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Sy introducing complex canonical coordinates, classical and quantum mechanics may be embedded in the same formu-
lation. In such a way, the connection between Poisson brackets and commutators, canonical transformations and unitary
transformations, etc., become apparent. This formulation is also particularly suitable for discussing the classical limit
of quantum mechanics and for quantum-statistical mechanics.

I. INTRODUCTIOÃ

The general structures of classical and quantum me-
chanics are usually regarded as essentially different and
the relation between them has been the subject of
several investigations. ' As a matter of fact, the con-
nection between the usual formulation of classical me-
chanics and quantum mechanics is not immediate. The
classical limit of quantum mechanics, which is usually
identified with the limit 5—4, is rather obscure; the
connection between commutators and Poisson brackets
is difficult to explain in that limit. Neither is the con-
nection between the theory of canonical transformations
and unitary transformations in quantum mechanics
apparent, and one has to rely on analogy arguments.

A better understanding of the relation between the
two theories may be obtained by a formal theory of
generalized dynamics which includes classical and quan-
tum mechanics as special cases. This is realized by a
more general formulation of Hamiltonian mechanics,
with the introduction of complex canonical variables.
Hamilton's equations, Poisson brackets, and canonical
transformations exhibit an elegant and compact form,
when written in terms of the new variables. In particular
the analysis of canonical transformations reduces to the
study of the analytical properties of the generating
functions as functions of the new variables.

Quantum mechanics may be regarded as a specia1
case of the above formulation. The Schrodinger equa-
tion may in fact be written as Hamilton equations for
complex canonical coordinates, the Hamiltonian func-
tion being the mean value of the Hamiltonian operator.
In this formulation the analogy between classical and
quantum mechanics goes beyond the formal structure
of the equations of motion. In the same way as for the
Hamiltonian, a "classical" phase function of complex
variables may be introduced for any other observable
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and for them the Poisson brackets may be defined as in
the classical case. Thus, the quantum problem takes a
form similar to that of a classical problem; for example
the Poisson bracket of two conjugate variables has the
same value 1 in both the classical and quantum cases.

Most of the assumptions of quantum mechanics have
a natural explanation in the framework of complex
classical mechanics, in which they have a strictly related
analog. For example, the correspondence between
Poisson brackets and commutators is not arbitrary:
the Poisson bracket of two "classical" phase functions
is in fact the mean value of the commutator between
the corresponding operators. Similarly, the hermiticity
of observables has its analogue in the fact that the
phase functions of complex variables must satisfy a
reality condition, and the unitarity condition is nothing
but the canonicity condition for generating functions
in the case of complex canonical coordinates.

Thus, classical and quantum mechanics may be em-
bedded in the same formulation, the "classical" form
of quantum mechanics being obtained by taking the
mean values of the corresponding operators. The differ-
ence between the two theories does not lie in their
mathematical structures, but rather in the way a physi-
cal problem is schematized and reduced to a mathe-
matical problem. For example, the system of one single
particle is completely described by six variables in
classical mechanics, whereas an im5eite number of ca-
nonical variables is needed in quantum mechanics. In
particular, as we show below, a quantum particle is
equivalent to a set of infinite classical harmonic oscil-
lators, This aspect of the theory is emphasized by
second quantization or field theory. As a matter of fact,
both classical and quantum mechanics have the struc-
ture of a Lie group of transformations associated with
a Lie algebra of functions of the canonical variables.
The two formulations may be regarded as di6erent
representations of the same algebraic structure, the
difference being in the number of dimensions of the
space in which the representation is realized,

Thus, the classical limit of quantum mechanics may
be understood as an approximation in which the dy-
namical variables are described by average values:
q~- = &+

I q I+» p~-.= &+ I p I+) etc. , in which the
"hidden" quantum structure nf the state is neglected.
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The limit, 5~0 should be better understood as a con- evident from Eqs. (2) and (4), the variables z~ and z&,
*

dition on the magnitude of the dynamical variables play the role of canonical coejlgate variables, just as
involved in a specific problem in order that the above the old q's and P's.
approximation is valid (Ehrenfest theorem).

III. CANONICAL TRANSPORMATIONS
II. COMPLEX VARIABLES AND CLASSICAL

MECHANICS

The state of a classical system is completely described
by the real canonical coordinates qz, p&, k=1, ~ ~, X
(lV being the number of degrees of freedom) and the
time evolution is governed by the Hamilton equations

qy =BH/riper, 74 = —&&H/~qk

»= (q~+ip. )/v2, z.*=(q.—ip.)/~2.

