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Our previous treatment of noise in the nonequilibrium steady state is extended to include nonstationary processes,
and processes for which the quasilinear approximation is inadequate. By use of backward-equation methods, we show that

Mo(a, ¢, to)=<exp[— f Q@(s), t—s) d5]>
to

subject to a(#y) =a, obeys the differential (integral) equation:

Mo (ay, ¢, t)
aty

[0 (@, t—t) = ZD. (&, ) (9/380)" 1Mo,

where the D, are the nth-order diffusion coefficients of the a(s) process, and Q(a(s), s) is an arbitrary function of a and s.
The choice D, =0, #>2, Dy=D. D,(a) =—Aa makes a(s) an Ornstein—Uhlenbeck (0.U.) process, i.e., white noise that
has been filtered through an RC network with time constant 1/A. The choice Q(a(s), s)=F(t—s)[a(s) ]2 squares the
output and applies the time smoothing % (f—s). For k(s) =exp (—28s) [time smoothing through an RC network with
time constant (1/28)7], an explicit solution is obtained for the characteristic function M,. For arbitrary positive %(s),
we show that M, becomes independent of ao as {— if k() =0, and M, becomes stationary if A>0 and

/ k(1) du < .
0
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1. INTRODUCTION AND SUMMARY

Our previous treatment of fluctuations from the non-
equilibrium steady state!:? was more general than pre-
vious work in that it did not assume linearity of the
system, time reversibility of the system, Gaussian

M. Lax, Rev. Mod. Phys. 32, 25 (1960). This paper contains
an extensive bibliography that will not be duplicated here. This
paper will be referred to as I in our series of papers on noise in

classical systems. It treats Markoffian noise in the stationary’

state by quasilinear methods.

2 M. Lax, Phys. Chem. Solids 14, 248 (1960). This is Classical
Noise II. It applies the methods of I on continuous parameters
to trapping, diffusion, and carrier concentration noise.

character of the random variables, Langevin forces,
the Fokker—Planck approximation, or that fluctuations
are from an equilibrium state.

We found that the assumptions! that the system is
Markoffian, stationary, and quasilinear were sufficient
to compute all autocorrelations (e(f) (%)) of the
deviations e=a—a, of a set of random wvariables
a=[a;, @, *+*, a,] from their steady-state values.
The essential idea is that if one knows the solution
{(a(f) Yaw of the mean motion subject to the initial
condition e= a(#) at time #, one can compute the
autocorrelation, and hence the fluctuations from

(e(?) e(u) )= ((a(?) Jaw (%) )ay over a(u) (1.1)

as proven in I(2.13). Thus the regression of a fluctu-
ation obeys the “macroscopic” equations of motion
for {a(?) ), and the spectrum of the noise, is given by
the Fourier transform of the time-dependent decay
exhibited by (a(f) )aw). For a quasilinear system, this
time dependence obeys a matrix equation I1(3.6):

d{a() )/di=—A(a(®) ), (1.2)

leading to an exponential time dependence. The spec-
trum is thus known, but the magnitude of the noise
requires a knowledge of {e(u) «(#) ), i.e., of the fluctu-
ations at one time. These can then be computed from
the generalized Einstein relation 1(5.18):

Alaa)+{aa)AT=2D, (1.3)

where A" is the transpose of A and the diffusion matrix
D can be computed from I(5.7),

2D= lim (Af) ([ a(t+Af) — a(f) JLa(t+AH) — «(t)])

At—>0

(1.4a)
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or from the transition probabilities in the form? 1(5.6),
2D(a) = (At)*lf(a’— a)(a’—a)P(a't+At | at) da’

(1.4b)

and D=D(a,). [The conditional probabilities P are
defined in Sec. 2.7 Similarly, the drift vector is defined
by I(5.5):

A(a)=lim ()~ f (a'—a) P(a, (+-AL | ar) da’ (1.5)

and
(d/dt) (a)= (A(a) )=—A-(a—a),

where a, is determined by A (ao)=0.

In summary, if one is concerned with the fre-
quency spectrum (or alternatively the autocorrelation
(a(t) @(u))) of the noise of a classical, stationary
nonlinear Markoffian process, then this problem is
already solved in Egs. (1.1)-(1.6) as long as over the
range of fluctuation one can replace the system by a
quasilinear one. In this case, we need not evaluate
the complete conditional probability P(a’t'|af), but
have simplified the problem of showing that the first
and second moments (a(¢) ); (a(f)a(u) ) obey a closed
system of equations that can be solved exactly.

The present paper, III, is written to cover some of
the techniques available when the stationarity and
quasilinearity approximations are no longer valid.*~”’
In particular we wish to be able to discuss cases when:

(1.6)

(1) the transition probabilities and/or the solution
is nonstationary;

(2) the nonlinearity over the range of the fluctu-
ations is large enough, that quasilinear approximations
are invalid;

(3) the signal is passed through a nonlinear device,
so that a knowledge of the complete distribution
P(a't’ | a) is needed;

(4) the results depend on the random variables a(?)
at more than two times. In particular, if the output of
a nonlinear device is time-smoothed the distribution
of outputs depends on the random variables over a
continuum of times—all the past history!

Most of the problems we wish to solve can be re-

3To comform with the mathematical literature, the times
in our probability functions increase as one moves from right
to left. The opposite convention was used in I.

4 A review of the literature on nonlinear random processes
with extensive bibliography is given by Ralph Deutsch, Non-
linear Transformations of Random Processes (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1962). See also Refs. 5-7, and the
references contained therein.

5 David Middleton, Infroduction To Statistical Communication
Theory (McGraw-Hill Book Company, Inc., New York, 1960).

6 R. L. Stratonovich, Topics in the Theory of Random Noise
(Gordon and Breach, Inc., New York, 1963), Vol. 1.

7 Fluctuation Phenomena in Solids, edited by R. E. Burgess
(Academic Press Inc., New York, 1965).

duced to an evaluation of the average

M=<exp[—- zQ(a.(s), s) ds] >, 1.7)

which can be thought of as the characteristic function
of the random variable in the exponent. The latter
involves an arbitrary time smoothing, over an arbi-
trary nonlinear function Q of the a(s) over the history
from £, to ¢. We shall use the label My, if we wish the
average conditional on a(%) =a,. By introducing a new
unnormalized Markoff process P whose transition prob-
ability for small times is related to that for P by

P(a't+At| af) =[1—Q(a, ) AL]P(a’, t+At | a, t),
(1.8)

we show that

M0=fﬁ(a¢ | &, &) da=$(0, ), (L9

where
3(3,0= [ exp tig-a) Plat| auh) da (1.10)

is the characteristic function associated with unnormal-
ized probability P. [It could be written more explicitly
as ¢(yt | agy) to emphasize the initial condition.]

We then define the characteristic function associated
with (unmodified) transitions in a small time inter-
val by

exp [~ L(y, &, ) Al]= (exp (iy-Aa))
=fdAa exp (iy-Aa) P(a+Aa,

t+Atla, 8. (1.11)

In particular

-—L(y, a, t) =i(i}’)"Dn(a7 t)a

n=1

(1.12)
where
Dy (a, 1) = (A7) f (a'—a)"P(a’, 1+l | a, 1) do’

(1.13)
and

y3:Ds= Zyiyjysz‘jks (1.14)

displays the use of the colon : to imply the contraction
of the product of two tensors on all their indices.
With L understood to have all y’s to the left of all
a’s as in (1.12), we show that P and ¢ obey® (5.13),

8 Such forward equations have been obtained by A. J. F. Siegert,
IRE Trans. Inform. Theory 3, 4 (1954). See also, Ref. 4, Chap. 7,
and R. Kubo in Fluctuation, Dissipation and Resonance in Mag-
netic Systems, edited by D. ter Haar (Plenum Press, Inc., New
York, 1962).



(6.18) :
aP/ot=—[Q(a, ) +L(yop, a, ) 1P (a, 8) (1.15)
0¢/dt=—[Q(acp, 1) +L(y, acp, 1) 16(y, 1) (1.16)

with

Yop=19/0a; a,,= —19/dy. (1.17)

We also show that P(af|ag) obeys the “backward
equation,” (5.19),

0P /dty="[Q (v, to) + L' (Yop, a0) 1P (at | ack)

or

(1.18)

___[Q(ao, ) — nZ_ID”(a"’t")( )]13. (1.19)

Since a is now only a parameter, an integration over a
commutes with the operations in (1.18) and (1.19).
Thus M, of (1.9) obeys (1.18) and (1.19) in its de-
pendence on a, and .

If we are interested in Mo(ay, ¢, &), (1.7), it is much
simpler to compute it directly by the use of (1.19) with
the initial condition Mo(ay, ¢, £)=1 than to calculate
the more detailed P(at | agh) or $(yt | asts). When the
D.,. do not depend explicitly in f, and Q=Q(a(s), t—s)
then Mo(aq, ¢, f) = Mo(ao, t—%) which obeys?

_6Mo(ao, un)
ou
=[Q(a0,u) ;D (ao)( )]Mo(ao,u) (1.20)

Section 7 reviews our knowledge of linear processes:
the Weiner process, the Ornstein-Uhlenbeck process,
the Poisson process, the homogeneous process, and a
process that includes all the preceding: homogeneous
noise plus linear damping,® for a set of random vari-
ables a. For this most general linear case, we determine
the multitime property:

= ewpif 4057209 5 >,

where q(s) is an arbitrary (vector) function of the
time.

Section 7B discusses the multidimensional Fokker-
Planck process (i.e., D,=0 for #>2) as an example
of a nonlinear process.

When the D,’s or Q depend nonlinearly on a, there
are, of course, no general methods of solution. A piéce

(1.21)

¢ This paper may be the first to make explicit use of backward
equations as a means of dealing directly with the characteristic
function M,(ay, t—#).

