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In this paper, we examine an argument of Jauch and Piron, which aims to prove the impossibility of hidden variables
underlying the quantum theory, on the basis of certain assumptions that are weaker than those used by von Neumann
for the same purpose. %e show that, while the assumptions of Jauch and Piron are in fact weaker than those of von
Neumann, the net result is that they actually prove nothing new at all. The conclusions of Jauch and Piron concerning
the nonexistence of hidden variables are indeed seen to follow from a false assumption; i.e., that the impossibility of prop-
ositions that describe simultaneously the results of measurements of two noncommuting observables is an "empirical
fact."Actually, it is shown that this assumption follows if and only if one first assumes what the authors set out to prove;
i.e., that the current linguistic structure of quantum mechanics is the only one that can be used correctly to describe the
empirical facts underlying the theory.

INTRODUCTION

In a previous paper' we analyzed the classic von
Xeumann proof of the impossibility of a "hidden
variable" theory underlying quantum mechanics and
found that the argument excluded only a certain very
restricted class of hidden variable theories. A more
general theory, which went beyond the assumptions of
von Neumann, was developed, and it was shown that
the usual results of quantum mechanics could be
recovered in certain limiting cases. In particular, we
showed that one need not make the linearity assump-
tion of von Xeumann, i.e., that for any real linear
combination of observables, whether simultaneously
measurable or not, the expectation value of the sum
in an ensemble of measurements is equal to the sum
of the expectation values. This property follows as a
theorem in quantum mechanics, but it is quite possible
to construct theories in which this relation does not
hold in general but is true only in the case of specially
constructed ensembles.

A more recent impossibility proof has been proposed
by Jauch and Pirong in which they come to the same
conclusion as von Neumann without using this assump-
tion. Ke examine their proof here.

SUMMARY OP THE ARGUMENT

The argument by which Jauch and Piron attempt to
prove that the structure of the quantum theory is
incompatible with the assumption of hidden variables
is based on an analysis of the type of experimental
question that can be asked in the theory. Thus, they
consider those observables of a physical system which
are associated with only two alternatives or possibilities,
which may be designated by 1 or 0, yes or no, true or

'D. Bohm and J. Hub, Rev. Mod. Phys. 38, 453 (1966).' J. M. Jauch and C. Piron, Helv. Phys. Acta 36, 827 (1963l.
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false, and are represented in quantum mechanics by
the projection operators. The results of such yes—no
experiments, for example, that a certain observable I'
has the value I", or that the value of I' is positive,
etc. , are referred to as the propositions of the system,
and these are classified as compatible or incompatible
depending on whether or not the corresponding meas-
urements can be performed simultaneously. Jauch and
Piron refer to a paper by BirkhoG and von Xeumann'
on "The Logic of Quantum Mechanics, " in which these
authors formally develop a logical calculus of proposi-
tions for quantum mechanics, based on the relation
between the propositions of a quantum mechanical
system and the associated projection operators. In
contrast to the usual propositional calculus of ordinary
logic, applicable to classical mechanics, this system is
extended by the concept of "incompatibility" charac-
teristic of quantum mechanics. The contribution of
Jauch and Piron is to prove as a theorem in this calculus
that if a propositional system admits hidden variables
then all propositions are compatible. This is the con-
clusion of Theorem I and Theorem II (proved under
slightly weaker assumptions) in their paper. Since the
propositions of a quantum mechanical system are not
all compatible, because there are certain measurements
which cannot be carried out on the system simultane-
ously, the possibility of hidden variables underlying
the quantum theory is rejected. This rejection does
not make use of von Neumann's linearity assumption
(see Ref. I, Sec. 4), which has been shown by various
authors to be unnecessarily restrictive.

Now, at first sight, it is not at all clear why the
authors should wish to use the terminology of logic to
describe the experimental questions of a physical theory,
unless they intend to propose a deep connection between
all human reasoning and the theory. If this is the case,

' G. BirkhoQ and J. von Neumann, Ann. Math. 37, 823 (1936)
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then the impossibility of developing a hidden variable
theory for microsystems could be traced to a limitation
in our thought processes. Unfortunately, the treatment
of this question is rather vague, especially with regard
to the significance of "incompatible propositions" in
the general sense, and a careful analysis of the argument
will be necessary in order to clarify what is in fact
implied.

