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General characteristics of magnetic bremsstrahlung (synchrotron radiation) are derived on the basis of calculations
utilizing exact relativistic matrix elements. The spectral and total energy losses may be described by compact expressions
incorporating radiative and quantum corrections. Comparisons of the relative efIicacy of matter and magnetic fields as
bremsstrahlung radiators indicate that even under relatively conservative conditions the natural conversion rates asso-
ciated with the magnetic process (i.e., 9.6&&10 BeV/mm) tends to favor this type of conversion over ordinary
bremsstrahlung.

Discussions of a similar scope —including detailed calculations, and comparisons with the corresponding processes in
material media —are also carried out for magnetic pair production, direct and indirect trident cascades, and magnetic
photon splitting.

Circumstances peculiar to a class of external field radiative processes involving cooperative vacuum polarization cor-
rections are illustrated by a discussion of magnetic {erenkov radiation.

I. INTRODUCTION

Electromagnetic conversion processes such as brems-
strahlung, pair production, and photon splitting may
be catalyzed by the presence of external magnetic
fields in essentially the same way as they may be
catalyzed by the presence of external electric fields.
In fact, from a theoretical point of view, the only sig-
nificant distinction between these two kinds of proc-
esses arises from the circumstance that the symmetry
between electric and magnetic vacuum polarization
corrections is disturbed by the apparent absence of
magnetic monopoles. A simple consequence of this
asymmetry is the stability of arbitrarily strong uniform
magnetic fields against spontaneous pair conversion as
contrasted with the "Klein catastrophe" which is mani-
fested in the corresponding electric case $817. Prac-
tically speaking however electromagnetic conversion
processes occurring in external electric fields are far
more familiar since the intense Coulomb fields sur-
rounding atomic nuclei provide a readily accessible
means for experimentally studying these transforma-
tions —notably bremsstrahlung and pair production.
In contrast the only magnetic conversion process which
has received any detailed attention to date is synchro-
tron radiation —or more precisely, magnetic brems-
strahlung —which may be observed at relatively low
field intensities, and which is of some technical im-

portance in connection with the design of accelerators.
Just as in the corresponding Coulomb case, mag-

netically induced conversion processes generally re-

strength, mc' is the electron rest mass, and the quantity

H —= mc'/ef=t4.414&(10"G (1.1a)

denotes the natural quantum mechanical measure of
magnetic field strength. The transition probabilities
are generally increasing functions of T (in the range
Y& 1) and therefore significant conversion rates require
both high energies and very intense magnetic fields. '
In order to fix the relevant orders of magnitude it is
instructive to refer to the early calculations of mag-
netic bremsstrahlung carried out in connection with
betatron and synchrotron design Le.g. , I1, 827: These
estimates were based on energy requirements principally
in the 0.1- to 1.0-8eV range, and presumed magnetic
steering field capabilities of the order of 5 to 15 kG.
In keeping with these constraints, the calculations were
based on Y factors of the order of 10 '; and, in view
of the T' dependence of the bremsstrahlung matrix
elements, led to the prediction of relatively feeble
radiation rates. However it was already appreciated
at this early stage that much greater bremsstrahlung
rates, as well as a variety of other electromagnetic
conversion processes, e.g., pair production and photon
splitting, would become accessible if larger values of
Y could be achieved.

In this respect the experimental situation has altered
appreciably: Various technical developments in the
intervening years have resulted in drastic upward
shifts of the attainable ranges of Y. In particular, high-
energy particle accelerators either committed, de-

quire both high-field strengths and high energies. Tliis 'This relationship has some similarities to the link between
is essentially due to the fact that the transition prob- high magnetic fields and cryogenics: The appropriate factor in

this case is the Langevin parameter 2 =IJH//k T. In cases where pabilities are PrinciPally governed by a single Parameter may be identified with the Bohr magneton, this can be rewritten
Y defined by as the product of two dimensionless factors, viz. ,

Y—= (E/mc') (H/II„), (1 1) (mc'/hT) (H/H«). As is well known, appreciable cooperative
eGects require values of 2 approaching unity, and this clearly
indicates the advantage of combining low temperatures andwhere E is an energy characteristic of t"e Process' e'g' high fields The analogy with the 7 parameter defined by Eq.

the bombarding energy, LI is the ambient magnetic field is evident.
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signed, or planned have made it plausible to consider
characteristic conversion energies of the order of 20 to
800 BeV; and the introduction of explosive Aux com-
pression techniques ("pulse-imploders") has boosted
realizable magnetic field strengths to the 5- to 25-MG
range. ' Taken together, these figures imply Y values
in excess of 10 ', or a total increase of five orders of
magnitude over the older working estimates. Under
these conditions it becomes possible to consider the
extension of measurements of familiar effects such as
magnetic bremsstrahlung to previously inaccessible
ranges. It also becomes feasible to enhance external
field radiative and quantum corrections to the point
where they may be detectable as perturbations of
familiar effects. And finally, the prospect of observing
qualitatively new effects such as electrodynamic
strong coupling modifications and vacuum polarization
Cerenkov radiation moves closer to realization. '

In view of these developments it seems appropriate
to review in some detail a number of the principal
features of high-energy —high-field electromagnetic con-
version processes, and to provide some tentative esti-
mates of the technical requirements which will play
a role in eventual experimental programs. The specific
processes considered in the present review include:
(a) inagnetic bremsstrahlung [Sec. 27; (b) magnetic
pair production [Sec.37; (c) direct and indirect trident
cascades [Sec. 47; (d) photon splitting and magnetic
Cerenkov radiation [Sec. 57. As indicated previously, a
number of related high-field —low-energy processes have
already been considered elsewhere [E1, E27. Most of
the key points of the present survey are summarized
in the following paragraphs:

(a) Magnetic brernsstrahlung. This process, under
its more familiar name, "synchrotron radiation, " is
usually associated with direct microwave and optical
emission from the circulating particle beams in high-
energy accelerators. In this context, magnetic brems-
strahlung is generally considered to be a low-energy
phenomenon. Nevertheless, the intrinsic conversion
rates (Es) available with this process are of the order
of 9.6)& 10' BeV/mm. The essential point is that under
customary circumstances the value of Y' is about 10 '4,

and therefore the total emission rate —which is pro-
portional to ROY'—corresponds to comparatively in-
significant radiative losses. For larger values of Y how-
ever magnetic bremsstrahlung becomes more appre-

'The technical basis for explosive flux compression )F1, F2,
C1, E11,S10]is a conversion of chemical energy to magnetic 6eld
energy. The energy density of high explosives (circa 10' g-cal/cm')
is roughly comparable to the energy densities of megagauss 6elds.
Ultimately, higher Beld intensities may be achieved with pulse-
imploders driven by nonconventional explosives.

3There are also a number of high-field low-energy effects of
related interest. These depend on dispersive properties of magnetic
vacuum polarization and generally involve experimental conditions
of a completely different kind. These effects have been discussed
in some detail in references PE1, E2, E3].

4 These may be galaxies,

ciable, and in fact under the conditions

(E/rnc') (H/H )'~10 ', (1.2)

j Fii )/) Fr, t= «—,(H/H„) (E/ntc') s-+1 (1.3)

which implies experimental arrangements roughly on
par with those required for the observation of quantum
effects, i.e., Y~10 '. By means of suitable variations
of the experimental conditions it is in fact possible to
study strong radiative corrections for magnetic brems-
strahlung with minimal interference from quantum
mechanical effects. In this sense a nontrivial separa-
tion of these effects is feasible. T'he strong coupling
features appear when one attempts to include these
large radiative corrections in the usual quantum me-
chanical description: Simple perturbation theory then
is no longer adequate, and the exact propagators must
incorporate radiative modifications in addition to those
already accounted for in the relativistic bound state
Green's functions [e.g. , K1, K27. In contrast to other
types of high-energy scattering experiments, non-
electromagnetic strong interaction effects in this case
remain isolated in higher-order vacuum polarization
loops.

(b) Magnetic pair production This process h. as not
yet been observed experimentally. Although the mini-
mum energy requirements are rather modest, i.e.,

the total radiation rate begins to compete favorably
with the ordinary (Coulomb) bremsstrahlung conver-
sion efficiency of solid copper. The magnetic brems-
strahlung spectrum has a peak in the vicinity of
E[3Y/(2+3Y) 7, and this provides some fiducial char-
acteristics for energy calibration, as well as additional
Qexibility in the selective enhancement of radiation.

The bremsstrahlung calculations discussed in Sec. 2

are based on exact matrix elements utilizing the rela-
tivistic Dirac wave functions for uniform magnetic
fields. It is therefore possible to treat relativistic and
quantum effects with some confidence. One consequence
is that previous conjectures [S1, N17 regarding the
special significance of relativistic effects in enhancing
quantum corrections have been confirmed in numerical
detail. Experimentally, these effects are manifested
in a reduction of the photon emission into portions of
the spectrum above the normal bremsstrahlung peak.
Values of Y of the order of 10 ' are sufhcient to demon-
strate the onset of these quantum corrections [E77.

A practically unique feature of high-energy magnetic
bremsstrahlung is the possibility of investigating elec-
trodynamic strong coupling modifications. These effects
become important when the forces of radiation reaction
(Fn) become comparable in magnitude to the Lorentz
forces (Fz,) which ordinarily control the particle mo-
tion [E47. Quantitatively this condition may be ex-
pressed in the form
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1'Io. l. (a) Pair production in a moderately strong field. The
double lines denote the binding effects. (b) Pair production in
a strong field. The bound propagators are modified by virtual
photon (radiation reaction) loops.

E/mc' 2, practical considerations place the actual
threshold at

(1.4)

which is technically a much more severe demand. In-
asmuch as magnetic pair production is so closely linked
to electric pair production there would seem to be little
theoretical interest in studying its properties. Never-
theless there are certain questions of principle that
may be more suitably explored with quasi-uniform mag-
netic fields than with spatially limited nuclear Coulomb
fields. The basic concern is again with the inAuence of
large external-field radiative corrections on the tran-
sition amplitudes for electromagnetic conversion proc-
esses (compare Fig. 1):Suppose for instance that mag-
netic pair production occurred at sufficiently high
energies and in fields intense enough so that the effective
threshold inequality (1.4) were satisfied. Then in
almost all foreseeable circumstances at least one of
the emerging particles would receive sufFicient energy
to place it well up near the strong radiation reaction
limit given in (1.3). Experimentally this implies that
the particle would itself become the source of intense
secondary bremsstrahlung. Due to the strong radiation
reaction the corresponding particle propagator would
then have to include modifications over and above those
already accounted for in relativistic and binding effects
LT1, D1). In this respect the situation parallels that
already discussed in connection with magnetic brems-
strahlung. The new feature that makes an appearance
in magnetic pair conversion is that the production
vertex itself should in principle be calculated with this
modified propagator. It is entirely possible that a self-
consistent calculation utilizing nonperturbative tech-
niques would yield results diGering significantly from
those implied by the estimates leading to (1.4) . These
types of strong coupling problems arising in connection
with high-energy —high-field pair conversion calcula-
tions are very similar to those encountered in estimates
of magnetic monopole production LM1, A1j.

Some estimates for magnetic pair production are
given in Sec. 3. In the absence of tractable nonper-
turbative techniques, the calculations have been op-
timized by employing the most accurate relativistic
bognd state propagators presently available. The final

results should at least be adequate for preliminary ex-
perimental orientation.

Under conditions approximating (1.4), magnetic
pair production becomes competitive with ordinary
pair production in matter. For slightly larger values
of 7 magnetic pair production in fact tends to become
the dominant process. Basically the advantage lies
with the magnetic fields because both the electric and
magnetic conversion amplitudes approach an upper
limit, i.e., saturate, as Y increases past unity. At very
high energies the over-all transition rates are then
limited by the total field volumes available for the con-
versions. In material media, the presence of bound elec-
trons in the vicinity of nuclei places an effective upper
limit on the Coulomb field volumes, and this leads to
the well known screening limits on pair production.
These equivalent Coulomb volumes are roughly of
the order of (Avogadro's number) X(Compton wave-
length)', or approximately 10 s cm'. As a consequence
even very modest magnetic 6eld volumes (of suitable
intensity) can become competitive pair converters.
This line of argument is of course not limited to pair
production: in general under extreme conditions the
combined inhuence of amplitude saturation and
(Coulomb) volume limitations tends to favor mag-
netically induced conversion processes over the cor-
responding electric conversion processes.

The progressive saturation of Coulomb pair produc-
tion, and related processes, at very high energies also
has the practical consequence that the cross sections
gradually become more insensitive to energy variations.
This leads to difficulties in establishing reliable energy
scales—particularly in the range above 10" eV where
cascade shower estimates are currently almost the only
means for gauging the orders of magnitude of pertinent
energies. These problems can in principle be overcome
by taking advantage of the "tunability" available in
adjusting the value of Y for various magnetic conver-
sion processes. As a specific illustration let us consider
magnetic pair production where good energy calibra-
tions can be achieved by choosing Y to be in the range
Y&-, . The total transition rates in this case depend
principally on the rapidly varying factor

exp I
—s P(E/tee') (a/H„)] 'I

and it is evident that H may be chosen appropriately
so as to bring the desired energy variations into this
most sensitive range.

'" More precisely, in the case of the magnetic scattering ampli-
tudes, there is a leveling off and a subsequent decrease as T
increases past unity. In the electric case the situation is com-
pletely analogous if one makes the replacement T~Tz-
(E/mcs) (S/S„) in the corresponding scattering amplitudes. In
this case 8 denotes ambient electric field strength, and g„=
m'c'/eh =1.323X10"V/cm. The relationship between the satura-
tion of the scattering amplitudes and vacuum po1arization effects
has been discussed in detail in reference [E5].
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(c) Trsdemt cascades. The characteristic lengths as-
sociated with electromagnetic conversion processes are
all of the order of a Compton wavelength (~~3.85X10 "
cm). Accordingly, magnetic fields spanning volumes
even as small as a cubic millimeter appear to be of
practically infinite extent in comparison with the in-
dividual conversion vertices. If conditions are adjusted
so that the transition probabilities are not vanishingly
small, one would then expect that the individual con-
version events would rapidly multiply into cascade
showers. 6 A crucial step in the initial growth and de-
velopment of these showers is the occurrence of trident
conversions, i.e., the processes

e++H +e++y+—H &e++e+—+e +H, (1.5)

where II represents the external magnetic field, and
the intermediate photons may be either real or virtual.
Estimates of the relevant transition amplitudes (Sec. 4)
bear out the expectation that under extreme conditions,
i.e., Y& —,'o, these trident cascades do in fact become an
important component of the total magnetic attenuation.

(d 1) Photon -sp1itti zg Anum. her of the usual selec-
tion rules of quantum electrodynamics are subject
to modifications when external fields are present. One
illustration of this is provided by photon splitting,
or photon coalescence, which is ordinarily forbidden
by Furry's theorem [F3; see also Fig. 2$. This process
has not yet been observed experimentally, although in
the particular case of Coulomb fields the cross sections
are not impractically minute. Significant conversion
rates for the corresponding magnetic process of course
require extreme conditions, i.e., Y values of the order
of 0.02; but experimentally one has the advantage that
competing processes such as double Compton scatter-
ing from atomic electrons may in principle be elim-
inated. Estimates and comparisons of magnetic and
Coulomb photon splitting rates are summarized in
Sec. 5.