10 This terminology is explained in the body of this paper.
For definitions see also Refs. 1-8 or the collection of papers in
N. Wax, Noise and Stochastic Processes (Dover Publications,
Inc., New York, 1954).
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de résistance of the present paper is the reduction of

Mo=<exp [z / :q<s> a(s) ds]

Xexp [—)\ t:a(s)-k(t—s)-a(s) ds>] (1.22)

to the solution of a set of coupled ordinary differential
equations of Riccati form when a(s) is an Ornstein-
Uhlenbeck process, and q(s) and k(¢—s) are arbitrary
functions of the time.

For the one-dimensional case, in particular, we show

that
Mo=<exp [—)\ tk(t—s)a(s)“’ds]> (1.23)

=[:Y(t—to)]—% €xp [—002.R(If—to):', (124)

Y (1—t) = exp [40 R du], (1.25)
0

dR/du=\k(x) —2AR—4ADR?, (1.26)

where A is the decay constant and D the diffusion
constant of the Ornstein-Uhlenbeck process. For the
case of exponential smoothing, k(%) =exp (—2Bu), we
find an exact solution to the differential equation
(1.26). Thus we have found the answer to a hitherto
unsolved problem: RC-smoothed white noise (time
constant 1/A) is passed through a square-law device
and the output is again RC-smoothed (time constant
1/28). Then M, is the characteristic function of the
output.

The special cases B=A=0; 3=0, A>0; >0, A>0;
B8>0, A=0 all yield different answers as to (1) whether
M, forgets do—a(to) and (2) whether M, becomes
stationary, i.e., independent of ¢. For any k(u)>0,
we show that M, forgets @ if and only if k(%#)—0 as
u— . Moreover, M, becomes stationary, if and only
if A5%0 and

f “(w) du
0
converges.

We intend in paper IV of this series to discuss non-
linear random processes from the Langevin point of
view. We shall show how Langevin processes can often
be reduced to Markoff processes and thus made ame-
nable to the techniques of the present paper.

2. PROPERTIES OF MARKOFF PROCESSES
IN THE LARGE

Let a(®) =[ai(t), asx(t), +++, ax(¢) ] be an N-dimen-
sional random process, and
P[a(tﬂ) la'(t”—l)i ) a(tZ)y 8.(151)]
_ P[a(in)r e
—P[a(tn—l): tty

a(t) ]
a(t)]

(2.1)
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be the conditional probability density® that a(f) take
the value a(¢,) at time £, given the values a(¢;) at the
earlier times #,> 1, 1>>t, 9> +++>t>#. The random
process a(¢) is Markoffian if

Pla(t,) | a(tay), +++, a(t) ]=Pla(t,) | a(t,y)],
(2.2)

i.e., if the probability of any event depends only on the
latest piece of information available. A Markoff process
has no memory of earlier events.

If we now write briefly a(¢;) =a;, the repeated use
of the definition (2.1) of conditional probability den-
sity in terms of the full probability densities permits
one to write

)a1>
=P(an|an1, *++, &) P(@na1| 8nos, =0, a1), *°,
P(ay| &) P(ar), (2.3)

which for Markoff processes reduces to

Pla,, anq, *+*

P(aﬂ) R 3.1)
=P(a, | a1) P(@n1|an2) - Plaz|a) P(a). (2.4)

The factorization (2.4) permits the probability of a
compound event occurring at many times to be ex-
pressed entirely in terms of the transition probability
P(a,|a,) and the initial distribution P(a;). For
example, if V(¢), a one-dimensional Markoff process
(e.g., a noise voltage) is passed through a square-law
rectifier:

IH=v®* V©>0;
I(2)=0, V(#) <O. (2.5)
The triple correlation is"given by
@1 1w)= [~ [ [(aviaviav,
0 7o Yo
XVEP (V3| Vo) V2P(Ve | V) V2P(V1). (2.6)

Strictly speaking, P depends not only on a(#,), but
also on ¢,. Processes will be called stationary if

P(a3 tn, an—ltn—l, e, a, il)
= P(an,'tn+r, Qn_1, tnatr, o0, a1, htr), (2.7)

i.e., if all probabilities are functions only of the time
differences. In particular, stationarity implies that

P(a2t2 | altl) =P(az, to—t [ a10), (28)
P(a,t)=P(a,0)=P(a), (2.9)
lim 0 P(a,t|ad)=P(a). (2.10)

Whereas a stationary process has transition probabili-
ties that are functions only of the time difference, the

converse follows from (2.4) only if P(a;, 4) is not
time-dependent. Even if P(a,|a;) is a function only
of t,—#, no time-independent solution may exist for
P(ay, t1) if the process possesses some instability, or
even neutral stability. A simple example of neutral
stability is Brownian motion in an infinite domain.

If we set #=3 in (2.4) and divide by P(a;) we
obtain

P(a3a2 I al) =P(3.3 [ 32>P(a2 I al). (211)

Integrating over a, we obtain the Chapman-Kolmo-
goroff condition

P(a3 | al) =/P(a3 | a2) dagP(az I a;) (212)

on the transition probabilities.

Our equations are written in a form appropriate to
continuous variables. They remain valid for the dis-
crete case if integrals over a are replaced by sums.

It is customary to take all probabilities to be normal-
ized. In particular this leads to the requirement that
the transition probability obey

/dagP(ag la)=1. (2.13)
However, we shall carry through our analysis without
imposing this condition, since processes violating (2.13)
can be used to analyze nonlinear time-smoothing of

processes that do obey (2.13) [see Sec. 4].
We shall call a process that obeys

P(a2t2 I asg, 11) =P(a2—a1, 123 | Otl) (214)

a homogeneous Markoff process since it has no preferred
origin in a space.

3. A CLASS OF PROBLEMS TO BE SOLVED

A number of important problems in the theory of
random processes can be reduced to an expectation
value of the form!

M=<exp[—/t:Q(a(s), s) ds]> (3.1)

or to a Fourier transform of such an expression.

A. Adiabatic Line Broadening

The absorption of radiation at frequency w by a
system with electric (or magnetic) dipole moment u(#)
is given by

/2
1)« u(e’)
~1/2
/2

Xexp (—iwt’) di”/ w(@)* exp (iwt") di’ (3.2)
—T2

i1 See Rel. 4, Chap. 7.



or with ¢"=¢+4¢ and ( ) representing an ensemble
average

I(w)= /_ " exp (—iwt) M (1) di, (3.3)

M) = lim T f_ TT//Zdt'(u(t-i—z’)u(t’)*). (3.4)

T

In the usual ‘“‘adiabatic” theory of line broadening!
(say of absorption by one gas atom in a background
of foreign atoms) the influence of collisions on the
dipole matrix element u= uy;

wri() = (s (8), ws(£) )
=(exp [—i/_th(s) ds]x//f, L exp [—-i/ij(s) ds]ll/i)

— i exp [1’ f " o(s) ds], (3.5)

—0

w(s) =H(s) —Hyy(s), (3.6)
is taken to be purely that of a phase shift induced in
the initial and final states (7 and f) with no off-diagonal
elements in the Hamiltonian H to correspond to “non-
adiabatic” transitions. (The nonadiabatic modification
of this theory has been given by Anderson®® and by
Byron and Foley.")

In the adiabatic theory, w(s) is regarded as a random
variable subject to jumps introduced by the reservoir
of foreign atoms. For spin diffusion’ the same model
has been assumed with the atom in question being a
““spin,” and the foreign atoms other spins that interact
with the first.

With (3.5), Eq. (3.4) can be rewritten in the form

et
M (¢) =average over ¢ of <exp [1 / w(s) ds] >
t

(3.7

or

(3.8)

M) =<exp [i/:w(s) ds] >

where the last form is valid when w(s) is a stationary
random variable so that the previous average is inde-
pendent of #. Our result (3.8) has the form (3.1).
See the evaluation of M (¢) in Secs. 7E and 7F.

12 For a review of line broadening see R. G. Breene, Jr., The
Shift and Shape of Spectral Lines (Pergamon Press, Inc., New
York, 1961).

13 P, W. Anderson, Phys. Rev. 76, 647 (1949).

(11946};‘) W. Byron, Jr.,, and H. M. Foley, Phys. Rev. 134, A625
(1;6]2.) R. Klauder and P. W. Anderson, Phys. Rev. 125, 912
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B. Free-Induction and Spin-Echo Experiments

In a free-induction experiment® a short rf pulse at
time 70 rotates the resonant spins from the z direc-
tion onto the x axis. Thus all spins start with the same
phase at t=0. The resulting free-induction signal is
proportional to u(f) or

w@=wo)=ov[if w0 a] > @9)

Thus the free-induction experiment measures directly
the Fourier transform of the line shape I(w).

A disadvantage of the free-induction experiment is
that the signal M () will decay rapidly if there is a
spread of initial frequencies w(0) because of a distribu-
tion of dc magnetic fields at the various sites. This
inhomogeneous broadening which makes the phases
w(0)¢ differ from one another, is overcome in a spin-
echo experiment in which a 180° pulse is applied at
time 7 to reverse the direction of each spin. This
reverses the phase acquired up to time 7. For ¢>r7
the phase is then

fT “w(s) ds— fo "w(s) ds.

If the frequencies have a spread but are not random
in time, the phase distribution associated with this
spread cancels at {=27. Thus a peak is seen in the
induced signal at {=27, that is less than that at {=0
only if dynamic random fluctuations occur in w. The
observed signal at any time ¢ is given by

M(t)= exp[iftm(s)w(s) ds]>, (3.11)
0

0<s<7;
T<s<{i.

(3.10)

where
m(s)=—1,

m(s) =+1,
More general spin-echo experiments, with more than
two pulses can be described using more complicated
functions #(s). In general the echo occurs at the time
¢ for which
t
fm(s) ds=0 (3.12)
0
and the effect of the initial frequency distribution

cancels. For this general case, a=w, Q= —im(s)a in
Eq. (3.1)

C. Nonlinear Transformations on Noise

If a signal @ is passed through a nonlinear device,
and the result passed through a linear filter, the output
signal takes the form?

