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A path-integral formulation of quantum mechanics is investigated which is closely related to that of Feynman. It differs
from Feynman’s formulation in that it involves the Hamiltonian function of the canonically conjugate coordinates and
momenta. The classical limit yields the variational principle: §f (p1—N)di=0. A path-integral formula is also obtained
for the energy eigenstate projection operator associated with the time-independent Schrédinger equation. The classical
limit of the projection operator formula yields a modified form of the well-known variational principle for the phase-space
orbit of given energy. Relativistically covariant Hamiltonian variational principles are analyzed and lead naturally to a
relativistic scalar wave equation which involves a proper time variable which is canonically conjugate to the mass in the
same manner as the ordinary time variable is conjugate to the energy in nonrelativistic quantum theory.

I. INTRODUCTION

In 1948 the now well-known paper by R. Feynman!
appeared, which presented a new formulation of non-
relativistic quantum mechanics. This formulation had
three distinctive features.

(i) It concentrated attention on the propagator of
the Schrodinger wave function rather than on the wave
function itself, expressing this propagator (in a way to
be described later) as an integral over all possible paths
from one given point to another.

(ii) It introduced a new mathematical concept into
quantum theory, namely the function space integral or
“sum over paths.”

(iii) It was directly related to Lagrangian rather than
Hamiltonian classical dynamics. Thus the system to be
quantized was not first described in terms of N co-
ordinates and their canonical momenta.

The formulation presented in this paper is patterned
after that of Feynman in that it retains the first two
features mentioned above. It differs from Feynman’s
work in that it requires the description of the classical
system in terms of canonical variables and in the
classical limit reduces to a Hamiltonian variational
principle. An advantage of the Hamiltonian formu-
lation is that if the path integral is defined in the
simplest and most obvious way there is no need to
introduce special normalization constants to maintain
the unitarity of the propagator. In the conversion from
the Hamiltonian formulation to Feynman’s formulation
the correct normalization constants automatically ap-
pear. Besides the Hamiltonian path integral formu-
lation for the time-dependent Schriodinger equation a
path integral formula is also derived for the time-
independent energy eigenvalue equation. The last sec-
tion is devoted to the relativistic extension of the
formulation; particularly to the derivation and interpre-
tation of an equation for scalar particles which involves
a proper time variable.

II. THE FEYNMAN METHOD

Since we are concerned with phase-space integrals
throughout this paper it is convenient to choose units

1R. Feynman, Rev. Mod. Phys. 20, 367 (1948).

such that % (not 7), the natural unit of phase-space
volume, is unity. The Schrédinger equation is then

— (8am) WAV (x)¥=(¢/2m) dp.  (2.1)

We define a propagator, K (x”, x’, t"'—1¢) for the equa-
tion by stating that if ¥(x, {) is any solution (for all
values of {) then

Y7, 1) = / K", %, ("=, 1) & (2.2)

for all #” and ¢'. This is different from the more common
practice of defining the propagator to be zero for
negative values of ¢#’—# but it proves more useful
when discussing the time-independent Schrédinger
equation. K (x”, %, ) may be expressed in terms of the
energy eigenfunctions by the equation

K", %, 1) =2 ¢u(a")$n* (&) exp (—2miEt)  (2.3)

where the sum, which may actually include an integral
if the spectrum is partly continuous, is over the com-
plete set of normalized eigenstates. Using this formula
we can see that

P&, %, E)= f " K&, X, 1) exp (2miEl) di (2.4)

=2 8(E—Eu)¢u(x")$n* (X))

is a projection operator for the time-independent states
of energy E.

In his paper on nonrelativistic quantum mechanics,
Feynman presented the following recipe for calculating
K", x',t):

Let us denote by © the set of all continuous, piecewise
differentiable functions x(¢) which satisfy the conditions
that x(¢#') =x" and x(¢") =x"". For each function in Q
(which can obviously represent the trajectory of a
particle moving from x’ to x” in time interval ¢’ to ")
we calculate the action integral

g

Ax1=[ Lai= [ Cami () — V@) d (2.5)

t!
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We define a method of integrating a functional over the
set of functions @ which allows us to write the propa-
gator as

K&« ') = f exp (2miA[x() ]} dx(D ], (2.6)

To define the function space integral let us consider
a sequence of partitions of the interval #/<t<¢” such
as used in defining the Riemann Integral. The Nth
partition is given by choosing the N1 points:
h=t'<t<ip<+++<ty_1<ty=t". For the Nth partition
consider the piecewise linear function which has the
values x; at ¢;. That is,

t—1 > (t——t,_1>
X(¢)=xj4|— X\ —
B =x, l(tj—t,_l R li—tia

for t]‘_lgtsih (2.7)

where xo=x' and xy=x"".

In the Nth approximation to the functional integral
we integrate over all such functions with a normalization
constant which is chosen so that Ky approaches a

unitary kernal. Such a normalization constant is

cN=ﬂ< —im )%

=1 \l— i1

Thus
K(X”, X,, 7 — t,)

= lim {INI( —im ) [ Bye - Py exp (27riA[x])}.

