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The measurement problem in quantum mechanics is re-examined and it is shown that it cannot really be solved in a
satisfactory way, within the framework of the usual interpretation of the theory. We then discuss von Neumann’s attempts
to prove that quantum mechanics is incompatible with the introduction of hidden variables, and develop a more detailed
form of Bell’s argument, showing that von Neumann’s analysis is invalid. Using certain ideas that are implicit in the
‘““differential-space” theory of Wiener and Siegel, we go on to propose a new deterministic equation of motion, describing
a kind of coupling of the measuring instrument to the observed system that explains in detail how the wave packet is
“reduced” during a measurement in a continuous and causally determined way. By averaging over the hidden parameters,
we then recover the usual statistical results of quantum mechanics as a special case. However, a more detailed analysis of
the theory shows that new experimental and theoretical questions can now be raised, which go outside the framework

of the quantum theory as it is now formulated. These questions are examined briefly.

1. INTRODUCTORY REMARKS

In recent years a number of articles have been pub-
lished indicating a revival of interest in the problem
of the physical interpretation of quantum mechanics.
In these articles it becomes evident that the whole
question is far from being settled in a clear and simple
way. It therefore seems worthwhile to go into this sub-
ject as carefully as possible. We shall attempt to clarify
the nature of these questions and problems, as well as to
suggest some tentative steps towards answers and
solutions.

Now, in one of the most widely accepted interpreta-
tions of the quantum theory, i.e., that of the Copen-
hagen school,’? the physical state of a system is as-
sumed to be completely specified by its wave function
which, however, defines only the probabilities of re-
sults that can be obtained in a statistical ensemble of
similar measurements. The possibility that there exist
further dynamical variables determining the actual
behavior of each individual system at the quantum
level is rejected. In support of this orthodox doctrine
there is the well-known proof of von Neumann?® that
the assumption of such ‘hidden variables” is incompat-
ible with the established results of quantum mechanics.

On the other hand, there are theoretical as well as
practical reasons for regarding the present form of the
quantum theory as unsatisfactory. The now classic
Einstein—Podolsky-Rosen paradox* suggests that the
theory is incomplete (in spite of refutations by Bohr
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and others). The results of experiments involving very
high energies (of the order of 10° €V or more) or very
short distances (of the order of 10~ c¢cm or less) are
becoming increasingly more difficult to explain without
ad hoc extensions to the theory. In addition, many
authors have suggested that the reasoning involved in
von Neumann’s proof is circular and that the conclusion
is tacitly assumed in the premises on which the argu-
ment is based. Other authors (the most recent of whom
are Jauch and Piron®) deny that the conclusion de-
pends on a circular argument. Still others®” fully
accept neither the Copenhagen interpretation nor
von Neumann’s point of view and yet, at least by
implication, agree that the usual interpretation is in
essence the only possible one. Finally, it has recently
been pointed out by Bell® that von Neumann’s proof
is based on certain unnecessarily restrictive assump-
tions and that when these are not made the proof breaks
down.

It seems, then, that the question of the possibility
of hidden variables underlying the quantum theory is
still problematic. Besides, as we shall make clear, if
the claims based on von Neumann’s theorem are ac-
cepted as valid then it would follow, from the facts con-
firming the current quantum theory, that a different
general structure of concepts is impossible. Thus, it is
made to appear that the linguistic structure of quantum
mechanics prevents even the assertion of the possibility
that the basic postulates underlying the theory may be
false. In effect, this would mean that certain features
of the basic postulates of the current theory are ab-
solute truths that can never be falsified, or shown to
be valid only as approximations or limiting cases. This
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kind of unfalsifiability would be almost as dangerous
in any theory as is the claim to unfalsifiability on
a priort grounds.

There have been many attempts to develop other
interpretations of quantum mechanics and a number
of hidden variable theories have been proposed,?®
which supply explicit refutations of von Neumann’s
proof. Nevertheless, these theories have all suffered
from various inadequacies and, for this reason, are
largely ignored in current research. From the outset,
however, this whole controversy has been plagued by
tacit assumptions, very often of a philosophical rather
than a physical character, leading to the kind of diffi-
culties referred to above concerning the relationship of
hidden variable theories to the experimental con-
tent of quantum mechanics and the relevance of von
Neumann’s proof. In addition, the theory of the process
of measurement involves a great many unclear features
and unresolved problems, arising mainly because the
role of the measuring instrument in the phenomenon
of the “collapse” of the wave packet in a quantum
mechanical measurement process is obscure. This has
been referred to as the measurement problem in quantum
mechanics.

In this article, as has been indicated, it is hoped to
present the controversy in a more coherent and unified
manner and to investigate and propose a solution to
the measurement problem. After a review of the basic
principles of quantum mechanics with the aim of
clarifying the problem, we shall consider the Copen-
hagen interpretation, along with one of its modern
variants,'? which latter aims to give a more detailed
mathematical treatment of the role of the observing
apparatus than Bohr does. These attempts to treat the
“‘collapse”” within the framework of quantum mechanics
will be seen to avoid the real problem, because they do
not, in fact, propose a scheme which adequately in-
corporates the role of the measuring instrument into
the dynamics of a theory that includes the measure-
ment process. The idea that the quantum mechanical
description of phenomena is incomplete, and that there
are additional variables (at present “hidden”) which
must be taken into account, seems therefore to provide
a very natural basis for a proper understanding of the
situation. Before proceeding with the development of
such a theory, however, it is of course necessary to con-
sider the claim that a hidden variable theory under-
lying quantum mechanics is impossible. In this con-
nection, we shall discuss the assumptions underlying
von Neumann’s proof® and expose their inadequacy.
(Besides this proof, there has been a more recent at-
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tempt by Jauch and Piron® to establish the impossi-
bility of a hidden variable quantum mechanics. This
will be discussed in a subsequent paper.)

We present a hidden variable theory which is an
extension of the ‘“differential space” theory of Wiener
and Siegel'"3* and develop certain ideas which are
only tacitly implied in their work. A deterministic
equation of motion is introduced which couples the
measuring instrument to the observed system and so
explicitly incorporates the role of the measuring in-
strument into the dynamics of the theory. Since the
apparatus may be regarded, from a physical point of
view, as merely a particular case of the large-scale
environment of the system, this suggests a multi-level
theory in which the general movement of a system is
determined by an equation of motion coupling the
large scale to the small scale. A measurement process
is then interpreted as a special case of this movement,
to which each system is always subject.

An important feature of any such hidden variable
theory is its potential contradiction with quantum
mechanics. The latter is, of course, recovered in a cer-
tain special case. This theory therefore opens up new
experimental possibilities, which are briefly examined.

It is definitely not proposed that the theory developed
here is likely to be a “right” one. Rather, the main
aim of this theory is to provide a language and a set
of concepts in which it is possible to show clearly the
meaning behind the different interpretations of quan-
tum mechanics and to indicate what it means to assert
or deny the existence of hidden variables. However,
the discussion of the questions outlined above would
almost certainly be relevant in any new hidden vari-
able theory which might be developed, even if the form
of the latter were very different from the theory pro-
posed here. Thus, while this theory serves mainly as
an example for making the discussion more concrete,
at the same time it also suggests certain new kinds of
experimental and theoretical questions whose relevance
transcends the particular example of the theory in
which they are raised.

2. REVIEW OF THE BASIC PRINCIPLES OF
QUANTUM MECHANICS

The basic principles of quantum mechanics have
been expressed in many different ways in various pub-
lications. It is, however, necessary to discuss briefly here
certain essential features of the quantum description,
with the aim of clarifying what the assumptions behind
the usual interpretation of quantum mechanics actually
are and how these may be changed in the development
of a theory of hidden variables. In addition, we shall
attempt to distinguish clearly between those assump-
tions confirmed in experiment and those based on
largely tacit notions which are essentially philosophical
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rather than physical. It will become evident in this
discussion that some of these philosophical assumptions
underlying the usual interpretation are misleadingly
vague and unclear, especially on the question of the
relation between the properties of individual systems
and those of statistical ensembles.

Two of the basic postulates of quantum mechanics
are the following:

(1) The state of a quantum mechanical system is
defined by a continuous, single-valued wave function,
¥(x, t), which obeys a deterministic equation of mo-
tion, Schrodinger’s equation:

ih(0%/9t) = HY. (2.1)

(2) The wave function determines the probabilities
of the possible results of any measurement on the
system. Equivalently, the average or expectation value
for an ensemble of measurements of any observable
R is derived from ¥ through the algorithm:

R=(¥,R¥)= f T*(x)R(x, —hV)¥(x) dx, (2.2)

where R is the operator corresponding to the observ-
able R.

These two postulates, which are fundamental in
any conventional formulation of quantum mechanics,
incorporate the notion of probability into the theory in
an inherent way. Yet it is not immediately clear how
the ensembles, to which these probabilities refer, are
formed and what their individual elements are. For the
very terminology of quantum mechanics contains an
unusual and significant feature, in that what is called
the physical state of an individual quantum mechanical
system is assumed to manifest itself only in an ensemble
of systems.

