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Knowledge of the molecular quadr&pole moments may be used to propose a better modelr model for the structure of the molecule
and could also provi e a crucia es or e c'd l t t f the accuracy of the trial wave functions that are used in other mo ecular calcula-
tions. A general survey o t e i eren me o sav 'f h d'8 t th d ailable for the evaluation of molecular quadrupole moments has been
made and their relative merits an emeri s ave eend d 't h b n discussed. It is suggested that the quadrupole moments determine
by the microwave linewi t ata are pro y m'd h d t babl more reliable. The quadrupole moments of different molecules nown o
date have been tabulated.
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2. The dipole moment

I. INTRODUCTION

The way a molecule interacts with another, has ]ong
been the subject of extensive investigations. The es-
sential problem is to find the molecular interaction
potential. For this purpose a molecule can be considered
as a special case of a charge distribution, the tota, l
charge of the system being zero. The interaction po-
tential is" electrostatic and can be expanded in terms
of a set of parameters, characteristic of the particular
distribution in question. These parameters are:

1. The total charge

external system but also because it may be used to
propose a better model for the structure of the mole-
cule. Recently, Buckingham' has pointed out that if
accurate values of the quadrupo1e moment were known,
it would provide a crucial test for the accuracy of the
trial wave functions that are used in other molecular
calculations. All this makes the measurement of mo-
lecular quadrupole moments important in spite of the
difhculties involved. The last review on Molecular
Quadrupole Moments was published by Buckingham'
in 1959. Since then a large amount of work has been
done on the subject.

The molecular quadrupole moment is defined as'

0 p=-', Q e, (3r, r;e rgb.e), — (1.2)

where 8 e ——1 if n=P and, =0 if nWP and where the
summation is over all the charges in the molecule.

0 p is thus a tensor having nine components. How-
ever, by a proper choice of the axes of reference all
the off-diagonal terms 0 /t(nWP) can be made to vanish.
Thus three principal axes x, y, and z are obtained such
that only the following three components for which
n=p survive:

3. The quadrupole moment

0 p=2 g e;(3r, r,ea—rgb, e),
t'

~ ~ ~ etc. or, in general, 'the multipole moment of order
n. ' The potential expansion then has the general form

y = (q/r) + (p,.r./r') +(H.e/3r') (3r.re —r'b.p) + ~ .
(1.1)

For a complete specihcation of the potential the pa-
rameters need be known beforehand. The total cha, rge

q, is always zero for a molecular charge distribution.
The dipole moment p can be measured fairly accurately
by a number of methods. ' ' The quadrupole moment
8 p can not be measured easily nor accurately. Most
of the available methods involve certain assumptions
and approximations whose validity is doubtful. A
general survey of these methods is the main object o
the present paper. Knowledge of molecular quadrupole
moments is of interest not only because it helps in a
better understanding of all the phenomena resulting
from the interaction of the molecule with any other
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0, =-,' Qe;(3x,'—rP),
'b

//, „=-,' Qe;(3y,'—r ),

//gl=a g e'(3s r' ). (1.3)

8,=-,' (3x'—r') p(r) c/r,

(3y' —') p( ) ~,

(3s' —r') p(r) dr.

These a,re the three principal quadrupole moments of
the molecule. However, Eqs. (1.2) and (1.3) show that

// =8 .+0„„+//„=0

so that only two of these are independent.
If the distribution of the charges is considered to be

continuous, the summation over discrete charges need
to be replaced by an integration of the charge density
p(r) over the whole space. Thus
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If the charge distribution is symmetrical about any
axis, say s axis, then

e„=e„=—';e„=—,'e ( ay).

The problem of evaluation of the molecular quad-
rupole moments can be attacked in many ways. A
theoretical approach utilizes knowledge of the quantum-
mechanical wave functions.

For experimental measurement a direct method is,
in principle, possible. In this the energy of interaction
of the molecule with an external electric field is meas-
ured. A simple electrostatic argument' shows that this
energy consists of, besides other terms, a term de-
pending only on the quadrupole moment 0 p of the
molecule and the gradient F p' of the applied held at
the center of the molecule. Thus if one can separate
out the contribution of this term for known Qeld-

gradient values, the quadrupole moment comes out
directly. But this method is not practicable because
of the difhculties in producing sufBciently large field
gradients over the size of the molecule. The largest
gradients obtainable are of the order of 1000 esu while
the quadrupole moment values are only of the order
of 10 esu. Thus the contribution of the quadrupolar
term is only about 10 "ergs which is difticult to sepa-
rate out from the rest of the interaction energy. Thus
this direct method which can work well in the case of
the dipole moments, fails in the present case.

However, a slight modification of this results in an
elegant method, applicable to the molecules with ani-
sotropic polarizability only. The application of an ex-
ternal electric field makes these molecules birefringent'
and the amount of birefringence induced depends on
the interaction of the molecule with the applied Geld.
A method based on measuring the birefringence re-
sulting due to the interaction proves to be practicable.
This method was first suggested by Buckingham' in
1959 and has since been successfully applied to the
case of the CO2 molecule. '

The other method is to study the interaction between
two molecules themselves. At a point a few angstroms
from a polar molecule, the field gradient is ~10' esu
whereas the 6eld strength is only ~10 esu. Thus if a
second molecule comes in this region, it will interact
with the field of the first one giving rise to an inter-
action energy. The contribution of the quadrupolar
term (e eE e' 10 ") to this energy then is of a com-
parable order of magnitude to the contribution of the
dipolar term (pF~10 "). Thus molecular quadrupoles
contribute significantly to intermolecular forces and
this suggests that their indirect evaluation from a study
of these forces should be practicable. These indirect
methods are the ones that involve one or the other
observable phenomenon to which the presence of a
finite interaction between the gaseous molecules gives
1lse.

The principal methods for the evaluation of the mo-
lecular quadrupole moments can thus be listed as

follows:

1. The Molecular Orbital Method.
2. The Induced Optical Birefringence Method.
3. The Second Virial CoeS.cient Method.
4. The Spectral Line-Broadening Method.
5. The Anisotropic Susceptibility Method.
6. The Dielectric Constant Method.
7. The Pressure-Induced Absorption Method.
8. The Bond Moments Method.

A few other methods, e.g., "the quadrupolar radi-
ation method, " "the macroscopic-quadrupole vibration
method, " etc. have also been proposed. But the in-
vestigations show that none of these can be regarded
as practical methods for the evaluation of the molecular
quadrupole moments having a wide applicability. A
detailed survey of these will not be made here. For a
brief discussion one may refer to the previous review. '

II. THE MOLECULAR ORBITAL METHOD

In the molecular orbital method one evaluates the
nuclear and the electronic contributions to the mo-
lecular quadrupole moment, separately. For the nu-
clear contributions, a straightforward computation of
the quadrupole moment components from Eqs. (1.3)
is feasible because the charges in the different nuclei
and their positions in reference to the origin (usually
the center of mass of the molecule) are known.

For the electronic contributions, such a direct cal-
culation is not possible/because of the continually
changing positions of the electrons so that their coordi-
nates x;, y;, s;, and ~; can not be uniquely dehned. For
such a case of a continuous charge distribution the
quadrupole moment components are evaluated from
Eqs. (1.4) with density p(r) of the distribution given
by

~(r) =e Z I 4'(r) I' (2.1)

where e is the electronic charge and g, is the wave func-
tion associated with the ith electron. The two center
integrals, if any, involved in this evaluation may be
taken from Coulson's paper. '

To determine the different wave functions P; use
is made of the molecular orbital theory. ' " The self-
consistent field molecular orbitals g; are usually de-
termined in the linear combination of atomic orbitals
approximation using one or more Slater-type orbitals"
or Gaussian orbitals" as the basis for the linear com-
bination.

It is sometimes more convenient and advantageous
to use the method of equivalent orbitals developed
by Lennard-Jones. ""In this the set of molecular or-
bitals P, is transformed by the methods based on group
theory to another set of orbitals which have the prop-
erty of equivalence in the sense that they are inter-
changeable under the operations of the group. It is this
set of equivalent orbitals which is used in Eq. (2.1) to
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calculate the charge density' '~ and then the quad-
rupole moment components'r from Eqs. (1.4).

(n.—n„)p ——KF'. (3.1)

However, if the field is inhomogeneous, an additional
interaction between the gradient of the applied 6.eld

III. THE INDUCED OPTICAL BIREFRINGENCE
METHOD

Application of an external electric held E makes a
Quid optically birefringent, that is to say, the Quid
becomes doubly refracting having one value (say n, ) of
the refractive index for light beams with electric vector
parallel to F and another value (say n„) for light beams
with electric vector perpendicular to Il. The difference
(n n„—) is known as the optical birefringence induced

by the field E and is determined by the interaction of
this field with the molecules of the Quid.