As we see, however, such an analysis indicates that
Jauch and Piron are really only making assumptions
about physics and that the suggested relationship with
logic is both artificial and misleading. If this is so,
then it is important to discover what these physical
assumptions are and to consider whether they are
well founded. In this connection, a key point for con-
sideration is the claim that the existence of incompatible
propositions is an empirical fact." Such incompatible
propositions could be taken as necessary inferences from
experiment, however, only if it could be established
that no other propositions besides those of quantum
mechanics are applicable to a microsystem, from which
it would follow that the only relevant experimental
questions are those of quantum mechanics. But this
is in essence just what Jauch and Piron have set out
to prove in their efforts to exclude hidden variables
from the quantum theory. For if there are such hidden
variables, then (a,s we see in more detail in the present
paper) they do make possible a language in terms of
which relevant experimental questions do not involve
any incompatible propositions, but only incompatible
processes of measurement, in which the actions needed
in making one kind of measurement may interfere
physically with those needed for making another kind
of measurement. In this way, it becomes clear that the
basic assumption of Jauch and Piron is that the con-
ceptual structure of all the laws of physics is the same
as that of the laws of current quantum mechanics and
nothing else. But it has long been fairly clear that
without extending or otherwise altering the basic
conceptual structure of the laws of quantum theory,
no hidden variables can be introduced into the theory.
So in fact, Jauch and Piron have actually proved
essentially nothing new at all. This fact may, however,
be obscured by the use of a logical terminology for
the description of the properties of physical systems,
which might perhaps at erst sight cause the old concep-
tual structure to appear as if it had a new meaning.

Ke now proceed to a more detailed examination of
the argument.

THE LOGIC OF QUANTUM MECHANICS

As we have indicated, Jauch and Piron propose that
the propositions of a quantum mechanical system are
represented in the formalism by projection operators.
Each projection operator P defines a certain closed
subspace V, of the Hilbert space K, spanned by the

eigenvectors of V, with eigenvalue 1.The (normalized)
vectors of V, all represent states of the system for which
the proposition a is true with certainty, whereas for
those states represented by the vectors orthogonal to
the members of V the proposition a is certainly false.
If P, V belong to the proposition a, then it follows
that I—P„BC—V belong to the denial of u, the
proposition "not a," denoted by a'. If the proposition
a is always true, then P,=1, V =X. If the proposition
a is never true, i.e., impossible, then P =0, V =0.
The trivially true proposition is denoted by I and the
absurd or trivially false proposition by g.

If the projection operators P, -P~ of the propositions
a, b commute, then the additional propositions "a and
b" and "a or b" can be formed. The proposition "a
and b,

" denoted by uflb, is true if the propositions a
and b are both true, and it is false if one of them is
false. The corresponding projection operator is P Pg,
and the closed subspace is the set of vectors common
to both V, and V&. "a or b,

" denoted by aUb, can be
expressed as "not ((not u) and (not b) j," or (a'Ab')',
and its operator is therefore, 1—(1—P, ) (I—P~) =
P,+Pq —P, Pq, which is also a projection operator.
The associated closed subspace is de6ned by the set
of all vectors which are linear combinations of a vector
from V, and a vector from V~.

As long as all operators commute, then the use of
projection operators to represent the answers to yes—no
questions that can be "asked" in an experiment is
merely a formal representation of Boolean algebra of
ordinary logic in terms of quantum mechanical operator
theory. However, if the Geld of operators is extended
to include noncommuting projection operators, then
new features are introduced. In terms of the usual
quantum mechanical language, one says that when two
operators do not commute, then the corresponding
measurements cannot both give rise to precise and
unambiguous results simultaneously. Jauch and Piron
transcribe this notion into their own language by
asserting that the propositions corresponding to the
operators in question are incompatible.