Because it is indeed mysterious for an individual
system thus to manifest itself only in a statistical en-
semble, there is a tendency among physicists tacitly to
avoid this problem by interpreting the wave function
as referring directly to an ensemble rather than to an
individual system. In other words, it is quite often
supposed that a wave function is not to be associated
with an individual system, but only with an ensemble
of similar systems. This interpretation is in fact un-
tenable, as can be seen by the analysis of a simple
hypothetical experiment.

Consider a two-slit diffraction experiment with elec-
trons, which is set up with a movie camera replacing
the single photographic plate in the usual arrangement.
If the film moves at the rate of one frame per second
and the electrons arrive at the slit system one at a time
at intervals of one second, then each frame will record
a different individual track. If each electron is simi-
larly prepared, then their wave packets are similar in
shape and will each be represented by the same func-
tion ¥. For example, suppose that the electron passes
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through a slit system and a time gate which localizes it
to within a region of size Ar. According to Schrédinger’s
equation, there will be a slowly expanding wave packet,
initially of this width, which moves through the slit
system to the plate. From this wave packet, something
is known about the individual system; viz., that the
electron is somewhere in the region where the wave function
is appreciable. Likewise, the momentum of the electron
is somewhere in the region in which the Fourier co-
efficient of the wave function is appreciable. Indeed,
this is just how quantum mechanics approaches the
definiteness of the classical concepts of momentum and
position of an individual electron, which are, however,
limited in their degree of simultaneous definition by
the uncertainty principle. Therefore, if one considers
the movement of the packet representing an individual
electron as it passes through the slit system and de-
velops a set of fringes, according to Schrodinger’s equa-
tion, one can predict that it will strike a certain region
of one frame of the film in which the transformed wave
function ¥ is appreciable. After the experiment, a
superposition of all the frames will yield the diffraction
pattern determined by | ¥ |2, where ¥ is a typical wave
function. Although they are all represented formally
by the same function of x, each electron has a wave
function that depends on the time ¢ in its own way (such
that only one electron is in the system at the time).
The packets are similar in shape, but different in their
times of going through the slit system.

Therefore, the wave function refers primarily to an
individual electron and the statistical ensembles refers
to a set of electrons having different wave functions of
similar shapes. Nevertheless, because the probability
interpretation is the only physical meaning given for
the precise shape of the wave function (as opposed to
its general extension in x or p space), it cannot give a
model of how the electron moves in the slit system,
which is more detailed than the limits of applicability
of classical concepts to individual particles, as deter-
mined by the uncertainty principle. To bring out in
more detail what this means, we note that the wave
function of the electron at a point x to the right of the
slits is

V¥ (x) =4 (x) +¥5(x), (2.3)

where ¥4 (x) represents that part of the wave reaching
the point x that has come from slit 4 and ¥z(x) repre-
sents that part which has come from slit B. If only
slit A were open, then the probability of an electron
reaching the point x would be equal to P, (x)=| ¥a(x) |2,
while if only slit B were open this probability would
be Pp(x)=| ¥5(x) 2. When both slits are open, however,
the probability is

P(x)=|¥a(x)+¥5(x) 2
=Pa(x)+Pp(x) + T *(x)¥p(x) +T5*(x) ¥a(x).
(2.4)
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In addition to the “classical” probability terms P4+ P,
P contains the interference terms, ¥ *Up+Wp*¥,,
which would not be present if the experiment involved
a probability distribution of classical particles, coming
either through slit 4 or slit B. (These terms may, for
example, cause ¥ to vanish at certain points where
there would have been a nonvanishing probability with
only one slit open.) Therefore the particle model fails
as a description of the details of the motion of an in-
dividual electron within the slit system. On the other
hand, since the electron acts like an individual par-
ticle in producing a track on one frame of the film, the
wave model also fails to describe the order and structure
of this motion adequately.

At the risk of laboring an obvious point, we repeat:
Each individual quantum system is associated with
a certain wave function. All information about the
system is assumed to be contained in the wave function
through the probabilities that can be deduced from it.
But this function provides no representation of the
detailed movement of an individual electron. To call
W the state function of such an individual electron there-
fore leads to confusion, because the significance of this
function is in general manifested physically only in an
ensemble of systems having wave functions of a similar
form. On the other hand, because these functions
actually all refer in a certain way to different systems,
it is also wrong to say that the wave function belongs
only to an ensemble.

It seems therefore that there is no clear physical con-
cept of the detailed state of movement of the individual
electron. At best, then, the quantum theory can be
regarded as an elaborate system of algorithms for com-
puting the probabilities of experimental results. Never-
theless, most of those physicists who follow the usual
probabilistic interpretation of the theory are not con-
tent to do this, so that they are ultimately faced with
the inability to provide a satisfactory resolution of the
question of how the individual and the ensemble are
related, as they try to interpret the algorithms with
the aid of physical concepts. It will be our intention to
show that this difficulty can be removed by extending
the concepts of the theory, in a manner equivalent to
the introduction of some kind of hidden variables.

Before continuing with a third, and yet more prob-
lematic, postulate of the usual theory, we shall digress
here briefly in order to clarify the distinction between
pure and mixed ensembles in quantum mechanics.

A pure (or homogeneous) ensemble consists of in-
dividuals (e.g., electrons) which all have similar wave
functions, although they are generally ordered in dif-
ferent places or times. In a pure ensemble, therefore,
the typical wave function ¥ defines the probability
distribution for the ensemble, so that the expectation
value of an observable R is given by the relation:

R= / V*(x)R(x, —ihV)¥(x) dx.  (2.5)

A mixed ensemble is composed of individuals whose
wave packets are not all similar; e.g., electrons which
boil out of a filament have a distribution of energies,
hence a distribution of wave functions. If, in a given
representation, the coefficients of the expansion of a
wave function ¥ into an orthonormal (discrete, for
simplicity) set of basis functions S;(x) are y;, then the
expectation value determined by this wave function
for an observable R may be expressed as:

R= Z V*Rili, (2.6)

where R;; is the matrix (S, RS;). For a mixed ensemble,
the expectation value is determined by averaging over
all the wave functions present, i.e.,

(Ryw=2_ W*¥inRij
=2 piiRij,

where p;ji= () is the statistical matrix (or density
matrix), so that:

(2.7)

(R)w="Tr (fR). (2.8)

From the above assumptions, it follows that f is
Hermitian and (R),, is real.
We come now to postulate (3):

(3) After a precise measurement of the observable
represented by the operator R yielding the eigenvalue
R;, the wave function ¥(x)=2 &:Ri(x) becomes
R,’(X).

This phenomenon is known as the “collapse” or
“reduction” of the wave packet and the postulate in
question is sometimes referred to as the ‘“projection
postulate”, because the vector in Hilbert space repre-
senting ¥ is projected after the measurement onto one
of the basis vectors of the representation in which the
matrix of the operator representing the observable
measured is diagonal. The postulate is necessary to en-
sure the reproducibility of measurement results: after
measuring R and finding the result R;, an immediate
subsequent measurement should yield the same value
R;, or the theory would clearly be inadequate. It is,
however, incompatible with Schrédinger’s equation,
since an ensemble of measurements on systems similarly
prepared with wave functions ¥, i.e., a pure ensemble,
will yield a mixed ensemble represented by a prob-
ability distribution of eigenfunctions, R;(x), each with
weight p;=| ¢, [2. This represents an irreversible change
involving a nonunitary transformation of ¥. In con-
trast to the classical situation, where every dynamical
process is, in principle, covered by Hamilton’s equa-
tions, the measurement process in quantum mechanics
is placed in a category on its own.

It may perhaps clarify the situation to point out
here that, according to the usual interpretation of
quantum mechanics, the process of collapse is equiva-
lent to assuming that a given wave function is replaced



by a second wave function after measurement, but
for no assignable reason: the second wave function
cannot be derived as a solution of the Schrédinger equa-
tion of motion for the system initially described by the
first wave function. If we consider a pure ensemble of
similar first wave functions, as in the cine camera ex-
periment, then this ensemble is associated with an
ensemble of second wave functions which will not in
general be pure, i.e., the individual members will have
different wave functions. The relative frequencies of
these different second wave functions are given by the
usual rules of the quantum theory.

It is not easy to avoid the feeling that such a sudden
break in the theory (i.e., the replacement, unaccounted
for in the theory, of one wave function by another when
an individual system undergoes a measurement) is
rather arbitrary. Of course, this means the renunciation
of a deterministic treatment of physical processes, so
that the statistics of quantum mechanics becomes 7r-
reducible (whereas in classical statistical mechanics it
is a simplification—in principle more detailed predic-
tions are possible with more information). More sig-
nificant still, a precise conceptual description of the
process of measurement in quantum mechanics becomes
in principle impossible, so that one also gives up all
hope of ever being able to obtain a clear conception of
the nature of the individual electron or of how it moves.
The physicist may have a rough picture of a wave
packet, which supplies a limited kind of physical in-
tuition, but this does not in any sense complete the
picture of what the electron is and of what it does.