In terms of the new variables, the Hamilton equations
take the compact form:

In the place of the variables q&„Pi„which play a non-
symmetric role in Eqs. (1), we introduce the variables
s~ and sI„,

* so dined'

Ke are now in the position of characterizing the
canonical transformations in terms of the new variables.
They are implicitly de6ned by the property of leaving
the Poisson brackets invariant. However, as far as the
study of canonical transformations is concerned, it is
useful to give a diGerential characterization.

In the usual formulation, a transformation from the
variables q, p to the variables Q, P is canonical if the
following condition is satisfied:

pique
—P&,Q&, H+K=—dF/dt,

where H=H(q, p) and K=K(Q, P) are the Hamil-
tonians in the two systems of coordinates and I' is an
arbitrary function. %hen the complex variables are
used, the above equation is equivalent to:

K (Z, Z*) —H'(z, z*)

My = AH/&&&zy is&,
* &tH/—&tz&, . —— +2z)Z&,Z&, Z&,Zt, —zt,zi, +—z& zi,f=dF/dt

H(z, s*) =
t H(z, z*)7*=—H~(z*, s) . (3)

The second set of equations may be obtained from the
first by complex conjugation, and it is therefore super-
fluous. In Eqs. (2), the Hamiltonian has to be regarded
as a function of 2,I, and s&*, satisfying the reality con-
dition:

The above condition may be transformed into a set of
differential equations. For this purpose, a system of
independent variables has to be chosen, with the pre-
scription that part of them belong to the old system
and part to the new one. In the usual formulation, one
may choose either p, Q or P, q or P, P or q, Q. Now
one may choose either s, Z or s*, Z~ or s, Z* or 2*, Z.
Then one has, e.g., in the first case:

Like the Hamiltonian, any other phase function f(q, p),
may be written in terms of the variables s, z* and the K(z, Z) —H(z, Z)
analogue of Eq. (3) is satisfied by definition:

f( *)=Lf('-*)j*. (3')
+-',i )Zt Zk*+Z«Z& ' 2Zt Z& —*

(z&6*—+z& z& *)+2zt zp*)

=dF/dt

For any two phase functions f(s, s*) and g(z, z*), the
Poisson bracket is given by:

or

g p(~) g p(o . g p(&)
K—H+iLz, z,*—Zt,Z&*j= zi+ Z&+

BZA, Bt
~f ~g ~f ~t,.&~f ~g ~f ~g

c&qs c&P& c&P&' c&qs (c&z& c&z& &&za
The above condition is equivalent to the set of di6'er-
ential equations:

(4)
izt, * c&F&'&/Bz&„——iZ&,*=BF&'&/&tZi„K —H= BF&'&/Bt. —

The sum over repeated indices is implied. The bracket
L, ), defined before may be regarded as a definition
of the poisson bracket in the new variables As .is Similarly, one has, in the other cases,

'Sy a suitable choice of the system of units or by a simple
similarity transformation, the variables g and p may be made
to have the same dimensions.

is, = ciF&'&/ctzi, —*,

i zt,
* BF&s&/ctzi, ——

i', 8F&'&/&tZ——
&,*,

i Zt, &tF&'&/BZ&, *, ——(7)
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—isk ——c& F(4)/c&sk*, —iZk* ——c&F(4)/c&zk.

or, with obvious notations,

f'f'" hh—t =I, (12)

F(I)= F(I) (s Z) F(s)= F(s) (s* Z*) F(s) =
F('&(s, Z*), and F(4&= F'4 )( s*, Z) may be regarded as
the generating functions of the transformations. It is
not dificult to see that there are only two independent
sets of generating functions. Equations (6) and (8)
may in fact be obtained by (5) and (7) by complex
conjugation. Therefore,

F(s) (s* Ze) = LF(I) (s Z) ]4:

F(4) (sk Z) = LF(e) (s Z+) je'

c&'F c&'F* O'F c&'F*

c)s,c)zk cls, c&zi c&zk c)Z ciz, c&ZI

c)'F ci'F e c&'F c)'F*

C&siC&sk Cisg C&sl ', C&skC&zi C&ZI C&zi
(9)

Thus, of the four types of generating functions of the
usual theory, only two are really different, in each pair
the two functions being the real and imaginary part of
the same analytic function. Apart from a greater ele-
gance and simplicity, the reduction from four to two is
in agreement with what one would expect from a group
theoretical point of view. The two types of generating
functions classify, in fact, the transformations which
are connected with the identity and those which are not.

