Example for Z,:

BT

One can also read them “vertically” for a representation
of SUna, thus collecting on the sides of the table its
content in terms of (SUm, SU,). To do this, first select
in the upper part of the table the Young tableau of a
given representation of SUpmn. This same tableau re-
appears in the lower part of the table. Each entry is
the number of times the representations of (SUy, SUn)
appearing on the left (right) of a corresponding row
occurs in the representation of SUpn, indicated in the
top (bottom) of the column. The two partitions corre-
sponding to the Young tableaux appearing on each
side of the table, correspond to representations of
(SUnwm, SU,) in two ways: (i) the first partition refers
to SU, and the second to SU,; (ii) the first partition
refers to SUa,, the second to SU,.'® However, as usual,
Young tableaux with more than m (%) rows referring
to SUn (SU,) are disregarded as well as columns of
length m (n).

16In the ‘preceding problem of Clebsch-Gordan series for
group SU, this corresponds to the trivial decomposmon of the
product of an 1dent1ty representation (fy'=-+++=f",;=0) by a
representation ( fl, eee, fa1) thus reducing to (fi, *++, faa) X

) 1y **°% a1

by Note that the two first terms correspond precisely to the
extra rows to be added to the tables.

18 Except in the case when the two partitions are identical.



110 REvVIEWS OF MODERN PHYSICS *+ JANUARY 1966

Example for SUs: Reading the table one obtains the
(SU,,"SU;) content of the following representation
(interesting™in the case of baryon number two states),

EEE»(HW , m)ﬁ..l’r‘[’lTﬂh(mT“l,EEED)
+(EEI , BIED)+(EEED , Bj)
+(ED,DI)+(D],EEB)

+(.,EB]:]>+([D,EF\)+(. )

(SUs)—(SUs, SU3),

or in terms of dimensions
(490)— (7, 10)+ (1, 28) 4 (5, 27) + (3, 35)+ (5, 8)
+(3,10)+ (3, 10)+ (1, 27)+(3, 8)+(1, 1).

Of course the sum of the dimensions on the right adds
up to the dimension on the left.

In general, when the two representations have the
same Young tableau they should not be duplicated
(as explained above). To illustrate this remark, con-
sider for instance the (SU;, SU,) content of the
following representation of SUjs,

PO )P T P

(572)—(10, 20")+ (8, 20) + (1, 20") + (8, 4) + (8, 20').

Notice that the representation (E}j , EP) of
(SUs, SU,) appears only once.

The tabulation of Table C requires long calculations.?
For higher orders we have used a computer.
. We summarize the various applications of the tables
in the following diagram:

Symmetric group Unitary group
Table po7 SU,
A Dimension Dimension
B Decomposition of outer product =y, Z5,—=Zs141, (SUnm, SU,) content of SUnyn
Clebsch—-Gordan series for SU,
C Clebsch—-Gordan series of Zy (SUn, SU,) content of SUnn

19 Some explicit formulas can be found, for instance, in Ref. 4 or can be computed using Frobenius’ formula for the characters
of the symmetric group. The most straightforward method uses the orthogonality of characters.
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TABLE B

f =
=2 (2)

(%)

(1) (1) 1

£ o+f =3 (3)

(2,

1)

(1?)

(1) @ 1

(1) %

£ +f =h
1 2

(%)

(3,1)

(2%)

(2,1%)

a*)

1+ 3

(1) (3)

(1) (2,1)

(1) (1)

+2

(2) (2)

(2) (1%)

(1%) (%)

£f +£f =5 (5)

(3,2)

(2%1)

(2,1%)

®)

+ 4

(1) (%) 1

(1) (3,1)

(1) 2®)

(1) (2,2%)

(1) (%)

(2) (3) .1

(2) (2,1)

(2) (2*)

(12 (3)

(2%) (2,1)

(%) (1%)

L+5

£ 48 =6(6)](5,2)

(4,2)

(4,1%)

(3,2,1)

(2%)

(3,2%))

(22,27 )(2,1%)

(1)(5)

-
-

) (x,1) 1

(1)(3,2)

(1)(3,2%)

)(2%,1)

(1)(2,2%)

(1)(*)

24k

(2)(w) 1 1

(2)(3,1) 1

(2)(2%)

(2)(2,2%)

(2)(2%)

(%) (%) 2

(1%)(3,1)

(1%)(2%)

(1%)(2,2%))

(%)

£, =6 (6)] (5,1)

(4,2)

(8,1%)

()

(3,2,1)

(%)

(3,2%)

(2%,1%))

(2,1%)

(3)(3) 1 1

1

(3)(2,1) 1

1

(3)(x?)