If the field is uniform, the interaction is that between
the strength of the field and the permanent dipole mo-
ment as well as the polarizability anisotropy of the
molecules. The resulting birefringence has been iden-
ti6ed as the normal Kerr effect and is proportional to
the square of the strength of the applied field"

and the quadrupole moment of the molecules will come
up. This will result in an additional birefringence
(n, —n„)p. , which is proportional to the gradient of
the applied field

(n, n„—)p. =QP (3.2)

Theory of the Method'

Consider a molecule whose position and orientation
are described by a variable T and suppose it is placed
in an electrostatic potential field Q. Then its energy
u(r, @) can be expressed as

The proportionality factor Q, for a dilute gas of axially
symmetric molecules, is given by

Q= (4m'/15) [~i58+(8/kT) (n"—n') j, (3.3)

where X is the number of molecules per unit volume,
8 is the quadrupole polarizability of the molecules,
and 0|"and 0.' are the polarizabilities parallel and per-
pendicular to the symmetry axis, respectively.

Thus if the component of the birefringence due to
the gradient of the field could be separated out, the
quadrupole moment can be evaluated from Eqs. (3.2)
and (3.3).

N(r, 4) = IN I -&-—2~-eF—-Fe 6P-e.—F-FeF, ~-eysF.FeF,Fs

3 aeFae 3~a:eyFaFey 6~ap:y/aFeFy8 6Cae:y5Fap Fyb ' ' '
f ~ (3.4)

where I' is the energy of the molecule in the absence of the 6eld, p and 0 p are the permanent dipole and quad-
rupole moments of the molecule, F and F p' are the applied 6eld strength and the field gradient, and the higher-
order tensors denote the polarizabilities.

Differentiation of (3.4) with respect to F gives the total dipole moment y, of the molecule as

Ilja++aeFP+a~ap7FPFv+6 Yaev&FeFqF'5+3+a:pqFe~ +qBae ~gFeF~y +
where e ~~ ee~~, ~ . denote unit vectors along the n, p, . component directions.

Differentiating (3.5) with respect to Fe, one gets

~~-'/~Fe= I&-e+&-evFv+2&-ev~FvFi+3&-e:&~A~'+". )e-' ee =~-ee- ee,

(3 5)

(3.6)

where & ~ stands for the quantity within brackets. The quantity on the left-hand side describes the increase in
moment p ~ per unit increase in the field Fp and is known as the "differential polarizability" associated with a
and p directions. Similarly the differential polarizability associated with the perpendicular directions is ~ ee &ee&,

where e ~, ee~, ~ ~ ~ denote the unit vectors at right angles to the n, p, ~ ~ ~ directions. The difference s'(r, p) be-
tween the two is

&(&) 4') [&ae+PaeyFy+27aeylyFS+3~ap:75Fy8 +' '](ea ee ea ee~) ~ (3.7)

The difference (n —n„) between the refractive indices for light beams with electric vectors along x and y then
becomes

(n, —n„) =2 X-,

where f is the average of ~(r, Q) over all configurations r, averaged with a Boltzmann-type weighting factor

7j= Ã T, exP —I T, kT t& exP —I T, kT 4T. (3 9)

Since g. depends on the applied Geld also, it can be expanded in terms of its value and the derivatives at &=0.
Thus

(& l 1/&'l
(3.10)
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Here the Grst term denotes the value of 7r in the absence of the applied field, the terms in the first bracket give the
various order contributions from the Geld strength, those in the second bracket give the various order contribu-
tions from the gradient of the Geld and so on. In the second bracket the second-order term comes out to be zero
so that for all moderate Geld gradients, only the first term in F„need to be considered to describe the anisotropy
due to the Geld gradients. Thus

Now Eq. (3.9) shows that
(S)e.~

——(Brr/BE, ') e=pP,.'. (3.11)

B~ ~

BF 'je p

—(kT) ' +(kT)—'(s. (3.12)

where ( ) indicates an average over the configurations r, averaged with a Boltzmann-type weighting factor.
Equation (3.7) shows that

~(r 0) —a p(e lleptl e ~eel)

which vanishes on averaging over all directions of e ~~. Equation (3.12) thus reduces to

(Bx/BE,.')e~——(Bs/BF,.')e=e —(kT)—'{m(BN/BP,.') ).
For an applied Geld such that F„'= F~' and F—„'=0, one finds from Eq. (3.7) that

{Bvr/BE.,') = ,'B.p ,e((e.~ ~—ep~~ .e.~ep~) (e,—~~ee~~ —e~e ~e) ).
A simple trigonometrical analysis then shows that

{e~~~ep~ ~e~~ ~ee~ ~ )= (e ~epee~&ee&) =y', (RpB~e+—b~~&pe+Re&p~)

(e ep e;ee~)={e ep e, ee )=~(4~.pave ~ Ae —~~Bee)~

where b p=1 if a=P and, =0 if a/P. Substituting from equation (3.15) in Eq. (3.14) one finds

(B~/BF,') =—.',a.p, 7e(—2B.pB„+3&.,Bpe+3B.esp,j.
From Eqs. (3.4) and (3.7) one has

(3.13)

(3.14)

(3.15)

(3.16)

and so
fx(BN/BF, ') je e= —-',B„ia p(e ~~ep~~ —e &ep&) (e~~~ee~~ —e~&ee&)

{~(BN/BP,') )e=o= x'eB,ea.ptt 2—B-pB~e+3B 7—~pe+3~ eBpvj. (3.17)

Substitution from Eqs. (3.16) and (3.17) into Eq. (3.13) then gives

(B~/BP**')e o=~E&-p:-p+(kT) 'B-pa.pj.
Equations (3.8), (3.11), and (3.18) then give the induced birefringence as

(n, e„)e...=(4~X/15—) F,.'[a.p,.p+(kT) 'B.pa.pj. -

(3.18)

(3.19)

If the molecules are axially symmetric having a quadrupole moment 0 and the polarizabilities 0."and 0.' along and
at right angles to the symmetry axis, then Eq. (3.19) reduces to

(ii.—e„)F..——(4slV/15) P,.'$8.p.p+(B/kT) (a"—a') j. (3.20)

{Note added im the proof. Buckingham and Pariseau
LA. D. Buckingham and M. Pariseau, Trans. Faraday
S«. 6&, 1 (1966)j have given the quantum-mechanical
derivation of an expression for (e,—e„) and its applica-
tion to diatomic molecules. This treatment introduces
thoro distinct modiGcations. One takes care of the dif-
ferent discrete rotational states of the molecule and
results in a more complex temperature dependence
than the simple T ' law obtained classically. The
other takes care of the nuclear motions and introduces
the derivatives of the equilibrium separation quad-
rupole moment B, in the expression for (ri, I„).It-
may be noted that this makes the evaluation of quad-

rupole moment from this expression more difficult. It
has also been observed that for CO2 at room tempera-
ture these corrections are unimportant while for H2 at
room temperature they lead to a value of the birefring-
ence about 75% of the classical value. At lower tempera-
tures the corrections may become more important. J

For spherically symmetric molecules 8 p. p
——~9.

For other molecules there are more than one quad-
rupole polarizability components and further simpli-
Gcation is dBBcult. However, for simplicity this quan-
tity is replaced by (15/2) 8 for the axially symmetric
molecules also. Thus the birefringence due to the
gradient of the Geld can, for the axially symmetric
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molecules, be written as

(40, —n„)p .. ——(40rX/15) E,.'[—",B+(0/kT) (n" n—') ].
(3.21)

Thus if the anisotropy (n"—n') and the quadrupole
polarizability 8 are known, measurements of the bire-
fringence would lead to the molecular quadrupole
moments from Eq. (3.21).

The details of the experimental method of measure-
rnent of the induced birefringence may be seen else-
where. 8

IV. THE SECOND VIRIAL COEFFICIENT METHOD

Many gases exhibit deviation from ideal gas be-
havior. This deviation is expressed in terms of the
virial coeKcients as"

PU 8 C D
Deviation= —1 = +,+ +.~ ~ . (4.1)RT V V' V'

In an actual case of two interacting molecules the
interaction potential I consists of a number of terms.
Each term, in general, has a separation-dependent term
multiplied by certain functions of angles Hi, gi, and e&,

g0. For convenience the potential Q is expressed" such
that the angular functions appear in the form of spheri-
cal harmonics

(1—I rri[)! 'i'
Si„= (2l+1) Pi (cos 8) exp (&iip).t+m !