Theintegrabilityconditionsfor Eqs. (7) and (8) are:

P'"fP—hth =I. (13)

z =z(s), Z 8 Z e(sx)

On the other hand, the conditions (10), (11) require

g g=gC =I)

F,k and f,k vanishing in this case. Thus, one ha, s

Zk ~kizi) Zk —Qk' z'
)

~ikon =ik &a=~a)

i.e., the only canonical transformations preserving the
angles in phase space are the linear orthogonal trans-
formations. In a similar way, the transformations that
preserve angles except for their sign, are the inverse
conformal transformations. By conditions (12), (13)
they are restricted to linear "orthogonal" transfor-
mations with determinant —1:

In this formulation, canonical transformations may be
studied by investigating the analytic properties of the
generating functions. For example, conformal trans-
formations of phase space, i.e., transformations which
preserve the angles, are characterized by analytic func-
tions'

Hence, defining Zk=zk(S*) =ilk, s,*, Zk* ——Zk*(S) = ak, *s„

F,k = Fk; =c&'F/c)Z;*c&zk*—,

fik=fki= C& F/C&saC&sk)

g,t=c& F/c&Z„, c&zk

Pki =Pik

fki = /ik

(g') k, —=g,k*,

&kill i ~ik&il ~k l ~

We list now some cases of canonical transformations
that take a simple expression in the above formulations.
We restrict ourselves to rotations in the planes Ilk, Pk.

Eqs. (9) and (10) take the form of matrix equations Zk=zi kzk, Zk*——exp (—ink) sk*,

gi'g+FtF=I,

gg'+ff'=I.

10
The above transformation is equivalent to the following
transformation of the real canonical coordinates:

Here I denotes the unit matrix. The set of Eqs. (7),
(10), and (11) define a canonical transformation con-
nected with the identity.

Similarly, from Eqs. (5) and (6) one has

a&p' a&p/* a2p/ a2p/~

Bzi(IIjzk Bzi Bz~ BzkBZi Bz~ BZi

g2P/ g2P/ AC g2P/ g2P/ g

=@i,
BZ,BZk BZi BZi BziBZk BZg Bzi

Qk ——(cos nk) @—(sin nk) pk,

Fk= (sin nk) gk+ (cos nk) pk,

Thus for nk= rssr, the exchange of p and l7 is obtained,

Qk= —
pk,

3 H. Cartan, Theoric Hementaire des fonct7ons analytiques d'Nne
oil plgsielrs sariables complexes (Hermann k Cie., Paris, 1961).
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whereas for nI, ——x, the space inversion is obtained,

Qk = —
qk, &k = —Pk

F= i—exp ( iu—k) sk*Zk

(Note that it is continuously connected with the iden-
tity. ) The generating function is

the basic states
~
nk) are fixed. As we see below, the

coefficients u~ may be regarded as a sort of canonical
coordinates and the complex 2$-dimensional euclidean
space of the NI, 's may be regarded as the phase space of
our quantum system. 4

On using the Schrodinger picture for the state vectors,
and taking the basic states as time-independent, the
Schrodinger equation may be written as (5=c= I}

therefore if the Harniltonian is invariant under the
above transformation, the quantity

2sk*Zk exp (—ieek) = 2sksk =
qk +pk

01

i(d
~
e )/dt) =i (dl;/dt)

~
ee; )=H

~

ix;)se,

i (dlk/dt) = aX/itlk* (ix——k
~

H
~

ee, )si,,

is a constant of motion. This means that the modulus
of the two-dimensional vector (qk, pk) is conserved.
This is the case of the harmonic oscillator, when the
variables

qk= (rniek) iÃk, Pk
——nsxk/(ma&k) l

are chosen as canonical variables. (The transformation
from qk'= xk, pk'= rnik to qk, pk is obviously a canonical
transformation. )

where

In that form the Schrodinger equation is nothing but
the Hamilton equations in complex canonical coordi-
nates for a classical system whose Harniltonian function
is the mean value of the quantum Harniltonian operator.
Ke shall call X the "classical" Hamiltonian.

