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Our previous treatment of noise in the nonequilibrium steady state is extended to include nonstationary processes,
and processes for which the quasilinear approximation is inadequate. By use of backward-equation methods, we show that

t

Mp(ap, t, tp) = exp — Q(a(s), t—s) ds
tp

subject to a(to) =ao obeys the differential (integral) equation:

~No(ap, t, tp)
=LQ(ao, &

—&o)
—ZD„(ao, &o): (&/&ao) "$2fo&

Btp ys=l

where the D„are the roth-order diffusion coefficients of the a(s) process, and Q(a(s), s) is an arbitrary function of a and s.
The choice D„=O, oo) 2, Do DD&(a——,) = —Aa makes o(s) an Ornstein-Uhlenbeck (O.U.) process, i.e., white noise that
has been filtered through an RC networl& with time constant 1/A. . The choice Q(o(s), s)=k(t —s) po(s) go squares the
output and applies the time smoothing k(t s). —For k(s) =exp (—2tls) Ltime smoothing through an RC network with
time constant (1/2P) g, an explicit solution is obtained for the characteristic function Mo. For arbitrary positive k(s),
we show that lifo becomes independent of ao as taboo if k(oo) =0, and Mo becomes stationary if A)0 and

k(zt) de (~.

CONTENTS

1. Introduction and Summary. . . . . . . . . . . . . . . . . . . . . . .
2. Properties of Markoff Processes in the Large. . . . . . . .
3. A Class of Problems to be Solved. . . . . . . . . . . . , . . . .

A. Adiabatic Line Broadening. . . . . . . . . . . . . . . . . . . ~

B. Free Induction and Spin-Echo Experiments. . . . .
C. Nonlinear Transformations on Noise. . . . . . . . . . . .
D. Domain Probabilities. . . . . . . . . . . . . . . . . . . . . . . . .
E. Random Walk with Absorbing Barriers. . . . . . . . .
F. Distribution of Spectral Components ~. . . . . . . . . .

4. Reduction of the Path Integral. . . . . . . . . . . . . . . ~. . .
5. Marko6 Processes in the Small. . . . . . . . . . . . . . . . . . . .
6. Characteristic Functions and Linked Averages. . . . . .
7. Examples, of Markoff Processes. . . . . . . . . . . . . . . . . . .

A. The Weiner Process, . . . . . . . . . . . . . , . . . . . . . . . . .
B. The Fokker-Planck Process. . . . . . . . . . . . . . . . . . .
C. The Ornstein-Uhlenbeck (O.U.) Process. . . . . . . .
D. The Poisson Process (Shot Noise) . ~ ~. . . , . . . . . . .
E. The Homogeneous Process. . . . . . . . . ~. . . . . . . . . .
F. Homogeneous Noise Plus Linear Decay. . . . . . . , .

8. Smoothed Square-Law Response. . . . . . . . . . . . . . . . . .
Forward-Equation Method. . . . . . . . . . ., . . . . , . . . . . . .
Backward-Equation Method. . . . . . . . . . . . . . . ~. . . . . .

Case 1. Linearly Smoothed Weiner Process. . . . . .
Case 2. Linearly Smoothed O.U. Process. . . . . . . .
Case 3. Exponentially Smoothed O.U. Process. . .
Case 4. Exponentially Smoothed Weiner Process.
Case 5. Arbitrary Positive Smoothing Function . .

359
361
362
362
363
363
364
364
364
364
365
366
368
368
368
369
371
372
373
374
374

~ . . 375
377
377
377
378
378

character of the random variables, I.angevin forces,
the Fokker —Planck approximation, or that fluctuations
are from an equilibrium state.

We found that the assumptions' that the system is

Markman, stationary, and quasilinear were suflicient
to compute all autocorrelations (n(t) rr(u) ) of the
deviations O.=R—Rp of a set of random variables
a=Lat, a&, ~ ~, a„] from their steady-state values.
The essential idea is that if one knows the solution
(e(t) )orl„& of the mean motion subject to the initial
condition n= n(u) at time I, one can compute the
autocorrelation, and hence the fluctuations from

(&(t) or(&) )= ((or(t) ) ( ) &(&) ). over &(&) (1 1)

a,s proven in I(2.13). Thus the regression of a fluctu-
ation obeys the "macroscopic" equations of motion
for (n(t) ), and the spectrum of the noise, is given by
the Fourier transform of the time-dependent decay
exhibited by (or(t) )«„&. For a quasilinear system, this
time dependence obeys a matrix equation I(3.6):

d(n(t) )/dt= —A. (rr(t) ), (1.2)

1. INTRODUCTION AND SUMMARY

Our previous treatment of Auctuations from the non-
equilibrium steady state' ' was more general than pre-
vious work in that it did not assume linearity of the
system, time reversibility of the system, Gaussian

' M. Lax, Rev. Mod. Phys. 32, 25 (1960).This paper contains
an extensive bibliography that will not be duplicated here. This
paper will be referred to as I in our series of papers on noise in
classical systems. It treats Markman noise in the stationary
state by quasilinear methods.' M. Lax, Phys. Chem. Solids 14, 248 (1960).This is Classical
Noise II. It applies the methods of I on continuous para, meters
to trapping, diffusion, and carrier concentration noise.

leading to an exponential time dependence. The spec-
trum is thus known, but the magnitude of the noise
requires a knowledge of (n(u) or(n) ), i.e., of the fluctu-
ations at one time. These can then be computed from
the generalized Einstein relation I(5.18):

A. (or or )+ (ne)A. t= 2D, (1.3)

where A.~ is the transpose of A. and the diQ'usion matrix
D can be computed. from I(5.7),
2D= lim (At) —'(t or('t+dd) —n(t) ]Lor(t+At) —rr(t) ])

(1.4a)
359
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or from the transition probabilities in the form I(5.6), duced to an evaluation of the average

2D(a) = (Dt)
—' (a'—a) (a'—a) P(a't+Dt

) at) da' M= exp — Q(a(s), s) ds
to

(1.7)

(1.4b)

and D=D(ao). )The conditional probabilities P are
defined in Sec. 2.] Similarly, the drift vector is defined

by I(5.5):

A(a) =lim (At)
—' (a' —a) P(a', t+At

~
at) da' (1.5)

(d/dt) (a)= (A(a) ) —A. ~ (a—ao), (1.6)

where ao is determined by A(ao) =0.
In summary, if one is concerned with the fre-

quency spectrum (or alternatively the autocorrelation
(u(t) n(u) )) of the noise of a classical, stationary
nonlinear Markoffian process, then this problem is
already solved in Eqs. (1.1)—(1.6} as long as over the

range of ftuctuatiou one can replace the system by a.

quasilinear one. In this c@se, we need not evaluate
the complete conditional probability P(a' t'

~
a/), but

have simplifi. ed the problem of showing that the first
and second moments (a(t) ); (a(t) a(u) ) obey a closed
system of equations that can be solved exactly.

The present paper, III, is written to cover some of
the techniques available when the stationarity and
quasilinearity approximations are no longer valid. 4 '
In particular we wish to be able to discuss cases when:

(1) the transition probabilities and/or the solution
is nonstationary;

(2) the nonlinearity over the range of the fluctu-
ations is large enough, that quasilinear approximations
are invalid;

(3) the signal is passed through a nonlinear device,
so that a knowledge of the complete distribution
P(a' t' ( at) is needed;

(4) the results depend on the random variables a(t)
at more than two times. In particular, if the output of
a nonlinear device is time-smoothed the distribution
of outputs depends on the random variables over a
continuum of times —all the past historyl

Most of the problems we wish to solve can be re-

(1.9)

where

p(y, t) = exp (iy a)P(at
~

aoto) da (1.10)

is the characteristic function associated with unnormal-
ized probability P. I It could be written more explicitly
as @(yt

~
aotq) to empha. size the initial condition. ]

We then define the characteristic funcA'oe associated
with (unmodified) transitions in a small time inter-
val by

exp $—1.(y, a, t) At]= (exp (iy ha) )

dna exp (iy Aa) P(a+ha

In particular

—1.(y, a, t) = g(iy)":D„(a, t),
n=l

(1.12)

where

u!D.(a, t) = (At)-' (a'—a)"P(a', t+ht
~
a, t) du'

(1.13)

which can be thought of as the characteristic function
of the random variable in the exponent. The latter
involves an arbitrary time smoothing, over an arbi-
trary nonlinear function Q of the a(s) over the history
from to to t. Ke shall use the label JIO, if we wish the
average conditional on a(to) = ao. By introducing a new

unnormalized MarkoG process P whose transition prob-
ability for small times is related to that for P by

P(a't+At ) at) = Li —Q(a, t) dt]P(a', t+ht
~
a, t),

(1.8)
we show that

3To conform with the mathematical literature, the times
in our probability functions increase as one moves from right
to left. The opposite convention was used in I.

4A review of the literature on nonlinear random processes
with extensive bibliography is given by Ralph Deutsch, Non-
linear Transformations of Random, Processes (Prentice-Hall, Inc. ,
Englewood Clips, New Jersey, 1962). See also Refs. 5—7, and the
references contained therein.

~ David Middleton, Introduction To Statistical Communication
Theory (McGraw-Hill Book Company, Inc. , New York, 1960).