(d-Z) 3fagmetic Cerelkov radiation. Beyond the strong
coupling modifications associated with extreme radi-
ation reaction conditions [cf. (1.3) j, there lies the
possibility of cooperative radiative corrections arising
from collective excitations of (external field) vacuum
polarization loops. One effect of this type which has
already been discussed on a number of previous oc-
casions [e.g. , E2, E3j is vacuum polarization Cerenkov
radiation. Phenomenologically this effect is completely
analogous to ordinary Cerenkov emission: Electro-
magnetic radiation propagating across a magnetic field
in a direction perpendicular to the lines of flux will
travel with a phase velocity less than the phase velocity
of light in vacuum [T1,K1, K2j. Consequently charged
particles with sufFiciently high energies can traverse

In view of the tremendous energy degradation of the indi-
vidual shower components, this may be considered a "gedanken"
device for shielding against ultrahigh-energy particles.

I'IG. 2. Photon splitting in a strong field. One of the intermediate
particles in a vacuum polarization loop emits a photon.

these fields with velocities exceeding the ambient light
velocity, and may be expected to dissipate some of
their energy through Cerenkov emission. Estimates
based on phenomenological quantum electrodynamics
[J1) yield a threshold for this effect of the order of
Y&60. Since radiation reaction corrections are very
important under these conditions these results are
however liable to considerable modification. Semi-
quantitative estimates of the expected orders of mag-
nitude —taking into account interference from mag-
netic bremsstrahlung- —are discussed in Sec. 5.

2. MAGNETIC BREMSSTRAHLUNG

A. Spectral Distribution and Total Energy
Dissipation

Quantum mechanical calculations of magnetic brems-
strahlung are usually carried out within the framework
of a bound state formalism, i.e., the Furry representa-
tion [F4). The transition probabilities in this case
lead to radiation rates rather than to cross sections. It
is convenient to idealize the calculation by assuming
that the entire process takes place in a uniform mag-
netic field (II) which is of infinite extent. The initial
and final electron states (P,-) may then be represented
as superpositions of bound state eigenfunctions derived
from the Dirac Hamiltonian for a uniform magnetic
field. ([J2j, and further references cited therein. ) These
eigenfunctions can be conveniently classified according
to their energy (E) and spin along the magnetic field
direction (olq) in a suitable diagonal representation
indexed with the corresponding quantum numbers
e and s. The eigenvalue equation relating these quan-
tities is given by

I =+mc'[1+ (H/H„) (2ri+s+1) ji"
@=0,1, ~ ~; s= &1. (2.1a)

There is an additional degree of freedom which repre-
sents the arbitrariness of spatial position in a plane
perpendicular to the field direction. This indeterminacy
gives rise to an infinite (energy) degeneracy with respect
to the location of the orbit centers (ro) . The correspond-
ing quantum number (l) may then be obtained from the
eigenvalue condition

re.-= I (21+1)(H.,/H)K, 'Ilt, —. l = 1, 2, ~ ~; (2.1b)

which exhibits the imprecision in the values of ro'.
[As usual, lt.=A/mc; and the critical field is given by
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(1.1a).]Motion in a direction parallel to the magnetic
field may be eliminated from the problem through a
tacit transformation to a "center of drift" system.

With all these provisos, the normalized electron wave
functions corresponding to states of definite energy and
polarization may be written as

P;=Q
~

n, s, 1); (2 2)
l

where the explicit analytical forms are given in (J2].
The transition probability for magnetic bremsstrah-
lung, in simplest approximation, then may be com-
puted by methods of ordinary first-order perturbation
theory, viz.

W = 2sr (cr/v)

X g ] (rt', s', P [ rr e exp (—t'h r) ~
tt, s, l) ~s, (2.3)

where v= e
~
k ~/2sr denotes the frequency of the emitted

photon, and all the other symbols have their customary
meaning (e.g. , LK3]).

Of the nine operations indicated in (2.3), seven may
be carried out by relatively straightforward methods:
The summations and averages over the polarization ~

and the spin indices s,s' are easily performed with the
help of standard reductions from Dirac algebra. The
n summation is also immediate since this merely in-
volves a projection of all the final-state components
consistent with energy conservation. The spatial inte-
grations —which include Laguerre functions arising
from (2.2)—lead to standard hypergeometric func-
tions. The technical difhculties enter at the next stage
when one attempts to carry out the l, l' summations.
These indices now appear as parameters in hypergeo-
metric functions and at present there are no known
closed forms for the requisite sums. This situation has
some resemblance to the "azimuthal" quantum number
summation problem in the corresponding Coulomb
case (e.g., LE6]), and can be dealt with by analogous
methods. The essential device that is required is an
appropriate asymptotic simplification of the hyper-
geometric functions. j:n the present instance this is
tantamount to specializing all the electromagnetic
conversion processes to the extreme relativistic range.
Specifically, here and in a/I the slcceeding calculations,
it is assumed that the experimental conditions are con-
sistent with the inequalities

E/mc'&)1, and (E hv) /mes»1—, (2.4)

where E now represents the initial electron energy,
and hv is the energy of the emitted photon. ~

VThe asymptotic expansion of the hypergeometric functions
with respect to the parameters also requires the auxiliary condi-
tion (hv/mc')'»H/H„, which ostensibly eliminates very soft
photon conversion processes. In the bremsstrahlung case one can
however a posteriori extend the final results )compare the Eqs.
(2.10) and (2.11) of the text] down to the lower limit of the corre-
sponding classical treatment [S2],viz. , hv/mc'» (mc'/E) (H/H„) .
The assumption H ~H„ is also implicit in most of the computa-
tions (compare (T1]).

BR(y, T) = g OR;(hv/E) ci, (y, T), (2.5b)

and

5Ri (hv/E) = 1+(1 hv/E)—

5Ks (hv/E) =2/(1 —hv/E),

hv/E
ORs(hv/E) =

1—hv E

(2.5c)

furthermore

CX) y
cit(y, T) = dx cosh' x E'sts cosh' x,

Q
2+3Y 1

s~(y, r) =J dx cosh' x sinh' x

X E'its cosh' x, (2.5d)
2+3T 1—y

CO

gs(y, T) = dx cosll. x E its cosll x
2+3T 1—y

As in the preceding Lcompare (1.1)], the parameter
Y is defined by

T= (E/me') (H/H, ) . (2.5e)

The E's appearing in the integrands of (2.5d) are
modified Bessel functions conforming to Watson's
conventions [W1].The new notation

y= hv/hv„, hv„= EL3T/(2+3T) ], (2.5f)

has been introduced for convenience in characterizing
the spectral distribution. (Note: 0& hv &E corresponds
to 0&y&1+2/3T. ) As usual we write cr=e'/trtc for the
fine structure constant.

The general behavior of the spectral function

I(E, hv, H) with respect to variations of the individual
parameters of physical interest is rather complex. The
situation can however be simplified considerably by
taking advantage of the convenient circumstance that
with the single additional restriction

hv«E, (2 6)

the entire complex of analytical expressions (2.5a—d)
may be reduced to a concise form which turns out to

This part of the magnetic bremsstrahlung calculation
was first explicitly carried through by N. P. Klepikov
LK4]. His final result for the spectral distribution of
the radiation emitted per unit distance may be written
in the form:

30 mc~ Y
I(E, hv, H) =-

)(, (2+3Y)'E
—OK(y, T), (2.5a)

where
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be substantially identical to that derived from the cor-
responding classical problem.

It is now convenient to introduce the auxiliary
(bremsstrahlung) function

We begin by expanding the 3R s to erst order in
Isv/E: x(s) —=s Ch Eps(h), (2.9)

ORI(hv/E) —2t 1+(hv/E) g,

ORs(hv/E) =2)1+(hv/E) J,

ORs(hv/E) = IO (hv/E) '-+0.

As a consequence of the elementary inequality

BZ„(s)/Bv)0, for v)0, s)0; (2.8a)

one may also show that

81(y T))8s(y, T); (2.8b)

OR(y, T)=2 (1+hv/E)

dx cosh' x E'@3 cosh' g
2+3T(1—y)

+ cosh' h sinh' h K'I~s cosh' x
2+3T(1—y)

(2.8d)

and this leads to the rigorous upper bound

ORs(hv/E) gs(y, T) & hv E '. 2.8c)
ORI(hv/E) gi(y, T)

To 6rst order in hv/E, the OR-representation (2.5b) may
then be contracted to the single term

where all the notations and hypotheses are as speci6ed
in the equations (2.1b) to (2.9) of the preceding. The
corresponding classical relativistic result fS2, S3, A2j
may be put into the forms

2ir K, E 3YEj
(2.11)

It is clear that the classical and quantum mechanical
expressions are almost identical. The most important
distinctions arise from the fact that T is sot necessarily
restricted by the condition T))1 in (2.10); and also
that the argument of ~ in the quantum mechanical
form is modi6ed by the factor (1+hv/E) . These points
are discussed in some detail in Sec, 28.

Various properties of the bremsstrahlung function
x(z) are derived in Appendix 2. For reference we note
the limiting forms

2 149sIt3 s«1

corresponding to the incomplete Bessel function in-
tegrals appearing in (2.8e, f). This leads to a very
compact 6nal expression for the bremsstrahlung spec-
tral distribution:

I(E, hv, H) = (err/27r) (mes/X, ) (T/E) (1 hv/E) —v(21 ) )

(2.10)

The essential step of the entire reduction now follows
from the identity x(s) (2.12)

dh{cosh h E s/3(t cosh' h)
1.253''~'e —' s»1.

+ cosli h s11111 h E I)s(t coshs h) I

I
2@3

Ch Xsp(h), f)0, (2.8e)

OR(y, T) =—(1+hv/E)t I

which is proved in Appendix i.This permits the further
simpli6cation of (2.8d) to

(hv/E) (1+hv/E) ((T, (2.13)

is applicable. In view of (2.6) this is in fact satis6ed
identically in the quantum mechanical regime Y) 1.
From (2.10) and (2.12) we then find

The function is displayed graphically in Fig. 3; numeri-
cal values are given in Table I.

These formulas may be simplified still further in cir-
cumstances where the additional restriction

3'

2+3Y (1—y) (2+3T) (1—hv/E)

ssc~ Y~~8 kvt~~s f 2 kp
I(E, hv, a) =0.517n

Ei k 3E'
(2.14)

the last approximation following from (2.6) .

8 The usual forms of this equation are easily recovered by shift-
ing from an energy to a frequency scale (I~AI); and converting
the quantum mechanical critical field to the corresponding classical
expression LL1), e.g., a 'H„=m'c'/ss =H„(classical) .
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~ y y e I I ~ ~ ~
f

I ~ I l 1 ltl ments of the differential spectrum, such as (2.15), with
determinations of the bremsstrahlung peak.

The total energy dissipation per unit distance may
be obtained from the basic expression (2.5a) by an
integration over all frequencies. The exact analytical
form of this result has been given by Klepikov t K4].
It is convenient to write this as

where

LN (Y)/ax = -'su(mc'/Z, )g (T), (2.18)

.OOI = T'(1 5 —953T. ), T(&i; (2.18a)

O.S563Y~~3, Y))1. (2.18b)

.OOOI'.Ool .OI O. l

Z

. I . ...I ~ I III ~ ~

I.O

Ic(s) =s dxXgg(x).

where

FIG. 3. Graph of the bremsstrahlung function;

10 A graph of the exact function is given in Fig. 4.
Both limiting cases corresponding to Y~&~&1 may be

obtained directly from (2.10). In particular it is easy
to check that the expression (2.16), with the ratio
hv/E —+1, lies within 5'Po of the exact quantum me-
chanical limit (2.18b). The leading term of the small
T-expansion (2.18a) of course coincides with the classi-
cal result.

a(mc'/X, ) =9.657&(10' BeV/mm (2.14a)

8(hvr, hvs)

hx
=4.99&&10' Y'~'

II,Ir2/E

dg x'~' (1—-'ax) BeV/mm.

is the intrinsic rate of magnetic bremsstrahlung.
It is also useful to have an explicit formula for the

total radiation per unit distance into the spectral region
between h~& and h~2. This follows immediately from
(2.14);

S. Quantum Corrections and Radiation Reaction

Under conditions of high momentum transfer it is
expected that quantum eGects will appreciably in-
huence the characteristics of magnetic bremsstrahlung.
The classical theory may therefore be considered re-
liable only under circumstances where the ratio of the
photon to the particle momentum is essentially neg-

TABLE I. Numerical values for the function s(s).

(2.15)

In particular, for the integral spectrum we obtain

8(0 hr )/Ax ~ 3 75 &&10s T'Is (hv/E) 4(s BeV/rum. (2.16)

A rough measure of the value of Y in a given experi-
mental situation may be derived from the position of
the maximum intensity of the bremsstrahlung spec-
trum. This is a consequence of inverting (2.5f) to give

0.001
0.01
0.02
0.03
0.04

0.05
0,06
0.07
0.08
0.09

0.213
0.445
0.547
0.614
0.663

0.701
0.733
0.760
0.782
0.801

1.0 0.651

0.300

0.053(+0, —0.002)

0.0214(+0, —0.0008)

0.00845 {+0,—0.00008)

2 hv„/E
3 1 hv„/E'—(2.17)

and identifying hv., with the bremsstrahlung peak
t compare (2.8g) g. In general this maximum increases
with increasing values of T; and ultimately for Y) ~~,

the magnitude of hs„ tends towards the top end of the
spectrum, i,e., hv„—+E. Further information on E and
H may in principle be obtained by combining measure-

0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

0.818
0.903
0.924
0.905
0.871

0.831
0.788
0.742
0.696

10

0.00338

0.00129

0.00049

0.00019
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ligible. A rough criterion for this is IO
Avery/c

~Y«1.
E/c

(2.19)
IO

At extremely high energies however relativistic effects
may enhance the inQuence of quantum corrections:
Various features of high-energy bremsstrahlung de-
pend sensitively on the velocity increment c—v~
(c/2) (mc'/E)', and in the ultrarelativistic region this
is diminished to magnitudes comparable with the
quantum Quctuations. More re6ned wave packet argu-
ments I S1] have in fact indicated that the inequality
(2.19) ought to be replaced by the stricter condition

Io

-2
IO

Yl/2((f o (2.19a) IO

-4
IO

.Ol IOO

Fro. 4. Graph of the auxiliary function g (T) Lcf. (2.18)g.

(2.21)

92

dyL1 —(3Y/2) y) x(y+ (3Y/2) y']~ dy x(y)
g6fd(hv)=y(E, hv, yy}.

