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This paper is a review of experimental data and theoretical studies devoted to the rotating helium rr problem. The
problem arose when helium rr appeared to be rotating as a whole in a uniformly rotated container, while dragging of its
superQuid component into rotation of a cylindrical vessel seemed impossible due to the absence of viscosity and Landau's
requirement curl v, =O.

'

Later it was found that imitation of a solid body rotation by helium rr is realized by means of
Onsager —Feynman s vortex lines which possess quantized circulation. In a uniformly rotating vessel they are distributed
approximately uniformly along its cross section, aligned parallel to the axis of rotation, and cause a complicated velocity
distribution at which curl v, = (2srfi/rn)Z, b(r —r„)J'that is, Landau s requirement is valid everywhere excluding singular
lines where the curl is equal to infinity (r, is a two-dimensional radius vector of a vortex line in an arbitrary plane per-
pendicular to the axis of rotation).

In the review the experiments are described in which both an averaged picture of the joint rotation of the superQuid
and the normal components is displayed and the studies in which the existence of vortex peculiarities is manifested in a
clear manner. The measurements of the meniscus of rotating helium rr and its angular momentum belong to the lrst
group of these experiments ("integral" ones). Propagation of second sound, oscillations of solid bodies immersed into
helium rr, passage of negative ions, and different relaxation processes (acceleration and deceleration of the vessel, changes
of temperature, etc.) form the second group ("local" experiments). The experiments in which the superfiuid performs
potential rotation, which can be persistent in the vessel at rest are also described. Vortex lines are absent there and the
circulation of velocity can reach the value equal to a lot of elementary circulations.

Special attention is devoted to the problem of the nature of the phase transition helium r—helium rr (and back) in the
state of rotation.

The properties of rotating helium rr illustrate brightly the main peculiarity of a quantum liquid, i.e., its complete in-
ability to perform nonpotential motions. They show that Landau s requirement curl V, =O remains valid even when the
thermodynamical condition of the free-energy (P I've) minimiz—ation gives preferrence to the velocity distribution of
the type v=coor.
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1. THE ORIGIN OF THE ROTATING HELIUM rr

PROBLEM

1.1. How the Problem of Rotating Helium n Has
Arisen

While explaining the experiments of Kapitza
(1938a, b, 1941a, b), who discovered and studied the
phenomenon of superfluidity, Landau (1941) suggested
the two-fluid theory of a quantum liquid (see, also,
Landau, 1944, 1947; Lifshitz and Andronikashvili,
1959). Using not quite rigorous, but very convenient,
and therefore widely spread, terminology for the
physical interpretation of the experimental facts, we

can describe the main pnnciples of this theoiy in the
following way. Helium rr consists of two Quids, one of
them is a normal (e) component, which is an ordinary
viscous liquid. The properties of this liquid depend on
the existence of thermal excitations in helium, which
are called rotons and phonons (in accordance with the
di6erent types of energy dependence on the momentum
in different parts of the dispersion curve). The other
one is a superfluid (s) component with zero viscosity
and zero entropy. In addition, it cannot perfor~n non-
potential motions. The character of motion of each of
the components can be quite diGerent. In other words,
one can axcribe two celocities v„andv, and two densities
p„and p, to each point of space, so that p„+p,= p.
Here p is an ordinary density of the liquid, while p
and p, are the eGective densities of motions performed
with the velocities v„and v.-, respectively. Kith a rise
in temperature, elementary excitations (phonons and
rotons) involve larger and larger parts of the liquid in
thermal motion, and thus the normal component
density is increased, while that of the superQuid one
is decreased: p /p=0, when T=O'K and p /p=1, when
T= Tq=2.17'K. The latter temperature corresponds
to the point of the phase transition.

Simultaneous with the creation of his theory, Landau
suggested some experiments to test its validity. One
was an experiment in which the properties of helium II
in a rotating vessel would be studied. It was assumed
that, because of the absence of viscosity and the
necessity of maintaining the condition curl v, =0, the
superAu~d component would not take part in the rota-
tion of the vessel and only the normal component wouM
he rotated.

Such an experiment, the aim of which was to show
directly the possibility of the simultaneous existence
of two independent fields of velocities v, and v„,was
really performed by Andronikashvili (1946, 1948a),
but in quite a modi6ed form. Axial oscillations of a
vessel with a pile of closely spaced parallel thin disks,
suspended in helium D by means of an elastic thread,
were realized instead of rotation. The normal compo-
nent was dragged into the motion of the disks com-
pletely, while the superQuid one did not take any part
in it. One could detect this phenomenon by measure-
ments of the period of oscillations of the suspended
system, determined by its moment of inertia. This
moment of inertia consisted of the moment of inertia
of the vessel and that of the normal component. The
investigations performed allowed confirmation of the
existence of the two components in helium n and the
possibility of the simultaneous realization of two difer-
ent motions in this liquid, as well. as establishing the
temperature dependence of p„.

At that time, the difference between rotation and
axial oscillations seemed quite unessential. But soon,
when Andronikashvili (1948b, published in the paper
of Andronikashvili and Kaverkin, 1955) performed an
experiment with really rotating helium, the result was
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quite different. Helium rr seemed to rotate like a solid
body.

propagation of second sound along the rotation axis,
its attenuation was the same as in helium ir at rest.

1.2. The First Observations of Rotating Helium rr

The idea of the experiment mentioned above, as well
as that of the similar Osborne's experiment (1950),
was the following. As is well known, a rotating viscous
liquid eventually forms a parabolic meniscus, the shape
of which depends on the force of gravitation and on
centripetal force. Because of that, in particular, the
depth of the meniscus h is equal to

h =~0'R'/2g, (1.2.1)

where coo is the angular velocity of rotation, E. is the
radius of the vessel, and g is the acceleration of gravity.
It would seem that in the case of helium rr the whole
thing would be quite diferent. In this case the force
of gravity acts on the whole bulk of the liquid, while
the centripetal force would have to act only on its
normal component, since it is assumed that the super-
Auid component does not rotate. Therefore, one should
expect that the shape of the meniscus would depend
on the amount of the superQuid component, i.e., on
temperature, and its depth would be determined by the
formula

(1.2.2)

In both experiments described, vessels with a radius
of the order of centimeters were used and the velocity
of rotation was about some tens of radians per second.
There was no diGerence in the depths of the meniscus
of helium I and helium rr at any temperature and
velocity of rotation. Formula (1.2.1) was always
rigorously maintained, which gave an impression that
helium rotated like a solid body.

Thus, in these experiments helium rr behaved as if
it were rotating as a classical liquid. The only small
difference which could be noticed at maximum veloci-
ties of rotation was that a small conic pit appeared at
maximum velocities of rotation on the lower part of
the parabolic meniscus (Andronikashvili and Kaverkin,
1955).

Participation of the superAuid component in rotation
of the vessel was also found in the experiments of Hall
(1955; see, also, Hall and Vinen, 1955), who used a
vessel filled with closely spaced disks for this purpose,
which dragged the normal component into motion com-
pletely. The angular momentum of hehurn. Ir was rneas-
ured by determination of the torsion effect, which was
required to accelerate and slow down the liquid.

In addition, Hall and Vinen (1955) have shown that.
rotating helium rr renders an additional resistance to
propagation of thermal waves called second sound.
Attenuation of these waves in their propagation per-
pendicularly to the axis of rotation depended on
velocity, increasing linearly with an increase of ~. For

1.3. Is Rotating Helium rr a SuperQuidT

At the time when nothing was known about the
physical nature of critical phenomena in helium rr, any
interaction of the superRuid component with the walls
of the vessel or with the normal component caused an
idea of the breakdown of superQuidity. Such a possi-
bility was foreseen by Landau's theory, according to
which a body moving in helium rr with the velocity of
about 60 m/sec could generate thermal excitations
(rotons) there. In this way, the liquid lost the ability
to Row without friction. The idea of the breakdown of
superQuidity also appeared in the association of the
establishment of a solid-body rotation of helium. But
it was found (Andronikashvili and Kaverkin, 1955)
that the fountain eGect' continued to exist in rotating
helium rr and had the same value as in helium rr at
rest. This fact was an obvious demonstration of the
existence of the superQuid, which, being a bquid with
zero entropy, Rows towards a source of heat to get
entropy and become normal. Moreover, it was also
established that the relative content of the superQuid
and normal components did not depend on the velocity
of rotation.

Ke have already mentioned the experiments per-
formed by Hall and Vinen (1955). In them the existence
of the superQuid component in rotating helium rr and
the independence of its amount on the velocity of rota-
tion were displayed in the absence of any dependence
of the velocity of second-sound propagation I on Np

(zz is, as is known, a function of the ratio p./p„).

1.4. Summary of the Aspects of the Rotating Helium
n Problem by 1955

Thus the rotating helium rr problem arose in
Andronikashvili's and Osborne's experiments as early
as the end of the forties, when oscillating disk experi-
rnents were already finished, and not in 1941, when
Landau proposed an experiment with rotating helium rr.
Vfe can hardly be sorry about this delay. On the con-
trary, though it may sound paradoxical, one might
fear that the discovery of the superAuid participation
in the rotation of the container could have slowed down
the development of the theory of superfiuidity for several
years. Fortunately, this fact was established only after
the first confirmations of Landau's theory had been
obtained in the experiments with a pile of oscillating

'The fountain effect is a phenomenon in which the superQuid
component has a tendency to move through narrow pores or slits
towards a source of heat. Since the normal component under
such conditions cannot move towards the superQuid, a pressure
difference arises on the porous partition. It is one of the particular
manifestations of the thermomechanical effect which causes the
superQuid component motion in the direction of the temperature
gradient, while the normal component Qows in the opposite direc-
tion Lsee Kqs. (4.2.1) and (4.2.2) 7.
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disks and in experiments with second sound. A number
of successes of the theory followed, and an unexpected
result of one experiment could not have shaken the
confidence in the validity of the principal idea's of the
two-Quid hydrodynamics of helium rr. In addition, the
qualitative characteristics of many phenomena, which
were specific for superQuid helium, were well studied by
that time. Some of them, in particular the fountain
eGect and second sound, had been observed in rotating
helium. This was a very essential thing, which showed
that the existence of the superQuid component rotation
did not mean the breakdown of superQuidity. In this
respect, the experiment did not contradict Landau's
theory, according to which the corresponding critical
velocity was about 60 m/sec, while in the experiments
of Osborne, Andronikashvili, and Kaverkin, and Hall
and Vinen the maximum velocity on the periphery of
the container was several orders smaller. Only the
existence of the superQuid component in these experi-
ments showed that the nature of the critical phenomena
is not connected with the breakdown of superQuidity
spoken about in Landau's theory.

Nevertheless, the mechanism of dragging of the
superQuid component into rotation and the very charac-
ter of this rotation remained quite obscure. In partic-
ular, the question of the Inaintenance of the Landau
condition, curl v, =0, remained open. It seemed that
most probably this condition was broken, and the
theory required an essential revision of its principles.

I.S. The Purpose and the Plan of this Review

While writing this review, the authors aimed at
showing how the problems summarized in the previous
paragraph were explained and at describing the further
development of theoretical and experimental studies
of rotating helium zr. Section 2 is devoted to ideas of
Onsager and Feynman, who developed Landau's theory
for supercritical phenomena. The Landau —Onsager-
Feynman conception is the basis of all further considera-
tions. Then, beginning with Sec. 3, without any chrono-
logical order, the authors systematically describe the
main results of practically all experimental and theo-
retical investigations devoted to the rotating helium
problem.

However, attention is mainly devoted to those experi-
ments, the precision and clarity of purposes of which
provided the possibility of a quantitative treatment of
the data obtained, or at least extraction of important
qualitative conclusions from them. A similar principle
has been used for the description of the results of
theoretical investigations when we tried, in the main,
to show clearly the physical picture of the phenomena
considered. Wishing to describe all the observed phe-
nomena from one general point of view, the authors
have deliberately avoided Lin's hydrodynamics (1959,
1963), in spite of the fact that without doubt it is
interesting and deserves great attention. The authors
think that at present there are not sufhcient data to

oppose this theory to the Landau —Onsager —Feynman
conception or to give a parallel interpretation of
phenomena using Lin's conception. On the one hand,
there are no results of some decisive experiment, which
could not have been explained by the Landau —Onsager-
Feynman theory. On the other hand, there are no
solutions of sufhcient number of concrete problems
within the framework of Lin's theory, without which
it is impossible to describe all or at least the most
available data from the point of view of this theory.

2.PRINCIPLES OF ONSAGER-FEYNMAN THEORY

2.1. Vortex Lines in the SuperQuid Component of
Helium zr

It has already been noted that the critical phenomena
connected with the appearance of an interaction of the
superQuid component and solid bodies have nothing
to do with the breakdown of superfluidity. In accord-
ance with Onsager's assumption (1949), they a,re con-
nected with the appearance of vortex lines in the super-
Quid component of helium n. The circulation of such
vortex lines is quantized in units of I'0 ——h/nz (where h

is Planck's constant and m is the mass of the helium
atom). In the precritical regime, the superfluid does
not interact with solids (Dalamber's paradox). But in
the postcritical regime, when vortex lines are present,
it can have such an interaction without losing its
superQuid properties. Let us recollect that a classical
ideal liquid, when it has vortex lines, also breaks
Dalamber's paradox (vortex resistance) .

As for the circulation quantization, it explains the
very fact of the critical velocity s existence. Indeed, if
a vortex line cannot exist in a state with an arbitrary
small intensity (circulation), then vortex formation
can take place only if some minimum energy is available
in the stream of Quid or in a body immersed into the
liquid.

However, it is well known that the classical theorems
of Helmholtz —Thomson —Lagrange forbid general vortex
formation in an absolutely ideal liquid performing
potential motion. Even now it is not quite clear what
properties of a quantum liquid allow breaking the
requirements of those theorems. Nevertheless, Feynman
used quantum-mechanical ideas to explain the possi-
bility of vortex formation and showed that a vortex
hypothesis can explain the established fact of the
superfluid rotation (1955, 1957).

The argument in favor of the possibility of vortex
existence in a superQuid is associated with consideration
of the following situation. Let helium n at the tem-
perature absolute zero (p = 0) be at rest in a semispace
s&0 and in the state of uniform motion along the x
axis in the semispace s)0. Then if the wave function of
the liquid at rest is Co, the wave function in the upper
semispace will be Co exp (ikx), where k is the wave
number, related in the usual way to the velocity of
motion. We shall question what will happen further,
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whether such a state of the liquid will remain or
whether an interaction between the semispaces will
take place, bringing into motion the liquid in the lower
semispace as well. The absence of viscosity excludes
the presence of tangent forces on the interface s=0,
and one can think that volumes of helium in the state
of motion and of helium at rest are really isolated from
each other and that the surface energy of the inter-
face x=0 is higher, the higher is the relative velocity
)Fig. 2.1(a)7. But we pay attention to the fact that
the function Co exp (ikx) turns periodically into Co

with the period Ax= 2Ir/k. On the corresponding lines
(parallel to the y axis), the conception of the surface
energy of the interface becomes senseless and nothing
can prevent moving helium from Bowing into the region
of helium at rest and make it move to the other side
of the interface. But the interface cannot exist in the
form of Qat strips; their cross sections are shown in
Fig. 2.1(b). The surface tension should draw them up
into lines (points in the section), and they would quite
disappear if there were no centrifugal forces created
by rotation of the liquid LFig. 2.1(c)].Estimation of
the radius of cylinders formed in such a way, according
to the equilibrium of the surface tension forces and
centrifugal one, gives a meaningless value of the order
of some tenths of an angstrom. It is clear that in such
a case either the radius of the order of interatomic
distances in helium II (Feynman used the magnitude
ao ——4 A) would be ascribed to this cylinder (to the
vortex core) or the use of such macroscopic conceptions
as surface tension or size of a hollow core in general
should be renounced in favor of a more detailed descrip-
tion. For such a more detailed quantum description,
a vortex line should be considered as a node line of
the wave function, i.e., the line on which the wave
function is equal to zero. ' Then the parameter ao

ia)

acquires the meaning of a characteristic distance from
this line, within which the density of the liquid is
appreciably different from its value in bulk. We return
to such a description in Sec. 12.

Though the present consideration represents a specu-
lative experiment rather than a study of some real
process, we think it has a deeper sense. Evidently it
shows instability of tangent discontinuity of velocity
well known in the case of a classical liquid (Landau
and Lifshitz, 1953) . Figure 2.1 then represents to some
extent the real course of the events after a jet of super-
Quid Qows from a hole into a large volume. Apparently
the process of a vortex street formation following the
motion of a body in a superQuid liquid is developed in
a similar way (von Karman's chains).

2.2. Quantization of the Circulation

Having generalized the wave function of uniformly
moving helium II C, exp p(m/f'I) g,v R,] (the sum is
taken over all the atoms of the system), Feynman
suggested writing the wave function arbitrarily moving
helium Iz (T=O'K) in the form Co exp (iItI). The
velocity of the liquid Qow is related with the phase of
the wave function by the expression v, =A,VQ/nt. The
existence of a vortex line requires a change of the wave
function phase on going once round a singular point
(line). However, because of the unambiguity of the
wave function, the change of its phase cannot be
arbitrary at one complete revolution, but should be a
multiple of 2x. Considering rotation of a liquid particle
round a vortex line, the phase change per revolution
along the circumference with a vortex line as its center
will be equal to

2' fSWg
Vs =dr

hence, the condition of circulation quantization will
be (I is an integer):

2mre, = n (2sr5/nz), (2.2.1)

or in a more general form (for an arbitrary contour),

) ( ) (

(6)

I'—= V, dr=n(2IrS/m) =nr, —(2.2.2)

Fzo. 2.j.. The evolution of ideas on the nature of interface
separating semispaces with helium rz at rest and in the state of
motion: (a) solid surface; (b) the surface tom along the lines on
which wave functions of helium at rest and in motion coincide;
(c) surface tension and centrifugal force make the "strips" of the
interface cylindrical.

' It should be noted, as Feynman pointed out, that the appear-
ance of node lines in an excited state is characteristic of the general
behavior of quantum systems. Let us recollect, for instance, a
harmonic oscillator. Its wave function in an unexcited state has
no nodes, and each next stage of excitation increases the number
of its nodes,

Since the circulation along any contour is equal to a
sum of circulations along the contours it contains,
condition (2.2.2) is valid for integration over a closed
curve including a number of vortex lines. The number
e in this case is a sum of integers, characterizing intensi-
ties of diRerent vortex lines. In particular, if all the
vortex lines are unit ones (with the circulation Fo),
this number is simply equal to the number of vortex
lines in the contour.

Thus the formation of superRuid vortex lines was
the first phenomenon that required application of the
quantization principle, similar to Bohr s postulate, to
the motion the scale of which can be measured even
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It means that one of the main requirements of Landau's
theory, namely, curl v, =0, which remains valid over
all the bulk of the liquid (because of the determination
of the velocity by means of the gradient of the phase),
is broken only on vortex lines themselves, where the
curl is infinite but the density is equal to zero.

2.3. Energy and Tension of Vortex Lines

Now let us calculate the energy of a liquid rotating
according to law (2.2.3). For unit length of a vortex
line, it is

p,5, A, b
2xr dr=up, —,ln —,

2 8$ Qp

where b is the effective radius of a vortex line determined
by the dimensions of the vessel (if there is one vortex
line) or by the vortex separation (if there are many
vortex lines) .

According to Bernoulh's equation, pressure in a
liquid is equal to P= Po —p,vP/2, where. in the case of
rotation according to (2.2.3), Po is the maximum pres-
sure at an infinite distance from a vortex line. Nearer
the core of a vortex line, the pressure decreases, creating
the force with which a vortex line is attached to the
surface on which it ends (Hall, 1957a). As a result, a
vortex line is in a strained state and its tension force
is J(PO P) 2mr dr, an—d according to (2.3.1) it coincides
numerically with the energy e of its unit length Lthis
is clear, since its tension is equal to 8(es)/Bs, where
s is the vortex line lengthj. Elastic properties of vortex
lines are determined by these phenomena.

2.4. Rotation of a Suyer6uid Liquid

The physical nature of critical phenomena in helium u
is connected with the fact that a superQuid liquid,
remaining superQuid, interacts, because of the existence
of vortex lines, with solids or with the normal compo-
nent.

Feynman has shown that the critical velocities of
vortex formation are much lower than that of the break-
down of superfluidity caused by roton formation (ac-
cording to Landau this velocity is 60 m/sec) . It should
be emphasized once more that critical phenomena at
low velocities have nothing in common with the break-
down of superQuidity and, therefore, do not contradict
Landau's theory.

Potential rotation, described by formula (2.2.3), is
unfavorable thermodynamicaHy. Rotation performed
according to the law

V= Vpr, (2.4.1)

by centimeters. It is essential that according to (2.2.1)
the distribution of the superQuid velocity round the
vortex line is given by the law

(2.2.3)

characteristic of a viscous hquid, provides a smaller
value of the energy 8 at a given momentum L or, that
is the same a smaller value of the free energy F= L&'—

L'6)p. But Feynman has noticed that in the presence
of a great number of vortex lines, which (interact. ing
with each other and being also attached to the bottom
and top or to a free surface) rotate together with the
vessel, the summary distribution of velocities in a
superfluid liquid approaches closely law (2.4.1). This
situation is illustrated by Fig. 2.2, which shows sche-
matically that the mean velocity of the superQuid v,

is also determined by the formula v, =~pr at the motion
of vortex lines according to the law el, =Npr. The dif-
ference between the true value of the velocity in a given
point and the mean velocity is essential only in the
vicinity of the considered vortex line. The existence of
a number of vortex lines with unit circulation provides
greater proximity of v, to copr than the existence of a
smaller number of vortex lines with great circulations.
Therefore it is natural to consider that all the vortex
lines have the circulation Fp in uniformly rotating
helium n.

(c)

'Is I I I I I I l
Il ll ll ll~lt

I I l Q
I I I P

-~I I

I i il

CLp ~+ Q

I'IG. 2.2. Curl-free rotation of the liquid around vortex lines,
which in their turn rotate around the common axis, leads in an
average to solid-body rotation of the liquid amund this axis.
The figure shows: (a) the distribution of velocity around unit
stationary vortex line, ap is the radius of the vortex core; (b)
the distribution of velocities around some vortices the cores of
which rotate according to the law @~=&ups; (c) the distribution
of velocities averaged oyer the yo)unde containing seyera) vortjcqs,

2.5. Density of Vortex Lines

Let us consider some circumference with the center
on the axis of rotation, The circulation of the mean
velocity on it will be 2mr cvpr; on the other hand, as it
has been already mentioned, it is equal to the number
of vortex lines multiplied by Fp. Therefore the number
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of vortex lines piercing the unit cross section of the
liquid is

N = 2ooo/I'o =euro/or&. (2.5.1)

When cup
——1 sec-', this formula gives Ã~2&10'

vortex lines per square centimeter.

2.6. The Critical Velocity of Vortex Formation

%hen ~p&~,~,
' the contribution of a vortex line into

the magnitude E—Lorp becomes negative as the value
of E for unit lengths is determined by formula (2.3.1)
and /=L/s=7rpP(R'-aoo)/m. It is easy to see by
means of the direct calculation of the integral
l= Jp,rw, 2nrdr, whe. re o, is determined by formula
(2.2.3). Therefore, starting from this velocity, the
vortex formation is favorable thermodynamically. The
critical velocity or.& is very small. %hen R~10 cm, it
is ~,~

10-' sec ', when R 1 cm, it is or.~ 10 ' sec '.
Hence, almost at any real velocities of the vessel,
rotating helium is in the supercritical regime and con-
tains a lot of vortex lines. The only exception arises for
devices with extremely small characteristic dimensions.

%hen orp&co, &, the number of vortex lines is not yet
determined by Feynman's formula (2.5.1). Formula
(2.5.1), when Q)o=M y gives the expression ¹mR'=
ln (R/ao) for the total number of vortex lines in the
cylinder instead of unity. This magnitude is always
bigger than unity. In this connection, Kiknadze,
Mamaladze, and Cheishvili have also estimated the
critical velocity co,&' starting from which the presence of
vortex lines with the density (2.5.1) becomes favorable
thermodynamically. Such an estimation can be made
proceeding from considerations similar to those used
for the just mentioned formula of Arkhipov-Vinen
(2.6.1). The energy of vortex lines (reduced to unit
height of the vessel) is estimated in this case as Eq ——

E,o+E„;E,o=0.25ooo'R'harp, 'E, =N nR'o, where o i.s
given by formula (2.3.1), in which the magnitude of the
order of (fi/nueo) & should be used as b(~ho~1/N):

E.=oooR'np, (A/m) ln (h/-mo)oao') '. (2.6.2)

The angular velocity of rotation at which the erst
vortex line appears on the axis of a cylindrical vessel
with the radius R was calculated by Arkhipov (1957)
and Vinen (1958a):

co„=p/m(R' —aoo) j ln (R/ao) . (2.6.1)

axis, we have the following:
R scop

Lg~ s'pq (R r—) 2rrr dr= xooooR+pq. (2.6.3)
0 8$ 7r

Hence, the contribution made by vortex lines to the
magnitude E—Mp becomes negative when up ——+,&',

where co,q' ——E~/L~.

cu.g' ——(4l/m R') ln (5/ms), g'aoo) &~4(a,g. (2.6.4)

As the value of the magnitude or, ~ is small, one can
conclude from formula (2.6.4) that the formation of
vortex lines and the increase of their density until
equal to the values corresponding to formula (2.5.1)
takes place in a very narrow interval of angular velocities
in rotating vessels, the dimensions of which are not
extremely small. At the beginning of this interval, the
number of vortex lines could be equal to ln R/ao, ac-
cording to (2.5.1), but the presence of only one vortex
line is favorable thermodynamically. At the end of this
interval, the favorable number of vortex lines is equal to
2 ln (5/mes, ~'aoo)&; that is in complete agreement with
formula (2.5.1).

3. VORTEX LINES IN UNIFORMLY ROTATING
HELIUM rr. IMITATION OF THE SOLID BODY

ROTATION OF A LIQUID

3.1. Meniscus of Rotating Helium rr

It was said in the previous sections that, in the ex-
periments of Osborne (1950) and Andronikashvili and
Kaverkin (1955), the meniscus of rotating helium xr

was such as if the liquid rotated like a solid body.
Turkington, Brown, and Osborne (1963) reduced the

minimum value of the angular velocity to cop= 1.58 sec '
and used an oblique light beam, reflected from the
meniscus, to measure the curvature of the free surface
of the liquid. The results are shown in Fig. 3.1.

The curvature of the free surface of a thin layer of
helium rr at the bottom of a rotating cylindrical con-
tainer was measured by a very sensitive method by
Meservey (1964). The depth of the liquid layer was
only 5)&10 ' cm. The meniscus of rotating helium n,
at rotation with the velocity to 0.29 sec ', at 1.1'K,
was indistinguishable from the meniscus of a classical
liquid. The results of Meservey are given in Fig. 3.2.

The angular momentum of the superQuid component
caused by vortex lines L& (also reduced to unit height),
when there is a lot of vortex lines, coincides with its
value at rotation of the liquid as a whole. As the con-
tribution of each vortex line is s p, (h/m) (R' r'), where-
r is the distance from the vortex line to the cylinder

FIG. 3.1. Dependence
of the meniscus curva-
ture on the rotation ve-
locity according to the
data of Turkington,
Brown, and Osborne
(1963).
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'The symbol co.I is introduced in an analogy with the first
critical field H,I, beginning from which Abrikosov's vortex lines
are created in superconductors of the second kind.
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of the ratio 1./I... where I. is the measured angular
momentum and L, is its classical value, corresponding
to the solid body rotation. This ratio is equal to unity
over all the range of measured temperatures.

E
~CJ

)C

L„to

i.o $0
ANGULAR VELDClTY(xa%ec)

3.3. Capture of Negative Ions by Rotating Helium rr

A number of papers is devoted to ion motion in liquid
helium Lsee, for instance, reviews of Careri (1961,1963)
and Atkins (1963)]. In particular, having studied
vortex rings formed by fast moving ions in helium u,
Ray6eld and Reif (1963, 1965) proved quantization of
their circulation and measured the radius of their core,
obtaining the value ~ i A.

The results of study of ion motion in rotating helium Ir
were some of the serious confirmations of the existence
of vortex lines in it.

Careri, McCormick, and Scaramuzzi (1962) found an
appreciable decrease of the current intensity of negative

FIG. 3.2. Dependence of the meniscus curvature on the rotation
velocity according to the data of Meservey (1964).