~ R. L. Stratonovich, Topics in the Theory of Random Noise
(Gordon and Breach, Inc. , New York, 1963), Vol. I.

I"luctuation Phenomena in Solids, edited by R. E. Burgess
(Academic Press Inc. , New York, 1965).

y': D, =—Py,y;y, D,,» (1.14)

Such forward equations have been obtained by A. J.F. Siegert,
IRE Trans. Inform. Theory 3, 4 (1954).See also, Ref. 4, Chap. 7,
and R. Kubo in Fluctuation, Dissipation and Resonance in Jtt/Iag-

netic Systems, edited by D. ter Haar (Plenum Press, Inc. , New
York, 1962).

displays the use of the colon '. to imply the contraction
of the product of two tensors on all their indices.
%ith L understood to have all y's to the left of all
a's as in (1.12), we show that P and p obeys (5.13),
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(6 18): de resis/umce of the present paper is the reduction of

BP/Bt= —[Q(a, t)+L(y, , a, t)]P(a, t) (1.15) Mp= exp i q(s) a(s) ds
tp

Bp/it= —[Q(a.„t)+L(y, a.„t)]g(y, t) (1.16)

with

y.,=i a/aa; a.,= —i8/ay. (1.17)

We also show that P(at ( apt, ) obeys the "backward
equation, " (5.19),

BP/Btp ——[Q(ap, tp)+Lt(y. „ap) ]P(at
~

aptp) (1.18)

or

BI' 00 ( g n

Q(ap, tp) —gD (ap, tp): i
P. (1.19)

Bto =y (88,0

(g )n= Q(ap, u) —QD (ap):(
)

Mp(ap, u). (1.20)
&~ap1

Section 7 reviews our knowledge of linear processes:
the Weiner process, the Ornstein —Uhlenbeck process,
the Poisson process, the homogeneous process, and a
process that includes all the preceding: homogeneous
noise plus linear damping, ' for a set of random vari-
ables a. For this most general linear case, we determine
the multitirn. e property:

Mp= exp i q(s) ~ a(s) ds (1.21)

where q(s) is an orbitrary (vector) function of the
time.

Section 7B discusses the multidimensional Fokker-
Planck process (i.e., D„=O for N)2) as an example
of a nonlinear process.

When the D„'s or Q depend nonlinearly on a, there
are, of course, no general methods of solution. A piece

9 This paper may be the first to make explicit use of backward
equations as a means of dealing directly with the characteristic
function Mo(ap F—Pp).

'OThis terminology is explained in the body of this paper.
For definitions see also Refs. 1-8 or the collection of papers in
N. Wax, Noise and Stochastic E'rocesses (Dover Publications,
Inc., New York, 1954).

Since a is now only a parameter, an integration over 8.
commutes with the operations in (1.18) and (1.19).
Thus Mp of (1.9) obeys (1.18) and (1.19) in its de-
pendence on ao and Io.

If we are interested in Mp(ap, t, tp), (1.7), it is much
simpler to compute it directly by the use of (1.19) with
the initial condition Mp(ap, t, t) =1 than to calculate
the more detailed P(at ( aptp) or P(yt

~
aptp). When the

D„do not depend explicitly in tp, and Q= Q(a(s), t s)—
then Mp(ap, t tp) =Mp(ap, t tp) which obeys'

BMp(ap, u)

Bs

+exp —) a(s) k(t —s) a(s) ds (1.22)
to

to the solution of a set of coupled ordinary differential
equations of Riccati form when a(s) is an Ornstein-
Uhlenbeck process, and q(s) and k(t —s) are arbitrary
functions of the time.

For the one-dimensional case, in particular, we show
that

t

Mp —— exp —X k(t —s) u(s)' ds
tp

=[V(t—tp)] i exp [ apPR(t—tp)], —
t—te

Ir(t —tp) =exp 4D R(u) du,
0

dR/du= Xk(u) —2AR —4DR'

(1.23)

(1.24)

(1.25)

(1.26)

k I dl
0

converges.
We intend in paper IV of this series to discuss non-

linear random processes from the Langevin point of
view. We shall show how Langevin processes can often
be reduced to Markoff processes and thus made ame-
nable to the techniques of the present paper.

2. PROPERTIES OF MARKOFF PROCESSES
IN THE LARGE

Let a(t) —= [aq(t), ap(t), ~ ~ ~, a~(t) ] be an 1V-dimen-
sional random process, and

P[a(t„) ) a(t„~), ~ ~, a(tp), a(t~)]

2.1
P[a(t.), , a(t~) ]

P[a(t„&), ~ ~, a(t&) ]

where A is the decay constant and D the diffusion
constant of the Ornstein —Uhlenbeck process. For the
case of exponential smoothing, k(u) =exp (—2Pu), we
find an exact solution to the differential equation
(1.26). Thus we have found the answer to a hitherto
unsolved problem: RC-smoothed white noise (time
constant 1/A) is passed through a square-law device
and the output is again RC-smoothed (time constant
1/2P). Then Mp is the characteristic function of the
output.

The special cases P= h.=0; P=0, A) 0; P)0, A) 0;
P) 0, A=0 all yield different answers as to (1) whether
Mp forgets op=a(tp) and (2) whether Mp becomes
stationary, i.e., independent of t. For any k(u))0,
we show that Mp forgets ap if and only if k(u)~0 as
N~~. Moreover, Mo becomes stationary, if and only
if A~O and
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be the conditional probability density that a(t) take
the value a(t„) at time t„given the values a(t;) at the
earlier times t„&t„~&t„2&~ ~ ~ &t2&t~. The random
process a(t) is MarkoKan if

Pl a(t-)
I
a(t--i), ",a(t )3=Pl a(t-) l a(t--)3,

(2.2)

i.e., if the probability of any event depends only on the
latest piece of information available. A Marko8 process
has no memory of earlier events.

H we now write briefly a(t;) =a;, the repeated use
of the definition (2.1) of conditional probability den-

sity in terms of the full probability densities permits
one to write

P (ae& an —y)
' ' ', ay)

-P(a- I a-i, "., a) P(a. ~ l a. ~ " a,), ~ ~,

P(a, l a,) P(a,), (2.3)

which for Marko6 processes reduces to

P(a ~ ~ ag)

=P(a.
l a. 1)P(a. 1l a. 2) ~ "P(a2

l al) P(al). (2.4)

The factorization (2.4) permits the probability of a
compound event occurring at many times to be ex-
pressed entirely in terms of the transition probability
P(a„

l a„q) and the initial distribution P(a~). For
example, if V(t), a one-dimensional Markoff process
(e.g. , a noise voltage) is passed through a square-law
rectifier:

dapP(ap l ag) =1. (2.13)

However, we shall carry through our analysis without
imposing this condition, since processes violating (2.13)
can be used to analyze nonlinear time-smoothing of
processes that do obey (2.13) [see Sec. 47.

We shall call a process that obeys

P(a, t& l a&, t~) = P(a& —a&, t&
l

ot&) (2.14)

converse follows from (2.4) only if P(a&, t~) is not
time-dependent. Even if P(a& l a&) is a function only
of t2 —t&, no time-independent solution may exist for
P(a&, t&) if the process possesses some instability, or
even neutral stability. A simple example of neutral
stability is Brownian motion in an infinite domain.

H we set rt=3 in (2.4) and divide by P(aq) we

obtain

P(apap l a&) = P(ap l a&) P(a,
l

a&). (2.11)

Integrating over a2 we obtain the Chapman —Kolmo-
goro6 condition

&(a(~)=f&(~ (a) «&(a. (~) (2»)

on the transition probabilities.
Our equations are written in a form appropriate to

continuous variables. They remain valid for the dis-
crete case if integrals over a. are replaced by sums.

It is customary to take all probabilities to be normal-
ized. In particular this leads to the requirement that
the transition probability obey

I(t) =o, v(t) &0.

I(t) = v(t)', v(t) &o.

(2.5)
a homogeneous Marte' Process since it has no preferred
origin in 8, space.

The triple correlation is'given by

(I(tp)I(t, )I(t,) )= dV, dV, dV,
0 0 0

XvpPP(vp'l Vp) VpPP(vp
l Vy) VPP(vg). (2.6)

3. A CLASS OF PROBLEMS TO BE SOLVED

A number of important problems in the theory of
random processes can be reduced to an expectation
value of the form"

Strictly speaking, P depends not only on a(t„), but
also on t„.Processes will be called stationary if

P(a) ta) an 14 1) ' ' ') a—l) t—l)

M= exp — Q(a(s), s) ds

or to a Fourier transform of such an expression.