The deeper significance of the lack of such a clear
concept of the electron and its motion can be brought
out more clearly by considering the fact that, in an
ensemble of electrons with similar first wave functions,
the differences among the second wave functions cannot
be referred to differences that exist in the individual
members of the first “pure’” ensemble. Does it not seem
natural, however, to suppose that differences in the
later states of an ensemble of systems should be related
to corresponding differences in the earlier states of the
systems? The assumption that differences appear in
time which are totally unrelated to any differences
whatsoever in the earlier states of the systems implies
a kind of breakdown of physical law that should not
be accepted lightly without some clear proof that an
assumption of this nature is unavoidable. For, once it
is accepted, we shall tend very strongly to cease to be
interested in looking for such relationships, so that
even if they should exist, we are unlikely to find them.

At this point, the idea seems quite naturally to sug-
gest itself that the differences in the second wave func-
tions (after a measurement) could be referred to dif-
ferences, before the measurement, in the values of some
new kinds of variables, at present ‘“hidden” (but in
principle ultimately observable with the aid of suitable
new methods of observation may later be suggested
by thinking in terms of such variables). Since the be-
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havior of each system would depend on these hidden
variables, as well as on the wave function, we can under-
stand how electrons with initially similar wave func-
tions can display different properties when they are
observed, through the differences of the hidden vari-
ables before measurement. The quantum mechanical
distributions of observed results could then be recovered
by averaging over a suitable ensemble of hidden vari-
ables in the first (pure) ensemble.

Such a theory would, in certain ways, be rather
similar to classical statistical mechanics, in which the
large-scale thermodynamic properties, relationships of
P, V, T, etc., are explained in terms of statistical dis-
tributions of atomic variables. Relative to the large-
scale level, these variables are at first “hidden,” but
(as has been suggested with regard to hidden variables
of quantum mechanics) they are ultimately observable
with new kinds of instruments—Geiger counters or
cloud chambers instead of thermometers and pressure
gauges—which have in fact been developed as a result
of the new ideas suggested by thinking in terms of
atomic concepts.

3. INADEQUACY OF THE COPENHAGEN INTER-
PRETATION AND OTHER RELATED THEORIES
OF MEASUREMENT

There are various reasons for developing such a
hidden variable theory. As we have indicated, the
Copenhagen interpretation of quantum mechanics,
in which the collapse of the wave packet is accepted as
a fundamental and irreducible phenomenon (an ulti-
mate fact of nature which is incapable of any further
analysis), entails the renunication of any conception
of the order and structure of movement of a micro-
system in favor of a set of rules for the prediction of
the results of specific experiments. Of course, a system
of calculation of experimental probabilities is useful.
Nevertheless, science is surely more than merely a set
of algorithms for an engineer’s handbook. Science also
aims at an understanding of the over-all structure and
order of movement of matter from the atom to the
galaxies. While science also has the aim of prediction
and useful application, these in themselves cannot
correctly be identified with the whole of the act of
understanding, in which one grasps the order the struc-
ture of a complex process in a unified coherent set of
concepts. From these latter, one can abstract relation-
ships of the parts, which make predictions possible.
However, the difference between understanding and
mere prediction can be illustrated by the example of
trying to find one’s way through a city that one does
not know. One may be given directions, which in effect
constitute predictions of the order of streets and build-
ings that one will discover if one walks in certain ways.
But a map of the city gives a unified coherent under-
standing of its over-all order and structure, from which
useful predictions can be taken by reading it. Quantum
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mechanics at present yields a coherent structure of
mathematics. However, its physical concepts resemble
the giving of directions to find one’s way through a city.
Thus, if electrons enter a slit system, quantum me-
chanics predicts the distribution with which they will
leave. But this is not deduced from a concept of the
over-all order and structure of movement of the elec-
trons. Rather, as has been indicated, it has the character
of a mathematical algorithm, equivalent to a set of
““directions.” This algorithm is surely a reflection of the
whole of natural law. But to assume that @l theories
must henceforth take the form of such algorithms will
evidently limit understanding and channel research
into a study of the statistical properties of observation
processes involving such “collapses.”

This point can perhaps be further clarified by con-
sidering the fact that there is a very important method-
ological justification for the consideration of hidden
variable theories, even those which are not necessarily
seriously regarded as ‘“‘right” ones. For the language of
quantum mechanics in the usual interpretation of the
formalism makes it virtually impossible even to assert
linguistically what is to be meant by the detailed order
and structure of this process of collapse, because the
denial that this process has any meaning is incorporated
into the very structure of the language. In this way the
theory seems to provide a justification for an inherently
statistical concept of an individual system.

This, by itself, is a very serious fault in the present
formulation of quantum mechanics. As Popper'®1 has
indicated, it is a basic requirement of any scientific
theory that it should be expressed in terms that make
it falsifiable. But current quantum mechanics has been
given a linguistic form that prevents even the hypo-
thetical assertion of the contrary to any of the basic
postulates, because this would apparently entail a
change in the experimental facts on which the theory
is based. (As will be shown later, it was the aim of von
Neumann’s theorem to prove this.) Since to deny the
experimental content of the theory is evidently absurd,
and since we can neither say nor think anything con-
trary to the basic principles of quantum mechanics, it
seems that the latter are inescapable and absolute
truths, proved by a tremendous number of experiments.

It is not generally realized that in the present lan-
guage we can only ask questions and consider experi-
ments that do not go outside the structure of this
language. As long as we use this language, no experi-
ment is ever likely to be devised that could conceivably
refute the basic postulates of quantum mechanics and
thus in principle provide a test of these postulates. We
shall always search for energy levels, scattering prob-
abilities, magnetic moments, etc., and if they are not

15 K. R. Popper, The Logic of Scientific Discovery (Hutchinson,
London, 1959).

8 K. R. Popper, Conjectures and Refutations (Routledge and
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as predicted we can always suppose that a change of
the forces between atoms, the introduction of particles
with new properties, new groups such as SUs, SUs, Uy
and other such orders, etc., will eventually bring ex-
periments back into agreement with the theory, without
changing the basic postulates given above, except in
the way of enriching and adding to them: we need
never take a step that contradicts them. Of course,
in a way, every theory can be adapted by means of
enough assumptions to accommodate any kind of data
whatsoever. But the current linguistic form of quantum
mechanics has the further special feature that it asserts
the logical impossibility of any other scheme that would
fit the facts as they are known today. It is, therefore,
necessary to challenge such a point of view, for other-
wise it might lead to our being trapped in a given set
of concepts, without our even realizing that we are thus
trapped. As we have already indicated, we shall do this
by changing the language of quantum mechanics, so
that questions may be asked which would show what
it could mean if the basic postulates of the current
theory were false. Even if the theory in terms of which
the new language is embodied should not be correct
in detail, such a questioning on a theoretical basis can
be useful, because it may ultimately lead to the pro-
posal of experiments that test these postulates.

A number of authors, notably Ludwig,” Green,®
and the group Daneri, Loinger, and Prosperi’? have
proposed theories of measurement which take into
account the macroscopic nature of the measuring in-
strument. This point of view differs from that of Bohr
and the Copenhagen school, since the macroscopic
measuring instrument is in fact treated as a quantum
mechanical system, with certain added conditions which
enable ‘“macroscopically distinguishable states” of the
system to be defined in some way. These macrostates
are, of course, related to probability distributions over
microstates of the system, so that the measurement
process is treated as a problem of quantum statistical
mechanics. Before the measurement interaction, the
apparatus is assumed to be in a thermodynamically
metastable state, such that a very small perturbation
makes it evolve (irreversibly) towards a thermo-
dynamically stable state, dependent on the state of the
microsystem.

The most sophisticated and general analysis along
these lines has been given by Daneri, Loinger, and
Prosperi and many prominent physicists, including
Rosenfeld,” have favored this apparent solution to the
problem. The argument is essentially that the collapse
of the wave packet in a measurement process is not
really a problem, because interference is destroyed in

17 G. Ludwig, article in Werner Heisenberg und die Physik
Unserer Zeit (Friedrich Vieweg und Sohn, Braunschweig, 1961).

18H. S. Green, Nuovo Cimento 9, 880 (1958).

191, Rosenfeld, “The Measuring Process in Quantum Me-
chanics,” preprint (May 1965).



the process of amplification involved in the detection
of a microsystem by a macroinstrument, so that prob-
ability amplitudes become ordinary probabilities in the
irreversible transition of the amplifying apparatus to
a condition of stable equilibrium. Hence what “col-
lapses” is only our knowledge of the system and not
some property of the system itself. However, in the cine
camera experiment, we have seen that, according to
the basic principles of quantum mechanics, the wave
function always refers to an individual system. The
fact that interference between different parts of the
wave function, corresponding to different values for
the observable measured, is effectively destroyed in
the amplification process does not explain why the
wave function of the individual fotal system “condenses”
onto one and only one of the component noninterfering
wave packets that are produced in the interaction with
the measuring apparatus. Thus, the question of the
behavior of an individual total system is avoided.

In order to clarify this criticism, we can also refer
to the example of the measurement of the z component
of the angular momentum of an atom with angular
momentum 7/2 by means of a Stern—Gerlach experi-
ment (Ref. 20, p. 593). In this experiment, an atom is
passed through an inhomogeneous magnetic field which
gives it a momentum that is directed up or down, ac-
cording to whether the spin is up or down. The result-
ing z motion of the atom after it leaves the field carries
it to a height that depends on the spin and, in this way,
a rather rough observation of the position determines
whether the spin was up or down.