L
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FIG. 3.3. L is the angular momentum of rotating helium II,
measured by Reppy, Depatie, and Lane (1960). The velocity of
rotation is about 0.2 sec '. L, is the classical momentum of the
liquid performing a solid-body rotation with the same angular
velocity. The dashed line is Pellam's curve (compare Fig. 3.10).

3.2. The Angular Momentum of Rotating Helium zz

The experiment of Hall mentioned previously (Hall
1955, Hall and Vinen, 1955), developed in his next
paper (1957), was a direct realization of Landau's
suggestion on the measurement of the moment of
inertia of rotating helium rr. The angular momentum
and, hence, the moment of inertia were found to corre-
spond to the rigid body rotation of the liquid (see,
however, Secs. 8.1, 8.6).

Reppy, Depatie, and Lane (1960) observed rotation
of a transparent cylindrical vessel, filled with helium xz

around a vertical axis. The vessel suspended by means of
a Beams type magnetic bearing, obtained suddenly
an angular momentum during O.S sec. After that
observations were made of the time dependence of the
rotation velocity. It is found that the angular momen-
tum of the liquid in these experiments is always a
classical one, in other words, the liquid under all con-
ditions performs a solid body rotation together with the
vessel. In Fig. 3.3 the temperature dependence is given

0 io 20 ao go 5p

FIG. 3.4. Dependence of the negative-ion current on the voltage
(in volts) in helium II at rest (sup=0) and in rotating helium II
(cop=1 sec ') according to the data of Careri, McCormick, and
Scaramuzzi (1962). i is the current intensity, p, is the mobility of
ions.

ions formed by a radioactive source Po'" in rotating
helium u at their radial motion. If the current was
directed along the axis of rotation, then it did not
depend at all on the angular velocity. A decrease of
the current intensity of ions moving perpendicularly to
the axis of rotation was found to be dependent on the
angular velocity and on the temperature till the ) -point.
In Fig. 3.4 the plot is given of the current intensity
divided by the mobility versus the square of the applied
voltage, when tap=0 and cop~ 1 sec '. Nonlinearity of
the latter graph allowed the authors to make a conclu-
sion that the eGect of the current decrease cannot be
explained only by a decrease of the mobility of ions,
which should be connected with the appearance of new
centers of scattering (vortex lines). The data obtained
show the capture of a definite number of ions in the
gap between the electrodes (see Fig. 3.5), i.e., formation
of a space charge, caused by the capture of negative
ions by vortex lines of rotating helium rr. According to
a widely held model of a negative ion, it is an electron
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FIG. 3.5. The number of ions (in 10' cm 3), trapped by vortex
lines of rotating helium n calculated by Careri, McCormick,
and Scaramuzzi (1962) according to the data represented in
Fig. 3.4.

in a cavity with the diameter of several interatomic
distances. Therefore, the capture of such a formation
by a vortex line, which represents a node line of the
wave function, i.e., the region with reduced density, is
very probable. Careri et al. refer to a private communica-
tion of Onsager to support such a point of view.

The observations of capture of negative and positive
ions in rotating helium zr as well as some measurements
of their mean time of capture and their mobility parallel
to the axis of rotation at the temperature between
1.20' and 1.72'K were also realized by Douglass (1964) .
He did not find any evidence of positive ion capture.
It was found that the probability of negative ion cap-
ture is proportional to the angular velocity till 45 min '
and that the mean time of capture strongly depends on
temperature (see Fig. 3.6) . Douglass' data are described
well by the relation r exp(Eo/kT), Eo——0.012 eV,
where Eo is assumed to be associated with the depth
of the potential well into which negative ions are
trapped.

Tanner, Springett, and Donnelly (1965) have shown

that the proportionality between the relative change of
the negative ion current and the angular velocity of
rotation is maintained at diGerent directions of the

I

i.0

zad/sec
2.0

FIG. 3.7. The dependence of the negative-ion current I on the
angular velocity of helium rr rotation according to Springett,
Tanner, and Donnelly (1965).0 is the capture cross section in cm.

current with respect to the axis of rotation. The eBect
disappears suddenly at an increase of temperature to
T 1.6'K. Further results of the same authors
(Springett, Tanner, and Donnelly, 1965) are given in

Fig. 3.7. They determined the cross section of capture a.

calculated from a simple formula

I= Io exP f—(mtoo/~R) aye,

where I is the current intensity, ntIop/II% is the density
of vortex lines, and y is the distance passed by an ion
along the applied field. 0 shows a complex dependence
on temperature (Fig. 3.8, a solid line). The experi-
mentally found dependence of 0 on the applied held
is shown in Fig. 3.9 (also a solid line) . The dashed lines
are the results of the theoretical calculation made by
Donnelly (1965), at the effective mass of a negative ion
equal to 100 rn, while its radius was 12.1 L. The dis-
crepancy between the theoretical and experimental
results, rather considerable in Figs. 3.8, 3.9, the author
explains by the presence of a space charge making the

TEMPERATURE( K)

1000 i.&o i.e5 f.en
2.D

FzG. 3.6. Dependence of
the trap time of negative
ions on temperature accord-
ing to the data of Douglass
(1964).
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FiG. 3.8. Temperature dependence of the capture cross section
of negative ions by vortex lines in rotating helium xz according
to the data of Springett, Tanner, and Donnelly (1965) is given
by a solid line. The dashed line represents the theoretical cal-
culations of Donnelly (1965).
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FIG. 3.9. Depend-
ence of the negative-
ion cross section on
the applied voltage
according to the data
of Springett, Tanner,
and Donnelly (1965)
is given by a solid
line. The dashed line
is the theoretical cal-
culation of Donnelly
(1965).
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electrostatic Beld nonuniform. The cross section of the
capture for positive charges at the same mass of 100 m
is somewhat smaller. However, the difference of prob-
abilities of escaping the trap is so great for positive and
negative ions that a weakening of the current of positive
ions at temperatures higher than 1'K is impossible to
observe. There is some probability to observe this
phenomenon only when T&1'K.

3.4. Does Helium xx Rotate as a Wholes

Perhaps the only paper stating that helium zz does
not rotate as a whole was that by Pellam (1960),
who observed a deviation of the Rayleigh disk, sus-
pended at an angle 45' to current lines of helium D,
rotating ln a cyllndllcal vessel. A light beam fell on
the Rayleigh disk, the suspension point of which eras
stationary in the laboratory system of coordinates. The
reQection angle of the beam served as a criterion of the
moment of forces acting on the disk. It is seen in Fig.
3.10 that the eGective density of a rotating liquid
acting on the Rayleigh disk is equal to the total density
of helium x. At the point of the phase transition, it
becomes equal to zero and in helium D again increases
as p, at the further decrease of temperature. Thus a
paradoxical conclusion is unavoidable, the normal com-
ponent stops at the point of the phase transition and
does not act on the disk afterwards. It is clear' that
nobody, including Pellam himself, could accept the
conception that rotating helium u is the liquid in which

only the superQuid component rotates.
The paper of leppy, Depatie, and Lane (1960),

described above, was a response to Pellam's experiment.
They again con6rmed that helium u rotated as a whole

(Fig. 3.3).
The study of velocities inside the rotating cylindrical

vessel filled. with helium a was also performed by
Craig (1961).With this aim a torsional balance was
suspended on an elastic thread in helium xx. The center
of the balance suspension was stationary in the labora-
tory system of coordinates. The balance had a pair of
disks fastened to the ends of its beam. The disks were
placed so that the Qow of liquid was perpendicular to

1.O

)
I-

10 2.0 2.5

TENPE/ATUA' ( ~)

FIG. 3.10. Tem-
perature dependence
of the effective den-
sity determined by
Pellam (1960) by a
deQection of the Ray-
leigh disk, immersed
into rotating helium
IL pz is the density
of liquid helium at
the )-point.

their surfaces. At the constant temperature (2'( 2.17'K)
the drag force acting on a disk was studied as a function
of the velocity varying from 0.022 to 0,63 sec '. It was
found that the drag force was proportional to the square
of velocity for all the temperatures somewhat lower
than the transition point. Such a dependence of the
drag force on the velocity is characteristic of a classical
liquid at a motion with Reynolds numbers Re &50,
while in Craig's case Re &100. At a given velocity of
rotation, as Fig. 3.11 shows, the drag force acting on
the disks depends little on the temperature in the
whole range from 1.3'K to almost the transition point.
At this temperature there is no break there either.

In another paper of Craig (1964), the question was
put whether Helmholtz Qow could be realized under
conditions of Pellam's experiment (a large angle of
attack) instead of a potential flow round the disk. This
hypothesis was veriB.ed and confirmed in the paper of
Kitchens, Steyert, Taylor, and Craig (1965), who ob-
served trajectories of hard particles of hydrogen—
deuterium mixture suspended in liquid helium iz by
means of a cinema 61m. Helium rz rotated in a cylindrical
vessel, and a wing (a fiat plate) was immersed in it.
Under such conditions, very similar to those of Pellam's
experiment, tearing away of jets behind the wing was
clearly observed as well as formation of eddies. These
eGects were increased at an increase of the attack.
angle from 27' to 45' and then to 90'. Evidently, the
observed phenomena were connected with the normal
component motion, as the superQuid component of
helium rr in the similar conditions (the velocity of the
liow did not exceed several centimeters per second)
Rows around the Rayleigh disk in a potential way
(Craig and Pellam, 1957, Koeller and Pellam, 1962).
In spite of the certain interest caused by the data ob-
tained in this paper, independence of the eGect on
temperature made Craig et al. give up the hope of
explaining the strange behavior of the Rayleigh disk
in Pellam's experiment.

Pellam (1965) has repeated a detailed study of the
Rayleigh disk behavior in rotating helium zr, but he
only con6rmed his previous results.

The cause of Pellarn's paradoxical experimental
result was not clear until quite recently; Tsakadze and
Shanshiashvili (1965) decided to repeat Pellam s experi-
ment in two variants. In one case a light beam was
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FrG. 3.11. Temperature dependence of
the deAection of the disks fixed perpen-
dicularly to the current lines of rotating
helium II to the ends of the torsional
balance beam (Craig, 1961).
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reflected directly from the Rayleigh disk (as in Pellam's
device); in the other case a mirror was placed above the
rotating vessel and the light beam did not fall on the
body immersed into liquid helium. In the first variant,
the authors obtained a curve very similar to that of
Pellam. In the second variant, the deRection of the
Rayleigh disk was equal at all temperatures to that in
helium r (Fig. 3.12).

Thus, at present we can definitely state that the
results of Pellam's experiment were caused completely
by the action of light.

3.5. Distribution of Vortex Lines over the Cross
Section of a Rotating Vessel, Irrotational
Regions

Usually it was thought that the distribution of vortex
lines in a uniformly rotating helium n was uniform.
However, Hall (1960), minimizing the free energy of
the liquid, has shown that there should exist some
region near the side surface of a cylinder in which there
are no vortex lines and the motion is determined by the
law v, = I'/2vr. Here I is the sum of circulations of all
the vortex lines existing in the vessel. It is natural to
call such a region "irrotational, " as then not only the
curl of the local velocity, but also that of the mean
velocity is equal to zero.

Bendt and Oliphant (1961) have shown that an
irrotational region should be created round the inner
cylinder at rotation of helium Ij. in an annulus between
two coaxial cylinders moving with the common angular
velocity. Proceeding from the minimization of the free
energy E—L~o, they have calculated the velocity de-
pendence of the irrotational region radius and the value
of the circulation in this region (Figs. 3.13, 3.14). It
was found that the velocity circulation F round the
inner cylinder can reach hundreds of thousands of
quanta h/m. It is more favorable thermodynamically
to allow the possibili ty of the existence of such values
of F which are incompatible with the continuity of the
mean velocity on the boundary between the region
occupied by vortex lines and the irrotational region
(sliding) .

Formation of an irrotational region round the inner
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1' IG. 3.12. Temperature dependence of the angle of the Rayleigh
disk deflection in rotating helium Ir according to the data of
Tsadakze and Shanshiashvili (1965). The points were obtained
when a mirror placed above the liquid level was illuminated;
circles when the Rayleigh disk was illuminated; the solid line is
pellam's curve (1960) shown in Fig. 3.10. q 1 is the angle of deAec-
tion in helium L (p/qq p,ff/pg l=.

FIG. 3.13. The results of Sendt and Oliphant's calculations
(1961) . r; is the radius of the irrotational region, r1 is the radius
of the inside cylinder. Sand 1 corresponds to the calculation made
on the assumption of continuity of the averaged velocity on the
boundary between the irrotational region and the region occupied
by vortex lines; band 2 corresponds to the calculation made
without this limitation. Band use instead of curves is connected
with a weak dependence of ln (b/ao) on co0, b is the effective radius
of a vortex line (outside the irrotational region) ~
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was a narrow gap between the bottoms of the two
cylinders. The superQuid had to leak through a slit
from the inner cylinder not glued to the rod due to
the difference of levels. Flowing into the gap between
the bottoms, it was moving in the horizontal direction.
If there are vortex lines in the gap between the bottoms
then the velocity of the liquid Qow out should depend,
due to mutual friction (see Sec. 7), on the angular

t-4g sec.
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FIG. 3.14. The results of calculations of Bendt and Oliphant
(1961).F is the velocity circulation around the inside cylinder
(in the irrotational region) . P is the free energy of rotating helium
in the presence of the irrotational region; P,z is the free energy
of the solid-body rotation simulated by the presence of uniformly
distributed vortex lines, AP =P—P,h (AP &0, P,l, (0). The sense
of the notations 1 and 2 and the reason for the use of bands instead
of lines are explained in the caption to Fig. 3.13.
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cylinder was discussed in the paper of Kemoklidze and
Khalatnikov as well (1964).

If the existence of an inside irrotational region is
favorable thermodynamically, then it is natural to ask
whether its creation is possible when there is no inner
cylinder, in which case the liquid could have formed a
hollow cylindrical core. Kemoklidze and Marnaladze
(1964a) have shown that it is impossible for two rea-
sons: the radius of such a core corresponding to the
minimum free energy should have a value less than
interatomic distances, and the circulation under such
conditions is not quantized and is equal to 1.5 Fp.
However, the existence of an irrotational region was
found to be favorable thermodynamically when there is
an ordinary Feynman's vortex line of unit circulation.
The radius of this region is about three times as large
as the vortex separation at their usual density (see
Table I) .

An irrotational region surrounding the central cylin-
der was found experimentally by Tsakadze (1964b) . He
used a cylindrical vessel with a rod placed along its
axis. Another vessel was put onto the rod, so that there

TABLE I.
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FIG. 3.15. (a) Velocity dependence of the time of helium rr
outQow in the experiment of Tsakadze (1964b) in the presence of
an axial rod. t and t are the periods of time of the outflow in the
rotating vessel and in the vessel at rest, respectively. T=1.75'K.
{b) Results of the same experiment (Tsakadze, 1964b) at g=
1.46'K.
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velocity of rotation. And if, with a decrease of the angu-
lar velocity of rotation followed by an increase of the
irrotational region radius, vortex lines leave the gap
between the bottoms, the rate of the leakage becomes
constant. Tsakadze sucked the liquid into the inside
vessel by means of the thermomechanical effect and
then measured the time of its leakage as a function of
the angular velocity of rota, tion (Fig. 3.15) .
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FIG. 3.16.Depend-
ence of the time of
helium II outRow
through a capillary
in the absence of an
axial rod. 7= 1.38'K.
(Tsakadze, 1964b.)
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by the conditions under which the experiment was
performed. In Tsakadze's device the narrow gap between
the bottoms was transformed into a volume limited
from the top by the free surface at a higher level than
the bottom of the inside vessel. Meanwhile, the calcu-
lations of Bendt and Oliphant and of Kemoklidze and
Khalatnikov were made for the case when the liquid
Qew between two parallel planes.

A similar technique was used by Tsakadze to find
an irrotational region without the inside cylinder. With
this aim he chose a version of the just now described
device. He has removed the axial rod and made the
liquid leak from a capillary placed on the rotation axis.
Flowing out of the capillary, it passed through the gap
between the lower edge of the capillary (it had a flat
section) and the bottom of the vessel. The results are
shown in Fig. 3.16.The radius of the irrotational region
was equal to r, =0.1 cm, when cop= 1 sec '. Calculations
of Kemoklidze and Mamaladze gave under such condi-
tions r;=0.08 cm (the experiment was made at 7=
1.38'K) .

A break on the curve observed in such a way means
that, when orp=1.5 sec ', the radius of the irrotational
region r, becomes equal to the outside radius of the
inside vessel, equal to 0.8 cm. The radius of the rod is
r, =-0.5 cm. Under such conditions the ratio r,/r& 1.6. ——
Meanwhile, according to Bendt and Oliphant (Fig.
3.13),such a value should be obtained when coo 2 X10 '
sec ' in an obvious contradiction with the data of the
experiment. The discrepancy increases at a decrease of
temperature, though the theoretical calculation con-
cerns the case T=O K.

A similar, but rather smaller discrepancy was found
between the observations and calculations of Kemoklidze
and Khalatnikov, according to which one should have
r;—rI =0.055 cm, when cop

——1.5 sec ' and r;—r&
——0.022

cm, when cop=10 sec '. This disagreement of theoretical
calculations with the experimentally found values
r,—r&=0.3 cm could be explained, at least partially,

3.6. Distribution of Vortex Lines when There Is a
Free Surface

A free surface of the liquid can also be a peculiar
reason of nonuniform distribution of vortex lines. A
vortex line in equilibrium should be perpendicular to
the free surface, so that the tangential component of
tension would not make it drift. But in this case it will
not be parallel to the rotation axis as the surface has
the shape of a nonQat meniscus near which vortices
should bend. In this connection Kemoklidze and
Mamaladze (1946b) considered solutions of hydro-
dynamical equations (4.2.1), (4.2.2), (4.2.3) of rotating
helium zx. These solutions were considered under the
usual boundary conditions on solid surfaces and under
the condition on the free surface (using the tensor of
momentum Aux, see, for instance, Landau and Lifshitz,
1953),which should be self-consistent with the solution
of the equations mentioned above.

The authors did not manage to solve this problem
completely because of great difhculties of calculations.
But they have shown that the solution v, =~pr and
~

curl v, I =co.=2~0= const (the constancy of the
density of vortex lines) is not compatible with the
parabolic meniscus. Small deviations from this solution
show the tendency to an increase of curl v, (increase of
vortex line density) at the approach to the rotation
axis and to the deepening of the meniscus near this
axis, in the immediate vicinity of which deviations
become large. Evidently, a conic pit on the meniscus
observed by Andronikashvili (Andronikashvili and
Kaverkin, 1955) is the result of these circumstances.
One would rather assume that, in the vicinity of the
rotation axis, the region of closely spaced vortex lines is
replaced by an irrotational region Lwhere Eqs. (4.2.1),
(4.2.2), (4.2.3) are already not applicable) and a unit
vortex line is situated on the very axis. As the confirma-
tion of such an assumption can be used the results of
the mentioned above (3.5) Kemoklidze and Mamaladze
paper (1964a). Though they concerned the case of the
liquid confined by Rat planes, they should remain valid
at distances deep under the meniscus of the liquid as
well.

3.7. Direct Observations of Vortex Lines in a Uni-
formly Rotating Helium rr

We begin this paragraph from the paper in which
rather clear indications were obtained concerning the
existence of vortex lines arranged in a definite geometri-
cal order, in spite of the fact that they were not ob-
served directly. That was Chase's experiment (1960a) .
He rotated round the vertical axis a horizontally placed
tube with the diameter 2.62 mm packed with 70 thin
wires with the diameter 0.25 mm. These wires produced
a large number of narrow parallel channels of irregular
cross section. A heat current was switched on along
these channels filled with helium Ix. The critical value
of this current zv, should depend according to Vinen
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I'IG. 3.17. Dependence of the critical thermal fiux W, on the
velocity of rotation in the experiment of Chase (1960a).

(1957a, b, c, 1958b) on the presence of vortex lines.
Measuring m, as a function of the square root of the
angular velocity of rotation, Chase has obtained that
this dependence has a step shape, and the erst step is
characterized by an appreciable hysteresis which is
absent at high angular velocities (see Fig. 3.17). The
points were taken under the conditions of an accel-
erated rotation (open circles) and its slowing down as
well (solid circles). There are no vortex lines at the
first step. Their sudden appearance corresponds to
creation of the stable configuration of vortex lines with
the SeparatiOn (7rh &777res)

'* equal tO 0.34 mm. ThiS Value
is compatible with the wire size. Separation of vortex
lines equal to 0.17 and 0.11 mm corresponds to transi-
tions to the next steps, i.e., the separation of vortex
lines for diGerent steps gives the ratio I:2.'3. Such a
situation could take place only if there exists some dis-
crete succession of stable configurations of vor tex
arrays.

Unfortunately, Chase has not obtained such clear
results for channels of another shape and larger size
(Fig. 3.18, Chase, 1960b). Maybe the vortex lines
formed in such channels are "blown away" by a heat
current or the conditions of their fastening are sharply
different from those existing between the thin wires of
the erst of capillaries used by him.

A direct observation of vortex lines in rotating helium
rr was realized by Steyert, Taylor, and Kitchens (1965).
For this purpose they observed (and took photos as
well) the motion of tiny particles of solidified hydrogen—
deuterium mixture. Most of such particles moved in
rotating helium xz along smooth circular trajectories
with the center on the rotation axis. But a part of them
made small closed loops from time to time. That meant
undoubtedly that a particle was in the vicinity of a
vortex line. It was easy to calculate the vortex line
circulation if to know the loop diameter and the period.
of revolution. The results of the similar calculations
given in the mentioned paper show that together with
vortex lines with the circulation close to unit one (I's),
there are vortex lines with F=2Fp 3I'p, etc. Their
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FIG. 3.18. Dependence of the critical thermal Qux W, on the
velocity of rotation in the experiment of Chase (1960b). The
upper curve is obtained with 9 rectangular canals 0.102&0.051 cm
(the long axis is in the plane of rotation). The middle curve is
obtained with the same canals, but with the long axis perpendicu-
lar to the plane of rotation. The lower curve reproduces the result
of the previous paper of Chase (1960a) with a tube of diameter
2.62 mm, filled with 70 wires of diameter 0.252 mm.

number decreases with an increase of I'/I' s. It should
be also noted that according to their data there are
allowed not multiple circulations I'=O.SI'p, 1.5Fp, etc.
The maximum circulation observed in this study was
10.51's. (Note added 7'I proof. We think it is possible
that these results are caused by a diGerence in velocities
of the particles and the superfluid component. )

4. HYDRODYNAMICS OF ROTATING HELIUM n

4.1. Averaged Hydrodynamics of Rotating Helium ri

Considerations of 2.4 formed the basis for the repre-
sentation of rotating hei. ium II hydrodynamics in terms
of velocities, pressures, and other physical magnitudes
averaged over the volume containing many vortex lines.
Such an averaging is desirable, because at solution of
hydrodynamical problems, associated with the existence
of many vortex lines, it would. be necessary to give
boundary conditions on each of them, which would
take into account such "local" forces as tension,
Magnus force, 4 and forces caused by interaction of
vortices with thermal excitations. The overed averaging
does not only simplify the complex picture of velocity
distribution (Fig. 2.2), but asciibes to local forces a
character of space ones. Thus the necessity of taking
into account numerous boundary conditions is ex-
cluded. But the new space forces which have appeared
in such a manner should be included into hydrodynam-
ical equations. Due to this fact the latter become more
complicated than usual Landau equations of two
component hydrodynamics.

4 If the velocity v, of the superQuid component in the points
through which the vortex line passes is de'erent from the velocity
vL, of the vortex line itself, then the following force (reduced to
unit length) acts on a vortex line with the circulation I':

f=p,.Lv, —vr, r g.
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div v, = div V„=O, (4.2.3)

where I,=e/p, i'o ——V,/p„ ta= curl v, is the curl of the
mean velocity of the superfluid component (symbols of
averaging are omitted everywhere for simplicity), E
is the pressure, s is the entropy of unit mass, p =rt /p
is the kinematic viscosity of the normal component,
and F,„

is the force of mutual friction acting on unit
mass of the superfluid component Lsee formulas (7.2.1)
and (7.3.4)].

The 6rst of these equations is the equation of motion
of the superQuid component; it is an analog of Euler's
equation for the ide d liquid, more complicated because
of taking ia.to account the thermomechanical effect
(the term sV T) and the existence of vortex lines (terms
containing co and the force of mutual friction). The
second equation is the equation of motion of the normal
component, similar to the Xavier —Stokes equation for
a viscous liquid and also containing some additional
terms taking into account the same eGects. In the equa-
tions of continuity (4.2.3), both components appear
as incompressible liquids, and it is natural, in the cases
when motions with high velocities or nonstationary
processes of mutual transformations of the components
are not considered. In the latter cases the equation,

(Bp/N)+ div (p„v,+p„v„)=0, (4.2.3a)

should be used instead of (4.2.3) .
The terms, containing ca and the magnitude F,„

provide taking into account vortex singularities to such
an extent as is necessary after averaging as well. In
particular, the term g,co added to the pressure I' is
associated with the additional pressure caused by the
tension of vortex lines (ntoooe/vrft = rt, oo) . Further a
special role of the term I,LIa, curl (Ia/Io) j should be
emphasized more than once. Therefore, it is necessary
to explain its origin. It describes elastic properties of
vortex lines, due tr which straightening forces are

4.2. The Equations of Hydrodynamics of Rotating
Helium n

The averaged hydrodynamics of rotating helium u
was formulated in succession at 6rst in Hall's papers
(1957a, 1960), then by Mamaladze and Matinyan
(1960a) (see, also Andronikashvili, Mamaladze,
Matinyan, and Tsakadze, 1961) and at last by
Bekarevich and Khalatnikov (1961). If to take only
the case of low (in comparison with the velocity of
second sound) relative velocities of the superfluid and
the normal components and small temperature gradi-
ents, then the complete set of equations of hydrody-
namics of helium rz will be

(8 v/Bt)+(v„V)v,+v,pIa, curl (Ia/oo) g

= —p 'V(p+rt, to) +sV T+F,„,(4.2.1)

(Bv„/erat)+(v„,V)v —I Av„

'V(&+ ~ )—( ./ )» —( ./ -)F- (4 2 2)

FIG. 4.1. The sum
of tension forces, act-
ing on an element of
a distorted vortex
line, constitutes a
straightening effort.

created preventing distortion of vortex lines (Fig. 4.1) .
The straightening force (reduced to unit length) for
one vortex line, the tension of which is e=aa/Io, is
equal to e/R, =e(aa/co, V) Ia/oo, where E, is the radius
of curvature. Let us recollect now that the density of
vortex lines is co/I'o and I,=e/p, l'o, then calculate the
mean straightening force reduced to unit mass of the
superQuid component:

e —,V — —=a, a, v —= —v, ay, cull —,.

The existence of the second derivatives of velocit. y
over the coordinates in this expression makes two
equations similar by their mathematical structure: the
equation of the superQuid liquid and that of the normal
liquid containing the viscous term v Av . It is shown in
Sec. (5.5) that the presence of terms with second
derivatives of velocities causes peculiar processes of
energy dissipation (though, as it has just been shown,
the term I,fata, curl ta/ooj is a purely elastic one by its
physical meaning) and that the constant v, acts as a
peculiar "kinematic viscosity o5 the superfiuid compo-
nent. "One can emphasize that its dimension coincides
with the dimension of v . The numerical values of v„
y, are of the same order of magnitude, rather close to
each other, at least in the range of temperatures in
which the experiments discussed in this review were
made.