6x g,„,
(2.20)

Ot

+lyIy'~(y~) —yp (yi) —y ~yy (y)I.In the classical case the explicit form of this result is

and it has been conjectured
I Ni] that quantum modi-

fj.cations may actually be manifested under even more I I I I I IIII I III I I I I I IIII I I I I I I

.I I Io lo
conservative conditions. The observation of these eGects T-(E/ )(H/ H )

is of course favored by circumstances sensitive to the
relativistic enhancement. It will appear that the shape
of the upper portion of the bremsstrahlung spectrum
exhibits signi6cant quantum corrections even for Y
values as low as 10 2. expansion

These points may be checked in quantitative detail Qy(3Y/2} s] ( )+(3Y/2) s y( )+g(Ys 4)
with the aid of the classical and quantum mechanical
expressions (2.11) and (2.10) . The total radiated
energy emitted (per unit distance) into portions of
the bremsstrahlung spectrum between he~ and hv2 is
given by

Q2

AG" (hvt, hvs) 3sI'n mc'
Y2

Ax 4x
dy z(y), (2.20a)

LN@M(hvt, hvs)

Ax

3'~2m mC2
Y2

~c

3Y ( 3Y

i
dy 1——y xIy+ —y'~.

(2.20b)

wheres y= (2/3Y) (hv/E). The corresponding quantum
mechanical expression is

(2.22)

Evidently the region 0.3&y» 5 &y2 is of greatest in-
terest. However since the function x(y) is already very
small in the range y) 5, the y2 dependence will in fact
not be too crucial. LFor the same reason even the limit

y2—+00 does not clash with the initial assumption
(2.21) .]The quantum corrections to the upper portion
of the bremsstrahlung spectrum then may be written
in the compact form

680)(hv, ~) —58@M(hv, ao) 2 hv=Y f ——,(2.23a)
68et(hv, ~) 3Y E '

where
Although y itself is not necessarily a small quantity, we
shall assume that Yy2((1, and then introduce the series 3

f(y) = y' x(y)+3—
2

' This is consistent with the previous notation (2.5f) in cases
vrhere T«1.

d' (~)}.

(2.23b)
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For f(y) we have the representative values:

20 35. (2.23c)

where Fl, is the Lorentz force exerted by the magnetic
field and Fg represents the force of radiation reaction.
It is well known that there are a number of unresolved
theoretical difficulties associated with the derivation
and application of this equation. In most cases of prac-
tical interest however these problems are of no concern
since the experimental conditions imply the inequality

It is then apparent that even if the parameter Y is
assumed to be as small as 10 ', the relative energy
depletion in the spectral region above hv/E 0.004
will be of the order of 35'~/~. Analytically this en-
hancement is due to the considerable variation in
magnitude of K(2|) in a region expecially sensitive
to small shifts of the argument. As is evident from
(2.8g) the shift in this case results from the com-
bination of a quantum effect, i.e., the replacement
1~1+hv/E in Eq. (2.10) with the relativistic enhance-
ment due to the factor (2/3Y).

Momentum transfer to the radiation 6eld is also of
importance in connection with a number of effects due
to radiation reaction. Within the framework of the
classical theory it is usually assumed that the dynami-
cal characteristics of magnetic bremsstrahlung may be
derived from the equation [E4]

(2.24)

avoiding the "runaway solutions" and other unpleasant
features inherent in the exact form of (2.24). In the
special case of magnetic bremsstrahlung it is however
feasible to create experimental conditions for which
the inequality (2.25) is no longer valid. The rigorous
consequence of the "exact" radiation reaction theory
may then be checked in a nontrivial way.

We again consider intense magnetic fields and brems-
strahlung in the ultrarelativistic limit: The Lorentz
force in this case is given by

Fl. ev xH, (2.26a)

where i is the unit velocity vector associated with the
particle motion. The corresponding reaction force may
then be estimated in an essentially model-independent
way from the momentum transfer to the radiation 6eld.
Since most of the bremsstrahlung is emitted into a
forward cone of half-angle ~sec'/E(&&1), the trans-
verse momentum components may be neglected and
Fz obtained directly from (2.18), i.e.,

d(E/c) „2 mc2
Fg~ v =--e g(Y)~.

dt 3
(2.26b)

From an experimental point of view the most favored
situations involve the condition Y((1; and this implies
the further simplification g(T)-+T' [compare (2.18a)j.
In these cases the momentum transfer ratio is explicitly
given by

I
~B [/[ F~ I-8~(&/K. )(E/~~')' (2 27a)

i
F, I«IF~I,

From this expression it is obvious that the equality
(2.25)

and this permits the calculation of all necessary radia-
tive corrections from (2.24) by simple perturbation
methods. These approximations lead to analytically
well defined results a d have the virtue of automatically

(2.27b)

can indeed be satisfied with a variety of plausible ex-
perimental arrangements. Some representative choices
for E and H are:

E (BeV)

II (gauss)

20

6.0X10'

5.4X10 '

40

1.5X10'

2.7X10 '

200

6.0X10

5.4X10—4

300

2.6X104

3.5X10 '

1000

2.4X103

1.1X10 ' (2.28)

(See also Table IV.) Under these conditions one would
expect appreciable changes in the dynamics and the
radiation characteristics of magnetic bremsstrahlung.

It is important to recognize that the equality (2.27b)
does not necessarily imply a breakdown of classical
electrodynamics. This is presumably a Lorentz-co-
variant theory and the criteria limiting its domain of

validity ought to have a Lorentz-invariant significance.
This obviously is not the case for (2.27a) which is
merely the ratio of the magnitudes of 3-vectors. For
this reason a number of authors have proposed that
the value assumed by (2.27a) in the particle rest
system —evidently an invariant —be identified as the
actual limit for the internal consistency of the theory
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PP1, L1, E4j. Elementary transformations of this ratio
yield

(2.29)

where E and H retain their meaning as energy and
Geld strength measured with respect to the laboratory
system. It is apparent that the invariant criterion

(~ Fz (&&) Fz, ))„,i is far more conservative than (2.25) .
This line of argument, apart from its theoretical sig-

nihcance, has the practical merit of suggesting a reason-
able approach to the computation of radiation reaction
effects even under conditions violating the inequality
(2.2S): A comparison of the two ratios (2.29) and
(2.27a) indicates that Lorentz transformations to the
rest system generally tend to diminish the importance
of radiation reaction. This implies that perturbation
methods may be legitimately applied in the rest system
under circumstances where this is not directly feasible
in the laboratory system. Specifically in cases where
the equality (2.27b) applies but the ratio (2.29) still
remains small, radiation reaction effects may be evalu-
ated by perturbation theory in the rest frame, and the
results then transformed back to the laboratory system.
These perturbed solutions may of course differ consider-
ably from the initial solutions. The net result of the
radiation reaction feedback will be to alter the normal
spectral distribution Li.e., (2.11)) of the bremsstrah-
lung.

A special feature of high-energy magnetic brems-
strahlung is that the spectral perturbations due to
quantum mechanical effects and radiation reaction
corrections can in principle be distinguished from each
other. This possibility is a consequence of the differ-
ences in the respective threshold criteria, i.e. (2.23a, b)
and (2.27a, b). Theoretically this is an extremely in-

teresting situation since in. all other known cases (see
} E4$) quantum effects intervene well before conditions
reach the point where radiative corrections become
important. This is rejected in the usual theoretical
sequence in which quantum mechanical descriptions
are first substituted for the classical formulations; and
only afterwards —if necessary —supplemented by quan-
tum mechanical perturbations which correct for the
radiative effects. The Lamb shift and the Schwinger
correction LS41 are well-known illustrations of the
success of this approach both for low- and high-energy
radiation reaction effects. In the magnetic bremsstrah-
lung case however it is evident that experimental con-
ditions can be adjusted so that at the point where
quantum corrections become important strong radi-
ation reaction effects already prevail. This corresponds
to an inad|:qua, cy of the relativistic electron propaga-
tors } K2, Tig even in lowest approximation. A proper
description would obviously have to incorporate radi-
ative corrections ab ileitis. In this sense high-energy
bremsstrahlung becomes a problem in quantum electro-

dynamics involving stroeg couPling but without strolg
iwteracHons.

1600/Z«E/mc'& 10', (2.30)

where Z is atomic number. Ionization losses at low
energies may then be ignored, and theoretical complica-
tions peculiar to super-high energies (cf. Sec. 2D) will
not vitiate the comparisons.

The best estimates currently available for the spec-
tral intensity of very-high-energy electron brems-
strahlung in materials characterized by density p,
atomic weight A, and atomic number Z lead to the
expression

I(hv, Z) =—,'nXP, .'h(Z), (2.31a)

where So is Avogadro's number, X, is the Compton
wavelength, and n="1/137". Screening effects and
Coulomb corrections are included in the auxiliary func-
tion h(Z) which is given by

h(Z) =6(p/2) ('nZ) ' Lln (183/Z'I') +0.083

—1.20(nZ)i f1—0.86(aZ)i}j (2.31b)

This form of I(hr, Z) is a good erst approximation for
the spectral bremsstrahlung per unit distance appro-
priate in the extreme relativistic region. It omits a weak.
dependence on photon energy and cannot be relied
upon at all near the bremsstrahlung tip, hv~E. (Both
Coulomb and magnetic bremsstrahlung cross-section
estimates in this region are still rather uncertain. )
For purposes of comparison we shall use (2.31a) to
represent the effects of bremsstrahlung in material
media, and the expression (2.10) for the corresponding
magnetic spectrum, viz.

%3n iric' T hr
I(E, hr, II) = —1——«(2t ) .

2x A. E (2.32)

The total bremsstrahlung energy dissipation per
unit distance in material media is given by

a a(Z)
Ax

d(hv) I(hv, Z); (2.33)

C. Comyarison of Bremsstrahlung in Matter and
Magnetic Fields

In the energy region above 10 BeV, and for magnetic
Geld strengths exceeding 1 MG, electron bremsstrah-
lung in magnetic fields begins to compete favorably
with electron bremsstrahlung in material media. In
this section we present a detailed comparison of the
differential and total energy dissipation rates for the
two processes. The basic expressions for magnetic
bremsstrahlung can be taken over from the preceding
work. The corresponding formulas for material media
may be obtained from the compilation of Koch and
Motz LK6j. It is convenient to restrict the energies to
the range
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O. I I.O IO

H{MG}
IOO IOOO

FIG. 5. Summary of the total bremsstrahlung break-even conditions (2.38) for various. materials. The regions to the right of the
curves labeled;Be, HE, Al, etc. correspond to experimental conditions favoring magnetic bremsstrahlung. As an illustration we note
that at 300' BeV the minimum magnetic 6eld required to enhance magnetic bremsstrahlung over ordinary, : bremsstrahlung in high
explosives is 1 MG (=—megagauss).

The curves below T=0.01 represent the equations

En vH'Mo=3. 44X10'h(s); I cf. (2.39)$.
The remaining portions correspond to solutions of the implicit conditions

g(T) =6.77X10 sEnev h(s); I cf. Fig. 4j.
The line "RR" marks the onset of the strong radiation reaction regime (2.27a, b).

and the best current estimate for this quantity is

6, 8(Z) /»=-', nlVoX, ' 8 &(Z) . (2.34)

The corresponding magnetic expression Lcompare
(2.18)j is

6 8(Y)/»=-', cr(mc'/X, )g(Y). (2.35)

Since we are principally interested in assessing the
comparative magnitudes of these quantities it is con-
venient to introduce two ratios: the total energy dis-
sipation ratio

both of these expressions represents;the total "Compton
volume" XP,,s ( =3.465 &(10 ' ) which provides the
natural scale for Coulomb-induced'conversion processes
in bulk matter under fully screened':conditions. The
small value of this quantity is one of the factors favor-
ing the magnetically catalyzed conversions.

A fairly quick way of becoming familiar with the
various experimental possibilities covered by R& and
R~ (hv) is to consider first the break-even point for the
total radiation rates. The corresponding experimental
conditions are then implicitly determined by the equa-
tion

Eg= fk8(Y)/», mcs g(Y)=2.89X10'; (2.36)
Rg= 1. (2.38)

~8(Z)/» & &(Z) In cases where Y«o, this is equivalent to the simple
relation

and the spectral intensity ratio
(E/mc') (H/H, )s= 3.46)(10-s js(Z). (2.39)

R~(hv) = ' ' =0.89X10'
~

1——I(E, hv, H) ( hv H x(2i')

(2.37)

The large numerical factor ( 107) which appears in

Under more extreme conditions the exact form of
(2.36) must be used. Representative values for h(Z)
are given in Table II. The experimental conditions re-
quired to reach break-even for a number of materials
are summarized graphically on Fig. 5. For convenience,
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TABLE II. Representative values for h(Z}.

Beryllium Air High explosive Aluminum Copper Lead Uranium

a(z)

9
1.84

5.00X10-3

~7
~14

1.25X10 '
6.44X10 ' 1.7

9.89X10 '

13
27

2.70
0.024

29
63

8.89
0.156

82
204

11.00
0.409

9Z
238'

18.7'

0.734,
"

curves of constant Y are also indicated on the figure
(compare Table III).

Figure 5 shows that for magnetic 6elds in the 1—10
MG range and energies above 10-BeV magnetic brems-
strahlung does indeed begin to compete favorably with
bremsstrahlung in material media. In the range 100-
1000 BeV—which is of interest in connection with
projected high energy accelerators —even fields as
modest as 1 MG (i.e., pulsed coil configurations or
magnetically driven Cnare imploders) can be con-
sidered as practical brernsstrahlung converters. These
trends become increasingly pronounced at still higher
magnetic field strengths. Some of the estimates shown
on Fig. 5 must be regarded with caution since the
comparisons involving curves above the RR-line are
subject to considerable radiation reaction corrections. '

A comparison of the spectral intensities of Coulomb
and magnetic bremsstrahlung is given in Fig. 6. The
curves illustrate the special case of a 20-BeV electron
accelerator with a magnetic target adjusted to a Qeld
strength of 3 MG. This normalizes the total magnetic
bremsstrahlung to the same level as the total ordinary
(Coulomb) bremsstrahlung in beryllium, cf. the break-
even criteria (2.38), (2.39). It is clear from the figure
that under these conditions the low energy end of the
spectrum will be completely dominated by magnetic
bremsstrahlung. The energy hv& indicated on this graph
is dehned by the relation

hey=1.5E Y; (2.40)

I Present bremsstrahlung target materials are limited to total
beam power loads of the order of 30 kW/cms (M2$. It remains
to be seen whether this limitation will favor magnetic targets in
high-energy high-current devices.

and serves as a convenient marker of the upper end
of the most intense part of the magnetic bremsstrahlung
spectrum. The quantity hvs(=—Shvi) which also appears
on the figure corresponds roughly to the upper energy
limit of the useful portion of the spectrum; beyond this
point the intensity dwindles very rapidly. Entries list-
ing values of he~ and hs2 corresponding to various ex-
perimental conditions are given in Table IV.