(4.6)
The interaction potential u then has the form

Q= Z &'""(r)5',-(0, 4 )~i2-(!t0, e), (4.~)
l il2m

where P'" (r) incorporates in itself the raclial de-
pendence as well as the other constants not included
in Sg, and Sl2 . Since $00= j., this reduces to

Q=Q +Q
where

QO —)000(r)

= g ~""-(.)~,.(e, ~)5,(0., ~) (48)
lIL2m

a prime over the summation sign indicating that the
summation is over all the terms except the one for
which /~

——l2=m=o.
Thus I' is the term independent of the orientations

0 and p while Q' becomes the orientation-dependent
term In E.q. (4.4) then one can interpret B0(T) as
the contribution to the second virial coeKcient from
the orientation-independent or the so-called central
forces, while Bi(T), B0(T), ~ ~ ~ can be interpreted as
first-order correction, second-order correction, ~ ~ ~ to
second virial coefFicient B0(T) when noncentral forces
are present in addition to the central ones. If the non-
central forces are small, (Q'/kT) will be small so that
B0(T) and higher-order correction terms containing
the third and higher powers of (Q'/AT) can safely be
neglected. The virial coefficient B(T) then becomes

B(T)=B0(T)+Bi(T)+B0(T), (4.9)

where B0(T),Bi(T), and B&(T) are given by Eq. (4.5) .
Equation (4.5) gives

If there is no mutual interaction between the molecules,
the gas behavior will be ideal and the coefhcients
8, C, D, ~ ~ ~ will all vanish. However, if a finite inter-
action exists, the coeKcients are Gnite. If the rn.gg-
nitudes of these virial coeKcients are known it should
be possible to draw inferences about the interactions.
In particular, if the explicit expression for the second
virial coeKcient 8 in terms of the interaction potential
I is known one can calculate the leading unknown pa-
rameter of this potential. In most cases the molecular
quadrupole moment 0 is this parameter. A trial value
of 8 is used for calculating the value of 8 from the
known expression. This value of 8 is compared with
the measured 8 and the value of 0 is adjusted such that
the two 8 values agree.

Theory of the Methodl —"

Second virial coefficient 8 is explicitly given in terms
of interaction potential energy u by the equation

E
B(T)=— [1—exp (—Q/AT)] dr, (4.2)

8

where E is the Avogadro number, k is the Boltzmann
constant, T is the temperature of the gas, and dv is a
volume element.

Suppose that the potential I can be broken up into
two parts as

B0(T) =2m'S [1—exp (—Q0/kT)]r0 dr.

Q=Q0+Q .
Then Eq. (4.2) yields

0

(43) If the central force potential Q is taken to be the
Lennard-Jones (12-6) potentiaP'

where

B(T)=B0(T)+ Z B.(T),
@=1

(4.4) then

where

Q0 =40[(r0/r) "—(r0/r) ']

B,(T) =-; Xr,V (T*),

(4.10)

(4.11)

g
B,(T) =— [1—exp (—Q'/kT)] dr,

Sx
F(T') =3r0—' [1—exp (—Q'/kT) ]r' dr (4.12)

Ã 1 I' is known as the reduced second virial coe@cient and
B (T) = —— ———exp (—Q'/kT) dr (4.5) has been ta.bulated by Hirschfelder et ul '4 as a function.

84r „,i P! AT of T*=AT/0.
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(u')A„———4oa (ro/r) ", (4.13)

where the only two unknown parameters u and e are
to be adjusted appropriately in any specific case. Sub-
stituting this above one gets

B~(T) = —o~&ro'(a/4) L&.(r) ly'), (4 14)

where y=2(o/kT) 'l2 and H„(y) is the function

H„(y) =12y'r" ' r "exp ( u'/kT)r'd—r. (4.15)
0

This function has been tabulated by Buckingham and
Pople."

However, if several interactions are present simul-
taneously, (u')A„may have to be expressed as a sum
of two or even more terms as

For B~(T) one has from Eq. (4.5)

2+X
B~(T) = r'(u'), „exp ( —u'/kT) dr,

0

where (u')A, indicates a classical average of u' over all
orientations. This will evidently consist of some inverse
power of the separation r multiplied by some constants.
One therefore takes it to be of the form

)i&tom(y) 4&b(yo/y) s (4.18)

where the two unknowns b and s are to be adjusted
appropriately in any speci6c case. Substituting this
in the above expression for B2(T)

B2(T) = ——22~cVroo 2' Q' b2aoe(y) . (4.19)
Z1Z2m

However, it is quite possible particularly when di-
rectional interactions of several types are being con-
sidered, that p"2 (r) may have to be expressed as a
sum of two or even more terms as

t"""(r)=4oLbi(ro/y)'&+b2(yo/y) "+ ") (4 20)

This can similarly be expressed in terms of the average
of I'. But in this case it is more convenient to use the
form of u obtained in Eq. (4.8). Substituting this and
using standard properties of spherical harmonics

Ex
B2(T) g& y2 exp ( uolkT) Bl&iom(y) )2 dy

Z1Z2m 0

The radial function P'" (r) consists of some inverse
power of r multiplied by some constants. One therefore
takes it to be of the form

(u')„„=—4oLa, (yo/y) ~~+a (r,/r) ~2+. ~ .) (4 16) A substitution then gives B2(T) as

B2(T) then becomes

Bi(T) = —22r&yo'(A(&2) L& (r)/r')
+-'. (a2) L&-,(r)/y')+" I (417)

For B2(T) one has from Eq. (4.5)

B2(T) = —(X/162r'k2T') u" exp (—u'/kT) dr.
vol

B2(T) = 22r&yo 's Z' LbP&2 (y)+b2% (y)
Z1Zmm

+ ~ ~ +2b&b28„+,2(y) + .). (4.21)

Substituting from Eqs. (4.11), (4.17), and (4.21)
in Eq. (4.9), the complete expression for the second
virial coe%cient B(T) to the second order for a gas
having a small noncentral force in addition to central
one between its molecules, is

B(T)= 2~&yo'L~(T') —
I 2 (a2) Ã-2(r) /r')+-'(a2) L&-2(y) /y')+ "

I

—o2 Q' f b22H2 (y) +b22H2 (y) + ~ ~ +2bgb2B'„+„(y) + ~ ~ f), (4.22)
Zylgm

where the central force is represented by Lennard-Jones potential LEq. (4.10)) and the constants a2, 222, b2, s&, ~ ~

specify noncentral forces. These constants are the only unknowns in Eq. (4.22) and need to be evaluated for
noncentral forces of specific types.

Syeci6c Cases

DiPole DiPole I22teractio-22

The potential for a dipole-dipole type interaction is'

u~~ = (l2 /r ) L2 cos 82 cos 82+ sin 82 sin 82 cos ($2+Ij4)) (4.23)

sin 82 sin 82 d82 d82 dp2 de ——0

where p is molecular dipole moment. To assign appropriate values tp the constants a~, a2, ~ ~ ~ and nj, e2, ~ ~ ~ one
has to And the average value of I'

2 m x 2+ 2m 23 2a

(u.,')A, =—, u' sin 82 sin 82 d82 d8, d+ d&2
0 0 0 0 0 0 0 0

which by comparison with Eq. (4.16) gives

By=82= ' =8],=82= ' ' ' =0 (4.24)

Similarly, for assigning proper values to the constants bj., b2, ~ ~ ~ and s&, s2, ~ ~ ~ one has to express I in the form
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(4.8) and then compare the nonvanishing P'18"(r) with Eq. (4.20). Suppose on expressing u' in the form (4.8) the
only nonzero P'"m(r) are

Then,

$100 g (/t42/y8) $010 g (/42/y8) $110 g (/42/y3) gill (11-1 g (~2/y3)

u' = (/4'/r') Lgl&3 cos 81+g243 cos 82+3g8 cos 81 cos 82+3g4 sin 81 sin 82 cos ($1+it«4) ].
Comparing this with Eq. (4.23)

Thus the only nonzero $"""(r)are
xg= x2=0, 3&

=2 X4 3 ~

$110—2 (/42/y8) (111 gll—1 1 (~2/y3) (4.25)

Dipole Quad-rupole Interaction

The interaction potential is'

u„6'= (3/48/2r') p (cos 81(3 cos' 82—1)+2 sin 81 sin 82 cos 82 cos ($1+qh2) f

+ ( cos 82(3 cos' 8l —1)+2 sin 81 sin 82 cos 81 cos (&1+&2) I]. (4.26)

The average of this vanishes. The nonzero $"12"(r) are

$120 ( 3) 1/2 (/48/y4) $210—(3) 1/2 (/Ag/y4) $121 $12 1 5 1/2 (/48/y4) $211 )21—1 5-1/2 (~g/y4) (4.27)

Quadrupole-Quadrupole Interaction

The interaction potential is'

u60'= (38'/4r') L1—5 cos' 8l—5 cos' 82+17 cos' 8l cos' 82+2 sin' 8l sin' 82 cos' (pl++)
+16 sin 81 sin 82 cos 81 cos 82 cos ($1+at«4) ]. (4.28)

The average of this is zero. The nonzero $'"8~(r) are

In any other case also the average value of u' and the nonzero p"8 (r) can similarly be found out. The detailed
computation for every case has not been attempted here. The results are reproduced below.