N->co j=1 tj'—‘ tj_l
(2.8)

In the classical limit, in which the potential changes
only slightly over a DeBroglie wavelength of the par-
ticle, the only paths which contribute appreciably to
the functional integral are those which are close to the
classical path from x” to X" in time #’—¢. This is due
to the fact that in this limit one may evaluate the
integral by stationary phase and the trajectory which
makes the phase stationary is the one for which A[x(¢)]
is stationary, but by Hamilton’s Principle, this is just
the classical path.

III. NONRELATIVISTIC HAMILTONIAN
FORMULATION

The quantum mechanical path-integral formulas
which we use are related to the following phase-space
variational principles:

We consider a system described by N coordinates
¢1, **+, ¢v and their canonical momenta p1, -+, pn.
The system has a Hamiltonian H (g, ). The first vari-
ational principle is an answer to the problem: Given
that the total energy of the system is E and that at
some unspecified times during its motion the coordi-
nates of the system had the values ¢/, -++, gv’ and
g, +++, qv'’, what must have been the corresponding

values of the canonical momenta, p1/, +++, py’ and
P, +++, pn"" and what path through the system phase—
space must have been taken in going from the point
¢, p’ to ¢”, p"'? At what rate the system point moved
along the curve is not asked and is not obtained from
the variational principle. The equation H(g, p)=E
defines a (2N —1) -dimensional energy surface. Consider
the set of all curves on this energy surface which begin
with coordinates ¢’ and end with coordinates ¢”’. For
each such curve we calculate the integral:

o
Io=/, 2 bidg;.
q

Any curve for which I, is an extremum is a solution
to the problem posed.

The second variational principle is obviously related
to the above but yields the explicit time dependence
of the coordinates and momenta. Given that the co-
ordinates of the system at times ¢’ and ¢” are, respec-
tively, ¢/, «++, g8’ and ¢.”, -, qn"" we consider the
set of all phase-space trajectories ¢(f), p(¢) which
satisfy the given initial and final conditions with no
restrictions on the energy or the initial and final values
of the momenta. Among this set the path (or paths)
which makes

I= ft,t (22 pidi—H(g(0), p(1)} dt (3.2)

(3.1)

an extremum is a solution of Hamilton’s equations of
motion with the specified initial and final conditions.
We consider now the corresponding quantum mechani-
cal principle.

We consider a system described by # coordinates
qi, ***, ¢a (denoted collectively as Q) and their canoni-
cal momenta py, *++, p, (denoted P). The probability
that, at time #, the system has coordinates in the range
dQ about Q is given by the absolute square of a complex
valued amplitude ¢(Q, t). ¢(Q, t) satisfies an equation
of the form:

1O, 0= [ K@, 0,¢=00(0,1) 0. (33)

There may or may not exist a differential (or local)
equation for ¥ depending upon the form of the Hamil-
tonian function H(Q, P). [The procedure of replacing
p; by —ih(3/3g;) is reliable only in rectangular co-
ordinates.] The essential element in the Hamiltonian
formulation is the following prescription for calculating
K(Q,0Q,t—1).

We want to define an integral over the set of paths
mentioned in the second Hamiltonian variational prin-
ciple. In order to do this we consider a sequence of
better and better approximations to any given path in
terms of an ever increasing number of parameters.
The Nth approximation is constructed by partitioning
the time interval #<¢<¢” into N parts. The function
Q(?) is then approximated by a piecewise linear function



CrAUDE GARROD Hamilionian Path Inlegral Methods 485
Q
AN\
Qll ____________
1
i
| |
Q' |--- . Loy
:\/' P
|
{ | : |
I ‘ e
. ' ! X : Nt
t' ot t t, t"
172 3
I'16. 1. Phase-space path, Q(¢), P(s).
P
A
! ]
- |
1
I [
I —
| il ! ]
! ! b
12:' t ‘ t t t" >t
1 72 3
going from Qj_; to Q; in the interval #;_; to #;. (See agator K(Q”,Q’, ¢ ~') is given by
Fig.1.) "o g
The function P(¢) is, in the same interval, approxi- K(Q", Q")
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discontinuous approximation for the momentum is con- - / exp 2mi o P do— v H dt
sistent with the fact that the velocity associated with
Secoutse. Xd[Q()IdLP(®)], (35)

out Nth approximation to Q(¢) is piecewise constant
but discontinuous. For any functional F[Q(¢), P(¢)]
of the phase-space trajectory the integral over paths
is defined as:

[ Fro, Pt WP

FLQ, P]dQ:+-+dQy—. dPy-+-dPy.

= lim
N-—>oo

(34)

It will not be necessary to include any N-dependent
normalization constant. With this definition the prop-

Fic. 2. Phase-space path,
x(8), p(8).

where

f: P dst:’ (; qu',-) .

If Q is a rectangular coordinate and the Hamiltonian
has the form.

H=(p*/2m)+V (x) (3.6)

the above prescription may be readily converted into
the Feynman formula. To do this we look at the Nth-
order approximation for the integral over paths. The
paths included are then as shown in Fig. 2 for N=4.
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Note: (xo=%", xn=x", bh=1,

integral for such a path is

and ty=1t"). The action

I= " [p-x— (2m)~1p>—

t!