Here it is necessary to consider carefully whether
this change in the language in fact implies a change in
the physical assumptions underlying the theory, or
whether what has been introduced is merely a new
terminology for the treatment of the same assumptions.
If what is involved is merely a change in terminology,
then, of course, the authors cannot really have gone
beyond the result of von Neumann, the inadequacy of
which has been demonstrated in our previous article.
On the other hand, if Jausch and Piron have actually
introduced new physical assumptions going beyond
those of the usual (probabilistic) interpretation of the
quantum theory, incorporated in the formulation of
von Neumann, then the question arises as to whether
or not these assumptions are justi6ed in the context
of the proof.
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alld
an(buc) = (anb) u(anc)

au(bnc) = (aub) n(auc), (4)

the lattice of quantum propositions is nondistributive.
Birkhoff and von Neumann quote the following example
to demonstrate this point:

If u denotes the experimental observation of a wave
packet P on one side of a plane in ordinary space, a'
correspondingly the observation of P on the other side
and b the observation of P in a state symmetric about
the plane, then

bn(a'ua) =bnI=bgy= (bna) = (bna')

= (bna) u(bna') (5)

(where the notation bop means bHg but not b=y).
The fact that the lattice of quantum propositions is
nondistributive (which is evidently a direct consequence
of the existence of propositions which are "incompati-

In explaining the meaning of their terminology,
Jauch and Piron define the concept of compatibility,
characterizing the propositions corresponding to com-
muting projection operators, as a certain formal rela-
tionship between pairs of propositions. Two proposi-
tions c and b are said to be compatible if they satisfy
the relation,

(anb') ub = (bna') ua, (&)

which is equivalent to the property that the projection
operators P, P~ commute. It is clear that in the case
of incompatible propositions, corresponding to non-
commuting projection operators, the intersection aAb

and union aUb of propositions will lead almost always
to the absurd proposition p and the trivially true propo-
sition I, respectively. If P and P& do not commute,
then, although there may exist simultaneous eigen-
vectors of both projection operators, such vectors can
not form a complete set. In general, the subspace V,„&
will be empty and V,Ut, will be the whole space, so that,

anb = a'nb =anb'= a'nb'=y
and

aUb =I.
Now, it is demonstrated in the paper by Birkhoff

and von Neumann that the propositions of a physical
system form an ortho-complemented lattice —i.e.,
essentially a set with a partial ordering relation, a
greatest lower bound (and least upper bound) for
every nonempty set of propositions and an operation
with the formal properties of the negation in the proposi-
tional calculus of ordinary logic. The partial ordering
relation is defined as the relation of implication,

if, whenever a is true, b is also true. (3)

However, although the propositions of classical systems
(represented by functions on the phase space with the
two values I and 0) obey the distributive law:

ble") means that, whereas the propositional calculus of
classical mechanics forms a Boolean algebra, the propo-
sitional calculus of quantum mechanics does not.

At this point, one must be careful to avoid a kind of
confusion that tends to result from the replacement of
the usual term "experimental questions" by the term
"proposition. " The fact that different experimental
questions cannot all be answered simultaneously is,
of course, characteristic of the quantum theory (whereas
in the classical theory the corresponding questions can
all be answered together). But by using the term
"proposition" instead of "question" and by asserting
that propositions corresponding to noncommuting oper-
ators are "incompatible, " the authors would seem, at
least at 6rst sight, to be suggesting that their basic
assumptions refer, not to particular physical theories
such as classical or quantum mechanics, but rather to
the structure of the logic that applies in the whole field
of human reasoning. If there is in fact such a perfect
correspondence between the possible structures of all
logical reasoning and the structures of these two
particular physical theories, then to establish this as
true would indeed be a very revolutionary discovery,
in all probability far transcending both classical and
quantum mechanics in its ultimate significance. Un-
fortunately, the authors do not make it very clear
what their intentions are with regard to this point.
Are they proposing, for example, that in ordinary rea-
soning one could extend the operations of intersection
and union to "incompatible" propositions, similar to
those represented by noncommuting operators' As we
have remarked, this would lead almost always to the
absurd or trivially true proposition; such a proposal
does not, therefore, appear to be particularly meaning-
ful. It is surely significant here that Jauch and Piron
and Birkhoff and von Neumann continue to employ
the conventional "classical" logic in their own reasoning
and make no attempt to persuade the reader by a
non-Boolean argument. From this fact, it seems fairly
safe to infer. that the authors do not actually wish to
suggest that their assumptions about "propositions"
should apply generally in the whole 6eld of human

logic, but rather, they would seem to be tacitly restric-
ting such assumptions to particular physical theories.

If this is so, then the replacement of the term "experi-
mental question" by the term "proposition" can in
itself add nothing new to the structure of the theory
and has the disadvantage of tending to lead the reader
into a kind of confusion between physical assumptions
and the structure of all logic.