S(2) =/_t E(t—s) Vi a(s) ] ds. (3.13)
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The characteristic function whose Fourier transform
(on z) gives the probability distribution of .S is

(exp (i55) )= exp {zz [ k=9 VTa(5)] ds}>,

(3.14)
a result that also has the form (3.1). Special cases
such as

S(t) = f Bs)a2(s) ds, (3.15)

0

1
S(2) =/ | a(s) | ds, (3.16)
0
have been studied by Kac and Siegert,'® by Kac,”” by
Siegert,’® and others.?

D. Domain Probabilities

If we set??
1 if a(s) in D
Q(a(s), s) ={ (3.17)

0 if a(s) not in D
where D is some domain, e.g., > [a:(s) ?<R and

St 0= [ 0@(s), s) ds, (3.18)

then S(¢, &)/(t—1f) is the fraction of time spent in
the domain D, and (exp (42.5) ) gives the characteristic
function whose Fourier transform gives the probability
distribution of S. As remarked by Deutsch,! the fluc-
tuations in .S measure the reliability with which a

finite measurement time f—#, can be used to estimate
the distribution of a(s).

E. Random Walk With Absorbing Barriers

The probability that a(s) never leaves domain D in
the time interval (%, ¢) is given by!:"

Prob {a(s) in D, t,<s<t}

=lim <exp [—z sz[a(s)] ds] >, (3.19)

0 a(s) in D

VaGals)={
1 a(s) outside D.

16 M. Kac and A. J. F. Siegert, Phys. Rev. 70, 449 (1940);
J. Appl. Phys. 18, 383 (1947); Ann. Math. Stat. 18, 38 (1947).

17 M. Kac, Trans. Am. Math. Soc. 59, 401 (1946); Berkeley
Symposium on Mathematics, Statistics and Probability (University
of California Press, Berkeley, 1951), Vol. 2, p. 189.

18A, J. F. Siegert, Phys. Rev. 81, 617 (1951); IRE Trans.
Inform. Theory 3, 38 (1957); 4, 4 (1958).

19R. C. Emerson, J. Appl. Phys. 24, 1168 (1953); A. Rosen-
bloom, J. Heilfron, and D. C. Trautman, IRE Natl. Conv.
Record Part 4, 106 (1955); M. A. Meyer and D. Middleton,
J. Appl. Phys. 25, 1037 (1954); P. Erdos and M. Kac, Bull.
Am. Math. Soc. 52, 292 (1946); W. Feller, Ann. Math. Stat.
2, 427 (1951); D. A. Darling and A. J. F. Siegert, IRE Trans.
Inform. Theory 3, 32 (1957); Ann Math, Stat. 24, 624 (1953).

Equation (3.19) corresponds to a random walk with
an absorbing barrier at the boundary of the domain D.

F. Distribution of Spectral Components

The components of a one-dimensional random vari-
able a(s) in some orthogonal basis ¢,(s) (e.g., the
terms of a Fourier series) are given by [¢.(s)a(s) ds
and the joint characteristic function of a number of
such components is given by

14
M= exp [¢Zz,, dn(s)a(s) ds] >, (3.20)
to
which also has the standard form (3.1).
4. REDUCTION OF THE PATH INTEGRAL

Our average of a functional (3.1) can be written in
the form

M= exp [—EQ (aj, 55) ASJ]>

1

=[exp [_”X_)Q(a]-, 5}) As,-]P(an, Bu, * 0,

7=0

ee,day, (4.1)

where s,={, As;=sj1—s;. For a Markoff process, the
factorization (2.4) permits us to rewrite this result in
the form

a;, a9) da,,

M= f MoP(a0) das, (4.2)
where P(a,) is the probability density at ¢=# and M,
is the conditional average with a(t)=ao:

n—1
My= H/ exp [—Q(aj, s;) As;]P (a1 | a;) daja.
=0
(4.3)
Direct evaluation of M, by such functional (“path”)
integrations has only been performed® for Weiner proc-
esses, i.e., the special case in which

P(a't | at) =[4n({'—18) T N2(det D)
Xexp [—(a’—a)-D1.(a'—a)/4(—8)] (44)

and for homogeneous processes and slight generaliza-
tions thereof.’® All such results, and many others can
be obtained by the following procedure which reduces
the problem to one for which standard analytical tech-
niques are available: Define (for sufficiently small As;)

P(aj, sy | aj, 55)

=[1-0Q(aj, s;)As; 1P (a1, si1 | aj, 55).  (4.5)

20 R. H. Cameron and W. T. Martin, Trans. Am. Math. Soc.
58, 184 (1945); Ann. Math. 45, 386 (1944); J. Math. Phys. 23,
195 (1944); Bull. Am. Math. Soc. 51, 73 (1945); Am. J. Math.
66, 281 (1944); E. W. Montroll, Commun, Pure Appl. Math, 5,
415 (1952),



We may regard P(a;y1 | a;) as the transition probabil-
ity of a new Markoffian process. It obeys the usual
properties of transition probabilities except for a change
in normalization:

/ P, 1+At | a, 0) da'=1—Q(a, 1) At (4.6)

to first order in Af. Thus if we regard P(a, t) as a
density of systems, then Q(a, ¢) can be regarded as
the rate at which they disappear.

The transition probability P(a, ¢ | ad) over a finite
time interval can be decomposed into transition prob-
abilities over “infinitesimal” intervals by integrating
(2.4) over the intermediate values ag, +++, @,—1 Or by
repeated use of the Chapman-Kolmogoroff relation:

B(an|0) = [dans, -, dauP(an | 80r), -+,

P(a:|a)P(as|a) (4.7)

on the P probabilities. Comparison with (4.3) now
yields the result

M= / P(a, | &) da,= f P(a,t|a, to) da, (4.8)

ie., P(a | ao) is the probability density that a system
starting at system a, at £, will arrive at a at time ¢
taking into account the loss rate Q(a, ), and M, is
the fraction of systems starting at a, that survive
anywhere when losses are included. Our problem has
thus been reduced, in the Markoff case, to the deter-
mination of the transition probability P (at | ado) over
finite time intervals.

5. MARKOFF PROCESSES IN THE SMALL

To obtain a differential equation for P(at | agh) we
can write the Chapman-Kolmogoroff equation in the
form

P(a, t+A8) =f13(a, t+At|a’, t) da’P(a’, 1), (5.1)

where P(a, t) reduces to P(at | agty) if we adopt the
initial condition
P(a, t))=5(a—a). (5.2)

For small Af, we shall assume that the moments of
the transition probability are expandable in powers of
At. To first order in Af, we shall write

f P(a, t+-AL| o, §) da=1—0Q(a, 1) At (5.3)

and for #>1 there is no distinction between the mo-
ments of the P and P transition probabilities:

f P(a, t-+At| &, 1) (a—a) da=nD,(a’, 1) Al
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and
fP(a, t+At| a',t) (a—a')"da=n!D,(a/, t) Af, (5.4)

where boldface D, has # (suppressed) subscripts, e.g.,
the moment of (¢;—a;")?(a2—a,’) would be written Dy,
in expanded notation rather than Dj.
The Taylor expansion of an arbitrary function f(a)
can also be written in a condensed notation
fla)=f(a")+> (a—a’)»:fm™(a’)/u!  (5.5)
n=l
where the : is a shorthand notation that tells us to

multiply corresponding terms and add. The second-
order term is, for example,

(1/2Y) ﬁ: (ai—ai) (aj—a)9®f/daida; .

Let us now multiply Eq. (5.1) by f(a) and integrate
over a. On the right-hand side, f(a) can be placed
under the [da’ and then replaced by the right-hand
side of Eq. (5.5). Making use of (5.3), (5.4) we obtain

(f(@) )eya:=[1—0Q(a, ) At]f(a) ):
1A f da’P(a/, )™ (a) :Da(a, 1)

or

(9/01) {f(a) y=— (Q(a, O)f(a) )
+3(Du(a, £): (3/02)(a) ) (5.6)

=—((Q+L"f(a)), (5.7)

where
(@)= [1(@)P(a, 1 da (538)
t=—3"D.(a, £): (3/0a)" (5.9)

n=1

Using A as an abbreviation for Dy(a, ¢) (the drift
vector) and D as an abbreviation for Dy(a, ?) (the
diffusion matrix) let us set f(a)=1, a, a% a3, -+ in
Eq. (5.6) to obtain the useful moment relatlons

a(1)/ot=—(Q),

d(a)/oi=—(Qa)+(A),
a(a*)/ot=—(Qa’)+2(aA)+2(D),
(Qa?)+-3(a’A)+6(aD )+6(Ds).

a(ad)/at=— (5.10)

When a is a set of variables, the right-hand side is
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understood to be completely symmetrized. Thus
d{aa;ar)/dt= (air;axQ )+ (aie;Ar)+ (4diajar)
+{aid jar )2 (@D )+2{a;Da )2 {(arDs; )+6 {Dijr ).
(5.11)

[The second-moment equations for a set of variables
were derived directly in I(5.12), and higher moment
equations for one variable written out explicitly in

1(14.29).]
If in (5.8) we set f(a)=4(a—x) we find that
P(x, 1)=(3(a—x) ). (5.12)

Inserting this choice for f(a) into (5.6) and integrating
by parts we obtain

aP(x, t) /ot=—0Q(x) P

+35(=1)"(@/a0)[Du(x, HP(x, )] (5.13)

n=1
or . .
aP(ay t)/at= _[Q(a)_l-L]P(aJ t):
where L is the Hermitian adjoint of LT:

—L=3(~1)"(3/6a)»D

n=l1

w(a,8).  (5.14)

Associated with the operator L, we shall define a
numerical function

—L(y, a, t),=f(iy)"=D

n=l1

w(a, t). (5.15)

With the understanding that the y’s are always to the
left of the a’s, we can write the operator as

L=L(Yop, 2, 1); Yoo

Equation (5. 13) is customarily referred to as a for-
ward equation, since it refers to aP/at We can rewrite
the Chapman-Kolmogoroff equations in a form

=1d/da. (5.16)

P(at| ay, t—Al) = f P(at|a't) da’P(a'ty| a, ly— At)

(5.17)

suitable to derive an equation for dP/dty, i.e., a back-
ward equation. In (5.17) we insert

P(a,t | a’, t) =P(a | agto)

+ > [(a'—a0)"/n!]: (3/da0)*P(at | ady)  (5.18)

and use (5.3), (5.4) to obtain the backward equation
[0P(at | acto) /9t ]=Q(a, t) P

— > Du(av, to) : (3/d20)"P.

