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The thermodynamic properties of an electron plasma are investigated on the basis of the Bogo1iubov-Born-Green-Kirk-
wood-Yvoo hierarchy equation. The correlation energy has been calculated up to the e' term (~ is the standard plasma
parameter) in terms of an exact solution of the binary correlation function taking into account the short-range collision
effect. The contribution of ternary correlations to the correlation energy has been determined in lowest order, which turns
out to be of the second order in ~. The total sum of the corrections due to the short-range collision eGect and the ternary
correlation e8ect is found to be in agreement with the result obtained by Abe, Bowers, and Salpeter within the regime of
Gibbs' statistica! thermodynamics. Although the appearance of the binary correlation function obtained in the present
studies divers from those derived by Bowers-Salpeter and by 0¹il—Rostoker, it is shown that all of these expressions
are essentially equivalent. According to the present analysis, however„ it is proven that these expressions do not describe
correctly the way in which correlation eÃects diminish at large distances and therefore the statement made by DeWitt
saying that g (a) ~e(ln 3)»' exp (—knr) as r~ I is not correct.

I. INTRODUCTION

During the past years, kinetic properties of plasmas
in the nonequilibrium state have been extensively
examined by many authors on the basis of the Liouville
equation or the Bogoliubov —Born —Green —Kirkwood-
Yvon hierarchy equation, " while thermodynamic
properties of plasmas have been investigated by apply-
ing Mayer's cluster expansion method within the frame-
work of Gibbs' statistical thermodynamics. ' 4 Recently,
however, several authors have attempted to investi-
gate thermodynamic properties of plasmas by solving
the BBGKY hierarchy equation for the equilibrium
case.' It is worth investigating the way in which
various physical effects contribute to thermodynamic
properties of plasmas through the BBGKY hierarchy
equation.

Guernsey' has solved the BBGKY hierarchy equa-
tion for the equilibrium state by a method of double
series expansion and has presented a "dynamic" der-
ivation of the equation of state for an electron plasma,
which is correct through second order in the plasma
parameter e=(4srNA&s) '. n is the number density of
electron and XD is the Debye distance. Qn the other
hand, O' Neil and Rostoker~ have determined a binary
correlation function for an equilibrium electron plasma
by solving analytically the BBGKY hierarchy equa-
tion. In obtaining the solution, they have introduced
an arbitrary distance ro to divide the whole space into
the inner region r(ro where the short-range collisions
play a dominant role and the outer region r&ro where
the effects of short-range collisions can be disregarded.
DiGerent expansions in the plasma parameter e have
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been applied for the equations obtained in each region
The solutions valid in each region have been matched
approximately at the distance r =ra. The same authors
have also obtained the correlation energy which is
correct up to the e' term, by arbitrarily defining ro as
the mean distance between particles e '".

The present paper removes the arbitrariness in-
herent in the above-mentioned interpolation method
for solving the BBGKY hierarchy equation for the
equilibrium case. %'e present the fundamental equa-
tions in Sec. II. In Sec. III, ignoring the ternary corre-
lation effect, we examine the inhuence of the short-
range collisions on the binary correlation function in
some details. Following the calculation of Lamb and
Burdick, ~ we can calculate corrections to the Debye-
Huckel limiting value of the correlation energy up to
the second order in e as follows:

E/c&/xT =—-', e' ln e ——,
'

(y ——,') e', (&)

where y=0.5772 is the Euler constant, ~ is the Boltz-
mann constant, and T is the electron temperature. In
Sec. IV, we analyze the eGect of the ternary correlation
on the binary correlation function in some detail. The
contribution of the ternary correlation to the correla-
tion energy is calculated as

E&~l/tcT = ——,'(ln 3—-', ) e'. (2)

Adding up Eqs. (1) and (2) to the Debye-Huckel
limiting value of the correlation energy —e/2, we obtain

(3)8/xT = —tse —x4es ln e—xs (y —as+ stin 3)e'

which is the result obtained by Abe, 3 and by Bowers
and Salpeter. 4 Thus, the present analysis demonstrates
explicitly that the approach based on the method of
solving the BBGKY hierarchy equation can provide
such detailed information as contributions of the dy-
namical effect of short-range collisions and of ternary
correlations to the thermodynamic properties of an
electron plasma. In the last section, we discuss the
present result for the binary correlation function
by comparing it with that obtained by Bowers and
Salpeter.
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II. FUNDAMENTAL EQUATIONS