Figure 6 also exhibits the situation for a 1000-BeV
device: In this case the beryllium target bremsstrahlung
extends up towards 1000 BeV, but in virtue of the

D. Bremsstrahlung Comparisons (continued)

There are a number of ultrahigh-energy eGects which
lead to modi6cations of the simple bremsstrahlung com-

I I I i ~ IIII I I I f I IIII I I I i I II&I ~ I t 1 I IIL

-I
IO

BIV vhv, 3~)

BeV ' MG \

-2
IO

-3
10 I I I I stall

O.OI O. l

I (hv, 4)

~0»

, , I. .„I
I.O IO

h~ (BeV)

I ~ ~ I ~ ~ ~ Il t I l I ~ ~ tl

4

~ ~M+OC
'

~ ~
~ 0
~ 0

~ I I I I LI(s

IOO 1000

FxG. 6. Comparison of electron bremsstrahlung in berylliuIn
and magnetic fields. In practical units

&2 hvI (E, hv, H) 0.12HM@ &~
——rnm

IN3T E
and

Lcf. (2.32) ];

I(hv, Z)~0.38h(Z)mm ', t cf. (2.31a)g.

The actual radiation rates, in units of energy/mm, are given
by I (hv, Z) A(hv} and I(E, hv, H) n(hv). The solid curves indicate
the intensities for the conditions X=20 SeV and II=3 MG
which have been adjusted to correspond to break-even, i.e.,
Ee 1 as in (2.38) . The dashed curves represent the situation
at E=1000 BeV with II remaining at 3 MG. The curve segments
set off by ~" correspond to regions of theoretical uncertainty
near the bremsstrahlung tip. For the definitions of hv~ and hv2,
see (2.40) of the text.

saturation of the transition amplitudes the absolute
magnitude of the intensity does not increase beyond
the level reached at 20 BeV. The peak of the corre-
sponding magnetic spectrum (K=3 MG) is shifted
to approximately 70 BeV, with a useful intensity excess
extending up to about 700 BeV. Beyond this point
present bremsstrahlung estimates become too un-
certain to warrant detailed comparisons. The R~ ratio
(2.36) appropriate to this case is of the order of 40.

Table IV contains a summary of the results of similar
analyses for a variety of energies, field strengths, and
target materials. The general trend of these comparisons
supports the view. that higher energies favor the mag-
netic interactions.



438 REVIEW OZ MODERN PHYSICS ~ OCTOBER 1966

O
OQ

IO
X W +
~~OQl/) W OQ~W~~

NOQK WOQ
~ ~ ~ ~ ~ ~ ~ ~

w wbbb

IO
X
uD

O WO4
~ ~

tl

W ~ M OQ ~ ~op ~
~ eq W W W

I

OVOWt & OQ~ +
QOQOO OOOQ&& O

O
IO
X
WOQMM~ C)MChVOW

OQ M M Ch '4D
~ ~ ~ ~ ~

M Qh VO ~ W
~ ~ ~ ~ ~

w OOOO

IO
X

O QW~ op~On~

OI

OO eeoprpb ee X
oow enw~~M m~O~~
OO QOOOO OOOQON Q

O

O

O
X OWN

Wi W

~ ~ ~ ~ ~

Omt
W OQ K & W

~ ~ ~ ~ ~

w OOOO

IO
X~ O Op W M Od

O op '6 K w OQ uD W
\ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

W OQ '4 4 R R W W W W O Q O

IO
X

IO
X

w opnj+ ~ ~ ~
m w uD m m

~ ~ ~ ~ ~

~WWWO

Ch W W W Op
~ ~ ~ ~ ~ ~ ~ ~

WWr lr IO

C& M OQ
OQ ~ ~ ~ ~ ~ ~ ~ ~

OO

IO
MOQ~WOQ ~W X

~ ~ ~ ~ ~ ~ ~ ~ ~ ~OOOOO Obt

OQM CHIC)
C& W
OO QQOQO

IO

~X
~ ~ ~ ~ ~

OChC ~w

O

W XWQ&~@
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~OO OOOOO OOQKRw Q

O
X

Q

II

O

O

' O
X
OQZORW

IO
WO

Y)RW&OQ

Ch W Ch'GOO
~ ~ ~ ~ ~

Op t

~ ~ ~ ~ ~

W ~ M OQ W~~~WOQ
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

W ww wQ OOQOO

I

~bc
eq w ~ op W ~ W ~ w O

~ ~ ~ ~ ~ ~ ~ ~ ~ ~wwbbb OOOOOQ

X
OQ

O
~ ~ ~

MWOQC
~ ~ ~ ~ ~

WWQQQ

HOOQ 'QK wopC)
Lf) ~ ~ ~ ~ ~ ~ ~ ~

WWWQQ

CV QO04MW+WWWW
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~OO OOOOO OP@ ONw Q

IO
4OQ 4ORW ~ OpW CQ + OQ W

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~OO QOQOop

O
I

X Op

~Owe@~ WW~opop
OQ OQ C

OQ ~Wt OQOQM

opt C %Q &&wOO

IO
X
Ch

Op

llQ~O~~O
Ch OOMPH~
OOQOQ

II

IO

~W X OCaw WW~OC ~Ox
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~OO OQChoQW

O
IO
X&OC wC M op M oQ ~

Ch ~ tOW wC Cq
~ ~ ~ ~ ~ ~ ~ ~ ~ ~rVeeeeq wwbdb

IO
X

OI

X
OQ O W
OQ OQ ~ ~ 1/) ~ ~ ~

Op

IO

op~ X
VOX OQOQ ~
&&wOO OQ

O

IO
X ~~Wee
m O op ~ m

ChC ~ eq~O OQ N Y) W Op V0 & h4 W
~ ~ ~ ~ ~ 0 ~ ~ ~OQOOO

IO
X

CV Op ~KRQWW

OI

o~c- XChW OWwt M Op~Op~~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Op W

IO
X o ~

M OQ M OQ W
~ ~ ~ ~ ~ + ~ ~ ~ ~~WWQO

IO

O&wM
OOOOO OOOQWN

O
X

IQ
X
OW& OQWQC)w

OI

Ob ~&oped &)&op+& X
wWOQO

OOOQO OOOOO OOOOO &OOOO@OOOQO QOOOO Pop&4%
O Chop~'6

OQQ OOOOQ Qb OOOOOOOO OOOOO COCO ChaptO Ch op t W m ~ ~ eq w



THQMAs ERBER High-Energy EIectromugrletic Corrversiorr, Processes 639

TABLE IV. Summary of magnetic bremsstrahlung characteristics.

Accelerator
energy

20jBeV

40 BeV

300 BeV

1000 BeV

Material

RR~
Be
HEb
Al

RR
Be
HE
Al
CG

RR
Be
HE
Al
Cu
Pb
U

RR
Be
HE
Al
Cu
Pb
U

Magnetic
"break-even"

field

6.0 MG
3.0
4.2

6.4

1.5
2.1
3.0
4.5

10

2.6X104 G
0.75 MG
0.98
1.5
4.5
7.2

11

2.4X10' G
0.38 MG
O. 52
0.84
2.5
5.0
7.9

5.3X10 3

2.7
3.7

5.7

2.7X10 '
3.7
5.3
8.0

18

3.5X10 4

1.0X10 '
1.3
2.0
6.0
9 ' 6

14

1.1X10 4

0.017
0.023
0.037
0.11
0.22
0.35

Total energy
dissipation

180 MeV/mrn
45
90

210

45
89

180
410

2100

0.77 MeV/mm
0.64 BeV/mm
1.1
2.6

23
55
96

72 keV/mm
2.2 BeV/mm
4.3

10
68

180
320

hs1d

160 MeV
79

110
170

160
220
320
480

1100

160 MeV
4.5 BeV
5.9
9.0

27
43
60

160 MeV
26 BeV
35
56

170
330
525

Rs (bye)

~ ~ ~

79
56
35

55
40
25
8.6

20
13
8.2
3.7
2.3
1.9

10.0
6.7
4.6
2.1
1 ~ 6
~ ~ ~ ~

hP2

~ ~ ~

400 MeV
560
850

1.1 BeV
1.6
2.4
5.4

~ ~ ~

23 BeV
29
45

~ ~ ~

130 BeV
170
280

R~ (k~s)

2.5
1.8
1.1

1.8
1.3
0.80
0.27

0.63
0.42
0.26

RR refers to the radiation reaction condition (2.27a, b); compare Fig. 5.
HE=high explosives (PBX or Composition "B").

' Entries omitted because the condition hv((E is violated.
~ For definitions of these energies. see Eq. (2.40) and the subsequent remarks.

parisons considered in the previous section. In par-
ticular it has already been emphasized that magnetic
bremsstrahlung under strong radiation reaction condi-
tions, i.e., in the region above "RR"on Fig. 5, will ex-
hibit deviations from the quantum mechanical results
(2.32) and (2.35). There are similar corrections for
ordinary bremsstrahlung which arise from coherent
effects in condensed material media. Generally these
effects introduce nontrivial frequency variations in
the Qat Bethe-Heitler spectrum (2.31a) and are re-
sponsible for reductions in the over-all radiative losses.

In the energy region of interest, i.e., 10—10' BeV,
the most important of these coherent effects is the
multiple scattering inhibition originally discussed by
Landau and Pomeranchuk P 3, M3, M4, D2]. This
originates in the relativistic amplification of the intrinsic
coherence length associated with the bremsstrahlung
scattering amplitude LS5].At incident electron energies
exceeding 10' eV this coherence length becomes com-
parable to interatomic distances and the brernsstrahlung
conversion can no longer be idealized as occurring in
the vicinity of a single nucleus. "In order to discuss this
process quantitatively it is convenient to introduce

several characteristic energies (G1, G2]:

E~—$200/h(Z) ]LpZ/A] I mc; (2.41)

Eo ~.5 X 10' mc'/h(Z);

hs ) yE'~'

he„—E'/Es.

~—E 4/3/E ~

Lfor h(Z) see (2.31b)]
(2.42)

(2.43)

(2.44)

Multiple scattering corrections become important for
incident electron energies above the threshoM E&E~.
The bremsstrahlung region most strongly affected lies
between the limits

(2.45)

In this interval the Bethe-Heitler spectrum is modified
by the inhibiting factor q as follows:

I(hv, Z) —&q(E, hv, Z) l(hv, Z),
where

q(E, hr, Z) f(2X10s)/E]Lhvmc'/h(Z)]'ls. (2.46)

» This coherence phenomenon is a direct relativistic counterpart For example g~10' BeV 0.1 BeV 4~ —' which con-
to coherent multiple photon scattering L83, 84$. Arms that under certain conditions the reduction of the
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TABLE V. Critical energies (eV).

Beryllium Air
High

explosive Aluminum Copper Uranium

EI 1.8X10'0

3.5 X10'4

0.13

3.9X10"
2.7X10»
0.011

9 2X10s

1.8X10'4

0.13

4.7X10'
7.3X10"
0.13

1.3X10'
1.1X10"
0.12

5.1X10s
4.3X10»
0.11

3.6X10'
2.4X10»
0.11

IQ5 )
)

s
)

l
)

$ )
$

/
g ) s ) I

13
IO

IR
IO

II& IO

N'

IO"
eV)

lo

8
IO

v](IO 8eV)

I I
I'0

O $ IO aO SO
HE

l . I a I a I a I s

4o z 5o so 7o So 9o

FIG. 7. Critical energies for coherent bremsstrahlung corrections.
The curves hvar and hv Lcompare (2.43) and (2.44)] mark the
boundaries of the spectral regions which are damped by the
Landau —Pomeranchuk effect;"corresponding to the special choice
E~10' BeV.

'~ This refers to an additional reduction of low-energy brems-
strahlung emission due to the effects of the polarization of the
medium PT2]. Several other eiIects of this type have been con-
sidered by Toptygin PT3] and Feinberg and Pomeranchuk )FS].

ordinary bremsstrahlung intensity may indeed be con-
siderable. In the special case E—+E~, and u~u~, it is
easy to check that q~1, so that the inhibition vanishes.
In the opposite limit v—+v„(but Z)E&), the factor q
on the left-hand side of (2.46) must be replaced by
q(1—q) 'I', and one again finds q~1. Under conditions
corresponding to E)E~, but v(v~ (i.e., hv&10' eV),
the expression (2.46) no longer applies and the
Landau —Pomeranchuk spectrum goes into the Ter-
Mikaoljan spectrum. "A number of related possibilities
are discussed in reference LG1$.

Values of the critical energies for a number of ma-
terials are summarized in Table V. This information
is also given graphically on Fig. 7. For illustration the
spectral regions exhibiting the multiple scattering
reduction corresponding to the specific incident energy
10' BeV are indicated on the figure.

At this stage one could in principle return to Sec. 2C'

and undertake a revision of all the previously computed'
high-energy (i.e., Z&E&) bremsstrahlung comparisons
to allow for the Landau —Pomeranchuk effect. How--
ever in view of the likely prospect of still further re-
visions which may eventually be required for radiation
reaction and other coherent eQects this does not seem
advisable at present. It will be sufhcient to illustrate
the kinds of modifications that can be expected by con-
sidering one specific case: If we refer back to Fig. 6 we
may easily obtain the values of the differential magnetic/
Coulomb bremsstrahlung comparison factor Rs(hv)
appropriate to beryllium. Comparing with Pig. 7, it is
evident that for incident energies E 10' BeV, the
Landau —Pomeranchuk spectrum includes the special
value he~0. 1 BeV. According to the preceding discus-
sion the corresponding q-reduction for these specific
conditions is —,. In this instance therefore the multiple
scattering inhibition enhances the relative importance
of magnetic bremsstrahlung by boosting the spectral
ratio R~(0.1 BeV) from 20 to 100.

Similar trends in the relative enhancement of mag-
netic bremsstrahlung can be discerned in connection
with a number of other coherent e6ects."For example
the coherence length associated with the Landau-
Pomeranchuk inhibition is approximately given by

2&&10' X,E fhvXmc'Xh(Z) j " (2..47)

At very high energies this length can become compar-
able to the macroscopic target dimensions and the
corresponding bremsstrahlung matrix elements will
contain terms dependent on the surface configuration.
In cases where these targets are "thin" relative to E,

the bremsstrahlung dissipation may be expected to
exhibit a saturation. For energies of the order of 10' E~,
self-absorption due to pair production begins to play
a role and bremsstrahlung emission is damped still
further. "

'3Probable exceptions in this respect are corrections of the
Frisch —Uberall type [F6, U1].

'4More precisely, we expect that the total bremsstrahlung
losses will exhibit an energy dependence Eg/ha~IS(Z&), for
Eg&E&1.4)&10'Eg, and furthermore that h8/hx~e(E ~), for
E&1. &(140'Eq LG2]. In the absence oi corresponding modifica-
tions for g(T), this implies that Ea-+~ for Z~~ /compare
(2.36)].
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d II& BN2
~a ——

X, II„E (2.48b)

Kxperimenta, l conditions can in fact be adjusted so
that OII~)&0HE, and these large-angle deQections ad-
vantageously exploited for high-field studies.

3. PAIR PRODUCTION

A. General Remarks on Magnetic Field. -Photon
Interactions

Among the many diferent kinds of mechanism
available for mediating magnetic Geld-photon inter-
actions there are two particular processes which are
closely linked through crossing symmetry and time
reversal to the bremsstrahlung matrix elements dis-
cussed in the previous section.