It can be shown that, after the measurement inter-
action, the wave function of the total system of atom
plus measuring instrument takes the form of two lo-
calized wave packets which no longer interfere sig-
nificantly. But this does not alter the fact that only
one of these packets can be “actual” if the total system
is to be in a certain definite state after the measure-
ment. In terms of the cine camera experiment, if an
individual electron is sent through this apparatus, until
it arrives at the photographic film it is represented by
a wave packet spread over a large region of space. When
this packet arrives at the film it begins to interact with
the wave functions of the atoms of the film. In the
interaction it is ‘“broken up” into many very small
packets, which cease to interfere coherently. What is
still unexplained, however, is that only one of these
packets contains the electron: there is no possibility
within the theory of understanding how and why the
individual electron suddenly ‘“‘condenses” into one of
the packets. In other words, there is no logical con-
nection between the first wave function, which may be
regarded as ‘“broken up” into noninterfering localized
packets, and the second wave function, which repre-
sents a definite result.

20 D. Bohm, Quantum Theory (Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1951).
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To be sure, if we now average over the resulting wave
functions in an ensemble of measurements on similarly
prepared systems, then the pure ensemble of similar
first wave functions is connected statistically to the
ensemble of second wave functions, i.e., the probability
distribution of second wave functions is determined by
the algorithm of quantum mechanics. But this averag-
ing process can only be understood as an empirical
average over the wave functions which are actually
present after an ensemble of measurements: there is
no corresponding distribution of any parameter over
the ensemble of first wave functions which can be
averaged over to produce the resulting distribution of
second wave functions. This amounts to a confusion
between the individual and the statistical interpreta-
tion of the meaning of the wave function. For, the
attempt to regard the different components of the
“broken up” first wave function as nothing more than
probabilities would make sense if the wave function
were given only a statistical interpretation. The purely
statistical aspects of the treatment are in themselves
therefore perfectly clear, and would be still clearer, if
it made no claims at all (beyond limits determined by
the uncertainty principle) to discuss the details of the
movement of individual electrons. But then, it would
also be very obvious that no explanation has been given
for how an individual electron arrives in one of the
packets. The assertion that the individual has in fact
been adequately treated is just what leads to the con-
fusion, in which the one word “‘electron” is required
at the same time to refer to individual and statistical
ensemble. And this assertion is based on the tacit as-
sumption that the current interpretation of quantum
mechanics is complete.

Thus, although the analyses of Daneri, Loinger, and
Prosperi, and other such treatments do help to clarify
the measurement process to a certain extent by em-
phasizing the existence of an amplifying stage in the
process, the basic problem is still unresolved. A thermo-
dynamic averaging operation is performed over an en-
semble and reasonable probability functions are ob-
tained, but it remains unclear exactly what the statis-
tical mechanical parameters are. The question of the
behavior of an individual system, for example the
process of movement of an individual electron through
the apparatus of the movie camera experiment, is not
answered. The analysis of Daneri, Loinger, and Prosperi
does not alter the fact that the extended wave model is
needed to describe the movement of the electron
through the slits, while after the packet reaches the
film and interacts with it there is a set of noninterfering
localized packets, only one of which contains the
electron.

We conclude that the attempts to develop a theory
of measurement within the quantum theory do not
succeed in solving the real problem, and that the order
and structure of the process by which a microsystem
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such as an electron is measured cannot be conceived
within the formalism of quantum mechanics alone.
Before proceeding with the development of a hidden
variable theory, however, we must first dispose of von
Neumann’s proof that any attempt to explain the
probability distributions of quantum mechanics in this
way would be impossible, because it would contradict
the experimental facts on which the theory is based.

4. VON NEUMANN’S PROOF

Von Neumann’s proof?! that hidden variables can
be excluded in quantum mechanics, contained in Chap.
IV of the “Mathematical Foundations of Quantum
Mechanics,” is based on the following assumptions:

(i) There corresponds to each observable of a quan-
tum mechanical system a unique hypermaximal
Hermitian operator in Hilbert space. This correspond-
ence is assumed to be one-one, i.e., each such operator
corresponds to an observable. (Page 313.) (In place
of the term ‘‘observable”, von Neumann uses the
neutral phrase “physical quantity,” but with the same
connotation.)

(ii) If the observable R has the operator R, then
the observable f(R) has the operator f(R). (I, page 313.)

(iii) If the observables R, .S,+++ have the operators
R, S,---, then the observable R+4S---- has the
operator R4-S+-+--. (The simultaneous measurability
of R, S,++ is not assumed.) (II, page 314.)

(iv) If the observable R is by nature a nonnegative
quantity, for example, if it is the square of another
quantity S, then B>0, where R is the expectation
value of R for an ensemble of measurements. (A’,
page 311.)

(v) IfR, S,- - are arbitrary observables and a, b, - -
real numbers, then (aR-+b6S++«+)p=aR+bS+---.
(B, page 311.)

Two definitions are also relevant:

(a) An ensemble is dispersion-free if (R)*=(R2)p
for every observable R. (o/, page 312.)

(b) An ensemble is komogeneous or pure if it cannot
be split into subensembles with different statistical
properties. In other words, if the ensemble is split into
any two subensembles, so that R—R'+R" for every
observable R, then R'=c¢'R, R""=c¢"R (where ¢/, ¢”’ are
constants ¢’+¢"'=1; ¢, ¢’>0).

On the basis of these assumptions, von Neumann
demonstrated that there exists a linear, semidefinite,
Hermitian matrix U,.g, such that for any observable R:

R=3" UwnRu="Tr (UR). (4.1)

Thus, every ensemble in quantum mechanics is char-
acterized by a certain (density) matrix (or statistical

21 Reference 19, Chap. IV, Parts 1 and 2 (pages 295-328).

operator), from which the average of any observable
can be deduced according to a certain algorithm.

Since there is no physically meaningful density
matrix which gives zero dispersion for all observables R,
von Neumann’s first conclusion was that there are no
dispersion free ensembles. In addition, there are density
matrices which represent homogeneous ensembles,
which means that it is not always possible to split an
ensemble into subensembles with different statistical
properties. The interpretation of this result for the
question of hidden variables is that the statistics of the
homogeneous ensemble cannot result from averaging
over the hidden variables because, firstly, the ho-
mogeneous ensemble could then be represented as a
mixture of two different ensembles and, secondly, be-
cause the dispersion free subensembles consisting of
one or more individual systems in the same precisely
defined state do not exist.

The argument here follows the analogy with classical
statistical mechanics. A classical observable is defined
as a function of the coordinates and momenta (hidden
variables) which determine the microstates of the
system:

R=R(91, g5 Py P%"')’ (42)

which is abbreviated symbolically to R(gqip). If the
“state” of the system is only defined by certain thermo-
dynamic (i.e., large-scale) variables, then the expecta-
tion value of R for such a system is computed as the
average over a suitably defined ensemble of systems:

= [ o(T, 9, DR(g, p) dgdp=R(T), (43)

where the symbol 7 is used to represent the thermo-
dynamic variables which define the ‘“state” of the
system macroscopically and p is a probability density.
In the equilibrium case the statistical or thermodynamic
properties of the system may be derived from the “nor-
mal” Boltzmann distribution function C exp (— E/kT):

B [ Coxp (—E(q /ATIR(G, 9) dadp,  (44)

where T is the temperature. In general we may con-
sider any distribution function p(7, ¢, ), in particular
the extreme case of a é-function, representing a dis-
persion free ensemble in which the values g, p are pre-
cisely defined and determine a value for every observ-
able R(q, ) without dispersion.

Similarly, in a statistical explanation of quantum
mechanics by hidden variables, there should be ‘“non-
normal” distributions of these parameters possible as
well as a “normal” distribution which would reproduce
the results of quantum mechanics. The extreme case
of such a “nonnormal” distribution would be the dis-
persion free ensemble, in which the values of all hidden
parameters are precisely defined and hence determine



a particular value for every observable. Von Neumann
demonstrated that the existence of such “nonnormal”
ensembles, with statistical properties violating those
of quantum mechanics (which is certainly implicit in
any hidden variable theory), is impossible. He con-
cluded this proof with the remark that:

“...we need not go any further into the mecha-
nism of the ‘hidden parameters’ since we now know
that the established results of quantum mechanics
can never be re-derived with their help”#

and he even stressed that:

‘.. .itis therefore not, as is often assumed, a ques-
tion of a re-interpretation of quantum mechanics,—
the present system of quantum mechanics would
have to be objectively false, in order that another
description of the elementary processes than the
statistical one be possible.”’??

Thus, since the concept of hidden variables is incom-
patible with von Neumann’s assumptions, and since
the denial of these assumptions would seem to entail
the denial of the postulates of quantum mechanics as a
special case, it appears that any hidden variable theory
would contradict the experimental results confirming
quantum mechanics.