A. Adiabatic Line Broadening

(3 1)

=P(a, t +r, a. ], t 1+r, ~ ~, a~, t~+r—), (2.2)

i.e., if all probabilities are functions only of the time
differences. In particular, stationarity implies that

The absorption of radiation at frequency co by a
system with electric (or magnetic) dipole moment t((t)
is given by

P(aptp
l
a,t,) =P(ap, t,—t,

l
a,o), (2.8) I( )

P(a, t) =P(a, 0) =P(a), (2.9)

T/2

t (t")
—TI2

lim t—+~ P(a, t
l aptp) = P(a). (2.10)

T/2

)&exp (—ippt") dt" p(t')* exp (i(pt') dt' (3.2)

Whereas a stationary process has transition probabili-
ties that are functions only of the time difference, the "See Ref. 4, Chap. 7.
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or with t"=t'+t and ( ) representing a,n ensemble
average

1(e) =J exp (—i(vi)tt(o ti, (3.3)

M(t) = lim T dt'(tt(t+t') tt(t ) *) (3 4)
—T/2

In the usual "adiabatic" theory of line broadening"
(say of absorption by one gas atom in a background
of foreign atoms) the influence of collisions on the
dipole matrix element p= pf,

=ltd;exp i co(s) ds, (3.5)

co(s) =H;; (s) II'(s), — (3.6)

lsd;(t) = (Pr (t), ts)Ji; (t) )
)t t

[

t

=~ exp i H(s)—ds Pf, tt exp i II(s)—ds 1t;
~'i

B. Free-Induction and Spin-Echo Experiments

In a free-induction experiment'5 a short rf pulse at
time t 0 rotates the resonant spins from the s direc-
tion onto the x axis. Thus all spins start with the same
phase at t=0. The resulting free-induction signal is
proportional to tt(t) or

M(t) = {p,(t) )= exp i to(s) ds . (3.9)
0

Thus the free-induction experiment measures directly
the Fourier transform of the line shape I(to).

A disadvantage of the free-induction experiment is
that the signal M(t) will decay rapidly if there is a
spread of initial frequencies to(0) because of a distribu-
tion of dc magnetic fields at the various sites. This
inhomogeneous broadening which makes the phases
co(0)t differ from one another, is overcome in a spin-
echo experiment in which a 180' pulse is applied at
time 7 to reverse the direction of each spin. This
reverses the phase acquired up to time v. For t)r
the phase is then

t T

to(s) ds — co(s) ds.
T 0

(3.10)is taken to be purely that of a phase shift induced in
the initial and final states (i and f) with no off-diagonal
elements in the Hamiltonian B to correspond to "non-
adiabatic'" transitions. (The nonadiabatic modification
of this theory has been given by Anderson" and by
Byron and Foley. '4)

In the adiabatic theory, &o(s) is regarded as a random
variable subject to jumps introduced by the reservoir
of foreign atoms. For spire digttsiort" the same model
has been assumed with the atom in question being a
"spin, " and the foreign atoms other spins that interact
with the first.

With (3.5), Eq. (3.4) can be rewritten in the form

If the frequencies have a spread but are not random
in time, the phase distribution associated with this
spread cancels at t=2v. Thus a peak is seen in the
induced signal at t=2v, that is less than that at t=0
only if dynamic random fluctuations occur in co. The
observed signal at any time t is given by"

M(t) = exp i rN(s)co(s) ds (3.11)

where
rrt(s) = —1,

trt(s) =+1,
0&s&v,

z&s&t.t'+ t

M(t) =average over t' of exp i to(s) ds
tf

or

More general spin-echo experiments, with more than

(3 7) two pulses can be described using more complicated
functions ttt(s). In general the echo occurs at the time
t for which

M(t) = exp i (o(s) ds
0

(3.8) (3.12)

where the last form is valid when to(s) is a stationary
random variable so that the previous average is inde-
pendent of t'. Our result (3.8) has the form (3.1).
See the evaluation of M(t) in Secs. 7E and 7F.

"For a review of line broadening see R. G. Breene, Jr., The
Shift and Shape of Spectral Lines (Pergamon Press, Inc. , New
York, 1961).

'3 P. W. Anderson, Phys. Rev. 7'6, 647 (1949)."F.W. Byron, Jr., and H. M. Foley, Phys. Rev. 134, A625
(1964).

'5 J. R. Klauder and P. W. Anderson, Phys. Rev. 125, 912
(1962).

C. Nonlinear Transformations on Noise

If a signal u is passed through a nonlinear device,
and the result passed through a linear 61ter, the output
signal takes the forms

S(t) = k(t —s) Vi, a(s) j ds. (3.13)

and the e6ect of the initial frequency distribution
cancels. For this general case, a=co, Q= —itrt(s)a in
Eq. (3.1)
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The characteristic function whose Fourier transform
(on s) gives the probability distribution of S is

Equation (3.19) corresponds to a random walk with
an absorbing barrier at the boundary of the domain D.

(exp (isS) )=
t

xp is k(t —s) V/a(s) jds F. Distribution of Spectral Components

(3.14)

a result that also has the form (3.1). Special cases
such as

The components of a one-dimensional random vari-
able u(s) in some orthogonal basis @„(s) (e.g. , the
terms of a Fourier series) are given by fg„(s)a(s) ds
and the joint characteristic function of a number of
such components is given by

S(t) = k(s) a'(s) ds, (3.15) M= exp its„p„(s)a(s) ds (3.20)

Q(a(s), s) = (3.17)
0 if a(s) not in D

where D is some domain, e.g. , +La;(s) ]'&R and

S(t, ts) = Q(a(s), s) ds, (3.18)

then S(t, to)/(t —to) is the fraction of time spent in
the domain D, and (exp (isS) ) gives the characteristic
function whose Fourier transform gives the probability
distribution of S. As remarked by Deutsch, " the Quc-
tuations in 5 measure the reliability with which a
finite measurement time f—tp can be used to estimate
the distribution of a(s).

E. Random Walk With Absorbing Barriers

The probability that a(s) never leaves domain D in
the time interval (ts, t) is given by"'r

Prob Ia(s) in D, to&s&tI
t

= lim exp —s V~La(s) $ ds
z~co t0

Vg)(tt(s) )=
0 a(s) in D

1 a(s) outside D.
' M. Kac and A. J. F. Siegert, Phys. Rev. 70, 449 (1946);

J. Appl. Phys. 18, 383 (1947); Ann. Math. Stat. 18, 38 (1947).
' M. Kac, Trans. Am. Math. Soc. 59, 401 (1946); Berkeley

SymPosinm on Mathematics, Statistics and Probability (University
of California Press, Berkeley, 1951), Vol. 2, p. 189.
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1

S(t) =
i a(s) i ds, (3.16)

0

have been studied by Kac and Siegert, '6 by Kac, '~ by
Siegert ' and others. '

D. Domain Probabilities

If we set'~

1 if a(s) in D

which also has the standard form (3.1).

~ ~ ~

n—1

exp —QQ(a;, s,) As; P(a„, a„ i, * ~,
j=p

ai, a,) da, ~, da&, (4.1)

where s„=t, hs;=s, +1—s;. For a Markoff process, the
factorization (2.4) permits us to rewrite this result in
the form

M= MpP(ao) dao, (4.2)

where P(ao) is the probability density at t=ts and Hap

is the conditional average with a(te) = ttp.'

n—1

M = ll exp L
—Q(a;, s,) As, jP(a;+t

~
a;) da;+i.

j~
(4.3)

Direct evaluation of Des by such functional ("path")
integrations has only been performed'0 for Weiner proc-
esses, i.e., the special case in which

P(a' t'
~

at) = L4sr(t' —t) $-~t'(det D)-&

)&exp L
—(a' —a) D '(a' —a)/4(t' —t)$ (4.4)

and for homogeneous processes and slight generaliza-
tions thereof. "All such results, and many others can
be obtained by the following procedure which reduces
the problem to one for which standard analytical tech-
niques are available: Define (for suKciently small hs, )

P(a1+1 st+1
~
a;, s;)

=
t 1—Q(a;, s,) As, jP(a;+t, s,+i i a;, s;). (4.5)

R. H. Cameron and W. T. Martin, Trans. Am. Math. Soc.
58, 184 (1945); Ann. Math. 45, 386 (1944); J. Math. Phys. 23,
195 (1944); Bull. Am. Math. Soc. 51, 73 (1945); Am. J. Math.
66, 281 {1944);E. W. Mgntrofl, Commun, Pure Appf. Math, $,
41S (1952),

4. REDUCTION OF THE PATH INTEGRAL

Our average of a functional (3.1) can be written in
the form

n—1

exp —QQ(a;, s;) As,
j=p
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We may regard P(a;+i
~
a;) as the transition probabil- and

ity of a new MarkoKan process. It obeys the usual
properties of transition probabilities except for a change p g ~ p~ g' ~ g —g n dg= g, 'ID„g
in normalization:

P(a', t+at
~ a, t) da'=1 —Q(a, t) at (4.6)

to first order in LU. Thus if we regard P(a, t) as a
density of systems, then Q(a, t) can be regarded as
the rate at which they disappear.

The transition probability P(a, t ( aptp) over a finite
time interval can be decomposed into transition prob-
abilities over "infinitesimal" intervals by integrating
(2.4) over the intermediate values as, ~ ~, a„ i or by
repeated use of the Chapman —KolmogoroE relation:

PIa. I a,) fsa =„. , „sa,p(a Ia.-,}, .
P(as

~
ai) P(ai t ap) (4.7)

on the P probabilities. Comparison with (4.3) now
yields the result

3IIp= P(a ) ap) da„= P(a, t
) ap, tp) da, (4.8)

where boldface D„has ss (suppressed) subscripts, e.g.,
the moment of (ai—ai')'(as —a,') would be written Diis
in expanded notation rather than D3.