We consider a system composed of E electrons imbedded in a neutralizing uniform background of ions in a
large volume V. Assuming the system is spatially uniform, we have the following expressions for the BSGKY
hierarchy equation:

B n By(ris) B—F(vi) =— d3 G(1, 2)
Bt m Br~ Bv~

(4a)

B B B 1 By(ris) l'B B 1 By(ris) ( a B—+vi.—+vs —G(1, 2) =—
l

———LF(»)F(v )3+— .
l

———G(1, 2)
Bt Bfq Bf2 m Bfq &Bvq BY2 8$ Bl'i (Bvi Bvs

BF(») ay(r») BF(») By(r»)
rrs Bvs BI'i Bvs Bl's

and

Bri Bvs Brs Bvs

—+g v; —H(1, 2, 3) =—G(2, 3) -I + +(1—+2, 2-+3, 3~1)+ (1—+3, 2-+1, 3~2)BF(») &By(r») By(r»)
Bt;=g Br, m Bvy & Dry Br(

+—r(vg}
~

~ + ~ )G(2, 3)+(I 2, 2 3, 3 I)+(1~3,2 1, 3 2)I
(ay(r„) a ay(rs, )

rw k Brs Bvs BI's avs]

H(1, 2, 3)+(1~2, 2—+3, 3—+1)+(1—&3, 2—+1, 3~2)
1 By(ris) B a

Br& gv& Bv,

BF(vi) a+— — y (ri4) H (2, 3, 4) d4+ (1~2, 2-+3, 3-+1)+ (1-+3, 2~1, 3~2)
m Bv~ grj,

Bri Bvs Br, avsl

+ (1~2, 2—+3, 3~1)+(1—3, 2~1, 3-+2), (4c)

where F(v) is the one-particle distribution function.
The binary correlation function G(1, 2) and the ternary
correlation function H(1, 2, 3) are introduced through
the following decomposition of the two-particle dis-
tribution function F(1, 2) and the three-particle dis-
tribution function F(1, 2, 3):

F(1, 2) =F(vi)F(vs)+G(1, 2),

F(1, 2, 3) =F(vi)F(vs)F(vs)+[F(vi)G(2, 3)

+(1~2, 2—+3, 3—+1)+ (1—+3, 2—+1, 3~2) I

+H(1, 2, 3). (5b)

In Eqs. (4c) and (5b), the terms denoted as (i~j,
j~k, k~1) represent the term obtained by applying
the assigned permutation to the first term in the curly
brackets of these equations. The integral over the speci-
fied number i denotes the integral over the velocities
and the spatial coordinates of the ith particle. The

interaction potential (f)(r;;) is the Coulomb potential,

e(r') ="lI r*—r' I.

We have normalized the distribution functions as

(6)

1=— F(vi) dl
V

Pa)

F(vi) =— F(1, 2) d2

and
G(1, 2) =F(»)F(»)C(r») (Sa)

H(1, 2, 3) =F(vi)F(vs) F(vs)h(r», rss, rss). (8b)

and have applied the limiting procedure of N—+~,
V-+(e, with n =X/V kept finite.

In the thermal equilibrium state, the correlation
functions G and II can be expressed as
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Then it is straightforward to reduce Eqs. (4b) and (4c) to,
d' 2 bid k~2 8 r13

zg+ z~ g kDg ' 2h(riz, r28 rzi) «z
dr' r r') dr 4m Br1 re

(9a.)

8 kD'
h (rlz r23 r31)

8r12
' 4z

~12 ' ~14
h(rzz, rz4, r4z) dr4 —(b/ri2') h(riz, rzz, rzi)

r14

=(b/riz') [g(riz)+g(rzz))+(kri'/4zr), g(riz)g(r„) dr4, (9b)
r14

where kD is the Debye wave number (4zre'zz/i~T)'Iz

and b is the Landau distance defined as

b = (e'/AT).

The vector r;; is a unit vector de6ned as

r,"=(r,—r )/( r;—r, (.

(10)

Equations (9a) and (9b) are the set of fundamental
equations of the present studies. Solving Eqs. (9a)
and (9b) for g(r), we can calculate the correlation
energy E as

E QO

drrg (r) (12)
KT 2 KT

2

dr —g(r) =-', king'
r 0

g(r) = —(b/r) exp (—kDr). (13)

Substituting Eq. (13) into Eq. (12), we obtain the
Debye —Hiickel limiting value of the correlation energy

and thus we can determine thermodynamic properties
of the electron plasma.