$20 6 (g2/y6) $221 (22 1 4 (g2/y6) ]222 f22—2 1 (82/y6) (4.29)

E~rst-Order Indiction Interaction

The potential for interaction of the dipole of one molecule with the dipole that it induces in the other is"

u '= —(a/42/2y6) L(3 cos' 81+1)+(3 cos' 82+1)]. (4.30)

The average of this over all orientations is

The nonzero $"'8"(r) are

]000 2a~2/y6

(u„.„')A„———2a/t42/r6.

$020 5 1/2 (a/42/y6) $200 5—1/2 (a~2jy6)

(4.31)

(4.32)

Second-Order Indiction Interaction

The potential for interaction of the quadrupole of one molecule with the dipole induced in the second by the
dipole of the first plus that of the dipole of erst molecule with the dipole induced in the second by the quadrupole
of the Grst, is"

u'/„6+6 „~= —(12 8 //4a)(y7cos'81+ cos'82).

The average value of this potential vanishes. The nonzero P'" (r) are

$100—$010 (12~3/5) (tlga/y7) (800—(080— L24/5 (7)1/2] (tlga/y7)

Third-Order Indgction Interaction

(4.33)

(4.34)

The potential for interaction between the quadrupole of one molecule and the dipole induced by this quadrupole
in the second molecule, is' "

u6 «6 = —(9ag /4y )L1—cos 81—cos 82+2 cos 81+s cos 82].

The average value of this is
(u6 6')A„———3a8'jr'.

(4.35)

(4.36)
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The nonzero ("'2 (y) are
$200 $020

{ 12/7 (5) 1/2g (4282/y6) )400 ]040— X(4282/y6)

Anisotyopic Dispersion Interaction

The potential for dispersion interaction is~

Ne;,
' = —(1/y ) L {2A+x'8+8'+sC }+{(A B B—'+—C) (sin 81 sin 82 cos ($1+$2)

+2 cos 81 cos 82)'+3(B—C) cos'Hi+3(B' —C) cos' 82 ', (A+—B-2C) I j—, (4.38)
where

A = 4(k) 421 422 LV1 P2 /(Pl +P2 ) 1) B= 4 (k) 421 422 LPl V2 /(Pl +P2 )]
B = 4 (k)421 422 LP1 P2 /(Vl +P2 ) $q C= 4 (k) 421 422 { Pl V2 / (Vl +V2 ) jy (4.39)

]220 1 2K26 (y0/y) 6

where n~", n~', are parallel and perpendicular components of the polarizability of first molecule and vj.", v~' are
those of the fundamental frequency of oscillations for first molecule. n&", n2' and v2", v2' denote these quantities
for second molecule.

For an isotropic molecule n" and n' as well as v" and v' are identical and the constants 3, 8, 8', and C are all
equal. In I&,,' then all the terms except those in the first curly brackets vanish. These can therefore be regarded
as the isotropic part. This has already been accounted for by the inverse sixth-power term of Lennard-Jones po-
tential.

The remaining anisotropic part of dispersion interaction potential thus becomes

I', ;, 6;,= —(1/y') { (A —B—B'+C) {sin 81 sin 82 cos (1t1+e//2) +2 cos 81 cos 82}'

+3(B—C) cos'Hl+3(B' C) cos'82 ',—(A+B 2C—)-j. (4.4—0)

The average value of this is zero. The nonzero P'12~(y) are

$200 (020 (4/51/2) Ke (y0/y) 6

(221 (22—1 6K26(» /y) 6 @22 P2—2 4K26(» /y)6 (4.41)

where it has been assumed that v" =v'= v and where
use has been made of the fact that isotropic part is
equal to the inverse sixth-power term of Lennard-Jones
function.

In any specific case if more than one of these non-
central forces are present, the complete list of nonzero
$"42m(y) should first be written out considering all the
noncentral interactions present. It is only then that
the constants bj, b2 ~ ~ ~ and s~, s2, ~ ~ ~ are evaluated
by comparison with standard form. { Eq. (4.20) j and
substituted in Eq. (4.21) to get B2(T) .

The details of experimental method of measurement
of the virial coeKcients may be seen elsewhere. '7 "
V. THE SPECTRAL LIN E-BROADENING METHOD

The causes of spectral linewidth are the following":

1. Natural linewidth due to zero point energy.
2. Doppler broadening.
3. Wall collision broadening.
4. Saturation broadening.
5. Collision broadening.

Contributions of the first four causes in the micro-
wave and infrared regions are either negligible or can be
made extremely small by suitable choice of experi-
mental conditions. Experimentally observed line-
widths are thus due to the collisions among gas mole-
cules. These collisions produce the interaction energy
which perturbs the molecular energy levels causing
the shift and the width of a spectral line. If other mo-

lecular parameters are known a suitable value of the
quadrupole moment could be chosen to give the de-
sired results.

Theory of the Method

Many theories" "have been put forward to explain
the linewidths in the microwave and infrared regions.
But the one that has so far been most widely used is
the Anderson theory. According to this the intensity
I(40) at any frequency 00 in a broad line is given by" 40

I(40) = const X ". .. (5.1)
(40 —&e,t+nvo;) 2+ (neo„) ' '

where 0-„and o.; are, respectively, the real and imaginary
parts of the collision cross section 0-, e is the number
of rnolecules per unit volume given by

n =9.68)(Lp(mm Hg) /T( K) j)(1016 (5.2)

and where ~ is the average relative velocity of the two
molecules given by

o =

(SENT/Mlr)

'/', (5.3)
where E is the gas constant, T the temperature, and
M the reduced mass of the system of two molecules.

Equation (5.1) shows that the half-intensity half-
width of the line is

44 p = (nl//22r) o„. (5.4)
The radiating molecule interacts with a large number

of molecules passing at diGerent distances from it.
The number of molecules which pass at a distance b
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O'J
2 22rb dbS(b) .

0

The function S(b) can be expanded as4'

S(b) =Sp(b) +S2(b) +S2(b) +
where Sp(b) is zero, S&(b) is an imaginary quantity,
while S2(b) is a real quantity. Since we are interested
in the real part alone, the partial cross section to the
first order becomes

o.f2= 22rbS2(b) db.
0

is proportional to 2~b db. Interactions with some of
these lnay disturb the radiation completely, with others
less completely, while with still others it may not dis-
turb at all, depending upon their separation, their
energy states, and upon the types of interactions in-
volved. It is thus convenient to define a probability
function S(b) which specifies the probability that the
interaction with a molecule in the rotational state J2
passing from a distance b will disturb the radiation
completely. Thus the effective number of collisions that
do actually disturb the radiation is only 22rb dbS(b).
This when integrated over all b gives the cross section
for collisions with the molecules in the J2 state

The function S2(b) has a very small value for large b

and increases as b decreases till at b=bp, S2(bp) =1.
But as S2(b) is a probability function, a value greater
than one makes no sense. So it is assumed that for
b=bp to 0, S2(b) =1.of, then becomes

0 jp —1lbp +
bp

22rbS2(b) db. (5.5)

The cross section for the molecules in different rota-
tional states is, in general, different and Bn average
must be found for the effective collision cross section 0.„

ifr=Xr Pfpiff2 ~

J2
(5.6)

where pJ2 denotes the fraction of the molecules in the
rotational state J2 which for the case of linear mole-
cules is given by"

(5 't)

where 8 is the rotational constant of the second mole-
cule and other symbols have their usual significance.

The probability function S2(b) has been calculated
in terms of the I' matrices and is expressed as"

1 (J.mAm2 I
&'

I
Jm'J2m2) (JfmfJpmp I

&'
I Jfmf Jpmp)2, , (2J,+1) (2J2+1) „f, (2Jf+1) (2J2+1)

(Jf1mfM
I
J,m, ) (Jflmf™

I
Jm, ')

X (JfmfJpmp I
&

I
Jfmf'J''m2') (J.m''J2'm2'

I
&

I
J 'm'Jpmp)

m&m&/mf mf /m2m2/cV J2/

where J' is a matrix with its elements (5.8)

(m I
I'

I n) =l2—' exp (i48 „t)(mIH, (t) I n) dt. (5.9)

The matrix I' and the function S2(b) thus depend on the collision interaction Hamiltonian H, (t) .
The forms of S2(b) and of of2 obtained as a result of subsequent integration LEq. (5.5)j have been worked out

for interactions of different types. A detailed derivation is not attempted here but the results are reproduced below.
In the general case of two interacting molecules, the leading interactions are of the following types: the dipole-

dipole, the dipole —quadrupole, the quadrupole-dipole, and the quadrupole —quadrupole representing electrostatic
forces, erst-order and second-order induction interactions, the dispersion forces, and the exchange forces.