The Taylor expansion of an arbitrary function f(a)
can also be written in a condensed notation

f( ) =f( ')+Z( — ')":f'"'( ')/ l

n=l
(5.5)

where the . is a shorthand notation that tells us to
multiply corresponding terms and add. The second-
order term is, for example,

(1/2!) Q (a;—a ) (a a')8&')—f/Ba Ba'.

Let us now multiply Eq. (5.1) by f(a) and integrate
over a. On the right-hand side, f(a) can be placed
under the fda' and then replaced by the right-hand
side of Eq. (5.5). Making use of (5.3), (5.4) we obtain

+At+ da'P(a', t) f&"}(a'):D„(a',t)
n=l

+/&D-(a, t): (~/~a) "f(a) & (5.6)
n=15. MARKOFF PROCESSES IN THE SMALL

&f(a) )i+~i= (L1—Q(«) ~Gf(a) )~i.e., P(a
~

ap) is the probability density that a system
starting at system ao at to will arrive at a at time t
taking into account the loss rate Q(a, t), and Mp is
the fraction of systems starting at ao that survive
aeymhere when losses are included. Our problem has
thus been reduced, in the Markoff case, to the deter-
mination of the transition probability P(at

~
aptp) over

finite time intervals.

To obtain a differential equation for P(at
~

aptp) we
can write the Chapman —Kolmogoroff equation in the
form

P(at-tat) fP(at+, dt
I

a=', t) sa',PIa', t), (s.t)

where P(a, t) reduces to P(at ( aptp) if we adopt the
initial condition

&f(a) )= f(a)P(a, t) da

I.t= —QD„(a, t): (8/Ba)"
n=l

(5.7)

(5.8)

(5 9)

P(a, t,) =3(a—a,). (5.2)

For small hf, we shall assume that the moments of
the transition probability are expandable in powers of
At. To first order in At, we shall write

P(a, t+at
i
a', t) da=1 —Q(a', t) at (5.3)

P(a, t+at
~

a', t) (a—a')" da=rs!D„(a', t) at

and for e&1 there is no distinction between the mo-
ments of the P and I' transition probabilities:

Using A as an abbreviation for Di(a, t) (the drift
vector) and D as an abbreviation for Dp(a, t) (the
diffusion matrix) let us set f(a) =1, a, a', a', ~ ~ ~ in
Eq. (5.6) to obtain the useful moment relations,

~ &1 &/~t= —(Q)

st &a)/Bt= —&Qa)+ (A),

ct &a')/Bt = —&Qa')+2 &aA )+2(D),

c) &a')/Bt = —(Qa')+3 (a'A)+6 (aD )+6(D, ). (5.10)

When a is a set of variables, the right-hand side is
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understood to be completely symmetrized. Thus

it&a;a, ak)/Bt= &a;a~akQ)+ &a,tt;Ak)+ &A,a;ak)

+&ttA ttk)+2&rt'D k)+2&rt;D'k)+2&rtkD, , )+6&a;,k).

discuss has the form

f
t

Q(a(s), t s)—ds,
tp

(5.20)

(5.11)

)The second-moment equations for a set of variables
were derived directly in I(5.12)., and higher moment
equations for one variable written out explicitly in
I(14.29) .j

If in (5.8) we set f(a) = 8(a—x) we find that

P(x, t) = &8(a—x) ). (5.12)

Inserting this choice for f(a) into (5.6) and integrating
by parts we obtain

BP(x, t)/itt= —Q(x) P

rather than depending on Q(a(s), s), then Eq. (5.19)
remains valid when t regarded as a parameter, and
Q(a(s), t—s) enters the equation as Q(a(tp), t tp)—, i.e.,

[itP(at
I aptp)/Npj=Q(ap, t tp) P

—QD„(ap, tp): (it/itap) "P. (5.21)
7t 1

Moreover if the transition probabilities are time-inde-
pendent, D„ is independent of to and we may expect
our solution to be a function only if u= I!,

' —to.

itP/ittt—= [Q(ap, tt) —QD„(ap): (&/&ap) "]P. (5.22)

or

+P(—1)"(8/Bx)":[D„(x, t) P(x, t) ] (5.13)
n=l 6. CHARACTERISTIC FUNCTIONS AND

LINKED AVERAGES

i!P(a, t)/c!t= —
I Q(a)+LÃ(a t)

where L is the Hermitian adjoint of L~:
The characteristic function P of a norttmlised prob-

ability density function I' is defined by

—L=g(—1)"(8/Ba)":D.(a, t).
n=l

(5.14) p(y, t) = &exp (iy a) )= exp (ty a) P(a, t)da '(6.1).
Associated with the operator I, we shall de6ne a

numerical function

The moments &a") are determined by the ttth deriva-
tives of p at y=0 since

—L(y, R, t) =Z(py)":D-(a, t)
n=l

(5.15) 4(y, t) = Z(ty)": &a")/~-
n=O

(6 2)

Kith the understanding that the y's are always to the
left of the a's, we can write the operator as

If a and b are two independent sets of random vari-
ables,

L= L(y.„a, t); yoo= $c!/Ba (5.16) (exp iy (a+b) )= (exp t'y a)(expiry b) (6.3)

Equation (5.13) is customarily referred to as a for-
ward equation, since it refers to itP/itt. We can rewrite
the Chapman —Kolmogoroff equations in a form

p(af
~
a„t hlj=f p(at

~
a'g)—da p(a I,

~
a, , t, L'f)'—

(5.17)

suitable to derive an equation for itP/ittp, i.e., a back-
ward equation. In (5.17) we insert

P(a, t
I
a', tp) =P(at

I Rptp)

+p[(a' —ap) "/n!g: (8/Rap) "P(at
I

Rptp) (5.18)

and use (5.3), (5.4) to obtain the backward equation

[BP(at I aptp)/Btpj=Q(ap, tp) P

gD (ap, tp): (rt/Bap) P. (5.19)

If the random variable whose properties we wish to

&exp (iy a) )=exp g(1/I!) (iy)":p„, (6.4)
n=l

then for independent variables,

S-(R+b) = V-(R)+ S-(b) (6.5)

The y„(a) are referred to as Thiele semi-invariantsP'
or cumulants, " or linked (L) moments and can be
written symbolically as

e-( )=& ")'. (6.6)

s' H. Cramer, Sfathematicot methods of Statistics (Princeton
University Press, Princeton, ¹wJersey, 1946), Sec. 15.8; M. G.
Kendall and A. Stuart, The Advanced Theory of Statistics (Charles
Grif6n and Company, Ltd. , London, 1958), Chap. 3."R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).

4.+b(y) =@.(y) 4b(y),

i.e., the ln of p,+b is an additive function. If we define
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=(2) xjdyexp( —dy. aa —[Q(a)+l(y, a)]al).
(a)'=(a),

8 = 8 — 8 )

8 a—8

(a')'= ((a—(a))')—3I:((a—(a))')7, (67)

(6.15)

If this integral representation is inserted for P(a, l a; s)
with an integration variable y, , the path integral (4.7)
is converted into an integral over paths in the phase
space a, , y;. If a is a position, then y can be thought of
as a "momentum" and I.(y, a) as a kind of Hamil-
tonian operator. We found that y must be replaced by
iB/Ba when acting on P, just as the momentum opera-
tor in quantum mechanics is replaced when acting on
the Schrodinger wave function. "

If we define the unnormalized characteristic func-
tion as

so that (a")~ represents intrinsic correlations of eth
order, i.ea) those that do not arise from lower order
correlations. If (u")~=0 for n&m then all moments
(a") for e)m can be expressed in terms of the lower
order correlations (aa) for s&m.

With the notation (6.6), Eq. (6.4) can be rewritten
in the'elegant symbolic'form

The value of these moments must of course be ob- transition probability to be represented in the form
tained by expanding both sides of (6.4) and comparing
coeKcients of y". For a single random variable a, we
find, for example, that

(exp (iy a) )=exp ((~exp (iy a) —1])~}. (6.8)

Although our diGusion coefficients are originally
dered in terms of ordinary moments

e!D„(a,t) = lim (l:a(t+~t)—a(t)~ )/~t, (6.9)

we can also use a linked-moment definition

n!D (a, t) = lim (l a(t+'t) —a(t) ~"}'/'t, (6.10)

since the lower order moments to be subtracted off,
yield higher powers of ht. In both cases averages are
taken subject to a(t) =a as initial condition. With the
notation ha=a(t+ht) —a(t) and (6.10) we can re-
write (5.15) for L(y, a, t) in the form:

e(y, p=(exp(dye))= fexp(eye) p(a, ~)da (6.16)

—g(iy)":(D„(a, t) exp (iy a) ). (6.17)
n=1

Now a can be brought down from the exponent by
acting with iB/By—so that

B&(y, t)/Bt= —~Q(a.„t)+L(y, a.„t)]g(y, t) (6.18)

or

Bel»=3 Q(a")+Z—('y)":D-(a"}hi
n=1

where—L(y, a, t) =(~exp(iy ha) —1j)~/ht. (6.11) a.,= iB/By. —
'A,

If P is the analog of the Schrodinger wave function of
quantum mechanics, then @ is the analog of the cor-
responding momentum wave function, "and L(y,o, a.o)
is the analog of the Harniltonian operator.