4.3. Additional Boundary Conditions

The necessity of additional boundary conditions is
also a consequence of the existence of the velocity second
derivatives. In addition to the evident condition for
the velocity component of the superRuid liquid perpen-
dicular to the wall (the liquid does not flow into the
wall and does not Qow out of it at the constant tem-
perature), we have to look for conditions for the tangen-
tial component as well. Such conditions are given in-
directly. At first the conditions of vortex fastening to
the surface crossing them are written down, and then
the relation between the velocity of vortex lines vt, and
the velocity of the superQuid component v, is used to
transform the boundary conditions for v& into the
boundary conditions for v, . This program is realized by
the following equations.
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The condition of vortex line fastening to a solid
surface, the velocity of which is v, has the form

(v,—v.),=a(N, LN, (~/~) j)—a'LN, (~/~) g, (4.3.1)

where the index t denotes the tangent component to
the surface; N is a unit normal to the surface. a and g'

are coefficients of sliding. Here the first term describes
sliding of a vortex line along the surface due to tension
of a vortex line inclined to it (vr, —v~c~/~). The
second term, perpendicular to the erst one, is caused

by Magnus eGect "drifting away" the sliding vortex
line. Let us note that two terms of formula (4.3.1)
correspond to two terms of expression (7.2.1) for the
force F, . Really the first term describes the direct
action of some force, and the other one describes a
secondary effect directed perpendicularly to the "drag"
force. T'herefore, it is natural that Bekarevich and
Khalatnikov (1961) predicted the following propor-
tionality of the coefficients a and a' on the one hand
and B, B' on the other hand (we remind that B'(0):

a/a'= B/B'. — (4.3.2)

In the absence of sliding, a=a'=0. %hen there is a
complete sliding, a=a'= ~. Roughness of a solid sur-
face, made, for instance, of grains of sand attached to
it, prevents sliding of vortex lines, as stretched vortices
tending to have the minimum length are fastened to
the grains. Accordingly, Bekarevich and Khalatnikov
(1961) obtained the following estimate:

a (5/nz8) B(p„/p), (4.3.3)

where 8 is the height of a grain.
If vortex lines are parallel to the rotation axis, then

curl ~/co=0; there is no term with v, in Eq. (4.2.1),
and the necessity in additional boundary conditions
disappears.

The relationship between vz, and v, is realized by
means of formula

t ~, v, —vr$+v, f~, curl ~/&o$+F, „=O (4.3.4)

or formula

(~v /@) —
I v~, ~j= p'&(~+v.~) +—~&&-2&~.'.

(4.3.5)

Equation (4.3.4) is the condition of equilibrium of
Magnus force, straightening force, and force of mutual
friction which act on vortex lines. When such a condi-
tion is maintained (and not when one of these forces
is equal to zero), vortex lines are free.

We note, in the association with Eq. (4.3.5), that
an equality of the type (Bv,/N) —Lvz„mj= VG, where G
is an arbitraryfunction, gives (Boa/Bt) —curl Lvz„~j=0
and describes the transport of the magnitude a with the
velocity vL,.

S. OSCILLATIONS OF SOLID BODIES WITH AXIAL
SYMMETRY IN ROTATING HELIUM rr AND

ANISOTROPY OF ITS ELASTIC-VISCOUS
PROPERTIES

S.l. Anisotropy of Elastic-Viscous Properties of Ro-
tating Helium ri

Experiments, in which small oscillations of solids
immersed in rotating helium zz were studied, have
given abundant information on properties of vortex
lines. In these experiments, solid bodies of axial sym-
metrical shape performed rotation together with
helium D and small oscillations superimposed on their
rotational motion.

Though chronologically we should begin from the
experiments in which dampling of an oscillating disk
was determined (Andronikashvili and Tsakadze, 1959b),
let us start the description of such investigations from
the simplest one made by Tsakadze (1962a) . Tsakadze
measured the logarithmic decrement of damping of an
upside-down hollow cylinder, performing two motions
simultaneously: rotation together with helium D and
oscillation upwards and downwards, so that the side of
the cylinder moved along vortex lines. As a result of the
mea, surements, it was found that damping in rotating
helium u is indistinguishable from that taking place in
helium rr at rest. It does not depend on the angular
velocity of rotation coo, i.e., it does not depend on the
number of vortex lines. In such an experiment, helium II
behaves as a classical liquid.

In another experiment (Tsakadze and Chkheidze,
1960), a cylinder, turned upside down and suspended
on an elastic thread, performed in addition to rotation
with helium u axial oscillations around the rotation
axis. In the case of a classical liquid, damping of such
osciDations does not depend on the velocity of rotation.
But, in rotating helium Ir, a layer of the normal com-
ponent, adjacent to the wall of the cylinder at the
distance of the order of the penetration depth, dragged,
due to mutual friction (Sec. 7), all those vortex lines
which pierced this layer into its motion. Therefore the
damping of the cylinder was different from that in a
liquid at rest and increased proportionally to the angu-
lar velocity in accordance with the increase of the
density of vortex lines according to formula (2.5.1).
The data of the experiment made by Tsakadze and
Chkheidze are shown in Fig. 5.1, where solid lines show
the results of calculations made according to the formula
obtained by Mamaladze and Matinyan (1960b) .

The common feature for these two experiments is
that both the shape of the oscillating surface and the
direction of its motion do not cause immediate contact
of vortex lines with the moving body.

This situation is changed when axial oscillations of
the surfaces of a disk or a pile of disks suspended on
an elastic thread crossing the array of Onsager-Feynman
vortex lines are considered. Vortex lines fastened to these
oscillating surfaces are distorted during the disk motion,
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and waves propagate along them. Thus the changes of
the character of oscillations of a solid body carry infor-
mation on elastic properties of vortex lines, Propagation
of elastic waves is a common phenomenon for all the
experiments of such a type, because, due to mutual
friction between the components, the waves on vortex
lines are excited even in the complete absence of direct
contact between them and the solid surface (sliding).

First of all, one should expect some manifestation of
vortex elasticity with an increase in frequency of the
disk oscillations, the fact observed in the experiment
made by Andronikashvili and Tsakadze (1962). The
data of these measurements with a ~anciently light
disk, "feeling" the elasticity of vortex lines, are given
in Fig. 5.2. At small angular velocities, the frequency
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FIG. 5.1. Dependence of damping of the cylinder axial oscilla-
tions on the velocity of rotation. y=A (bs —SI)/(ts —t&), where
b2 and 8& are the logarithmic decrements of damping of the cylinder
oscillations at its immersion to the depths I2 and lI, respectively;
A = (I 2/' 0'R) (Q/2rt„p„)&;I is the moment of inertia of the os-
cillating system; 8 is the radius of the cylinder; 0 is the frequency
of oscillations; q„and p„are the viscosity and the density of the
normal component, respectively. The points are the experimental
data of Tsakadze and Chkheidze (1960). The straight lines are
plotted according to formula (7.3.1) (Mamaladze and Matinyan,
1960b). The upper straight line represents the case when T=
1.48'K, the lower one when T=1.tI'5'K.
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FIG. 5.2. Dependence of the frequency of axial oscillations of
a "light" disk on the velocity of rotation. Curve (a) shows the
experimental data of Andronikashvili and Tsakadze (1962);
curve (b) is plotted according to formula (5.2.1) (when the edge
corrections are taken into account).

erties of vortex lines can be also seen in a very "inelastic
manner, "being the cause of dissipative processes. The
first indication of such a possibility was the experiment
of Andronikashvili and Tsakadze (1959b) in which
the damping of a disk suspended on an elastic thread,
rotating with helium u, and performing simultaneous
axial oscillations around the axis of rotation was meas-
ured. First of all, a disk with a rough surface, with
grains of sand ( 50 tI) glued to it, and a smooth disk
show di6erent dependencies of damping on the angular
velocity of rotation (Figs. 5.3, 5.4). It is connected
with conditions (4.3.1) of fastening vortex lines to
the surface (Andronikashvili, Tsakadze, and Mesoed,
1961).Indeed, as mentioned in 4.3, a grain of sand on
the disk fastens a vortex line. Actually, a vortex line
having slid o8 the grain has to become longer, i.e.,
to increase its energy. Therefore, the tension of a vortex
line sliding from the grain tends to return it.

Increasing the period of the disk oscillations, we

apparently improve the conditions of vortex line fasten-
ing to its surface. That is why a smooth disk begins to
behave quite similarly to a rough one (Fig. 5.4). But
in any ca,se and at any temperature, the dependence of
damping on the angular velocity had a maximum at

of oscillations increases in accordance with the increase
of the number of vortex lines. But when 2(oo/Q 0.2,
where 0 is the frequency of oscillations, the rate of
frequency increase slows down sharply and the experi-
mental curve begins to show the tendency to saturation.
This phenomenon is caused by collectivization of vortex
oscillations, which takes place at such a ratio of fre-
quencies. The collectivization of vortices is discussed
in more detail in Sec. 6.3. The experiment of Andro-
nikashvili and Tsakadze clearly establishes the fact of
existence of the modulus of rigidity in rotating helium
D, manifested in elastic counteraction to the torsion
deformation of this liquid with respect to the axis of its
rotation.

As noted in 4.2 jat the consideration of the physical
sense of the term I,L(o, curl (00/(o) ] in the equation of
motion of the superQuid componentI, the elastic prop-
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FIG. 5.3. Dependence of the damping of axial oscillations of a
rough disk on the velocity of rotation according to the data of
Andronikashvili and Tsakadze (1959b). The upper curve is ob-
tained at the frequency of oscillations 0=0.361 sec ', the lower
one at 0=0.581 sec ', 8„is the logarithmic decrement of damping
of the disk in the liquid at rest. 80 is that in the vacuum. The
disks are "heavy" (Q=Q0). T=1.78'K.
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FIG. 5.4. Dependence of the os-
cillation damping of a smooth disk on
the velocity of rotation (Andronikash-
vili, Tsakadze, and Mesoed, 1961).
The symbols are explained in the cap-
tion to Fig. 5.3. The upper curve is
for 0=0.368 sec ', the lower one for
0=0.551 sec '. The disks are "heavy"
(O=n,). T=1.78'K.
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2&es/0 0.2, i.e. , at the value at which the increase of
the frequency of a light disk shows the tendency to
saturation.

The dependence obtained for rotating helium Ix does
not resemble the dependence obtained for a classical
liquid, which shows a deep minimum of the logarithmic
decrement of damping when 2ces/0 1. The results of
measurements of the velocity dependence for damping

of oscillations of the disk rotating in water (Mesoed
and Tsakadze, 1961; also, see Tsakadze and Shultz

1960) are given in Fig. 5.5, as well as the theoretical
curve of Mamaladze and Matinyan (1960c). The
similar results are obtained at oscillations of a disk in

helium r.
Elastic waves, excited by an oscillating disk and

propagating along vortex lines of rotating helium rr,

$0.

6,0.

PMo
D,5 IP l,5 PQ 8.5 00

FIG. 5.5. Dependence of the damping of the disk oscillations
on the velocity of rotation in the case of the classical liquid. . The
experimental data were obtained by Mesoed and Tsakadze (1961)
i«otating water. The solid curves represent the theoretical results
(Mamaladze and Matinyan, 1960c),
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FIG. 5.6. Dependence of damping of the vertical oscillations
of the cylinder on the velocity of rotation when there is a disk,
below the cylinder, oscillating with the frequency Q~ (Tsakadze,
1963d). Arrows show the angular velocities co0=0.1101 (6.3.4)
from which the collectivization of vortex oscillations starts.
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change the character of its interaction with a vertically
oscillating cylinder as well. Placing an oscillating disk
under this cylinder (Tsakadze, 1962b, 1963a,d), damp-
ing of the cylinder shows the linear dependence on the
velocity of rotation (i.e., on the number of vortex lines) .
As is shown in Fig. 5.6, the velocity of rotation at
which 2oro/Q, 0.2 (Q~ is the frequency of disk oscilla-
tions and not that of the cylinder) is connected in this
case as well with the existence of a certain peculiarity
leading to a break on the experimental curves.

Figure 5.7 gives a summary of the results described
in this paragraph concerning the velocity dependence
of damping in rotating helium Ix for bodies of diferent
shape. It gives a clear picture of anisotropy of elastic-
viscous properties of rotating helium xr. Detailed analy-
sis of the peculiarities of the observed curves is given
in the next paragraphs, but we note here the complete
agreement of this picture with the conceptions on
vortex lines arranged along the rotation axis. In the
two latter cases, it is essential that vortex lines are
deformed by transversal motion of their ends fastened
to the surface of oscillating disks.

5.2. Hydrodynamics of Small Oscillations of Bodies
with Axial Symmetry in Rotating Helium rr

All the described experiments are united by a common
idea: properties of vortex lines and properties of the
stationary state of rotating helium Ir. are studied by the
method of superimposing small perturbations on this
state. Quasi-stationarity of these perturbations, which
have the character of harmonic oscillations and small-
ness of their amplitude, simplifies the hydrodynamical
analysis of the corresponding problems, as Eqs. (4.2.1)
and (4.2.2) as well as condition (4.3.1) and equalities
(4.3.4) and (4.3.5) are linearizedin such a situation and
exponential factors containing time (and the amplitude)
cancel. But even linearized equations do not have simple
solutions at all boundary conditions.

Problems of motion of cylinders oscillating in a
vertical direction (Mamaladze, 1960a) or in an axial
one (Mamaladze and Matinyan, 1960b) are solved
rather easily. Solutions of the set (4.2.1), (4.2.2),
(4.3.3) in such cases are radially propagating transverse
waves of the normal component. They drag or do not
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Pro. 5.7. Summary of the data on the dependence of oscillation
damping upon the velocity of rotation. The schematic representa-
tion of the oscillating body and the direction of its oscillations
are given in the first column; the velocity dependencies of damping
of the corresponding bodies in the classical liquid are given in the
second column (in arbitrary units); the same dependencies in
helium rx are given in column three.

drag the superRuid component as well, depending on
the orientation of vortex lines and on the direction of
oscillations in these viscous waves coinciding with
the direction of oscillations of the cylinder. The study
of such phenomena gives the information on orientation
and density of vortex lines, we mentioned in the previ-
ous paragraph, and on the character of interaction of
vortex lines with the normal component.

In the case of disk. oscillations, the solution of the
set of equations of rotating helium xI hydrodynamics is
much more complicated (Mamaladze and Matinyan,
196j.; also, see Andronikashvili, Mamaladze, Matinyan,
and Tsakadze, 1961). Formulas describing the frequency
0 and dampling 8 of the disk oscillations are so cumber-
some that, with the aim of physical interpretation of
the obtained data, we 1imit ourselves with a very rough
approximation associated with neglection of phenomena
of sliding (a=a'=0) and mutual friction. Then

Q' —Qo-'= (~R'Q/2I) [—(g„p„/2)*'[(Q+2coo)«+ (Q —2(go) «)+ (y, )«p, (2(oo/Q) (Q+2cgo) «j,

when 2(oo(Q; (5.2.1)

Q' —Qo' = (7rR40/2I) I
—(q„p/2) '*[(Q+2coo) «—(2s&o—Q) «1+ (&.) «p. (2&go/Q) $(Q+2&oo) «+ (2coo—Q) «j},

when 2~0)Q; (5.2.1a)

~—(Qo/Q) 8o= (2vr~R'/IQ) I (rl„p„/2)«L(Q+2uo) '+ (Q—2uo) «]+ (v, ) «p, (2aro/Q) (Q —2&so) '*}, when 2coo&Q; (5 2 2)

6 —(Qp/Q) bp ——(2~'R'/IQ) (q„p„./2) «((2~p+Q) «+ (2a),—Q) «], when 2coo) Q; (5.2.2a)
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where Qp and bp are the values of the magnitudes 0
and 6 at oscillations in the vacuum, R and I are the
radius of the disk and the moment of inertia of the de-
vice, respectively, and q„is a dynamical viscosity of the
normal component.

Though these formulas cannot be considered quanti-
tatively accurate, they are quite sufficient as an initial
point for the qualitative analysis. Curves which could
be plotted according to these formulas are by their
main features similar to graphs in Figs. 5.3 and 5.4.
It is necessary to describe processes taking place in
rotating helium n at the disk oscillations in detail to
understand the physical nature of the main peculiari-
ties of the observed dependencies and those of Eqs.
(5.2.1), (5.2.1a), (5.2.2), and (5.2.2a). That will give
an explanation of the physical causes of discrepancies
between them.

5.3. Transverse Waves

A disk generates transverse oscillations propagating
parallel to the axis of rotation and consisting of four
waves. The relative amplitudes of these waves are
diferent in the superQuid and normal components;
therefore, they can be called s+, s, e+, and e,
because if there had been no mutual friction, the waves
s+ would have propagated only in the superAuid
component and n+ only in the normal one. The sign"+" is used for the wave numbers of these waves
described by the term Q+2&pp, and the sign "—"for
those described by the term Q —2&dp [see formulas
(5.3.1) and 5.3.2)]. "Plus" and "minus" waves have
opposite circular polarization.

In the approximation F,„=O'the waves called S+
are ela,stic waves, their complex wave numbers' are
determined in the following way:

k„&+&'=~ (Q~2cpp)/v„ Im k,p(~i) 0 (5.3.1)

us still emphasize a very different character of the
waves, described by them.

The wave k p'+' has a usual character of a viscous
wave. The same may be said about the wave k p~ ' if
0 is not very close to 2~p.~ Their penetration depth is
rather small in comparison with the wavelength and
the conception "wave" is somewhat conventional
(Fig. 5.8). It would be better to speak about oscilla-
tions of a layer with the eGective thickness —,X adjacent
to the disk (Landau and Lifshitz, 1953). The reason
for these circumstances is the equality of the real
and imaginary parts of k„p&"' (see footnote 6) and in
this connection the following relationship is obtained:

p(k) 2gy p(k)

X„p&+&= (1/2m) I„p&+&= (2v /~ Q&2pt&p ~) i. (5.3.3)

Under the conditions of the experiments of Andro-
nikashvili, Tsakadze, and Chkheidze (the usual condi-
tions of such experiments), the values of X &+& are
usually of the order of fractions of a millimeter and
do not exceed a few millimeters. If there are solid

(the index 0 means a zero approximation over the
mutual friction) .

In the same approximation the waves called m+ are
viscous waves with the wave numbers

k„p&+&'= t' (Q +2p—pp) /v, Im k„p'+&)0. (5.3.2)

I.et us note once more the similarity of formulas
(5.3.1) and (5.3.2) that recalls the analogous role of
the elastic constant v, and viscous constant v, but let

' Having solved the equation of motion of the superQuid liquid
(4.2.1) in this approximation Hall (1958) has found expressions
of the wave numbers k,0(+) (5.3.1) and used them to determine v,.
The following expressions (5.3.2) for k„0(+)are characteristic of
the classical viscous liquid (Mamaladze and Matinyan, 1960c).
The complete expressions of the wave numbers k, (+), k„(+)taking
into account the mutual friction between the components are
found by Mamaladze and Matinyan (1960a, more accurate for-
mulae are published in the paper of Mamaladze and Matinyan
1961 and in the paper of Andronikashvili, Mamaladze, Matinyan,
and Tsakadze, 1961).

A complex wave number k—=cr+i7 determines the wavelength
L and the depth of the wave penetration X: L=2p/~ p ~, X= 1/r
(it is implied that r&0).

FIG. 5.8. Hodograph of velocities of the liquid motion in the
viscous waves with circular polarization. To make the drawing
simpler the scale is distorted. In reality, at the distance from the
disk surface equal to one-half wavelength the velocity is
exp (—~) =0.043 times less than that on this surface, and at
the distance equal to the wavelength exp (—2~) =0.0019 times.
Only the 6rst half turn of the hodograph, shown in this 6gure,
exists effectively.

7 We imply everywhere that the case 0—2co0»p is considered,
where y is the coe%cient of damping (y=QB/2~), 8 is the
logarithmic decrement of damping). That excludes some interval
of angular velocities of rotation from consideration. Phenomena
taking part in this interval are not sufBciently studied and are
not described in this paper. Deep penetrating viscous waves are
observed in a classical liquid in this interval (Mamaladze, Mesoed,
and Tsakadze, 1964, Mamaladze, 1964) .
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Fzo. 5.9. Hodo-
graph of velocities in
the s+ wave in the
absence of mutual
friction (L,p&+& = pp).
The value of the ve-
locity decreases at
the removal from the
disk along the s
axis, according to
the exponential law
exp ( —p/X, p&+&). A
similar situation ex-
ists for the s wave
when 2co0&Q.
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surfaces at intervals of the order of a few centimeters
from the disk, we can consider that the disk is immersed
in an infinite liquid.

The wave number k,o'+' is always obtained as a
purely imaginary one. The same is true for the number
k,o& ), when 2coo&O. Hence, the corresponding wave-
lengths are infinite and the penetration depths are
equal to

)&o&+&= (v,/Q+2~o)' (5.3.4)

X,p& & = (v,/2&op —Q) i, when 2&op/Q) 1. (5.3.5)

They are of small magnitudes of the same order as ) „0&+&.

There are even fewer reasons here to use the conception
"wave. " In addition to the fact that the hodograph of
velocities again has the shape shown in Fig. 5.8, the
oscillations of the liquid in this case occur everywhere
in the same phase (Fig. 5.9), i.e., there is no wave in
general. Nevertheless we shall use the term s "waves",
when 2coo&O and s+ "waves, "meaning that under real
conditions the mutual friction makes these wavelengths
finite and thus makes them like e+ waves.

Only the wave s, when 2oro(Q has the character
completely corresponding to the ideas associated with
the conception of an "elastic wave. "The wave number
k,o&

—), when 2coo(Q is purely real. The penetration
depth ), & ) in this case is infinite. The velocity ampli-
tude does not depend on the distance from the oscil-
lating disk and an instantaneous profile of velocities
as well as an instantaneous photo of a vortex line have
the shape shown in Fig. 5.10. The wavelength is ex-
pressed by the formula

g p& & = (v /Q 2&op) l—, when 2&op(Q. (5.3.6)

It is natural that the mutual friction does not leave
the penetration depth of this wave equal to infinity.
However, even when the dissipation of energy due to
mutual friction is taken into account, the penetration
depth X,& ', when 2&op(Q is (under usual conditions)
larger than the other three (X,&+&, )& '+&) and larger
than the wavelength L, & '. But X,'—) is smaller than

Fxo. 5.10. Hodo-
graph of velocities in
the s wave when
2co0(0 in the ab-
sence of mutual fric-
tion (x,0( )= ~).

the distances of the order of ten centimeters or in some
cases even smaller than one centimeter Dormula
(7.3.3)$. Therefore it is not diRicult to create such
conditions when the disk is oscillating in an "infinite"
liquid.

5.4. The Mechanism of Interaction of an Oscillating
Disk with a Rotating Viscous Liquid

Now we can return to the interpretation of formulas
(5.2.1), (5.2.1a), (5.2.2), and (5.2.2a). They describe
the summarized effects of action of the normal and
the superQuid components on the disk. The normal
component interacts with the disk by means of viscous
forces, which are proportional to the coefficient of
viscosity g„andto the gradient of velocity, i.e., inversely
proportional to the penetration depth )& (see Fig. 5.8) .
Therefore the contribution of m+ waves into the change
of frequency and damping of oscillations, described by
formulas (5.2.1), (5.2.1a), (5.2.2), (5.2.2a) contain
terms proportional Laccording to (5.3.3)g to (rf„p„)iX
(~ Q&2&op ()&. The same expressions describe the fre-
quency and damping of the axial disk oscillations in a
rotating classical liquid (Mamaladze and Matinyan,
1960c) . When 2&op(Q they give a decrease of oscillation
damping at an increase of the velocity of rotation
(negligible, when 2&op/Q &0.5). When 2&op)Q, this de-
crease is replaced by an increase of damping. This fact
is associated with the change of the sequence of terms
in the difference

~
Q—2&op ~. Thus expressions (5.3.3) for

the penetration depths of viscous waves explain the
existence of the minimum in Fig. 5.5.

5.5. The Mechanism of Interaction of an Oscillating
Disk with a Rotating SuperQuid Liquid

In contrast to the normal component, the superQuid
component of rotating helium rx interacts with the disk
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FIG. 5.11. Schematic representation in time of the change of
the mutual orientation of the vortex line tension (and its pro-
jection on the disk surface) and the direction of the disk oscilla-
tions. The action of the s+ wave is shown in the first column.
Similarly the s wave acts when 2a)p&O; only the direction of
the circular polarization changes. The action of the s wave
when 2cop&Q is shown in the second column.

by means of tension in vortex lines curved by the waves.
The corresponding tangent forces are proportional to
the density of vortex lines and to their tension and
inversely proportional to the wavelength of s, when
2Mp(Q (Fig. 5.10) . When 2&so)Q, then the tangent
forces are inversely proportional to the penetration
depth of the same s wave, and in all the cases to the
penetration depth of the wave s+ (Fig. 5.9). Therefore
the contributions of these waves are proportional to
(~0/I')e/L, o& & or (coo/I')c/'A, o'+&, respectively, i.e., to
(oo(v, )&p, (( Qa2(oo ))~.

Considering formulas (5.2.1.), (5.2.1a), (5.2.2), and
(5.2.2a) from this point of view, we should pay atten-
tion to the fact that when 2cvo&Q, the s+ wave con-
tributes only to the change of oscillation frequency and
the s wave only to damping. When 2oro&Q both s+
waves contribute only to the frequency. Damping in
this case is completely determined by m+ waves.

The cause of such a separation of functions between
the components of a complex wave could be explained
if you make a more detailed analysis of solutions of
hydrodynamical equations (Mamaladze, 1960b). Its
results are schematically shown in Fig. 5.11. It is seen

that the s+ wave distorts a vortex line so that every
quarter of the period it sometimes accelerates an
approach of the disk to the position of the equilibrium,
sometimes slows down its removal from this position.
It is clear that such an interaction can change only the
oscillation frequency, but does not cause their damping.
When 2coo&Q, the s wave has the opposite direction
of the circular polarization, nevertheless it acts on the
disk in the same way as the s+ wave. But when
2coo&Q, the difference between the s and s+ waves is
connected not only with the diGerent signs of polariza-
tion, but with the existence of a diGerence of the initial
phases as well. As a result of this the s wave distorts
a vortex line so that it continuously slows down the
disk motion. This fact causes damping of oscillations.

So the nature of the disk vortex damping is similar
to the physical nature of radiation damping of electric
charge oscillations. The dissipation of the energy of the
disk oscillating axially in rotating helium n is caused
(in addition to the action of viscous forces) by leakage
of energy along oscillating vortex lines in the form of
the energy Aux of s waves.

An idealized picture drawn here, neglecting vortex
line sliding and the mutual friction, in reality could have
led to disk oscillation damping only in a truly infinite
liquid. In the opposite case the energy transferred to
vortex lines would return to the disk by waves reQected
from the boundaries of the liquid. Under real conditions
sliding of vortex lines should be taken into account. It
decreases the intensity of the waves running from a
given surface, both from a generating surface and a
rejecting one. The mutual friction also should be taken
into account, as it has been already mentioned, it gives
a finite valueh, & & (instead of),0& '= ~) to thepenetra-
tion depth of an s wave. If the distance between the
disk and the reQecting surface is suQiciently large in
comparison with ).,& ' (not necessarily much larger
than X,~ ~) then the reflected waves are really absent.
Then the dissipation of the disk energy carried away
by means of waves along vortex lines, is realized by
mutual friction. But the mechanism of energy transfer
is still, under the most real conditions of the experiment,
caused by elastic properties of quantized vortex lines.
Thus formulas (5.2.1), (5.2.1a), (5.2.2), and (5.2.2a)
need only small corrections, taking into account mutual
friction forces. The exception is the region 2+0 0
where the parameters of the s (and I ) wave are
determined rather by mutual friction, and the region
T Tq, where the tension of vortex lines, proportional
to p„is very small, but the mutual friction is significant
(Pitaevski, 1958b).Let us note, by the way, that below
T~2'K dampling, apparently, changes roughly as p,
(Fig. 5.12). The increase of the role of mutual friction
near the )-point can explain the slowing down of the
drop of vortex line damping with an increase of tem-
perature above 2'K.

In contrast to mutual friction, sliding of vortex lines
along the disk surface has, under all real conditions, a
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very important role in the determination of the charac-
ter of vortex oscillation in6uence on the disk motion
(though sliding does not influence the expressions for
the wave numbers of the s+, n+ waves) . Let us never-
theless note that even without taking sliding into
account, formula (5.2.2) gives the possibility to under-
stand the main peculiarity of the graphs in Figs. 5.3
and 5.4 distinguishing them from the graph in Fig. 5.5,
i.e., instead of a minimum at oscillations in classical
liquids including helium x, there is a maximum of
damping at oscillations in helium a.

Damping in the rotating normal component (similarly
to that in a classical liquid) decreases with an increase
of the velocity of rotation almost till 2cvo 0 and damp-
ing in helium rx is always greater than in a liquid at
rest. This means that the main term in formula (5.2.2)
is the vortex term (containing p,vP). But there is a
product toe(Q —2tus) & in this term that gives a maximum,
when 2tos/Q= s. The origin of this maximum is easy to
understand if you recall that the factor coo characterizes
the density of vortex lines and (Q—2a|s) & determines the
value of the projection of the vortex line tension on
the disk surface. The number of vortex lines increases
with an increase of ~0, but the action of each of them
on the disk oscillations is weakened, because of a
decrease of the inclination of a vortex line to the disk
surface, caused by an increase of the wavelength L,o' &.