One of these processes is inverse-bremsstrahlung
[Fig. 8(a)], which for strongly bound initial states
may be regarded as a direct analog of the atomic photo-
effect. In the present context this type of conversion
is relevant for experimental arrangements concerned
with the generation of intense magnetic Gelds contain-
ing a plasma: This kind of system is essentially the
equivalent of an e-electron "super-atom" capable of
sustaining large momentum transfers during internal
transitions. If such a magnetically stiffened plasma
matrix (or plasma counter) is bombarded with high-

FIG. 8. (a) Feynman diagram for inverse-bremsstrahlung in a
magnetic Geld. (b) Feynman diagram for a simple vacuum polar-
ization loop.

There are some special circumstances in which the
observation of the recoil electrons associated with
(quasi-elastic) bremsstrahlung can be of practical
interest. A particular example is the detection and
calibration of transient magnetic fields trapped in the
interior of explosive Aux compressors [F1].This type
of experiment is based on the fact that explosive ma-
terials are relatively transparent to incident electrons
with suKciently high energy [compare Fig. 5]. In par-
ticular under conditions where E)E~, electrons tra-
verse high explosives with a mean deflection angle [per
coherence length (2.47)]given approximately by

8Hn —q
'" mes/E, (2.48a)

where the factor g, corresponding to the Landau-
Pomeranchuk region, may be derived from (2.46) .

On the other hand, a transverse magnetic field Hx
localized in a region of diameter d scatters such elec-
trons through an angle

energy photons it should in principle exhibit an enor-
mous opacity in virtue of inverse-bremsstrahlung
since the basic energy transfer rates are scaled by-

the same factors that appear in the direct process, i.e.,
nriscs/X, 10' BeV/mm (2.14a) . Some qualitative
features of this type of conversion may be inferred from
the magnetic Compton scattering calculations of Robl
[R1]. More refined estimates are unfortunately not
available at present.

The other photon interaction related to bremsstrah-
lung is pair production [Fig. 1(a)].This process differs.
from bremsstrahlung in the important respect that
although conservation laws do not forbid the inter-
action for photon energies above the threshold hv& 2mc',
the conversion rate is impractically small unless the
condition —,(kv/sec') (H/H„) =—y-+0.1 is satisfied. This
is a very severe requirement, and in fact magnetic pair
production has not yet been observed experimentally.
However once the parameter x reaches the range y& 0.1,
the photon attenuation coefficient increases rapidly-
and magnetic pair production begins to dominate the
corresponding process in matter. In principle strong
magnetic fields are capable of degrading photons of
arbitrarily high initial energy through direct pair pro-
duction, as well as by means of other higher-order
processes such as trident production, and electro--
magnetic shower development [e.g. Fig. 1(b)]. These.
points are discussed in quantitative detail in the follow-
ing sections.

For purposes of computation it is convenient to order
the magnetic Geld-photon conversion processes accord-
ing to the powers of the coupling constant (cr) which
appear in the matrix elements. However just as in the
case of the corresponding sequence of interactions as-
sociated with the Coulomb Geld, i.e., the photoeBect,
Compton scattering, pair production, etc. a simple
ordering according to powers of the coupling constant
does not necessarily reRect the actual experimental im-
portance of each process. A simple illustration of this is
provided by magnetic vacuum polarization [Fig. 8 (b)],
which is a significant component in a number of physi-
cal eBects including the reduction of the velocity of
light in transverse magnetic Gelds, despite the fact
that it is of second order in n and involves virtual pairs
in the intermediate states. These types of vacuum
polarization effects are essentially high-Geld-low=energy
phenomena and can be observed under circumstances
where lower-order processes such as pa4. production
do not exist [E1,E2].

Returning to high-energy —high-held phenomena, we
note that further examples of ma, gnetic Geld —photon in-
teractions include photon splitting [S6, E8] and photon
coalescence [K7].These are represented by the third-
order bubble diagrams shown on Fig. 2. Under a,ppropri-
ate conditions magnetic photon splitting can actually
dominate magnetic pair production. These problems,
are discussed in some detail ig, Sec. 53.
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(3 1)

The parameter x=—-', (kv/mc') (H/H„) appearing in this
expression is the essential factor governing the rate
of pair conversion. It plays a role analogous to the
parameter Y in bremsstrahlung. The matrix element
for this process, corresponding to the diagram of
Fig. 1(a), leads to the expression

~(x) =2~(~/v)

[ (rl,', s', l'
)
u. e exp ( i j'e r)—[ I, s, l) P, (3.2)

~e«,«an~.

which is analogous to the bremsstrahlung form (2,3)
except that now the "initial" spinor represents an out-
going positron. The explicit evaluation of this attenu-
ation coeKcient in the ultrarelativistic limit, neglecting
all but the leading terms, in Z(e+)/mc2, assuming
B«B„, and disregarding various kinds of magnetic
and electron-positron bound-state resonances LE2,
G3, A3j, has been described in. detail on a number of
previous occasions LR2, T1, K4). The 6nal results may
be expressed in the form

~(x) =k(~/~ ) (Jf/&-) T(x) (3.3a)

where the dimensionless auxiliary function T(x) is
given by

m oo

T(x)=, , du dw
3X x p p

B. Magnetic Pair Production

It is convenient to id.ealize the physical situation
corresponding to magnetic pair production by con-
sidering the propagation of light across a uniform un-
bounded magnetic Geld in a direction perpendicular
to the lines of Qux. Since the magnetic Geld may absorb
momentum, there is a nonvanishing probability that
photons with sufhcient energies (hv) 2nsc') will convert
into electron-positron pairs. For a bound-state problem
of this kind it is appropriate to express the conversion
probability in terms of a photon attenuation coefficient

tr(x), which determines the actual number of pairs
(u, ,) created for a photon path length (d) in the
magnetic Geld (B),

The asymptotic properties of the modiGed Bessel func-
tions appearing in this integral representation may be
used to establish the limiting cases:

T(x) =
'0.46 exp {—4/(3x) }, x«1;

O.eo~-»3, x»1. (3.3c)

An excellent analytic approximation for T(x) is given

by the expression

T(x)=0 16x ' &'t/3(2/3x) . (3.3d)

This function is graphed in Fig. 9; some representative
values are listed in Table VI.

Equations (3.3a) and (3.3d) may be combined to
give a concise expression for the photon attenuation

.I2

.10—

.08—

PQ—

.02—

I

10
t

100
I

1000

Pro. 9. The magnetic pair production function T(x); compare
(3.4a-d) .

coeflicient,

2 nzcqa' X, hv 3 hv B (3.4)

hv /mc'~12 (H„/Z); (3 5)

This indicates clearly that the attenuation coeKcient
is not a symmetric function of the magnetic Geld

strength and photon energy. In particular, considering
B to be axed, it is easy to verify that n (x) has a unique
maximum with respect to variations of the photon
energy which occurs at the point

{2 cosh' w cosh' u—sinh' u cosha ug

2
XE'g(3 —cosh' m cosh' I 2 cosh' m —1

3x

I'2
X cosh' u K'm~a

i

—cosh' w cosh' u
i

.
)

and. corresponds to Max {T(6)}~0.1. On the other
hand, regarding v as axed, it follows from (3.4) that
the attenuation coeKcient is a strictly increasing func-
tion of magnetic Geld strength. This implies that suf-
Gciently intense magnetic Gelds are in principle com-
pletely efficient pair converters for photons of ar'bi-

(3 3b) trarily high energy. Comparing with (3.1) we see that
this is equivalent to the condition cr(x) d-+1, or the



THoMAs ERBER High-Energy E/ectromagnetic Corleersiorl Processes 643

explicit criterion

H(MG) d'(mm) —+46. (3.6a)

Tmr.z VII. Break-even points for pair production
in material media and magnetic fields. '

The associated photon energies are approximately
bounded from below by Substance

Attenuation
coeKcient

(mra ') 20

Energy (BeV)

40 300 1000 10 000

hv/mc') 6&(10' d'(mm) . (3.6b)

This characteristic shielding distance (d') is still very
much smaller than the radius of curvature (R) of the
emergent photopairs. This follows immediately from
the relation

Air

Cu

Pb

4X10 '

3X10 '
0.1

0.3

200 100 15 5

300 160 30 10 2

300 50 20 5

320 70 30 8

R/d' 10' d'(mm) .

C. Pair Production Comyarisons

(3.6c)
~ Table entries im megagauss (MQ).

and inserting (3.3a) and (3.'7), this leads to the re-
We now evaluate the relative eKcacy of magnetic

quirement
6eMs and material targets as pair converters. It is con-

(B/H„) T(x) 3.59X10-' h(Z). (3 8)

0.2
0.3
0.4
0.7
1.2
3.0
5.0
6.0
7.0
9.0

15
30

2X10 4

2.2X10 3

6.6X10-3
0.026
0,055
0.094
0.10
0.10
0.10
0.10
0.099
0.085

Txnrz VI. The magnetic pair production function T(x).
Due to the high-energy saturation of pair production
in material media it is clear that magnetic pair produc-
tion will eventually dominate under sufficiently extreme
conditions. The precise values of the photon energies
and magnetic 6eld strengths corresponding to the
break-even point may be obtained by inverting the
equality (3.8). Results for a number of representative
cases are listed in Table VII and given graphically on
Fig. 10.

The general trend of these figures indicates that
magnetic pair production becomes a signi6cant com-
petitor for pair conversion in material media only in

venient to carry out these comparisons in terms of the
respective attenuation coeKcients. The pertinent result
for magnetic fields is given by (3.3a) . The best current
estimate for the corresponding attenuation coefhcient
in material media, including both relativistic and
Coulomb corrections, is given by the expression LD3$

9
IO I I I IIIII) I I I IIIIIJ I I I IIIII[

IO

where
P(Z) =—,",nSP..'h(Z), (3.7)

h(Z) = h(Z) —0.640(p/A) (nZ)', (3.7a) IO

and h(Z) is the function defined in (2.31b). Since we
are considering the ultrarelativistic case (hv))mc'),
the matrix elements leading to (3.7) have been evalu-
ated in the fully screened limit and this results in an
attenuation coeKcient which is independent of the
energy.

The condition for competition of pair production
in matter and magnetic 6elds then is equivalent to

n(x) —P(Z)

IO5

IO IO IO

Energy (Bev)
IO IO

FIG. 10. Break-even curves for pair production in magnetic
fields and various material media. The position of the "RR"
line (2.27a, b) indicates that all of these curves lie in the strong
radiation reaction region.
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TABI,E VIII. Minimum magnetic Gelds for break-even in pair
production.

Element Field (MG) Energy (BeV)

Pb

0.08

2.4

6 ' 3

4X1G6

1.3X105

5 X104

the region IJ&10 MG, hv 100 BeV. The associated
photon attenuation rates vary from moderate, i.e.,
0.003 mm ' corresponding to break-even for beryl-
lium, to severe, i.e., 0.3 mm ' corresponding to break-
even for lead. In view of the comparisons with air
it is however clear that the existence of magnetic pair
production could in principle be demonstrated under
experimentally less demanding conditions.

The absorption maximum discussed previously in
connection with the attenuation coefficient (3.4) may
also be utilized to And the nzieimlm magnetic field
strength compatible with the break-even condition
(3.8). The corresponding photon energy may then be
determined from equation (3.5). Some of these results
are given in Table VIII. Evidently the energies asso-
ciated with break-even for minimum magnetic fields are
quite large. In view of the fact that the corresponding
T' values are greater than unity, these results should
however be considered only as semiquantitative indi-
cations. As emphasized previously, magnetic pair pro-
duction under these conditions can be expected to
exhibit considerable modish. cations due to radiation
reaction effects, and reliable methods for taking these
into account are not available at present.

approximation. In the next section we evaluate the
real photon contribution as a two step process involving
bremsstrahlung and subsequent pair production. In
the last section the relative conversion rates of these
two processes are consolidated and compared with
the corresponding rates of trident production in ma-
terial media.

It is convenient to express the results of the trident
production calculations directly in terms of the ex-
pected number of events per unit path length. Specifi-
cally for the virtual photon trident process we intro-
duce the function N~&r'(E, H) to represent the average
number of events occurring during the passage of e
electrons of energy E through a path length d in a
transverse magnetic Geld H. This is given by

Np&r&(E H) =md Q Z, (r )n(v); (4.2)

where X(v) is the number of equivalent photons of
frequency v carried along by an electron, and n(v) is
the absorption coeKcient for pair production (3.3a).
The Fourier resolution of the electron field then leads
to the expression" (F7, W3, W4$

(4.3b)

Appropriate expansions of the modided Bessel functions
in this expression yield the limiting cases

Ot(v) = (2/x) (a/hv) W(hv/E) d(hv), (4.3a)

where

~(x) =x&0(x)&1(x)—(x'/2) L&~'(x) —&0'(x) 3-

4. TRIDENT CASCADES lf (x) =
—lnx, x«&)

(4.3c)

A. Trident Production by Virtual Photons

At very high energies and in intense magnetic fields
the trident production process

gk ~ e++g++t— (4.1)

can become a significant element in the development
of electromagnetic showers. The Feynman diagram
for this process is shown on Fig. 11. The intermediate
photon leading to the pair vertex may be either real
or virtual; and in an exact calculation coherent con-
tributions from both of these processes will appear in
the transition amplitudes. We are however at present
interested only in a preliminary quantitative orienta-
tion and interference eBects arising from this source
a&ill be neglected. In the present section we estimate
the virtual photon contribution to trident production
on the basis of the Fermi-Weizsacker-Williams (FWW)

Since the pair production coeKcient has a maximum
in the vicinity of hv 12(H/H„)mc, it is cles,r from
(4.3c) that trident conversion may be expected to
increase logarithmically with energy. This is indeed
confirmed by the details of the calculation. In order to
obtain an explicit expression for the virtual photon
trident conversion, rate we substitute (4.3a) and (3.3a)

FIG. 11. Diagram for
trident production in an
external Geld.

"These estimates could in principle be improved with a co-
variant form of the Fermi-Weizsacker —Williams approximation
L85$.
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into (4.2). After some rearrangement this can be
written in the form

Xv& l(E, a) =me(0.32/~) (n'P, ) (a/a. ,)Q{T}, (4.4)

where
H

dN I ' W (u/T) E'res(4/3N) . (4.4a)

An important feature of this representation is that it
exhibits the fact that trident conversion depends prin-
cipally on the parameter

Y= (E/mc') (H/H„),

where E, as noted above, is the energy of the initial
electron.

The exact analytical form of Q(T) is too cumbersome
to provide any useful insight. As shown in Appendix 3,
it has the asymptotic limits

Fxo. 13. Trident cascades resulting from magnetic bremsstrah-
lung and subsequent pair conversion. Essentially the same
diagram describes the analogous processes occurring in material
media. In the ultrarelativistic limit 8 8 (mc'/E) ~0.

pared with exp (—T '). A detailed discussion of (4.4)
and an evaluation of its signi6cance relative to other
trident production processes is given in Sec. 4C.