If the random variable whose properties we wish to

(5.19)

discuss has the form

/ 0@(s), i—s) ds, (5.20)

rather than depending on Q(a(s), s), then Eq. (5.19)
remains valid when ¢ regarded as a parameter, and
Q(a(s), t—s) enters the equation as Q(a(k), t—t), i.e.,

[6P(at l aoto)/ato]=Q(ao, t—to)P

- iDn(ao, to) : (8/0ay) np,

n=l1

(5.21)

Moreover if the transition probabilities are time-inde-
pendent, D, is independent of # and we may expect
our solution to be a function only if u={—#:

—3P/gu= [O(aq, u) —

EDn(ao) (8/da))"1P.  (5.22)

6. CHARACTERISTIC FUNCTIONS AND
LINKED AVERAGES
The characteristic function ¢ of a normalized prob-
ability density function P is defined by
8y, )= (exp (ig-a) )= [ exp (iy-a) P(a, Hda. (6.1

The moments (a”) are determined by the nth deriva-
tives of ¢ at y=0 since

8(y, ) = S (iy)™: (@r)/nl.

n=0

(6.2)

If a and b are two independent sets of random vari-
ables,

{exp iy- (a+Db) )= {exp iy-a){exp iy:b) (6.3)
or

¢a+b (Y> = ¢a(y) ¢b<y> )

i.e., the In of ¢a4p is an additive function. If we define

(exp (iy-a) )=exp 2(1/nl) (9)": g, (64)
then for independent variables,
un(a+b)=wu.(a)+u.(b). (6.5)

The u.(a) are referred to as Thiele semi-invariants,?
or cumulants? or linked (L) moments and can be
written symbolically as

ua(a) = (an)l. (6.6)

20H. Cramer, Mathematical Methods of Statistics (Princeton
University Press, Princeton, New Jersey, 1946), Sec. 15.8; M. G.
Kendall and A. Stuart, The Advanced Theory of Statistics (Charles
Griffin and Company, Ltd., London, 1958), Chap. 3.

22 R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).



The value of these moments must of course be ob-
tained by expanding both sides of (6.4) and comparing
coefficients of y». For a single random variable a, we
find, for example, that

(a)F= (a),

(@*)r= ()= ({a))?

(@®)F= ((a—(a))?),

(@)= ((a—(a)*)=3[{(a= @), (6.7)

so that (a»)X represents intrinsic correlations of #th
order, i.e., those that do not arise from lower order
correlations. If {(a»)t=0 for »>m then all moments
{a~) for n>m can be expressed in terms of the lower
order correlations {a*) for s<m.
With the notation (6.6), Eq. (6.4) can be rewritten
in_the’elegant symbolic’ form
(exp (iy-a) )=exp {([exp (iy-a)—1])*}. (6.8)

Although our diffusion coefficients are originally
defined in terms of ordinary moments

nDy(a, t) = lim {[a(t+At)—a(t) I)/AL, (6.9)

we can also use a linked-moment definition

n'D.(a, t) = lim ((a(z+Af) —a() J*)/At,  (6.10)

since the lower order moments to be subtracted off,
yield higher powers of Az. In both cases averages are
taken subject to a(¢) =a as initial condition. With the
notation Aa=a(i+Af)—a(t) and (6.10) we can re-
write (5.15) for L(y, a, ¢) in the form:

— L(y, a, t)= ([exp (ty-Aa)—1])t/At  (6.11)

Thus the characteristic function of the transition prob-
ability

(exp (iy-Aa))
_=_/d Aaexp (iy-Aa) P(a+Aa, t-+At|a,t) (6.12)

can be rewritten using (6.8) and (6.11) in the form

(exp (iy-Aa) )=exp [— L(y, a, 1) AL].

If the average (6.12) is taken against the unnormalized
transition probability P(a-+Aa, t-+At| a, t), the result
is simply multiplied by the normalization:

(6.13)

(exp (iy-Aa))
=€xp I:_Q(a’ t) At] €xp [—L(Y, a, t)At]'

These results are correct to order Af, and permit the

(6.14)
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transition probability to be represented in the form
P(a+Aa, t+A | a, 2)

— (2m) [dy exp (—iy-2a—[0(8) +L(y, &)] A4.

(6.15)

Ti this integral representation is inserted for P(a; | aj_s)
with an integration variable y;, the path integral (4.7)
is converted into an integral over paths in the phase
space a;, ¥;. If ais a position, then y can be thought of
as a “momentum” and L(y, a) as a kind of Hamil-
tonian operator. We found that y must be replaced by
19/0a when acting on P, just as the momentum opera-
tor in quantum mechanics is replaced when acting on
the Schriodinger wave function.?

If we define the unnormalized characteristic func-
tion as

35, 0= (e (iy-a)= [ exp (iy-a)P(a, ) da (6.16)

then by (5.6) we obtain
a¢/at=—(Q(a, t) exp (iy-a) )

— 3 (iy): (Da(a, §) exp (iy-a) ). (6.17)

n=1
Now a can be brought down from the exponent by
acting with —29/9y so that
0 (y, 1) /0t=—[Q(acp, ) + L(, acp, 1) 6@y, (6.18)

or

a&/at=[—Q(aop>+§<iy>nzun<aop> 16

where
a,p= —19/9y.

If P is the analog of the Schrédinger wave function of
quantum mechanics, then ¢ is the analog of the cor-
responding momentum wave function,? and L(¥op, aop)
is the analog of the Hamiltonian operator.

If P(a, t) is to be determined subject to the initial
condition

P(a, ) =5(a—ay), (6.19)
ie., P(a, h=P(a, t|a, &) then the corresponding
initial condition on @ is

5(}’: to) =e€xp (1Y' aO) ) (620)
and a comparison with (4.8) shows that the functional
average (4.3) is simply given by

Mo=¢(0, 1) (6.21)

2 A, Messiah, Quandum Mechanics (John Wiley & Sons, Inc.,
New York, 1961).
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which depends on a,. The complete average M can be
obtained by multiplying by P(a,) and integrating over
ag as in (4.2), or using

M=4¢(0,t) where ¢(y, t) _=—f exp (1y-ao) P(ao) day

(6.22)
is the initial condition.

7. EXAMPLES OF MARKOFF PROCESSES

A. The Weiner Process

This is a one-dimensional process in which Dy=D,
a constant, and all other D,=0. Thus the characteristic
function obeys

3¢/dt=— Dy’ (7A.1)

The solution subject to the initial condition ¢(y, 0) =
exp (7yao) of (6.20) is

¢(y, 1) =exp (—Dy%) exp (iya).  (7A.2)
Taking the inverse Fourier transform
P(at| a0)= (4xDt)~ exp [— (a—a0)?/4Dt]. (7A.3)
Thus @ is a Gaussian random variable with
(a)=ay,
{(a—ao)?)=2Dt, (7A.4)

so that D is the diffusion coefficient of this simple
“Brownian-motion” process in which ¢ is usually inter-
preted as a distance «.

The generalization of this result to a many dimen-
sional process is immediate. The conditional probability
already stated in Eq. (4.4) can be written down im-
mediately from the knowledge that the process is
Gaussian with

(a)=a,
((a—ay) (a—ao) )=2D¢,
where D is an N XN matrix.

(7A.5)

B. The Fokker-Planck Process

This is a random process for which D,=0 for #>2
so that the probability density obeys the “Fokker—
Planck” equation:

P a a a i)
—=——AA4;P+— —[DijP=——J,
C ]+6aiaaj[ iP] da

7B.1
ot da; ( )

7

in which repeated indices are summed over, and 4,
D;; can be functions of a. If we regard

Ji=A:P—(9/9a;) (Ds;P) (7B.2)

as a probability current, then (7B.1) describes a con-

servation of probability. Steady-state solutions obey
dP/0t=0 but need not have J;=0. The condition
J:=01is a detailed balance (D.B.) condition that will
be obeyed in many problems. When it is, one can write

(DB) : dln P/adk= Up=— (D—l)k,-[aD,-j/aaj—A,-].
(7B.3)

In this case, one can express In P in terms of the line
integral
In P=f Ui day, (7B.4)
aQ
a result that is meaningful and independent of the

path only if the integrability conditions curl U;=0 are
obeyed:

aUk/6a1=aU;/aak. (735)

This is a condition on the coefficients D;;, 4; that will
permit such a detailed balance solution in the steady
state.

For the special case of a linear Fokker-Planck proc-
ess in which

D;;=const., A=—Ayaj,

the integrability condition takes a form
(D7A) = (D™*A) s, (7B.6)

equivalent to our previously described condition of
time reversibility.? A close connection between de-
tailed balance and time reversibility has been derived
in another way by van Vliet.? The steady-state solu-
tion of the linear Fokker-Planck process is well known.
Section 5 of Ref. 1, for example, presents the solution
without assuming detailed balance or time reversibility.
The general time-dependent solution will be obtained
in our discussion of the Ornstein-Uhlenbeck process
which follows in example C.

The one-dimensional Fokker-Planck process has a
special simplicity in the steady state, because then

8J/3a=0 or (7B.7)

The general solution of (7B.2) can then be written
down in the well-known form®

J=const.

J a a
P(a)=—-m da’ exp '%%db
C e A(b)
+D(a) eXp almdl), (7B,8)

where (for any a;) the integration constant C is fixed
by normalization. The boundary conditions usually
(but not always) require P (and J) to vanish at

2 See II, Ref. 2, last paragraph of Appendix A.
% K. M. van Vliet, Phys. Rev. 133, A1182 (1964); Erratum
138, AB3 (1965).



infinity thus forcing J to be zero in this one-dimen-
sional case.

The time-dependent problem is usually attacked® by
seeking the eigenfunctions of the operator L

dP,/dt=— LPy=—\Ps (7B.9)

whether L has the Fokker-Planck, or a more general
form.