The probability function is then" 44

S2(b) {S2(b) p482+S2(b) p«2+S2(b) 8482+S2(b) 8482 }+{S2(b) piappi+S2(b) p«za2} +S2(b) dis+S2(b) exoh (5 10)

The individual contributions S2(b)„,„„~~ ~ are4P 44 "
S2(b) „,„,=A'„482b '{ Q D&(J4Ji') D2(J2J2')f&(k) + Q D&(JfJf ) D2(J2J2 )f&(k) }J'/ J2/ Jf/ J2/

S2(b).«.=A'.«2b '{ Z D2(J'J'')Q2(J2J2')f2(k)+ Z Di(JfJf')Q2(J2J')f2(k) }
Js/ J2/ Jf/J2/

S (b) ~ =A'8 b '{ 2 Q(J'J'')D(J J')f (k)+ 2 Q(J J')D(J J')f (k)+& ZD(J J')f (k)}
Js/ J2/ Jf/ J2/ J2/

S2(b)882= A288 b '{ Q Q2(J'J'')Q2(J2J2')fp(k)+ Q Q2(JfJf )Q (J 2J )2f 2(k)2+8 P Q2(J2J'2')fp(k) }J /J2/ Jf/ J2/ J2/

S (b)„, ,„,=A"„, ,„,b "{g Q (JJ )g (k)+ g Q (JJ ') g (k) ya}
Jy/

S2(b)„«,~2=A"„,8, ,b "{g Dg(J,J,') gp(k)+ Q Dg(JfJf')gp(k) }
Js/ Jy/
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S2(b)dis S2(b) dis 2+So(b) d;. 4

S2(b)dis 2 A dis 2b {g Ql(JIJ4 ) gi(k) + g QI(JfJf )gl(k) +~}
J~/ Jf/

s(b) '. =A" . b "{Z Q(J&'')Q(J&')g(k)+ Z e(JfJf')e.(J~')g.(k)+~Re.(JJ')g(k)}
J' / Jm/ Jf/J, / J2/

S2(b)sxsll=A llbL1 4(42/b)+ 22 (o /b ) jC& &r 'exP { 2L(b

where

(5.11)

=-:( I 2/&2) ',
A's,=so(~u 2//4R)'

olsssi (21sl' /640) (422J41 //IR)

842I ele2 (421 eel ) e22
A'd

10240 el+22

Ap„„,=-.'-:-(ule29,.)2

A' s,s, = 2 'p(tJI9—2//42) '

A I'„,s...= (272r2/32) (pieiu2//42) '
22362r' eie2 (eei"—421') (422"—422')

A'pg;, 4=
1228800 pi+ 22 hv

256m
~s Isv) ' st+4 ' -', s sr+— (2+-',v) )3+v& 16 pl+22

(5.12)

p~, p2, Hj., and 82 are the dipole and quadrupole moments of the two molecules, e~ and e2 are their ionization energies,
0/&" and o,&' are, respectively, the parallel and perpendicular components of the polarizability of first molecule,
a2" and 0.2' are that for the second molecule, a and d are the range of exchange forces and the hardcore diameter,
respectively, and y = (e21"—421')/421.

Cf.~r =QI(J' J')+Qi(Jf Jf)+&
jP = ( —1) ~+~f2L(2J,+1)(2Jf+1)Qi(J, , J )QI(J'f Jf)J)'W(J JfJJf . 12)' (5.13)

where lV is the Racah coefficient given by

W(JJfJJf, 12) = ( —1)2fL(2J+5) (/+2) J(2J—1)31)2/L(J+1) (2J+1)(2J+3)j. (5.14)

DI, D2, Qi, and Q2 are the dipolar and quadrupolar transition probabilities" given for the case of linear mole-
cules, by

D(J, J+1)= J I
2J+1

J
D(J, J—1) =

2J+1

3 (J+1)(J+2)
2 (2J+1)(2J+3)

J J—2=--3 J(J—1) J(J+1)
2 (2J—1) (2J+1) (2J—1) (2J+3)J, J = 5.15

The functions fi(k), f2(k), fp(k), gi(k), g2(k), and gp(k) are functions of k= (22rc/2) b/JE, /2E being the sum of
transition energies of the two molecules, de6ned and tabulated elsewhere. ""

The partial collision cross section O.J, is obtained as44

Irfs=srbp 1+A oiosbp { Q DI(JsJs )D2(J2J2 ) Ei(kp) + Q D1(JfJf ) D2(J2J2 ) EI(kp) }
J'f/ Jg/

+A'sissbp '{ Z Di(J'J'')Q2(J2J2')F2(kp)+ 2 DI(JfJf )Q2(J+2')E2(ko) jJ./ J2/ Jf/ J2/

+Aps~sbp '{ Q Qi(J —J,')D, (J2J2')E2(ki))+ Q QI(JfJf )D (J2J 2)E2(k 2)+p8 QD2(J2J2')E2(kp) }
Jf/J2/ J2/

+A', ,b '{ Q Q (J,J,')Q (J J')E (ko)+ Q Q (JfJf')Q (JJ')F (ko)+J3 Qe, (J2J,')F (k,) j
Js/ Jp/ Jf/ J9/ Jg/

+A oistss4bp { p QI(J4J4 )GI(ko) + p Q1(JfJf )GI(ko) +4& j
J2/ J'f /

+A"„...,bo "{g D (J,J,')G -(k )+ Q D (JfJf')G (ko) }
Jp/ Jf/

+A"d;, 2b, "{Q QI(J,J,')CI(k )+ Q Q (JfJf')G (k )+,'8}-
Js/ Jf/

+A"d;. 4bo "{ Q QI(JJ'')Q2(J2J2')G2(ko)+ Z QI(JfJf')Q2(J2J2')G2(ko)+& ZQ2(J2J2')G2(kp)}
J42/

145 5 bp bp' bp —d+A'" .„,I, a'bp ' ———+—Cf,f, exp —2., (5.16)
32 4 a u'
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where b, is such that Sp(bp) =1, kp
——(2mc/p) bphF. and

where the functions Fx(kp), Fp(kp), Fp(kp), Gx(kp),
Gp(kp), and Gp(kp) are the functions of kp defined and
tabulated elsewhere. "44

J2=0 J2=0

The values of pJ, needed here are calculated in advance
from Eq. (5.7).

The half-intensity half-width Av is then calculated
from Eq. (5.4), using known value of p and that of e
from Eq. (5.2).

If any one of the constants of the two molecules,
particularly if the quadrupole moment of any one mole-
cule, be unknown the width is evaluated as explained
above for several values of the quadrupole moment
and a curve of linewidth vs quadrupole moment is
drawn. The value corresponding to the measured width
gives the best value of the quadrupole moment of the
Inolecule.

The details of experimental method of measurement
of microwave spectral linewidths may be seen else-
where. 4~52

Lineshift Method" "
An investigation of the lineshifts in the microwave

or infrared regions can also lead to the molecular quad-
rupole moments. Following the impact theory of
Anderson, Eq. (5.1) directly gives the lineshift as

bv =—(ep/2~) o, , (5.18)

where 0; is the imaginary part of collision cross section
averaged over all the rotational states J2 of the per-

Method of Comyutation4' "
One calculates the average relative velocity v from

Eq. (5.3) . With this p and other known constants of the
two molecules and an assumed value for the unknown
constant, if any, the different A coeScients are eval-
uated from Eq. (5.12). Then for a given value of Jp
a trial value of b is taken and Sp(b)»», etc. are cal-
culated from Eq. (5.11). If the value of the function
Sp(b) comes out to be different from unity, another
value of b is taken and the calculations are repeated
till Sp(b) becomes unity. The corresponding value
of b is b0. With this b0 then the partial collision cross
section az, is evaluated from Eq. (5.16) using the known
values of A coeKcients and transition probabilities and
the values of Fq(kp), ~ ~ ~ from the tables.