In Eq. (9a), the term —(b/r')dg/dr is due to the
second term on the right-ha, nd side of Eq. (4b). This
term describes the effect of the short-range collisions.
The term —king'g of Eq. (9a) is due to the third term
on the right-hand side of Eq. (4b) . This term represents
the screening effect of the long-range Coulomb po-
tential. The right-hand side of Eq. (9a) expresses the
modification of the binary correlation function result-

ing from ternary correlations between particles.
Neglecting contributions of short-range collisions

and ternary correlations, we obtain the well-known
expression for the binary correlation function as

Introducing the transformations

g(r) = (b/r) exp (—b/2r) U(r),

x =kg)r,

(16a)

(16b)

we can eliminate the first derivative term from Eq. (15),
and obtain the equation for U(x),

(d /dx ) U(x) [1+(~/4*) 3U(x) =0 (17)

With the aid of the transformation, '
x= (c/2)' ' e p (Z), U(x) =x'"I'(Z), (18)

Eq. (17) is reduced to the associated Mathieu equa-
tion for F(Z)

(d'/dZ') F(Z) —[X+2k' cosh (2Z)]I'(Z) =0 (19a)

with
h'=e/2. (19b)

In the following sections, we investigate the infiuence
of short range collisions and ternary correlations on
the binary correlation function. We then determine
the corresponding corrections to the Debye —Huckel
limiting value of the correlation energy.

III. EFFECT OF SHORT-RANGE COLLISIONS ON
THE BINARY CORRELA'/ION FUNCTION

It is evident that the binary correlation function
obtained as Eq. (13) loses its validity at small distances.
Lamb and Burdick4 succeeded in eliminating this defect
by taking into account the inQuence of short-range col-
lisions. Disregarding the influence of ternary correla-
tions, Eq. (9a) reduces to the following equation:

(d'i«') g+L(2/r) —(bir') j(di«) g kn'g =o —(15)

E&~n&/i~T = —-', e. (14) The solutions of Eq, (19a) are expressed as

(az~/ao)"I (he )I„+„(he )

(az~/ao)"I„(hez)I„+„(he z)

I"(Z) =

( —1)~(az /ao) "I (he z) K +,(hez)

(20a)

(20b)

(20c)

( —1)~(az /ao) "I (hez)K„+„(he z) „ (20d)
(~ m

SThe region of x&(e/2) corresponds to the region of 0(g&+ ~, ~bile the pegion Of x&(~j2)& corresponds to the region of
—.m &g &0.
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where the coeflicients a2 are determined by the recur- Inspection of Fq. (17) determines the following asymp-
rence formula totic behavior of the function U(x),

apmvf(2224+v) 2
l&$ h2(a2~2v+apm —2v) —0 (21)

ancl
U(x) ~e"* as x~ap, (23a)

v is related to A. via

X=v2+E2(v2 —1)j 'h4

+E(5v2+7)/32(v' —1)2(v2 —4) jits+ . (22

In the present problem, v is determined from Eq. (22)
for the given values of X and h' as defined by Eq. (19b) .

U(g) ~(2/e) It x exp (~e/2x) as g—4. (23b)

Therefore, two independent solutions of Eq. (19a) are
chosen from the solutions Eqs. (20a)~(20d) to be
in accord with the above asymptotic behavior of the
function U(x). For the outer region x) (e/2)'/2,
these solutions are given by

U«'i(x) = (2sr) I/2x"2 Q (a2 /ap) "I (e/2x)I„,+,(x)

U &'&(x) =(2/sr)'"x"' g (—1)"(a2~/ap) vI~(e/2x)E„+v(x)

(24a)

(24b)

and for the inner region x& (e/2) I/2 by

U &'&(g) =(2/sr)it'X"2 Q (—1)~(a2 /gp) "I (X)E ~„(e/2X), (25a)

U)&'i(x) =(2 s)
rI&2xi&2+ (a2 /ap) "I„(x)I„+„(e/2x). (25b)

The superscripts (o) and (i) stand for the outer and the
inner region, respectively. The above set of solutions is
used to calculate the eGect of ternary correlations on
the binary correlation function. %e notice that the
solution U(x) should behave as

g v — (~/e) I/2

Since v is determined from Eq. (22) as

(29)