The struggle of such opposite tendencies leads just to
the maximum of 8 when 2tos/Q= ss. But this magnitude
is about three times as large as the experimental one.
The cause of this discrepancy cannot be understood
without consideration of vortex sliding, which is con-
sidered in the next section.

5.0. Resonance Phenomena

The waves I+, s+, being generated. by an oscillating
disk and reQected from the top or the bottom of the

0.&

0,4

O,S

T'k

FIG. 5.12. Temperature dependence of the disk axial oscillation
damping at 2cop/0=0. 21 (corresponding to the maximum in
Fig. 5.3).The dashed line shows the law 8—8 ~p„b„is the decre-
ment of damping in helium xx at rest. The experimental data
shown by open circles (Andronikashvili, Mesoed, and Tsakadze,
1964) are stable when T&TX, but when T&T& they are ob-
tained only at the transition from helium xx into helium I in the
state of rotation (11.2). The stable value obtained by rotation
at T& T~ is given by a circle with a cross.
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FIG. 5.13. Change of the oscillation frequency of the pile of
disks at the change of disk separation 2l, according to Hall' s
data (1958a, 1960). p' is the effective density of the superfiuid
component dragged into the pile oscillations, determined by the
formula

p'/p. = Ei &-' —~o') l(Ts' —~i') X(ls—fi)/1.1
where Ter and Tp are the periods of oscillation of a disk in the
rotating helium xx and in helium xx at rest. T2 and T1 are the periods
of oscillation at room temperature; the corresponding moments
of inertia are I2 and II, I2—II is the known moment of inertia;
I, is the moment of inertia of the superQuid component in the
pile. The dashed line was calculated by Hall not taking into
account vortex sliding. The solid line is obtained when sliding is
taken into account (6.1). Diferent symbols for the experimental
points correspond to different conditions of the experiment. In
all cases, 2orp&Q.

vessel, from the free surface of the liquid, or from the
surface of another oscillating disk, could interfere in a
diferent way in dependence on the passed distance.
The Inaximurn and the minimum intensities would
then be achieved at different distances between the
surfaces, multiple to the half-wavelength or a quarter
wavelength, in dependence on the character of the
surface and its motion. The surface may be free or solid.
In the latter case it may be at rest or oscillate.

Therefore it is clear that waves, the penetration
depths of which are small in comparison with the
wavelengths (ts+, s+, and s when 2tss)Q) could not
manifest themselves appreciably in resonance phe-
nomena. Only a s wave has such an ability, when
2%0Q0.

In actuality, having studied the velocity dependence
of the oscillation frequency of a pile of disks in rotating
helium rr, Hall (1958a) found resonance phenomena
disappearing when 2o)0&Q. It was found that, when
2GDp &0 the frequency of oscillations 0 sometimes de-
creases, sometimes increases with an increase of the
velocity of rotation in such a way that some function
of Q (see Fig. 5.13) depends almost sinusoidally on the
combination (2tep —Q) ~l (where l is the half of the disk
separation) . Let us recall that Hall's pile of disks had
variable separation between the disks. The magnitude
(2(up —Q) &l is proportional to the ratio of 2l to the length
of the S wave. Hall has determined the parameter v,
entering formula (5.3.6) for L,s' & for the known dis-
tance between two nearest maxima (minima) on the
curve in Fig. 5.13.He has obtained for v, the value v, =
(8.5&1.5)10-' cm' sec '. In addition he made an
estimation of the radius of the core of a vortex line
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FIG. 5.14. Change of the period of the disk oscillations in time
at the removal of the free surface from it (Hall, 1958b, 1960).
T=1.3'K, 2cop &O.

(entering the expression for v,). According to his esti-
mation as 7 A, but Gopal (1964), having recalculated
data of Hall's experiment, has shown that they corre-
spond to the value up 4 A.

The described investigation made by Hall and the
similar results published by Andronikashvili and
Tsakadze (1958),s in which oscillations of a pile of
disks were studied, were the first ones in the series of
the following studies of solid body motion in rotating
helium II. Many of these studies have already been
described in the previous paragraphs. Just the experi-
ment with a pile of disks was the basis of the statement
of Andronikashvili and Tsakadze on the existence of
the modulus of rigidity in rotating helium II with respect
to the rotation axis. However, Hall who was the 6rst
to determine the parameters of elastic waves s+, never-
theless has interpreted the results of his experiments in
terms of "eAective density of the superQuid compo-
nent dragged into oscillations of the pile of disks. " In
particular, he considered the observed increase of the
frequency as an indication of the effective decrease of
the moment of inertia. Therefore he explained it by
the superfluid motion in the antiphase to the motion
of disks of the pile. However, it would be more natural
to consider the observed phenomena as a resul. t of the
torque increase as it was made by Alidronikashvili and
Tsakadze. ' In this connection we shouM mention the

6.Q .

6.6

FIG. 5.15. Same as in Fig. 5.14, but at the temperature T=
1.6'K (Hall, 1958b, 1960). Comparison of Figs. 5.14 and 5.15
shows how the penetration depth of the s wave decreases at
an increase of mutual friction, when the wavelength practically
does not change t'compare formulae (5.3.6), (7.3.3), and (7.3.5) g.

The results of both experiments were reported simultaneously
by both groups of authors at the Fourth All-Union Conference on
Low Temperature Physics, Moscow, 1957.

results of a detailed analysis of hydrodynamical equa-
tions. This analysis shows that when vortex lines are
completely fastened onto the surface of the disk, the
superRuid component oscillates in the radial direction,
i.e., not in the phase or antiphase with the disks, but
perpendicular to the direction of their oscillations.
Certainly, this phenomenon is connected with the
Magnus eBect. In general, one should always remember
that the superRuid component does not interact directly
with a solid body, just vortex lines existing in it do that.

Resonance phenomena were also observed at oscilla-
tions of a single disk under the free surface of rotating
helium rr. Hall (1958b, 1960) has measured the period
of the disk oscillations as a function of the distance from
it to the'free surface changed as a result of helium inQow

along the film (Figs. 5.14 and 5.15). Andronikashvili
and Tsakadze (1959a) have measured the damping of

6 0

o tsar g
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0 fp 20 &0 4Q &0 60 FO 00 90

FIG. 5.16. Change of the disk oscillation damping in time at
an approach of the free surface to the disk (Andronikashvili
and Tsakadze, 1959a). Here n is the number of half-periods of
oscillations. 2aop &Q.

oscillations at the change of the distance from the disk
to the liquid surface because of its evaporation (Fig.
5.16). The calculation of v, according to the results of
these experiments gives v, =9.7)&10 ' cm' sec ' and
v,~s&(10 4 cm' sec ', respectively.

Finally, Hall (1960) observed resonance phenomena
between two disks performing measurements similar to
those shown in Fig. 5.13.

The comparison of Figs. 5.14 and 5.15 shows how the
penetration depth X,' ~ of the s wave decreases at an
increase of temperature and hence at an increase of
the role of mutual friction. This decrease takes place
practically at its constant length L,& & and at the main-
tenance of the unequality ),~ ~))L,' & L,p~ ~. The
weakness of the dependence of L,& & on temperature

' More detail is given on the difference between Hall's concep-
tion and that of the Tbilissi group as well as on the more accurate
interpretation of Hall's experiments in the paper of Andronikash-
vili, Mamaladze, Matinyan, and Tsakadze (1961).
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was also found as a result of Hall's experiment with the
disks.

6. OSCILLATIONS OP SOLID BODIES WITH AXIAL
SYMMETRY IN ROTATING HELIUM rr (CON-
TINUATION). SLIDING OF VORTEX LINES AND
COLLECTIVIZATION OF VORTEX OSCILLATIONS

6.1. Sliding of Vortex Lines

The coefficients a and u' first mentioned in Sec. 4.3,
in the boundary conditions of Bekarevich, Khalatnikov
(4.3.1) being practically always not equal to zero,
describe sliding of vortex lines along the disk surface.
Their values depend on many conditions. According to
formulas (4.3.2), (4.3.3) the coefficient a depends on
the scale of roughness of the considered surface and the
coefficient u' can be very small in comparison with the
coefficient u. In the temperature interval T)1'K, it
does not exceed 0.3a. )Pote added irt proof Acco.rding
to a new estimation of the coefficient 8', made by
Iordanski (Sec. 12.8), even the ratio a'/a 0.3 should
be considered as too large. ) Thus we can take into
account only the coefficient a in the interpretation of
many experimental data.

In addition to the size of protuberances the following
factors may inRuence the values of the coefficients of
sliding: the number of protuberances on the surface
and the velocity of rotation determining the ra, tio be-
tween the number of protuberances and the number
of vortex lines; the frequency of oscillations of the sur-
face, determining together with the velocity of rotation
the values of forces dragging the vortex line along the
surface; the amplitude of oscillation determining the
change of vortex energy as a result of which it either
becomes longer at the removal from the position of
equilibrium or it slides o6 the proturberance of a given
size, and finally it is also reduced to the value of the
drag force, etc.

Hall, who has introduced the coefficient a into con-
sideration for the first time, analyzing his results,
which have been described in 5.6 (Hall, 1958a, 1960),
has determined the following empirical values for u:
g =0.5Q/k p~ ~ when 2cop(Q and a= 0.5Q(2cop/v )
when 2coop)Q. Under the conditions of the experiments
that corresponded to the values

a (1.5 —:2.3) &&10 ' cm sec '

when
2cop/Q 0 13—:0.26

a~(2.3 —:3)X10 ' cm sec '

when
2cop/Q 6 —:8.

The necessity to obtain at least an approximate estima-
tion of the coefficient of sliding was connected with the
fact that the magnitude plotted along the ordinate in

Fze. 6.1. Change in time of the deflection angle of the suspension
head with respect to the rotating vessel takes place according to
the law y =co0't(co0'= tgaI), The deflection angle of the disk changes
in time by the law

at ygyo

at q»qo

(Gamtsemlidze, Iaparidze, Salukvadze, and Turkadze, 1966).
The constancy in time of the disk delay from the suspension
head, taking place at q =@0, means that vortex sliding prevents
their further distortion.

Fig. 5.13, has, in the theory neglecting sliding, infinite
jumps between its experimental maxima and minima
(i.e., near the second, fourth, and the following even
zeros) .

The direct measurement of a was made by
Gamtsemlidze, Japa, ridze, Salukvadze, and Turkadze
(1966) in an experiment, the idea of which arose from
the following circumstances. Osborne (1961) made an
attempt to measure the force with which vortex lines
are fastened to a solid surface. For this purpose he
deflected for some angle a disk suspended on an elastic
thread, near the bottom of the rotating vessel and taking
part in the rotation. The experiment failed, because
vortex lines, sliding along the surface of the disk or the
bottom, became parallel again to the rotation axis.
After that they could not already create the torque
acting on the disk. Therefore Gamtsemlidze et al.
decided to use a disk performing continuous motion
with respect to the vessel bottom. They constructed a
device in which the vessel with helium D and the disk
rotated together. An additional rotation of the disk
suspension head was superimposed on this rotation.
Depending on the forces acting on it, the disk could
either rotate with the same velocity as its suspension
head, or rotate with some delay with respect to it.
At the start of an extra rotation the disk was at first
behind the suspension head, being slowed down due to
inclined vortex lines (Fig. 6.1). But with an increase
of delay the torque of the suspension head increased
gradually, while an increase of slowing down action of
the inclined vortex lines was limited by their sliding.
If we neglect the coefficient u' then the boundary condi-
tion (4.3.1) gives in this case osp'r a sin n arpp/d
(Fig. 6.2) or u=~ '

/pPdwphere Pp is the angle of torsion
at which the disk delay reaches some constant value,
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FIG. 6.2. 1"he point of the vortex line fastening to the dis1 is
shifted with respect to its point of fastening to the bottom of
the vessel at the distance ~ y0. Here r is the distance from the l ota-
tion axis, po is the angle the physical sense of which is explained
by Fig. 6.1, and d is the distance from the disk to the vessel bot-
tom. The arrow shows the tension of the vortex line after deRec-
tion.

d is the distance from the disk to the bottom, and M0' is
the angular velocity of the additional rotation. '0

The estimation obtained in such a way gave a=0.1

cm sec ', when cup ——0.038 sec ' (and cup'= 0.0035 sec ') .

Within an order of magnitude it agrees rather well both
with Hall's data (1960) and with the estimation (4.3.3)
as the size of sand grains glued to the disk was 8~50 p, .

6.2. The Role of Sliding in an Interaction of an Oscil-
lating Disk with Rotating Helium n

Let us return now to the problem of axial oscillations
of a disk in helium n. If sliding is taken into account
formulas (5.2.1), (5.2.1a), (5.2.2), and (5.2.2a) became
much more complex. We shall not write the correspond-
ing cumbersome expressions, but we shall note
(Mamaladze, 1965) that sliding changes the relation
of phases of the s+ and s waves and each of them
begins to contribute both to damping and to oscillation
frequency. In addition, as it was already noted, sliding
influences the value of the tangent component of the
vortex line tension. Let us take into account all these
factors, without taking the mutual friction into account
explicitly, though it enters all these phenomena not
explicitly, since it is possible to neglect the reflected
waves. Then the calculation of vortex damping at
diferent coefIicients of sliding leads to the results given
in Fig. 6.3. An increase of the coefficient a leads at
first to an increase of damping and then to its drop.
The coefFicient u' has a comparatively insignificant role.

The curves in Fig. 6.3 are very much like the experi-
mental curves in Figs. 5.3 and 5.4. The only essential
diGerence between them is the position of the maximum,
which, as it was before sliding was taken into account,
is on the calculated curves at the value of 2tpp/0 much
greater than in reality.

Comparing Fig. 6.3 with Figs. 5.3 and 5,4, we can
note that experimental curves hardly correspond to
some constant values of the coefFicients of sliding. That
should not be expected, if we take into account their

"Apparently, the absolute sense should not be attributed to
Fig. 6.2. In reality vortex lines slide o6 the grains and try to
straighten, but fasten themselves to new grains and become
inclined again, etc. Figure 6.2 can be considered as a result of
the averaging of this process in time.

probable dependence on the velocity of rotation. The
6rst portions of the experimental curves (especially in
the case of a smooth disk) have a small slope indicating
that the sliding coeKcient u has large values. Relatively
high maxima, on the contrary, show that u is rather
small. It becomes clear that the experimental maximum
is associated with the minimum of sliding and the
shapes of the experimental curves are due to its smooth
change.

Numerical calculations made by a computer have
shown (Fig. 6.4) that the experimental data agree
completely with the theory, when both sliding and
mutual friction are taken into account. Here it was
suggested that the coefficient of sliding is a function of
the velocity of rotation as it is shown in Fig. 6.5
(Andronikashvili, Mamaladze, Matinyan, and
Tsakadze, 1961). The order of magnitude of a according
to these data also agrees with the data of other authors.

5.3. Collectivization of Vortex Line Oscillations

The maximum on the curves of the disk damping
dependence on the velocity of rotation is always found
at 2&op/0 0.2 and its position does not depend either
on temperature or on the extent of roughness of the
disk surface. The minimum of the sliding coefficient is
always located at this point and the reason for this fact
does not depend directly on the peculiarities of the
phenomenon of sliding itself. Here the properties of
vortex lines and of waves running along them are dis-
played and lead, when 2~p/0 0.2, to the phenomenon
of collectivization of vortex oscillations LMamaladze,
see, for instance, Andronikashvili and Tsakadze
(1959b) and Andronikashvili, Mamaladze, Matinyan,

f, (xl

f,0

OP

O.lt

0,2

0 0,2 0,'t 0,6 0,5 l 0 i.P. 1.( X

FIG. 6.3. Dependence of axial oscillation damping of the disk
on the velocity of rotation of the superQuid at different values
of coefhcients of sliding according to calculations of Mamaladze
i1965}.The symbols are a =2cop/0,

2In~(S —n,a,jn)
~'E.4p. (v.)&

The coeKcient b equal to b=a/(Qv. )& takes the following values
on the curves 1, 2, 3, and 4, where the coefBcient e'=0: (1)
b=10 2; (2) b=10 ', (3) b=1; (4) b=10. On curves 3a and 3b
as well as on curve 3, b=i, and the coefFicient b' equal to
b'=u'/(Qv, )& takes the values: (3a) b'=10 '; (3b) b'=3)&10 '.
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and Tsakadze (1961)$. Let us begin the description of
this phenomenon,

When a wave runs along a vortex line, the superQuid
liquid both rotates around the vortex line and oscillates
with it as well. The distances from a vortex line at
which the liquid takes an effective part in rotation
around one of the vortex lines can differ significantly
from distances at which it participates in vortex oscilla-
tions. The participation of the superQuid component in
vortex oscillations is characterized by the additional
energy e' (Pitaevski, 1958b).

e'= zrp (fP/zzz') -'(q'a') ln (au)
—' (6.3.1)

where q is the amplitude of oscillations and a is the
real wave number. Comparing this expression with
formula (2.3.1) for the energy of the liquid rotation in
a vortex, we obtain the following estimation for the
effective radius b& of the region where the liquid oscillates
together with a vortex line
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This estimate agrees with the Kelvin. formula (1880)
according to which bt 1.046/o. .——

As noted in Sec. 5.3, when 2cop&Q, the s waves are
the main ones running along vortex lines. To estimate
the value of b~ for these waves, the wave number k,p& '

should be substituted into formula (6.3.2). Neglecting
the mutual friction, we obtain

br ——Lv./(0 —2cop) j'*. (6.3.3)

At sufficiently small velocities of rotation, the vortex
line separation (sr'/zzzcop)'* is large and exceeds the
effective radius of oscillations b~. Under such conditions,
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l'xG. 6.4. Dependence of the disk oscillation damping, calcu-
lated according to the formula which takes into account completely
both sliding and mutual friction (Andronikashvili, Mamaladze,
Matinyan, and Tsakadze, 196j.). The parameters of the device
and the temperature correspond to the conditions of the experi-
ment described by the lower curve in Fig. 5.3.6 denotes S —Qps, /Q.
The upper curve is calculated when a=o, the lower one when
a= ~. The middle curve reproduces the experimental data and
is obtained using a variable a, the velocity dependence of which
js shown jn Fj.g. 6,5,

I'rG. 6.5. Empirically established dependence of the coefficient
of sliding a on the angular velocity of rotation under the conditions
of the experiment described by the lower curve in I'ig. 5.3.
(Andronikashvili, Mamaladze, Matinyan, and. Tsakadze, 1961).

the whole superQuid liquid moved by vortex lines does
not participate in oscillations, but only some part of it,
directly adjacent to them. Oscillations of separate
vortex lines are independent. But when the velocity of
rotation is increased, the distance between vortex
lines decreases while the effective radius of oscillations
b& increases. At the velocity, which we shall denote as
cop, the eRective radius b& becomes equal to haH of the
vortex separation

Lv / (0 2cop) )'= p (zrflz/tÃrop) ",

hence,
2top/0= (2mv, /zrA, +1) '. (6.3.4)

Beginning from the velocity cop and when o)p&cop the
effective radii of vortex oscillations overlap and their
mutual interaction occurs. Under such conditions,
oscillations of a vortex line are transferred to its neigh-
bors and, on the contrary, the existence of nonoscil-
lating neighbors prevents vortex line oscillations.

If we substitute numerical values for the parameters
which are in the right-hand side of formula (6.3.4),
then 2zop/0 is of the order of 0.2. This value coincides
with the point of maximum on the experimental curves
of damping dependence on the velocity of rotation
(Figs. 5.3, 5.4) and with the point of the minimum on
the curve of the sliding coeKcient u dependence on the
velocity of rotation (Fig. 6.5). Proceeding from the
idea of collectivization of vortex oscillations the charac-
ter of the latter curve can be understood in the following
way.

At small velocities of rotation when there are few
vortex lines, the coeKcient of sliding depends mainly
on the roughness of the surface. We should take into
account that even in the presence of artificial roughness
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(glued sand grains) the sliding of vortex lines can be
rather strong since not every vortex line can be fastened
to a grain. When the velocity of rotation and the number
of vortex lines are increased, a still greater number of
vortex lines fastens to the rough surface of the disk.
At the same time a decrease of the tangent component
of the vortex line tension P~(Q —2&up)'j contributes to
a decrease of the probability of a vortex line tearing off
from the protuberance of the disk. All these circum-
stances lead to a decrease of the coefficient of sliding,
providing that it was not too small from the very
beginning, because of an extremely rough surface.

The picture is changed when the collectivization of
vortex oscillations takes place. Beginning from oro ~™o

and at higher velocities, vortex lines not fastened to
the surface (i.e. , vortex lines without grains of sand
near them or vortex lines out of the disk periphery)
inhuence oscillations of fastened vortex lines. Thus they
increase the averaged coefficient of sliding a. This
increase of sliding leads just to the maximum of damping
(Figs. 5.3, 5.4) . As noted before (Fig. 6.3) even stronger
damping of disk oscillations corresponds to smaller
coefficients of sliding than in the case a=0. Such a
phenomenon is connected with the fact that when there
is sliding, the s+ wave, in addition to the change of
frequency of disk oscillations (5.5), begins to partici-
pate in the increase of damping. In its turn large coefFi-

cients a correspond to weak damping, as the projection
of vortex tension does not suKciently slow down the
disk oscillations.

Now it is possible to understand another phenomenon
in which the special role of the point 2cop/Q 0.2 is seen.
It is a sharp slowing down of the frequency increase

, (x)

3.5 .
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2.0
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FIG. 6.6. The influence of sliding on the velocity dependence
of the disk oscillation frequency in the rotating superfluid. It was
calculated when mutual friction was not taken into account
(Mamaladze 1965). The symbols used are: x=2cup/0,

The symbols b and b' are the same as in I'ig. 6.3. Their values on
different curves: (1a) b=10 ', b'=0; (1b) b=10 ', b'=3&(10 ~;

(2a) b=1, b'=0; (2b) b=1, b'=10 ' (2cl b=1, b'=3)(10 '.

of light disk oscillations, depending on the velocity of
rotation. In the beginning of the curve in Fig. 5.2, the
experimental data agree rather well with formula
(5.2.1), which does not take sliding into account. But
when 2cvp/Q) 0.2 an increase of sliding leads to a decrease
of vortex line contribution to the torsion momentum
acting on the disk. Then the increase of frequency is
slowed down (Fig. 6.6).

The third fact confirming the validity of the consider-
ations on the role of collectivization is the break of the
curves in Fig. 5.6. When 2&up/Q~) 0.2 vortex lines begin
to slide along the disk surface, which is a generator of
waves. The intensity of s waves, running along them,
decreases as well as the damping of the cylinder per-
forming vertical oscillations.

The hydrodynamics of rotating helium Ix by its very
nature cannot take into account completely the phe-
nomenon of collectivization of vortex line oscillations.
It deals with magnitudes averaged over the volume
containing many vortex lines and therefore the param-
eters bI or coo do not appear naturally in the equations
of hydrodynamics or in their solutions. The considera-
tions used to determine these parameters were beyond
the frames of an averaged hydrodynamical treatment
and the phenomena associated with the collectivization
of oscillations were described, in the language of hydro-
dynamics of rotating helium Ir, as changes of the aver-
aged coefficient a. Thus it is an arbitrary parameter,
selected to achieve an agreement between the theory
and experiment (Figs. 6.4 and 6.5) .

Gopal (1964a,b) approached this problem in another
way, without averaging, while solving the problem of
single vortex line oscillations in a cylindrical vessel
(1963).Then he imagined that each vortex line, appear-
ing in rotating helium Ir, is in a cylinder the radius of
which is determined by vortex line separation. Such a
consideration, not quite precise, but more detailed than
in the case of averaging, allowed him to obtain the ex-
pression for the wave number k,o& &. This expression,
when k, p& ~b((1 (i.e., when cop(Mp) coincides with ex-
pression (5.3.1) and when k,p~ ~b 1, (i.e., when ppp ppp)

begins to deviate essentially from it. Unfortunately,
Gopal's calculations were made for a purely superQuid
liquid. The generalization of such a consideration for the
real conditions of the experiment, i.e., when the exis-
tence of the normal component, mutual friction, and
sliding are taken into account wouM have given the
possibility of making more precise calculations, similar
to those illustrated in Figs. 6.4 and 6.5. Then the
coefficient u would acquire more direct sense.

7. MUTUAL FRICTION BETWEEN THE
SUPERFLUID AND NORMAL COMPONENTS

7.1. The Conceytion of Mutual Friction in Rotating
Helium II

Preliminary data on mutual friction between the
superfluid and normal components of rotating helium u
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were given in the paper of Hall and Vinen (1955). The
anisotropic character of such an interaction was also
emphasized there. Feynman's point of view on the
nature of critical phenomena in helium n explains
completely both the causes of the creation of mutual
friction and its anisotropic character. The mutual fric-
tion is due to scattering of thermal excitations on
singularities, which are vortex lines. In rotating helium
zI where vortex lines are aligned along the rotation
axis, the transfer of the thermal excitation momentum
to a vortex line (i.e. , of the normal component momen-
tum to the superfluid liquid) should be essentially
different in radial and axial directions.

7'.2. The First Experimental Con6rmation of Feyn-
man's Theory

0

l2 IG

T ('K)
20

I
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In the investigations which gave the first experimental
confirmation of Feynman's theory, the force of mutual
friction reduced to unit mass of the superfluid compo-
nent was expressed by Hall and Vinen (1955, 1956a, b)
in the following way:

—-', (p„/p)8'Lto, v„—v,]. (7.2.1)

In this formula the both terms are proportional to the
values of two vectors, to the relative velocity v„—v,
and to to= curl v, (because of the linear dependence
of the number of vortex lines on the velocity of rota-
tion). The first term with the coeKcient 8 has the
direction of the relative velocity projection v„—v, on
the plane perpendicular to the rotation axis. It is just
the direction which one could imagine at an elementary
consideration of the action of the normal component
flow on vortex lines existing in the superfluid component.
But in the expression for F,„

there is a second term, with
the coefficient 8' also directed perpendicularly to vortex
lines and at the same time perpendicular to v„-v, . Its
existence is connected with the Magnus effect.

Hall and Vinen used second-sound resonators of two
different types: a radial mode resonator, in which
emission, reflection, and reception of thermal waves
were realized by means of two coaxial cylinders with
side surfaces facing each other and an axial mode
resonator in which the bottom and the top of a hollow
cylinder were used with the same aim.

The results of the Hall and Vinen study mere the
following: (a) detection of second-sound attenuation
due to mutual friction in the radial mode resonator
and its absence in the axial mode resonator, (b) confir-
mation of formula (2.5.1) by the linear increase of
mutual friction with an increase of velocity of rotation,
(c) a theoretical analysis of scattering of thermal excita-
tions on vortex lines and comparison of the calculated
values of the mutual friction coefficients 8 with its
experimental dependence on temperature, (d) confirma-
tion of circulation quantization (Fig. 7.1). Hall and
Vinen did not manage to measure the coeS.cient 8'.

FIG. 7.1. Dependence of the coefficient of mutual friction 8
on temperature studied experimentally by Hall and Vinen, and
calculated by them at different values of the vortex circulation,
which are given (in units of h/ml above each curve (Hall and
Vinen, 1956a, b) .

'7.3. Further Investigations

Lifshitz and Pitaevski (1957) have critically con-
sidered the calculations of Hall and Vinen and shomed
the necessity of replacing Born's approximation, used
by them at the consideration of scattering of thermal
excitations on vortex lines, by a quasi-classical one. That
did not lead to sufFicient results. To achieve agreement
of the theory with the experiments of Hall and Vinen
on measurements of 8, it was necessary to introduce
such a mechanism of roton scattering, at which a
roton passes an intermediate stage of its capture to a
stationary orbit by a vortex line. Having selected the
effective radius of this capture ~10 L, Lifshitz and
Pitaevski have brought their calculations to agreement
with the experimental values of 8 and obtained the
theoretical dependence of 8' on temperature shown in
Flg. 7.2.

Dependence of 8 and 8' on temperature in the
vicinity of the )-point is studied in comparatively less
detail. Pitaevski (1958b) has shown that here one
should not expect a gradual approach of 8 and 8' to
zero and large values of both coefficients are possible.