The value of OJ, is thus found for every J2 starting
right from J2=0 and upto the value say J2 " after
which OJ, becomes independent of J2. In practice the
calculation of O-J, at five or six values of J2 and a sub-
sequent graphical interpolation for intermediate values
of J2, sufFices. The average collision cross section 0-„ is
then evaluated from Eq. (5.6) in the following manner:

turbing molecules

PJPJ: .
J2

(5.19)

Since we are now interested in the imaginary part
alone, the partial collision cross section O.J, is

~g, =~bp'+ 2mbSg(b) db,
bp

(5.20)

(JrmfJpmp
~
F

~
JrmfJpmp)

5.21
(2Jf+1) (2Jp+1)

The theoretica, l lineshift investigations have been
carried out mainly in the infrared region only by a
number of workers. ""But the expressions for the
function Sq(b) and the collision cross section have so
far been worked out only for the induction and dis-
persion interactions in an attempt to explain the shift
of a dipolar line perturbed by rare gas molecules. How-
ever, the expressions for electrostatic interactions can
be derived in a similar manner. Then if 0 is the only un-
known parameter, its value may be suitably chosen to
fit the experimental lineshift data.

Recently, Kranendonk" '7 has investigated the
broadening of Raman lines and it appears that these
investigations may also lead to molecular quadrupole
moments. However, as the accuracy of Raman line
measurements may not be very high, the values may
probably not be very reliable.

VI. OTHER METHODS

The Anisotroyic Susceytibility Method

The diamagnetic susceptibility of a molecule is, in
general, anisotropic. For axially symmetric molecules
the susceptibility g" along the symmetry axis and p'
at right angles to it are given by"

x'= (e'/4me') g (yP+sP) +xHF'

x"= (e'/4mc') Q (xP+yP),

where x;, y;, s; are the coordinates of ith electron and
the summation is over all the electrons in the molecule,
XHF' is the contribution to x' from the high-frequency
matrix elements occurring in the theory of diamagnetic
susceptibility. This contribution to z" is zero because
of the symmetry of the Hamiltonian of the electrons
about the molecular axis.

where S&(b) is the leading imaginary term in the ex-
pansion of S(b) and where it has been assumed that
from b =bp to 0 Sy(b) = 1, bp heing such that Sg(bp) =1.

The function S~(b) is expressed in terms of the F
matrices t Eq. (5.9)$ as follows~:

(J,mJpmp
~
F

~
J;mgpmp)

(2J,+1) (2Jp+1)
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Equations (6.1) yield

e g (sP —x,&) =(4mc'/e) f (JI' —X")—XHR'}. (6.2)

The left-hand side of this equation is identified as the
electronic contribution to the molecular quadrupole
moment and can be determined provided the ani-
sotropy (X'—JI") in diamagnetic susceptibility and
the high-frequency contribution pHF were known.

The anisotropy (x' —x") is determinedoo by study-
ing the dependence of diamagnetic susceptibility on
the orientation of molecular rotational angular mo-
mentum. Iet g~ represent the diamagnetic suscepti-
bility of a molecule with rotational quantum number
J=I and with rotational magnetic quantum number
equal to M. If 8 be the angle between the applied field
and the internuclear symmetry axis

Xsr=JI (slI1 8)AI+X (cos 8)sr (6.3)

where the angular brackets indicate an average over
the state concerned. These averages have been evalu-
ated for the three possible values of 3f and are"

(sins 8)~I= 4o,

(cos' 8)

(sin' 8)o ——-,'
(cos 8)o=o. (6.4)

Substituting this in Eq. (6.3) one gets

(x' —x") =2 (x+I—xo) (6 5)

The difference (x+I—xo) has been measured by
Ramsey'o using molecular beam experiments. This
gives the anisotropy (X'—Jj").Its value for a number
of molecules is now available in literature. "

The high-frequency contribution xap' has been
shown' to be related to the rotational magnetic mo-
ment of the molecule. This can be measured by study-
ing the radio-frequency spectrum of a molecular beam
in a strong magnetic Geld. ' "

The structure of the molecules being known from
other sources, the nuclear contribution to the molec-
ular quadrupole moment is calculated directly from
Eq. (1.3).

The Dielectric Constant Method

The dielectric constant of any real gas is determined
both by the properties of isolated molecules and by the
effects of molecular interactions. If the interactions are
small, they can be neglected completely and the di-
electric behavior of the gas is represented well by
Clausius-Mossotti equation'

L(o—1)/(o+2) 3(u/v) =~ (6 6)

where (n/v) is molar density of the gas and A =4srII/3,
0. being average polarizability of the molecuIes.

However, for a real gas the effect of molecular inter-
-actions is fairly important and one has to consider the

complete virial expansion of the Clausius —Mossotti
function as'3

(6.7)

where the coefficients 8, C, ~ ~ ~ are known as second,
third, ~ ~ ~ dielectric virial coefIIicients. The second co-
eScient 8 incorporates the eGects of pair interactions,
the third one C that of the three body interactions and
so on.

The second dielectric virial coefIicient 8 has been
calculated theoretically'~or considering the dipole mo-
ment induced in a molecule by the quadrupolar Geld
of a neighboring molecule at the Grst one. Its value for
a nonpolar gas of axially symmetric molecules is

16m'¹
J3= II'8'(1+-;A')jkr r o exp f

—u(r)/kT}ro dr,

(6.8)

The Pressure-Induced Absorytion Method

Transient dipoles may be induced in the molecules
when perturbed by strong external fields or by inter-
molecular force Gelds. Thus nondipolar gases may also
exhibit rotational absorption at high pressures. Such
absorption has been observed in a number of gases. 6~~~

The integrated intensity at moderate pressures increases
as the square of the density indicating that the absorp-
tion is caused by the bimolecular force Gelds. The
quadrupole Geld has a greater range than other possible
force fields. In fact the pressure induced rotational ab-
sorption has so far been observed only in the quad-
rupolar gases such as CO2, C~H4, etc. I'"or gases like
CH4 and SF6 having higher multipoles as their leading
multipoles, the absorption is immeasurably small. v'

Considering these quadrupole induced dipoles,
Maryott and Birnbaum" have derived an expression
for the loss factor in terms of pertinent molecular pa-

where Ã is the Avogadro number, ~ and 8 are, respec-
tively, the polarizability anisotropy and the quadrupole
moment of the molecules of the gas, and u(r) is the
pair interaction potential assumed purely radial in the
theory.

Using a Lennard-Jones potential fEq. (4.10)g for
u(r) one has

&= (~&~/3X)' (1+eR') (8'/«o') &~(X), (6 9)

where H„(y) is the function as defined in Eq. (4.15)
and tabulated by Buckingham and Pople. 2'

The coeficient 8 may be evaluated experimentally
also by"" Gtting the observed dielectric constant data
into Eq. (6.7). Then if other molecular parameters
occurring in Eq. (6.9) are known, the value of quad-
rupole moment 0 may be chosen such that the two
8 values agree.
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rameters. They obtain

e"=3(eo—e )(uvrro(1/e)/28, (6.10)

where (eo —e ) is the total contribution to the dielectric
constant arising from quadrupole induced dipoles, co

is the angular frequency, yo is kinetic collision diameter,
and (1/v) is the Boltzmann average of the reciprocal
of the relative velocity.

On introducing the molecular parameters and re-
arranging, Eq. (6.10) becomes~2

7 Vsrp I
e' (kT) i

02
3&'7/2 g 3/2 ) 2 2y ~l/2 r 'exp I

—N(r)/kT]r'dr, (6.11)

where 0 is the molecular quadrupole moment, 0. is the
average polarizability of the molecules, Ã is the
Avogadro number, M is the molecular weight, Vs~p
is the molar volume at I atm and O'C, p is the density
in Amagat units, and where N(r) is the intermolecular
potential assumed purely radial in the theory.

Using Lennard-Jones potential LEq. (4.10)j for
e(r) one has

8' = 112 ~ —,(6.12)
~STP' ~' yO'

'II2+3/2 ($2') l O2~ I Q (y) )'

where H„(y) is the function as defined in Eq. (4.15)
and tabulated by Buckingham and Pople. "

Thus if other molecular parameters were known,
Eq. (6.12) could be used to evaluate molecular quad-
rupole moments from the measured absorptions at
known values of the density and frequency.

The Bond Moments Method

Let us consider a molecule having several bonds with
known multipole moments. Then an approximate dis-
tribution of the charges in the bonds can be obtained
provided a suitable model for this is assumed. One
assumes'4 a classical model in which each bond is sup-
posed to consist of two +e charges at each of the two
nuclear positions and two circular charge rings each
of radius r and charge —e at distances say sl and s2

from the center of the bond. The coordinates y, sl, and

s2 are then to be found.
The contributions of the discrete positive charges

to the bond moments are calculated directly and sub-
tracted from the known moments to get the contribu-
tions y, P, 0, P, ~ ~ ~ of the charge rings to the dipole-,
quadrupole-, octopole-, hexadecapole-, ~ ~ ~ moments of
the bond.