For the one-dimensional Fokker—Planck case, these
eigenfunctions obey an orthogonality condition

[ Pal@) Pu(@) da/W (@) =bmm,  (7B.10)
where the weight factor
_C 24 (b)
W(a)—D(d) exp D) db (7B.11)

is the steady solution when J=0 is imposed. To prove
(7B.10) we make the transformation

P=exp (/f da)Q,

exp (—-]f da)a/aa exp ff da=9/da+f, (7B.13)

L'=exp (—ffda)Lexp (ffda)

af 0

-2 é;)+[A—<2fD+%>]a%+m(a) (7B.14)

(7B.12)

d a 9
={—4f)4A—{— —+f)D. B.15
m(a) (6a+f) (aa+f)(6a+f) a )
Then L’ will be Hermitian (of Sturm-Liouville type)
if the coefficient of d/da vanishes, i.e., if

2f=[4—0D/3a]/D (7B.16)

or
exp 2[fda=D—’ expf(A/D) da=W(a). (7B.17)

Thus P=W?¥Q and the Hermiticity of L’ guarantees
that its eigenfunctions Q, obey the unweighted orthog-
onality condition

J0n(@)0u(a) da=t

which demonstrates (7B.10). We shall assume com-
pleteness®:

(7B.18)

D 04(a)Qu(a) =8(a—a"). (7B.19)

26 N. G. van Kampen, Phys. Rev. 110, 319 (1958); also Ref. 6.

27 See, e.g., P. M. Morse and H. Feshbach, Methods of Theo-
retical Physics (McGraw-Hill Book Company, Inc., New York,
1953), Sec. 6.3, Eq. (6.3.11), and p. 729.
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The general time-dependent solution using (7B.9)
and (7B.19) can be written in the form

P(dl I (loto) = Z €Xp [_)\n(t"tﬁ) ]P,.((l) P,,(do)/W(ao).

(7B.20)

The lowest eigenvalue is \o=0 with Py(a) the steady-
state solution, which is equal to W (e) when J=0, so
that in this case

P(dt, aoio) EP(dt l (lotc) Po(do)
= exp [—\u(i—t) 1Pu(a) Pulao). (7B.21)

For V=V (a)=any function of a,

VEV0) )= exp (—\ut) [ f V(a) Pa(a) daT.

(7B.22)

Continuity Theorem (7B.1): Almost all sample func-
tions of a one-dimensional Fokker—Planck process with
bounded D(a) <D, are continuous. We shall make this
theorem plausible by using (6.15) to obtain

P(a+Aa, t+At | a, t)
= (4nAtD)# exp [— (Aa— AAL)2/4DAL]  (7B.23)

for the transition probability. The drift term A4 (a)At
causes a differentiable change in @ so that we shall
ignore 4 (a) and concentrate on D(a). Over the time
interval 0<¢<7T, choose At=T/N. Using the in-
equality®

w o exp (—3N
[ e (—3e) des [Fexp (~3) ag= 2R,

A A A A
P(Aa> (4D T)EN-Y)

<7 ¥(Dw/Dy) N-t exp [— DN¥/D,,]. (7B.24)

Thus for all N intervals Af, the probability for the
largest Aa obeys

P((Aa) largest> <4DOT) %N_i)
<Nr—4(Dyn/Do) N-t exp (—DoNY/Dy)  (7B.25)

so that as N— o, even the largest Aa goes to zero with
probability one.

C. The Ornstein-Uhlenbeck (0.U.) Process

The O.U. process® is-originally defined as a velocity
a=u subject to a damping linear in the velocity plus
a random force (see the Langevin noise source de-

28 Qur proof is a slight generalization of that given by J. L.

Doob, Stochastic Processes (John Wiley & Sons, Inc., New York,

1953), Sec. VIIL.2.

( 2 G). E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823
1930).
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scription in I, Sec. 8). In our present language, the
linear damping [see Eq. (5.10)] means

Di(a)=A(a)=—A-a, (7C.1)

where we have generalized to the multivariable case
at the minor expense of using a matrix decay con-
stant A. The “Brownian motion” random force results
in simple diffusion with

D,=0 for #>2.
(7C.2)

(The relation between the Langevin and Markoff de-
scriptions of random processes will be developed in
paper IV of this series.)

Thus our “Hamiltonian” (5.16) has the form

a=—19/9y

D.(a) =D=a constant matrix;

L(y, a,t)=iy-A-a+y-D-y; (7C.3)

so that by (6.18), the characteristic function ¢(y, ¢)
obeys

d¢/dt=—y-A-3¢/dy—y-D-y¢ (7C.4)

subject to

#(y, 0) =exp (iy-a0), (7C.5)

the initial condition (6.20).

This partial differential equation can be solved by
first eliminating the “drift terms” (those proportional
to A). The transformation that does this leads to an
exact solution of the case in which D=0. For this
special case, it is well known that such a linear partial
differential equation of the first order is equivalent to
the set of ordinary differential equations:

di=(y-A)l-dy (7C.6)
or
dy/di=y-A.

[A physicist’s way of arriving at this drift equation
would be to write a “material” derivative in the form
ds_06_ dy

dt ot dt dy’

Comparison with (7C.4) then yields dy/di.] The gen-
eral solution of the ordinary differential equations is

y (1) =y(0) exp (A¥)

_|_

or
y(2) exp (—A?) =y(0) =const. (7C.7)

Thus the general solution for ¢ is
¢=arbitrary function of y exp (—A#). (7C.8)

The solution obeying the initial condition (7C.5) is
then

&(y, t) =exp [iy-exp (—AZ)-ao] (7C.9)

and the corresponding density is

P(a,t)=d(a—[exp (—AL)]-a5). (7C.10)

Thus
(a(?) y=exp (—Ab)ag (7C.11)

in agreement with the first moment equation of (5.10)
when =0, and, when D=0, no fluctuations are pres-
ent.

The results suggest, that when D0 we make the
transformation

y=z-exp (Af) (7C.12)
o(y, 1) =¢(zexp (A1), )=y(z,1) (7C.13)
with

¥(z, 0) =¢(z, 0) =exp (iz-ay) (7C.14)

as the initial condition. Since

g% z=z—(f+j—t¥ ) %=§?+z exp (At)Az—i

= (0¢/0t) +y-A(0¢/9y) =—y-D-y¢, (7C.15)

the drift terms disappear and
/ot=—z exp (A)D exp (A't)zy(z, 1), (7C.16)

where AT is the transpose of A. The solution of this
equation with the initial condition (7C.14) is then

¥(z, t) =exp[—z-/t exp (As)D exp (A's) ds-z]
0

Xexp(iz-ay), (7C.17)
or in terms of the original variable y,
o(y, ) =exp [iy- (@)"— (1/2)y- (aa)™y], (7C.18).

using (6.8) where the linked averages are given by
(a)t=(a(t) )=exp (—A%)ay, (7C.19)
(aa)r=([a(®)—(a(t) )I[a(®) — (a() Y1)
t
=2/ exp (—Au)D exp (—A'u) du, (7C.20)
)
where #=1{—s. The stationary result can be obtained

by taking the limit as —o0. Thus (a)—0, and writing
{aa) for the second moment fluctuation in the station-

ary case:

((m)=2_/‘00 exp (—Af)Dexp (—A') dt. (7C.21)
0

We have previously obtained this result (I, Sec. 5) by
solving the Einstein relation
2D=A {(ae)+ (aa)AT,

which is a consequence of stationarity of the second

(7C.22)



moments. In the presence of underlying time reversi-
bility, I, Sec. 6, or if A7'D is symmetric,?

(@a)=A"D. (7C.23)

If (7C.22) is inserted into (7C.20), the integrand is
found to be a perfect differential so that

(aa)r= {aa)—exp (—Al) (ea) exp (—ATL), (7C.24)

which explicitly displays the approach to the stationary
case. Equation (7C.24) is in turn a special case of our
earlier result

(Ca() — (a() YI[a(®) — @(#) )1)en
=exp (—A | i—u]) (o)

—exp (—AL) {ea)exp (—ATu), (7C.25)

1(8.18), obtained by Langevin techniques.

The O.U. process and the Weiner process are guasi-
stationary in the sense that their transition probabilities
or “Hamiltonians” L(y, a, {) = L(y, a) do not depend
explicitly on the time. The Weiner process possesses
no stationary limit in the sense of (2.10) whereas the
linear decay causes the O.U. process to possess such a
stationary limit.

The O.U. process is linear and Gaussian as well as
stationary. Thus it illustrates

Doob’s Theorem: A random process that is stationary,
Gaussian and Markoffian possesses an autocorrelation of
the form

(a(#)a(0) y=exp (—AZ) (a(0)a(0)). (7C.26)

Doob® states this theorem for a one-dimensional
random process. It was extended to the many-dimen-
sional case by Kac.®* The proofs are based on the
Chapman-Kolmogoroff relation (2.12) and are ma-
nipulative rather than informative. Let us therefore
state the

Generalized Doob Theovem: A random process that is
Gaussian and Markoffian must be a linear, Fokker-
Planck process, i.e.,D,=0 for n>2,Dy=D=1independent
of a, Dy=—A-a, where D and A can be time-dependent.
Proof: If the a process is Gaussian, then the transition
probability has the form

P(a+Aa, t+At | a, i)
«exp [a-y-ata-v-AatAa-A-Aa], (7C.27)

where u, v, and A may depend on time, but not on a
or Aa. The characteristic function (6.12) of the transi-
tion probability then necessarily has the form

exp [— L(y, a, t) AtJ~exp [(iy-A-a+y-D-y)Al]
(7C.28)
30 J. L. Doob, Ann. Math. 43, 351 (1942).

31 See M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys.
17, 323 (1945), Appendix II.
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since the Fourier transform of a Gaussian in Aa is a
Gaussian in y. Moreover, the form of (7C.27) requires
that D be independent of a, and the coefficient of y
be linear in a. With a suitable (possibly time-depend-
ent) choice of origin, this coefficient can be written
A-a. This completes our proof. The original Doob
theorem then follows if we note that stationarity forces
A and D to be independent of time, reducing the
process to an O.U. process. Then

(a(t)a(0) )=/a daP(at|a0) daea,P(a,)

=f(a(t)~>aoao da,P(ay),

which reduces to the desired form (7C.26) when the
conditional mean (a(f) )a is given the appropriate
value exp (—Af)a(0) for an O.U. process (7C.29).