V(x)]dt

[V]z

{p1 (%= %j1) — (2m) 7'p 2 (=) — f de}

1

<.
I

(3.7)

/ {exp [27(’1 / (pm:—H) dt:”daﬁl' ¢ 'dst daxl- . 'dst_1

bi—tia =1\ 2

Thus the Nth order approximations to the functional
integral in the two methods are identical. The deri-
vation of the Schrédinger equation proceeds somewhat
more easily if we do not first convert the Hamiltonian
form of the path-integral formula into the Feynman
formula since the latter contains terms involving nega-
tive powers of the time differences. In order to derive
the equation we assume that when At=¢"—1¢' is suffi-
ciently small we may approximate the functional inte-
gral by its first-order approximation. It is clear that
such an assumption must be valid if the functional
integrals are to converge at all as N—oo, which has
been shown to be the case for a wide class of potentials.
We can then write:

K(x",x', ) = / @*p exp 2mwi(p- (x"'—x')
—(1/2m) p* At—V AL), (3.11)

where V is the average of V(x) over the straight line
connecting x’ and x”. Expanding the exponential to
first order in A¢ we obtain

K(x", %, Al) = f #p (exp 2mip- (' —x'))

X(1—27ri At [2%“7]) (3.12)
=§(x""—x') —2mi Al — (87%m)~1V?
Xo(x"—x) 4V (x)s(x"—x)]

from which the Schrédinger equation easily follows.

[ ] oo 5

ti—ti

G2 o (dfe]) 2o

We can now make use of the formulas:

m 2
x] ._*__,1

(AX7)2
At,
(3.8)

LZ d*q exp [21n' (— ?—:’; q2)]= (—A’Zn)% (3.9

to obtain the relation

Al; Al;
p;* Ax;— 2—”;?1 == \Pi—

and

.
f ' th)]}dxl---dxzv_l
t,‘...l

. dng._L

(3.10)

IV. CANONICAL TRANSFORMATION

We begin our consideration of canonical transfor-
mations by looking at one of the simplest but most
important examples, namely the transformation:

x—p p——x.

With this transformation our equation for the prop-
agator becomes

K", #', ¢ =t') = lim

N->o

X exp 2i (-/xdp~/Hdt). (4.1)

If H= (1/2m)p*+V (x) and Ai={"—1' is small, then

K(p", ¢, A) =/ dx exp (— i [x(P”—P')

dxye + +dxy dpl' . 'dPN—l

+(2m)! pZdH—AtV(x)D. 4.2

If we assume that ¥ (x) has a power series expansion:

V(z)=Vot+Vix+f-e-
we obtain

a
K(P”:P’7 Alf)=<1—21r’l,At[p +V0+V1(2 6[7,,)

I (i a%,,)2+ --])6(?"—1»’) (4.3)



which again yields the Schrodinger equation in its
momentum representation. An interesting special case
is that of a constant force, V= — Fyx, for in that case
the first approximation is exact for finite time intervals
yielding:

K", p',0)
= [ dwexp (~2ri [x@"—?’—Fof) +am [ p ‘”ﬂ

t pH2
= 8(p""—p — Fel) exp (—2mi) f g (4.4)
0 2m
Before discussing nonlinear canonical transformations
we should take note of the fact that, in contrast to the
usual quantization techniques which involve the substi-
tution of operators for classical scalar variables, the
Hamiltonian path-integral formulation is completely
unambiguous. The question therefore arises whether
this procedure of quantization commutes with an arbi-
trary canonical transformation. That is, is one free to
transform canonically the Hamiltonian into the most
convenient form before calculating the sum over paths?
If one is free to do so then we may take over into
quantum theory the complete paraphernalia of canoni-
cal transformations including action-angle variables and
the like. The question is at present unanswered. An
example of the use of nonlinear canonical transfor-

mations is given in Appendix A where the harmonic -

oscillator is transformed to action-angle variables before
quantization,

V. TIME-INDEPENDENT EQUATION

Using the relation between the propagator and the
projection operator for the time-independent energy
eigenstates it is rather easy to derive a path integral
formula for the latter. We recall from Sec. IT that

PG, o, E) = f " K, o, 8) exp (2miEL) di. (5.1)

We may thus write an Nth-order approximation for P
as:

PN(x", .’XI’, E) =/ dt -[ d?]_' . 'de dxl- . 'de—l

i
X exp 2mi [Z pi(ai—x;y) — f H(x, p) dt’—l—Et].
0
(5.2)
In order to extract explicitly the time dependence of

/:H(x,p) dt

let us choose for our Nth-order partition of the time
interval a partition into N equal subintervals. We then
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describe the trajectory in terms of a parameter a=t'/}
which runs from zero to one. We also define:

_ 1
fi= / H(x, p) da (5.3)
0
which is a function of xy, +++, ¥y_y and p1, +++, pn but
not {. We may then use the fact that
t
[ =i (5.4)
0

to evaluate the ¢ integral and obtain

Py(a, &, E) = f dp +~-dpy duye+ -dxn_ 8(H— E)

X exp 2ri [fpdx]. (5.5)

Thus P is obtained as an integral over those paths for
which the average energy is E. This seems reminiscent
of the first Hamiltonian variational principle of Sec. III
but yet has a basic difference in that there we demanded
that the trajectories remain always on the energy sur-
face which is more stringent than the requirement that
the average energy on the trajectory be E. We may
now show that the usual form of the classical vari-
ational principle in which one considers only paths on
the energy surface is unnecessarily restrictive and can
be generalized so as to match our formula for the
projection operator exactly.