The data of Tsakadze and Chkheidze (1960, see
Fig. 5.1) also give a possibility to measure B.According
to Mamaladze and Matinyan (1960b), the results of
their experiments should be described by the formula

82 —8I 2z R 2q~P~ ' ~0 P,

(Symbols used are the same as in caption to Fig. 5.1.)
The agreement of the theory and the experiment shown
in Fig. 5.1 confirms the calculations made by Lifshitz
and Pitaevski (1957), as the values obtained by them
for 8 were used while plotting the theoretical straight
lines.
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FI| . 7.2. Results of the
calculations of Lifshitz and
Pitaevski (1957).The solid
lines give: the upper one 8,
the lower one 8'. The ex-
perimental points are ob-
tained by Hall and Vinen
(I'ig. 7.1). The dashed line
shows the wrong depend-
ence B=B(T) obtained at
the quasiclassical approxi-
mation without taking into
account the temporary cap-
ture of rotons to the sta-
tionary orbits.
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At the consideration of the phenomena, in which
vortex lines are parallel to the rotation axis, it is quite
sufhcient to use the expression for the force of mutual
friction. But when transverse waves run along vortex
lines, a more complete formula should be used
(Bekarevich and Khalatnikov, 1961; also, see, Hall,
1960):

Formula (7.3.1) is valid at relatively small velocities
satisfying the unequality ~op,B/pQ&&1 (depending also
on temperature). In the opposite limiting case the
dependence (7.3.1) should be replaced by the formula
of Mamaladze:

2+2jR3 2gnp ~

l2—lI I 0
(7.3.2)

Equation (7.3.2) does not give the dependence of
damping on the velocity of rotation. It is especially
interesting that it contains the total density p instead
of p„.Thus the formula has such a form as if oscillations
take place in a liquid at rest with the density p, but
viscosity q„.

In the method of an oscillating cylinder edge e6ects
are excluded by subtraction of damping measured at
diferent depth of immersion. Because of this the
described method is very convenient for measurements
of viscosity of different liquids (Tsakadze and Mesoed,
1962). Formula (7.3.2) should be used for classical
liquids (g„is replaced by ri) .

The coeScient 8' is not sufficiently well studied
experimentally so far. It was not determined in the
experiments of Hall and Vinen (1956a, b), because of a
lack of accuracy in the measurements. The accuracy of
measurements of this magnitude was also insufficient
in Hall's experiment with two disks. In that experi-
ment, as mentioned earlier, the length 1.,& & of an s
wave was determined. After making a correction in
formula (5.3.6) for mutual friction, L,~

—
~ can be ex-

pressed in the following way (when 24)0«Q, p„B/4p«1):

L.(-~=2 i— a' .v. )' p 0
2~0) 4p fl 2mo

According to Sneider's preliminary data (1963) (he
used a cubic mode resonator of second sound), 8'«1
at T(2'K. The coe%cient 8' increases at a tempera-
ture rise. Lifshitz and Pitaevski (1957) predicted its
increase at temperatures below 1.4'K as well. However
such a phenomenon was not found in Sneider's experi-
ment. "The data on the final results of this study are
not known to us.

These results are in complete agreelnent with the theoretical
calculation of Iordanski (1965b), whose paper we read when this
chapter was already written (see 12,8),

+ 8"~ —,—v„—v, —v, curl — . (7.3.4)
2p (cg

v„,—v, —v, curl (~/a&) .

In calculations the results of which are given in Figs.
6.4 and 6.5 just this formula was used in which 8" is

put equal to zero and the values of 8 and 8' correspond
to those of Lifshitz and Pitaevski (1957). Earlier calcu-
lations made by Mamaladze and Matinyan (1960a)
were performed using formula (7.2.1); i.e., without
taking into account the term with v, curl (m/or). The
comparison oi the results shows that this term has no
special role in the calculation of the disk oscillation

damping. But it inRuences the expression of the pene-
tration depth of the s wave essentially. This penetra-
tion depth, when 2~0&&0, at the first approximation
over the mutual friction is determined by formula

4pL(Q —2(op) v.j&/p QB. (7.3.5)

The assumption 8"=0 encountered in papers of
many authors is associated both vrith experimental
facts and the theoretical considerations on the impossi-

bility of mutual friction existence along vortex lines.
Hall and Vinen (1956a, b) have not found any addi-
tional damping in an axial mode resonator. Mamaladze
(1960a) suggested to use, with the aim of verification
of equation 8"=0 (or for measurements of 8" if it is
different from zero), vertical oscillations of a cylinder,
for which, similarly to (7.3.1), we obtain

0 p'1+— 8". —
02p

(7.3.6)

The results of Tsakadze's experiment (1962a), in

which the independence of 8 on coo was shown (see Sec.
5,1), mean tha, t 8"=0. If we take into account the

This formula is a result of decomposition of the force
F, into three vectors with mutually perpendicular
directions. Each of these three components of the force
of mutual friction is proportional to the density Gf

vortex lines, represented by the curl of the mean velocity
of the superRuid component, and to the velocity of the
normal component with respect to a vortex line. This
velocity is represented by the vector
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errors of the experiment we must write down more
precisely that 8"=0+0.025 (when 8~1 at
1.86'K) .

In the paper of Sneider (1963) already mentioned,
the author did not manage to obtain reproducible values
of 8".In 30+~ of events 8"=0. In the other cases 8"
divas always much less than 8 in a wide range of temper-
atures from 1.34' to 2.17'K, while the ratio 8"/8
varied between 0.25 and 0.01. At the highest tempera-
tures it even reached 0.002. Unfortunately, the errors
of these data are not given. It is also diHRcult to say
whether the values of 8"different from zero correspond
to the equilibrium configurations of vortex lines.

The results c.f another experiment by Tsakadze
(1962b, 1963a) with vertical oscillations of a cylinder
above an axially oscillating disk (5.1) show that vortex
line oscillations lead to the creation of mutual friction
along the rotation axis (as this axis is not parallel to
vortex lines) . But it means that a rather small effective
value of 8" can arise even without artificial generation
of vortex oscillation as well, because vortex lines always
experience zero and thermal oscillations.

The difference between the coe%cients 8, 8', and
8" determining the intensity of mutual friction in
three mutually perpendicular directions once more
speaks in favor of anisotropy of elastic —viscous prop-
erties of rotating helium zr.

8. PERSISTENT CURRENTS OF THE
SUPERFLUID LIQUID

8.1. Observations of Persistent Currents

The best illustration of the complete absence of
viscosity of the superQuid component is the existence
of circular currents which, once formed, exist for an
arbitrary long time.

The hrst attempt to 6nd such currents of the super-
fluid component was made by Andronikashvili (1952) .
For this purpose, he used a pile of strictly parallel light
disks spaced 0.2 mm apart and surrounded by a thin
walled aluminium shell. The pile suspended on an
elastic thread was carefully protected from light, which
could cause some mechanical effects due to its thermal
action. The pile was brought into a uniform rotation
at temperatures close to that of the transition point.
Then under the conditions of a continuous rotation of
the pile, the helium bath was cooled to 1.5'K and after
that the suspended system was smoothly (aperiodically)
slowed down. This process was realized by electro-
magnetic forces acting on a special metal ring placed
much higher than the pile. After a certain period of
time, the pile was heated during ~ of the period of the
suspended system oscillation to a temperature of 1.65'K.
That led to the transition of 10% of the superfluid
component into the normal state. Heating was realized
by eddy currents, which were induced in the cylindrical
case of the pile by a high-frequency generator with a

frequency of 2000 cps. Thus an absolute symmetry
of the thermal Qow was reached with respect to the
rotation axis.

No deviation of the device was found, though it had
to appear if the superAuid component, continuing to
rotate around the axis of the stopped device, would

have given its angular momentum to the walls and
disks of the pile after its transition into the normal
component.

In the published paper of Andronikashvili (1952)
there was an error in calculations, but even without it
the statement remains vabd that the measured random
angles of the pile deviation at the moment of heating
were much less than the calculated one, which highly
exceeded the experimental errors.

At present the negative results of this experiment
should be ascribed to critical velocities, but in 1952
nothing was known about their values for rotating
systems.

The first indication of the existence of the persistent
current was presented in Hall's investigation (1957).
It was shown that a rather slowly rotating vessel with
a pile of disks Lsimilar to Andronikashvili's device

(1952)j does not give away, at its slowing down, the
whole angular momentum obtained at its acceleration.
It was found. that there is conserved some angular
momentum in the stopped. vessel at least for about
25 min.

8.2. Persistent Current with an Elementary
Circulation

Vinen (1958a, 1961a, b) has observed the existence
of circulation (not exceeding two quanta of this mag-
nitude) during a long time in the stopped device. The
aim of his experiment was not the study of the persistent
current, but the direct observation of a unit quantum
circulation. It was found that it is more convenient
to make such measurements after the stop of the
vessel's rotation. That is why we discuss Vinen's

experiments in this chapter. The idea of the experiment
was the following. OsciBations of a stretched. string are
doubly degenerate, as they can be decomposed into
two mutually perpendicular linearly polarized oscilla-
tions. Each of these oscillations will be quite equivalent
to the second one. The same statement is valid at the
decomposition into two oscillations with mutua11y

opposite circular polarization. The situation changes
when the string is run around by the circulation motion
of the liquid. Then degeneration disappears and the
oscillations with the circular polarization (the direction
of rotation of one of which coincides with the imposed.
circulation, while the other one is opposite to it) acquire
different frequencies. Indeed. , depending on the mutual
direction of the rotation of some elementary portion
of the wire and the rotation of the Quid around it,
the Magnus force is either added to the elastic straight-
ening force or is subtracted from it. The vector sum of
these two forces determines the value of the centrifugal
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FIG. 8.1. The histogram confirming quantization of circulation
(Vinen, 1961a, b).

force and hence the frequency of the wire's rotation.
In Vinen's experiment a thin wire with a diameter of
2.5&(10 cm ' was stretched along the rotation axis of a
narrow cylinder with a diameter of 0.5 cm, filled with
helium tr. The wire was placed in an external magnetic
field and its oscillations excited by a short current pulse
as a result of a capacity discharge. The registration of
oscillations was made by observation of the current
induced by a magnetic field in this wire. The difference
of frequencies of the main modes of oscillations led to
the generation of beats and that allowed the rather
accurate measurement of the circulation of the liquid
velocity determining the difference between frequences
of oscillations with the opposite circular polarization.

At the above-mentioned value of the diameter of the
rotating vessel there could arise from one to three
vortex lines in the range of velocities used by Vinen
coo~2)&10 ' —:2&(10' sec '.Directly measured values of
circulations were not always integers in units of h/nz.
The fact is that vortex lines could only partially cover
the wire, fastening by one of the ends or by both of
them to any point of the device. Shaking of the device
had to give a more stable configuration to a vortex line
and really, because of shaking the value of the measured
circulation changed. The results are shown in Fig. 8.1
and leave no doubts as to the existence of vortex lines
with unit circulation. They are obtained as a result of
starting the device rotation above the ) -point, its
cooling lower than this temperature and shaking more
than once to obtain the stable circulation.

Vinen's conclusion that the data of his experiment
correspond to the value of the vortex core go 10 ' cm
agrees poorly with the theory of Onsager and Feynman.
However, Griffiths (1964) doubted the validity of
Vinen's analysis (1961a, b), which had led to a such
conclusions. According to GriKths' estimation the core
of Vinen's vortex lines had a radius not larger than
3X10 ' cm and probably much smaller.

Recently, Whitmore and Zimmermann (1965) have
repeated Vinen's experiment. They have noticed an
increase of stable circulation around the wire while
increasing the diameter of the wire and the velocity of
rotation. Their data, obviously, have something in
common with the calculations of Bendt and Oliphant
(1961), according to which (see Sec. 3.5) an increase
of color~' causes an increase of F.

8.3. An Irrotational Region and a Persistent Current

It was assumed by Bendt and Oliphant (1961) that
an irrotational motion of the superAuid in an annulus
can be conserved as a metastable state after the stop
of the device as well.

The corresponding measurements were made by
Bendt (1961, 1962) to find the persistent current in the
annulus formed by two cylindrical surfaces rotating
together until the stop; he immersed in helium zr wings
suspended on an elastic thread or a foil strip used as a
peculiar Rayleigh disk. The most interesting results
were obtained with the second version of the device.
At an immersion of the strip to a definite depth (0.3 cm),
the existence of a persistent current was registered. But
at the repeated immersion of the foil the persistent
current was not found. The disappearance of the current
indicated firstly that the state with the persistent cur-
rent in the stopped device is metastable and secondly
the coherence of such a kind of fiow, since at the repeated
immersion of the foil the absence of the current was
established until the depth of 1.3 cm (0.3 cm is about
—,
' of the annulus depth).

8.4. Dependence of a Persistent Current on
Temperature

Depatie, Reppy, and Lane (1962) have observed
persistent currents in a device similar to that of
Andronikashvili (1952) with the only difference that
heating of the liquid, needed for the transition of the
superfiuid component into the normal one, was realized

by a light beam. In addition, the vessel with a pile of
disks was suspended not on an elastic thread, but by
means of a magnetic suspension. This allowed the
vessel to rotate practically without friction. When the
initially uniformly rotated vessel was slowed down,
then freed and heated, the velocity of its rotation in-
creased and this indicated the existence of a persistent
current in the slowed down vessel (Fig. 8.2) . This effect
occurred in the liquid which could be placed both in
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Fxo. 8.2. Observations of a persistent current in the experiment
of Depatie, Reppy, and Lane (1962).
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the devices with doubly connected and with simply
connected regions. In the first case the disk spacers were
placed in the center of the vessel and in the second one
they were at the periphery.

Reppy and Depatie (1964) used this technique to
study the temperature dependence of the persistent
current angular momentum. It was found that it is
proportional to p„but not the value of p, at the start
or slowing down of the rotation, which leads to the
formation of a persistent current. On the contrary the
angular momentum is proportional to the value of p,
at the temperature from which the freed vessel is
heated with the aim to show the conserved angular
momentum (Fig. 8.3). Thus in a slowed down vessel
the angular momentum changes as p, during variation
of temperature. That is explained by cortservctti, ort of the
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FIG. 8.4. The transition of a persistent current into a more
stable state by liquid heating (Reppy, 1965). Circles give the
data when the current was formed at Tq —T&2&(10 "K. Tri-
angles show the data when the current was formed at
T&—T&2y 10-2'K.
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FIG. 8.3. Temperature dependence of the angular momentum
of a persistent current according to the data of Reppy and Depatie
(1964).The solid line corresponds to the law I~ p„'solid circles
represent the data obtained at constant temperature; open circles
show data obtained by lowering the temperature after a persistent
current was formed until it was found.

velocity circN/ation, i.e., of an integral over the contour
of v„which represents a part of the integral of p, [r, v,]
over the volume which is equal to the angular momen-
tum.

8.5. A SuperQuid Gyroscope

Later Reppy (1965), having used the gyroscopic
Inethod of observation of a persistent current, developed
by Clow, Depatie, Weaver, and Reppy (1965), had in-
vestigated the dependence of the angular momentum of
a persistent current on temperature. The temperature
range studied earlier was extended to the X-point, to
10 ' 'K. The superQuid current was formed in an
annular container filled with fibrous foam to increase the
critical velocity. This system constituted a superQuid
gyroscope the angular momentum of which LI was
directed in the horizontal plane. One could judge the
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Fxo. 8.5. A sharp disappearance of the persistent current at
T= T& (Reppy, j.965).

existence of a superfluid current, perpendicular to the Ip
horizontal torque, required for excitation of gyroscope
rotation around the vertical axis. The magnitude of
p(Lr/p, ) was determined, that excluded the dependence
of L on temperature associated with the conservation
of the circulation. Figure 8.4 shows that, when T~—T~
2)&10 ' 'K, persistent currents formed at lower tem-
peratures display a tendency to transfer to a more stable
state. This state, in the case when the current is formed
near the X-point and a smooth cooling followed, was
not changed in time. In the vicinity of the X-point the
magnitude p(LI/p, ) characterizing in reality the Row
rate, changes suddenly from the value larger than zero
in helium zr to zero in helium I. as shown in Fig. 8.5.
This phenomenon takes place in the temperature range,
which differs from Tz by &10 ' 'K. The magnitude
p(Lr t p, ) has a tendency to adecreaseathT= Tx T~O. —
This tendency is displayed when Tz—T drops from
4&10 ' 'K to 0.5)&10 ' 'K. But this decrease of
p(LI/p, ) does not exceed explicitly the errors of
measurements.

Gyroscopic observations of a persistent current were
also made by Mehl and Zimmerman (1965). They
used a spherical vessel, filled with a porous substance,
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Fio. 8.6. Reversible change of the angular momentum of a
persistent current on heating from 1.24'K to T& T~ and cooling
till 1.24'K (Mehl and Zimmerman, 1965).

hanging freely on an elastic thread. During the measure-
ments, after the rotation was stopped, this vessel was
turned by a magnetic field for 90'. As a result the
persistent current angular momentum, which was
directed vertically, changed its orientation into a
horizontal one. The change was compensated by a
deQection of the suspended system with respect to the
vertical axis„permitting one to judge the existence of
a persistent current, and the value of its angular mo-
mentum. Heating and cooling of the system have
confirmed the conservation of circulation and the
dependence I.I~p, in this case as well, as shown in
Figs. 8.6 and 8.7.

S.6. The Critical Velocities

The uniform rotation of the superQuid component,
taking place with an averaged velocity ~l, =color and
accompanying the uniform rotation of the normal
component, is realized by means of an array of Onsager-
Feynman vortex lines. However, after the stop of the
vessel, vortex lines existing outside the irrotational
region, begin to inhibit the superQuid motion, creating
mutual friction between it and the normal component
in the process of its slowing down. This means that the
persistent current is practically unable to conserve the
whole angular momentum of the superQuid component.
This angular momentum is lost due to mutual friction
only if we do not deal with completely irrotational
motion between two cylinders.

Presently, there are no definite data on the values
of the critical velocities at which persistent currents
appear and disappear. The picture becomes more com-
plicated because of the peculiarities of the twisting and
slowing down of helium n. These phenomena are dis-
cussed in more detail in Sec. 10. Both dragging of the
super6uid component into rotation and the disappear-
ance of vortex lines after the vessel is stopped take
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FIG. 8.7, The data of Fig.
8.6 con6rm the law LI p,
(Mehl and Zimmer man,
1965).

rather a long time. At low velocities of vessel rotation
(ra0~0. 1 sec '), the superfluid liquid can even remain
stopped for a rather long time (v~10' sec) before an
interaction with the rotating container will take place.
This phenomenon is especially clearly pronounced if
before rotation helium was at rest for a long time,
being in the state of helium x. At high velocities of
rotation (&oo&0.2 sec '), the interaction of the vessel
~vith the superfluid begins practically at once and is
over after a time of the order of 10'—:10'sec. After
the rotated vessel is stopped, the vortex lines decay
according to the exponential law with the period of
half-decay of the order of 30 sec.

I.et us assume that a slowly rotating vessel was
stopped and we have not found any persistent current.
Does that mean that at such angular velocities this
annular current cannot be realized in general? Taking
into account everything mentioned above about the
time of dragging the superQuid component into the
vessel rotation, we can suppose that it simply had no
time to interact with the rotating vessel or the normal
component. Similarly the absence of a persistent current
in the vessel stopped after a rapid rotation does not
mean that some absolute critical velocity, i.e., the
upper limit of the persistent current existence, was
exceeded. Simply the angular momentum of the super-
Quid was dissipated before the completion of the process
of vortex line disappearance. Thus a persistent current
is created practically at such velocities of rotation at
which an irrotational region is formed occupying the
whole volume of the liquid. In any case one can say
that these are the velocities at which the number of
vortex lines in the vessel is relatively small. It is possible
that there is no exact upper limit of the vessel velocity,
it depends on the sensitivity of the device, on the
possibility of finding a much weakened persistent
current.

Considerations just described explain the failure of
Andronikashvili s experiment (1952) in which (oo 3
sec '. The same consideration concerns Hall's experi-
ment (1957), in which he had not observed any reten-
tion of the angular momentum by the superfluid com-
ponent at slowing down of the container which rotated
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with high velocity. Only at small velocities was the
momentum lost by slowing down helium Iz smaller than
the momentum L, obtained by the liquid at twisting.
Similarly in the Waltnsley and Lane experiments (1958)
the angular momentum obtained from slowing down
helium xr was smaller than L„but it tenders to this
value at an increase of the velocity of rotation and of
temperature rise.

According to Bendt (1962), who made experiments
with the annular channel between cylindrical surfaces
with the radii 8~=8.72 cm and E~——8.94 cm and the
height 0.18 cm, the critical velocity had the value vary-
ing in the interval 1.75 —:1.19 rpm depending on the
initial state of the liquid, which could be either rotated
before the experiment or be at rest. Bendt determined
critical velocities of rotation below which the appearance
of a persistent current was not observed. He noticed
quite reasonably that there were no grounds to think
that a persistent current rotates with the same velocity
as the vessel before its stop.

In the case when the device was 6lled with a porous
substance the vortex formation became more dificult
and the critical velocity increased. At suKciently small
dimensions of the pores of the used substance, such
conditions could be created when the critical velocity
limiting the value of the persistent current is the velocity
of the breakdown of superfluidity (in Landau's sense)
and not the velocity of vortex formation. Using the
results of the paper of Mamaladze and Cheishvili
(1965)" for rough estimation of this velocity, it is
described by the equation

w, = (h/&3mao) L1—(B.'a '/P) j~, (8.6.1)

where ao=4.3X10 '(Ti, Z') & cm is—a characteristic
dimension of the phenomenological quantum theory of
superfluidity near the li-point (see Sec. 12.1), 8 is the
size of pores, 8, 3 —:5(dimensionless critical size of
pores). When 5))ao and Z'~Z'&, this formula gives a
very large value ( 30 m/sec) close by the order of the
magnitude of Landau's critical velocity of the break-
down of superfluidity. However, according to (8.6.1),
when T approaches T~, v,—&0. It is interesting in this
connection to discuss Reppy's results described in the
previous paragraph (Fig. 8.5) . Reppy did not find that
v, tends to zero, when T—+Tq, and concluded that the
critical velocity experiences a jump at T= T&. That
would distinguish the superfluid persistent current
from a superconducting persistent current. The critical
velocity of the latter tends smoothly to zej.o as the
temperature of the point of the phase transition is
approached.

Meanwhile there is no principal difference here. An
essential difference, but not a principal one is only that
the parameter in the phenomenological theory of super-
fluidity ao is much smaller than the similar parameter
in the theory of superconductivity, i.e. , than the length

»Mamaladze and Cheishvili (1965) have considered strictly
speaking not a rotational, but a translational motion,

of coherence. An increase of ao and the corresponding
decrease of v, take place in a very narrow interval of

temperatures near Tq.
In Reppy's experiment, apparently, 5 is always much

larger than ao, as co&1.9X10-' cm, when Tq—T&
5X10 ' 'K (the value of 8 in the paper of Reppy is
not given). Then v, fi/v3mao, i.e., v, decreases from
the value —30 m/sec at low temperatures to ~5 cm/sec.
Such a value corresponds to the maximum approach to
the X-point which in Reppy's experiment reached
5&10 ' 'K. On the other hand, the velocity of the
persistent current in Reppy's device was about 0.2
cm/sec. Hence when the X-point is approached down
to 5&(10 ' 'K, that decreases the value of the critical
velocity to 5 cm/sec, it is not sufficient to find a smooth
drop of the critical velocity to zero. The persistent
current all the time has a velocity much less than the
critical one.

9. STABILITY OF HELIUM rr MOTION BETWEEN
TWO CYLINDERS ROTATING WITH DIFFERENT

ANGULAR VELOCITIES

v„—v, —0,
~02+2 ~01+1 (~01 ~02) +1 +2

R2' —Eg' r

(9.2.1)

Equations (9.2.1) represent the only solution of the
Qavier —Stokes equation, corresponding to the con-

9.1. The First Experiments

As early as 1941 Kapitza noticed that rotation of a
thin rod set into a capillary with helium xz sharply
changes the character of heat transfer along the circular
slit formed by them (Kapitza, 1941). Then Wheeler,
Blackwood, and Lane (1955) measured damping of
second sound in rotating helium zz. In contrast to the
experiments made by Hall and Vinen (1955, 1056a, b)
about the same time, they found a considerable increase
of scattering of thermal waves as a result of rotation,
though the direction of propagation of these waves
was parallel to the axis of rotation. In the device
constructed by Wheeler, Blackwood, and Lane, helium
zr was between the two cylinders, the inside cylinder
was rotating and the outside one was at rest. Therefore
their results should be considered as an indication of an
instability of such a kind of motion under the conditions
of these experiments. The same can be said about
Kapitza's experiments.

9.2. Distribution of Velocities in a Liquid Rotating
Between Two Cylinders

Let us give a brief survey of the state of theories of
stability of such motions. Both in viscous and in ideal
fluids, which are between two cylinders with the radii
Ri (inside) and E~ (outside) and rotating with the
angular velocities oro~ and cv02 the following distribution
of velocities is established:
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FIG. 9.1. The dashed line corresponds to the equation cop2 E2'=
cop1E1 . The region of stability of a classical ideal liquid is situated
between this dashed line and the line cop1 =0.The region of stability
of a real (viscous) classical liquid is wider and extends to the
hatched region. (The figure is taken from the book of Landau
and Lifshitz, 1953.)

sidered boundary conditions. They do not contain
viscosity and therefore are valid for an ideal liquid as
well. However, the Euler equations allow other solu-
tions. As to the equations of hydrodynamics of rotating
helium rr, the distribution (9.2.1) is also the only
possible solution for them. It is required by the normal
component, and the mean velocities of both components
under the stationary conditions reach the same values
due to mutual friction.

9.3. Stability of Rotation of an Ideal Liquid

The problem of stability for a laminar motion (9.2.1)
for an ideal liquid was studied by Rayleigh (1916).
He showed that at rotation of cylinders in the opposite
directions the motion is unstable, while at the same
direction of rotation the condition of stability has the
form

M02~22 —M01~12)0. (9.3.1)

In particular, this means instability in case of the
rotation of the inside cylinder, when the outside one is
at rest (o~e2= p).

For the further representation of the material it is
essential to note that the sense of the Rayleigh condition
is connected with the following considerations. I et an
element of the liquid M occasionally leave the orbit of
its rotation, i.e., a circumference with the radius „,and
let it be displaced for some distance. Before this Quctu-
ation occurred the centrifugal force Meq'/r=L'/3fr'
(here L is the angular momentum) P and the force
caused by the gradient of pressure (M/ ) pPB/ rBbalance
each other (BP/Br=pvq'/r). As a result of fluctuation
the element considered is in the region with another
value of the pressure gradient. But the magnitude L is
conserved and the stability or instability of the motion
depends on the ratio of two forces having opposite
directions: which of them will be larger? Will the
element be returned to its orbit' As shown in the book
of Landau and Lifshitz (1953) the solution of this
problem leads to the Rayleigh condition (9.3.1) .

9.4. Stability of a Viscous Liquid Rotation

In Fig. 9.1 is shown how the Rayleigh condition is
modifled if, according to Taylor (1923), the role of
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FIG. 9.2. The angle of deRection of the outside cylinder y in
dependence on the period of the inside cylinder rgtatjgp P according
to the data of Donnelly (1959},

viscosity is taken into account. For this one studies
the Navier —Stokes equation (instead of the Euler equa-
tion) to determine the stability of its solution (9.2.1)
with respect to relatively small perturbations.

9.5. Stability of Helium rz Rotation

A similar thing for helium n was studied by
Chandrasekhar and Donnelly (1957). They concluded
that there are two conditions of stability for this liquid.
One of them, when there is no mutual friction, leads to
condition (9.3.1), the other one to that shown in Fig.
9.1.That means, for instance, that if there is an outside
cylinder at rest and the angular velocity of the inside
cylinder is increased (that was done in Donnelly s experi-
ment (1959)], then one will find the existence of two
critical points: one of them corresponds to the appear-
ance of the Rayleigh's instability of the superfluid
component rotation, the other to Taylor's instability of
the normal component rotation.

Donnelly s device was a viscometer, the inside cylin-
der of which was rotating causing deflection of the
outside cylinder suspended on an elastic thread. At
small velocities (large periods B) the deflection of the
outside cylinder did not depend on 0, but with the
decrease of this magnitude two critical points were
observed (Fig. 9.2), B, and B„,marking the appearance
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of instability of motion of the corresponding compo-
nents predicted by the theory of Chandrasekhar and
Donnelly. However, quantitative data, of this experi-
ment did not agree with the theory.