These are calculated directly also from Eq. (1.4).
Thus

IM =r(si+sp)

P = e (sP+s2' r')—
fl =eLsi'+sm' ——;r'(si+s2)j. (6.13)

A simultaneous solution of these three equations gives
the coordinates r, s~, and s2.

The contribution of the rings to the quadrupole
moment 8 of the molecule is then calculated from Eq.
(1.4). The nuclear contribution is calculated directly

from Eq. (1.3). The inner-shell electrons, if any, may
be considered along with the appropriate nucleus.

VII. DISCUSSION

The Molecular Orbital Method

The molecular orbital method is, in principle, ap-
plicable to any type of molecule. There are no restric-
tions as regards the symmetry properties of the mole-
cule. This makes it specially suitable and advantageous
for asymmetric molecules like 820, NH3, ~ ~ ~ for which
so far it has not been possible to apply most of the
other available methods. The method is a direct one
starting from the microscopic standpoint of electronic
charges and nuclei constituting the molecule. It has the
credit of determining the magnitude as well as the sign
of the molecular quadrupole moment.

This method is based on the knowledge of electronic
wave functions which are determined by the considera-
tions of energy of the molecule. But the energy of a
molecule is not so sensitive to these wave functions as
is the molecular quadrupole moment. The quadrupole
moment values derived from these wave functions will
therefore not be very reliable.

The determination of electronic wave functions in-
volves evaluation of the multicenter Coulomb and ex-
change integrals between diferent electrons of the
molecule. This becomes prohibitively tedious as the
number of centers exceeds three or four. The applica-
ability of the method is thus limited to smaller mole-
cules only.

The Induced Optical Birefringence Method

This is a direct method determining the magnitude
as well as the sign of the molecular quadrupole moment.
It is applicable for the axially symmetric molecules
only.

The measurement is essentially of the quantity
y=t'~'8+(0/kT) (u"—u') j. Thus the values of the
quadrupole polarizability 8 and the anisotropy (u"—u')
must be known before the quadrupole moment 8 can be
calculated. The value of 8 can be assessed by making
the measurements over a range of temperatures and
plotting y against 1/T. For obtaining an appreciable
range in y, a fairly large range of temperatures has to
be covered. But there are practical difhculties in ex-
tending the temperature range upwards while at lower
temperatures the low vapor pressure of most of the
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gases of interest presents practical difficulties. Thus an
accurate assessment of 8 is rather difficult. It is then
seen that for many molecules it contributes at most a
few per cent only. The inRuence of 8 is therefore neg-
lected completely. This neglect is justifiable for mole-
cules with large values of the product 8(a"—n') but
not for those with smaller values of this product. In
many molecules, as for example in the H2 molecule,
the two terms in y being of opposite signs, cancel each
other and a, separation of the two by measurements over
a range of temperatures becomes still more difficult.
Thus the complications due to the quadrupole polariza-
bility 8 render the method suitable only for those
molecules for which the product 8(n"—n') is large and
a fairly high vapor pressure is obtainable.

The anisotropy (n" a') is—known for a large number
of molecules. But an examination of the data shows
that there exists much uncertainty about this factor.
This introduces a corresponding ambiguity in the cal-
culated quadrupole moment and constitutes the most
serious drawback of the method.

The Second Virial Coefficient Method

This is an indirect method involving molecular inter-
actions manifested in the form of an imperfection in
the gas behavior. It determines only the magnitude
of the quadrupole moment and gives no idea about its
sign. It is applicable to axially symmetric rnolecules
only.

In the theoretical treatment of the method, the di-
rectional part of the intermolecular potential is as-
sumed to be small and Be(T) and higher-order terms
are neglected. However, in the case of molecules having
a large dipole moment and a high polarizability, this
assumption is not quite justified and one must consider
up to at least the Be(T) term in the expansion of B(T).

Calculations show that in many cases the sensitivity
of the second virial coeNcient 8 to the quadrupole
moment is poor. Small uncertainties in the measured
8 lea, d to much larger uncerta, inties in the calculated
quadrupole moment of the molecule.

The experimental value of B(T) is found from high-
pressure p e tdata w-hi-ch may extend up to 100 atm
or even more. At such high pressures, apart from the
changes in the polarizability and its anisotropy, a dis-
tortion in the shape of the molecules takes place. The
quadrupole moment being highly sensitive to the shape
of the molecular charge distribution, its value at such
high pressures will be different from that for the normal
rnolecules at low pressures of the gas.

The Spectral Line-Broadening Method

This is an indirect method depending on the use of
Anderson theory and the experimentally determined
width of the spectral lines in the microwave or infrared
regions. Only the magnitude of the quadrupole moment
can be determined by this process. So far this method
has been used for axially symmetric molecules only.

The diN. culty with the asymmetric molecules is that
the quadrupole transition probabilities in them a,re
still not known.

In many polar rnolecules having a la,rge dipole mo-
ment and polarizability (for example in the linear
molecule BrCN"), the width of the line is not quite
sensitive to the quadrupole moment and it is seen that
small errors in the measured width lead to quite dis-
couraging deviations in the calculated quadrupole
moment of the molecule. This means that the self-
broadening method is suitable only for those mole-
cules which have a low value of the dipole moment.
For nonpolar molecules the line of some other polar
molecule as broadened by this nonpolar molecule is
studied. In this case a change in the quadrupole mo-
ment changes the linewidth more than in the hrst case.

The experimental measurement of the linewidth in
the microwave region can be done with a high degree
of accuracy. The measurements are made at low pres-
sures where the molecular charge distribution is not
distorted. This constitutes a great advantage of the
present method.

The microwave linewidth investigations are to be
preferred over the infrared lineshift and Raman line-
width investigations because of higher experimental
accuracy and reliability.

The Anisotropic Susceptibility Method

This is a very elegant and accurate method deter-
mining the nuclear and the electronic contributions
to the quadrupole moment separately. Thus both the

magnitude as well as the sign of the quadrupole moment
are determined. Like most of the other methods this
also is applicable for the axially symmetric molecules
only.

The evaluation is based on an accurate determination
of rotational magnetic moment by the high-precision
molecular-beam resonance techniques. The experi-
mental difficulties involved in this technique limit the
applicability of this method.

The Dielectric Constant Method

This also is an indirect method and determines only
the magnitude of the quadrupole moment. It applies
strictly to axially symmetric molecules only. However,
a more general treatment applicable to the rnolecules
of lower symmetry also could be given.

The evaluation is based on the determination of
second dielectric virial coeN.cient 8, in the theoretical
treatment of which the intermolecular potential is
taken to be a purely radial L-J potential. For many
nonpolar gases the orientation dependent quadrupole-
quadrupole interaction is of considerable importance
and needs to be considered. An approximate correction
for this term gives" an additional +we contribution
to 8, thereby reducing the calculated quadrupole
moment. The complex angular dependence of 8-8 inter-
action makes a very accurate treatment rather dificult,
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The experimental determination of 8 is done through
the deviations from Clausius —Mossotti equation. Since
this effect is small at moderate pressures, very high
precision measurements of the dielectric constant are
essential. Further, appreciable deviations from the
C—M behavior appear only at high pressures that may
extend up to 100 atm or so. Because of the distortions
in the molecular charge distributions at such high pres-
sures, the quadrupole moment is likely to be different
from that for the normal molecules.

The Pressure-Induced Absorption Method

This also is an indirect method determining only the
magnitude of the quadrupole moment and is applicable
to axially symmetric molecules only. Since this also
makes use of the high-pressure data (appreciable ab-
sorption is induced only at high pressures), the de-
rived quadrupole moment values are expected to be
erroneous.

In the sensitivity and experimental accessibility
these measurements offer definite advantages over
direct studies of the dielectric constants.

For a more accurate evaluation one should study
the induced absorption in the quadrupolar gas —foreign
nonquadrupolar gas system and not in the pure quad-
rupolar gas system. This is because the large quad-
rupole —quadrupole interaction in the latter case changes
the intermolecular potential appreciably from the as-
sumed L-J potential. It is for this reason that the
quadrupole moment values ca/culated with this po-
tential for the pure gas are somewhat higher than those
derived from the mixtures. ~' If pure gas is used, an
allowance must be made for the 0—0 interaction which
will reduce the calculated quadrupole moment.