If von Neumann’s assumptions are accepted, then
his conclusion is indeed inescapable. However, these
assumptions, in spite of their apparent innocence, are
unnecessarily restrictive. If the dispersion in the
measured values of an observable R is assumed to be
due to a distribution in the values of certain hidden
parameters over the ensemble of systems measured,
then the expectation value of R, R, is clearly to be re-
garded as an average over this distribution of hidden
variables. Hence, the relation

R = Z Unm-Rmn

should be expressed as:

R=2" UnnRpn, (4.5)
mn

where U, the matrix defining the statistics of a quan-

tum mechanical ensemble, is computed as an average

over the distribution of hidden wvariables in the en-

semble. Explicitly:

Unn= [ U@, 0)p(0) 0, (4.6)
so that:
R= Z / Unm(\Py >‘) Rmnp()\) dA, (47)

22 Reference 19, pages 324, 325.

D. Bouu AND J. BuB  Measurement in Quantum Mechanics 461

where the symbol A is used generically to denote the
set of hidden variables Ay, Ay, +» and p(N\) =p(Ay, Ag,**+)
is a probability distribution function defined over the
hidden variables. [The above expression is, of course,
only true for a pure ensemble. In the case of a mixed
ensemble, there is a certain probability, P(¥), of any
particular quantum state. Hence R must be averaged
over the distribution of quantum states as well as the
distribution of hidden variables:

=2 [ TunRono ) (458)
where U, is averaged over the distribution of wave
functions, not over \.]

This relation for E implies that, for particular values
of ¥ and X (i.e., the dispersion free case), the value of
R is determined by a relation of the form:

R'=3" Uun(¥',\) Ryny (4.9)
mn

where the ’ is used to denote a particular value of the
relevant parameter. This is a linear relation between
the value of the observable R and its associated matrix
R,in. Now, a priori, there is no reason why the value
of R should not be determined by some nonlinear func-
tion of ¥, the hidden variables and the matrix Rn:

R=F(¥,\, Run). (4.10)
In an ensemble:

R=fF(\If, N, Roun) p(N) AN (4.11)
and we would expect to obtain the statistical results
of quantum mechanics from a ‘“normal” ensemble
specified by some px(N).

Von Neumann’s implicit choice of a particular linear
form for F as a function of the R, i.e.,

F=3 Upn(¥,\) Rpps, (4.12)

depended essentially on the linearity assumption (v),
i.e., for any set of observables R, S, - -, whether simul-
taneously measurable or not, (aR-+bS+-- Sw=aR+
bS+---. Clearly (v) follows immediately from the
assumption of linearity for the function F:

(R+SW=3" [ U (T, N) (R4-5) mmp(N) d)
=3 [ Uan(®,2) (RS 0) ix
=2 f U (%, \) Rusmp (N dA
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Von Neumann justified the assumption (v) by the
remark that it is always true in quantum mechanics,
i.e., for any quantum state ¥:

(¥, (R+9)¥) = (¥, R¥)+ (¥, S¥).

Hence (v) is true for every pure or mixed ensemble. But
this relationship could conceivably be reproduced for
normal ensembles, specified by some py(A\) without
rejecting the possibility of a nonlinear function F. This
would imply that the assumption (v) is in general
false and is valid only in a certain special case which
includes the ensembles of quantum mechanics. (This
has been pointed out by Bell.?)
Without the assumption of linearity

=Y f U (¥, \) R (N d

tacitly contained in von Neumann’s assumption (v),
the proof fails, because it is based on an analysis of
the statistical properties of the density matrix

Um‘n=/ Umn(‘Il’ A)p()\) d>\7

which is now no longer characteristic of all conceivable
ensembles.

This proof discouraged further work on hidden vari-
able theories for some time. In the light of the above
analysis it seems that the proof rejects only those
hidden variable theories which depend on a linear law
of the form (4.7). We shall therefore turn our attention

to theories which contain the more general assumption
(4.11):

R= / F(¥,\, Run)p(M) dA.

As we have demonstrated, the assumption (v) is now
no longer valid and von Neumann’s proof breaks down.
A more recent impossibility proof has been proposed
by Jauch and Piron, in which they come to the same
conclusion as von Neumann without using the linearity
assumption (4.7) or (v). We shall demonstrate the
inadequacy of this proof in a subsequent article.

A theory which embodied the possibility of such a
nonlinear assumption for R was first proposed by one
of us in 1951.° However, that theory was suggested
merely in order to demonstrate, by a counter-example
to von Neumann’s proof, the possibility of a hidden
variable theory. It was not seriously envisaged as an
ideal theory and suffered from a lack of simplicity and
elegance of structure. We now wish to propose a hidden
variable theory, an extension of certain ideas of Wiener
and Siegel, which we consider is at least a step toward
what could seriously be considered as a tentative theory,
insofar as it suggests certain questions which we feel
to be relevant.

5. THE THEORY

We propose, firstly, that one of the basic variables
of the theory is the wave function ¥. In fact, as in-
dicated in Sec. 2 (“Review of the Basic Principles of
Quantum Mechanics”) we regard the ¥ as playing a
role somewhat analogous to the thermodynamic vari-
ables P, V, T, etc. in classical statistical mechanics.
As P, V, T, can be known from measurements on a
classical thermodynamic system done with the aid of
suitable instruments, so the measurement of a ‘“‘com-
plete set of observables’ enables us to know the wave
function of a quantum mechanical system (by finding
the eigenfunctions of the corresponding operators).
Thus, after a measurement, the wave function can be
known. At this stage, this is a basic postulate of the
usual theory, but we shall later derive it from deeper
assumptions concerning the hidden variables.

In order to simplify the presentation in the following
we shall consider the problem of a system whose wave
function can be represented as a vector in a two-
dimensional Hilbert space, for example a spin-} par-
ticle without translational motion. Using the Dirac
notation to represent vectors in Hilbert space, the
vector | ¥) may be expressed in the form:

| ‘I'>=‘l’1 } Sl)"‘%] 52>, (5-1)

where | S1), | S2) is the basis in which the operator of
the spin observable .S is diagonal. We assume that
| ¥) is normalized (| ¢1 24| ¢» 2=1).

We postulate a dual Hilbert space, a typical vector
of which is represented with respect to the same basis
by:

(¢ l=&(S1|+&(S: |- (5.2)

This dual vector space is different to the original space
and, whereas the vector |V¥) satisfies Schrédinger’s
equation, the dual vector (£ | obeys an entirely different
equation of motion, which we shall discuss presently.
We shall use the components of the vector (¢ | to repre-
sent the hidden variables corresponding to the A in
Egs. (4.10), (4.11).

We propose also that for the “normal” quantum
mechanical ensemble these hidden variables are ran-
domly distributed on the hypersphere of unit radius in
Hilbert space defined by 2 ;| £ [*=1. With the aid
of certain further assumptions, which in effect define
the function F of Egs. (4.10), (4.11), we shall demon-
strate that this distribution reproduces the usual quan-
tum mechanical averages for all observables. Never-
theless, the theory also allows subensembles which
have less dispersion than the ‘“normal’”” ones and even,
in the limiting case, dispersion free ensembles, in which
the £&; are all precisely defined.

We define the two ratios:

Ri=|¢1 /| & =T/ & 2

Re=|u Y/ & P=Ts/| &2 2 (5.3)



and postulate that, in addition to the change in | ¥)
defined by the Schrédinger equation, the following
deterministic equations operate during a measurement
process of the observable .S:

dyr/dt=~(Ri— Re)¥1 J»
dyo/di=~(Ro— Ry) Y2 J1, (5.4)

where v is a suitable quantity that remains nearly
constant during a measurement and negligible before
and after. (We assume that v is always positive.)

(For simplicity, we are considering an impulsive
measurement, where the interaction with the apparatus
is so great that the effects of the Hamiltonian of the
undisturbed system can be neglected during the inter-
action. The generalization to include arbitrary measure-
ments is straightforward and does not essentially alter
the argument.)

From these equations it follows that:

d]l/dt= 2’Y (Rr— R2)J1J2
d]z/dt= 2’Y(R2—R1)J2]1. (55)

Hence d( J;+J2) dt=0, so that | ¥') remains normalized
during the measurement process.
Also:
d(log J1) dit=2v(Ri—Ra)J>

d(lOg ]2) dt=2v (Rz— Rl)Jl. (56)

(We assume for the present that the &; are constants,
at least during a measurement process. They may be
changing, but so slowly that this change can be neg-
lected during the measurement interaction. Later, in
fact, we shall discuss such relatively slow changes in
the S,)

If Ri>R; and Jo5%0, then J; must always increase
and J, must always decrease. Since J;+J.=1, this
process will continue until J;=1 and J,=0; so | ¥)—
exp (i¢1) | S1). Similarly, if R;> Ry initially and J15<0,
then | ¥)— exp (i¢a) | S2). (¢1and ¢, are phase factors.)