'

(e'"/16) (3T)'" exp I
—8(3Y)-'I'I T«1

Q(T) =
(~'/2) ln T, T»i.

(4.4b)

Numerical values may be obtained from the graph given
in Fig. 12. We see that the high-energy limit —or more
precisely, the large T limit —of Q(T) does in fact ex-
hibit the expected logarithmic behavior. The other
asymptotic limit has a slightly more complicated func-
tional dependence. This is consistent with the general
trend that one would anticipate for conversion processes
of increasingly higher order. Comparing with the cor-
responding limit of ordinary pair production, e.g.
(3.3a—c), we see that trident conversion is diminished

by a factor of n (second-order process!) but decreases
far less rapidly with energy, i.e., exp (—Y '~') as com-

B. Trident Production by Real Photons

The conversion rate governing this process can be
estimated by considering the two-step sequence "mag-
netic bremsstrahlung —+magnetic pair production"
which is schematically indicated on Fig. 13. The
number of bremsstrahlung photons radiated into the
energy interval 6(hv) over a distance AS is given by

eI (E, H, hv) (b.S/c) P (hv) /hv];

where rII(E, H, hv) is the spectral function correspond-

ing to bremsstrahlung emission by n electrons with

energy E traversing a perpendicular magnetic 6eld H
)compare (2.5a) ].These photons partially convert into
p,airs, and according to Fig. 13 and the photon attenu-
ation equation (3.1), at a depth d one expects

tea(v)I(E, H, hv) (d—S) (b,S/c) Ph(hv)/hvar

2 I I I I I I II! I I l I llli I I I l I
Illa'

I I I l
I III

pairs to have been produced. The total number of
tridents arising from real photon conversion then is
given by

Nrr tel (E H) =e Q Q cr (v) I(E, H, hv) (d —S)

&((aS/c) Ph(hv)/hvj. (4.4c)

-IO—

"I2
O.OI I.O

T
IO IOO

This representation is analogous to Eq. (4.2) which

determines the rate for virtual photon trident produc-
tion. The detailed numerical evaluation of this expres-
sion of course requires explicit forms for the photon
attenuation coeKcient and the bremsstrahlung spectral
function. It is convenient to introduce the auxiliary
variables

Fro. 12. Graphs of the trident production functions: Q(T) o'= (hv/~c ) (a/aor) i and Y (E/~ ) (a/a&r)
and ('f) correspond to virtual and real intermediate photon
states, respectively. Compare Eqs. (4.4a) and (4.6b). 4.5
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I I I I I I IIl I I I I I IIII I I I I I I Ill I I I I I I I I

Bremsstra hlung

Brem sstra hlung

Peak; a. 0.5T &~l

O.OI O. I I.O

I

IOO

FIG. 14. Sketch of the bremsstrahlung and pair production
curves for real photon trident cascades. The principal contri-
butions to ErII'rI(E, H) LcorIIpare (4.4c)) arise from the cross-
hatched overlap regions.

and /compare (2.5a)j

Energy conservation implies the constraint 0&Y. In
terms of these variables we then have Lcompare (3.3a)]

n(I ) =0.16(n/K, ) (B/H. ,)o-' Estrus(4/3o), (4.5a)

duction decreases in the range 0.& 12, it is evident that
the overlap between bremsstrahlung and photon at-
tenuation will progressively diminish as Y increases
in magnitude. An immediate consequence of these con-
siderations is that trident cascades mediated by virtual
photons will tend to dominate in both of the ranges
Y«1 and Y»1.

The situation sketched in Fig. 14 also suggests some
analytical simplificati. ons for expediting the evaluation
of (T). First we remark that in cases where Y))1, it
is evident that only values of K(o, Y), corresponding
to the range o«Y, will contribute significantly to tri-
dent conversion. Under these circumstances we have
the approximate reduction

K(Ir, T) (9Ir/2vS) (Y'/o)' II(2Ir/3T3), (4.7)

which was derived and discussed in Sec. 2A. A par-
ticularly useful feature of this representation is that it
continues to be valid in the range Y«1, zvitholt the
necessity for any special restrictions" on the values
of 0. This implies that in both of the extreme cases
Y~&~&l, the value of "(Y) may be estimated from the
representation

1 0. 0. ~II
c 'I(E, h', ») =,— —, K(Ir, T), (4.5b)

3m' X. Y' B„ - (T)~ do o-' II(2o/3T3) IPI13(4/3o), (4.8)

where R(Ir, T) =5K(y, T), represents the auxiliary
function degned in Fq. (2.5b). Inserting these expres- where II(s) is the bremsstrahlung function Previously

sions into (4.4c), and carrying out the spatial inte- de6ned in equation (2.9). In APPendix 4 it is shown
that in the appropriate ranges (T) is given by

where

v3 d H'
NJrt~'I(E, H) = n n — (T),

25vr ~, H„
(4.6a) ~~(T)~,

0 4T"' exp (—10/3Y),

4.4Y-2I3 ln Y,

Y«1;
(4 9)

Y»1.

2%3
For intermediate values of T( 1), must be calculated

- (T) = Y-' do K(o, T)Esr/3(4/3o) . (4.6b) directly from (4.6b) by numerical integration. A graph
0 of (T) is given in Fig. 12.

This representation shows clearly that real photon
trident cascades tend to increase quadratically with
distance and field strength —as wouM be expected
for a second-order process. The importance of the
parameter Y is also once again exhibited.

The general behavior of (Y) may be inferred from
the curves sketched in Fig. 14. For values of Y less
than unity, the bremsstrahlung spectrum will consist
principally of low-energy photons and the probability
for pair conversion will be negligibly small. In fact in
the limit Y«1 one would expect that real photon tri-
dent conversion would decrease even more rapidly
than pair production. In the opposite limit (Y))1) one
would also anticipate a decrease in the conversion rate.
This is essentially due to the fact that in this case most
of the bremsstrahlung emission is concentrated near
the high-energy end of the spectrum. Since pair pro-

C. Comparison of Trident Cascades in Magnetic
Fields and Material Media

It is convenient to begin these comparisons by de-
termining which of the processes discussed in the
previous sections —real or virtual photon trident pro-
duction —dominates under suitable conditions. This
information can easily be obtained by considering the
ratio

LNI3& ~(E, H)/Nv' '(E H)j

=0.2l d H (Y)/X. II.,Q(T)1, (4.10)

'6The immediate vicinity of the bremsstrahlung tip (0~)
is excluded. In cases where T«1, the omission of this region is
of negligible signi6cance.



THOMAs ERaKR High-Energy Electromagnetic Conversion Processes

for various values of the parameters. The numerical
work can be simpli6ed by measuring distances in
millimeters and magnetic 6eld strength in units of
10 M G, i.e., II=—H)(10'. If we also introduce logarithms
(base 10), then the ratio (4.10) can be rewritten in
the form

log [Ng& &(E H)/Nv& &(E H))=2.1+ log (dH)

field associated with an electron of energy E. Since only
the high-energy limit of (4.11) is required, we have
E/mc'&»&)&1, which implicitly defines the parameter».

Now it follows from (4.3a, b) that

dx x ' W(x) = '(t'-1—)Eo'(f)

+ log =(Y) —log Q(Y) . (4.10a)

With the aid of the curves given in Fig. 12 it is then
a straightforward matter to determine the conditions
under which one or the other process is dominant.

Generally speaking, for values of Y(0.2, the virtual
photon trident rate tends to be greater. From an ex-
perimental point of view however this is of almost no
significance since one can easily check that in this region
the total trident production rate is vanishingly small.
Conditions are much more favorable in the range
Y&0.2. Assuming that the 6elds and distances satisfy
the requirement dH&1, one may verify from (4.10a)
that the real photon (cascade) process dominates in
this region. The magnetic trident production rate in-
creases to the point where it can compete favorably
with the corresponding process in material media.
Under still more extreme conditions, i.e., values of
Y))100—which are of course experimentally very im-
plausible —the virtual photon trident process again
tends to dominate. However this is not to be taken
seriously even as a theoretical indication, since damp-
ing corrections [H1) begin to alter the ratio (4.10a)
for much smaller values of T, i.e., 1(Y&10.

Trident conversion with either real or virtual photon
intermediate states can of course also occur in material
media. It is in fact an important component of high-
energy cosmic-ray showers and has been studied with
a variety of experimental techniques [A4, C3, KS). In
order to obtain estimates of these conversion rates let
us again consider the passage of e electrons of energy
E through a path length d in a medium which in the
present instance will be supposed to be a material
characterized by atomic number Z, atomic weight A,
and density p. Just as in the corresponding magnetic
case it is convenient to begin by computing the rate of
trident conversions due to virtual intermediate photons.
In the ultra-relativistic limit the expected number of
such tridents, Nvir&(E, Z), can easily be estimated
with the help of the FWW method [M5). In analogy
with (4.2) we then have

gv& &(E, Z) =ed P(Z)K(E, » mc'& (4.11)

where P(Z) is the energy-independent photon attenu-
ation coefficient given in (3.7), and K(E, &t mc') repre-
sents the total number of virtual photons with energies
E&hv&g mc', present in the Fourier resolution of the

and therefore

2a
Ot(E, » mc') =— dx x—' W (x);

q(mc2(E)
(4.12a)

~(0./&r) ln' (E/mc') for E/mc')»&&)1.

(4.12b)

This finally leads to the estimate [86)

Nv' & (E Z) = ed(0.'/~) NPPh(Z) ln' (E/mc')
&

(4.13)

¹'r&(E,Z)

=i'(Z) Q Q I(hv, Z) (d—5) 65[5(hv)/hv);

(4.14)

where the photon attenuation coefficient, P(Z), is now

given by (3.7), and I(hv, Z) represents the rate of
bremsstrahlung in material media (2.31a). The in-

tegrations in the present instance are trivial, and we
find the explicit form [87)

N&i~r& (E, Z)

= [(7X2')/3') ii [dnNO'A ')' h(Z) h(Z) ln (E/sic')

(4.15)

where h(Z) and h(Z) are given by (2.31b) and (3.7a),
respectively. As expected, the cascade rate increases
quadratically with the distance.

The relative importance of real and virtual photon
trident production in material media may now be

where h(Z) is the function defined in (3.7a), and No

and X, as usual denote Avogadro's number and the
Compton wavelength.

Real photon trident cascades in material media may
be visualized as shown in the sketch in Fig. 13. In the
ultra-relativistic limit all the reaction products essen-
tially go in the forward direction, and so the corre-
sponding conversion rate, which we shall denote by
Na&r&(E, Z), can be written down in direct analogy
with (4.4c), i.e.,



648 REVIEW OP MODERN PHYSICS ~ OCTOBER 1966

gauged by considering the ratio spect to variations of T, already noted in connection

with other magnetic conversion processes, is again ex-

hibited in the trident production rates. If for example

we refer to Fig. 15 and consider the Be and HE break-

even curves corresponding to H~60 MG, then an

upward shift in energy of approximately 10%, i.e.,

140 BeV to 155 BeV, changes the conversion rates
from about 4X10 ' to 8X10 ', or roughly a factor
of twoI

In circumstance where it is of interest to compare
the relative rates of trident conversion in magnetic
fields and material media with Z~ 29, the appropriate
ratio to consider is

N.&»(E,Z), X, »(E/~c2)
N~&r& (E, Z) d h(Z)

= 2.1X10~— (4.16)

In the present discussion the ranges of interest for the
parameters are d 1 mm, and E/mc'))1. It is then a

simple matter to verify that for Z& 13,

(4.16a)N~'r& (E, Z) )Ng&r& (E, Z);

so that in these cases the virtual photon processes
dominate.

On the other hand if we consider Z& 29, but restrict
E& 10' BeV, then

Ny&r& (E, Z) &Ng'r& (E, Z);

so that in this range the real photon cascades dominate.
In principle the two types of trident conversion can of
course also be distinguished through measurements of
the energy and angular distributions of the emergent
particles, but this requires more refined experimental
techniques and involves problems beyond the scope
of the present discussion.

It is now possible to proceed with the intercom-
parisons of trident production rates in magnetic fields
and material media. I.et us consider first the ratio

Since both processes involve only real intermediate

photons, the distance, d, cancels in the ratio. Proceed-

ing as before, one may readily derive an explicit equa-
tion for the break-even condition, viz. ,

2 log H+ log (T) = log {h(Z)h(Z) }+0.5. (4.18a)

The copper (Z=29) and lead (Z=82) curves given

in Fig. 15 have been constructed from this equation.
The position of these curves relative to the "complete
conversion" line indicated in this figure again em-

phasizes the fact that extremely intense magnetic
fieMs are excellent energy degraders for ultrahigh-

energy electromagnetic showers. '~

Ng~r& (E H) d H ~ g(T)=3.8X 10'—
N&.~r&(E, Z) lt. H., h(Z) ln' (E/mc') '

(4.17)

&Vg&r&(E, H) „H&' "(T)=0.8X10'4
(4.16b) Ng»(E, Z) Ha, l h(Z) h(Z) ln (E/ygc')

(4.18)

which is appropriate for gauging the relative rates
in the range Z& 13. For computational purposes it is

again convenient to take the logarithm of the ratio
(4.17), and to measure distances in millimeters, and
6eld intensity in units of 10 MG, i.e., II=HX10.
Then since

IOOO

800—

600—

0.7& loglog (E/esc') &0.8 for 50BeV&E&1000BeV,
400—

the energy dependence in the iterated logarithm may be
ignored, and the break-even condition, N~&~&(E, H)~
Ny' '(E, Z), expressed in the form

log dH'+ log (T) = log h(Z) —0.6. (4.17a)

200—

This is an implicit equation connecting E, H, Z, and d,
which with the help of the curve given in Fig. 12, may
easily be solved for various values of the parameters.
In particular the beryllium (Z=4) and high explosives

(Z—8) break-even curves shown in Fig. 15 correspond
to solutions of (4.17a) with the special choice d = 2 mm.
Comparing with the pair-production break-even curves
given in Fig. 10, we see that the conditions for competi-
tive conversion generally tend to require slightly higher
energies and field strengths. The sensitivity with re-

l00
IO

H (MG)

40 60 80 IOO

FIG. 15. Break-even conditions for trident production in mag-
netic fields and material media. The Z= 4 and 8 curves correspond
to (4.17a) with d~2 mm. The Z=29 and 82 curves are derived
from (4.18a). The "complete conversion" line corresponds to
X~(~)(E, H) ~n, with d~2 mm.

'7%hen more refined versions of these calculations are war-
ranted, allowance will have to be made for multiple scattering
corrections of the type discussed in Sec. 2D.
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5. CERENKOV RADIATION AND PHOTON
SPLITTING

TABLE IX. Numerical values of g Cy).