The reason for this discrepancy was explained by
Mamaladze and Matinyan (1963), who paid attention
to the fact that the existence of vortex lines in rotating
helium Ir is not completely taken into account in the
equations used by Chandrasekhar and Donnelly. The
mutual friction is included, but the term v, L~, curl m/~]
is absent and this term, as we know, describes the
elastic properties of vortex lines. As shown in Fig. 9.3,
the role of elastic effects can be very essential for the
solution of the problem of stability. To verify this
assumption Mamaladze and Matinyan studied Eq.
(4.2.1) with F,„=Oand div v, =0 for the stability of
solution (9.2.1) with respect to small perturbations.
As one should expect in the condition of equilibrium
obtained in such a way

&02 +2 ~01 +1 + air &a[(+2++1)/(+2 +1)]) (9 5 1)

the stabilizing action of vortex lines is clearly expressed
indeed. It shifts the boundary of stability in comparison
with condition (9.3.1). Though condition (9.5.1) is
valid strictly speaking only when T=O'K, nevertheless
it can be compared with the data of Donnelly, as they
are reduced to the temperature 1.35'K and at such
a temperature the relative density of the normal
component is only about 7%. Therefore one can con-
sider that, when T=1.35'K the role of the mutual

FIG. 9.3. Tension
of the distorted vor-
tex lines (soiid lines)
promotes the return
of an occasionally
shifted element of the
liquid (a circle) to
its initial position
(dashed lines) .

friction is not very essential and the critical point
0, 140 sec in Iig. 9.2 should agree with condition
(9.5.1).And indeed, using the values of v, obtained in
different experiments (see Sec. 5.6), we get, according
to (9.5.1), 8,=120—:150sec.

Hollis —Hallett (1953) in contrast to Donnelly (1959)
has used a viscosimeter with rotating outside cylinder,
while the inside cylinder, suspended by means of an
elastic thread was at rest. According to (9.5.1) in this
case (Mop=0) the motion of the superfluid component
should be stable. However, such an assumption cannot
be considered su%ciently rigorous. Indeed, condition
(9.5.1) does not take into account actions both of
viscous forces and mutual friction force. Besides, condi-
tion (9.5.1) determines instability with respect to
infinitesimal perturbations, but there can exist insta-
bility with respect to finite perturbations, realized in a
classical liquid even in the unhatched region in Fig.
9.1. That suggests an idea that instability of motion
should appear in the case of helium n as well, even
when copy=0. The results of the calculations of Chan-
drasekhar and Donnelly (1957) as well as those of
Donnelly's experiment (Fig. 9.2) allow one to expect
that when the Hollis-Hallett viscosimeter is used there
should be manifested two critical velocities v,„andv„.

Meanwhile, Heikkila and Hollis —Hallett (1955),
while measuring the viscosity of the normal component
of helium n, decreased the velocity of rotation of
Hollis —Hallett's viscosimeter only a little lower than
the critical velocity v, found by them. (They measured
the eGective viscosity defined by the formula of the
classical hydrodynamics. The dependence of this effec-
tive viscosity on the velocity of rotation disappears
just at this velocity v„when e&m, .) Woods and Hollis-
Hallett (1958) have shown that the velocity r&, has a
classical nature, as it is manifested in the experiments
with classical liquids as well. They have shown that
between this experiment and the helium experiment
there is maintained similarity according to Reynolds
number, calculated in the latter case with the use of
the viscosity of the normal component. Thus the velocity
z, is a critical velocity v,„and there are all the grounds
to assume that at lower velocities the second critical
point v„may appear (compare Fig. 9.2, where 9,)8„).

The viscosity of helium n measured by a rotating
viscosimeter is somewhat different from the viscosity
measured by means of an oscillating disk (Andro-
nikashvili, 1948c). (The results of many other authors
who used this method later confirm the data of his
paper. ) Such a difference between "rotating" and
"oscillating" viscosities of helium rr is undoubtedly
connected with insuflicient analysis of one of the pro-
cedures of measurement (or even of both of them).
%e think that the attempt to find the second critical
point v„in the experiments with the rotating viscosim-
eter could elucidate this problem as the viscosity meas-
ured when r«v„could coincide with the "oscillating"
one.

Another possible source of misunderstanding in the
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FIG. 10.1. Schematic representation of the
gradual development of the meniscus at the
dragging of helium II into rotation.

analysis of the results obtained with the rotating
viscosimeter can be insufhcient clarity of the picture
of vortex line arrangement in such a device. At present
we do not even know if there are vortex lines in it when
~(v, . Indeed, nobody has made calculations similar
to those made by Bendt and Oliphant (1961) for
cylinders rotating with different velocities. If the super-
Quid in a rotation viscosimeter does not move at
all when v(v„then there are no grounds for appear-
ance of the critical velocity v,, smaller than v, . If it
moves then, in addition to the possibility of v„appear-
ance, there is another possibility of the existence of
complications which were not taken into account so far.
It is not excluded that at low temperatures vortex
separation or the distance between vortices and the wall
can be comparable with the free path length of thermal
excitations and thus the law of the momentum transfer
from the moving cylinder to the cylinder at rest can
be changed.

We think that the question about the diRerence of
viscosities measured by the two methods deserves great
attention and its solution can form a source of interesting
information on properties of helium n.

which would gradually increase in time. Such behavior,
for instance, is established for water and helium I. But
the behavior of helium xI is quite different as compared
with that of usual liquids. In particular, at first only
its peripheral layers are dragged into rotation, while the
central part of the meniscus remains Rat.

Gradually the radius of the Rat part of the meniscus
becomes narrower (see Fig. 10.1) and at last a parabola
is formed the usual shape of which is indistinguishable
at low and moderate velocities of rotation from the
parabolic meniscus of viscous liquids. But already at
an angular velocity about 30 sec ' a characteristic
conic pit appears on the lower part of the parabola.
This fact was mentioned at the beginning of this paper
(Fig. 10.2) .

At angular velocities of the order of 30 sec ' the
equilibrium shape of the meniscus is formed during
120 sec, that corresponds to the velocity of the vortex
front propagation of the order of 0.1 mm/sec.

The process of helium zr dragging into rotation was
studied by Eselson, Lazarev, Sinelnikov, and Shvetz
(1956), who brought into rotation, during the period
of the order of some seconds a pile of narrow disks with
the separation equal to O. l5 mm and surrounded by a
thin metal case. The device was hung by means of a
magnetic suspension and rotated with velocities of
several revolutions per second. The authors reported
that the bulk of helium was dragged into the device
rotation during not more than 2 sec. The vortex front
traveled in this case with the velocity more than
0.04 mm/sec, if the direction of the front propagation
coincided with that of the rotation axis.

Nearly the same method was used by Reppy,
Depatie, and Lane (1960), who gave a rotational pulse
to a cylindrical container without the pile of disks,
filled with liquid helium and hung on the magnetic
suspension. The duration of the pulse was 0.5 sec. The

10. FORMATION AND DECAY OF VORTEX LINES
IN HELIUM Ir

10.1. Dragging of Helium rr into Rotation by a
Moving Wall of a Container

The 6rst data on kinetics of helium II dragged into
rotation were published by Andronikashvili and
Kaverkin (1955). The experiment was made with a
transparent cylindrical container, which was rapidly
brought from the state of rest inta the state of uniform
rotation.

Every normal liquid under such conditions would
rather soon form a parabolic meniscus, the depth of

r FIG. 10.2. Schematic representation of the
equilibrium meniscus of rotating helium II at
high velocities of rotation.
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authors reached the velocity of rotation of ~0.2 sec '.
Under such conditions, in contrast to the results of
Eselson et al. , they observed the subsequent slowing
down of the container due to redistribution of the
angular momentum between it and the liquid. Reppy
eI a/. found that the laws of helium zx dragging into
rotation and those of helium 1 are quite different (see
Fig. 10.3) .

Reppy and Depatie (1961) used a similar technique,
but at still lower velocities of vessel rotation and found
some additional details of the process of the superfluid
liquid twisting, as mentioned in Sec. 8.6. It was found
that rather slow twisting of helium u observed at the
initial portions of curves similar to that shown in Fig.
10.3, when ~0~0.2 sec ', was replaced by a long delay
of the beginning of twisting at smaller values of ~0.
When roe 0.1 sec ' and T=1.2'K (p„/p=3%), the
superQuid can remain at rest during some thousands
of seconds even when the vessel gets additional pulses of
rotation acceleration. However, it concerns only the
cases when helium D was at rest during a sufficiently
long time, and, if it rotated previously not for a long
time, then during the start of its repeated twisting there
was not any appreciable relaxation. %hen co0 0.065
sec ', the twisting of the superQuid component was not
observed till the end of the experiment (during 10'
sec). In their recent paper Reppy and Lane (1965)
have shown that these delays disappear completely if
there is an arti6cial protuberance on the inner side
surface. Dragging of the liquid into rotation begins
without any delay even at the minimum velocity
F0=0.05 sec, used in this experiment. The dragging is
always completed by the liquid aquiring the classical
angular momentum L,.

There is some information on the process of helium Ix

twisting in Pellam's paper (1960) as well. It was
mentioned in Sec. 3.5 that the results of his investiga-
tion were connected with the inAuence of a light beam
on the Rayleigh disk deQection. But on the other hand,
according to Tsakadze and Shanshiashvili (1965), such
an inhuence was observed only in rotating helium H:

(in the liquid at rest the effect of illumination was

Q2$ .ooo

~ ~ ~ 2,65 H

oo oih6

0.)6. &oo ~ ~ '~
o o o o

20
HUNDREDS QF SEC

FIG. 10.3. Dragging into rotation of helium r (solid circles)
and helium zr (open circles) according to the data of Reppy,
Depatie, and Lane (1960).
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FrG. 10.4. Change of the angle of the torsional balance deAection
in time in the experiment of Craig (1961).

much smaller). Therefore Pellam's data on some
increase of the delay of the Rayleigh disk at its removal
from the wall of the rotating vessel indicate the propa-
gation of the rotation front from the periphery to the
axis of the container. At the rotation velocity 2 rprn
and T=2'K the velocity of the front was of the order
of 2 mm/min.

A similar method was used by Craig (1961) for the
study of helium n dragging into rotation. He suspended
a beam of a torsional balance with two wings immersed
into liquid helium above the cylindrical vessel and
studied the moment of forces acting on the device.
The angle of torsion of an elastic suspension to which
the beam of the balance was fastened (the balance was
at rest in the laboratory system of coordinates) was the
measure of dragging the liquid into rotation. Craig's
results are given in Fig. 10.4, where it is seen that he
has also observed a delay at the beginning of twisting,
and that at the angular velocity 1.5 rpm the complete
dragging of helium 11 into rotation takes about 30 min.

It is seen that the mechanism of dragging of helium
rr into rotation is quite different from that valid for
classical liquids. The process of dragging of classical
and quantum liquids into rotation of a container was
studied in particular detail by Tsakadze (1964c) and
by Tsakadze and Cheremisina (1966).

First of all it was shown by precise measurements of
the meniscus depth s on stills of a film taken by a
cinematographic camera, which was switched on every
3 sec by an electronic circuit, that the character of the
meniscus deepening is quite different for helium r and
helium rr. Figure 10.5 shows that log hs(He r) is a
straight line breaking after some time, which depends
linearly on the angular velocity of rotation.

At the point of the phase transition the character of
the meniscus development is changed in a jump and
log Ds in He II gives a curve without any breaks, im-
mediately after the temperature is reduced below
T=2.17'K.

The time of helium I twisting was less than that of
helium rr in the studied cases. An increase of the con-
tainer radius caused the linear increment of the velocity
of the meniscus deepening for helium I, while for helium
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pendence of the menis-
cus depth of helium I
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rr it dropped in the initial portion of the curve according
to the law close to a hyperbola. The dependence of the
time of helium zr dragging into rotation on the angular
velocity cop was the same in character. The dependence
of the time of acceleration on ~p for helium z is a straight
line with a negative slope. The same time for helium n
decreases slowly with an increase of temperature and
only in the interval 2.0—2.17'K this dependence becomes
sharper (Figs. 10.6, 10.7, 10.8, 10.9) .

At the beginning of the analysis of the results of this
paper, all the experiments were made at high Reynolds
numbers (Re~5&&10'—:2&(10').That excluded the possi-
bility of laminar regimes of helium I dragging into
rotation or that of the normal component of helium n.
Therefore the observed durations of the liquid accelera-
tion obtained were much shorter than those expected for
a laminar regime, i.e., R'/v~10P sec.

The turbulent character of the motion makes the
treatment of the results, obtained in this case, more
dificult for the classical liquid. But it simplifies, and
that sounds paradoxical, the understanding of the proc-
esses of helium xx dragging into rotation.

First of all as seen from the shape of the meniscus
of helium n in the process of its acceleration and from
the 6gures given in this paragraph, the quantum
turbulence in a certain sense depresses the classical
one as soon as in all the cases dragging into motion of
the normal component of helium n takes place slower
than tha, t of helium z.

The authors of the paper give reliable considerations
that help us to understand the character of the experi-
mental data obtained by them, proceeding from an
assumption that quantized vortex lines are generated

FIG. 10.7. Dependence of the time required to drag helium r
(a) and helium tr (b} into rotation on the angular velocity of
rotation (Tsakadze and Cheremisina, 1966).

at the periphery and propagate to the rotation axis.
According to (2.5.1)the total number of vortex lines,
formed by the end of the process of acceleration, is
proportional to the cross section of the vessel and to
the angular velocity: Ep~R'Np. In addition, let the
number of vortex lines e generated in unit time per
unit of the vessel periphery depend on the difference of
mean velocities of the normal and the superQuid liquids
v according to the law rs e . This magnitude varies
from the value copR at the beginning of the process till
zero by its end. It is natural to assume that a stationary
regime of rotation will be established at formation of
an equilibrium number of quantized vortex lines in the
container. Then

t~(¹/Rn) (pppR)'- .

Hence at any law of the form e~v there appears
an universal dependence of the time of dragging into
rotation t on the velocity. Just such a conclusion is
given by the experiment (Fig. 10;8).

The observed decrease of t with an increase of o)p, R
and v requires n)1. The numerical estimation shows,
that the experimental curve shown in Fig. 10.6 corre-
sponds to an averaged value n 1.3. I.et us note for
comparison that in Vinen's paper (1957c), devoted to
the study of the quantized turbulence in the thermal
Qux, the dependence of the type n ~' is obtained, i.e.,
0!=2.

, tsec.

, 4$8C,

PO

l20

NO

&00

90

BO

lo

50

40

30
aO Rrjrt

FIG. 10.6. Dependence of the time required to drag helium r
(a) and helium rr (b) into rotation on the radius of the vessel
(Tsakadze and Cheremisina, 1966).
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FrG. 10.8. Temperature dependence of time of helium rr drag-
ging into rotation at different linear velocities on the periphery
of the vessel (Tsakadze and Cheremisina, 1966). The different
signs used for experimental points correspond to different values
of coo and E, the products of which are shown in each curve
(Tsakadze and Cheremisina, 1966).
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FIG. 10.9. The time of helium I dragging into rotation at dif-
ferent cop and R is an universal function of cop/R (compare Fig.
10.8). This situation is illustrated by curve (a) on which points
for different mp and R are denoted in a different way. The time of
helium II dragging into rotation is shown by curve (b). Here the
dependence of t on cps/E is linear, but not universal (Tsakadze
and Cheremisina, 1966).

three or four times as fast as its increase at acceleration.
An essential difference in the absolute values of time
measured in Andronikashvili's experiment on the one
hand and that of Craig on the other hand is explained
by the fact that angular velocities of rotation were
many times diferent from each other.

Hall and Vinen (1956a, b) also observed relaxation
eGects at the stop and at the beginning of motion,
when they studied attenuation of second sound in
rotating resonators. However, such a great difference
in the time of establishment of the stationary rotation
regime of helium n and of its slowing down was not
observed.

Similar data were obtained in the investigation of
Careri, McCormick, and Scaramuzzi (1962) described
in Sec. 3.3.It is shown in Fig. 10.10 that an equilibrium
value of the'current (after switching on of rotation)
is reached in ~2 min (when T=1.27'K). Approxi-
mately the iame time is required for the current to
reach almost its initial value after the stop of rotation.

10.2. Decay of Vortex Lines at the Stop of Rotation

The erst information on rotating helium D slowing
down was given in the paper of Andronikashvili and
Kaverkin (1955). In a suddenly stopped cylindrical
container an initially parabolic meniscus begins to
straighten at the walls and only a conic crater is left
in the center, disappearing in 30 sec. Thus the time of
slowing down is one fourth as long as the time of
dragging into rotation.

Pellam (1960) has also noted that slowing down
proceeds much quicker than acceleration and that
the beginning of slowing down of the liquid in the
vessel takes place immediately after its stop. .

Craig (1961) described the action of forces applied
to the torsional balance wings immersed into helium
rr. Confirming Andronikashvili's observations (Andro-
nikashvili and Kaverkin, 1955), he has noticed that a
sharp decrease of the drag force at slowing down occurs
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FIG. 10.10. Changes of the currents of negative ions in helium II:
at voltage application, start of rotation and stop of rotation
(Careri, McCormick, and Scaramuzzi, 1962).

n = ns exp L
—(ln 2r/) tj, (10.2.1)

where ln2/r is the angle of the slope of the curves
ln 2 (/), r is the period of half-decay. Curve A corre-

TABLE II.

T'K T sec 10 "Ecm ' 10 22' cm ' sec

0.87
1.12
1.27
1.40
1.54
1.93
2.05
2.12

510
192
105
96
48
12
6
3

1.56
5.43

11.4
20.4
37.0

154
233
313

0.8
1.0
1.2
2.0
1.8
1.8
1.4
0 9

However, a complete recovery of the current takes much
longer time. At 7=0.9'K it is about an hour and near
the X-point it is several minutes.

Further, the same authors (1963) reported that the
period of half-decay of vortex lines v. after the stop of
rotation was inversely proportional to the total number
of thermal excitations, determined in the paper of
Bendt, Cohwan, and Yarnell (1959). This conclusion
is con6rmed by Table II. There are the data obtained
at a velocity of 1.0 rpm and at a voltage of 4 V. Careri
et al. think that this result shows the participation of
all the thermal excitations in the process of vortex line
decay.

Interesting experiments for the study of the process
of decay of vortex lines were made by Gamtsemlidze,
Japaridze, and Turkadze (1965),who observed attenua-
tion of the torsional pendulum (a flat disk) suspended
inside of a uniformly rotating cylindrical container.
The idea of the experiment was the following: The
existence of vortex lines causes an additional attenua-
tion of a torsional pendulum (5.1, 6.5). By watching
the decrease of this additional attenuation after the
stop of the container, it is possible to determine the
time dependence of the number of vortex lines. An
extra attenuation a was determined as the difference of
two attenuations o.= 5~—8, where 8 is the attenuation
of the disk in helium rx at rest and 8~ is the attenuation
at some moment of time after the container stops.

As seen from the curves of Fig. 10.11, the extra
attenuation can be described by an exponential law
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FIG. 10.11. Time
dependence of the
damping of a disk os-
cillating round its
axis in the rotated
and stopped vessel
(Gamtsemlidze, Ja-
paridze, and Tur-
kadze, 1966).

5
0 i 1~0 f~, ceo»5 t MC

sponded to a decay at the velocity of rotation cop=

(0.10~0.02) sec ', measured before the stop of the
device. This velocity was closer to that ~p at which
collectivization of vortex lines takes places (6.3).Under
the conditions of this experiment cop=0.11 sec '.

But at the velocities +p) cop there is a sharp break on
Curves B (&u, =0.24 sec ') and C (&oo

——0.48 sec '). At
small velocities the period of half-decay of vortex lines
'is equal to(55+5) sec and at higher velocities thedecay
takes place with another half-period 7-I, for instance, for
curve B —r~ (70+5) =sec. It is rather evident that
an increase of the period of half-decay is caused by the
process of collectivization. Actually, the estimation
according to the formula ~~=a&oexp (—t~ln2/r~),
(where t~ is the time from the moment of the rotation
stop until the moment of the break of curves in Fig.
10.11) leads in each case to the value ~& coo.

The decay of vortex lines was studied by the method
of second sound by Bablidze (1965).He has established
that the slowing down of rotating helium u is charac-
terized by the period of half-decay ~= 30 sec.

The conditions of this experiment diGer essentially
from those of Gamtzemlidze et al. (1966). Therefore
it is, so far, dificult to indicate definitely the cause
of some difference in their results (r =30 sec should be
compared with r=55 sec).

10.3. Formation of VortezLines in Rotating Helium n
at the Passage through the Point of the Phase
Transition

The study of formation of Onsager —Feynman's vortex
lines at cooling of uniformly rotating helium I lower
than the temperature of the phase transition was
undertaken in detail by Andronikashvili, Bablidze, and
Tsakadze (Andronikashvili, Bablidze, Gujabidze, and
Tsakadze, 1964a,b; Andronikashvili, Bablidze, and
Tsakadze, 1965, 1966; Bablidze, 1965).

%ith this aim a radial mode resonator was constructed
in which the waves of second sound generated on the
surface of the inside cylinder were reQected on the
inner surface of the outside cylinder and then received
by a detector, wound on the inside cylinder.

The resonator was tuned to some temperature, then

liquid helium was heated till T=2.21'K at which it
rotated about 30 min. After that, without a stop of
the container rotation, it was cooled to the temperature
at which second sound was tuned for resonance.

By means of this device it was established by attenu-
ation of second-sound waves that vortex lines in rotating
helium Ix appear at the passage through the point of
the phase transition with a considerable delay. At the
velocity of the liquid rotation cop=1.76 sec ' the reso-
nance amplitude reaches its equilibrium value
(7=2.168'K) only after 300 sec (see Fig. 10.12).

Depending on the rate of cooling the relaxation
phenomena accompany the process of rotation till
2.12'K. Below this temperature nonequilibrium phe-
nomena were not observed at any velocity of rotation.
The time of relaxation was dependent on the angular
velocity coo and on the value of overcooling (Tz—T).
An empirical formula was obtained in the following
form (see Fig. 10.13):

r=ro exp [—(~o—"o~)j.j& (10.3.1)

where O. =1.18 sec ', sop, is the critical angular velocity
of rotation in the vessel with certain characteristic
dimensions (~0,«cop), ro is a parameter dependent on
temperature, changing from 1100sec when T= 2.165'K
to 500 sec, when T=2.125'K.

There can be in principle two situations at cooling
below the point of the phase transition of rotating
helium n: either vortex lines begin to form at once, or
there can exist another type of motion, which can be
called an intermediate or nonstable motion, which
transforms into a stable form realized by an array of
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I'IG. 10.12. C.hange of the amplitude of second sound in time
in the radial mode resonator after the transition helium I—helium Ir
taking place during rotation (Andronikashvili, Bablidze, and
Tsakadze, 1965).The time notations: t1 is the beginning of cooling;
t2 is the transition through the P-point; t3, the cooling has been
6nished; t4, the amplitude of second sound has reached its equi-
librium value (t4 —t~=v); tf„the termination of rotation; t6, the
amplitude of second sound has reached its resonance value;
tv, the repeated beginning of rotation; t8, again the equilibrium
(under the conditions of rotation} value of the amplitude has
been reached. co0=1.76 sec '.
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vortex cores aligned parallel to the rotation axis. This
transformation takes place both at a lowering of the
temperature and in time.

A slow decrease of the second-sound amplitude with
time, shown in Fig. 10.12, cannot solve this problem
in favor of either assumption. It was necessary to
construct another axial mode resonator to answer this
question. In such a resonator the second-sound genera-
tor was fixed on the cover of the device and the receiver
on its bottom.

From the papers of Hall and Vinen (1956a, b), it
was known that propagation of second sound along
vortex lines does not lead to an additional attenuation
of its amplitude. Therefore if vortex lines, oriented
along the rotation axis, were the only cause of an addi-
tional second-sound scattering (in a radial mode
resonator), then rotating helium rr in their presence
would seem transparent for thermal waves propagating
in an axial mode resonator.

The experiments made by Andronikashvili, Bablidze,
and Tsakadze have shown that in the vicinity of the
X-point, rotating helium u is "opalescent" at its
"translucence" by second sound along the axis of
rotation (Fig. 10.14). In time or at removal from the
) -point, it becomes more and more translucent. And at
last after 200 sec, at the same velocity of rotation
coo=1.76 sec ', the second-sound amplitude reaches its
resonance value.

The use of resonators of diGerent geometrical shape

C sec

600

FIG. 10.13. Dependence of the relaxation time r (equal to
t4 —t~ in Fig. 10.12) on the velocity of rotation at diferent tem-
peratures (Andronikashvili, Bablidze, and Tsakadze, 1965).
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FIG. 10.14. The same as in Fig. 10.12, but with the use of an
axial mode resonator (Andronikashvili, Bablidze, and Tsakadze,
1965).

PO3ec ~

shows that the change of an inner surface of a rotating
vessel does not inRuence the formation of vortex lines.

Thus there can exist another intermediate type of
motion than vortex lines, which makes rotating helium
U isotropic with respect to second-sound propagation.

Evidently at such a stage vortex nuclei are generated
in rotating helium u and vortex lines aie formed grad-
ually from them.

According to (10.3.1), the smaller the angular
velocity is, i.e., the smaller the number of vortices, the
longer the time is during which vortex nuclei can form
a vortex line. This is clear, since the mean diffusion
path of a nucleus, until it encounters a vortex core, is
bigger for each nucleus when there are few vortex lines
to be formed.

The time needed for a vortex line formation at the
passage through the point of the phase transition
( 300 sec) is comparable, by the order of the magni-
tude at the same ~0, with the decay time and the time
of vortex formation taking place at sudden switch-
ing on and o6 of the cylindrical container rotation
(~70 sec) .

This made us think that in this case as well vortex
lines are formed from vortex line nuclei (or they decay
on them). But the turbulent regime of the normal
component leads in this case to reduction (3—4 time
shorter) of the duration of the relaxation.

The idea of formation of vortex nuclei found its
theoretical treatment in Iordanski's paper (1965a). It
is shown there that in the presence of suSciently high
relative velocity of motion of the normal and the super-
Quid components, vortex formation begins in the latter,
passing the initial stage of nucleus formation (the
author considers the process of formation of ring
vortices) . The intensity of this process is calculated.

10.4. Change of Vortex Damping at the Variation
of Temyerature

We already know that at the change of temperature
the number of vortex lines per unit of rotating liquid
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FIG. 10.15. Change in time of the disk oscillations damping
in rotating helium rr (solid lines) and in helium at rest (dashed
lines) at its cooling (Gujabidze and Tsakadze, 1966).

FIG. 10.17. Change in time of the disk oscillation damping in
rotating helium rr (solid lines) and helium rr at rest (dashed lines)
at its heating (Gujabidze and Tsakadze, 1966).

cross section does not change, but the amount of the
superfluid component taking part in vortex motion does.

The study of relaxation processes at the change of
temperature was made by t ujabidze and Tsakadze
(1966).It was found that by lowering the temperature
the normal component, having passed into the super-
Quid one, is dragged into the motion of already existing
vortex lines during a very long time, in some cases
reaching 40 min.

This process of enrichment of vortex lines by the
superQuid component was studied by the time depend-
ence of an additional damping of a disk oscillating in
helium xx and performing together with it a uniform
rotation. As the tension of the vortex line according
to formula (2.3.1) is porportional to p„then the pro-
3ection of the tension on the plane of the disk causing
an additional damping also depends on the amount of
the superfluid component already dragged into a vortex
motion. Figure 10.15 shows that there are two portions
of the curve b=f(t). One of them is associated directly
with the process of temperature lowering, in particular,
with the change in viscosity of the normal component.
This process takes about 5 min. The other portion is
associated only with the process of vortex line enrich-
ment and it takes about 30—35 min.

The time necessary for a vortex line to drag the
superQuid component into motion depends little on the
value of the di6erence of the initial and hnite tempera-
tures, the same as on the absolute value of temperature.
But it depends essentially on the angular velocity.

Figure 10.16 shows that the time of vortex enrich-
ment is increased with an increase of the number of
vortex lines and reaches the maximum when 2~s/0
0.2, i.e., when collectivization of vortex lines takes place.
After that it begins to decrease. Beginning from the
velocities cop 0.25 0 the time of vortex enrichment does
not already depend on the angular velocity, remaining
strictly constant. Thus a vortex line has the most
stable configuration, with respect to dragging of new
amounts of the superfluid component into motion,
under the conditions of its strongest fastening.