Introducing the real coordinates

IV. "CLASSICAL" FORM OF QUANTUM
MECHANICS

An interesting application of the above formulation
is given by quantum mechanics. ' To this purpose we

consider a system of particles, contained in a box of
6nite volume Q. The Hilbert space K of the states af
the system has infinite but numerable dimensions. For
example, one may take as basic states the eigenstates
of the momentum, spin, etc. of each particle; because
of the finite volume Q, the eigenvalues of the components
of the momentum of each particle are discrete and
numerable. For simplicity sake, we further assume that
the energy spectrum is bounded, i.e., the energy of the
system cannot exceed a definite, arbitrary large value
E.Then, we may restrict ourselves to a subspace K'C:X
of finite dimensions. The above assumptions are not
restrictive since one may make Q~ ~ and E~ at
the end of calculations, then making K' go to 3C.

The generic state ~%') may be written as a super-

position of the basic states
~
nk), k=1, ~ ~, E, which

form a complete orthonormal set

i@)=uk i
exk)

(sum over k is implied), where Nk are complex coeK-
cients which completely determine the state

~
+), once

4 This formulation is particularly suitable in quantum statistical
mechanics, see: I .Strocchi, "An Axiomatic Approach to Statistical
Mechanics" (to be published).

qk= (&/~~) (&k+—sek*), pk= (i/v2} (Nk* Nk), —

the "classical" Hamiltonian becomes

saki(qiqk+pipk+&qkpi &qipk} ~

This is the Hamiltonian for Ã coupled harmonic oscil-
lators. An interesting case is when the Harniltonian is
one of the basic observables. Then

&a;= ~a~j '

(because of a possible degeneracy not all the Ek are
different, i.e., it may be Ek Ei even if kWE}. In——this
case, one has

~= —,'Ek(qk'+ pk') .

This is equivalent to using normal canonical coordinates
for describing a system of classical harmonic oscillators.

The above-shown analogy between quantum and
classical mechanics goes beyond a formal structure of
the equations of motion. All the physical quantities

may be expressed as bilinear functions of the variables
NIs, Nlt;

(e i
8

i +)= (k
i
8

i
s )nk*u, =bk;nk*N, =$—(u, I*)—

The hermiticity condition for observables requires
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Therefore, NA= (U )As@i y

this is just condition (3'). Thus, with any observable,
one may associate a real phase function of the complex
variables N, N*.

One of the basic quantities in classical mechanics is
the Poisson bracket. Then, given any two Hermitian
operators 2 and 8, we may dehne the Poisson bracket
between the corresponding phase functions 6, and , as
in classical mechanics:

Ba 8$ B(X 8$
LcL, S =—

ANA DNA DNA DNA

The above transformation of the Hilbert space is there-
fore equivalent to a transformation of the complex
canonical variables according to:

On requiring that the above transformation is canonical,
one obtains as generating functions

& Ukimk +i)

and conditions (10) and (11) imply

= (i
~

AB BA
~
l )N;*—N(

——(LA, 8j ),
1.e.)

i.e., the classical Poisson bracket t 8, Sg between the
quantities 8 and N is the mean value of the commutator
LA, Bg between the corresponding operators. Thus,
the "classical" form of quantum mechanics leads neces-
sarily to the usual correspondence between classical
Poisson brackets and quantum commutators.

Thus, unitary transformation in quantum mechanics
are canonical transformations in the sense of classical
mechanics.

From the generating function F, it is easy to see that

l~ Q /g

V. CANONICAL OR UNITARY TRANSFORMATION
IN QUANTUM MECHANICS

A transformation of the Hilbert space into itself may
be regarded as generated by a linear operator U', thus
yielding

where

is a constant of motion, i.e., the norm of state vectors
is conserved.

It is interesting to note that a large class of canonical
transformations, corresponding to the classical trans-
formations of Eqs. (5), (6), (12), and (13) have not
been considered in quantum mechanics. For them, one
has:

Hence, on defining

one has

If the operator U has an inverse U ', one gets

i.e., they change the sign of the metric in Hilbert space.
However, from a physical point of view, an Hilbert
space with negative definite metric is acceptable just
as one with positive definite metric. Then, one should
expect that transformations of kind (1), (2) should be
used in quantum mechanics, e.g. , for representing dis-
continuous transformations such as, e.g., charge conju-
gation etc.