By comparing Eq. (28) with Eq. (26b), we can deter-
mine the coeS.cient uo' as

U(x)~ exp ( —x) for x—vop (26a)
we have

V =-'+—',e'+O(e4)
v

U(x) ~—(x/e) exp (e/2x) for x—4 (26b) (a,/a, ) "=—,', e, (31a)

so that the boundary conditions for the binary correla-
tion function g(x) Pi.e., g(oa) =0 and g(0) = —1j are
satisfied. Therefore, the solutions of Eq. (17) which
satisfy the required boundary conditions are obtained
as

U&'&(x) =8 Q (—1) a2 "x't'I (e/2x)K~„(x),

for x) (e/2) '" (27a)

(a4/ap) "=xpi —,c'. (31b)

The constants 8 and C are determined from the follow-
ing boundary conditions at x= (e/2) I/2,

U"C(e/2) '"j=U"E(e/2) "'j (32a)

dU"/«
I &

/2&'" = (dU"'/dg) l~&.t»"' (32b)

Keeping terms of the order &', we can determine the
constants 8 and C as,

and 8= (2/sr) 't'e't'(1+ -,'e) (33a)

U&'&(X) = Q a2„"Xi/2I„(g)I~,(e/2X) C= —x 'e. (33b)

+C Q (—1)"a2„"x"'I„(x)E„+„(e/2x),

U ' (x)~ap" (sl'e) It x exp (e/(2x) 1. (28)

for x& (e/2) '". (27b)

In the limit of x~, the function U&'i(x) behaves
asymptotically as

In order to calculate the correlation energy up to the
order e', it is sufBcient to take v=~ and m=o. Thus
Eqs. (27a) and (27b) are reduced to

U (x) = —(2/sr) (1+-e)x t I (e/2x) XI&2(x)

and

U&'& (g) =—(sr/e) It x't'[Ip(g) II/2(e/2g)

—(e/sr) Ip(x) EI/2(e/2x) I. (34b)
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x( (8/2} I)2.

(35b)
Substituting Eqs. (35a) and (35b) into Eq (12), we
obtain

g(*'& (x) = —1+(1+8) exp ( —8/x)

00

xg('&(x) dx+ — xg" (x) dx
KT 2 0 2 (g/2) 1I2

Iii 8 2(8 4)C . (36)

Comparing this result with Eq. (14), we conclude that

These expressions can be simplified further by retaining
leading terms to obtain the correlation energy correctly
up to second order in e. Finally, the binary correlation
function becomes

g(') (x) = —8(1+-'28) x—' exp L
—x—(8/2x) ) x) (8/2) '('

(35a)

by taking into account short-range collisions we obtain
the correction to the Debye —Huckel limiting law to
order e2 ln e. There arise terms of order e2 as well. Since,
however, the coefficients of the 82 term in Eqs. (36)
and (3) do not agree, we conclude that ternary correla-
tions must be included to calculate this term properly.

IV. CONTRIBUTIOÃ OF TERNARY CORRELA-
TIONS OH THE MNARY CORRELATION

FUN CTIOÃ

In order to investigate the effect of ternary correla-
tion, let us write the binary correlation function as

g(r) =g"'(r)+g'"(r)
where the function g(*)(r) is presumed to be of higher
order than the function g(s) (r) .We may then decompose
the set of Eqs. (9a) and (9b) into the following set
of equations:

d' 2 b d—g(s) + — g(s) Pn2g(s) —0
dr' r r' dr

(38a)

d2 2 6 d k~2 8 r13
g + g ~Dg ' I3 (r12 r28)&31) dr8)

dr' r r2 dr 4g Br1 r132
(38b)

where h( &(r», r.3, r») is determined from the following equation:

8 kD ~12 ' ~14
II"'(F12 ~28 2'31)

2
II (r28 r34 r42) d«

~r12 47/ r14

b kg)' r12 r14= —,Lg") (&12) +g")(&28)3+, g") (r18)g") (r24} d«(38c)
r12 4x r14'

Solutions of Eq. (38a) have been discussed in detail in the preceding section. Here, we wish to solve Eqs. (38b)
and (38c) and thereby calculate the contribution of ternary correlations to the correlation energy.