(2,1)(2,1

te,1)(1%)

(1*) (1?)
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TABLE B (Continued)

£4r, = 71 (1)](6,1){(5,2) [5,1%)| (4,3)] (4,2,1)] (350)| (4,2%)| (3,2) | (3,2, )| (221)| (3,1%)| (252%)| (2,2%) | 0™)

(1)(6) 1( 1

(1)(5,1) 101 |1

(1)(%,2) 1 1|1

(1)(4,1%) 1 1 1

(1)(3%) 1 1

+ 6

~1(1)(3,2,1) 1 1 1 1

(1)(2%) 1 1

(1)(3,2%) 1 1 1

(1)(2%1%) 1 1 1

(1)(2,1%) 1 1 1

(1)(2%) 1|1

£41, = 7 [(D](6,1)] (5,2) |(5,2%) | (4,3)| (4,2,1)] (351) |(4,1%) (3,2%)(3,2,8) |(221) |(3,1%) |(2%1%)(2,1%)(17)

(2)(5) 1|1 1
(2)(%,1) 1 1 1 1|1
(2)(3,2) 1 1|1 1 1

(2) (3,1%) 1 1 1 1 1

(2)(2%1) 1 1 1 1

(2)(2,1%) 1 1 1 1

(2)(2%) 1 1

2+5

(1®)(5) 1 1

(1%)(%,1) 1|1 1 1

(1%)(3,2) 1|1 1 1

(1%)(3,1%) v 1 1 1| 1

(12)(251) 1 1 1 1 1

(13)(2,1?) 1 1 1 1|

(1%)(2%) 11 |

42, = 71 (1) (6,1))(5,2)(5,%) (4,3)| (h,2,1) (1) (4,2%)(3,2%)(3,2,1) (2%1) (3,1*) (23°) (2,1°) (07)

(3)(%) 1f 1 1 1

(3)(3,1) 1| 1|1 1

(3)(2%) 1 1 1

(3)(2,2%) 1 1 1 1

(3)(*) 1 1

(2,1)(%) 1 1 1 1

(2,1)(3,1) 1 1 1 1 1 1 1 1

34+ 4

(2,1)(2%) 1 1 1 1|1 1

(2,1)(2,27 11 1 1| 1 1 1

(2,1)(1%) 1 1 1 |1

(17)(%) 1 1

(1%)(3,1) 1 1 1 1

(1%)(2?) 1 1 1

(1%)(2,1%) 1|1 1 1 1 |2

(1%)(1*) 1 1 |1 N
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(6,1%)
(5,2,1)
(5,1%)
(%)
(%,3,1)
(4,2%)
(4,2,1%)
(,2)
(32,12)
(3,23,1)
(2*)
(b,1%)
(3,2,17)
(2%,1%)
(3,1°)
(22,1%)
(2,1%)
S

(Y]
" {(6,2)
" 1(5,3)

%
P
=

=R IG

—

(3,2,1)

(6,2)
(6,1%)
(5,3)
(5,2,1)
(5,1%)
(4%)
(4,3,1)
(4,2%)
(4,2,12)
(3%,1%)
(24)
(k,1%)
(2%,1%)
(3,15)
(2%,1%)
(2,1%)
(%)

R

TABLE B (Continued) TABIE B (Continued)
~|_|= oA |~ Ixps
P P E P et QN | |% 2 o
ree =8| ol AYSI3]E N S wl 8|S £ er =8
bt Bt Bl et b At B Bt e et et ~=l 1 2 @
[l o s (3) (5) 1
(1)(6,2) 111 (3) (4,1) 7
()(5,2) 1 11 (3) (3,2)
(1)(5,1%) 1] [ (3) (3,2%)
(1)(%,3) 1 1| 1] (3) (2%,2)
(3) (2,2%)
- (1)(%,2,1) 1 it (3) %)
SloeEn 1 11 (2,1) (5)
(1)(%,2%) 1 1| 1 (2,1) (4,1)
(1)(3,2%) I Y I Y ) G,2)
(2,1) (3,2%)
2 'S
(1)(3,2,1%) 1 11} 1 : @1 (0
@)(2%) {1 i, (2,1) (2,2%)
),1%) 1l |1 (21 (%)
5
(1)(2%,1%) 1 1 1 a7 ©)
(%) (%1)
(1)(2,1°) 1f 11 @) (3,2)
@a” 11 1) (3,1%)
(2)(6) 11 (1%) (23)
@061 (1%) (2,17)
2)(5,1 1f1f1 1 1
P L[ @a
| (2)(4,2) 1 1| 1 i 11
(2)(4,2%) 1 i1 |y |2 ’ £+, =8 | |9
e
(2) (3% 1 1 1
(2) (3,2,1) 1 1{1f1f]2]2 (%) (%) 1{1
(2) (2°) 1 1] . () (3,1)
() (3,1%) 1 1 1 1|1 (4) (2%)
(2) (2%,2%) 1 1 1l (%) (2,12)
(2) (2,1%) 11 1t (3) (%)
(2) (1%) 14t (3,1) (3,1)
@ () I Ll eue
©
L o B e e
B
(12) (h,z: y1 1 1 G0 a9
(1%) (4,2%) 11 11 1 @ @
2 1
(12) ) BE & o
1lrj1jrj1r)1 1
(1%) (3,2,1) pE
(1*) 2%) 1t * z
5 (2,1%) (2,1%)
(1) (3,22) 1 1 i 1
(12) (2213) 112 11 1 @319 a9
1
5 (1*
(13) (2,1*) 11112 L ah 69
(1®) (1%) 111
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TABLE C
Z 1]
(2) | 1®)
@)@ @A) Q3| 1 (12)(2)
3| (@)
Z 1 2 1
3 (3) | (2,1) | (27)
3B (e () | 1 3)@ (1?)
(3)@ (2,1) | (1?) @ (2,1) 1
(2,1) @ (2,1) 1 1 1
1) (2,1)| (3