THE ASSUMPTIONS OF JAUCH AND PIRON

Accepting that Jauch and Piron do not wish to make
new assumptions about the whole 6eld of human rea-
soning, we come then to the question of what new

assumptions, if any, are actually involved in their
proof. In this connection, we find a possible clue by
noting that they interpret the example of Birkhoff
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a,nd von Xeumann "empirically. " In other words, they
regard the nondistributivity of what they call "quantum
propositions" (but what we would prefer to call "experi-
mental questions that can be raised in the quantum
theory") as a fundamental and factually established
property of the structure of the objectively existing
systems themselves, and not merely as a feature of the
theory used to describe these systems. Thus, Jauch and
Piron prove as a theorem that a lattice is distributive
if and only if any two propositions are compatible, in
the sense defined, and conclude that, since the distribu-
tivity law is "empirically false" for quantum systems,
it is "empirically established" that for such systems
there always exist propositions which are not compati-
ble. As they remark: "This important point will be
essential in the argument to be presented establishing
the impossibility of hidden variables. " (Ref. 2, p. 831.)

In the thesis of Piron, to which the authors also
refer, it is shown that the compatibility relation is
equivalent to the relation,

(anb) u(a'nb) u(anb') u(a'nb') =I. (6)

Using this relation, Piron constructs another example
by which he attempts to prove that: "The existence of
systems of propositions not all compatible amongst
themselves, that is to say of non-distributive systems
of propositions, is a fact of experience. " (Ref. 4, p. 467,
note 9.) He considers a beam of light crossing a crystal
of tourmaline. If the incident beam contains only a
single photon, the emergent beam will contain either
a whole photon of energy equal to the original photon
or no photon at all. Thus the crystal constitutes a
measuring apparatus and the corresponding proposition
may be denoted by ao. The proposition corresponding
to the same crystal turned through an angle o. is denoted
by a . The ortho-complementary proposition to ao,
de6ned by the interchange of the yes and the no,
corresponds to the crystal turned through ~x. Piron
demonstrates that ao and a constitute a pair of in-
compatible propositions if nN-, nm. (where n is an
integer) .

"It suKces to verify:

x= (a,na. )u(a.„na.) u(a, na.+.„)u(a.„na.+.„)WI.

Now a flap ——p for n —p&red, for by definition a natt is
true if and only if a and ap are both true. Now there
exists no photon which can with certainty traverse
each of the two crystals if their optic axes form an
angle different from zero. Thus g=p." (Ref. 4, p. 467,
note 9.)

It seems clear then that Jauch and Piron regard the
necessity for describing quantum mechanical experi-
ments in terms of "incompatible propositions" as a
physically demonstrated fact. But actually, it is only
when one is restricted to the language of quantum
theory that the experiment described above necessarily

4 C. Piron, Helv. Phys. Acta 37', 439 (1964).

leads to "incompatible propositions" (i.e., when the
state of the photon is assumed to be completely defined
by a vector in Hilbert space). Indeed, as has been
shown in our previous article, an entirely different
structure of theoretical ideas can be proposed for
describing this experiment, in terms of a set of hidden
variables which do in fact determine the future behavior
of the photon completely (so that, for example, there
do exist photons which can with certainty traverse both
crystals). Therefore, the need to describe this experi-
ment in terms of incompatible propositions would be a
"fact" only if it could be proved that the language of
quantum mechanics is necessarily universally app1icable
to all possible physical phenomena and is the only one
that is of this nature. To Aegir with such an assumption,
without experimental or theoretical justification, would
however evidently amount to circular reasoning, because
this is just what the argument of Jauch and Piron aims
to prove. Since no justification for an assumption of
the kind described above is in fact offered, it seems
clea.r that the proof of Jauch and Piron breaks down.

THE PROOF OF THE THEOREM

To see in more detail how this happens, we note that
their object is to establish that, if a propositional system
admits hidden variables, then all propositions are com-
patible. This is proved in Theorem II of their paper.
(The conclusion of Theorem I is the same, but the
proof depends on slightly stronger assumptions. )

"This theorem permits the reduction of the question
concerning hidden variables to an empirical one, viz. ,
whether there exist propositions which are not compati-
ble. Since the lattice operations have a physica, l inter-
pretation which is accessible to an empirical verifica-
tion, we can decide the question by examining the
actual behavior of specific propositions under observa-
tion. To rule out hidden variables, it su%.ces to exhibit
two propositions of a physical system which are not
compatible. It turns out that this is quite easy. In fact,
the occurrence of incompatible propositions leads to
gross macroscopic eGects which can easily be verified.
With this result the possible existence of hidden vari-
ables is decided in the negative. " (Ref. 2, pp. 836, 837.)