Eliminating the first derivative term of Eq. (38b) by a transformation defined by Eqs. (16a) and (16b), we

can reduce Eq. (38b) to
(d'/dx') U2 (x) —

I 1+(82/4x') )U2 (x) =X(x)

1 f 8 d x12 x18
X(x») =—exp

I
x12 +2, h(x», x18, x23) dx8.

42r &2x» dx12 x„'

(39a)

(39b)

The boundary conditions for the function U2 (x) are Ur (x)—4 for x—+0() and x—&0. We define the Greens function

K(x, x') as the solution of

with the boundary conditions

(d'/dx') K(x x') —L1+ (8'/4x') jE'(x x') =()(x—x')

E (x, x') &0 for x~~ and x~0,

(d&/dx) I*=*+3 (d&ldx) I-*-3=1— (»0).

(40)

(41a)

The solution of Eq. (39a) is then given by

(42)
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Since we have obtained the two independent solutions of the homogeneous equation, Eq. (17), as Eqs. (24a),
(24b) and Eqs. (25a), (25b), we can construct the Greens function K(x, x') as follows:

and

K&'(g x') =

K&'&(x, x') =

K("(x,g') = —-', U("(x) U)&'(x'),

K)"(x, x') =—-,'U)" (x) U("(x'),

K(&'& (x, x') = —-', U("& (x) U)&'& (x'),

K &'&(x x') =—-'U "&(x)U &'&(x')

(./2) 't'& x&x'

(e/2) 't'&x'&x,

x&x'& (./2) 't',

x'&x& (e/2)"'.

(43a)

(43b)

(44a)

(44b)

The constant factor —
a has been determined from the boundary condition given by Eq. (41b) . Substituting Eqs.

(42a), (43b), (44a), and (44b) into Eq. (42), we obtain

1
Uz &'&(x) = —— U)&'&(x)

2

and

(g/2)1/2

O x&(x')»(x') dx'+U "(*)f g& x&(x')»(x') dx (g) (e/2) 'tmf (45a)

1
U &'&(x) = —— U &'&(g)

2

S (q/2)1/2

U &"(s')&&(x') dx'+U &*'&(x) U)&*'&(x')X(x') dx' Lx&(e/2)"'1 (45b)

Let us proceed to calculate the function X(x) . Since it has been confirmed that the contribution of g&~& (x) to the
correlation energy will be in the second order of e, it is sufficient to determine the function l's&s&(r», res, r()i) cor-
rectly up to the second order of e. Examining the structure of Eq. (38c), we find that the function g&s&(x) can be
approximated by its lowest-order expression as

g& &(x) g&'&(x) =—(e/x) exp (—x), (46)

Then, as shown by 0 Neil and Rostoker, the ternary correlation function h&s&(x», xe(), x») is obtained as a solu-
tion of Eq. (38c) as follows:

)ss '(xu, xu, xu) =g&'&(x&,)gu&(xu)+g&x(xs&)gx&(xss)+gu&(xu)gu&(xss)+x f gs'&(xu)g&u(xss)gu&(xss) du&. (4))

—siu)& (x) f e-"X(x') dx'

= —ei es I
—s4.(2S—3) (1/x) e—*—&4r(g+3) (1/g) e I*

—(3+g) Ei (—3g)e+*+(3—x)LEi (—x)+ ln 3je 'I

(50a)

This expression of the ternary correlation function is Thus, taking the asymptotic limit of e—4, we can
taken to be valid over the region co)s)(e/2)'" in evaluate Eqs. (45a) and (45b), and obtain
the lowest-order approximation, while O' Neil and
Rostoker have assumed that this expression is valid Ur&u&(x)~ —e * sjnh (g)l&(g) gig'

only in the region og) )x) (4sre)'ts. Having determined (&

the ternary correlation function h' &(x», S2(), x»), we
can proceed to calculate the function l),(x). Details
are discussed in the Appendix. Since the function X(x)
itself is a quantity of second order in c, we may evaluate
the function Uz(x) given by Eqs. (45a) and (45b) in
the asymptotic limit of e—4. Therefore, Eq. (A17)
can be approximated by

&&"'(g) = —2(~)"{2(1+g)(1/x') «p ( —*) and
U "'(x) 0 (50b)

—(5S'+4g+2) (1/g') exp ( —2x) +2/ln 3 exp ( —x)

To the lowest order in e, we have simply

Substituting Eqs. (50a) and (50b) into Eq. (12) with
the transformations Eqs. (16a) and (16b), we can
calculate the correlation energy resulting from the
ternary correlation effect as

and
U)&'&(x) = exp (—x),

U(&'& (x) =2 sinh (g).