24 (13 (3?1)(22) (2,312 (1“1)
M @®) ) 1 (1) @ (1)
G PR 1 (1) @ (3,1) (1) @(2,1%)
®HPE) 1) Q@R 1
(3,1 (3,1)(2,13) @ (2,1%) | 1 11 |1 (3,1) @ (2,2%)
(3,1) @ (2%) (2,2%) @ (@) 1 1
(%) @) 1 1 1
)| (2,1%)(2%) (3,1) | (¥)
1 4 5 6 5 » |
Zs (5) | (1) (3,2)] (3,17)](250) (2, 2°) (29)
GY®G) )@ (%) 1 6G)Y@ (%)
5)® (4,1) °)®(2,1%) 1 (%)@ 4,1) 6)@(2,1%)
(5)® (3,2) (°)® (27) 1 (15)@(3,2) (5)@(2%,1)
(5)® (3,1%) (1°)@® (3,1%) 1
(1)@ (1,1) (2,2)®@ (2,1%) | 1 1 1 1 (3,1)®(2,17)
(1,1)® (3,2) (2,2°(231) 1 1 1 1 (2,12) ®(3,2) (4,1) @ (2%1)
(5,1) ® (3,1%) (2,2%) ® (3,1°%) 1 1 1|1 |1
(3,2) @ (3,2) (2°1)@ (2%1) 1 1 1 1 1 1 (3,2) ®(22,1)
(3,2)® (3,1%) (2%,1)®(3,1%) 1 |1 2 |1 |1
(3,2%)® (3,1%) 1 1 2 1 2 |11
(2%) [ (2,27) | (2%0) | (3,19 | (3,2) (1)} (5)
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(9) | (9] )] Gra)| O] (1e€)| (@) [ (1) | (%) | (1%e) | (1)
T 2 € 4 2 9 2 # € 2 T (T2¢) ® (12%€)
T T € 2 - T T T (12°¢) ®(c2) | (12°6) ® (£)
(£) @ (c2) T T T T (@) ® (=) | (£) @ ()
T 2 2 T i T z 2 T (1°2°€) @ (1) [(1%€) © (1)
(£2) @ (1) (£) @ (c1%) T T T T T (2) ®(c1€) | (£) ® (510)
(1) ® (c1€) T T T T 2 T T 2 T T (cT€) ® (1) | (TN BT )
T e E T ¢ T 2 2 T (1) @ (;122) |(12°6) @ (2n)
(c2) @ (2'0) (£) @ (12) T T T T T () ® (1) | (£) @ (2“0)
(cT6) @ (2*1) (51%1) @ (;1%2) T T & T c T T (c1€) ® (,1°22) (1) @ (20)
(2*0) @ (%) T T 2 T 2 T T (T°2) @ (T2) | (20)® (2h)
T T T e T T T (126) @ (,T°2) | (1°2%€) ® (1C)
(£3) ® (16) (5£) @ (51%) T T (c3) ® (,T°2) (:€) ® (1)
TE) @ (T°6) (T4) @ (51¢%) 1 T T T T (cT6) ® (,T2) | (oT%) ®(1°C)
(c12) ® (1°6) (e © (1) T T T T T (T2) ® (,12) | (2“0) ® (1%C)
(IR ® (1) T T 1 T (12 ® (1) | (1) ® (1°9)
' (120 © (s1) | (12%6) © (9)
(£2) ® (9) (£) ® (1) E (£3) @ (sT) (z£) ® (9)
(cT€) © (9) (zT°4) ® (51) T (1) ® (o1) (zT%) ® (9)
(5122) ® (9) (2“0) ® (o1) T (5I22) © (1) (2“1) @ (9)
(12) ® (9) (1°¢) ® (5T) T (12) @ (51) (1°€) ®© (9)
(DO T (D) @ (51 (5)®(9)
(1) | (5T°2) | (5TeR)| (cT°€) | (3) | (T2€) | (£) | (oT%) | (2*n) (1) (9) °
1 ¢ 6 ot 19 9T 4 ot 6 9 T .N