The phenomenon of exclusion of the normal com-
ponent from vortex motion at an increase of tempera-
ture was studied by the same authors. This process,
connected with heating, proceeds more smoothly in
comparison with the process taking place at cooling of
rotating helium n. The same independence on the value
of the difference of the initial and final temperatures and
on the absolute value of the temperature as well is
observed (Fig. 10.17). The dependence of the time of
exclusion of the normal component on the angular
velocity has the same character as at enrichment. And
it has the same time characteristics as it is seen at the
comparison of Fig. 10.18 with Fig, 10.16.

Again, the most stable are vortex lines existing under
the conditions of the least sliding, when they decay in
the slowest way. It is not excluded that a special role
of the point cop ——c™opin these phenomena is explained by
the fact that the oscillation amplitude has its maximum
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FIG. 10.16. Dependence of the duration of the process of vortex
enrichment by the superQuid component (Fig. 10.15) on the
velocity of rotation at a given rate of cooling (Gujabidze and
Tsakadze, 1966).
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FIG, 10.18. Dependence of the duration of the process of vortex
losing the superfluid component (Fig. 10.17) on the velocity
of rotation (Gujabidze and Tsakadze, 1966), at a given rate of
heating.
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value at the best fastening of a vortex line. Being in-
volved into such a vortex or "turned off" out of it the
liquid should reconstruct most radically the character
of its motion and that explains the maximum of relaxa-
tion time in Figs. 10.16 and 10.18.

The problem of the vortex decay at heating of
rotating helium 11 was considered by Andreev (1964).
He has shown that at heating two vortices (a super-
fluid and a normal one) with compatible cores are
formed instead of one superQuid vortex. The newly
formed normal vortex becomes more spread in time due
to viscous forces. The duration of this process, esti-
mated by Andreev on the basis of the analysis of
dimensions is 10 min in the order of magnitude.

K
6

I

11. THE PHASE TRANSITION IN ROTATING
HELIUM n

11.1. A Central Macroscopic Vortex

In Sec. 10.3 the phenomenon of delay at the vorticity
formation was described at the phase transition helium
I—helium n, under the conditions of rotation. A similar
phenomenon of "overcooling" of the motion type is
observed in the study of a central macroscopic vortex.

As early as 1948 Andronikashvili, studying rotation
of liquid helium, found that under certain conditions
in rapidly cooled rotating helium, there is observed
a central macroscopic vortex piercing the whole liquid
until the very bottom and forming something like a
hollow rotation axis in helium 11 (Andronikashvili and
Kaverkin, 1955). Andronikashvili's observations were
confirmed by Donnelly, Chester, Walmsley, and Lane,
(1956), who observed the central macroscopic vortex
formation (see Fig. 11.1) not only in helium Ir, but in
helium x as well.

A detailed study of this phenomenon was made by
Tsakadze, who called it "Andronikashvili's vortex"
(Tsakadze, 1963b,c,e, 1964a). He has found that this
vortex is always formed in helium r. He has shown, by
model experiments in water, that boiling of a rapidly
rotating liquid leads to motion of vapor bubbles not in
the direction to the surface, but in the direction to the
axis of rotation. If boiling proceeds sufficiently inten-
sively, then these bubbles are fused into a hollow axis,
coinciding with the rotation axis.

In helium I, the central vortex forms a cord with the
diameter 2 mm, which behaves restlessly, twisting and
oscillating. Thus Andronikashvili s vortex is an essen-
tially classical formation, having nothing in common
with the quantum properties of the liquid. Tsakadze
did not manage even once to observe formation of
Andronikashvili's vortex in helium n.

But this vortex can be really observed in helium n,
as reported by Andronikashvili. At the passage of the
phase transition point this vortex, created in helium r,
continues to exist for a suKciently long time until the
temperature 2.09'K. As soon as the temperature 2.17'K
is passed, it stretches like a string and the meniscus
of rotating helium n obtains the shape shown in Fig.

I I I I

60 80 - l00 f20 t40
Time {sec)

Fzo. 11.1. The change in time of the meniscus depth of helium il
brought into rotation (in the logarithmic scale), according to the
data of Donnelly, Chester, Walmsley, and Lane (1956). Curve C
shows the most frequently encountered case in these experiments.
Sometimes the events develop as shown by curve B. Then the
meniscus has a conic pit. In other cases the development of the
pit is delayed. Then curve A is obtained. All these processes as
well as the instability of the pit and formation of a central macro-
scopic vortex were observed both in helium x and in helium xr.
While according to Tsakadze (1964a) the curve of type A is
possible only in helium z and B in helium rr.

11.2. In time or at sufficiently low temperature, the
central vortex tears oG from the bottom of the container
and begins to shorten gradually forming a conic deep-
ening on the lower part of the parabolic meniscus.

It is a characteristic fact that this deepening, typical
of a quantum liquid (see Sec. 3.6) remains in helium r
for a long time. It can be observed there at a rapid
heating from T(Tq until the temperature 3 K.

We dwell on these phenomena because they allow
us to notice once more (compare Sec. 10.4) that at a
transition from a classical liquid into a quantum one
an overcooling is possible (though a temporary one)
of classical kinds of motion, nonequilibrium for quantum
systems. The similar phenomena —an overheating of
quantum types of motion, nonequilibrium for classical
liquids, can be observed at a reverse transition.

11.2. Peculiarities of the Phase Transition of Helium
rr into Helium z in the State of Rotation

It seemed evident that in the point of the phase
transition, in which p, becomes zero, the vortex damping
described in detail in Secs. 5.1, 5.5, 6.2 should disappear.

Meanwhile the experiments of Andronikashvili,
Mesoed, and Tsakadze (1964) have shown that the
damping of an oscillating disk, rotating together with
helium xr and performing, in addition, axial oscillations
remains constant by its character even above T=



61'2 REvIEw oF MQDERN PHYsl. cs Oc'.l'of E'ER 1966

participating in the vortex motion, having passed into
the normal state, begins to slow down suQiciently
rapidly. This had to influence the energy of the vortex
line, determining its tension. Thus if even the number
of vortex lines would exist for some time at T)2.17'K
and their number would be conserved constant, then
due to a decrease of tension the vortex damping had to
reduce.

But the obtained experimental data represent the
time dependence of the logarithmic decrement of
damping at the transition from rotating helium n into
rotating helium x in the form shown in Fig. 11.3.

In a particular case when coo
——c™oo,vortex lines, having

passed through the 'A-point, are conserved completely
within the errors of the experiment during 18 min.
Their existence causes the conservation of the corre-
sponding rnaximurn value of the decrement, charac-
teristic of rotating helium n. This value of the decre-
rnent is associated, as we know, with the fact that the
energy of the disk oscillations is carried away along
the vortex lines. After 18 min a sudden vortex tearing
o6 from the disk takes place during about one minute.
This leads to a sharp decrease of the decrement and it
decreases even lower than the value which should be
expected for helium z, rotating as a solid body.

The latter circumstance can be understood by recall-
ing that the logarithmic decrement of oscillation damp-
ing in helium rr is expressed by formula (5.2.2), the
main terms of which have the form:

FIG. 11.2. The central macroscopic vortex in .helium II: the
photograph of the vortex and the result of the calculation accord-
ing to the formula

when I'=10' cm' sec ' (Tsakadze, I964a).

&—(1}'o/fl) &0 (2n ii ) 'L(fl+2~o) '+ (&—2~a) 'j
+(~'p.)'(fl —2~o)'* (11 2 1)

and in helium j. it should be:

8—(Qo/0) 5o (-', ri p}&((Q+2oro) **+(0—2cvo) ~]. (11.2.2)

The first term of formula (11.2.1) is associated with
the usual for a viscous liquid character of its interac-
tion with an oscillating surface, which is realized between
the disk and the normal component. The same process
is described by formula (11.2.2) as well. As to the
second term of formula (11.2.1), it is associated with
the already mentioned mechanism of the disk energy
loss by means of the waves, running along vortex lines.

2.17'K, if only the phase transition of helium r into
helium zr takes place in the state of rotation (Fig. 5.12) .

All attempts to And vortex damping in liquid helium
brought into rotation above the ) -point and not cooled
afterwards till temperatures corresponding to helium zr,
failed.

Thus it remained to assume that the existence of
vortex lines in helium zx is associated with extremely
long relaxation time. The further experiments have
con6rmed these assumptions (Andronikashvili,
Sablidze, Gujabidze, and Tsakadze, 1964a, b; Andro-
nikashvili, Gujabidze, and Tsakadze, 1965, 1966).

It was natural to suppose that at the transition
through 2.17'K, the whole superRuid component

)8mi n.
& ein.

FIG. f1.3. The change in time of the disk oscillation damping
in rotating helium I, after the phase transition has taken place
at the moment Ip in the state of rotation (Andronikashvili,
Gujabidze, and Tsakadze, 1965) .
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FIG. 11.4. Dependence of the duration of the first portion of
I'ig. 11.3 on the temperature (Andronikashvili, Gujabidze, and
Tsakadze, 1965).

In a metastable regime of rotation of helium I, when
the system of vortex lines still continues to be connected
with the disk, formula (11.2.1) has its initial meaning
which is rejected by means of the first straight line
portion of the given graph. At the moment of vortex
tearing off, the second term of formula (11.2.1) de-
creases rapidly to zero. However, the amount of the
liquid which participated in vortex motion is not dragged
into the regime of the solid body rotation immediately.
Therefore, beginning from the moment of vortex line
tearing oR, the decrement is expressed by formula
(11.2.2) with the only difference that instead of the
total density of the liquid p there is some eRective
density p' in it.

An increase of p' from the values near the value p„,
corresponding to the beginning of helium heating, until
the total density p characteristic of the end of the experi-
ment, represents the physical sense of the third portion
of the graph in Fig. 11.3. The duration of this process
is of the order of 12 min.

It was mentioned in Sec. 10.4 that superfluid vortex
lines in helium Ir have the highest stability (in a sense
of enrichment or losing the superfluid component)
under the conditions of minimum sliding. The same is
true in helium I as well: metastable vortex lines have
the highest stability, i.e., the longest time until tearing
off from the disk, when coQ

——+0. At the velocities larger
or smaller than coo, the time of vortex array tearing
oR from the disk surface becomes much shorter. It also
becomes shorter at the temperature rise of helium I,
at which the experiment takes place. Figure 11.4
illustrates this fact. At temperatures above 2.27'K
one did not manage to observe the metastable vortex
line array.

-A question arises as to what reasons caused the
sudden vortex array tearing oR from the disk surface.
The experiment shows that vortex lines of helium I,

2,9
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I'iG. 11..5. Temperature dependence of the fountain effect in
rotating helium xr (crosses) and in helium u at rest (points)
(Zamtaradze and Tsakadze, 1964}.

stretched between two surfaces, are very stable and
slowly damping formations until the moment of tearing
oR. Some decreases of the velocity of the liquid motion
inside a vortex line, suKci.ently small to escape the
direct measurement, causes an increase of pressure
along the vortex core. As a result of this pressure
increase, a vortex separates from the solid surface and
having become free decays. This explains the fact why
the largest stability is observed in those vortex line
arrays for which the coefticient of sliding is minimum.

This statement is confirmed by the fact that the
relaxation time for vortex lines fixed to a smooth surface
is four times as small as that for vortex lines fixed to a
rOugh SurfaCe (When &op=zoo).

11.3. Does the Point of the Phase Transition Shift
in Rotating HeIium IIV

Some features of the phase transition in rotating
helium described in two previous paragraphs, are very
peculiar and extend to rather large temperature
intervals.

The conservation of vortex damping in helium I, the
delay of the vortex structure formation at the transition
from rotating helium r into rotating helium rr (9.3),
and some other facts made it necessary to perform
special investigations of the position of the phase
transition point as a function of the angular velocity.
With this aim Zamtaradze and Tsakadze (1964) studied
the thermomechanical effect in rotating helium xx and
in helium Ir at rest near the phase transition point.

At first the experiment was made with a capillary
filled with pressed rouge and equipped with an electrical
heater, mounted along the rotation axis. The authors
made another experiment as well, in which the thermo™
mechanical effect was observed in a narrow annular
gap near the cylindrical mall of the rotating container.
As Fig. 11.5 shows, the curve of the thermomechanical
e6ect in rotating helium n does not diRer from that
for helium u at rest.

Bablidze, Tsakadze, and Chanishvili (1964) made
another attempt to 6nd the phase transition point
shift. With this aim they observed the break on the
curve of cooling or heating of a phosphor-bronze
thermometer placed in rotating helium and then in
liquid helium at rest. This break was connected with a
jump of thermal resistivity taking place while helium n
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experienced the transition into helium I and vice versa.
With the accuracy of SX10 ' 'K, the phase transition
point remained unshifted until the velocity of rotation
coo ——0.56 sec '. Later a theoretical estimation (formula
12.4.1) has shown that at maximum velocities of rota-
tion, available at present, a shift of the phase transition
could not exceed 10 ' 'K.

11.4. The Order of the Phase Transition in Rotating
Liquid Helium

I pII/cm~
O, l466

0,865.

FIG. 11.7. Tem-
perature dependence
of densities of rotat-
ing helium and he-
lium at rest (Andro-
nikashvili and Tsa-
kadze, 1966). The
solid line is Kerr's
curve (1957).

Phenomena of "overcooling" and "overheating" of
motion, characteristic of two states of liquid helium
and observed at the phase transition in this liquid,
suggested the idea that we are dealing with a first-order
transition and not with a second-order one. However,
to solve this problem, it was necessary to perform ex-
periments of a thermodynamical and not hydrody-
namical character.

~
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FIG. 11.6. A jump of the density in rotating helium. p„„is the
density at the velocity ~0= 30 sec; p is the density in helium at
rest (Andronikashvili and Tsakadze, 1966) .

For direct experiments undertaken with the aim to
establish the order of the phase transition in rotating
helium rr, Andronikashvili and Tsakadze (1965b, 1966)
have used the method of a rotating pyknometer. This
device was suKciently sensitive for registration of the
slightest changes of the helium density taking place at
the change of the temperature or angular velocity of
rotation.

The character of the behavior of this magnitude
which is the 6rst derivative of the thermodynamical
potential, determines the order of the phase transition
unambigously.

A pyknometer with a volume of 37.093 cm', repre-
senting a copper cylindrical reservoir, had a glass

capillary with an inner diameter of 0.160 cm. In its
upper part the capillary was blown into a small sphere
and joined to a valve by means of which one could
change the level of helium in the capillary. The obser-
vations were made by means of a cathetometer. At the
rotation of the pyknometer with a velocity of up=30
sec ', in the temperature interval 2.18'—2.172'K,
p p

—p remains constant, at the further cooling a dis-

continuity appears, shown in Fig. 11.6. The comparison
with the curve of the temperature dependence of density
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FIG. 11.8. Dependence of the density increase of rotating he-
lium II on velocity and temperature {Andronikashvili and
Tsakadze, 1966).

"In several experiments of Andronikashivli and Tsakadze
(1965a, b) a pyknometer with the volume 52.57 cm3 and with
the diameter of the capillary equal to 0.175 cm was used. The
change of the level in the capillary was determined within the
error ~0.02 cm.

obtained by Kerr (1957) (Fig. 11.7) allows us to make
the conclusion that the density of liquid helium changes
at the phase transition point by a jump of about
0.02%.

That shows that in the state of rotation the order of
the phase transition changes: liquid helium under such
conditions experiences a phase transition of the erst
order superimposed on the transition of the second order
(see Sec. 12.6).

Pyknometric studies (Andronikashvili and Tsakadze,
1965a,b, 1966) show that helium rr brought into
rotation increases its density appreciably. This fact
contradicts the opinion of many physicists, who thought
the vortex structure should reduce helium n density. As
seen in Figs. 11.6, 11.7, 11.8 the density change is the
higher, the lower in the temperature. An increase of the
angular velocity also leads to an increase of helium u
density. Naturally such effects are not observed in
helium x.

Such experiments were made with a great accuracy
(the relative error in the density determination is only
0.0009%)." The authors tried to explain the results

by an action of the centrifugal pressure, tending to
make the liquid more dense at the periphery. However,
since the centrifugal pressure is small under the de-
scribed conditions (it does not exceed 2X10 ' atm)
the value of the effect $(Ap/p)m~ 4X10 4j would
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require the value of the coeScient of compressibility
exceeding the real value of this magnitude (~10 '
atm ') by two orders (Pote added se proof. Bablidze
and Gavrilidi have measured the first sound. velocity in
rotating helium Iz and showed that its compressibility
did not depend on the velocity of rotation. )

Besides, due to the known properties of the coefficient
of compressibility, the effect of compression by centrif-
ugal pressure should be increased with an increase. of
temperature, and the derivative Bp/Dross should be de-
creased with an increase of the angular velocity. In
reality only a decrease of Bp/B~ss at an increase of top

is observed. But an increase of temperature decreases
the observed packing.

12. PHENOMEÃOLOGICAL AND MICROSCOPIC
THEORY OF QUANTUM LIQUID ROTATION

12.1. Phenomenological Quantum Theory of
Helium rz

The wave function, we mentioned in Sec. 2, while
speaking on Feynman's ideas, is a function of coordi-
nates of all the atoms of liquid helium. But a quantum
liquid can be described phenomenologically by a simpler
wave function depending only on three spatial coordi-
nates (and may be on time). Ginzburg and Pitaevski
(1958), proceeding from an analogy with the phe-
nomenological theory of superconductivity of Ginzburg
and Landau, suggested using a complex wave function
for description of the superQuid component of helium n

P=f exp (iy). (12.1.1)

Its modulus f determines the density of the superfluid
component

(12.1.2)p, =mf'

and the phase @ determines the velocity of the super-
Ruid component

v, = (fi/m, ) Vp. (12.1.3)

—',mLi(ft/m) V+v„jg—cnP+P ~ P ~+=0, (12.1.4)

where n 4.5X10 'r (Tq—T) erg and P 4X10 ~

erg cm', T~ is the temperature of the X-transition in an
in6nite volume of helium at rest. The theory has a
suf6cient foundation only when Tg—T((T)„but one
may hope that its qualitative conclusions are valid
when T&(T), as well.

It shouM be emphasized that the main peculiarity of
this equation is the direct association between the

The condition curl v, =o is maintained automatically
here.

A complete set of equations for the phenomenological
quantum theory of helium D. was obtained by Pitaevski
(1958). Further we shall deal only with one equation
of this set. It is the equation of equilibrium, valid in
the static case. The equation of equilibrium has the
following form:

motion of the normal component and the velocity and
the density distributions of the superQuid component.
This fact distinguishes the phenomenological quantum
theory from hydrodynamics formulated in Sec. 4.2,
which provides the association between motions of the
components only when there are vortex lines (terms
with F, ), while the density p, is considered as the
constant not dependent on v„—v, .'4

12.2. Rotating Helium rr in the Phenomenological
Theory

Kiknadze, Mamaladze, and Cheishvili (1965) used
Eq. (12.1.4) to consider uniform rotation of helium rr.
In this case the motion of the normal component is
determined v„=Ltns, r'$ and Eq. (12.1.4) has the form

~~mIi(5/m) V+Less, r) I'iP —cnP+P I f ~+=0. (12.2.1)

The other equations of the complete set of Pitaevski
are reduced to the absence of the temperature gradient
and to the requirement of a stationary distribution of
all the physical magnitudes in the rotating frame of
reference.

It was shown earlier (Ginzburg and Pitaevski, 1958)
that Eq. (12.1.4) when v =0 has solutions describing
a unit vortex line in an infinite liquid. Then in accord-
ance with formula (2.2.3) the gradient of the wave
function phase has the value ) Vg

~
=1/r and it is

directed along the tangent to the circumference r=
const. The same circumferences are the lines of the
constant density p, . the modulus of the wave function
f(r) =f(r) is equal to zero on the vortex axis r =0,
f(r) 0.6 (n/P) '*r/as, where r&(as =A/(2m+) ' and
f(&) (cr/P)'(1 —&o'/2r'), when r))as. The parameter
Qp is a characteristic dimension of the theory. It is
equal to as 4.3X10 '( Tz —T) '* and appreciab=ly
exceeds interatomic distances in liquid helium only at
temperatures very close to Tz. This parameter repre-
sents simultaneously the radius of the vortex core;
that is the reason why the symbol ap is used.

Kiknadze, Mamaladze, and Cheishvili (1965) have
shown that Eq. (12.2.1) also has solutions similar to
the just described one, with the only di6erence that the
vortex axis, i.e., the line on which f=0, moves together
with the normal component (i.e., it takes part in the
rotation of the vessel). Furthermore, it was found that
Eq. (12.2.1) has solutions describing the existence of
two-dimensional regular lattices of vortex lines in a
rotating liquid, similar to vortex lattices of Abrikosov
(1957). Such lattices can rotate together with the
normal component without distortion of their motion.
The distribution of the superRuid component density
at the square or triangular symmetry of vortex arrange-
ment coincides exactly with the distribution of super-
conducting electron density in the corresponding square

'4 The latter circumstance is associated with the fact that only
the case of small

~

v„—v,
~

was considered in Sec. 4.2. In the general
case Landau's two Quid hydrodynamics and hydrodynamics of
rotating helium II as well, take into account the dependence of
pn and ps on vn va.
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FIG. 12.1. Distribution of the superQuid component density
when there is a square lattice of vortex lines in it. Vortex lines
are situated in the points where the density is equal to zero.
The lines of constant density are shown; values in units of maxi-
mum density p. are shown on them. The same lines are the lines
of the superQuid component curernt in the reference system ro-
tating together with vortex lines, the normal component, and the
vessel. Arrows show the direction of motion. The figure is plotted
for the case when co0=ajr=4.3)&10M {Tq—T) sec and is taken
from Abrikosov's paper (1957).

(Abrikosov, 1957, Fig. 12.1) or triangular (Cleiner,
Roth, and Autler, 1964, Fig. 12.2) lattices. '5

The imaginary part of Eq. (12.2.1) has the form

(Vf, (5jm) V@—L6)0, r])=0, (12.2.2)

and that means the lines of the constant density shown
in Figs. 12.1, 12.2 are at the same time lines of a super-
Ruid current in the rotating system of reference. On
looking at Figs. 12.1 and 12.2 from this point of view,
we cannot help but notice that near the points where

f is maximum (we denote them r ), the superfluid
component rotates in the opposite direction with respect
to the direction of its rotation around vortex points
(where f=0). A more detailed consideration shows
that in the vicinity of r this rotation is performed
according to the law v, —[aao, r—r ) (the next term
of the expansion v, over the powers of r—r is equal
to zero). At the transformation to the laboratory sys-
tem of coordinates, we get v, = t aao, r)—t mo, r—r„$=
/~0, r 1, i.e. , the vicinity of any point of r is a domain
in which the linear velocity of rotation is constant. But
the angular velocity is different for diGerent domains
(compare Fig. 12.3). Let us note that Pellam (1962)

suggested a model of domains instead of the vortex
model of rotating helium rI.

The centers of these domains rotate together with
the vessel and rotation of the superRuid liquid in the
opposite direction takes place inside of them, that
provides the constant linear velocity and the equality
curl v, =o. It is interesting that Pellam s intuition was

justihed to some extent, but the existence of such
domains in intervortex regions was a direct consequence
of the vortex existence and there is no necessity to
oppose it to the vortex model.

Thus the phenomenological quantum theory has con-
6rmed and made somewhat more precise the quasi-
classical considerations taken as the basis of rotating
helium u hydrodynamics: the existence of vortex lines,
their rotation together with the vessel, the validity of
the equation curl v, =o throughout the liquid at the
mean velocity characterized by the curl equal to 2')p.
Figure 2.2 given in Sec. 2.4, plotted on the basis of
purely qualitative considerations have now obtained a
deeper substantiation. In particular, it became known
that the curve of the superAuid velocity crosses the line

w, =~or in each intervortex space (in the points r ) being
parallel to the abscissa. This makes the velocity
distribution closer to the law e=Gopt' most favorable
thermodynamically.

However, the statement on the advantages of liquid
rotation as a solid body now requires a verification.
Indeed, for the complex motion of the liquid consisting
of two components, the densities of which depend on
the character of motion, the variation problem on the
minimum of the free energy should be formulated and
solved anew.

'5 The existence of Eq. (12.2.1) solutions describing regular
systems of vortex lines, does not mean that all such systems are
realized (compare Sec. 12.3). Some authors even state that only
random, uniform in average, distribution of vortex lines is pos-
sible, in di8erence from superconductors of the second kind.
But, we think that this problem is so far open. Ikachenko has
shown that a two-dimension vortex lattice with a triangle sym-
rnetry is stable.

FIG. 12.2. The triangular lattice of vortex lines (compare
j.'ig. 12.1). The figure is taken from the paper of Kleiner, Roth,
and Autler (1964).



K. L. ANDRQNrvAsIrvrI. I AYD XU. G. MAMAr. ADm JIykodynansics of Rotating He ir 617

l=[r, p,v, +p„v„], (12.3.2)

where e,o is the internal energy and the last term of
formula (12.3.1) describes a purely quantum effect,
connected with the contribution of any inhomogeneity
into energy, due to the relation of uncertainties. The
matter is that the statement on the existence of the
density gradient is associated with the statement on
the concentration of some additional number of particles
in some volume, and an uncertainty of momentum,
contributing into the kinetic energy, is associated with
any restrictions of coordinates of particles.

Expressing p. , v„and p =p -p, by a phenomeno-
logical wave function P, and taking v„=[ess,r], and
expanding e,s in powers of p, (Ginzburg and Pitaevski,
1958)

e,s ——e„p of'+ ',Pf-'-
then the free energy density will have the form

e —1 ~s=e.o+(~'/2P) -~
I 0 I'+sP14 I'

(12.3.3)

+ (fP/2rri) I Vf I' —(fi/2i) (P*VP PVP~, [too—, r])

+ ', res I 4 I' oo'ir-' —-'poio'r'. (12.3.4)

Equation (12.2.1), which we had in Sec. 12.2 is just;
the solution of the variation problem on the minimum
of the integral over the volume of expression (12.3.4).
Substituting in its turn this equation into the minimized

FIG. 12.3. A circle is placed on the rod rotating counter clock-
wise around the axis passing through one of its ends; the circle
itself rotates clockwise. If the velocity at point C is equal to copRg,
then the velocity at point A is equal to ~pR&+~p(Rc —Rz) =pRc
and the velocity at point 3 is equal to copRg —cop(Rgg —Rg) =a]pRt. .
Similarly, one can be convinced that all the points of the circle
have the same linear velocity Lao, RcJ.

12.3. Free Energy of Rotating Helium rr

The energy e and the angular momentum 1 of unit
volume of liquid helium Ir are composed by means of
equations

e= e,s+s p,n,s+ ', p„—e„'+(fis/Swiss) [(Vp,) s/p, ,], (12.3.1)

integral, we obtain the condition

a' I P'
(e—1 eas —e,s+-', pa&s'r') dV= —

I
1 —f—' dV=min,

2P ( n'

(12.3.5)

which should be used with the purpose of choosing
the most thermodynamically favorable solution of
Eq. (12.2.1), when at given boundary conditions it has
several solutions.

Let us note that the left-hand side of expression
(12.3.5) is the difference of the "kinetic" free energy
of rotating helium n and the free energy of rotation as
a whole. In other words this condition describes the
tendency of helium Iz to its inaccessible ideal, i.e., to
solid body rotation. And the closeness of f to its maxi-
mum possible value f= (a/P)& promotes the approach
to such an "ideal. "

The direct consequence of condition (12.3.5), which
is reduced to the requirement f f'dV= ma,xis the
advantage of the superQuid component existence in the
whole considered volume. The equality f=0 is ver—y
undesirable from the point of view of this consideration.
Therefore the transition of the whole liquid into the
normal state can be realized only because of the absence
of nonzero solutions of Fq. (12.2.1) at given boundary
conditions (or if there are no solutions with real positive

f, which cannot be negative or complex by its defini-
tion) . When T= Ti, the coefFicient n=4.5X10 '

( Ti,—T) erg becomes zero and the density of the super-
Quid component vanishes as well, since this density in
the stationary infinite liquid is equal to neo/P and is
proportional to this magnitude in any other case. [The
previous statement is connected with the circumstance
that Eq. (12.2.1) can be rewritten in a dimensionless
form with I f I

measured in the units (ct/P)i. ] In the
moving liquid or in the presence of boundary surfaces
reduction of p, to zero takes place at T&T~ as well

(a shift of the X-point).