D. The Poisson Process (Shot Noise)

This is a discrete process with ¢(0) =0 and a(f) =an
integer=the number of events that have occurred in
the time interval (0, £). Then events are assumed to
occur at random at a rate » per unit time. Thus

dP(a,t)/dt=v[P(a—1,t)—P(a,t)], (7D.1)

where the first term represents transitions into state a
from a¢—1, and the second term represents transitions
out of @ (into e+41). For the case a=0,

dP(0,1)/ot=—vP(0, ). (7D.2)
Thus
P(0, t)=exp (—wut). (7D.3)
Setting
P(a, 1) =exp (=»)Q(a, 1), (7D.4)
Eq. (7D.1) reduces to
d0(a, t) /ot=vQ(a—1, 1). (7D.5)

Using Q(0, £) =1 and iterating we get
Q(a, t)= (vt)*/a!, P(a, t)=(vt)*exp (—ut) /al.
(7D.6)

All of these results are standard, and the moments
(a") can be computed from P(q, £). It is more instruc-
tive, however, to rewrite (7D.1) as

dP(a,t)/dt=vlexp (—3/da)—1]P(a, 1)
=v§[<—1>n/m]<a/aa> "P(a, 1)

=3 (—=1)*(3/0a)"D,P(a,t)  (7D.7)
so that

D,=v/n!, (7D.8)
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and
—L(y, a,8)= iay) "Dy=slexp (iy)—1]. (7D.9)

Thus

p/dt=v(ev—1)é. (7D.10)
With the initial condition P (e, 0)=4d(a) or ¢(y, 0)=1
we have

(exp iya(t) )=o(y, t) =exp [vi(e?—1)] (7D.11)

or
exp (ev*—1)l=exp [¥(ev—1)], (7D.12)
and

n>1 (7D.13)

so that all linked moments, #>1, in a Poisson process
take the same value!

(an)Yr=ut;

E. The Homogeneous Process

A homogeneous process is a random process that is
independent of the choice of origin of a. Thus all
higher order probability densities P (@, @n-1, ***, a1)
are functions only of the differences a;,—a;. A homoge-
neous Markoff process can be defined most succintly
by the requirement that

L(y, a,t)=L(y, t)

independent of a. (If the process is also stationary,
L will be independent of ¢.)

As a simple example of a homogeneous process, we
note the one-dimensional Poisson process with jump #:

dP/dt=v[P(a—n, t)—P(a, )], (TE.2)

(7E.1)

which may be immediately generalized to a normalized
distribution g(») of possible jumps

/g(n)dn=1,

0P /ot=» [ g(mdnlexp (~73/00)~11P(a, 1)

= 3 (~1)"(8/00)"DuP(a, 1), (TE.3)
where .
Da= (/) [8(a) .
Thus
— Ly, 0= (i9)Du=» [stn)anLexp (iyn) — 1.
(TE.4)

This process will be stationary or not, according as

g(n) does or does not depend explicitly on ¢ In any
case

d¢/dt=—L(y, ) (y, t)

has the explicit solution

(7TE.5)

o(y, t) =exp|:—/tL(y, s) ds] exp (iyao) (7E.6)
0

if we take ¢(y, 0) =exp (4ya,) appropriate to a(0) = aq.
Thus

1
P(a,t| a, O)=§f exp [—iy(a—ao) ] dy

Xexp[——/tL(y, s) ds] (7.E7)
0

In the adiabatic theory of line broadening discussed
in Sec. 3A, we are concerned with

M) =< exp (i/otw(s) ds)>.

If we interpret

(7E.8)

a(t) —a(0) =/tw(s) ds

0

(7E.9)

and 7 as the phase shift [« ds induced in each collision,
and write

L) =v [ dali—exp (i3], (TE.10)
then with g(5) independent of the time,

M (8) = (exp[i(a—a0) 1)
=¢(1,2) exp (—iao) =exp [— L(1)7]

=exp [:—ut/g(n) dn(1—ein)]. (TE.11)

If now we write
(7E.12)

V=190,

where # is the density of foreign atoms producing the
collision broadening, v a typical relative velocity, and
o the total cross section for collision, then og(n)dy is
the cross section for collision with phase shift in 7,
n-+dy. If we define

stioi=o [8(a) dn(1=e),  (TE.13)
then
M () =exp [—nvt(ort+ic;) ], >0,
=exp [—mvo, | t | —inveit], all¢t, (7E.14)

where the last form has used M(—¢) =M (¢)* in order



that the spectral distribution
1) = [ exp [—i(o—wi)]dM () (TEA5)

_ 2nvo,
" (mvey) 2 (0—wigt-nvo;)?

be real. The usual Lorentz line shape,® with width
nvo, and frequency shift #vo; is thus seen to be a simple
consequence of the (generalized) Poisson matrix of the
collisions, i.e., the assumption that the duration of
each collision is so short that we have a succession of
independent phase shifts occurring at a certain rate,
and with a certain distribution.

(7E.16)

F. Homogeneous Noise Plus Linear Damping

We can always decompose L into a drift part and a
noise or diffusion part:

L(y,a,t)=—1iy-A+K(y, a,¢), (7F.1)

where

—K(y, a, )= 3 (iy)"Du(a, 1).

n==2

(7F.2)

The process we wish to consider in this subsection
involves linear damping and homogeneous noise, i.e.,

L(Y) a, i) =iY'A(t) ‘a+K(Y, t)'

Except for the nonlinear Fokker—Planck case, this proc-
ess includes all previous cases 4 to E. Moreover, we
shall ask a more general question,

Mo=<exp ; /0 ‘a(s)-a(s) ds>, (TF.4)

than solved in the previous cases. [ The most important
applications will be stationary, i.e., A(f) =A; K(y, ¢) =
K(y).] It follows from (6.21) and (6.18) with Q=
—1q(?) -a that

(7F.3)

Mo=4(0, 1), (TF.5)

where

[0é(y, 1) 1/ot=(q—y-A) - (8¢/9y) —K(y, t)b. (7F.6)

We now follow our procedure in treating the O.U.
process. The solution of the ‘“dynamical” equation

dy/di=y-A()—q(?) (TF.7)
can be written
y()=y(0) -m(®)+y(2), (7F.8)
where m(¢) obeys
dm/di=m-A(t). (7E.9)
If A does not depend explicitly on the time
m(f) =exp (A?). (7F.10)
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Otherwise,

m(¢) =1+f‘A(sl) dsl—}—/t dsz‘[’2 dsiA(s1) A(sg)Fee
0 0 0

i 8n 8
+/0 dsn_/0 dsn_l---/;’dslA(sl)A(sz)~--A(sn)+---

il /-t/t /t
= — coe dsn
n=onlo Sy Jg

s dsi To[A(s1) A(52) ++ A(sn) ]

= T_.[exp /t dsA(s) ],

0

(7F.11)

where 7., is the usual time-ordering symbol® that
places the matrices from left to right in order of in-
creasing time. The other term in (7F.8) obeys

dyo/di=—q(t) +yo(1) - A (D),
and is given explicitly by

(7F.12)

Yo(t) =— /tduq(u)m(u, £, (7F.13)
0
where
m(u, t) =m(u)"'m(t) = T_,[exp fz dsA(s) ] (7F.14)

Equation (7F.8) suggests the transformation

y=z-m(?) +yo() (7F.15)
Y(z, ) =¢(y, ) =¢@-m(t)+yo(t), t) (7F.16)

with
¥(z,0)=(z, 0) =exp (iz-a;).  (7F.17)

As in the O.U. case, the first-derivative terms have
been made to disappear:

W(z, 1) /ot=—K((z-m(t)+yo(t), t)(z, t) (TF.18)
or
y = _— tK . 0 5 d
¥(z, 1) exp[ /; (z-m(s) +yo(s), 5) s]
Xexp (iz-a,). (7F.19)

Inserting z=[y—yo(¢) ]-m(¢)~! we obtain

é(y, 1) =exp [— fo ‘K(y-m(t, s)
—I—/;t duq(u) -m(u, s), s) ds]

Xexp [iy~m(t)—1-ao+i/vduq(u)m—‘(u) ~ao]. (7F.20)
0

32 See, e.g., F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949);
R. P. Feynman, zbid. 84, 108 (1951); M. L. Goldberger and
E. N. Adams, J. Chem. Phys. 20, 240 (1952). Also Ref. 22,
S. S. Schweber, H. Bethe, and F. de Hoffman, Mesons and Fields
(Row, Peterson and Company, New York, 1956), Vol. 1, Sec. 16.
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Thus

Mi=4(0, t) =exp (i/ot dsq(s) - (a(s) ))

Xexp [—ftk (/t duq () -m(u, 5), s) ds], (TF.21)
o\,

where

(a(s) )=m(s)-a (7F.22)

is the mean “position” in the original random process
(with q=0) in the sense that

d(a(s) )/ds=A(s) (a(s) ).
If we set q(s) =yd(t—s), we obtain

<exp[i [0 a(s)-a(s) ds] >= (expliy-a()])

=exp [2y-(a() )]

Xexp [——/tK(y-m(t, ), s) ds]. (7TF.24)
0

(7F.23)

But this result is just ¢(y, {) which can also be obtained
by setting =0 in ¢(y, ¢). Finally,

Plat] a0, 0) = [y exp [~y (a— (@() 0]

(2m)¥

Xexp [—/:K(y-m(t, $), S) ds]. (7F.25)

If we set
K(y, s)=y-D-y,
A(s)=A,
m(t, s)=exp [(s—#) A, (7F.26)

and set #={—s, our results (7F.24) specialized im-
mediately to the O.U. process results (7C.18)-(7C.20).