(49a)

(49b)

g(~) 1 CO

xg&'r&(x) (ES — U~(x) dx
KT 2 0 2 0

—-', (ln 3—-', )e'.
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V. CONCLUDING DISCUSSION

In the preceding sections, we have discussed a sys-
tematic approach to solve the BBGKY hierarchy equa-
tion in the thermal equilibrium case. Summing up
Eqs. (36) and (51), we obtain the correlation energy
of the electron plasma correct up to the second order
ln f.

According to the analysis in Sec. III, we have shown
explicitly that the dynamic e6ect of short-range colli-
sions becomes appreciable at distances of the order of

xs —(e/2) &12yz& = (47r) &/2(e/8) &+22 &12 (52)

which is far smaller than the mean distance between
particles n 'I'. Since the Coulomb interaction is rather
weak, this is physically a reasonable result.

In Sec. IV, we have examined the contribution of
ternary correlation on the binary correlation function
without taking into account the eGect of short-range
collisions. It has been confirmed that this approxima-
tion is consistent in calculating the thermodynamic
properties of the electron plasma up to the second order
in e. In view of Eq. (51), we can conclude that the
binary correlation function due to the ternary correla-
tion effect g~r& (x) is given by

ger&(x) = (e'/8) x 'I ~g(2x 3)—x 'e ~+~4(x+3)x 'e "
+(3+x) Ei (—3x)e*—(3—x)LEi ( —x)+ ln3)e *I 0(x(~ (53)

while the binary correlation function g&a&(x) is obtained as

g(&&(x) =
—e(1+-',e) x ' exp L—x—(e/2x) $, ~ )x) (e/2) 'I' (54a)

—1+(1+e) exp ( —e/x), (e/2) 'l2) x)0.

The point xs ——(e/2)'I' is determined from structure
of the differential equation for the function g&a&(x),

and thus the arbitrariness involved in the interpola-
tion method of O' Neil and Rostoker has been eliminated
completely in the present approach.

It would be worthwhile to discuss the relationship
between the various expressions for the binary corre-
lation function, since our expressions as given by Eqs.
(53), (54a), and (54b) appear to be different from the
Bowers —Salpeter expression and the O' Neil —Rostoker
expression. In Ref. 4, the binary correlation function
which gives rise to the correlation energy correctly up
to the order of e' is given as, '

while the remaining terms of @z(x) are nothing but the
function tot(x) of Bowers and Salpeter. " Turning to
the present expression of the binary correlation func-
tion, we can show that our expression is also equivalent
to the Bowers —Salpeter expression as follows: the func-
tion g&r&(x) can be rewritten as

g"'(x) =~2(x)+("/2x') I (x—1)e *+e '*I (5&)

hence the present expression of the binary correlation
function can be expressed as,

g '(*)=g*(x)+~2(x)

gn s(x) = (exp L
—(e/x) e *]—1I+w, (x) (55a) with the abbreviation

with the abbreviation g*(x) =g&z»(x)+(e2/2x2) ((x—1)e *+e 2~I. (58b)

wt(x) = —(e'/8)x '{~4(e —e ")+(3—x)

First of all, the O' Neil —Rostoker expression of the g (x)~e(1+2e) (1/x)& 'L1 (e/2x) j
binary correlation function is essentially equivalent to
the Bowers —Salpeter expression because the 6rst two
terms of the function @z(x), which is given in Sec. 5 (e/x)e

—~+t(e/x)2~ —2m+. ..
of Ref. 7, are the 6rst two terms of the expansion

+(c'/2x') I (x—1)e '+e "I
(59)

With the expression for g&a& (x) as given by Eq. (54a),

Qt E ( ) + l 3) (3+ ) E ( 3 ) } (55b)
the function g*(x) reduces to

exp L
—(e/x) e ~)—1 —(e/x) e *+-', (e/x)'e-'*+ ~ ~

(56)

' Recently DeWitt (Ref. 11) has obtained the same expression
as g (x) by a diagramatic method which is slightly different
from that used by Bowers and Salpeter.