(PoNuT3UGD) O FIVE,
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z 1| 6]14| 15 14|35 |21 |20 [21 [35 |14{15 |1k]| 6] 1
Z
— T~ ~ ~ U~ A~ 7] ~
TR % S| AN @S] S~
|~ - - - - -0y - ~ L) -~y |~
Kot NS ICOY RGO B Bt B3] S I B! A I IS R et
(7R(7) @"@(17) 1 (T)® (17)
(718(6,1) (17)x&(2,15) 1 (1)(2,1%)  (17)(6,1)
(713(5,2) (17)(2%,1?) 1 (TA2%1%)  (17)18X5,2)
(T(5,1%)  (17)3,1*) 1 (T)(3,1*)  (")(5,1%)
(7)gfk,3) (17R¥(23,1) 1 (A2%,1)  (171B(4,3)
(Me(%:2,1)  (17)3(3,2,1%) 1 (71Y8(3,2,13) (17)&(%,2,1)
(13(3°1)  (")(3,2%) 1 (M&3,2%) (17135, 1)
(M%) Q7B(%,13) 1
(6,1(6,1) (2,15)&(2,15) 1| 1| 1|1 (6,1)(2,1%)
(6,11%(5,2)  (2,15B(2%17) 1l 1| 1| 1} 1 (6,12%13) (2,15%8X5,2)
(6,133(5,13) (2,1°)&(3,1%) 1 1|1 1 1 (6,1(3,1%) (2,15)(5,13)
(6,1)2(4:3)  (2,15)(231) 1 1 1|1 (6,1)®(23,1) (2,15)&(%,3)
(6,1)@(4,2,1) (2,151%(3,2,1%) 1l 1| 1 2| 1| 1| 1|1 (6,1Y83,2,12) (2,1°)&(4,2,1)
(6,1(3%,1)  (2,151%(3,2%) 11 |11 (6,1)8(3,2%) (2,1°)&(3%,1)
(6,1@(4,1%)  (2,151(4,13) 1 1 1 1 1
(5,2)8(5,2) (2217 )®(2%1) 1| 1| 2{1f 1| 2| 1] 1|1 (5,2)@(2%1%)
(5,21(5,1%)  (2°1°)&(3,1%) 1 1|2 12/ 11 |1 (5,2)8(3,1*%) (251°X&(5,1%)
(5,2X(4,3)  (2213)%(2%1) 1 1| 1| 1] 2] 2 11 (5,2X%(2%1)  (231°)8(4,3)
(5,208(%,2,1) (2%91°)® (3,2,12) 1 2/ 2| 2| 4 2/ 2/ 2[3]1|1 (5,2)8(3,2,1%) (2% )&(4,2,1)
(5,20(33,1) (2213)1®(3,22) 11| 1] 2| 2| 1] 1] 2]1 1 (5,2)8(3,2%) (221°)@X(331)
(5,209(4,27 ) (2%1%)8(4,1%) 11 2f 1] 2| 1f2] [1]1
(5,1%)&(5,1%) (3,19)&3,1*) |1] 12| 1] 1} 2 |1j1/1| |1 (5,2%)&(3,1*)
(5,12X%,3)  (3,14)2%1) 11| 1|2 1| 1] 1|1 (5,12Y&(2%1) (3,1%*Y3(k4,3)
(5,108(452,1) (3*)&(3,2,1%) 1l 2|2| 2| ¥ 32/ 2| 3f1f1|1 (5,12Y%3,2,1) (3,1*X&(},2,1)
(5,128(3%,1)  (3,1*)&(3,2%) 1 1 3/ 1] 1] 2| 2f1]2 (5,12¥8(3,23)  (3,1*)3%,1)
(5,12 (%,1%)  (3,1*)g(4,12) 111 1211 1faf1|2f1]|2
(4, 31R(%,3) (21 )®(2%1) 1f{ af1|1| 1{1]1f1[2f1|2 (%3@(2’1)
(5,3®(%,2,1) (2%1)0&3,2,1%) 1| 2f{2| 1| 4 2| 2| 2f3f1]|1|1 (4,3)3,2,12)  (2%1)0@&(4,2,1)
(4,33(3%,1)  (221)8(3,2%) 11 a] 1]|2fa]1]1|2f2]|1]|2 (5,3Y8(3,2%) (22108 33,1)
(4, 3%,17)  (221)Q(4,17) 1) 1| 2f1|2[1f2|1|1
(4,2,1)g(%,2,1) (3,2,12%3,2,131| 2| 4| 4| 4| 9| 5| 5|5|8|3]|3]3]|1 (4,2,1)3,2,13)
(5,2,183%,1) (3,2,0%0%(3,2%)] | 1| 2| 3] 2|5 3|3]3]5]|2]2]2|1 (4,2,103,2°) (3,2,120(3,1)
(42,104, 77)  (3,2,159(4,17) 1|22 2|5|3]2|3/5|2]|2|2|1
(3%,103%,1)  (3,2°)&X3,2%) 1| 1|2|1| 1| 3/1/2/2|3]{1f2|1]|1 (33,1)8(3,23)
(3%,0)64,1%)  (3,2%)gf4,1%) 11| 1| 3|2l2[2|3]1|1]2
(4,17)(%,13) 1] 1{2|1| 2f2|l2l1f2]2f2|{1|2f{1|1
PRGN D P ‘ol Fo o el bl oY o ke el
SRR e S eSS
ISR