We consider a set of phase—space paths described in
terms of a parameter « running from zero to one. We
demand that

x(0)=o/, x(1)=x",
and

le(x(a), 5(e)) da=E. (5.6)
0

We then want to find the path for which the functional

A=/pdx

is stationary with respect to variations within this set
of paths. We do this by means of a Lagrange parameter,
considering, instead of 4, the functional

(5.7)

1 dx 1
FFfo ;b(a)&;da—k/; H(x(a), (@) da.  (5.8)

We now drop the restriction involving E and set arbi-
trary variations (except for the end-point conditions)
of F) equal to zero.

5F fl{a de 5@ O s O }d 0
= — =0 —\N—dx—\— =0.
* 0 pda da 9x ap p| ca

(5.9)
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This yields
dx/da=X\(0H/3p)
and
dp/da=—N\(3H/3x) (5.10)

as conditions for a stationary point. But we then see
that, regardless of the value of A, the rate of change of
H along the path, namely,

0H dx

da O0x da

Hence the variational principle for the classical
phase-space orbit may be put into a form in which it
bears the same relation to the quantum mechanical
projection operator for the states of energy E as the
classical variational principle for the time dependence
of the phase point bears to the time-dependent
quantum mechanical propagator.

As an example of the above formula (and the only
simple example) we consider a one-dimensional free
patticle. The Nth-order approximation is then

OH dp _

% da 0. (5.11)

PN(x", x’, E) =/ dpl’ . ‘dPN dxye  ~dxn_y 3(E—-HN)

X exp 2mi (D pi(ai—x;)), (5.12)
where _
Hy=N"22(p#/2m).
By using the fact that
2 pi(x— i) = paa’’ — pu’+ (pi— p2) 11
Tt (pya—py)ava (5.13)

and doing the x; integrations we obtain
2
Py(x", %, E) =/ dpd (E— 2%;) exp 2mip (x” —«)

=[(2m)}/E] cos 2r(2mE)}(x'"—x') ]

=¢,(2") ™ (&) T_p(2") p_p* ("),
(5.14)

where ¢,(x) is the properly normalized state of mo-
mentum (2mE)}.

VI. RELATIVISTIC VARIATIONAL PRINCIPLES

Before we discuss the relativistic form of the Hamil-
tonian path integral formulation of quantum theory it
would be useful to describe carefully the associated
classical variational principles. In going from a non-
relativistic to a relativistic form of either the first or
second Hamiltonian variational principles the most
obvious thing to do is simply to modify the function
H(p,x) so as to obtain the correct relativistic form of
the equations of motion. For a particle of charge ¢ in an
electromagnetic field derived from the scalar and vector

potentials 4o and A a form of H which accomplishes
the desired end is

H=[m?+ (p—eA)?J+eA,. (6.1)

Details of the calculation can be found in any text on
relativistic mechanics. It has often been noted that
when this Hamiltonian is employed in the variational
principle:

5 / (pdx—H dt) =0. (6.2)
The resulting theory is not explicitly covariant. It is
possible to formulate this variational principle in a way
which resembles the first Hamiltonian variational prin-
ciple and which does have the property of being ob-
viously covariant. In order to do this we first replace
H by the symbol p, and solve Eq. (6.1) for the mass.

m=[(po—edo)*— (p—eA)"P=[(p—ed)* P=M(p, x).
(6.3)

The equation: M (p,x)=m defines a surface in the
eight-dimensional phase space of points (p, ). If we
consider the set of phase-space trajectories which lie
in that surface and also have the space-time points
%’ and %" as end points then within this set the “in-
variant action integral”

A= / (p dx) (6.4)

is an extremum for the actual trajectory of a particle
of mass m. Thus we see that the variational principle
has the same form as the nonrelativistic one but has
taken one step up in dimensionality while the three-
dimensional scalar H(p,x) has been replaced by the
four-dimensional scalar M (p, x). We must notice how-
ever that it was the second Hamiltonian variational
principle in three dimensions which was transformed
into the first Hamiltonian variational principle in four
dimensions. We presently discuss the hierarchy of first
and second variational principles but first state and
prove the four-dimensional form of the second Hamil-
tonian variational principle. We consider the set of
phase—space trajectories described by a parameter T
which satisfy the endpoint conditions:

(") =«" and x(7"") =«"" where we assume x” is in
the future light cone of x’. For each such trajectory we
calculate:

-f {;b(r) = M), x<r>>} dr. (63)

Unless 7//— 7' > %/’ — x¢’ there usually exists a trajectory
for which I is an extremum. That trajectory satisfies
the relativistic equations of motion for a particle of
mass # where the value of 7 depends on the end-point



conditions imposed. Furthermore the path is such that
the parameter 7 is equal to the proper time along the
path. To prove these assertions we set the variation of
I equal to zero, obtaining:

oM
/ {5Po500— 0pjki— d%opot0xp;— —— 8po

17 (720
oM oM oM

— — §pj— — dwo— — ox,dr=0, (6.6)
9p; %o 0x;

from which we get the following equations of motion:

d=0M/dpy  d;=— (0M/dp;)