which agrees with the expansion of Eq. (56) for large
values of x. In the region for which x( (e/2) 'I', we can

"The factor -', in front of exp( —2g) of @z(x) should be replaced
by 3. This error does not affect the correlation energy calculated
by O' Neil and Rostoker, since they have used the Fourier trans-
formation of @1(x) in order to calculate the correlation energy.
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approximate the second term of Eq. (58b) by

(e'/2x') I (x—1)e-~+e-"}

On the other hand, Eq. (54b) can be written,

g&a) (x) = —1+(1+e) exp ( —e/x)

g(x) ex 'exp I
—x—+(x) I, (62a)

where the function%'(x) behaves asymptotically as

4 (x)~s'e ln 3x exp I
——,'e ln 3x}. (62b)

If we could solve Eqs. (9a) and (9b) exactly, the
asymptotic form of the binary correlation function

(6oa) would be

—1+ exp f
—(e/x) (1—x) }

—1+ exp I
—(e/x)e *}. (60b)

As long as x remains smaller than 8/(sin 3), Eqs.
(62a) and (62b) can be expanded as

g(x) —ex-' exp (—x). (61)

The contribution of Eq. (60a) to the correlation energy
is of higher order than e'. Thus, the present expressions
given by Eqs. (53), (54a), and (54b) are essentially
equivalent to the Bowers —Salpeter expression.

Finally, let us discuss a controversial point discussed
in Ref. 11. De%itt has pointed out that when x is
larger than 8/(sin 3) the correction term sr(x) dom-
inates over the lowest-order Debye —Huckel term.
Within the framework of the present approach, this
means the contribution of ternary correlation on the
binary correlation function dominates over the lowest
order binary correlation effect at very large distances.
Ke should remember, however, that the decomposi-
tion of Eqs. (9a) and (9b) into the set of Eqs. (38a),
(38b), and (38c) is carried out by assuming the func-
tion g&~)(x) to be of higher order than the function
g&e&(x) in Eq. (37).Hence, the fact that g&r) (x) becomes
larger than g&e)(x) at large distances indicates simply
that the above decomposition of the equations loses
its validity when x becomes very large. Returning to
Eq. (4b), we can see explicitly that the third term,
which is essential to screen the long-range interaction,
dominates over the last term in the limit of r~2—+~.
Therefore, at very large distances, the exact binary cor-
relation function should behave as

g (x)~—(e/x) e
—~+s'e' ln 3e (63)

which agrees with the asymptotic form of ga (x).
When x becomes larger than 8/(e ln 3), Eq. (62a) is
reduced to Eq. (57) since +(x) vanishes in the limit
of x—+~. De%itt has shown that the higher-order
term wr (x) dominates over the lowest-order term
(e/x) exp ( —x) at large distances. He relates this to
a similar phenomenon that occurs in the study of the
dynamic behavior of a plasma, where the correlation
damping can become larger than the Landau damping
in the long wavelength region. (This effect has been
discussed first by one of the present authors" on the
basis of the BBGKY equations. ) Our analysis shows
explicitly, however that this is not the case. Further-
more, according to the above analysis, we can conclude
that the partial summations of the cluster diagrams
carried out by Bowers, Salpeter, and DeWitt are in-
adequate to determine the correct behavior of the
binary correlation function at large distances.
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APPENDIX: CALCULATION OF THE FUNCTION 1&(x)

Here, we describe some details of calculation of the function 1&(x). We have

vrhere

x'x»
1&(x) = (4~)-' exp (s/(2x) g ~

x —+2
~

h(x, x» g x») dx„
Ch j x' (A1)

g(x cm xH) =g (x)g N(xm) +g (x)g (x23)+g (xl3)g (xN) +(g ) f g (x14)g (xl4)g (%34) gx4 . (A2)

In Eqs. (A1) and (A2), the relative coordinate x» is denoted as x for the simplicity of notations. First, let us dis-
cuss the following integral:

A A

f X~Xy3

, g&')(x») dxs ———4s.(d/dx) x '
&13

00 4x
x»sg&s&(x») dx»+ x»g&s)(x») Ch» =— xsssg&')(xs()) dx». (A3)

a 0

' H. E. DeWitt, Phys. Rev. 140, A466 (1965)."Y. H. Ichikawa, Progr. Theoret. Phys. (Kyoto) 24, 1083 (1960).
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The integral given by Eq. (A3) can be decomposed into two terms as follows:

(0/2) 1/2 g

x23 g (x23) dx23 x23 g (x23) dx23+ x23 g ~ (x23) dx23 ~

0 (g/Q)l/t2
(A4)

If we evaluate the first term of Eq. (A4) by substituting Eq. (35b) for g('&(x), we can confirm that the contribu-
tion of this term is of higher order than 3 .The second term of Eq. (A4) can be calculated by using the approximate
expression given by Eq. (46) as follows:

x232gwi(x23) dx23=3{ (1+x) exp (—x) —L1+(3/2)"'] exp {—(3/2)'/2]}.
(e/2) II2

Therefore, we have the following approximate result:
A A

g(&(x23) dx3 ——(42re/x) {(1+x)exp ( —x) —L1+(3/2)'/'] exp (—(3/2)'/']}
X13'

(A5)

(A6)

Now, excluding the domain of x;;& (3/2)'" from the following calculation, we may proceed to discuss the in-
tegral

g g13
J(g) = d( ) (gg) d

g (gg) + (dgg) 1 f dg) (gg) g(g (gg) g( & (gg) dg4 dg~
$13

(A7)

First, we notice the following relation:

$13 8
g (x34) dxS x14 x13 g (x34) dxS

$13 &$14

—x«(42re/x«2) {(1+x14) exp (—x«) —L1+ (3/2) ' '] exp (—(3/2)"']}. (AS)

Therefore, the integral I(x) is reduced to
A A

S'$14
I(x) = g"'(x13)g@i(x23}L1+{(1+x14) exp ( —x14) —L1+(3/2) '/'] exp L

—(3/2) '/']}]
$14

X $14 X $14= {1—L1+(4/2)'/ ]exp L
—(3/2)'/']}, g( &(x«)g(')(x24) dx4+ (1+x14) exp (—x«)g( &(x«)g()(x24) dx4

&14 ~14

~ ' +14 +14 +24 ~ +14 eXP 2~14 +24 dx4 x14) (3/2) 1/2 x24) (3/2) 1/2 (A9)

where the first term of the second line has been disregarded since it is smaller than the second term by a factor
3 . Integration of Eq. (A9) can be carried out by introducing prolate spherical coordinates,

x14 ——(&+2/) x12/2

x24 ——(&
—

4/) x12/2.

The domain of variables $ and )/ is given by

I &)&+ ()0) —1&2/+1.

The allowed domain of the integral of Eq. (A9) then becomes

$—a)2/) —/+a

with the abbreviation a= (23) '/'/x. Equation (A9) then reduces to

I(g) =2 f dj fdg, ~

1+— ).

(A10a)

(A10b)

(A10c)

(A11)

(A12)
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Changing the variable rl into the new variable g by a transformation

we can transform Eq. (A12) as follows:

(A13)

1+a d$-a

I(x) =2' d(
1

co t+&

df'+ ~( df I +& I l '
I 1+—'-'1«p (—x&—kxt) (A14)

where the domain of integration corresponds to the case x) (2e)'Is. Since the contribution arising from the region
of (2e) ~')x) (e/2) 'I' to the function Up&'&(x) is found to be higher order than e', this region can be disregarded
in the present analysis. Performing the integration in Eq. (A14) results in,

I(x) =sre'{ (1/x') (1+x)Dn 3+Ei ( —x) g exp (—x) +(1/x') (1—x) Ei ( —3x) exp (x) I, x) (2e) 'l . (A15)

Combining the contributions of Eqs. (A6) and (A15), we 6nd

S X/3

, h(x, xmas, xss) (gxs= 1'O'L(4/x') {(1+x) exp (—2x) —{ 1+(e/2) "'j
$/3

&( exp L
—x—(e/2) 'I j I+ (1/x ) (1+x)fin 3+ Ei (-x)]exp (—x)

+(1/x') (1—x) Ei (-3x) exp (x) j, (A16)

Substituting Eq. (A16) into Eq. (A1), we &nally obtain the function X(x) as

X(x) =—-', e' exp (e/(2x) j{4{1+(e/2)'"j(1/x') (1+x) exp (—x—(e/2)"'j

—(2/x') (2+4x+3x') exp (-2x)+Dn 3+ Ei (—x)j exp (—x)+Ei ( —3x) exp (x) f. (A17)