Thus, the motion described by these equations pro-
duces the eigenstate | Si) or | S) after a measurement
of .S, representing a spin value of +#/2 or —#/2, re-
spectively. In an ensemble of measurements, this results
in the mixture represented by the statistical operator
F=1¥1 2] SO{S1 |+ 22| S2)(Se|. We see that the
result of a measurement of the spin is determined both
by the Hilbert space vector of the system | ¥) and by
the dual vector (¢, in wuch a way that if R;>R,, or
| ¥1 2/] & |2>1, then the result is +#/2, while if Ry> Ry,
or | Y2 |2/| & |2>1, then the result is —7/2.

These two possibilities are mutually exclusive and
between them they cover every possible set of values
of the components of the dual vector &, & whenever
the quantum state, ie., Y1, ¥s, is determined. For, if
Ri>Ry, |4ilP>] &2 (and [¢e|?<|&[?), while if
Ry>Ry, [ 2>| &2 (and s 2<] & [?). This leaves
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only the case: |1 [2=] & |2 and | Yo 2= & |2, a set of
measure zero which has no effect on the statistics:
whatever we assume for this case it will have no sig-
nificance for physical measurements, which are never
perfectly precise.

Now, in general, the hidden parameters &, & could
have any conceivable statistical distribution. As in-
dicated earlier, we demonstrate that a certain ‘“normal”
distribution, with probability function py, determines
the usual results of quantum mechanics.

We write:
£1=p1 exp (#01) = a1+1by
£2=ps exp (402) = aa+1bs. (5.7
Substituting:
p1=p COS ¢
pa=p sin ¢ (5.8)

we transform to spherical coordinates. The element of
volume in the space of hidden parameters is

dﬂ=da1 dbl ddz dbz=p1p2 dpl dpz d01 d02
=p® cos ¢ sin ¢ dp do db, db.

= %pa d(sin2 ¢) dp dby db,. (59)

We assume now that the dual vector is also nor-
malized, i.e., p=1, so that the dual point is on the sur-
face of the three-dimensional hypersphere of unit
radius in the four-dimensional space—i.e., the complex
two-dimensional space. Hence we ignore dp hereafter;
the element of volume of interest (with p=1) is

dQ=13 d(sin? ¢) dby dbs. (5.10)

Our basic assumption is that py=constant over this
hyperspherical “shell,”” i.e., a random distribution for
&, &

The integral over all points in the dual space for
which the following conditions are satisfied:

@) [ P/la P>/l &l ie, | ¥ P/o>]da[?/pe
(®) |1+ e =1
(C) [ El l?+l 52 |2= 1, i.e., p12+p2 =1 or p2=1

will give the probability of the result corresponding
to the state | S1).
We have:

L1 2 02> s |2 o2
[ 2 02> ¥ 2(1—ps)
p2> e 2

sin? ¢p>| ¢ [2. (5.11)
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Integration over the range of sin?¢ gives (with the
correct normalization for the surface area of the hyper-
sphere) :

2 1
(2m)? -/wm

Integration over 6y, 6, (from O to 27) then gives the
measure or probability of the set of points (on the unit
“shell”) for which R;>R; as:

Pi=|y 2

For Ry;> Ry, a similar calculation gives the result | ¥ |2

The form of the deterministic equations guarantees
that the Hilbert space vector representing the wave
function of the system after a measurement of the spin
S is | Si) if Ri>R, and | Ss) if Ry>Ri. The inequality
Ri>R; or R;>R; is maintained after a measurement,
since either Ji=|y1 |2 or Jo=|y»|? becomes and re-
mains unity in this representation while the other
becomes and remains zero. So, if R;>R, before the
measurement then, since Ri=J1/| & |2 increases (or
remains the same) during the measurement, while
Ry=J,/| & |* decreases to zero (or remains the same),
this inequality is satisfied affer the measurement as
well. Hence the result of a measurement will be re-
produced if the same observable is measured immedi-
ately afterwards on the same system. This conclusion
is not altered if the £; should undergo a change after
completion of the measurement, because if, for ex-
ample, J1=1, Jo=0 we always have Ri=|y1 [*/| & [*=
1/] & 2>1 (and Ry=|y»|?/| £ [2=0) for any values
of &, & (except | &1 |2=1 and | & [2=0, a set of measure
zero which can be neglected.)

It is clear that we have developed here a theory of
hidden variables that reproduces the usual probabilities
of quantum mechanics as well as the feature of the
“collapse” of the wave packet. However, the prob-
abilities are now the result of a random distribution of
“hidden” variables (and not “irreducible’”) and the
“collapse” is due to a deterministic process that satis-
fies a law that could in principle be studied with regard
to its order and structure of movement. Of course, the
theory is similar to the usual quantum theory in that
it also makes statistical assumptions of a certain kind.
But it is different in the crucial respect that these as-
sumptions permit a more general kind of statistics, con-
taining the usual quantum statistics as one possible
limit, and a “delta function” distribution of the hidden
variablesas another limit (in which the behavior is
in fact completely specified and determined). In addi-
tion, the theory opens up the possibility of a further
study, aimed at demonstrating that our statistical as-
sumptions might be justified (as is done in classical
statistical mechanics) by showing that the equations
of motion of complex systems imply a quasi-ergodic

oty
(=)= i b

(5.12)

b d(sin 6) =

1
(2m)?

(5.13)

character to the solutions. Evidently, such questions
would have no meaning in terms of the usual linguistic
structure of quantum mechanics.

Before investigating these consequences of the theory
further, we shall outline briefly the generalization to a
Hilbert space of N dimensions (where, in principle,
N—w).

The generalized deterministic equations describing
the change in | ¥) during a measurement process are:

dpifdi=xb: 2 Ti(R—R)  (i=1,2,-++,N). (5.14)

If > | ¢:l?=D_:J:=1 initially, a simple calculation
shows that d(),:Js)/dt=0 and the normalization of
| ¥) is therefore unaltered. Further, it is easily dem-
onstrated that if R, is a maximum then J, will increase
faster than any other J;, so that eventually J,—1 and
all the other J,—0. Thus, | ¥) is projected onto the
vector corresponding to the result s. If we assume that
the dual vector (¢| is randomly distributed over the
hyperspherical surface » :|&; |*=1, then a similar
calculation gives for the probability of the result s:
P,=|y, %, in agreement with quantum mechanics. A
remeasurement of the same observable will always yield
the same result.

6. SOME CONSEQUENCES OF THE THEORY

It may now be of interest to re-examine von Neu-
mann’s proof in the light of this theory. As already
indicated, the theory goes beyond the assumption of
linearity in the proof: (aR+bS—++++)p=aR+bS4---.
For example, in the spin case, let:

R= 6, S:(‘iy, T=4,
aR+-bS+cT=6= cos ad,+ cos 83,4+ cos vé,. (6.1)

6z, 6y, and ¢, are operators representing the components
of the spin in three orthogonal directions. The operator
¢ represents the component of the spin in some arbi-
trary direction inclined to these axes. Consider the
special case of a dispersion free ensemble, in which
the hidden variables &, &, the components of the vector
(¢] in the dual space, are precisely defined. These
parameters determine the result of every possible
measurement. Now, every measurement gives either
+1 or —1 for o, oy, 0, and o. Hence, since the distri-
bution is now a delta function of the hidden variables,
we have

G=0= COS aos+ COS ooyt COS o,
= cos a(=%1)+ cos (1) + cos y(=1).

On the other hand, we also have:

(6.2)

o==1.

Therefore, in general, it is not true that = cos ag,+
cos 86,+ cos vG.. So the linearity assumption is not



satisfied by this model and von Neumann’s proof has
no relevance here.

The deterministic equations which we have pos-
tulated in addition to the movement defined by
Schrédinger’s equation have a form dependent on
the representation in which the matrix of the operator
representing the observable measured is diagonal:

V=i 22 Ji(Ri—R)).

Physically, we postulate that the representation chosen
depends on the effect of the measuring apparatus. Thus,
an apparatus that measures o, creates a different mo-
tion in the Hilbert space of the wave function than an
apparatus that measures o,. These two motions are
incompatible: a movement projecting the vector repre-
sentative of ¥ onto one or another of a particular set
of axes in Hilbert space cannot be carried out at the
same time as a movement onto another set of axes.
This provides a simple explanation of the impossibility
of measuring simultaneously two “observables” whose
operators do not commute. The two ‘“observables” are
associated with two different measuring instruments,
represented in the theory by two different orthonormal
bases in Hilbert space. From the point of view of the
system alone, these ‘“‘observables” represent certain
‘“potentialities” only, i.e., the wave function of the
system, represented as a vector in Hilbert space, de-
termines only a set of potential results for each “ob-
servable”. By defining a particular set of axes in the
space, the formal effect of each apparatus is to choose a
particular set of potentialities and the hidden variables,
represented by the dual vector, then determine which
result in this set is actually realized.