Po=— (M /dx)  p;=0M/dx; (6.7)
which immediately imply that
dM /dr=0. (6.8)

Thus M is a constant of the motion which we denote
as m. For the specific form of M in the electromagnetic
case; namely,

M=[(p—ed(x))"F} (6.9)

the detailed equations of motion are
mio= po— e Ao, (6.10a)
mi;=p;—eA;, (6.10b)

I RN o S PRI 2.
Po—m[(?o eAo) P (pi—edi) 6x0]’ (6.10c)

=ei(dA/0x0),
and
pi=et(3A/0x;). (6.10d)

These are the well-known equations of motion of a
point charge of mass m which can easily be shown to
imply that

dr=[(dx)?]. (6.11)

Let us return now to an analysis of the connections
among this array of variational principles. In deriving
the fact that M is a constant on the trajectory we made
use of an assumption that the function M has no
explicit dependence on the parameter 7. This assump-
tion is all that is needed to derive the fact that M is a
constant. Suppose, for given end-point conditions, we
had deduced the value of the constant m. We would
then be free to restrict our variational trajectories to
those which lie totally within the surface M =m secure
in the knowledge that we were including the desired
solution in our restricted set. This alone would not
reduce our variational principle to one of the first kind
because we would still have to maintain the end-point
conditions. Now let us notice that within this restricted
set, the functional we are minimizing can be written:

I= f b ds—m(s"—1). (6.12)
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The second term, due to the fixed range of 7, is simply
a constant, independent of the trajectory while the
first term which must therefore be separately stationary
is independent of the parameterization. We may there-
fore ignore the restrictions on the parameterization,
drop the second term and demand that the first term
be stationary within our restricted set. We thus obtain
the four-dimensional form of the Hamiltonian vari-
ational principle of the first kind. Now it is easy to
show that the four-dimensional form of the first Hamil-
tonian variational principle is identical with the three-
dimensional form of the second Hamiltonian principle.
One simply solves the equation M=m for po as a
function of p, x, and xo, containing m as a parameter.
If one assumes that M (p, x) and therefore H (9, X, Xo)
is independent of x, it is possible to carry the reduction
in dimensionality one step further and in fact the
process may be continued as long as cyclic coordinates
can be found. The sequence of variational principles
thus forms an overlapping hierarchy, the lower di-
mensional ones utilizing more and more constants of the
motion and thus having smaller and smaller ranges of
variation. We have gone into this long discussion of
variational principles, not as an exercise in classical
physics, but because we shall see that the quantum
mechanical theory we obtain depends in an essential
way upon the stage in this hierarchy at which we
impose quantization. To be more explicit; if we extend
the variational principle:

3 (» dv—2rdm) =0 (6.13)
to a formula for a quantum mechanical propagator,
which as we shall see will describe particles of arbitrary
mass, and then look at the mass eigenvalues of the
theory we obtain an equation of motion different from
that which we obtain if we directly quantize the fixed
mass classical variational principle; namely,

o (@-dx—H &) =0. (6.14)

Before we attempt the quantization of these classical
variational principles a few words are in order regarding
the physical interpretation of quantum theories in-
volving the proper time. Such theories have been dis-
cussed previously?? but the introduction of = into the
theory has usually had a more formal character than
it will here. We shall see that the variable r is canonical
to the mass which will be a dynamical variable rather
than a scalar parameter in the theory. The relation
between the proper time and the mass will be an almost
exact analogy to the relation between the time and the
energy in the nonrelativistic theory. To see how the
proper time may be incorporated into the theory let

2 R. feynman, Phys. Rev. 80, 440 (1950).
3Y. Nambu, Prog. Theoret. Phys. (Kyoto) 5, 82 (1950).
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us consider the following classical problem which is the
daily concern of cosmic-ray physicists. Suppose we
know that within a certain region of space-time a
particle is created with a certain probability distribution
in velocities. Assuming we know the electromagnetic
fields present and assuming the particle is an unstable
particle whose decay pattern we know we may ask
what is the probability that the particle will decay in
some other given region of space-time. In order to
answer this question we construct an ensemble of parti-
cles which at 7=0 has the given initial velocity distri-
bution and follow this ensemble density p(x,7) as 7
progresses. The probability that the particle will decay
in any given region of space-time is then proportional
to the product of the amount of proper time it spends
in that region and the probability that it reaches the
region in question. The second factor depends upon the
complete path which the particle takes in going from
one region to the other but that fact introduces no
difficulty into the classical analysis since the path (or
paths) from one region to another are determined in
detail. To determine the proper time of the particle if
and when it reaches the region in question one simply
integrates along the classical path from the initial
region. There is no reason why one might not consider
the same problem from a quantum mechanical view-
point. (This is not to be confused with the field-
theoretic calculations of decay processes where one
calculates the decay pattern which is here assumed
empirically known.) We assume a particle is created
within some limited space-time region in a state ¥ (x)
which within that region satisfies the Schrédinger
equation. We may then use the Schrédinger equation
to continue the wave function outside the region. We
may therefore determine the probability that, if the
particle were stable, it would be found at the space-time
point x. (simply | ¥ (x)?). But there is no satisfactory
way from the Schrédinger equation point of view to
assign a proper time value to the particle at x and this
is essential for determining the decay probability. All
knowledge of how the particle got from one point to
the other has been lost. It seems to the author that one
must approach this problem via a path-integral formu-
lation. We now have the option of using a path integral
formulation based on a variational principle which is
not explicitly covariant and, for each path, calculating
the proper time or using a path integral method which
is related to the explicitly covariant variational prin-
ciple which involves the proper time. That the two
methods will not agree may be seen from the following
considerations.