8. SMOOTHED SQUARE-LAW RESPONSE

If a nonlinear device produces an output signal b
that is nonlinearly related to the corresponding input
signal a at the same instant of time then the prob-
ability distribution of the output is immediately deter-
mined by that of the input through the nonlinear
transformation, e.g.,

Pou(b'Y | bE)db'= Pi,(a’t | af)da’
or
Pous(b', ' | b8) = Pin(a’(b"), ¢ | a(b), ) J (a'/b"),
(8.1)
where a=a(b) is the inverse of the nonlinear transfor-

mation b=b(a) performed by the device and J(a’/b’)
is the Jacobian of this (inverse) transformation.

A much more complicated problem arises if a time-
smoothing operation is then performed on the output
signal, since the new random variable is then a function
of the original variables at many (a continuum of)
time points. It is simplest to deal with the nonlinearity
and time smoothing together. For example, we might
be interested in the statistical behavior of

11
5= [ k=5 V(a() ds (8.2)
which we can ascertain by investigating {exp (—\S) ).
The procedure for solving such a problem is already
given by (6.18) with Q(a, s)=Nk(t—s)V(a) with ¢
regarded as a parameter. To have a specific problem
in mind, let us attempt to evaluate

= e [if a9a(s) ]
Xexp [—x /, :a(s) K(i—s)-a(s) ds] > (8.3)

With q=0, our nonlinear device is ‘“square law,” but
with g0 it is a general quadratic device. Moreover,
k is a matrix that combines different components of a.

Forward-Equation Method

If the original random process is described by the
function L(y, a, ) of (6.13) then we must solve the
problem

%_ 994—)\-— K(i—s)- ———L(y,

('9
2 , s)qb, (8.4)

where
d=¢(y, 5)=d(y, 5, 1) (8.5)
depends on ¢ as a parameter, and our desired result is
My=¢(0,t,1), (8.6)
(y, b, 1) =exp(iy-ai). (8.7)

A subsequent average over the equilibrium distribu-
tion of &g can be performed if desired.

For homogeneous noise with linear decay (Sec. 7F),
our equation simplifies to

—+x—y w2k, 94

. 0y ®8)

9¢

Pyl A%
This is equivalent to solving the Schridinger equation
for a (multidimensional) oscillator with time-varying
mass moving in an arbitrary potential K(y). Exact
solutions are, of course, only possible with selected
forms of the potential. The most important case, cor-
responding to Gaussian noise is

K(y,s)=y-D-y,

i.e., the Ornstein—Uhlenbeck process.

(8.9)



We now make the ansaiz

¢=[X(s) P exp {—[y-C(s)-y+B(s)-y]}, (8.10)
subject to the initial conditions
X(0)=1, C(0)=0, B(0)=-—sa,. (8.11)

Remembering that X (s)=X(s, £) depends on ¢ as a
parameter, our answer is determined once we know X:

My=[X(, 1) 13, (8.12)
and X, B, and C are determined by
X—1dX/ds=4\ Tr (k-C)+2q-B—2)\B-k-B,
dB/ds=2q-C— (A+4)\k-C)B,
dC/ds=—[A-C+C-AT]—4\C-k-C+D, (8.13)

where AT is the transpose of A. These equations are
valid even for the nonstationary case in which A and
D depend explicitly on s. For the remainder of this
section, we restrict ourselves to the stationary case,
however.

The equations for C (a set of coupled Riccati equa-
tions) are not coupled to those for B and X. Thus
these equations must be solved first. The equations
for B and X can then be integrated immediately. To
illustrate the procedure, we shall develop in detail the
solution for the one-dimensional case—a not entirely
trivial problem.

The transformation

AINC=Y'/Y (8.14)
reduces
dC/ds=D—2AC—4Nk-C? (8.15)
to the simple form
V"+[2A— (F'/k) JY'=4\DEY, (8.16)

where primes are derivatives with respect to s and
k=Fk(i—s) is now a scalar function of s. Since the
normalization of ¥ clearly has no effect on C, we shall
take our initial conditions in the form

Y () =1, Y’ (%) =0. (8.17)

The exact solution for B(s) is then given by
Y (s)B(s)=—1aoexp [—A(s—1) ]

42 / ds’ exp [—A(s—s) Jg(s) C(s) Y (s') ds', (8.18)
to
and the solution for X yields our answer in the form

M=[X(t, ) H=[7 (4, ) T exp [— [ a8 ds]

Xexp [x fl B(i—s5) B(s)? ds]. (8.19)
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Note that ¥~ is already the solution to the square-law
problem (¢=0) with the initial condition a,=0. If
g=0, but ap7%0, we have

Mo=[Y(, ) I exp[—R(Dar’],  (8.20)

R(t) =)\/tk(t——s) exp [—2A(s—t) Jds/[ Y (s, ) .

(8.21)

[As a check on our arithmetic, we set A=0 and ¥V'=1
in (8.15), (8.18), and (8.19) to obtain

Cowif arat) a5

=exp [i/;:q(s) dsagexp [—A(s—1) ]]
xesp {=1[ [[494) e [=26=5)]

—exp [A(2t—s—s")]} ds ds’}, (8.22)

a result which may be compared with (7F.21) on set-
ting K= D4y? in the latter.]]

For the special case of exponential smoothing
k(t—s)=exp [—28(t—s)] Eq. (8.16) for Y (s, ¢) can
be solved exactly. Indeed, our first calculations were
performed in this way. But we were not always able
to perform the integration in (8.21) to obtain R(?).
Moreover, the procedure was cumbersome because one
solves for Y (s,t) when one is only interested in YV (¢, f) =
Y (¢). Both of these difficulties are immediately removed
by the use of the backward Eq. (5.22) since that pro-
cedure leads directly to an equation for the desired
object Y (§)=Y (¢, {) and moreover, we shall show.
that

R(t)=(4D)1Y"'(8) /Y (4). (8.23)

Backward-Equation Method

According to (4.8), My(¢, &) can be obtained by
integrating P(at | a¢y) over a. Since a is only a param-
eter in the backward Eq. (5.21), we may integrate
this equation over a without changing its form:

aMo(ao, t, to) o _
S b Lo, 1)

— 3"Du(ay, t): (9/080)" 1M, (824)

n=l

For the case of time-independent transition probabili-
ties D, (@, to) =Dax)ao), we expect that Moy=M,(ao, )
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where #=1{—1{, and

_ai%f"_’”)c[g(ao, ) —ZDn(ao) ((—%)]Mo
(8.25)

For a (multidimensional) Ornstein—Uhlenbeck process

oM, d a ]
— o———"2D.— |M,.
ou [Q(ao,u)-i—(Aao) da, dag a] ’

If, moreover, we are concerned with the average

t
Mo=<exp i) q(¢—s)-a(s) ds
to

Xexp—A\ :a(s) ‘k(t—s)-a(s) ds>, (8.27)
o
then comparing with (5.20) and (5.21),
Q(ay, u) =—1iq(u) -ap+ray-k(u) - a,.
We can now assume a solution of the form
Mo(ao, u) =[¥ (u) I exp [—ao-R(u) -a0—S(u) - ac],
(8.29)

explicitly displaying the a, dependence. The coefficients
then obey

Y'(u)/ Y (u) =4R(u) :D+S(u) -D-S(u), (8.30)
S () =S-[A—4D-R]—q(u), (8.31)

R’ () =\k(#) —4R-D-R— (R-A+AT-R),
(8.32)

where AT is the transpose of A. Thus S is expressible
in terms of R using (7F.7), (7F.13):

(8.28)

S(u)=— [ a(u)
0

X T.exp / ds [A—4D-R(s)] (8.33)
w!
and Y can be obtained if both S and R are known:
Y (u) = exp 4 f R(«'):D du exp / S(w)-D-S(x) dut.
0 0

(8.34)

The problem is thus reduced to obtaining R by solving
Eq. (8.32) which is an equation for R alone.

It is easier to solve for R if we transform to new
coordinates

a,=U"-by; (8.35)
au‘R' ao=bo'V‘b0, R=UTVU, (836)
R-D-R=TU'VUDU'VU; (8.37)

in such a way that the new D is proportional to the
unit matrix

D’'=U-D-Ut=1l, (8.38)
which is accomplished by the choice
U=1(D)#=TUt, (8.39)

where the symmetric (inverse) square root is under-
stood (U is the transpose of U). Then

dV/du=K+rT— (V41" (V4I); (8.40)
K= (U?)-1.Ak- U, (8.41)
r=U-A-U7
rt=(UH)-1.At. Ut (8.42)
The further transformation
V=Z71-dZ/du—T* (8.43)

transforms our coupled Riccati equations into a set of
linear (coupled) second-order differential equations:

&°Z/dw+-(dZ/du) (T—T1)=Z. (K4I'Tr). (8.44)
Equation (8.34) can now be simplified to

Y(u)=exp /u [Tr V()] du’

Xexp f S()-D-Sw) du.  (845)
0

The initial condition My (a,, 0) =1 implies
R(0)=S(0)=Y"(0)=0, Y(0)=1. (8.46)

For the one-dimensional case our equations reduce to

dR/du=Ne(u) —2AR—4R2D, (8.47)
AV /du=4\Dk(u) —2AV —V?, (8.48)
&Z/dwe="[4\Dk(—u) +A?1Z (u), (8.49)
4DR(u) =V (4) = Z4Z/du—A, (8.50)

Y (u) =exp (—Au)Z(u) exp D/u[S(u’) Tdu'.
0

(8.51)

The combination Z exp (—A#) obeys the simple equa-
tion

[Zexp (—Au)1"42A[Z exp (—Au) ]
=4NDEk(u)[Z exp (—Au)].
For the case in which ¢g=S=0, we can write this as
V" (u)+2AY (u) =42\Dk(u) Y (u), (8.52)
4DR(u)=Y"(u)/ Y (u). (8.53)



Exponential smoothing then leads to the differential
equation

V" (u)+2AY" (u)=4\D exp (—2Bu) Y (u), (8.54)

an equation similar to but not identical to Eq. (8.10)
obeyed by Y (s, ¢). Our initial conditions are:

Y(0)=1, ¥'(0)=0 (8.55)
Case 1. A=pB=0, Linearly Smoothed,
Squared Weiner Process
Y"(u)=4\DY (u), (8.56)
Y (u) =cosh [ (4\D)%4], (8.57)
R(u)= (4D)~1(4AD)* tanh [(4A\D)*], (8.58)
Mo=<exp [——)\ ta(s)2 ds] >=Mo(t—to),
Mo(u)=cosh [(4AD)*u]
Xexp {—Nao*(4\D)~* tanh [ (4\D)*]}, (8.59)

with #=¢—1#. Thus we find that as u=t—f—», ¥ ()
continues to depend on #, i.e., our output random
variable never becomes stationary. Moreover, R(u%)
does not vanish as w—co, so that memory of a, is re-
tained forever. Cameron and Martin,® have previously
evaluated M,(e) for this special case by nontrivial
path integral techniques.