117



118 RevIEWS OF MODERN Prysics + JANUARY 1966

TABIE C (Continued

1| 7|20f21 286k f35 |14 |70 56|90 |42 |56 |70 14|35 |64 (28|21 |20 |7 jq
z S N N Y A o DR S O S o N o B N S S P R
. e HHEHHEHEEEE NS RN E N ER

(8)(8) (1°)2(2°) e (8)(1°)
(8)(7,1) | (1°0A2,1°) 1 (8)%(2,1°) (1%(7,1)
(8)(6,2) | (1°)%(2%1*) 1 (8)%(231*) (1°x(6,2)
(8)X%(6,12) |(1°)®(3,15) 1 (8)2(3,15) (1®)z(6,12)
8)X5,3) |(1°X(23,12) 1 (8)a(23,12) (1°)(5,3)
(8Y%(5,2,1) |(1°X%(3,2,1%) 1 (8)(3,2,1%) (1°)3(5,2,1)
(8)(5,1%)  [(1®)g(%,1*) 1 (8)gf4,1*) (1*’@5,1’)
(8)(47) (1°)p(2*) 1 (8)(2*) (18)p(4%)
(8X(4,3,1) [(1°)x(3,2%1) 1 (8)(3,2%,1) (1%)g(%,3,1)
(8)(4,2%)  |(1°X(3%,13) 1 (8)%(3%,1%) (1°X(%,2%)
(8)R(4,2,12) |(1%)(4,2,12) 1
(8)%(3%,2) |(1°X%(3°,2) 1
(T, 17;1) [(2,15)%(2,1°) 1112 (7,1)8(2,15)
(T,1)6,2) |(2,15)(23,1%) 1|afaf1]2 (7,10(23,1%) (2,1°)%(6,2)
(7,1)1(6,1%) | (2,2)8(3,1°) 1011 11 (7,1X3,1°) (2,15)8(6,1%)
(7,10(5,:3) {(2,1%)g(2%,1%) 1 11 1)1 (7,123, 12) (2,150%(5,3)
(7,1)8(5,2,1] (2,15)%(3,2,1%) 1112 |1 1411 (7,1)%(3,2,1%) (2,1°)(5,2,1)
(7,10%(5,1°) | (2,1°)8(%,1*) 1 1|2 1 1 (7,103(%,1%) (2,15)%(5,1%)
(7,1004%)  |(2,15)(2*) 1 1 (7,1)(2*) (2,15)g(4%)
(7,1)0(%,3,1) (2,1°)(3,2%,1) 11 1211 |1 |2 (7,1)(3,2%,1) (2,15)%(4,3,1)
(7,10%0%,22) | (2,15)€(33,12) 1 1 {1 f1 {1 1 (7,1)(33,12) (2,1509(%,2%)
(7,1084,2,1%) (2,15 )80, 2,1°) 1|1 1fa]2 1|1 1f1
(L,1A3P)  [2,150(3%) P 1| i
(6,208X6,2) 22142214y (1|1 | 2| 1] 1] 2| 1| 2] 2|2 (6,2)g(2%,1%)
(6,2Y806,1%)  [(2%1%)&(3,15) 11| 2]1]2f2 1 1 (6,2)2(3,1°) (2214)%(6,1%)
(6,210(5,3) - K231 1K2%3) 1i1)1j2fe 20 1f 141 (6,2)%(2%1%) (2524 )5,3)
(6,2)%(5,2,1) [(2%198(32,1%) 1|2)2f2]4)2|1|3[2]3]r || 1 (6,2)(3,2,1%) (221°|X5,2,1)
(6,2(5,1%)  (2%%)g(t,1%) 11 2| 2 1|12 1 1|1 (6,2)R(4,1%) (2514 (5,1%)
(6,2)43) 2214 )f2%) 1 1 1] 11 1 (6, 2)(2*) (254 )(W%)
(6,2)4,3,1) K221*1(3,2°1) 1|12 3|r|2|s]2]3]2]2]2 1 (6,2)8(3,2%1) (221*)@(4, 3,1)
(6,2)4,2%)  K2214)(3%12) |- 1 1l2lajr|2a}3tejrl2lalijr]2 (6,2)8(%,2%) (2214 (%, 3%)