A. Vacuum Polarization Cerenkov Radiation

A particularly interesting aspect of quantum electro-
dynamic processes occurring in extremely intense
electromagnetic fields is the existence of a special class
of radiative modifications which are due to coherent
vacuum polarization effects. Qualitatively speaking, it
is not too difFicult to see how such collective radiative
eÃects could arise: The essential point is that in an
approximation where vacuum polarization corrections
can be described in terms of a Lagrangian of the Born-
Infeld type [H2, E9j, the corresponding equations
governing the behavior of the electromagnetic fields
include a number of nonlinear terms. These are not only
responsible for light —light and light —field [Delbriickj
scattering, but also permit complex propagating modes
which are inherently suppressed in the linear theory.
A typical example of this kind of nonlinear disturbance
is the formation of electromagnetic "shock" waves;
a phenomenon which has already been discussed in
detail by Lutzky and Toll [L4j. If one now considers
the added complication of a charged particle propagat-
ing through such vacuum polarization "plasmas, " it
is clear that a variety of still more complex interactions
can be expected to occur. All effects of this type which
are inherently nonlinear in the sense that they carrot
be described in terms of simple perturbations of the
linear theory represent collective modifications of the
vacuum polarization. "

Under conditions where vacuum polarization may be
described by a phenomenological quantum electro-
dynamics [J1j, it can be shown that collective radia-
tive eGects will give rise to Cerenkov emission by
high-energy charged particles in intense external fields.
In the present section we brieRy review some of the
pertinent results and supplement our earlier discus-
sions [E2, E3j with detailed comparisons of magnetic
bremsstrahlung and vacuum polarization Cerenkov
radiation.

Let us consider first the propagation of light through
a strong external magnetic field in a direction normal
to the lines of flux. Under these circumstances there will
be photon —field interactions of the type shown in Fig.
8(b), and the phase velocity of light is reduced below its
free space value [Ti, S7]. This situation may be con-
veniently described by assigning an index of refraction
e(v) to the magnetic field. Quantitatively this may be
derived from the forward coherent part of the scattering
amplitude associated with the diagram of Fig. 8(b).
This in turn may be computed from the pair-production
interaction, Fig. 1(a), by means of a dispersion rela-

~8Nonperturbative binding corrections for the particle prop-
pagators are also assumed.

0
0.17
0.22
0.40
1.00
2.22
3.33
6.66
9.52

0.22
0.23
0.24
0.25
0.17
0.059
0.027

+0.003
—0.0009

tion. Specifically, for the index of refraction we write

e(v) =1+De(v). (5.1)

Then he(v) can be directly obtained from the disper-
sion integral

c " n(v)
Ae(v) =, dv

2' p p p
(5.2)

0.22+0.30x', x«1;

—0.56' 4~3,

Some numerical vilues of g(x) are listed in Table IX.
A graph of this function is given in Fig. 16.

We now consider an electron with energy E traversing
a magnetic field II in a direction normal to the lines of
flux. At sufficiently high energies its velocity matches-
and eventually exceeds —the ambient phase velocity
of light. The corresponding Cerenkov threshold is then
given by

Z/mc» [2~~(v.)~-i12 (5.5)

where v, the frequency which /rsvp appears in the
Cerenkov spectrum, is determined by Max{he(v) }.In
the present instance we have Max{/(x)} 0.25 for

where n(v) represents the magnetic pair-production
function given in (3.3a). The explicit form of An(v) is

(5.3a)

where

g(x) = —0.027~'x '{Ki8(x)[Iu3(x)+I-va(x) j
+2[I vs(x)Iv, (x)+Iva(x)Lv~(x) j} (53b)

and x=2x= 3(hv/mc') (P/H„) [compare (3.1)j. The
"tilde" functions are derivatives of modified Bessel
functions with respect to the index, i.e., I.= (8/8v)I. —
[E10].

The asymptotic limits of g(x) are
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FIG. 16. Index of refraction of a magnetic 6eld:

e = I+ (n/4gr) (H/H„) 'r) (x), x = 2(hv/m-c') (H/H„) .

g(x) has a maximum at x 0.4, and crosses the abscissa at x 8.

to the compact form

I(E, hv, H)/I(E, hv, H)

=}:08«xA(x)q(v)O'"L1—
q '(v) j (59)

Just above the threshold, i.e., q(v) & 1, this gives
I~10 'I; and therefore Cerenkov emission is negligible
in these cases. There is however a strong analogy to
the relation between ordinary bremsstrahlung and
Cerenkov radiation in material media: The essential
feature of this situation —which of course underlies
the operation of all conventional Cerenkov counters-
is that the low end of the observed spectrum is com-
pletely dominated by Cerenkov emission under cir-
cumstances where the radiating particle has an energy
far above threshold. An analogous relation for the mag-
netic processes is implied by (5.9). Far above threshold
we have

I(E, hv, H)/I(E, hv, H) 10 ' q"'(v), (5.9a,)

0.4; and therefore the threshold energy
E (v ), associated with v„, is given by

E(v) H 2m.

mc' H„., nr}(x )
(5.6a)

furthermore (see Fig. 16)

(hv /mc') (H/H„) —0.8. (5.6b)

At energies exceeding the threshold value additional
frequencies will appear in the Cerenkov spectrum.
Corresponding to each frequency there is a unique mini-
mum energy E„(v) which marks its first appearance in
the spectrum. We now introduce the notation q(v) =
E/E„(v). The spectral intensity of the Cerenkov radi-
ation then may be written in the form

I(E, hv, H) = (2/n. )cr'(mc'/X. )xri(x) t 1—q '(v) j.
(5.7)

q(v) ~A(X)

Since Max Ixr}(x) } 0.18 for y 1.4, one may easily
check that the Cerenkov radiation rates are of the
order of 12 Bev/mm. These rates are however con-
siderably smaller than the corresponding magnetic
bremsstrahlung losses. A detailed comparison can be
conveniently made if we recall that the preceding rela-
tions imply the estimate

and at super-high energies Cerenkov radiation becomes
dominant. '9

In this connection it should be noted that there is
an option in the spatial discrimination of bremsstrah-
lung and Cerenkov emission. The opening angle of the
vacuum polarization Cerenkov cone is given by LE3j

8o= (HIH-) L(~/2~) A(x) I1—
q '(v) }3'" (5 10)

The preferred angle for bremsstrahlung emission is
8~ mc'/E; and the differential cross section in first
approximation is proportional to I 1+L(E/mc') 8$'} '.
It is then easy to show that 8z q(v)8&&8&, and if we
compare the respective radiation rates at the larger
angle, i.e., 8&, the ratio (5.9a) is replaced by the more
conservative estimate

$I(E, h, H)/I(E, h, H)) ~e 10 s
q

I ( ). (5 11)

B. Photon Splitting

To lowest order photon splitting is described by the
diagram shown in Fig. 2. The external fields responsible
for the binding of the intermediate state pairs may of
course be either electric or magnetic. At low energies,
i.e., for he&(mc', and in the weak-field limit,

H((m'c'/eh»G,

photon splitting can be reliably estimated from the
equivalent vacuum polarization Lagrangian of the
Born-Infeld theory LH2, S8].At higher energies it is ad-
visable to derive the results directly from quantum

In this case the magnetic bremsstrahlung intensity
I(E, hv, H) is accurately represented by the expression
(2.14); and the ratio of the intensities may be reduced

' In particular, for E'~10'~ eV, H~0. 1 MG, Cerenkov radiation
will dominate in the spectral region hv. &10'4 eV. These estimates
are of course contingent on the semiquantitative reliability of
(2.14) even under conditions of strong radiative corrections,
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electrodynamics. However even for the single loop
diagram (Fig. 2) this calculation is extremely tedious,
and the best results available correspond to Born ex-
pansions in the binding of the intermediate states.
Photon splitting due to vacuum polarization has not
yet been observed experimentally.

Suppose we consider a photon propagating through
a uniform magnetic field in a direction normal to the
lines of flux. Then according to Skobov LS9] the at-
tenuation coefficient for photon splitting $(hv, H)
given by the expression

5 u'hv (H
S(hv, H) =

3(144 )' ti, mc' (P„) ' (5.12)

where the principal approximation in the derivation
is H«H„. It is characteristic for external Geld photon
transformations of this type that the conversion rates
are smoothly varying functions of the field strengths
and photon energies. This is in sharp contrast to proc-
esseS such as pair conversion where the attenuation
rates diminish very rapidly for conditions such that
(hv/mc') (H/H„) &is Lcompare (3.3a—c)].In principle
therefore photon splitting may bc observable under
circumstances where the characteristic energies are
low but very intense illumination is available. Un-
fortunately most schemes involving lasers or pulsed
x-ray devices lead to marginal photon splitting rates
and depend on optimistic estimates of the tolerable
signal-to-noise ratios. If one considers high fields set up
in the vicinity of material media —for example pulse-
implosion generators of megagauss fields —then photon
splitting at low energies (hv&mc') will tend to be
masked by double Compton scattering in the surround-
ing explosives and liners.

These difhculties persist at higher energies. The
principal competing processes in material media then
are photon splitting in the nuclear Coulomb fields and
double Compton scattering. In particular the photon
splitting coefficient, analogous to (5.12), for a medium
of density p, atomic number Z and weight A, is approx-
imately given by LT4, 87, S6j

8(hv, Z)—3.5X10 sn (aZ) (p/A) ln (hv/iiiP) (5 13)

(5.14)

Coulomb field photon splitting will be the dominant
process.

Comparing (5.12) and (5.13) it is then evident that
in principle at least there are circumstances where

where it is assumed that hv))nsc', and shielding cor-
rections have been ignored. Under these conditions
double Compton scattering becomes less important
since the cross section is bounded from above by
n' X,'(mc'/hv) ln (hv/mc'). It is in fact easy to check
that for energies satisfying the inequality

a(nZ) hv/mc') 1,

magnetic photon splitting can compete favorably with

photon splitting in material media. The order of mag-
nitude of the break-even point is given by

H p inc' kv)
4&&10 '(cxZ)' — ln

Ejr- A hv mc')' (5.15)

but this requires rather exotic conditions. For example,
if we consider incident photon energies of the order of
300 BeV, and high explosives, i.e., Z 8, then magnetic
photon splitting will predominate for fields in the range
& 2X10' 6. Experimentally however this is of no sig-
nificance since in this case the principal photon con-
version process would actually be magnetic pair pro-
duction. Under more realistic circumstances, e.g.,
(hv/mc') (H/H. ,)~10 ', photon splitting should in-

deed be observable but this depends on the develop-
ment of techniques for maintaining intense Gelds-
either H 10' G or 8 10' V/cm —momentarily in
evacuated regions.
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dh Esp(x) =—y' dxI cosh x E ei3(gy cosh x)

+ cosh' x sinh' x E'&~3(-',y cosh' x) I, y)0, (A1)

which is substantially equivalent to that required for
the transition from Eq. (2.8d) to Eq. (2.8f) of the
text. The proof given here is based on a slight exten-
sion of several ideas originally due to Lerch and Hardy
(p. 382 of I W1j, LL2j).

Let us suppose that we are faced with the problem
of verifying the equality of two functions, fi(y) and

f&(y), which are specified in terms of representations
(these may be integral representations) that are suf-
ficiently complicated so that a direct comparison is
rendered impractical. This problem can often be dealt
with by introducing a parametric transformation of
the functions to a more tractable form. Specifically,
let us consider a mapping operation 8(p I y) which
transforms the f's according to the rule

6(PIy)f(y) f(p) (A2)

APPENDIX I: INTEGRAL IDENTITIES FOR
MODIFIED BESSEL FUNCTIONS

We wish to establish the modified Bessel function
identity LK5j
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' h'xE' g((-',ycosh x X r[-, ( +j)3) /r( +1),

nt to restrict the f(p 's of

h d
0

ments. For t esto simple momen
Then

Re {o+1}»I
Re {~}~

g (~)— dy y"f~(y) (A6a) g (n =e=O, 1, ~ ~ ~,. dx E5(5(x)

C (2) dy y"f5(y) rl,=O, j., ~ ~ ~ . (A6b)
= (n+2) —' "+' E (y), (A9a)d3' 3'" 51&

0

su ciemt conditions for
bl Th

At this point we
eness of the Stie je '

may be concisely s

u ose that we have twoTheorem [C2]: Suppose that weCurlemae's Theorem
e functionsnonnegative

or

(A9b)

where

&-"'= (~3/ ) (a+a ), (A10a)

5+3)+-'ll'[l( +3 ——C.(»= r[-,'n
n+2

h d compositionments we ma e t e ecoFor the other momen

f~(y ) &0, and f2(y) &0; (Aja)

f moments is equal,h' h an infinite qa
' '

se uenceo mfor w ic a ln g)cosh' x) cosh' x smdx y"+' E'&p(-', y cos x ' m

g (&) —g (~) rl,=O, 1, 2, ~ ~ ~ . (Ajb) (Ajob)
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dy dx y"+2 E'2/2(22y cosh' x) cosh2 x.

(A10c)

These provide the basis for an inductive proof of the
identity of Cn") and C„{').lt is convenient to carry the
induction from n to 22+2. The key step is the verifica-
tion of the equality C{"„+2——C{"„+2,expressed in terms
of (A9b) and (A11). This can be reduced to establish-
ing the identity

Introducing the new variable u=-', ycosh'x in both
integrals, "we find

CO ) n+2

dx
~

cosh' x sinh' x
cosh' xj

X dN I"+' K22/2 (I), (A10d)

L2/(~y4) ]r~-, (~+5+,) ]rL-, (~y5 —;)]
r (-2222+5) r [-,' (22+3)+1]

rf-,'(3&+1)+5]r (-',~y3)

X I r L2 (n+3) +1+—', ]rL2' (22+3) +1—-', )
+ (3~+11) ' rL2(~+3)+1+2]

CO &++2 mdx, i
cosh' x

cosh' xj 0

dl u"+2 Z'2/2(u) .
X rL-;(&+3)yl ——,']}, 22=0, 1, ~ ~ ~ . (A13)

Elementary algebraic reductions show that this identity
(A10e) hinges on the validity of the equation

With the help of the auxiliary integrals (AS), these 3j+5 rL22( j+3)+22]r}22( j+3)—22]

quadratures may be carried out explicitly, 3j+7 rL!(j+3)+-.']rLl(j+3) —:]'
25(n+C)

5
r}:l(~+3)+2]rLl (~+3)—k]

X (rL2(m+3) ]r(2&+2) )'/(r(3&+4) r(~+3) ),

(A14)

and this in turn depends on the auxiliary lemmas

g = 2'&"+'& rL.,"(22+3)+-', ]rL-', (n+3) —-',]

(A10f)
3j+4 1 '+' 1—(I/32/2)2=-rr
3j+5 2 „, , 1—(2/32&2) ' '

and

j=0, 1, ~ ~ ~, (A15a)

x (rp-;(~+3)]r(-;~+ 2) )2/(r(3~y4) r(~+3) ) j+5 &
—( /t ( ~-»»'

(A10g)
6j+7 „=i 1—(4/} 3 (22&2—1)])' ' j=o g ~ ~ ~

(A15b)
Finally, (A10a), (A10f), and (A10g) may be combined
to give

r(2m+2) rL2'(n+3)]
r (-2222+ 2+-2') r (-2222+ 2)

It can easily be verified that this entire sequence of
implications may be reversed: (A15b) and (A15a)
together yield (A14); this in turn implies (A13);
and in view of (A12) an appeal to induction finally
estaMishes the equality of the moments, C„{')=C„{".

x t rL-, (I+3)+-,]r(-;(~+3)——;] The remaining divergence criterion (A7c) now follows

+(3+5) i rL 2 (+3)+2]$2(+3)2]} as an elementaryconsequence of Stirling'sapproXima-
tion applied to the C„'s. We find

Elementary computations now yield the special values:

{1)—C {2)~~~n+I e
—n for 22))1; (A16)

C &') =C &') = (S/3"') 2r

C '"=C ~"= (5X11/3')2r,

C20) —C2(2) —(7x 32/32/2) 2r

(A12)

and this implies

(1/C ) &/2n~ g 22
—2/2~ ~

n n
(A17)

All the hypotheses of Carleman's theorem are thereby
satisled and in virtue of (A3) and (A7d) the equality
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A related expression is the index-shif ting repre-
sentation

Finally, we note the asymptotic estimates

2g 1/2

K, (z) = — dr(cosh r) "+'/ K„ i/2(z cosh v),
p

z)0, Im Ii }=0, (A18)

C„'"=C„'" s exp L
—(I+1)]e",

These lead to

N))1. (A21a)

(A21b)

and
fi(y) =K (y) (A19a)

which arises in connection with calculations of trident
cascades (Sec. 4). This identity may be verified by
methods similar to those of the above. Here

and evidently Carleman's divergence criterion is once
more satisfied. (A21b) and (A20d) together then
insure the invertibility of the mapping (A2), and this
completes the proof of the validity of (A18) ."