Up until now we have not carefully stated what our
physical definition is of what we have been calling
proper time. Although we specify the space-time lo-
cation of a particle by a single point we shall always
picture the particle as a dynamical system for which
there is a variable which measures the internal evolution

of the system. We shall call this variable the “particle
time.”” If our particle were a miniature alarm clock this
would be simply the reading on the face of the clock.
Given a particular trajectory in space-time we may
also define a “proper time” by taking the integral of
[(dx)%]* along the path. It is a principle of relativity
that, at least for classical physics, these two definitions
will coincide. We must realize, however, that in the
path integral formula which is related to our variational
principle there are finite contributions from nonclassical
paths including those along which the parameter 7 does
not coincide with the integral of the proper time along
the path. Thus, if we are to give any consistent physical
interpretation to the parameter it seems most natural
to interpret it as the dynamically defined particle time
rather than the geometrically defined proper time. This
would certainly agree with our use of the parameter
in the unstable particle problem mentioned before.

We thus shall describe a particle by a wave function
¥(x, ) which we interpret by stating that | ¢ (x, 7) |2 is
the probability that the particle will occupy space-time
point  when the particle time is . We see that ¢
satisfies an equation

(1/2wi) (8y/07) =Dy,

where I is an integral operator which will shortly be
derived fiom the path integral theory.

The extension of our classical variational principle to
a quantum mechanical principle yields the propagator
equation:

K(x", x',r"——r')=/ {exp 2w {—/pdx

(6.15)

+ [ o dr] d[x(r)]d[p(r)].  (6.16)

(The sign in the exponential has been changed in order
to ensure that the formula reduces to the nonrelativistic
one in the appropriate limit.)

We consider this equation in some detail for the case of
a free particle for which

M=[pi—p* 1.

Since we are integrating over all values of p we must
carefully define the double-valued square root function.
We do this by temporarily extending po to a complex
variable and then imposing the condition that, when-
ever the mass is real, it is positive. The po integrations
then take place over the contour shown in Fig. 3,
where po=u-1iv:

With this definition M =i[p®— po*]} when p?<p? If
in the Nth-order approximation to K we first do the
integrals over d%;---d*xy_1 we find that due to the
fact that M is not a function of ¥ the Nth-order prop-



¥1c. 3. Path of integration:
po=u-41v.
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v

agator reduces to the first-order propagator. Thus:
K(x”, x/’ Tr/_Tr) =/ d"j)

X exp 2mil —p (2" =a") (7" —7') (p")}].

In contrast to the nonrelativistic case we are forced
to consider only that propagator which is defined to be
zero for negative 7'/—7’ since the space-like part of the
momentum integration would strongly diverge for
7"’ —7'<0. Let us now consider the plane wave solutions
of the equation of motion:

(6.17)

t[/(x", T”) =/ K(x", xl, T,,—T,)'gb(x,, Tl) d4x/. (618)

If we assume ¢ is of the form

¥(x,7) =c exp 2mwi(—kx+mr) (6.19)
we find that the equation is satisfied only if
m=(k*)%. (6.20)

Consider now the behavior of a localized wave packet
containing a small range of momentum components
centered about the momentum % in the following three
cases.

(i) ko>|k|. (Forward light cone) as 7 increases the
wave packet moves with a velocity dx/dr=Fk/m where
m=(k?)3.

(ii) —ko>|k | (Backward light cone) as 7 increases
the wave packet moves with a velocity dx/dr=Fk/m as
before however since ko is negative we see that the time
and the particle time increase in opposite directions
along the trajectory. The physical interpretation of
this phenomenon has been discussed in detail by
Stiickelberg? and R. Feynman 256

(iil) | ko |<|k| (Space-like momentum) as 7 increases
the position in space-time of the wave packet does not
change but its amplitude diminishes with decay con-
stant (k*—Fko?)%. Thus there do not exist propagating
solutions of imaginary mass. By decomposing any so-

¢ E. C. C. Stiickelberg, Helv. Phys. Acta 15, 23 (1942).
5 R. Feynman, Phys. Rev. 76, 749 (1949).
¢ R. Feynman, Phys. Rev. 76, 769 (1949).

cut 2| it i
—— Y
—_— - - - - cut

lution of Eq. (6.15) into its plane wave components it
can easily be seen that the integral operator M men-
tioned above has the kernal:

M(x, y)= f d([F exp 2mi(—k(x—y))}. (6.21)

The propagator K(x,7) (where « is now written for
%" —x" and 7 for 7”'—7’) satisfies an equation: '

[(2ri)~1(8/07) —MIK (2, 7) = (2xi) L 8(7) 8(x),
(6.22)

where the §(7) arises from the fact that K is defined to
be zero for negative 7 and the §(«x) is simply the limit
of K(x,7) as 7—0.