Case 2. =0, A#0, Linearly Smoothed
Squared 0.U. Process

Y"42AYV=4\DVY, (8.60)
Y(u)=(2I') L exp (—Au)[(T+A) exp (Tw)
+(I'—4) exp (—Tw) ],
=T1(4\D)%¢ 4% cosh (T'u+6], (8.61)
where
I'= (A>+4\D)3,
= (T+4)/(I*— A%},
tanh §=A/T,
R(u)= (4D)7'Y’/Y=T[tanh (T'u+60)— (A/T)],
(8.62)

Mo(u) =LY (u) I
Xexp {—Nag*(T'/4\D)[tanh (T%+6) —tanh 67}.
(8.63)

Thus the linearly smoothed squared O.U. process re-
mains nonstationary as #={—#—>o, and moreover it
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always remembers the starting value a(%)=a, even
though the O.U. process with A>0 has a built in
mechanism for forgetting this value.

Case 3. B#0, A#=0, Exponentially Smoothed
0.U. Process

Y4207 =4\Dexp (—28u) Y. (8.64)
Let
d dx d d
= 4 2 5 p—Bu —_———— e — —_— 8‘65
= ID/pTiem, L=T gl (365)
@Y 1-2pdY
—+ 4 -—d —Y=0, p=A/B, (8.66)

dx? x dx
from which we can conclude®
Y= xp[AIp(x) +BK,(x) 1

where I, and K, are the modified Bessel functions.
With x=[4\D/B?], we can make d¥/dx=0 at u=0,
i.e., = by choosing

Y (x) = C{— (d/duxo) [0"K (o) Jo*I ()
+ (d/dowo) CaooPT (o) JePK (12) }
= Cag? [ K p1 (20) Ip(xc) +Ip 1 (20) K (2) ],
where we have used the relations®
(71 d/dx) Pl (x) =27 (),
(&7 d/dx) K, (x) = (— 1) "7 K p_m(x), (8.67)

for m=1. If we make use of the Wronskian relation3

Kp1(2) I (%) +1pa(2) Kp(2) =1/x,

we can obey the initial condition ¥=1 when #=0 or
x=1xo by setting C=x24"? to get

Y () = wo(w/%0) PLK p1(20) L (%) +1 p1(20) K () .
(8.69)

(8.68)

Using (8.53), (8.65), and (8.67), we obtain
4DR(u)

Ip1(%0) 471K, 3 (x) — K 1 (%) 2P, (%)
Tpa(%0) 22K (x) + K p—y (w0) 221 (%)
(8.70)

= ﬁx2

¥ 1, M. Ryshik and I. S. Gradstein, Tables of Series, Products
and Integrals (Plenum Press, New York and VEB Deutscher
Verlag der Wissenschaften, Berlin, 1963), p. 329, formula 6;
E. Jahnke and F. Emde, Tables of Functions (Dover Publications,
Inc., New York, 1943), Sec. VIIL.7. G. M. Watson, Bessel Func-
tziogs éCambridge University Press, Cambridge, England, 1948),
nd ed.
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The exact relations®
Ky(x) = (n/2 sin pr) [1_p(x) — [,(x) ],

I(p)T(1—p) = (x/sin pr),

(8.71)
(8.72)
and the behavior® as u— o or x—0:

1y (2) LT (1) T 8/ L+ (p+ 1) (/2]

(8.73)

4DR(u)=Y'(u) /Y (u) =2\D(A—B) L exp (—20u)

yields the asymptotic behavior
V(@) =T (p) (2/200) 7 pa (360) X {14 (1= p) 7 (/2)*

z->0

—(A=p)7T(2—p) (x/2)*[T(1+p) I

—2(4/8) (A—B)7'T (2—p) (\D/*) ¢ exp (—2Au)/T'(1+p)

+2(2/2)*7Kp1(%0) /[Lp1 () T(14+p) T(p) I} (8.74)
Thus as #—, ¥ achieves the stationary value
V(u=o0)=T(p) (2/x0) " Lpa(xo)  (8.75)
and R(u) approaches zero rapidly:
—4AK 1 (x0) (ND/B?) M exp (—2Au) /[Lp-1(x0) T (1+p) ()], (8.76)

showing that the smoothed O.U. process rapidly forgets ay, i.e., My becomes truly stationary! This stationary
result is what will be observed experimentally, since the duration of the measurement is usually large compared

to 1/8 or 1/A.

Case 4. 8#0, A=0, Exponentially Smoothed Weiner Process

Since we have allowed Au—c in the asymptotic formula (8.76), this result can not be applied to the A=0
case. We can, however, set p=A/8=0 in (8.69) or (8.70), to obtain

Y () = wo[ K1 (20) Lo () +T1(20) Ko(x) ],
4DR=Ba[ 11 (xo) K1 (%) — K1 (o) I1(w) 1/[11(20) Ko(%) + K1 (20) [ (%) J.

The behavior as x—0

vKi(x)—1,  Ko(x)=—In (x/2), (8.79)
leads to the asymptotic (#— ) behavior
Y (w) —aol1(20) (u+7), (8.80)
4DR (u)—(u+7)", (8.81)
where
7=B{[K1(x0) /I1(x0) ]—3 In \D/B")]. (8.82)

Thus ¥ does not become stationary, and R vanishes
very slowly as #—.

Case 5. Arbitrary Positive Smoothing Function k(s—1)

Let us summarize our results in the form
t

My(t—t) =< exp [——)\ k(t—s)a(s)? ds] > (8.83)
to

= [:Y(t—to) ]_% €Xp [—(102R(l’—,'t0):|,

Y (i—to) = exp [40 fo TR(w) du].

(8.84)

(8.85)

3¢ This special case is worked out by Deutsch, Ref. 4 Chap. 7,
using forward equation techniques.

(8.77)
(8.78)

Stationarity properties of M, can then be stated as
follows:

if lim R(#)=0

U—>00

M, becomes independent of ¢,
(8.86)

Y (¢—1f,)——constant if /wR(u) du<oo. (8.87)
0

to—> —co

We see immediately that the second condition can be
obeyed (Y—constant) only if the first is obeyed (Mo—
independent of a¢) ; but the converse is not necessarily
true, since R(#) may fall off too slowly for the integral
to be convergent [as in (8.81)]. A necessary condition
for R() to vanish is £(e)=0, but this condition is
not sufficient, since the equation

dR/du=—2AR—4DR? (8.88)

admits two special solutions R=0 and R=— (A/2D).
The first of these solutions is stable, but the second
can readily be shown to be unstable. If one even
arrived at R<—(A/2D), one would find a runaway
solution R—— . We shall now show that k(%) >0 is
sufficient to prevent such runaway solutions. Since
most smoothing functions obey %£>0, and we have
not found the mecessary condition on %k to prevent



runaway solutions, we shall suppose 2>0 in all that
follows.

Since £(0) >0, dR/du is positive at #=0, so that
R increases from zero and achieves a positive value.
Thenceforth, R can never become negative, for if R
were to become zero at #=1u;, we would have dR/du,=
Me(#1) >0. Moreover, if £#—0 as #—o then R must
likewise approach zero, for if R remains larger than
(say) Ry>0, then for sufficiently large %, dR/du would
become negative and lead to a contradiction. The same
argument essentially tells us that the condition 2—0
is necessary as well as sufficient for R(#) to vanish
as u—, ie., for M, in (8.83) to ‘“forget” ap®. A
similar argument tells us that if 2—constant as ¢—o
then R must also approach a constant, which explains
the results in Cases 1 and 2 above.

We must next investigate (8.87), i.e., whether R (%)
is integrable. We shall first show that if A>0, R is
integrable if and only if % is integrable. Integrate Eq.
(8.47) for R from #=0 to #= » to obtain

2Af°°R(u) du+4D/mR2(u) du=>\f°°k(u) du—R ().
0 0 )
(8.89)
Suppose now, that % is integrable, then

R(oo)<>\f°°k(u) du< .
0

Thus the right-hand side of (8.89) is finite, and each
of the positive integrals on the left-hand side must
converge.

Suppose now that the integral of & diverges. We
shall show that the integral of R diverges by proving

that
t
V=exp [4Df R du]
0
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cannot approach a constant. Integration of Eq. (8.52)
yields

AV Jdi-+2A7 = 2A-4\D / B(w) Y (4) du. (8.90)
0

If Y (u)—constant as #—oo, the right-hand side di-
verges, which forces d¥/di to diverge and contradicts
the possibility of ¥ remaining finite when [%du di-
verges.

We shall now show that for A=0, R is never inte-
grable. The transformation

R=[4Du+TT" (8.91)
yields

dT/du= —Ne(4Du+T)>. (8.92)

Thus T is a monotonic decreasing function of #. For
u>wu, T(u) <T(u) and

R(u) >[4Du~+T (u) T (8.93)

Thus R(%) is not integrable. Our results may be sum-
marized in the

Asymptotic Theorem: Within the class of positive smooth-
ing functions k(t—s), the average

Mo=<exp [—x ft :k(t—s)a(s)2 ds] >

[where a(s) is an Ornstein—Uhlenbeck process subject to
a(ty) =ao becomes independent of ay as t—ty—x if and
only if k(u)—0 as u—w, and Mo becomes independent
of the time in this limit, if and only if A#£0Q (the O.U.
process does not reduce to a Weiner process) and the
integral

/wk(u) du< o

0
converges.