(6,2)X4,2,1%) [(2%1%)R(4,2,12 1{1]| 3] 2 3252 |23 2| 3|1 1
(6,2)8(3%2)  (231*)X(3%,2) 11 2l 1|22 [1]2 11
(6,13)16,12) §3,15x&(3,1%) [1 {1 | 2| 2| 1| 2| 2 1|1 1 (6,12)g(3,1°)
(6,2%)3(5,3) K3,1°R23,12) 1|1 2f1f1|2|2|1 1 (6,1280(2%12) (3,1°)%(5,3)
(6,12)35,2_,” 3,198(3,2,1) 1 {22 laof1]3lealatr |l {1 (6,1,2023,2,2%) | (3,1°X%(5,2,1)
(6,1209(5,1%) 3,19R,1%) 1l 1f1]2]2 1] 2 1 1|1 1 (6,22)8(4,1%) (3,1509(5,1%)
(6,120R(42) ~ [3,150=(2%) 1)1 1 11 (6,1%)1@(2*) (3,15042)
(6,12)%(%, 3,1) K3,151%(3,231) 1 2l 311 sf3|s]2]2]2 1] (6,12%(3,2%1) (3,1°)8(4,3,1)
(6,12 (h,’af) 3,15)®(3%12) 11|21 3] 1| 3(2 |2]|2 11 . (6,12)(3%12) (3,15(%,23)
(6,1%)8(4, 2,12 X 3,114, 2,13 1lifap3fefaf3|3fule|3f3]1]2f3]{1 1|1
(6,1°(3%2)  K3,15%(3%) 1 1l 2f2]21 22|12 1
(5,3)815,3) 222®(2%1%) |11 | 2| 1| 1| 2| 1|1]2|2]1|r 1|1 (5,3)g(2%)%)
(5,319(5,2,1) K222)®3,2,19 |1 | 2| 2] 2]5|2|1|4f3[s]2|2f2 1|1 (5,3X(3,2,1%) (3%1%)XX5,2,1)
(5,3)5,1%)  {2%12)A4,1%) 1 1] 2|2 2f1| 3|1 |1]|1 1|1 (5, 3% 4,1%) (2212)&(5,1%)
(5,31(4°%) 23,12 8(2*) 1 1l1]1 1 11 1 (5,35X2*) (27 2)R(4%)
(5,384,3,1) (222K3,2%,)) |1 | 2fe|2|sfaf1fu]3]s]2]3]3]]2]2]2 (5,3)® (3,22,1) | (21%)X4,3,1)
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TABLE C (Continued) 1| 720 |21 |28 |64 |35 |14 ) 70|56 |90 42| 58] 70| a4 |35 |64 ] 28| 21| 20] 7 | 2
N N Y N N E N R S A B N
X I A N N BN Y N B T B R B Y e BT B R Y P e P
o N IS ROl 1O 14 1 163 58 PO O S BT ST I S S S R ST R S )
(5,3)Q(%,22) (22,1%)g(3%,1%) 1|1]2f3|1 3|lalsfal1]s 1212 (5,31%(3%,1%) (22,1%)(%,2%)
(5,3X3(%,2,1%) (22,12)8(4,2,1%) 11|36l u]u]|r]|3]s 1]1
(5,318(3%,2) (22,12)(3%,2) 1 1l2frfafafa]2f1]|2]2]1|2]2]|2 1
(5,2,11(5,2,1) (3,2,°)%3,2,0°) |2 | 2| kfsfs5]9]|s5]|2fo]6|ols]|s|s5|a|3s]|s]a]a (5,2,108(3,2,1%)
(5,2,11(5,1) (3,2,°)(,1*) 1]2)22]|5]2f1[4f3[5]/2[3]3 2{3f1]af2 (5,2,1)g(k,1%) (3,2,2)8(5,1°)
(5,2,1)8(43) (3,2,1°)g(2*) 11|21 2f2f2)1|1]|1 1 (5,2,1)%(2*) (3,2,1%)%(+2)
(5,2,1)8(4,3,1) (3,2,2%)(3,23,1) 1|33 s]ols]afol7|wo|s|6)7]1r]3]5)l2]21|1 (5,21 X2(3,23,1) (3,2,1%)%(%,3,1)