For this reason the term ‘‘observable” as used in
ordinary quantum mechanics seems to be highly in-
appropriate. In our theory, the state of a system is
determined by the wave function as well as the values
of a certain set of hidden variables, i.e., these param-
eters are sufficient to determine the dynamical be-
havior of the system. These additional variables are
regarded as being in principle observable or measurable,
as in the statistical explanation of the macroscopic
properties of matter we assume that the atomic vari-
ables are measurable. On the other hand, the quantum
“observable” is no longer identified with any physical
quantity or measurable property of the system in the
usual (classical) sense of these terms and is not a dy-
namical variable of the system alone. Instead, each
quantum observable is to be associated with a specific
process of interaction between the system and a certain
“apparatus”, i.e., another system with certain well-
defined characteristics which differentiate it both from
the original system and from other apparatus systems.
The hidden variables which define the state of the
system in the sub-quantum level determine the out-
come of this process and it is this result which is labelled
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with a specific value of the quantum observable. The
process of interaction is said to constitute a “measure-
ment” of the “observable.”

Physically, the measuring apparatus is merely part
of the large-scale environment of the system and it
would be completely artificial to postulate a particular
process for “measurement interactions” which would
not also be characteristic of all interactions between a
quantum system and its large-scale environment. In-
stead of Schriodinger’s equation, therefore, we suggest
that the equation of motion of the system is in general
of the form:

Pi=mls 20 Ji(Ri—Ry)— (i/h) 22 Highs (i=1,2,-++,m)
(6.3)

where the additional nonunitary term represents the
effect of the large-scale environment on the system.

We may consider the possibility that the motion of
the wave function depends to some extent on all levels
of its environment, out to the cosmological scale. There
may, for example, be a “natural” set of variables on
the large-scale, say space and time, determined in some
as yet unknown way by the relationship of the atomic
to the cosmological level. Einstein’s notion in the
general theory of relativity, that the metric depends
on the large-scale distribution of matter in the universe,
does suggest a deep relation between the large-scale
and small-scale levels. It is interesting to consider such
an extension of his idea to include the “natural” ob-
servables.

Since our theory explicitly couples the large-scale
and the small-scale levels together, all macro-quantities
can not be calculated completely from the micro-laws.
In fact, according to the Copenhagen interpretation,
this was always implicit in quantum mechanics, but
with the unacceptable qualification that such a multi-
level theory dealing with the totality, in which quantum
and subquantum movements depend on the large-scale
movement and vice versa, is in principle incapable of
being developed.

Lastly, it is clear that the idea of a measurement
disturbing a system is completely inappropriate in this
model. We have proposed that the wave function and
Schrédinger equation do not provide adequate terms
of description of the whole physical process, and we
have extended these terms to include the dual space,
the effects of the large-scale level (which includes the
measuring instrument as a special case) and the equa-
tion coupling the wave function, the dual vector and
the large-scale level. The motion described by Eq. (6.3)
is in fact the usual motion of the system and a measure-
ment process is only a special and simple case of this
motion which leads to results that are easy to interpret.
In practice, it is realized by an arrangement of matter
for which v is appreciable for long enough to carry
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¥ over to one of the eigenfunctions of the representa-
tion. If v were not great enough during the time of the
interaction, no measurement would be possible, but
there would still be a complex change in ¥ that would
be difficult to interpret. Thus, when a measurement
takes place, the motion of the wave function is only
quantitively different from otherwise, not gualitatively.

7. THE POSSIBILITY OF AN EXPERIMENTAL
TEST OF THE THEORY

The theory has certain interesting consequences
which suggest situations in which it might be possible
to test these against the predictions of quantum me-
chanics.

In the two-dimensional example, which we have
analyzed in detail, suppose a measurement of the spin
is made in a certain direction. Now, in order to re-
produce the usual quantum mechanical probabilities
it was necessary to assume that the dual vector (¢]
was randomly distributed on the surface of the unit
hypersphere. However, after the measurement, this
vector will no longer be completely random, since from
the result of the measurement it is possible to deduce
that the components of (¢ | satisfy one or other of the
relations:

[ 2/ & P>1 (7.1)

(and [ ¥ /| & 2<1)
or

v /] & P<1 (and [¢s |¥/| & 12>1). (7.2)

Therefore, the quantum mechanical probabilities will
not in general be reproduced for a subsequent measure-
ment of the spin component in some other direction,
unless there are further equations of motion which de-
fine a quasi-ergodic movement of the &;, leading to an
eventual random distribution of these variables over
the unit “shell.” These equations may, for example,
be due to a coupling of the £; with the y; which is neg-
ligible during a measurement. As we have shown, such
a movement in the §; after measurement will not affect
the inequalities R;> R, or Ry> Ry, and so will not alter
the requirement of reproducibility of the measurement
result. However, in a long enough time after a measure-
ment the & may be completely randomized so that
the theory will imply the usual quantum mechanical
probabilities for the results ofa subsequent measurement.

This raises the interesting question of the amount of
time needed to randomize the dual vector. This is, of
course, unknown, but some plausible suggestions can
be made at this stage.

(i) Since most systems are either in thermal equi-
librium or have emerged from a source in equilibrium,
it seems plausible to assume a random process result-
ing from this. The characteristic unit of time of ther-
mal processes in relation to quantum mechanics is:
7=Hh/kT~10" sec, for room temperatures. Typical
measurements generally involve longer times, so that

the usual results of quantum mechanics are to be
expected.

(ii) The time for randomization might be related
to the lifetime 7o of the quantum state in the conven-
tional sense of the word. This would require that the
equations of motion for the dual vector couple it to
the wave function in additional ways that would make
the randomization process depend on what is at present
called the “quantum state.”

The double Stern—Gerlach experiment, in which two
consecutive measurements are made of the spin com-
ponents in different directions, might provide a pos-
sible test of the theory. Such experiments have not so
far been done for short enough times with the required
accuracy in statistics (about 19%,).

Otherwise, phenomena of superconductivity, super-
fluidity, or low-temperature measurements seem to offer
the best possibilities of tests.

Besides investigating the dependence of the statistics
of successive measurements on the time between them,
one could investigate the time needed to ‘“‘complete”
a measurement, i.e., to bring ¥, to exp (4¢;) and all
the other y; to 0 (the “collapse” of the wave packet).

A discrepancy with the usual predictions of quantum
mechanics would overthrow the whole conceptual struc-
ture and logical foundation of orthodox quantum me-
chanics and open up the possibility of investigating the
order and structure in the process of measurement.

8. MEASUREMENT OF THE “HIDDEN
VARIABLES”

As indicated, the ¢; are ‘“‘observable.” At present,
the £; are unobserved, since no experiments have so far
been designed to test for their effects. This is, of course,
understandable since the very existence of such vari-
ables has generally been tacitly and explicitly assumed
to be in conflict with the experimental facts of quantum
mechanics. However, they are not intrinsically un-
observable. Thus, in the spin example, after the meas-
urement of the spin component in a certain direction,
if there has been no time for randomization, | ¥) is
either | S1) or | S2) and hence the variables &, £ must
be such as to satisfy either the inequality R;>1, or
R,>1. This is a rough observation of the &. A subse-
quent measurement of the spin component in a different
direction would restrict the possible range of values for
the &; still further. This process can be continued until
a fairly accurate measurement has been made. It is
clear that the “hidden” variables are in principle as
observable as the y;, but they must be observed with
the aid of techniques based on new relationships arising
in a time sequence of successive measurements relation-
ships that cannot even be stated or thought about in
terms of the linguistic structure of the usual interpreta-
tion of the mathematical formalism of quantum me-
chanics.



9. GENERALIZATION TO A RELATIVISTIC
THEORY

It may be as well to mention here that the equation
of motion:

Vimnbs 2 TR~ R)~ (i/h) 2 Highs (i=1,2, -+, n)
(6.3)

is both nonlocal and nonlinear. The change in the com-
ponent y; of the state vector depends in a complicated
way on the values of all the other components. The
analogous equation for the continuous case:

— f Ty(R~R,) dy— (i/R)Hy,  (9.1)

would therefore imply that the change in the wave
function at a particular point in space depends on the
values of the wave function at every other point in
space. Clearly there is no possibility of generalizing
this theory to include relativistic phenomena if the
equation of motion is retained in its present form, which
incorporates an explicit causal mechanism whereby any
effect in one part of space is instantaneously transmitted
to another part. The theory is therefore limited to non-
relativistic phenomena.

Another limitation of the theory, connected with
this nonlocal character of the equation of motion, is
that only complete measurements are now feasible.
For example, in the case of a composite system con-
sisting of two interacting particles, the theory only
deals with a process of measurement in which the state
vector of the composite system ‘“collapses” onto an
eigenvector of an observable of the composite system.
The possibility of carrying out a measurement on one
particle alone does not exist: this can be interpreted
now only in the sense that a complete measurement
has been made and certain information ignored. Con-
sequently, the paradox of Einstein, Podolski, and Rosen
does not arise in this theory, because a composite system
must always be regarded as an indivisible totality which
in principle cannot be subdivided into independently
existing units. (This is really the essence of Bohr’s
refutation of the paradox.) Of course, this is a fault
and not an advantage of the theory, which has been
formulated in terms which exclude the framing of the
paradox. If the paradox is accepted as a real inadequacy
in our present theoretical description of certain phe-
nomena, then the problem of finding a theory which
satisfactorily resolves the paradox remains.