In order to study the fixed mass theory we use the
same method as was used to derive the time-inde-
pendent theory from the time-dependent theory in the
nonrelativistic case. Thus we define a function G(x, m),
where hereafter the dependence on m will not be ex-
plicitly indicated, by

G(x) = f " dr exp [—2mi(m—ie)r]K (x,7)  (e=0).

(6.23)

A small imaginary part has been added to the mass
in order to make any purely oscillatory parts converge.
As indicated the limit as e—0 is to be taken. Using this
definition and the equation satisfied by K an equation
for G(x) may be derived in a straightforward manner.
The equation is

MG—mG=—(1/2mi) §(x). (6.24)
Thus we see that G(x) is the propagator (or Green’s
function) for the mass eigenvalue equation. It is shown
in Appendix B that, as might be expected, it is a
propagator of the Feynman type. That is, for x,<<0 it
has only negative energv components while for x>0 it
has only positive energy components. We may develop
a path-integral formula for G(x) by a method identical
to that used in the nonrelativistic case. The only sig-
nificant difference is that here we integrate over the
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range 0<7< o rather than — oo <7< . We thus ob-
tain the formula:

GN(x) =/ d4ﬁ1' . 'd4p1v d*xye « din_y

X(exp omi (— f pdx) / iy (m—ie)), (6.25)

where M is defined here in the same way as H of Eq.
(5.3). The above integral is rather difficult to evaluate
even in the free-particle case.

The eigenvalue equation:

(M —m)y=0 (6.26)

associated with the above Green’s function is the eigen-
value equation for the operator M which is a sort of
operator square root of the D’Alembertian operator.
Thus the above equation is a square root of the Klein—-
Gordon equation:

Oy =m%. (6.27)

Square roots of this equation have been considered
before but they have been attempts to eliminate the
negative energies by first writing the equation in the
form:

— Y= (—V+mi)y (6.28)

and then taking the square root of the operators on
both sides, obtaining

0=+ (= V+m*)¥. (6.29)

Here we have, using the ideas of Stiickelberg and
Feynman, interpreted the negative energy states as
antiparticles but have eliminated the negative masses.
One might remark here that we could have avoided
these square root operators by using a different form
for the covariant Hamiltonian variational principle.
One such form, found in the literature, is

5 f (= p dx-5¢ dr) =0, (6.30)

where
3= (p—ed)?/2m.

However, the above variational principle is in direct
conflict with an essential property of the covariant
Hamiltonian principle which is that the mass is treated
as an initial condition which is conserved only due to
the fact that M(p,x) is not explicit function of 7.
The above variational principle would only yield a
correct classical equation for special values of the end-
point conditions and to use it as a starting point for
path-integral quantization, where propagation along
pdths not on the mass shell is important, would be
equivalent to using in the nonrelativistic theory the
variational principle:

5 f (p-dx—[H*(p, ) /2E]d) =0  (6.31)

which would also yield the correct equations of motion
for special values of the end-point conditions but would
yield an entirely erroneous time-dependent Schrodinger
equation which would contain the parameter E. Thus
it seems that for scalar particles the Hamiltonian path
integral method strongly suggests the validity of the
particular form of square root equation used here. A
much more important variation on what was done here
is to take the Dirac square root of the Klein—Gordon
equation; namely:
' =my, (6.32)
where
VY= 28

This equation could be derived formally from a

“classical” mass function:

M(p)=~"p» (6.33)

but the question of convergence of the path integral
seems much more complicated than it was for the
scalar equation due to the fact that v%, 4%, and +® are
anti-Hermitian matrices. We shall not consider the
Dirac equation here.
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APPENDIX A

We consider the special case of a harmonic oscillator
with Hamiltonian

H=}(p++). (A1)

78S. G. Brush, Rev. Mod. Phys. 33, 79 (1961).

8 R. Abé, Busseiron Kenkyu 79, 101 (1954).

¢ J. A. Wheeler, ‘“Geometrodynamics and the Issue of the Final
State,” in Relativity, Groups, and Topology, edited by C. DeWitt
(Gordon and Breach Science Publishers, Inc., New York, 1963).



The phase space for the system is the Euclidean x-p
plane. Using the canonical transformation:
p=(2p)tsin6

x=(2p)% cos 0 (A2)

we may map all points in the plane except the origin
onto the doubly connected region:

0<p<oo  0<0<2r (A3)

where the points (p, 0) are identified with the points
(p, 27). The Hamiltonian in terms of these variables
takes the trivial form

H=p. (A4)

We want to derive an equation of motion for the
wave function ¢(6,¢). In calculating the propagator
for ¥ we shall use the first-order approximation to the
path integral since we are interested only in infinitesimal
times. (Actually the result is good for all time.) In this
approximation we are to take a straight-line path from
6’ to 8" but due to the double-connectedness there are
an infinity of such straight-line paths. They must all
be included in the first-order contribution. That this is
necessary even for infinitesimal time can be seen from
the fact that these paths would all make finite contri-
butions to a stationary phase evaluation of the func-
tional integral. Thus, if we denote by K; the first-order
propagator, we have

Ki(0,0,0= dp 3 exp2milp(8”—0'-2mm) —pt].