The Bond Moments Method

This method evaluates the nuclear and the electronic
contributions to the molecular quadrupole moment
separately and, therefore, has the credit of determining
its magnitude as well as the sign. It is applicable ir-
respective of the symmetry properties of the molecule
and does not involve any tedious computational effort
even for the larger molecules having a larger number
of bonds. The method, however, does not account
properly for the contribution of lone-pair electrons
which in some molecules do contribute significantly. '
Further, the simple model assumed for the charge
distribution in the bonds appears too crude to give
accurate molecular moments.

The bond moments to be used in the calculations
are obtained either by the molecular orbital calcula-
tions or from the internal rotation data. If the com-
plete MO calculations are to be done it would be better
to compute the molecular moments directly rather than
to compute first the bond moments and then to derive
the molecular moments by the above method. The
second method~' is to interpret the measured "barrier
to internal rotation" in terms of the interactions be-
tween the members of two groups of bonds in the same
molecule and hence to derive the bond moments. This
would give fairly accurate bond moments provided
the assumption that the barrier arises from the bond-
bond interaction is justi6ed. It may be pointed out
here that because of the e&ects of the environments on
the bonds, the moments of a bond as such do not have
a very precise significance. If the same bond occurs in
several molecules, the calculation of its moments has
to be done for each molecule and for each of its geo-
metrical configurations.

VIII. LIST OF MOLECULAR QUADRUPOLE MOMENTS

Serial
Nos. Molecule

Quadrupole moment'
)&10 eesu cm' Method Reference

0.60

0.78

0.34

0.626

0.64

0.95

0.52

0.3
0.38~0.02

0.63

0.6
1.0

Theoretical MO calculations

Theoretical MO calculations

Theoretical MO calculations

Theoretical MO calculations

Theoretical modiled Schrodinger equation calculations

Second virial coeScients

Second virial coeKcients

Microwave line broadening —NHg

Microwave line broadening —NHI

Anisotropic susceptibility measurements

Pressure-induced absorption

Pressure-induced absorption

77

79

80

81

21

82

83

84

62

85

72
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Serial
Nos. Molecule

Quadrupole moment»
X10~6 esu cm' Method Reference

2.

3.

4

HD

Dp

CO

2.45

0.82+0.10

1.23~0.25

3.25

3.1

1.02+0.07

1.33&0.25

—2.55
—1.221

1.80

1.90

1.27

1.2
0.8

0.80~0.02

1.23

1.4
2.75~0.25

3.05

1.35+0.08

2.11&0.30

1.64

1.0
1.5

0.50

1.90

0.19

2.13~0.12

0.43

0.35+0.03

0.41

1.0~0.1

—1.806
—1.97

2.81

1.71

0.94

1.60

2.0

Microwave line broadening —OCS

Microwave line broadening —CHF&

Microwave line broadening —N~O

Microwave line broadening —OCS

Microwave line broadening —OCS

Microwave line broadening —CHF~

Microwave line broadening —N~O

Theoretical MO calculations

Theoretical MO calculations

Second virial coefficients

Second virial coefhcients

Crystal data

Combined second virial coeff. and crystal data

Microwave line broadening-NHg

Microwave line broadening-NH8

Microwave line broadening —H~O

Microwave line broadening —SOg

Microwave line broadening —OCS

Microwave line broadening —OCS

Microwave line broadening —CHF~

Microwave line broadening —N~O

Pressure-induced absorption

Pressure-induced absorption

Pressure-induced absorption

Pressure-induced absorption

Microwave line broadening —O~

Second virial coefficients

Microwave line broadening —O~

Microwave line broadening —O.

Microwave line broadening —NHg

Microwave line broadening —NHg

Microwave line broadening —H~O

Microwave line broadening —OCS

Theoretical MO calculations

Theoretical MO calculations

Second virial coefBcients

Crystal data

Microwave line broadening —NHg

Infrared line broadening

Infrared line broadening

86

86

86

86

86

86

86

87

88

21

82

89

90

83

84

91

92

44

86

86

86

93

72

94

95

96

21

97

98

83

84

99

100

88

101

82

89

102

103

43

COp —8.5
—4. 1

5.73

Theoretical MO calculatiotns

Induced optical birefringenee

Second virial coeScients

104

8

20
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Serial
Nos. Molecule

Quadrupole moment'
X10~'esu cm' Method Reference

6. C2H~

5 F 00

4.59

3.3

4.60

5.29

3.5

1.72+0.14

2.7

3.95

2.81&0.16

2.24+0.30

7.9~1.0
5.3
5.9

3.0
13.06&0.11

Second virial coe%cients

Second virial coeKcients

Second virial coe%cients

Second virial coe%cients

Crystal data

Combined second virial coeff. and crystal data

Refractivity virial coeKcients

Microwave line broadening —NHg

Microwave line broadening —NHg

Microwave line broadening —SO2

Microwave line broadening —OCS

Microwave line broadening —CHF3

Microwave line broadening —N20

Dielectric constants

Dielectric constants

Pressure-induced absorption

Pressure induced absorption'7 (recalculation by Johnston and
Cole"')

Pressure-induced absorption

Microwave line broadening —NH3

Bond moments

21

82

29

105

1

90

106

83

84

107

86

86

86

66

68

72

68

73

102

74

9.

10.

12.

13.

14.

CgH4

C2H6

C6HS

OCS

BrCN

ClCN

HCN

3.92

1.32

4.0
2.6

4.24~0.04

0.77

0.3
1.72&0. 13

3.6

1.47

4.32

5.9
3.55

1.5+0.25

1.0

10.1

6.75&4.0

3.3

2.21

3.96

3 ' 75

Second virial coefBcients

Microwave line broadening —NH3

Dielectric constants

Pressure-induced absorption

Bond moments

Microwave line broadening —NH3

Pressure-induced absorption

Bond moments

Microwave line broadening —NH3

Microwave line broadening —NHg

Microwave line broadening —OCS

Microwave line broadening —OCS

Microwave line broadening —OCS

Microwave line broadening —OCS

Microwave line broadening —OCS

Microwave line broadening —BrCN

Microwave line broadening —BrCN

Microwave line broadening —NH3

Microwave line broadening —NHS

Theoretical MO calculations

Infrared line broadening

82

102

68

72

74

102

72

74

102

108

109

42

86, 100

73

73

110
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Serial
Nos. Molecule

Quadrupole moment'
X10~~ esu cm~ Method Reference

15.

16.

17.

HF

HI

3.0

6.0

—4.382
—4.49

Infrared line broadening

Infrared line broadening

Theoretical MO calculations

Theoretical MO calculations

43

43

88

101

18. CH3F 20 Dielectric studies

19.

20.

NO

¹0

0.77

0.93&0.09

1.89&0.30

1,63

3.95&0.20

Microwave line broadening —NH~

Microwave line broadening —OCS

Microwave line broadening —CHF3

Microwave line broadening —N20

Microwave line broadening —NHq

Microwave line broadening —NqO

102

102

86

21.

22.

23.

CHgCl2

CS2

SO2

4. 13

1.78

4.42

Microwave line broadening —NH3

Microwave line broadening —NH3

Microwave line broadening —NHg

24. H20 8 = —0.907
Hyy = 0.694
e..= 0.213

(Referred to Oxygen
nucleus as origin)

0..= —1.149
e„„= 0.755
~zz = 0.394

e..= -1.304
0„„= 0.940
e,.= 0.364

9 = —1.211
e„„= 0.853
e,.= 0.358

e..=-1.055
0.660

e..= 0.395

e..=-1.228
e„„= 0.868
e..= 0.360

0..= —1.143
8 „= 0.729
e„= 0.414

e..= —1.61
H„r = 1.35
8„= 0.26

Theoretical MO calculations (using the equivalent orbitals
developed by Lennard-Jones)

Theoretical MO calculations (using the wave function of
Kllison and Shull ")

Theoretical MO calculations (using "bond orbital" wave
function McWeeny and Ohno"4)

Theoretical MO calculations (using McWeeny-Ohno's"4
configuration interaction bond orbital' wave functions with 7
configurations)

Theoretical MO calculations (using McWeeny —Ohno's"4
"configuration interaction bond orbital wave functions" with

12 configurations)

Theoretical MO calculations (using McWeeny —Ohno's"4
'modified electron pair' wave functions)

Theoretical MO calculations (using McWeeny —Ohno's"4 SCF
LCAO wave functions)

Theoretical MO calculations based on Rowlinson's empirical
four-point-charge model"~

112

ii2

112

112

112

112

25. NHg 0..=e„„=0.069
8„=—0.137

(Referred to nitrogen
nucleus as the
origin)

Theoretical MO calculations (using the equivalent orbitals
developed by Lennard —Jones)

~ Some of the values were recalculated to conforrp to the definition @see hepee
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