As we have repeatedly emphasized, we regard the
present nonrelativistic theory merely as a step towards
a more elaborate theory, which should include relativis-
tic phenomena. The Einstein-Podolski-Rosen paradox
seems relevant in this connection and suggests a pos-
sible line of research, i.e., we require a theory which

D. Bouum AND J. BuB  Measurement in Quantum Mechanics

467

resolves the paradox in the terms in which it is pre-
sented. Nevertheless, in spite of its shortcomings, the
nonrelativistic theory does provide a theoretical struc-
ture which makes it possible to discuss relationships
which go beyond those of formal quantum mechanics,
relationships which we believe are relevant to the
understanding of the measurement problem.

10. IRREVERSIBILITY OF THE FUNDAMENTAL
EQUATIONS OF MOTION

It is a well-known fact that the equations of motion
of both classical and quantum mechanics are time-
reversible, in the sense that to every solution of the
equations representing a forward motion there is a cor-
responding solution representing a reversed motion.
The irreversible behavior of macro-systems is ex-
plained in a statistical sense as the average or probable
movement of a system from one imprecisely defined
state to another. Boltzmann’s H theorem is applicable
to such systems and the irreversible transition to a
condition of macroscopic or thermodynamic equilibrium
is characterized as a transition to a condition corre-
sponding to a minimum value of H, i.e., a maximum
value of the entropy, —H. In formal quantum me-
chanics, an entropy can be defined which is zero for
pure ensembles and positive for mixed ensembles so
that the collapse of the wave packet leads to an in-
crease in entropy, i.e., the process of measurement
itself introduces an irreversible change in the state of
the system measured. However, as we have seen, the
measurement process in quantum mechanics is rather
obscure and even an analysis which treats the measuring
instrument as a macroscopic system cannot avoid
certain inherent problems. Nevertheless, it does seem
that the irreversibility associated with a measurement
process, in the sense of an interaction between a micro-
system and a macro-system, may be very significant
for the whole question of irreversibility and the “arrow
of time” in general which, in view of certain recent
experiments indicating a breakdown of the CPT
theorem, is still a controversial subject.

In the theory developed here, the fundamental equa-
tions of motion are clearly irreversible. The terms
Wi i Ji(Ri—R;) in the equations (6.3):

V= 2L Ti(R=R)—(i/R) 20 Hii (i=1,2,+++,n)

describe an exponential-type decay of (#z—1) com-
ponents ¥; of the wave function in a particular repre-
sentation and a simultaneous exponential-type growth
of one component ¥, to a limiting absolute value of 1.
This process is intrinsically different in character from
the reverse process [an exponential-type growth of
(r—1) components of the wave function and a simul-
taneous exponential-type decay of one component],
which could not, therefore, be described by equations
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of the same form. Hence there is no reverse motion
of the system which would develop the initial past
wave function from the final eigenfunction produced
by the movement described by these equations.

As well as being reversible, the equations of motion
of classical mechanics are time-symmetrical with re-
pect to the prediction of the results of future measure-
ments from a given initial state and the reirodiction
of the results of past measurements from a given final
state. Thus, Hamilton’s equations can be used to retro-
dict the past, by following the solution of the equations
backwards in time, in the same way that they can be
used to predict the future, by following the solution
forwards in time. On the other hand, in quantum
mechanics, whereas the equation of motion for the
wave function is formally time-reversible, the prob-
abilistic interpretation introduces an asymmetry with
respect to prediction and retrodiction. For example,
an initial pure ensemble of systems, each in the same
quantum state, will yield a mixed ensemble after meas-
urement. From a knowledge of the initial quantum
state, it is possible to predict the relative frequencies
with which the different states will actually be found
in the measurement. However, if one uses Schridinger’s
equation to calculate what the wave function must
have been before the measurement, this will not in
general give a correct statistical retrodiction of the
earlier states, from which the system came (assuming,
for example, that someone else had already made such
a set of measurements and that the data were available).

It seems to be characteristic of all statistical theories,
and not necessarily a feature of quantum mechanics
alone, that the predictive and retrodictive situations
are symmetrical only under certain special circum-
stances. Watanabe® has argued that phenomenological
one-way-ness has its origin in the very notion of prob-
ability, i.e., the temporal asymmetry is related to ir-
retrodictability and has nothing to do with the structure
of the dynamical laws. He formulates general criteria
for retrodictability and predictability and shows that
quantum mechanics is irretrodictable, microscopically
as well as macroscopically, whether or not it is invariant
with respect to time-reversal in the usual sense.

- Aharanov, Bergmann, and Lebowitz** have also in-
vestigated time-symmetrical situations in quantum
mechanics. They demonstrate that if both the initial
and final states are fixed, then the predictive and
retrodictive formulae, from the initial and final state,
respectively, to an intermediate state (later in time
than the initial state, but earlier in time than the final
state) are symmetrical. If only one state is fixed, 1.e.,
the initial or final state, the predictive and retrodictive

28 S, Watanabe, Suppl. Progr. Theoret Phys. (Kyoto) Extra
Number (Commemorative Issue for the 30th Anniversary of the
Meson Theory by Dr. H. Yukawa), p. 135 (1965).

24Y. Aharanov, P. G. Bergmann, and J. L. Lebowitz, Phys.
Rev. 134, B1410 (1964).

formulae are asymmetrical. The explanation suggested
for this asymmetry is that, while the future behavior
of a micro-system depends on the present (macroscopic)
boundary conditions, which define its quantum state,
we do not believe that the past behavior of the system
can be affected by the boundary conditions which we
choose to establish now.

In our theory, the equations of motion (6.3) can be
used to predict, for a certain future time, the result of
the measurement of the “observable” defining the repre-
sentation, if the hidden variables are known, or the
probabilities of different results if the hidden variables
are not known. They make no sense retrodictively.
Thus, the asymmetry of prediction and retrodiction is
associated with the time irreversibility of the funda-
mental equations.

In order to solve the problem of measurement in
quantum mechanics, we have proposed a hidden vari-
able theory which incorporates a basic irreversibility
into the dynamics of an interaction coupling micro-
and macro-levels. This is a new concept; it provides
a fresh insight into the asymmetry of prediction and
retrodiction in quantum mechanics and its development
in a more sophisticated theory might conceivably clarify
the relationship between macro- and micro-physics
and the nature and origin of irreversibility in general.

11. CONCLUSION

We have demonstrated the falsity of von Neumann’s
proof, which rejects the possibility of hidden variables
underlying the statistics of quantum mechanics, both
by exposing the inadequacy of the assumptions upon
which the proof is based and by explicitly developing
a hidden variable theory.

The current formulation of quantum mechanics
must be regarded merely as a statistical algorithm,
which provides no conceptual structure in terms of
which the movement of individual systems can be
understood. In order to be able to raise questions about
the behavior of individual systems, it seems to be neces-
sary to extend the linguistic structure of the theory by
the concept of hidden variables. The problem of meas-
urement is at present a problem only because of an
inadequate set of concepts and the confusion which
arises with the attempt to interpret this set as com-
plete. There is, therefore, no solution to the measure-
ment problem within the framework of quantum
mechanics.

A careful analysis of the reasons for the inadequacy
of the von Neumann proof suggests that, in order to
succeed, a hidden variable theory should incorporate
a nonlinear relation between the value of a quantum
mechanical observable and the precise state of the
system. In the theory proposed here, a completely
specified physical state is defined by two vectors: the
Hilbert space vector of the system and the dual vector.



From this point of view, the quantum mechanical
specification of the state of a system by a wave function
only, represented by a vector in Hilbert space, is in-
complete and we recover the statistical results of quan-
tum mechanics from an ensemble of systems with the
same | ¥) vector but with a random distribution for
the dual vector (¢ | representing the hidden variables.
The “collapse” of the wave packet in a measurement
process is described, by a nonlinear deterministic equa-
tion of motion, as a real dynamical process which takes
a certain amount of time to complete. The measuring
apparatus is regarded as a part of the large-scale en-
vironment of the system and its influence is reflected
in the above equation of motion by the representa-
tion chosen. This suggests a general modification to
Schrodinger’s equation and an interpretation of a physi-
cal process as a coupling of the large-scale and small-
scale levels. The measurement process is then merely
a particular case of this process. This theory has some
interesting consequences, which may be used to provide
an experimental comparison with the predictions of
quantum mechanics. In particular, the equation of

D. BouuM anp J. BuB  Measurement in Quantum Mechanics

469

motion introduces an inherent irreversibility into all
physical processes, which becomes especially significant
in the case of a measurement process.

The theory, in its present form, suffers from a number
of inadequacies, but it does provide a new conceptual
structure in which certain questions can be considered,
which cannot even be formulated within the framework
of quantum mechanics. Thus, to describe the same
facts in a new linguistic structure may be significant.
The rather prevalent idea that differences of language
for saying the same thing are always unimportant is
false. In some cases a different language opens up a
different structure of thinking and thus leads to new
kinds of actions in relationship to nature. What is
needed now is a hypothetical tentative approach, to
attempt both by theory and by experiment to inquire
into the conditions in which quantum mechanics might
break down, to reveal a new structure of physical law
and a new order in physical movement. Experiments de-
vised in order to study questions raised in such an
inquiry could, in principle, falsify the basic principles
of quantum mechanics and show the need for new ones.