In spite of the unfortunate wording —it is diKcult
to see how propositions, "incompatible" or otherwise,
could lead to gross macroscopic effects—the error in
the above reasoning is clear. The authors refer to the
thesis of Piron and the article of Birkhoff and von
Neumann for examples, and we have already indicated
that these examples are not really "empirical" because
they are based on tacitly assuming just what the
authors wish to prove, i.e., that the language of propo-
sitions corresponding to projection operators in Hilbert
space is the only one that can be used to describe the
actual experimental f'acts about the examples in ques-
tion.

Qf course, if quantum mechanics is assumed from
the outset as the theory to which all experimental
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X»0, X,&0, Xi+f2 ——1,

defines a new state which is diferent from either one.
Such a state, which can be represented with two differ-
ent states, is called a mix/u~e and distinguished from
the pure or homogeneous state. A system of propositions
Z which admits hidden variables is defined as a lattice
on which every state is a mixture of dispersion-free
states, so that every state can be expressed in the form:

(u(a) = +);co;(a)

with

X;&0,

where co, (a) is dispersion-free.
whether or not one agrees with the manner in which

the term "state" is introduced, quite obviously, if
quantum mechanics is assumed, there are no "disper-
sion-free states, " i.e., states which give zero dispersion
for all the observables or propositions represented by
all projection operators in Hilbert space. The conclusion
of Jauch and Piron is therefore completely trivial.

This becomes immediately obvious with a closer
examination of the definition of the function co(a).
ru(a) is de6ned as a function with the following prop-
erties:

(1) 0(ra(a)&1;

(2) ~(4) =o ~(I)=1;
(3) if a is compatible with b, then &o(a)+co(b) =

c0 (aAb)+or (aub);

(4) if co(a;)=1, then

io(n a;)=1;

(5) if a=&, then there exists a state ao such that

co (a) WO.

propositions must necessarily refer, then it is possible
to introduce the concept of compatibility of propositions
as a formal reflection of the commutativity of projection
operators. But then the term experimental proposition
is little more than another name for proj ection operator,
and the incompatibility of propositions means nothing
more than the noncommutativity of Proj ection oPerators

Jauch and Piron define the "state" of a physical
system by a probability function ~(a) on the set of
all propositions a g Z, where 2 is the lattice in question,
i.e., the state of a system is determined if for each
proposition of the system we know the probability of
obtaining the answer yes during a measurement. Two
states are different if there exists a proposition a such
that oui(a) K~2 (a). If ~ei and a&2 are two different states,
then

o) (a) =Xi(vi (a)+X2(ug (a),
with

"QUANTUM PROPOSITIONS" IN TERMS OF
A HIDDEN VARIABLE THEORY

As we have shown in our previous article, by ex-
plicitly developing a hidden variable theory, it is possible
to go beyond the assumptions of quantum mechanics
and, with the aid of dynamical variables (at present
"hidden" ) which are not represented by projection
operators in Hilbert space, to define a "dispersion-free
state" in the sense that all results of all possible meas-
urements on the system are determined, In this theory,
the measurement process of an observable E, repre-
sented by the Hermitian operator P with eigenvalues
P; and eigenvectors I P;), is described by a set of
equations of the form:

@,/dt=~P;g I P; I'(Z; —Z;) (i=1, 2, ~ ~ ~, n).