(5,2,1(4,2%) (3,2, %(3%,1%) 1212|363 ]2]7]5]|8]s]s|e|r]|3|ls|l2|1|2 (5,21 )X(3%,12) (3,2,1%)8(4,22)
(5,2,1)(4,2,1%) (3,2,12)4,2,1%) 1033|495 ]|2|w]|8|3]6|8lw|2|s|o|s]|3|3]2
(5,2,1)(3%,2) (3,2,2%)(3%,2) 1 afefufa|r|s|sle]sfulsta)afs]a]a]n
(5,17 )3(5,1%) (4,1%)(4,1%) U S N A O N -3 I (S N 6 N F-N IF-T I-08 B N I W RS IS I N -0 AR A R A T I (5,1%)8(4,1*)
(5,1%)(43) (4,1%)(2*%) 111 {112 1|1 1 (5,12)&(2*) (4, 14)2(42)
(5,1%)(%,3,1) (4,1%)(3,23,1) 1frfe|s 215 |s}6]3]|3{s|2rla]3]1]2 (5,12)X(3,23,1) (4,144, 3,1)
(5,12 )%(4,23) (4,1%)(3%,12) 1fafr]3lafr |4 |3)sfels]3|r]r|3]|1 1 (5,1%)(3%,1%) (4,1*)g(1,2%)
(5,1°)(%,2,1%) (4,1%)%(,2,1%) 1|22 |3|5|2 1|6 |s|6fls|s]6]jr|2|5]3]|2]2]1
(5,1 )(3%,2) (4,14)(3%,2) 12 |1 3l2|4|2f2]3 121
(W2)R(42) (2*)gf2*) 1 1 1)1 1 1 1 (¥2)(2%)
(4234, 3,1) (2*)(3,2%) 1fa)afa]a |2 2f1]2f1f2]2 1f1]1 (42)13,2%,1) (2*)®(4,3,1)
(4%)R(1,2%) (2*)(3°,17) 1 2 {11 f1]2]2 21111 1 (¥2)g(3%,1%) (2*)(4,22)
(¥*)X4,2,1%) (2*)(4,2,1) 112 2 1u]2]1]2 1l2]a|2
(¥)(3%,2) (2*)(3%,2) 112 1 2|1 1 112 .
(4,3,1) 4, 3,1) (3,24,10(3,23,1) |1 |2 4|4 ulo]s 2|87 fu]ls]e]|8|a]s]|7l3]2]2 (4,3,1)(3,22,1)
(4,3,1)8(4,2%) (3,2%,1 0% 3%,1%) 1l s s |74 |rrfs|o]|s}5[6|r3]|6]3]|2]2(2 (%,3,1)%3%,1°) (3,22, 1)8(4,2°)
(4,3,1.0(%,2,1%) (3,22,1)3(h,2,12) 1|3 |3 |4 |06 [2 pL |9 1t 6 {9 |11 |2 |6 [10|n 313 |1
(%,3,1)8(32,2) (3,22,1)(33,2) 12225 |3 x5 |s|6f2]|s|5 1|3 |5]|2]2]2 |z
(4,22)8(4,22) (32,12)%(33,12) i i3 |1 (25|32 |5|6|6|2]|5]|5 |2 |s|5]1]2]2 (4,22)3(3%1%)
(4,27R4,2,12) (3P1284,2,%) 12 {3 (% |8 (% |1 |9]6 |12]l6 |6 |9 |1 |4 |8 | 3|2 |2
(4,22)g(32,2) (3*138(3%2) S fr e |2 | |2 4 |2 |6 |3 |2 |4 2 |4 |2 2|1 |1
(4,2,12)¥3(4,2,12) 1 5 |4 {6 (136 |4 [1h]12(17]8 |12 |1k |4 |6 [13]|6 |4 2 1
(%,2,13)0(33,2) - ' 2 |2 |26 |4 |2 |6 |6 (8 |k |6 |6 |2 |4 |6 |2]2]2
(32,2)23%,2) 11 j2 |1 |1 |3 ]2 |1 j2 |3 [ |1 |3 ]2 |1 {2 [3 {1 {1]2 |1 |1
BN AR AR NN NREANRRE
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PROPERTIES OF THE YOUNG SYMMETRY
OPERATORS