If P(a, t) is to be determined subject to the initial
condition

Thus the characteristic function of the transition prob-
ability

(exp (iy ~a) )

d haexp iy ha I' a da t Dt a t 6.12

can be rewritten using (6.8) and (6.11) in the form P(a, tp) =B(a—ap), (6.19)

(exp(iy Qa}) exp}- L(y a t)~tj (613) i.e., P(a, t}=—P(a, tlap, tp) then the corresponding
initial condition on g is

If the average (6.12} is taken against the unnormalized
transition probability P(a+~a, t+~t

l a, t), the result
is simply multiplied by the normalization:

(exp (iy ~a) )

=exp ~
—Q(a, t) At~ exp f L(y, a, t}ht5 (6.—14).

~(y, t') =exp(iy ao), (6.20)

(6.21)

and a comparison with (4.8) shows that the functional
average (4.3) is simply given by

Mp= j(0, t)

2'A. Messiah, Quantum Mechanics (John Niley Bz Sons, Inc.,
These results are correct to order ht, and Permit the Net Qo1$, $9gj).
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which depends on ao. The complete average M can be
obtained by multiplying by P(ap) and integrating over
ap as in (4.2), or using

M=/(0, tr where p(r, at f exp tip app(ao) da

(6.22)
is the initial condition.

7. EXAMPLES OF MARKOFF PRO CESSES

A. The Weiter Process

This is a one-dimensional process in which D2 ——D,
a constant, and all other D =0. Thus the characteristic
function obeys

ln P= Ug day,
ap

(78.4)

a result that is meaningful and independent of the
path only if the integrability conditions curl U~ =0 are
obeyed:

servation of probability. Steady-state solutions obey
BP/Bt= 0 but need not have J;=0. The condition
J;=0 is a detailed balance (D.B.) condition that will
be obeyed in many problems. When it is, one can write

(D.B.): 8 ln P/ital= UI, —= —(D ')p, [8D;;/i)a, A~j—.
(78.3)

In this case, one can express ln P in terms of the line
integral

r)rt/8 t = —Dy'P. (7A.1) pl UI,/aa) ——BUD/r)ag. (78.5)

(a )= ap,

((a—ap) ')= 2Dt (7A.4)

so that D is the diffusion coef5cient of this simple
"Brownian-motion" process in which a is usually inter-
preted as a distance x.

The generalization of this result to a many dirnen-

sional process is immediate. The conditional probability
already stated in Eq. (4.4) can be written down im-

mediately from the knowledge that the process is
Gaussian with

(a )= ap,

The solution subject to the initial condition tt (y, 0) =
exp (iyap) of (6.20) is

Q(y, t) =exp (—Dyst) exp (iyap) . (7A.2)

Taking the inverse Fourier transform

P(at ) ap0) = (4rrDt) l exp P
—(a—ap)'/4Dtf. (7A.3)

Thus a is a Gaussian random variable with

This is a condition on the coe%cients D;;, A; that will
permit such a detailed balance solution in the steady
state.

For the special case of a linear Fokker —Planck proc-
ess in which

D;;=const. , A;= —A;;a;

the integrability condition takes a form

(D 'A)g, )= (D 'A.)p„(73.6)

equivalent to our previously described condition of
time reversibility. '4 A close connection between de-
tailed balance and time reversibility has been derived
in another way by van Vliet. '5 The steady-state solu-
tion of the linear Fokker —Planck process is well known.
Section 5 of Ref. 1, for example, presents the solution
without assuming detailed balance or time reversibility.
The general time-dependent solution will be obtained
in our discussion of the Ornstein —Uhlenbeck process
which follows in example C.

The one-dimensional Fokker-Planck process has a
special simplicity in the steady state, because then

((a—ap) (a—ap) )=2Dt, (7A.5) &J/&a= 0 or J=const. (78.7)
where D is an EgE matrix.

B. The Foyer-Planck Process

The general solution of (73.2) can then be written
down in the mell-known forme

C A(b)+ exp db, (78.8)D a arBP 8 0 8 8
EA'P3+ LD'tP3=—— J', (78 1)

Bt Ba; Ba; Ba; 8a; where (for any aq) the integration constant C is axed
by normalization. The boundary conditions usually
(but not always) require P (and J) to vanish at

in which repeated indices are summed over, and A, ,
D;; can be functions of a. If we regard

J;=—A,P—(r)/r)a;) (D;~P) (78.2) "See II, Ref . 2, last paragraph of Appendix A."K.M. van Vliet, Phys. Rev. 133, A1182 {1964);Erratum
138, AB3 {1965).a probabjhty current, then (73.1) describes a con-

' A(b)
This is a random process for which D„=O for e)2 P(a) = — da' exp db

so that the probability density obeys the "Fokker-
Planck" equation:
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-dependent solution u gsin (73 9)
73.19) can be writte»n

„) g pL —x
'R

(78.20)

this one-dimen-to be zero in
'

6. 'ty thus forcing

eked" bynd p bl is usually attacThe time-depend pndent pro em
see in

'
nfunctions of t e opseeking the eigenfun

(73.9)8P /Bt= —LP„= X„P„—

or a more generalhe Fokker —Planck, or awhether L has t e
form.

-dimensional Fokker —Planck case,ase these
lt o d'toeigenfunctions o ey

lue
' — 'th Pp(a) the steady-lue is Xp=0 wit p

state solution, which is equal to a
that in this case

P(at, aptp) =P(aat aoto) Po(ao)

ap) . (78.21)= Q exp [—X„(t—tp) ]P„(a)P„(ap .

F V= V(a) =any function of a,For V=

—X t) V(a)P„(a) da(V(t) V(0) )=g exp (—X

(73.22)

(73.10)I' a P„a da 8'a =5„,

where the weight factor

db (78.11)W()= p d

is t
(7

L'=—exp i
—f da p

&m. *(D /Dp)

the robability for theThus for a inu ll E intervals At, the pro a
largest Aa obeys

P((aa) ).„,g p) 4DoT)*'N &)

~/D ) (78.25)—
& ex ( DpN~—

or

exp = ' (A/D) da—=W(a) . (73.17exp 2 fda=D 'exp

&¹r(D~/Do) N p

withe lar est ha goes to zero witso that ash g~~ even the larges
probability one.

L' uaranteesthe Hermiticity of L g
h ihtd tho-

us
ns „obey t e unwthat its eigenfunctions

onality condition

D(a)

/ F kk Pt k -o 'k
. Oy we make the transformation8.10' we ma

P=exp
I f da

theorem plausible by using

fa= .+, ( a Aa, t+ht~a, t)

3

f d ~~/rt«p fda=~exp a

t r
'

abilit . The drift term A (a) htpo
a

' '
change in a so

D 0 h
causes a

entrate on D a . v
N. Ui hT hoose At= T . s'(a) (73 14) interval 0&t& c

Ba& Bay

-e p (——.8) 4=
(&

+/I (—» 5) /, x, (;(& g (j —,x,+f~
)

(L ( f Stu m-Liouvlle type) P(~ )(L' 'll be Hermitian of turm-
'

e

1
N & exp DpN*-

Then
'

nt of Ba vanishes, i.e., iif the coefficient of / a v

2f= PA ~D/~a j/D

(78.18)

Ze.(.)a.(")=b( -").
n

319 1958); also Ref. 6.
M. Morse an

n Inc. , New or,
g~

McGraw- izc I'hysz s
1953), Sec. 6.3, Eq.

O-()e.() d =~-

78.10). We shall assume com-which demonstrates (78.
pleteness'~:

(78.19)

nbeck (O.U.) ProcessC. The Ornstein-Uhlen ec

a

of that given by J. L.ur
'

ht eneralization o
c. New York,oh Wl @So,I

d L. S. Ornstein, Phys. Rev. 36,' G. E. Uhlenbeck and
(1930).

' is ori inally defined as a velocity
a=u subject a damping

h L evin noise sorandom force see the an
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(7C.1)

scription in I, Sec. 8). In our present language, the and the corresponding density is
linear damping /see Eq. (5.10)] means I' a, t =!) a—exp (—At)] a()).

D, (a) —=A(a) = —A. a,
(7C.10)

Dp(a) =D=a constant matrix; D„=0 for e& 2.

where we have generalized to the multivariable case
at the minor expense of using a matrix decay con-
stant A.. The "Brownian motion" random force results
in simple diffusion with

(a(t) )=exp (—At)ap (7C.11)

in agreement with the first inoment equation of (5.10)
when Q= 0, and, when D =0, no fluctuations are pres-
ent.

The results suggest, that when D&0 we make the
transformation

(7C.2)

(The relation between the Langevin and Markoff de-
scriptions of random processes will be developed in
paper IV of this series. )

Thus our "Hamiltonian" (5.16) has the form
with

1t'(z, 0) =(t (z, 0) = exP (iz ap) (7C.14)

y=z exp (A.t) (7C.12)

(t (y, t) =(t)(z exp (At), t) =—p(z, t) (7C.13)

1.(y, a, t) =iy A. a+y D y; a = iB/—By ( C 3) as the initial condition. Since

subject to

et//Bt = yA—B(t)/.c7y yD—y(t) (7C.4)

so that by (6.18), the characteristic function (t)(y, t)
obeys

8$ dy c)(t) 8$ BQ

Bt, , Bt dt, , By Bt
=—+— —=—+z exp (At)A.—

By

= (8(t)/Bt)+y A(B(t)/By) = —y D y(t), (7C.15)

the drift terms disappear and
(t (y, 0) = exp (iy ap), (7C.5)

8)Id/c7t= —z exp (A.t)D exp (A.tt) z)ld(z, t), (7C.16)
the initial condition (6.20) .