12.4. Critical Velocities and the X-Point Shift

The possibility of reduction of p, to zero [meaning
the absence of solutions of Eq. (12.2.1)] is realized in
the case of an infinite liquid, rotating with the angular
velocity ass which we shall denote as ai.s ",ai,s= (oi/f'i) ~
4.3X10"(Ti,—T) sec '. When are tends to co,s, the wave
function of helium xx, rotating in an inhnite volume,
tends to zero smoothly and disappears gradually (the
phase transition of the second order). Thus rotation
causes a shift of the point of the phase transition

STD~—2.3X10 "nip 'K (12.4.1)

where ~0 is measured in sec '.
Calculations of Kiknadze, Mamaladze, and Cheishvili

(1965) leading to the determination of the superfluid
velocity near the points r which are the centers of the
regions of rotation in the opposite direction were made

IThe symbol co,& is introduced as an analogy with the second
critical field H, 2, at which a superconductor of the second kind
becomes normal.
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1.0

0
R

(a) (b)

FIG. 12.4. The state diagram of rotating helium II. The symbols:
co*=hco0/n is the angular velocity in units 4.3 &&10' (Tz —T) sec ',
R*=R/u0 is the radius of the cylinder in units 4.3X 10 '
(Tg —T) ~ cm. To the left and above line (a) there is a region of
the normal state. To the right and below line (a) there is a region
of the superfluid state. The density of the superfluid component
is equal to zero on line (a). The existence of vortex lines between
lines (a) and (b) is impossible. The existence of a vortex line
is allowed to the right and below line (b). The density of the
superfluid component on line (b) is equal to zero when there is
one vortex line on the axis of the cylinder.

at oro &o),2. The statement of these authors on the possi-
bility of the description of the superRuid rotation pic-
ture by Figs. 12.1. and 12.2, also concerns the mentioned
range of velocities. Condition (12.3.5) makes us prefer
a two-dimensional lattice of vortex lines with the tri-
angular symmetry in comparison with the square one.

Kiknadze and Mamaladze have also determined the
critical velocities of rotating helium rt at which the
superQuid density becomes zero in vessels of finite
size. These critical velocities at which helium II passes
into the normal state depend on the dimensions of the
vessel with a finite radius R (see Fig. 12.4) . This figure
determines in fact the region of the superfluid state
existence on the diagram (cop, T), since the dimension-
less radius E* and the dimensionless angular velocity
co*, used at its plotting are functions of temperature.

The family of curves on the diagram (cop, T) corre-
sponds to one curve in Fig. 12.4, each of them is charac-
terized by a definite value of the radius. The change of
temperature at the constant radius corresponds to a
shift from the right to the left in Fig. (12.4) along the
line asymptotically tending to parallelity with the
abscissa, when T—+0 and to the'coincidence with the
ordinate, when T &Ti, (see Fig. 12.7—). Here since the
wave function in the point of intersection of such a line
with the curve (a) (taken from Fig. 12.4) becomes
smoothly zero, then a shift of the ) -point should occur.
As seen in Fig. 12.4,at relatively small velocities the
phase transition takes place when R* 2.4 (more
accurately, when R*=jo&, where jo& is the first root of
the Bessel function Jp). Returning to usual units
(cm, degree) we obtain

pT),.~ (1.1X10 ")/R' 'K—, (12.4.2)

where E is measured in centimeters. Independence of
STD from coo takes place throughout the whole almost
vertical portion of curve (a) .

Because of a large value of the unit used in Fig. 12.4
of ouo measuring, the almost vertical portion of curve

(a) overlaps practically the whole interval of the
attainable velocities of rotation. At such velocities, an
appreciable shift of the ) -point can be observed only in
very narrow capillaries Lformula (12.4.2) ].At a further
increase of coo the shift bT~ depends both on E and on
coo, and at last at extremely large coo, it hardly depends
on R. The transition takes place at coo=co,2 in the vessel
with an arbitrary large radius and STD is determined by
formula (12.4.1). As the magnitude ap, used as a unit
of the radius, is very small (if only T is not too close
to Ti), then co,p is the critical velocity of transition
into the normal state for a vessel of any, but not ex-
tremely small size.

Using condition (12.3.5), it would be possible in
principle to solve the problem of the lower critical
velocity cv, &, at which the first vortex line is formed.
But in the process of such a calculation great difhculties
arise.

An exception is the cas'e of large radii E*, which
involves all practically interesting values of E, if only
T is not too close to Tq. When E))ao, the structure of
the vortex core has no special role. Therefore, to
determine the critical velocity of vortex formation, the
considerations which led to the Arkhipov —Vinen
formula (2.6.1), for creation of the firs't vortex line

cu„(h/mR') ln (R/ap)

and to formula (2.6.4) for the velocity

(12.4.3)

pp, i' (4'/mR') ln (h, imago, i'ap'): (12.4.4)

According to a quasi-classical consideration, vortex
lines are formed to make the superAuid component
imitate to some extent the favorable rotation of the
liquid as a whole. On the other hand, a vortex line is a
node line of the wave function and the density of the
superQuid is small in its core. It would seem to create an
unfavorable situation from the point of view of condi-
tion (12.3.5) . But now it will be shown that in reality,
strange as it may seem, the existence of vortex lines
increases the density of the superQuid component in a

are sufhcient. Here cv,i' is the velocity starting from
which the density of vortex lines corresponds to
Feynman's formula (2.5.1) . Keeping in mind the esti-
mating character of given formulae, we neglect ao' in
comparison with R' in formula (2.6.1) and do not intro-
duce the numerical factor, determined by Ginzburg
and Pitaevski (1958), under the symbol of the loga-
rithm.

As already noted, we could not manage to make
these estimates more accurately on the basis of condi-
tion (12.3.5), but in spite of that, Kiknadze and
Mamaladze having made a qualitative analysis of
the prob'lems of vortex formation in rotating helium Ir,
came to certain conclusions discussed in the following
paragraphs.

12.5. Why Are Vortex Lines Formed in Rotating
Helium rr'P
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rotating vessel. It should drop catastrophically if vortex
lines were not formed or if they were not formed in
sufficient number.

This statement is based on the analysis of .solutions
of two equations, which are the real parts of Eq.
(12.2.1)"in two different cases: when. there is no mo-
tion of the superfluid component (V&=0) and when
its motion is caused by the existence of one vortex
line on the axis of rotation of the normal component

() VP
~
=1/r). When there are no vortex lines, Eq.

(12.2.1) has the form

(ft'/2m) Df+.nf Pf'=—2mtogr f (12.5.1)

Rotation, when there is one vortex line in the superQuid
component, reduces Eq. (12.5.1) to the form

(fi'/2m) Af+nf Pf'= ', m—(tpopr —(5/mr) —]'f. (12.5.2)

The analytical form of solutions of these equations
is determined by the authors only for some particular
cases. However, for the purposes of this section, the
results of the qualitative analysis are sufhcient. It is
valid in the general case and it takes into account that
an increase of

~
v —v, I leads to a decrease of p, (see

Fig. 12.5) .
The density of the superQuid component is equal to

zero on a solid surface, but at the distance of the order
of Qp from the wall the density of the superQuid compo-
nent already reaches a value of the order of mcc/P,
which is an equilibrium value for an infinite medium
(curve 1 in Fig. 12.5; it is implied that R»ap). As
already noted in Sec. 12.2, p, =0 on the vortex line and
also reaches the order of mn/P at a distance of the
order of ap from the vortex line axis (curve 3) . Rotation
of the normal component creates an action similar to
that of a vortex line: the density of the superQuid com-
ponent is smaller in regions where the velocity of rota-
tion is higher. Therefore the difference between the
character of rotation of the superQuid liquid taking
place according to the law 1/r and the character of the
rotation of the normal component, obeying the law
copr I the right-hand side of equation (12.5.1)j is very
essential. In the first case the velocity is infinite when
r=0 and there p, =0, but with an increase of r the
velocity drops rapidly and p, increases (curve 3). In
the second case when r=0, the velocity is equal to
zero and p, has its maximum value, but the velocity
increases with an increase of r and p, begins to decrease
more rapidly. One may show that this decrease becomes
especially pronounced at a distance from the axis of
the order of (5/mp:p)t Lcurve 2, Fig. 12.5 is given in
arbitrary units for illustrative purposes, but one should
keep in mind that at usual velocities of rotation
(h,/mtop) ~&&apj.

So if in a vessel, the radius R of which exceeds
(ft/mtop)1, only the normal component would rotate,
the density of the superQuid component in this vessel

'7The real part of Eq. (12.1.4) has the form

(tt'/2m} ttf+nf ttfs = ,'m (v„v,) 'f-— —

FIG. 12.5. Distribution of
the super QuId component
density (p.=mf'): (1) in
the stationary cylindrical
vessel; (2) with rotation of
only the normal component
(v =coor, v, =o); (3) with
rotation of the superQuid
component caused by the
presence of only one vortex
line (v„=0, ,v=5 /mr); (4)
when the both components
rotate (v„=cupr, v, h/m=r)
The drawing is plotted in
arbitrary units.

/
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wouM be strongly reduced in the whole peripheral
region R)r) (fi/mcop)'*. In other words, at small veloci-
ties of the vessel rotation, the effect of the superQuidity
depression by the rotation of the normal component is
rarely seen. But when the angular velocity, equal by
the order of the magnitude to cop fi/mR' is exceeded,
this effect is stronger pronounced.

It would seem that the existence of a vortex line also
decreasing p, can only make this unfavorable situation
still worse. But Eq. (12.5.2) (in the right-hand side
of which we have the differertce of topr and fi/mr) shows
that the e8ect of rotation of each of the components
depressing superQuidity takes place only in the regions
r(((FP/mcop)' *where a vortex line dominates or r»
(5/mtop)v, where the normal component dominates. In
the region r (ft/mppp)i the mutual compensation of
these inQuences takes place and the density of the
superQuid component reaches the value characteristic
of the liquid at rest (curve 4) .

Hence two conclusions follow. Firstly, starting from
the velocities of the order fi/mR' the formation of vortex
lines on the rotation axis can be favorable (compare
formula 12.4.3). Really, by decreasing the density p,
at the distance of the order of ao the vortex promotes
its increase in a wider region. Thus it prevents the
decrease of p, at a distance from the axis of the order
of (irc/mpop)'*. Secondly, if the size of the vessel or the
velocity of rotation is su%ciently large, then in the
presence of a vortex line p, will still decrease some-
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(a)

I'"zG. 12.6. Distribution of
the density of the super-
fluid component in rotating
helium H, containing an
equilibrium number of vor-
tex lines: (a) at relatively
small velocity and (b) at
relatively large velocity. The
graph is plotted. in arbitrary
units. The dashed line shows
the distribution that would
be realized in the absence of
vortex lines.

where at distances more than r (fi/mtpp)~. Only the
appearance of new vortex lines can present this decrease
of density p,. as they must be distributed apparently
uniformly. This distribution should be such that the
value of the velocity of the superAuid component would
be close to tha, t of the normal component in all the
points, excluding those located in the vicinity of vor-
tices. Indeed, the real part of Eq. (12.2.1) has the form

(h,'/2m) Af+~f —Pf'= -', mI f ~p, r]—(A/m) Vy I' (12.5.3)

and if Sv&/m [ppp, r$, considerations, treated just
now can be repeated. According to them the value of
the superAuid component density is close to its value in
the liquid at rest. Let us consider an arbitrary point,
not too near a vortex line. Such a point can be located a,t
approximately equal distances from nearest vortices.
Then their contribution to the magnitude Vg in the
point under consideration is mutually compensated.
Or the condition, according to which, ft/mr' is not too
large in comparison with copr should be satisfied. Here
r and r' are the distances from the mentioned point to
the rotation axis and to the nearest vortex line, respec-
tively. 5V&/m in such a point differs little from the
mean velocity on a circumference with the radius r.
That mean velocity is determined by the number of
vortex lines E„in this circumference in accordance with
condition (2.2.2). Thus

5/m I Vy I =Jt'/„rp/2~r, (12.5.4)

where LV„=mr'E, E is the density of vortex lines. If it
is required that equality 5V&/m cppr should be valid,
then it follows from (12.5.4) that E 2&op/I'p.

That corresponds exactly to Feynman's formula
(2.5.1), according to which an area mfi, /m~p corresponds
to each vortex line. This area if it were a circumference
would have the radius (ttt, /mptp)**. At a square structure
of a vortex lattice the vortex separation is then
(trh/mcup) &, at a triangular one it is (gn.h/3v3mppp) '*. The
distribution of p, at such a vortex density is shown
schematically in Fig. 12.6. More accurately "the
topology" of this distribution was shown in Figs. 12.1
and 12.2 concerning the case when cop&~,2. In the
latter case (8/mptp) & is comparable with ap and maximum

values of p. are small (as it was noted p„~0when
ppp~pt, &). But when (5/nuup) ))ap, that is valid at any
practically achieved velocities cop, p, has almost every-
where the value very close to the superAuid component
density in an infinite liquid at rest.

Thus vortex lines formed in rotating helium n were
found to be the means preventing the breakdown of
the superAuidity by rotation of the normal liquid.

12.6. The Character of the Phase Transition in Ro-
tating Helium n

It has already been noted in Sec. 12.4 that a change
of temperature of rotating helium rr on the diagram
(pp~, R*) may be represented by a line tending to
parallelity with the abscissa when T—+0 and to a
coincidence with the ordinate when T~T~. In Fig. 12.7
there are shown, in addition to the mentioned line, the
boundaries of the existence for vortexless and single
vortex solutions of Eq. (12.2.1). They are given by
curves (a) and (b), which were earlier shown in Fig.
12.4. (Figure 12.7, in contrast to Fig. 12.4, is plotted in
an arbitrary scale to the more illustrative. ) Curve (c) is
also given there, it is a boundary of thermodynamical
advantages of the vortex existence. It has been already
noted that the curve is computed only in the region
R*))1and pt*«1, where it is given by formula (12.4.3) .
The other portion of the curve is plotted (in arbitrary
units) on the basis of the following simple considera-
tions. In the immediate vicinity of curve (b), below it,
in spite of the fact that here the solution of Eq. (12.5.2)
exists, the presence of a vortex line cannot be thermo-
dynamically favorable, because the function f of a
single vortex is small. Condition (12.3.5) gives prefer-
ence to a vortexless situation here. Therefore curve (c)
should turn back and repeat in its upper part the outline
of curve (b). A similar shape should have the curves
confining the regions of thermodynamical advantages
of existence of two vortex lines, etc. When R*~~
their upper branches tend to a straight line

G)p= G)q2

Let us now move from the left to the right along the
line of helium cooling. SuperRuidity will appear in the

FIG. 12.7. Curve of heating and cooling of rotating helium rz
on its state diagram. The symbols ~* and R* are the same as in
Fig. 12.4. The hatched region is the region of the thermodynamical
advantages of the existence of vortex lines. The boundary of this
region represented by curve (c) is given rather conventionally.
The 6gure is plotted in arbitrary units.
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point of intersection with curve (a), and the function

f which is the solution of Eq. (12.5.1) increases, begin-
ning from the zero value, i.e., it is continuous in this
point. It is the phase transition of the second order,
taking place with the shift of the )-point, that was
mentioned in Sec. 12.4, In contrast to the intersection
with curve (a), the intersection with curve (b) does
not cause any essential consequences. The superQuid
liquid remains at rest. Its state changes only at the
intersection with the curve (c), when a vortex appears
and a new state of the superQuid component is de-
scribed by the solution of Eq. (12.5.2) . This change of
the function f takes place by a jump, as only the inte-
grals taken of the fourth power of the modulus of
vortexless and single vortex functions P are equal to
each other on curve (c) t because of condition (12.3.5) j,
but the functions themselves are different. It is already
the phase transition of the first order.

Let us consider this problem in more detail. ff~4 dV
and ff~'dV will denote contributions into the free
energy of rotating helium D, which are generally speak-
ing different for a vortexless and single vortex states.
When point C is approached from the left, the 6rst of
these integrals decreases Lvortexless state becomes less
favorable (12.7) 1, the second integral increases. In
point C itself, the integral ff dV is continuous, as
ffo'dV= ff&4 dV. But here the transition from a de-
crease of the integral Jf' d V to its increase takes place
and hence the derivative oi the integral Jf'dV along
the curve of cooling experiences a discontinuity. If we
calculate the first derivative of the free energy with
respect to temperature, there appears a term

8 8R* 8 Ba)* 8
f4dV= f'dV+ f4dV,

BT BT BE~ BT Bco*

i.e., this derivative experiences a discontinuity, and that
characterizes the phase transition of the first order.
The consideration of the processes of formation of the
following vortex lines will lead, apparently, to similar
results.

But one should keep in mind, firstly, that the con-
siderations just mentioned are purely qualitative ones,
as they are not based on the treatment of the computed
portion of the phase diagram. Secondly, only the prin-
cipal importance should be ascribed to the statement
on the character of the phase transition. It means, for
instance, that relaxation phenomena connected with
vortex formation are possible. But thermodynamical
eRects of the type of the latent heat can be too insig-
nihcant for direct measurement (see, however, Sec.
11.4) .

Relaxation eRects can significantly inQuence the
chara, cter of the considered phenomena, . Even at not
very rapid cooling, the state of liquid can be vortexless
until the values R* corresponding to a rather large
equilibrium number of vortex lines at a given co*.

At heating of the liquid, processes proceed in the
reverse succession. Here also relaxation phenomena

connected with the vortex disappearance are unavoid-
able. But at an intersection with curve (a) the super-
Quidity disappears instantaneously.

Under the real conditions of the experiment with the
passage through the X-point, intersections with curves

(a) (the point A) and with curve (c) (the point C)
and also with the curves con&ning the regions of two-,
three- and many-vortex states, take place almost simul-
taneously. Thus, some transitions of the 6rst order
coincide with the phase transition of the second order.
However these transitions of the first order may not
take place because of the great probability of over-
cooling or overheating.

L= (T/T, „)&L„ (12.7.1)

where T,
„

is the temperature at which condensation
begins, I., is the classical angular momentum of the
liquid rotation as a whole. %hen TC T,„,I.&I.,
(superfluidity). Beginning from T= T,„,I.= L. always
(a classical behavior) .

%hen the angular velocity is increased, there arises
such a situation, when particles of condensate are
involved into rotation. Here the angular momentum
experiences a jurnp with the value EOA, , where Ã0 is
the number of particles in the condensate. The interna, l

energy changes by a jump as well. That takes place
at the angular velocity of rotation

&v~ 4 45'/mR'—— . (12.7.2)

The further increase of the angular velocity causes
again and again such jumps, which are the phase
transitions of the 6rst order. As the states of the con-
densate are described by Bessel functions J„(j;„r/R)
the expression for critical velocity +„ofeach nth transi-
tion is connected with the 6rst roots of these functions
j&„(compare Sec. 12.4, Fig. 12.4). Having used the

12.'l. Rotation of the Ideal Bose Gas

Since at present the microscopic theory of helium n
cannot give a complete answer to all the problems en-
countered by it, the consideration of simplified models
becomes especially interesting. Such models are an
ideal Bose gas, a rarefied Bose gas, or a system of
weakly interacting Bose particles. In particular only
in the theory of these systems is there a microscopic
consideration of such problems as vortex core structure,
the spectrum of vortex line oscillations, interaction of
vortex lines with thermal excitations, determination of
the moment of inertia (or the angular momentum) of
the rotating substance, etc. A short review of the results
of such a type directly concerning the topic of our paper
is given in this and the following section.

The problem of rotation of the ideal Bose gas was
considered by Blatt and Butler (1955),who have shown
that at low velocities of the vessel rotation, the particles,
having experienced Bose—Einstein condensation in the
state with the zero momentum, do not take part in the
rotation and the angular momentum is expressed by
the formula
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asymptotic expression for j&„,Blatt and Butler have
received the following formula for the velocity co, at
which the transition into the state with the angular
momentum of the condensate Eonh, takes place:

[n+2 47m. ' 0—5+. O(m &) )fi/mR' .(12.7.3)

All these phase transitions are very close to each
other and coincide in fact. At very large e we have
co„nh/nsR' and

L„=Xprlh+',m(E -Ep) R—'sr„',m(X+-Xp) R'co„

(12.7.4)

The analogy with the behavior of helium xz finishes
here. At large velocities of rotation the ideal Bose gas
has a smoothed angular momentum, even larger than at
rotation as a whole. In this association Blatt and Butler
spoke of the gas "infraQuidity. " The physical reason
for such a behavior of the system is the following:
because of the properties of the function J„(j„&r/R),
the particles of the condensate are concentrated near the
walls of the cylinder and then contributions of each of
them into the moment of inertia are close to mE.'.
That distinguishes the rotating condensate from the
rotating substance with the uniform distribution of
particles, in which the mean contribution of a particle
into the moment of inertia is 0.5mB'.

12.8. Vortex Lines in the Gas of Weakly Interacting
Bose Particles and Rotation of Nonideal
Bose Gas

The fundamental work of Bogolubov (1947) formed
the basis of the microscopic theory of a nonideal Bose
gas. It influenced decisively all the following develop-
ment of the theory. Unfortunately we cannot dwell on
those aspects of that theory which do not directly
concern the topic of our review. As to its connection
with the problem of rotating helium xr, it is sufficient to
note that the wave function of the condensate in the
theory of nonideal Bose gas satisfies, under the condi-
tions of equilibrium, the equation quite similar to Eq.
(12.1.4) when u„=0(Pitaevski, 1961; Gross, 1961)."

Here the modulus and the phase of P determine the
density and the velocity of the condensate Qow simi-

larly as in formulas (12.1.2), (12.1.3), eo is the density
of the condensate particles in an infinite and stationary
liquid. The characteristic dimension in this case is
expressed as ao ——5(2meoVO) & and the region of appli-
cation of the theory is restricted by the requirement of
smallness of the product soVp sufficient that the param-
eter ao would be much larger than interatomic distances.

' Equation (12.8.1) is put down in the form corresponding to
a short-range, repulsive interaction, with the potential

&u(ri —r2) = Vo&(rg-r~).

In the connection of the similarity of Eqs. (12.2.1)
and (12.8.1), it is quite clear that the latter of them as
well as the former one has solutions describing a single
vortex line.

Fetter (1965) has described the array of vortex lines
formed in a rotating vessel by an approximate function

p(r) =eo'Q, , exp (ill, ), (12.8.2)
a r—rI '+~o' '

where r~ is the coordinate of the kth vortex line, 8I, ——

arctan [(y—yz)/(x —xz)]. In this approximation he
made the minimization of the magnitude E—I.+0 and
became convinced that vortex lines should be distrib-
uted with the density corresponding to Feynman's
formula (2.5.1) and L= L, [compare formula (2.6.3)].
The angular momentum value per each particle is
equal to 0.5X~fi, where Ã~ is the total number of
vortex lines in the cylinder with the radius R.

The difference between the results of Blatt and
Butler (12.7.4) and those of Fetter (L,= L,) is due not
only to the circumstance that the former ones considered
in fact one vortex line with a large circulation and the
latter a lot of vortex lines. The nonlinearity of Eq.
(12.8.1) is also very essential. It takes into account
the interaction of the particles, due to which the modulus
of the wave function is maintained at the constant
level equal to eo' everywhere besides the immediate
vicinity of vortex lines and that of solid boundaries.
Therefore even at consideration of an intensive (I' =ePO)
single vortex line on the axis of the vessel with suffi-

ciently large radius (R))mao), the double contribution
of condensate particles to the moment of inertia because
of their "centrifuging" is not obtained. The expression
of the type J„(j„&r/R) does not already describe the
distribution of the condensate particles. $~0 only near
the vortex line, but almost throughout the whole
vessel

I P I eo'* (see curves 1 and 3 in Fig. 12.5).
Scattering of thermal excitations on vortex lines in a,

rotating nonideal Bose gas was considered by Iordanski
(1964) as well as the force of mutual friction caused
by this scattering. Having made more accurate calcu-
lations Tordanski (1965b) has shown that the force of
mutual friction is not expressed directly by the transport
cross section of scattering of thermal excitations on
vortex lines as it was assumed in papers of Hall and
Vinen (1965b), Lifshitz and Pitaevski (1957), and
Pitaevski (1958c). It was found that a model of a weak
ideal Bose gas indicates the existence of the Magnus
force (see footnote 4), which was not taken into account
before the expression for which contains p„and v„
instead of p, and v, . As the final results contain only the
density p„and the relative velocity vz, —v„, they
depend little on the model of the substance, Iordanski
has calculated the coefficients 8 and 8' for helium n.
He has obtained the temperature dependence of 8
(Iordanski 1965b) similar to that shown in Fig. 7.2 at
the symmetric cross section of absorption of exitation
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momeiitum equal to 8.5 A. The temperature dependence
of 8' was then greatly different from that shown in Fig.
7.2. The value of ( 8')—.incr. eases monotonously
practically from zero at T=1.1'K to about 0.05 at
T=1.7 K.

12.9.
,
The Rotating Helium u Problem and the

Microscopic Theory of SuperQuidity

The phenomenological theory of helium rr, used in
Secs. 12.1-12.6, as has been noted, has a restricted
region of application. The quantitative results of this
theory are valid only in the region T&—T&(T&, when
the characteristic dimension ao is much larger than
interatomic distances. The assumption on, at least,
qualitative validity of the conclusions of the phenom-
enological theory in the whole range of temperatures
0(T& Tq, though it seems rather plausible, still awaits
its substantiation by the microscopic theory. ' The
micro'scopic theory of an ideal and even nonideal Bose
gas is not sufficient for a complete solution of this
problem.

The description of the situation existing nowadays
in the microscopic theory of helium ri is beyond the
scope of this review. Therefore we shall limit ourselves
with a short statement on some facts. (See for more
detail Chester, 1963.) Papers of Onsager and Penrose
(Penrose 1951, Penrose and Onsager 1956, Penrose
1957) allow us to consider superfluidity of helium 11

as a result of Bose—Einstein condensation of some
macroscopic part of atoms in this liquid into the state
with zero momentum. The velocity of the superfluid
liquid can be considered as the gradient of the wave
function phase of the condensate. So far the question
of the physical interpretation of the density of the
superQuid component is not clear. This density, appar-
ently, does not coincide with the relative density of
the condensate. In this connection one cannot consider
that the question on the sense of the wave function
describing the superQuid component is solved com-
pletely. Strictly speaking even the possibility of intro-
duction of such a function at any temperatures is not
clear.

The latter question has a direct relation to the concep-
tion of Landau —Onsager —Feynman, according to which
the superAuid component is an ideal liquid, which can
perform only potential (curl Vp=—0) motions. If the
conclusions just mentioned here from the Onsager and
Penrose papers obtain suKciently general basis, then
possible doubts in the validity of the conception of
Landau —Onsager —Feynman will have no grounds at all
and the equations of Landau's two-liquid hydrody-
namics will not be considered as only one of the possi-

"The phenomenological theory of superconductivity, as is
known, has received such a substantiation in Gorkov's investiga-
tions. The wave function of superconducting electrons was found
to be directly connected with the width of the gap in the energy
spectrum of a superconductor.

bilities allowed by a more general consideration (Lin,
1963).

SUMMARY

A rapid and successful development of ideas on the
nature of rotating helium D has allowed us, during less
than a decade, to obtain a more or less clear under-
standing of the mechanisms of the phenomena taking
place in this liquid, instead of accumulation of paradox-
ical facts.

A vast experimental material has been collected and
a lot of theoretical studies were made, confirming the
ideas of curl-free rotation of the superfluid component
accompanied by quantization of circulation. Thus a
new condrmation was obtained for the assumption of
Landau's theory (curl v, =0), the violation of which
was the 6rst impression obtained from the experiments
on rotation of helium a.

At present much is known on properties of Onsager-
Feynman vortex lines which are formed in rotating
helium zr. Studies of irrotational motion of the super-
Ruid liquid, leading to the creation of gyroscopes, are
developed successfully.

Apparently, in the near future one should expect
further great successes both in the study of quantized
vortex lines and in the study of persistent currents. We
think that the main directions, in which such advances
are possible and especially desirable, are connected with
the problems of the mechanism of vortex formation,
stability of vortex arrays, quantum coherence, and the
microscopic basis of the theory.

It should be believed that solution of these problems
will lead not only to the necessary basis and confirma-
tion of the complete validity of the conception of
Landau —Onsager —Feynman, but to the further develop-
ment of the ideas on the nature of superRuidity as well.
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