p>9 £
(AS)
Using the relation:
S exp Qmian)= 3 8(a—K)  (A6)
n=—00 K=

we obtain
Ka(0", 0, 8) = (2m)~1 3> exp iK (0" —8 —1). (A7)
K=1

This equation indicates that the values of ¥/(6, ) con-
sidered as mapped on a unit circle rotate with constant
angular velocity in complete analogy with the classical

- q
F16. 4. Path of integra-
tion.

m\__
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phase-space density. The energy spectrum has the
same structure as the well-known harmonic oscillator
spectrum but is shifted by a constant. (}#iw in the
usual notation.) One could dismiss this shift with the
observation that the addition of a constant to the
classical Hamiltonian is itself a canonical transforma-
tion but it does seem to lessen the likelihood that a free
use of canonical transformations before quantization is
allowed. As t—0, K(6"”,60’,t) does not approach
5(8""—@’) but it does approach the unit operator on
the subspace of positive energy states. That the first-
order propagator in this case is exact for finite time
can easily be seen from the fact that it satisfies the
equation:

21
Ki(6",0,1)= f 0K (8,0, 1—7) K1(6, 0, 7).
0

APPENDIX B

Given the 7-dependent propagator:

K(x,7)= / d*p exp 2mi[ — px+7(pH)¥].

We want to investigate the properties of the Green’s
function (of the mass eigenvalue equation) defined by

G(x, m) E/w drK (%, 7) exp [—2mi(m—ie)7].
0

Carrying out the 7 integration and defining a variable
g=|p | we obtain:

G=— / &*p exp (2wip-x)1(q)
2w
where
1(g) = [ dpoexp (—2rizepo)/ (=)= (m—ie)
c
and the contour C is shown in Fig. 4.

The denominator vanishes at two points infinitesi-
mally inside the second sheet at which: #= 2= (m2+¢2)3.
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I'16. 5. Deformed paths of integration.

If x>0 the contour C may be deformed into the
contour C+ shown in Fig. 5, while if x,<0 the contour
C/may be deformed into the contour C—.

Thus, for x,>0, the integral may be converted into
one involving only positive frequencies, while for xo<0
it may be converted into an integral over negative
frequencies. The author has not succeeded in obtaining
an explicit evaluation of the integrals.
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Note added in proof. Since this article was submitted
for publication, the author has become aware of some
earlier work done on the subject. The earliest derivation
of the Hamiltonian path-integral method can be found
in Appendix B of R. Feynman, Phys. Rev. 84, 108
(1951). See also: W. Tobocman, Nuovo Cimento 3,
1213 (1956); and H. Davies, Proc. Cambridge Phil.
Soc. 59, 147 (1963).
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High-Frequency Conductivity of a Solid-State
Plasma with Dynamically Screened Interactions.
I. Thermal Equilibrium

D. E. McCUMBER

Bell Telephone Laboratories, Murray Hill, New Jersey

Dawson-Gberman high-frequency long-wavelength conductivities of solid-state plasmas in thermal equilibrium are
derived using a variational formalism. These derivations are different from those of other authors and give additional
insight into the nature of the approximations implicit in their results. The final expressions reflect screened carrier—carrier
and carrier-phonon interactions. They extend published conductivity formulas principally in their inclusion of deforma-

tion-potential phonon—carrier coupling.

1. INTRODUCTION

It has been demonstrated by Perel’ and Eliashberg!
and by Dawson and Oberman? how dynamic electron
screening of static ions affects the high-frequency con-
ductivity of a classical one-component plasma. Their
results have been generalized to multicomponent sys-
tems in which the scattering centers are themselves
dynamic charge carriers,®* to degenerate systems in

1V. I. Perel’ and G. M. Eliashberg, Zh. Eksperim. i Teor.
Fiz. 41, 886 (1961) [English transl.: Soviet Phys.—JETP 14,
633 (1962)].

2]. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962);
J. Dawson and C. Oberman, Phys. Fluids 6, 394 (1963).

3 C. Oberman, A. Ron, and J. Dawson, Phys. Fluids 5, 1514
(1962); R. Guernsey, C. Oberman, J. Dawson, and A. Ron,
Phys. Fluids 7, 921 (1964).

¢ D. F. Dubois, V. Gilinsky, and M. G. Kivelson, Phys. Rev.
129, 2376 (1963).

which the carriers are described by quantum statistics,? ¢
and to solid systems in which the carriers are scattered
by polar lattice vibrations (polar phonons).”8 In this
paper we derive general conductivity expressions which
include all of these effects simultaneously and which in
addition include the effects of carrier scattering by
phonons coupled to the carriers through a dynamically
screened deformation potential. Our method of deri-
vation, valid for quantum and for classical statistics,
is different from that used by previous authors'® and
gives additional insight into the nature of the approxi-

5 A. Ron and N. Tzoar, Phys. Rev. 131, 12 (1963); [E] 132,
2800 (1963).

6 A. Ron and N. Tzoar, Phys. Rev. 131, 1943 (1963).

7N. Tzoar, Phys. Rev. 132, 202 (1963).

8 A. Ron, Phys. Rev. 131, 2041 (1963); A. Ron and N. Tzoar,
ibid. 133, A1378 (1964).