This partial differential equation can be solved by
first eliminating the "drift terms" (those proportional
to A.). The transformation that does this leads to an
exact solution of the case in which D=O. For this
special case, it is well known that such a linear partial
differential equation of the first order is equivalent to
the set of ordinary differential equations:

or

dt= (y A)-'dy

dy/dt=y A,

(7C.6)

LA physicist's way of arriving at this drift equation
would be to write a "material" derivative in the form

or
y(t) =y(0) exp (At)

y(t) exp ( At) =y(0) = c—ons. t. (7C.7)

Thus the general solution for P is

@=arbitrary function of y exp (—At). (7C.8)

The solution obeying the initial condition (7C.5) is
then

p!)(y, t) =exp Liy exp (—A.t) apj (7C.9)

dt Bt dt By

Comparison with (7C.4) then yields dy/dt. $ The gen-
eral solution of the ordinary differential equations is

where A.t is the transpose of A.. The solution of this
equation with the initial condition (7C.14) is then

t

f(z, t) =exp —z exp (As)D exp (Ats) ds z
0

Xexp(iz ap), (7C.17)

or in terms of the original variable y,

(t(y, t) =exp Iiy (a)~—(1/2!)y (aa)r y) (7C.18).

using (6.8) where the linked averages are given by

(a)~= (a(t) )=exp (—A.t) ap, (7C.19)

(aa) = (I a(t) (a(t) )7La(t) (a(t) )3)
t

=2 exp (—Au)D exp (—A.tu) du, (7C.20)
0

where N=t —s. The stationary result can be obtained
by taking the limit as t +cdd. Thus (a)—&0—, and writing
(nn) for the second moment f!uctuation in the station-
ary case:

(ee)=2f exp (—xee)D exp ( dxee) de ()c 21)— . .
0

We have previously obtained this result (I, Sec. 5) by
solving the Einstein relation

2D= A. (nn)+ (nn)At, (7C.22)

which is a consequence of stationarity of the second



MELvIN LAx Nonlinear 3farkog Processes 371

moments. In the presence of underlying time reversi-
bility, I, Sec. 6, or if A. 'D is symmetric, '4

(nn)=A. 'D (7C.23)

If (7C.22) is inserted into (7C.20), the integrand is
found to be a perfect differential so that

(aa)c= (nn) —exp ( At)—(nn) exp (—Art), (7C.24)

which explicitly displays the approach to the stationary
case. Equation (7C.24) is in turn a special case of our
earlier result

(I:&(t)—(&(t) )]La(u) —(a(u) )]).o
=exp (—A.

I
t u I) (n—n)

—exp (—At) (nn) exp (—Atu), (7C.25)

I(8.18), obtained by Langevin techniques.
The O.U, process and the Keiner process are qlusi-

statioeary in the sense that their transition probabilities
or "Hamiltonians" 1.(y, a, t) = 1.(y, a) do not depend
explicitly on the time. The Keiner process possesses
no stationary limit in the sense of (2.10) whereas the
linear decay causes the O.U. process to possess such a
stationary limit.

The O.U. process is linear and Gaussian as well as
stationary. Thus it illustrates

Doob's Theorem: A random process that is stationary,
Gaussian and Markoffian possesses an autocorrelation of
the form

since the Fourier transform of a Gaussian in Aa is a
Gaussian in y. Moreover, the form of (7C.27) requires
that D be independent of a, and the coefficient of y
be linea, r in a. With a suitable (possibly time-depend-
ent) choice of origin, this coeflicient can be written
A. a. This completes our proof. The original Doob
theorem then follows if we note that stationarity forces
A. and D to be independent of time, reducing the
process to an O.U. process. Then

(a(ea(0) )=fa dar(af (a 0) daar(a)

(a(t) )„aodaoP(a()),

which reduces to the desired form (7C.26) when the
conditional mean (a(t) ),(()) is given the appropriate
value exp (—At) a(0) for an O.U. process (7C.29) .

D. The Poisson Process (Shot Noise)

This is a discrete process with a(0) =0 and a(t) = an
integer=the number of events that have occurred in
the time interval (0, t). Then events are assumed to
occur at random at a rate v per unit time. Thus

BP(a, t)/Bt=v)P(a 1, t) —P(a—, t)], (7D.1)

where the first term represents transitions into state g
from a—1, and the second term represents transitions
out of a (into a+1) . For the case a=0,

(a(t) a(0) )= exp (—A.t) (a(0) a(0) ). (7C.26)

Boob" states this theorem for a one-dimensional
random process. It was extended to the many-dimen-
sional case by Kac." The proofs are based on the
Chapman —KolmogoroB relation (2.12) and are ma-
nipulative rather than informative. Let us therefore
state the

Thus

Setting

BP(0, t)/Bt= vP(0, t). —

P(0, t) =exp (—vt).

P(a, t) =exp (—vt) Q(a, t),

Eq. (7D.1) reduces to

(7D 2)

(7D.3)

(7D.4)

Generalised Doob Theorem: A random process that is
Gaussian and Markman must be a lsnear, Fokker
Planck process, i e , D„=O. f. or n&Z, D2=D=independent
of a, DI ———A. a, where D and A. can be time dependent-
Proof: If the a process is Gaussian, then the transition
probability has the form

P(a+ha, t+At I a, t)

~exp La. ts a+a v ha+i},a 2 Aa], (7C.27)

where p, v, and X may depend on time, but not on a
or d,a. The characteristic function (6.12) of the transi-
tion probability then necessarily has the form

exp I

—I.(y, a, t)At] exp [(iy Aa+y. D .y)At]

(7C.28)

aQ(a, t)/at=. Q(a —1, t). (7D.5)

=vZI:( —1)"/n ](~/~a) "P(a, t)

=2( 1)"(~/~a) "D-P(a,—t) (7D 7)

Using Q(0, t) = 1 and iterating we get

Q(a, t}= (vt)'/a!, P(a, t) = (vt) o exp (—vt)/a!.

(7D.6)

All of these results are standard, and the moments
(a") can be computed from P(a, t) . It is more instruc-
tive, however, to rewrite (7D.1) as

BP(a, t)/Bt=vt e px( 8/Ba) ——1]P(a, t)

"J.L. Doob, An . M t . 3, 35 ]942. th t31 See M. C. Wang and G. E. Uhlenbeck Rev. Mod. Phys.
1'la 323 (1943), Appendix II. D„=v/n!, (7D.8)
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g(yt) does or does not depend explicitly on t. In any
case

L—(y, a, t) =g (iy) D„=v$exp (iy) —1]. (7D.9)
1

Thus

B4/Bt= —L(y, t) 4 (y, t)

has the explicit solution

(7E.S)

Bgty/Bt = v (e'g/ 1)—P. (7D.10) t

gtj(y, t) = exp — I-(y, s) ds exp (iyap) (7E.6)
0

With the initial condition P(a, 0) = 8(a) or gtj(y, 0) = 1
we have

if we take gt (y, 0) = exp (iyap) appropriate to a(0) = ap.
(exp iya(t) )=gt (y, t) =exp fvt(e'v 1)J —(7D.11)

ol

and
exp (e'v —1)r =exp pvt(edv 1)]—, (7D 12) P(, I p, o) =—exp f iy—(a ap—)]dy

(a") =vt; (7D.13)

so that all linked moments, e&1, in a Poisson process
take the same value t

L(y, a, t) = L(y, t) (7E.1)

E. The Homogeneous Process

A homogeneous process is a random process that is
independent of the choice of origin of a. Thus all
higher order probability densities P(a„, a i, ~ ~ ., ai)
are functions only of the differences a;—a;. A homoge-
neous Markoff process can be defined most succintly
by the requirement that

t
gd(g) = exp (i (s) ds

l

p i
If we interpret

(7E.S)

t

a(t) —a(0) = go(s) ds (7E.9)
0

and gt as the phase shift fo) ds induced in each collision,
and write

t

)&exp — L(y, s) ds (7.E7)
0

In the adiabatic theory of line broadening discussed
in Sec. 3A, we are concerned with

L(y) = fg(e) del 1—exp (sye)],independent of a. (If the process is also stationary,
L will be independent of t.)

As a simple example of a homogeneous process, we
note the one-dimensional Poisson process with jump p.

~ ~ then with g g independent of the time,

(7E.10)

BP/Bt= v/P(a yt, t) —P(a, t—) ], (7F 2)
M(t) = (expt i (a ap) ])—

which may be immediately generalized to a normalized
distribution g(yt) of possible jumps

=
gtj (1, t) exp ( iap) =—exp L

—L(1)t]

(7E.11)=e"p ( ifg(e)—de(1—e")]

If now we write

where

=Q( 1)"(B/Ba) "D„P(—a, t),
n=1

dP/ge sfg(e)de[exp (—=ed/de) —j]P(e, 1)

(7E3)

v= O'Vo ) (7E.12)

where e is the density of foreign atoms producing the
collision broadening, e a typical relative velocity, and
o the total cross section for collision, then og(yt)dyt is
the cross section for collision with phase shift in q,
yt+dyt. If we define

D„= (v/n!) g(yt) dy]yt". o,+io,=o g(gt) dyt(1 —e*'&), (7E.13)

—g (y, ij = g(iy) "gy = fg(e)de('exp (iye) —1].
1

(7E.4)

then

M (t) = exp [ npt (o„+ia;) ],— .