The f, are the components of the Hilbert space vector
of the system —the "state" vector in quantum me-
chanics —in the representation in which the matrix of
P is diagonal:

I +)=24' I &'& (10)

The hidden variables are represented by the components
of a normalized vector in the dual space:

and appear in the terms R;, R;, which are defined as:

&'= lk'I' I/&'I', &t= IBI'/I@I'.

y is a constant representing the strength of the inter-
action between the apparatus and the system measured.
If R, is the greatest such term, then these equations
describe a dynamical process in which iP, increases to 1
and all the other P; decrease to 0, assuming the vector

In the proof of Theorem II, (4) is replaced by the
weaker assumption (4')

o~(a) =co(b) =1 implies a&(aAb) =1.
Now if u and b are incompatible, i.e., if the correspond-
ing projection operators do not commute and have no
common eigenvectors, then, as we have already pointed
out, aAb=a'Ab=aAb'=a'Ab'=P. Since cv(P) =0, by the
requirement (2), &a(a) and &a(b) cannot both be equal
to 1. Thus, their definition of an acceptable state &u (a)
rules out states in which the result of the measurement
of a and b can be predicted with certainty if the projec-
tion operators corresponding to a and b do not commute.
On the other hand, the very essence of a hidden variable
theory is that, for a completely specified state of the
system, in which the values of the hidden variables are
all determined, the result of a measurement of any
observable can be predicted with certainty. This has
been pointed out by Bell.
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I @& is normalized, so that the result of the measure-
ment is the eigenvalue E', and the system. is left in the
"quantum state"

I
E.). The result of the measurement

is therefore determined by the vector I 4), the hidden
variables and the apparatus, which we characterize as
a macroscopic system defining the representation.

Thus, a completely specified physical state is de6ned
in this theory by two vectors: the Hilbert space vector
of the system and the dual vector. Fr'om our point of
view, the quantum mechanical specification of the state
of a system by a wave function only, represented by
a vector in Hilbert space, is incomplete, and we recover
the statistical results of quantum mechanics from an
ensemble of systems with the same

I
4 ) vector but with

a random distribution for the dual vector ($ I. The
propositions of this theory are statements about the
Hilbert space vector of the system, the hidden variables
represented in the dual space, which are also in princi-
ple measurable, and the measuring apparatus. There
does not seem to be any sense in which two such state-
ments can be considered to be "incompatible. " How-
ever, each quantum mechanical observable is associated
with a speci6c process of interaction between the system
and a suitable measuring apparatus, and if we consider
two different processes for the measurement of two
observables P, Q whose operators do not commute,
then these processes are incompatible in the obvious
sense that their actions interfere. If

(13)

then the process tending to develop P, to 1 and f;
(its) to 0 in the measurement of P conflicts with the
process developing q& to 1 and &pe (j &t) to 0 in the
measurement of Q. In this theory, two quantum
propositions a and b, represented by noncommuting
projection operators, can both be "true" with certainty
in the sense that they would each be veri6ed as true
by the corresponding processes, whereas there is clearly
no process for the proposition aAb, For example, if two
systems are prepared in the same completely specified
physical state, i.e., with the same

I @)vectors and the

same ($ I
vector, then the one system could be used

to verify the proposition a and the other to verify the
proposition b. If the state is de6ned in such a way that
the results of both measurements can be predicted as
positive with certainty, then for this state we would
have

co(a) =(o(b) =1 but (o(anb) =0, (14)

since the proposition aAb is certainly false. As to the
example of Piron, it is clear that if the state of the
photon is completely de6ned, by specifying the hidden
variables as well as the "quantum state, " then it is
possible to predict with certainty whether or not the
photon will pass through both crystals from the equa-
tions of measurement.

In our theory, every (quantum) proposition is either
true or false with certainty, if the values of the hidden
variables are known. However, these propositions refer
to the results of experiments on the system, i.e.,
physical processes involving the system in interaction
with a measuring apparatus, and to realise the truth
or falsity of experimental propositions representing
projection operators which do not commute involves
incompatible processes All qu.antum propositions are
compatible as potentialities referring to the outcomes
of various dynamical processes for the system. Although
the concept of incompatibility of propositions seems to
be meaningless, except in the sense of a rather in-
appropriate synonym for the noncommutativity of
projection operators, the concept of incompatibility
of processes is quite clear: two processes are incompatible
if their actions interfere in the sense that the one process
implies an order of movement which convicts with that
needed for the other to take place.

To sum up, the argument of Jauch and Piron is circu-
lar since they are really assuming quantum mechanics,
whereas von Xeumann's proof does rule out a certain
restricted class of hidden variable theories. They are
led to the idea of incompatible propositions only
because they tacitly suppose that all experiments must
be analyzed in terms of the usual terminology of
quantum mechanics, which we have suggested provides
an inadequate set of propositions for the problem.