The theory of linear groups is intimately linked
with the study of the symmetric group Zy, the permuta-
tion group of f objects. We have given in Sec. IIT rules
for obtaining the irreducible representations of SU, by
imposing certain maximal symmetry conditions on the
indices of tensors. These symmetry conditions are
completely described by the Young tableau. We want
to discuss now the fundamental properties of the corre-
sponding Young symmetry operators of the symmetric
group Zy, following the treatment of Weyl.\™*

A useful technique for[ obtaining the irreducible
representations of discrete groups is based on the
construction of a finite vector space in which the group
elements can be chosen as a basis. Such a vector space,
in which there exists a natural law of vector multiplica-
tion, has the properties of a ring; it is called the group
ring. The subspaces of the ring which are left invariant
under this multiplication are called left ideals, and
provide representations of the group.

Let pipa- -« py be the elements of a discrete group of
g elements. The group ring R is defined by the set of
vectors

x=w1p1+%apet* « - 2,0, (A1)
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where (%1%2° + - %j) is a g-uple of complex number, which
satisfies the following law of multiplication based on
the group multiplication law:

wy=D_x;(pips) = Zh:( xY) kPr, (A2)
where

(2)k=2_x:y; (A3)

and the sum is carried over all 7, 7 for which p;p;= ps.
A left (right) ideal I is then defined by the condition
that if €1, then yx€I (xy€Il), for every y€R. A
trivial example of an ideal is the ring R itself.

Due to the associativity of the group multiplication
law, it is clear that a left ideal gives rise to a representa-
tion of the group. To obtain the irreducible representa-
tions we require the minimal ideals, which are those
ideals which contain no proper invariant subspaces. A
very important element of an ideal I is its idempotent
element e, which has the property that e?=e, i.e., it is
a projection of the ring on the ideal. Suppose that
x€R; then xe€l, and if x€1, then xe=x. For the
permutation group, we want to show that the idempo-
tents of its minimal ideals can be chosen to be precisely
the Young symmetry operators ¥ described earlier in
Sec. IIT (apart from normalization). The two crucial
properties which we have to demonstrate are:

(1) Y2=uY, where u is a constant;

(2) If Y=,u(€1+62) y where e1"=é, 622= €2, and €169= 0,
then either e; or e,=0; in other words, the corresponding
ideal is minimal.

First we show that if an element x of the permutation
ring has the property

xp=x and qx=24yu,

where p and ¢ are elements of the Young symmetry ¥
[see Sec. III, formula (5)7], then x=c¢Y, where ¢ is a
constant. Any element YzY where 2z belongs to the
ring R, naturally has this property. Hence ¥2 must be
a multiple of ¥. To prove property (1) we also have
to show that the proportionality constant does not
vanish. Finally, the minimal property (2) follows im-
mediately since it also implies that

Ye:V=e, i=1,2.

Hence, by (Al), either puei=Y, ¢2=0 or ¢;=0 and
Meg= Y. )

Expanding x=2x(¢)¢, we find the conditions xp 1=«
and g~x= 8¢ imply that x(¢p) =x(¢) and x(gf) = d.x(¢),
respectively. In particular, substituting for ¢ the

identity t=1, we obtain z(p) =x(1) and x(gp) = d,2(1).
These are precisely the expansion coefficients of ¥
[apart from the constant (1) ]. It remains to demon-
strate that #(#) =0 when £ is not a permutation element
contained in ¥. A bit of reflection will show that all
permutations which do not belong to Y are charac-
terized by the property that, if they are applied to the
integers 1 to f occupying the boxes of a Young tableau
at least two integers in the same row, end up in the
same column. It follows that if # is the transposition
of these integers in the initial row and v is the corre-
sponding transposition in the final column,

vt=tu.
But we have the property that
x(tu) =x(¢) and x(vf)=—x(2)
which implies
x(f) =0.

Finally, we evaluate the coefficient u. For this pur-
pose we introduce a reducible representation for the
group generated by the linear transformations induced
by the group elements when they act on R, the so-
called regular representation. The only property of
the regular representation which we require here is that
the trace of all matrices corresponding to elements
other than the identity vanish, hence trace ¥ =f! (recall
that f! is the dimension of the regular representation,
i.e., the order of the symmetric group Z;). On the other
hand if we introduce as basis a set of vectors belonging
to the ideal generated by ¥ of dimension /, ¥ must be
a multiple of the /X! unit matrix in the corresponding
representation. Hence, trace ¥'=ul, and u=f1/1.

We have shown that the Young symmetry operator
Y is an idempotent or projection in the ring of the
symmetric group Zy. It generates a minimal ideal, that
is, an invariant subspace under group multiplication
which does not contain any smaller invariant subspaces.
Hence, it gives an irreducible representation of =;. In
fact, all the irreducible representations of = are given
by the possible Young tableaux of f boxes. The proof
is quite simple and will not be given here. In conclusion,
we note that the ideals corresponding to different Young
tableaux are carrier spaces for unequivalent representa-
tions.
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