= exp L
—nod„j t

f inpo, t], —
t&0,

all t, (7E.14)

This process will be stationary or not, according as where the last form has used M( —t) =M(t)* in order
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Thus

hf, =y(0, 1) =:exp
~

i dsq(s) (a(s) )}
( (

0

t t

)&exp — I)'. duq(u) m(u, s), s
~
ds, (7F.21)

0

where

A much more complicated problem arises if a time-
smoothing operation is then performed on the output
signal, since the new random variable is then a function
of the original variables at many (a continuum of)
time points. It is simplest to deal with the nonlinearity
and time smoothing together. For example, we might
be interested in the statistical behavior of

(a(s) )=m(s) —'ap (7F.22) 5= k(t s) V—(a(s})ds (8 2)

is the mean "position" in the original random process
(with q=0) in the sense tha, t

d(a(s) }/ds=A. (s) (a(s) ).
If we set q(s) =y8(t s), we—obtain

which we can ascertain by investigating (exp (—&p) ).
The procedure for solving such a problem is already

(7F.23) given by (6.18) with Q(a, s)=lk(t —s)V(a) with t
regarded as a parameter. To have a specific problem
in mind, let us attempt to evaluate

exp i q(s) a(s) ds = (exp[iy a(t)5}
0

=exp t iy (a(t) )5

)&exp — E(y m(t, s), s) ds . (7F.24)

But this result is just (t)(y, t) which can also be obtained
by setting q=0 in ()) (y, t}.Finally,

3IIp= exp i q(s) a(s) ds
tp

)&exp —X a(s) k(t —s) a(s} ds . (8.3)

With q=0, our nonlinear device is "square law, " but
with qWO it is a general quadratic device. Moreover,
k is a matrix that combines different components of a.

P(«
I ap, o) = dy exp L

—iy (a—(a(t) ). ) 5
(2~) N

)(exp — E(y m(t, s), s) ds .

Forward-Equation Method

If the original random process is described by the
function 1.(y, a, t) of (6.13) then we must solve the
problem

If we set

E(y s) =y'D y

p)@ p)(t) p) 8@ t' p)—=q —+l —k(t —s) 1.
~ y, i , s——j-,

Bs By By By II,
' By' (8.4)

where
A. (s) =A., j=j(y, s) =j(y, s, t) (8.5)

m t, s =exp s t A, 7F.2—6
depends on t as a parameter, and our desired result is

and set u=t —s, our results (7F.24) specialized im-
mediately to the O.U. process results (7C.18)—(7C.20).

8. SMOOTHED SQUARE-LAW RESPONSE

If a nonlinear device produces an output signal b
that is nonlinearly related to the corresponding input
signal a at the same instant of time then the prob-
ability distribution of the output is irnrnediately deter-
rnined by that of the input through the nonlinear
transformation, e.g.,

P.„&(b't
I
b")db =P~ (at I

a/)da'

P. p(b', t'
~
bt) = P (a'(b'), t'

~
a(b), t)J(a'/b'),

(t)(y, tp, t) =exp(iy ap).

(8.6)

(8 7)

A subsequent average over the equilibrium distribu-
tion of ao can be performed if desired.

For homogeneous noise with linear decay (Sec. 7F),
our equation simplifies to

p)(t) BP 8 8$—= (q—y A.)—+X—lr ——E(y, s)P. (8.8)
Bs By By , By

This is equivalent to solving the Schrodinger equation
for a (multidimensional) oscillator with time-varying
mass moving in an arbitrary potential E(y). Exact
solutions are, of course, only possible with selected
forms of the potential. The most important case, cor-
responding to Gaussian, apoise is

where a=a(b) is the inverse of the nonlinear transfor-
mation b=b(a) performed by the device and J(a'/b')
is the Jacobian of this (inverse) transformation.

E(y, s) =y.D y,

i,e., the Ornstein —Uhlenbeck process.

(8.9)
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(8.20)Mp= [I (t, t) ] l exp [—R(t) ao'],
I

X(0) = 1 C(0) = 0 B(0)= —iap. (8.11)
t

Remembering that X(s) =X(s, t) dePends on t as a g(t) ~ k(t s) exp [ 2A(s tp)]ds/[Ir(s t)]2
parameter, our answer is determined once we know X: tp

Note that I': is already the solution to the square-law

[X()] I
[C()+B()]}(810)problem(q=0)with the initial condition ao= 0. If

q=O, but a WO, we have
subject to the initial conditions

Mp ——[X(t, t)]-&,

and X, B, and C are determined by

X—'dX/ds=4'A Tr (k C)+2q B—2KB k B,

(8.12) (8.21)

[As a check on our arithmetic, we set X=O and I'= 1
in (8.15), (8.18), and (8.19) to obtain

dB/ds=2q C —(A.+4hk C)B,

dC/ds= —[A. C+C A.t]—4XC k C+D, (8.13)

where A.~ is the transpose of A.. These equations are
valid even for the nonstationary case in which A. and
D depend explicitly on s. For the remainder of this
section, we restrict ourselves to the stationary case,
however.

The equations for C (a set of coupled Riccati equa-
tions) are not coupled to those for B and X. Thus
these equations must be solved first. The equations
for B and X can then be integrated immediately. To
illustrate the procedure, we shall develop in detail the
solution for the one-dimensional case—a not entirely
trivial problem.

The transformation

(8.14)
reduces

dC/ds= D 2AC 4X—k. C'. —

to the simple form

P'+[2A —(k'/k) 7 Y'= 4XDk F,
'

(8.15)

(8.16)

where primes are derivatives with respect to s and
k=k(t s) is now a —scalar function of s. Since the
normalization of I' clearly has no effect on C, we shall
take our initial conditions in the form

t

exp i q(s) a(s) d
tp

=exp i q(s) dsao exp [—A(s —to)]
tp

D t t

)&exp ——
q s q

s' exp —A. s—s'
tp tp

—exp [h.(2to—s—s')]I ds ds', (8.22)

a result which may be compared with (7F.21) on set-
ting E=Dy' in the latter. ]

For the special case of exponential smoothing
k(t —s) =exp [—2P(t —s)] Eq. (8.16) for I'(s, t) can
be solved exactly. Indeed, our Grst calculations were
performed in this way. But we were not always able
to perform the integration in (8.21) to obtain R(t).
Moreover, the procedure was cumbersome because one
solves for Y(s, t) when one is only interested in Ir(t, t) —=

F(t) .Both of these difhculties are immediately removed
by the use of the backward Eq. (5.22) since that pro-
cedure leads directly to an equation for the desired
object I"(t)—= F(t, t) and 'moreover, we shall show
that

(8.23)

F'(tp) =1, I"(tp) =0. (8.17)
Backward-Equation Method

The exact solution for B(s) is then given by

Y(s)B(s) = iao exp —[—A(s —tp)]
S

+2 ds' exp [—A(s —s') ]q(s') C(s') F(s') ds', (8.18)
tp

and the solution for X yields our answer in the form

3Io=[X(t, t)] *=[F(t,t)] ' exp — q(s)B(s) ds
tp

According to (4.8), 3IIp(t, to) can be obtained by
integrating P(at

~
aotp) over a. Since a is only a param-

eter in the backward Eq. (5.21), we may integrate
this equation over a without changing its form:

aMo(ao, t, to)
ap, t tp-

Bto

—QD„(ap, to): (&/&ao) "]Mo. (8.24)
n=l

)&exp X k(t —s) B(s)' ds . (8.19) For the case of time-independent transition probabili-
tp ties D„(ao, tp) =D„)ap), we expect that 3fp=3IIo(ap, I)
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where N=t —tp and in such a way that the new D is proportional to the
unit matrix

= Q(ap, u) —QD„(ap): i

—
i

Mp. D'=U D U4=411,

(8.25) which is accomplished by the choice

(8.38)

For a (multidimensional) Ornstein —Uhlenbeck process U= —,'(D)~=Ut, (8.39)

QMp 8 8 8= Q(ap, u) +(A.ap) — D — Mp. (8.26)
BN BRp Bap t9Rp

If, moreover, we are concerned with the average

where the syrmnetric (inverse) square root is under-
stood (Ut is the transpose of U). Then

dV/du= K+rtr —(V+rt) ~ (V+r); (8.40)

Mp —— exp i q(t —s) .a(s) ds
tp

t

)&exp —X a(s) k(t —s) a(s) ds, (8.27)

K=(U )- Mr U-.
r=U. &-U-~

rt=(Ut)-r xt Ut.