(2y i/2 co

f~(y) = I—

Then

dr(cosh r) "+'/' K„ i/2(y cosll T) .

(A19b)

APPENDIX 2: PROPERTIES OF THE
BREMSSTRAHLUNG FUNCTION g(z)

The function x(z) is defined by the integral repre-
sentation

C (&)— dyy" K (y) l&(z) = z dh K6/3(x),
'

g

(A22)

and

=2" i I'} i(I+1—i)]1'L—',(I+1+v)], (A20a)

(2 I/2 cc

C &2i

(7I p

g~ yn+1/2

&& (cosh r) "+'/' E„ i/2(y cosh r) . (A20b)

Introducing the new variable x=y cosh', and pre-
suming sufficiently large values for the moment index"
n, i.e., e) i —2, (A20b) may be transformed to

1/2 CO

dr(cosh')" " ' dy x"+'/' K, 1/2(g))
7l p 0

where Ks/3(x) is a modified Bessel function. Evidently
for z&0, the function x(z) is nonnegative. We have
the special values x(0) = x(~ ) =0; and note that g(z)
has a broad maximum in the vicinity of a~3. More
precisely, Max Ix(z) I =x(.28) =0.925, and this value
of s of course also coincides with a zero of the deriva-
tive, viz.

x'(z) = z ' x(z) —Ii'rK2/3(z)+zKi/3(z) } (A23)

The general behavior of x(z) is indicated graphically
in Fig. 3; numerical values are given in Table I.

Another representation for x(z), especially suited for
computations in the range 0&8&2, may be obtained
from (A22) with the help of the Bessel function trans-
formation

22n—v—1

I'L-', (n+1+i ) ]I'L-;(ii+2—i )] Kg/3(x) = —
I Ki/g(x) +2K 2/3(x) }.

)& (I'Li2 (++I—p) ])2/I'(&+ I—p) . (A20c) This leads to the expression

These expressions for the moments are suKciently
simple so that their equivalence can be established
without recourse to an inductive proof: A few ele-

mentary cancellations show that the conditions C„&'&=
C &'&) in this in.stance, reduce to

I'(x+1—p) = (2" "/m'/') I'} —',(v+1—i ) ]I'L—', (m+2 —/) ],
(A20cl)

and this of course is immediately recognizable as an
identity equivalent I.egendre's duplication formula.

7r g

x(z) = z +2K2/)g(z)+ ——dx Ki/8(x), (A24)
%3

in which the s—+0 limit is no longer troublesome in the
limits of integration. %e now insert the series expansion

cr (g/2) 2n

(A25)
„~I!I'(n+v+1)

"Strictly speaking (A7b) must hold only for an infinite set of
moments n&X)0; the particular value of e corresponding to the
"first" moment is actually irrelevant. The requirement n&v —2
can therefore always be met.

22 The method of moments does not of course yield the most
general conditions for the validity of (Al) and (A18). The
hypotheses may be considerably relaxed by an appeal to analytic
continuation in both the "argument" and "index" variables.
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and carry out the integration:

8

dx Eg/3 (x) —=Z (z) = 2.53143825z"'L1+0.09375000z'+0.00401786z'+0.00008789z'+ 8 (z') J

—1.20910963z4"L1+0.07500000z'+0.00251116z'+0.00004566z'+ 0 (z') j (A26)

Q(Y) = du u-' W(u/Y) E'g/3(4/3u), (A31)

where 8" represents the Weizsa, cker —Williams spectral
distribution given in (4.3b), and E„,v= 3, etc., denotes
a modified Bessel function. It is convenient to intro-
duce the integral representation

K(z)—2.1495 z'/' —1 8138 z+ 8(z)~/', z&&1. (A27)

The computation of ~(z) for values of z) 4 may be
based on the exact transformation

Since Eq/~(z) is a widely tabulated function, (A26) function
and (A24) are a convenient means for obtaining nu-
merical values of ~(z) for 0&z&2 to better than ~z%

accuracy (see Table X). The leading terms for very
small s are

f 7 t/414d»+-
I

—
~

E~/3(x) =—E1/3(z) 1+21—
2 &3xj 3z &3z

W(x) = do o EP(o); (A32)

and carry through the calculations with the auxiliary
1 4 )' /4 l' variable p—=~Y '. The quantity to be evaluated then is+ Em/3(z) 1

~ +~ ~

~ (A28)
3z) (3z)

In case z)0, the integral may be simplified with the
mean value theorem, i.e.,

Q(Y) —=Q(P) = do u 'oEP(o)E'p3(4/3u).

(A33)

7 /'4 t'
dx 1+-

I

—
I E~/3(x)

2 &3xj

7 4&4
dx E„,(x);

2 3')
(A28a)

This form suggests that it is advantageous to consider
the derivative Q'(P). Absorbing the 4/3-factor into
the N-integration, we have

Q'(P) = —P du EP (Pu) E'g/3(u ') . (A34)

For values of s&4, the terms of order 3 ' may be Since convergence is not a problem here, we can intro-

dropped, and we find the expression

~(z) =3Eus(z) f1+2(4/3z) 'j+zE~/3(z) t:1—z (4/3z) 'j.
(A29)

TABLE X. Values of the auxiliary function X(s).

The accuracy of this approximation. is better than 4%
for z 4; and better than 1% for z) 5.7.

Finally, for z)&1, we have the asymptotic estimate

~(z)-+1.2533 z'/2 e
—*.

but this is not well suited for numerical work.

(A30)

APPENDIX 3: EVALUATION OF THE AUXILIARY
FUNCTION Q(Y)

In connection with estimates of trident production
by virtual photons it is necessary to compute the

0.01

0.02

0.03

0.04
0.05

0.06
0.07

0.08

0.09

0.1

0.1148

0.1799

0.2331

0.2795

0.3213

0.3596

0.3952

0.4285

0.4599

0.4897

0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9
1.0
2.0

0.7271

0.8995

1.034

1.143

1.234

1.310
1.374

1.429

1.476

1.71
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reductionduce the integra

cosh r) cE„2(s)=2 dr E0(»

arg s

(A34) and so of the Bessel functions infor both o e

is leads to

h (2r) COSh (2/0)dpl(p) =—2r

0

4'-I cosh r) }(g cosh pX Lg cosh rj

d/0 Cosh (2r) COSll (2p)Q'(P) = —4P

e identity

du E„a „-'= 2r/n) E2„(2(npfi/2)du E,(au)E„(Pu-') = 2r n(

0 (A35a)R. ( ) &0, Re (p) &;

Nfl
0 0

u ' (A35)COSh r u) E0(L2 COSh pjuX Eo(L2P cosh r u 0

of integration, an r'n the orders o iInterchanging
th

Q"(P) =4~ u ' . (A39)du E2(4pu) E'2/2(u—

(A38)

e roblems, and wwe may
d i t 1

there are no cAgain
diGerentiate wi

blhonvenient o ris also co
result of these opera

'

we 6nd

h (2r) COSh (22p)dp cos

represen11tatio

xp — ~-') }
' xp I (n~+—p—dB u expE'0(2(nP j'/') = — —

xp

Q'(P) = —22r dr

cosh p '/' . (A36)r 'E0(4[jan coshr cosh p '/' .

ie duce this further y
'

ient to re uIt is convenie
'

n

ee that the net gee a ain has
h 8 lf

CoIIlpa grin wit
uares of t e

n
elimina io

'on. In ac
en

8 el function,indices of the ess

h' 's however
mobtain close forms o

metric functiogener ahze yp ~geo
r present purpoOUS fOI' Onr P r o

symptotic e p
kng that E„'o derive as

We begin by remar 1

nction of s for positive v
ble inequal) tyto the dou e i

du E2/5(4pu) E2/2(—u ')( du E2(4pu) E2/2(u ')(-du E2(4Pu) E,(u—1) . (A40)

btain the boundst A35a), we o ai ndsApplying
' t

«/ (4P"') & (P/ ' Q

~

]
Q

dependennt.

1/2 }5/2 2 5/4 exp j —4pQ"(P) 2-'/'( '/P)

a ration of this asymptototict instance integration o i tohe prese

Q(T), fi dtoand reconvverting

"'ex —8 3T) '/'}Q(T) ~(2r55/2/16) (3T) '/' exp —8

(A43)

s iven in Kq. 4.4b) ofof the imi
'

o l' 'ting forms givThis is one o
the text.

f the ineq ythen both sides of th

y ex ansion of t e nc ioasy pto" xp
of thein ex.

'
1 s

P)&1.

(2s) r(.+-;)E.(ns) = cos (nv)
dv

(v' s

2r 2, a&0, (A44)—' &0, I args} &2r/2, nRe Ivy2}

be written as39 . The result may(4Pu) in (A39).

where

Q"(P) =-;~P-2 m(p), (A45a)

u' cos (4pv)

(u2+ v2) 5/2
m(p) =

00

ansioIlhas a series expe verified that 9R(p
abou t the origin; an in

~0, can alsop"'
be conveniently derive
reprpresentation
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Combining this with (A45a), and keeping only the It is easy to check that this reduces to the expression
dominant terms, we find the asymptotic estimate

Q(P) —+—(pr'/2l ln P, P«1. (A46) +8(rp "'lnrp)& for rp&)1. (A49b)

Since Q(P) =Q(T), this leads to the expression cor-
responding to T)&1 given in (4.4b).

APPENDIX 4: EVALUATION OF THE AUXILIARY
FUNCTION "(Y)

The uncertainty regarding the contribution of the
bremsstrahlung tip now enters only through the slowly
varying factor ln ~0. For our present purposes it is suf-
ficient to single out the limit $(T, T) which, in conjunc-
tion with the previous results, then leads to the com-
pact estimate

This function is defined in terms of the integral
representation (T)—44T 'i'1n T, Y))1. (A50)

/2o , ( 4
(T)= do o '«I, K'ypI —,

(3Y' &3o.

K(s) =s dx Epp(x) .

(A47)

Similar methods can be used to obtain approxima-
tions for (Y) which are valid in the range T«1. In
this case it is possible to take advantage of the asymp-
totic expansion

E'~p(4/3o. ) (3pr/8) o exp (—8/3o),

As shown in the discussion of Sec. 48 the evaluation
of the rate of trident production for real photon inter-
mediate states requires estimates of (T) correspond-
ing to both of the ranges Y))1 and Y«1.

It is convenient to begin by considering the case
Y))1. The argument of the bremsstrahlung function
«(s) in this instance is always very much less than unity
and it is possible to use the simplifying approximation
I compare (2.12)7

«(s) 2.15 s'".

to simplify the integrand of (A47). It is convenient to
introduce the abbreviation p—=8/9T', and rearrange
the variables of integration. (T) can then be repre-
sented in the form

where

=-(T)=(3~/8) p ~(Y), Y&&1, (A51a)

3 T/4

dr e '~' dx Kp/3(x) . (A51b)
pr

This expression can be simplified still further with the
help of the identity

The basic integral representation (A47) can then be ~( +~'
rewritten in the form (A52a)

where

.(Y)—1.55 T "' g(rp, Y), T))1; (A48a)
where

6(Y) =
3 I/4

dTre '/' dx Kp(p(x), (A52b)

&(rp, T) = dr r 'IP E'gp(r).
4/3s o

(A48b)

b(Y) = p
3 T/4

dr rp e ~'Kg(p(pr). (A52c)
Since the bremsstrahlung spectrum is not well repre-
sented by «(2o/3T') in the region of the tip, i.e., the
range 0—+Y, it is advisable to cut o6 the integration at
a lower energy. This is the significance of the auxiliary
constant 7 0, where 1«ro(Y, which has been introduced
in (A48b) . In order to obtain the leading term of (Y)
for Y))1, we now perform a parts integration, viz.

/4 )tp~' 4 ), t'4 't
8(rp T) =—

I I
»

I
E'vp

I

—
I

E3rpj 3rpj E3rp)

Now in virtue of the mean value theorem we have

6(Y) =r 5(Y) where 0&x&4Y. (A53)

I.ensmu:

Since Y itself is bounded from above by Y«1, we may
obviously neglect $& relative to $ in Eq. (A52a).

The auxiliary function )p(T) can be dealt with by
analogous methods. For this purpose it is useful to
note the

ao d co

dr ln r —(r I' E'&~p(r) 7. (A49a) y(1+y) ' Egp(y) &- dx Ep~p(x),
4/3gp 4T 3 Q

y) 0. (A54)
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This inequality may be verified by considering the
function

Q(y) —=y(1+y) '& (y) ds Ksts(x), y&0.

From the mean value theorem it follows that

(ASS)

—iy(1+y) ' Jtstsb) I
dy

Q(y) =
CO

dx Ests(x)
dy

for some ye) y. (A56a)

o&Qb') &s, (A56c)

and this establishes the lemma.
Now inserting (A54) into (A52c), and again apply-

ing the mean value theorem, we And

h(T) &kr(1+pr) t(Y),

0&% & gY. (AS7)

This estimate, together with the previous results,
implies that (A52a) may be rewritten in the form

k(T)=-'(Y/p) L1-e (Y)1 '

X exp (—8/3T) «(ssPT), Y«1; (ASS)

where the quantity 6(Y) deriv s from the 6(r') term
in (A5'7) . It can easily be verified that 0&8(Y) &5/12;
and in the present order of approximation this may be
neglected. The bremsstrahlung function appearing in
(ASS) may be simplified since 4pT))1, and one of the
asymptotic expansions of (2.12) can be used. The
corresponding estimate for R(T) can then be written as

(Y) 0.4T't' exp (—10/3Y), T«1. (A59)
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