The further transformation

(8.41)

(8.42)

then comparing with (5.20) and (5.21),

We can now assume a solution of the form

V=Z 'dZ/du —Ft (8.43)

Q(ap, u) =—iq(u) 'ap+l(ap &(u) 'ap (8 28) transforms our coupled Riccati equations into a set of
linear (coupled) second-order differential equations:

Hap(ap, u) =[F(u)j—&exp [—ap. R(u) ap —S(u).apj,

(8.29)

d'Z/du'+ (dZ/du) (r—rt) =Z (K+rtr) . (8.44)

Equation (8.34) can now be simpliffed to

explicitly displaying the ap dependence. The coefficients F(u) =exp [Tr V(u') j du'

then obey 0

F'(u)/F'(u) =4R(u):D+S(u) D S(u), (8.30)

S'(u) =S [A,—4D Rj—q(u), (8.31)

R'(u) =Mr(u) —4R D R—(R A.+A.t R),
(8.32)

where A.t is the transpose of A.. Thus S is expressible
in terms of R using (7F.7), (7F.13):

8(»( = f p(»') d»—'

0

dR/du= Xk(u) —2AR —4R'D,

d V/du= 4XDk(u) —2AV —V',

d'Z/duP= [4),Dk( —u) +&V]z(u),

(8.47)

(8.48)

(8.49)

u

)&exp S(u') .D S(u') du'. (8.45)
0

The initial condition Mp(ap, 0) = 1 implies

R(0) =S(0)=F'(0) =0, F(0)=1. (8.46)

For the ore-dimensional case our equations reduce to

ds [~—4D.R(s) j (8 33) 4DR(u) = V(u) =Z dZ/du-
u('

(8.50)

F(») =exp (—A»)z(») exp Bf (S(»''(g' d»'.
0

and I' can be obtained if both S and R are known:

(8.51)

The combination Z exp (—Au) obeys the simple equa-
tion

F(»)=exp4f R(»'):Dd»'expf 8(»') D 8(» )d»'. '
0 0

The problem is thus reduced to obtaining R by solving
Eq. (8.32) which is an equation for R alone.

It is easier to solve for R if we transform to new
coordinates

ap=U bp

[Z exp (—Au) )"+2A[z exp (—Au) j'
=4XDk(u) [Z exp (—Au) J.

For the case in which (7= S=O, we can write thrs as

a.p. R ap=bp. V.bp, R=UtVU;

R D R=U~VUDUtVU;

(8.36)

(8.37) 4DR(u) = F'(u)/F(u). (8.53)

F"(u)+2k. F'(u) =4XDk(u) F(u), (8.52)
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Exponential smoothing then leads to the differential
equation

F"(u)+23.Y'(u) =OXD exp (—2Pu) F(u), (8.54)

an equation similar to but not identical to Eq. (8.10)
obeyed by F'(s, t) . Our initial conditions are:

always remembers the starting value a(to) =ao even
though the O.U. process with A)0 has a built in
mechanism for forgetting this value.

Case 3. p/0, AAO, Exponentially Smoothed
O.U. Process

F(0) =1, F'(0) =0 (8.55) Y"+2AY'=OXD exp (—2Pu) F. (8.64)

Case I. A=P=0, Linearly Smoothed,
Squared 8'einer Process

Y"(u) =OXD Y(u), (8.56)

I.et

*=[e.D/P'7-:e e-, - dS—=——= —Px—, (8.65)
dl dN dS dS

F(u) =cosh [(OLD) '*u],

R(u) = (4D) '(OXD) *' tanh [(OLD) '*u],

t
Mp —— exp —X a(s) s ds =3IIp(t to),

tp

3'(u) = cosh [(OLD) &u]

&&exp { Xaos(OXD—) ' tanh [(OXD) iu]I,

(8.57)

(8.58)

d'F 1—2p dY+ —Y=O,
dx s dÃ

from which we can conclude"

p=—h./p, (8.66)

Y =x&[AI,(x) +BK,(x) ],
where I~ and E„are the modified Bessel functions.

(8 59) With xp= [O'AD/p'7 we can make d Y/dx= 0 at u= 0,
i,e., x=xo by choosing

with u=t tp Thus w.e find that as u=t to~op, Y—(u)
continues to depend on u, i.e., our output random
variable never becomes stationary. Moreover, R(u)
does not vanish as u +cc,—so that memory of ap is re
tained forever. Cameron and Martin, "have previously
evaluated Mp(a) for this special case by nontrivial
path integral techniques.

Y(x) = C{—(d/dxp) [xo Ko(xo) ]x"I„(x)

+ (d/dx, ) [xo"I„(xo)7*"K,(*) I

= Cxps 'x"[Ko 1(xp) I„(x)+I~i (xp) E„(x)),

where we have used the relations"

Case Z. P=O, ANO, Linearly Smoothed
Squared O.U. Process

Y"+2AY=OXDY,

F(u) = (21')—' exp (—hu) [(r+A) exp (I'u)

+(I'—A.) exp (—I'u)7,

= I"—'(O'AD)'e s" cosh (I'u+8],

where

(x-' d/dx) x&I„(x)=x~"I, „(x),

(8.60)
(x—' d/dx) xoK„(x)= (—1)"xr K, „(x), (8.67)

for m=1. If we make use of the Wronskian relation"

K~, (x) I„(x)+I~i(x) K„(x)= 1/x, (8.68)

we can obey the initial condition F=1 when u=0 or8.61 x=xo by setting C=xo'&' » to get

Y(x) =xo(x/xo) "[Kn—1(xo)Io(x)+I@—1(xp) E„(x)7.
r= (~++.D) k,

e'= (r+ X)/(rs —~s) k,

tanh e= X/I',

R(u) = (4D) 'Y'/Y= I'[tanh (I'u+e) —(A/I') 7,

(8.62)
3fo(u) =['Y(u)]—&

&&exp { Laos(I'/OXD) [tanh—(I'u+8) —tanh e]I.

(8.63)

Thus the linearly smoothed squared O.U. process re-
mains nonstationary as N=t —to—+~, and moreover it

Using (8.53), (8.65), and (8.67), we obtain

4DR(u)

(8.69)

"I.M. Ryshik and I. S. Gradstein, Tables of Series, Products
and Ietegrals (Plenum Press, ' New York and VEB Deutscher
Verlag der Wissenschaften, Berlin, 1963), p. 329, formula 6;E. Jahnke and F. Emde, TaMes of FNectioes (Dover Publications,
Inc. , ¹wYork, 1943},Sec. VIII.7. G. M. Watson, Besse/ FNNc-
tions (Cambridge University Press, Cambridge, England, 1948},
2nd ed.

OIo-1(xo) x Ko-1(x) Kol(xo) x Ip 1(x)-—
p Q o

I~i(xo) xoK„(x)+K~1(xp) x&I„(x)

(8.70)
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The exact relations" yields the asymptotic behavior

E,(x) =(m/2 sinP~)LI „(x)—I„(x)7, (8.71) ( ) (P) ( / P)' ~-'(*P) XI +( P) (*/ )

I'(p) I'(1—p) = (m./sin pn-), (8.72)

and the behavior'4 as u—&00 or x—&0:

.(*)~IX(1+p)7 '(*/ ) "I: +(p+ ) '(x/ )'+" 7

—(1—p) '1'(2 —p) (*/2)'"IX(1+p) 7 '

+2(x/2)'&E„ i(xp)/I I„ i(xp) 1'(1+p) F(p) 7I. (8.74)

Thus as u~~ „
I' achieves the stationary ~ague

I"(u= ~) =I'(p) (2/xp) &—'I, i(xp) (8.75)

(8.73) and R(u) appros, ches zero rapidly:

4DR(u) = F'(u)/7'(u) = 2XD(A —P) ' exp (—2Pu)

—2(A/p) (A —p) '1'(2 —p) (gD/ll') +~ exp (—2&u)/1'(1+p)

—4AE —(*)(&DIP') ' p (—2A )/I:I.—(*)1'(1+P)1'(P) 7 (8 76)

showing that the smoothed O.U. process rapidly forgets ao, i.e. , Mo becomes truly stationary. This stationary
result is what will be observed experimentally, since the duration of the measurement is usually large compared
to 1/P or 1/A.

Case 4. p&0, A=O, Exponentially Smoothed Weiner Process

Since we have allowed Au~pp in the asymptotic formula (8.76), this result can not be applied to the A=O
case. We can, however, set p= A/p=0 in (8.69) or (8.70), to obtain

I. (x) = xpI Ei(xp) Ip(x) +Ii(xp) Ep(x) 7

4DR=PxI Ii(xp) Ei(x) —Ei(xp) Ii(x) 7/I Ii(xp) Ep(x) +E'i(xp) Ii(x) 7.

(8.77)

(8.78)

The behavior as x—4
xEi(x)—&1, Ep(x) = —ln (x/2),

Stationarity properties of Mo can then be stated as
follows:

leads to the asymptotic (u~ pa) behavior

V(u) —+xpIi (xp) (u+r), (8.80)

Mp becomes independent of ap if lim R(u) =0

(8.86)

where
4DR(u) ~(u+r) —' (8.81) &(t—tp) -constant if R(u) du& ~. (8.87)

r=P 'I LEi(xp) /Ii(xp) 7——,
' » (&D/P') 7. (8.82)

Thus F does not become stationary, and R vanishes
very slowly as u—&~.

Case 5. Arbitrary Positive Smoothing Function k(s —t)

Let us summarize our results in the form

%e see immediately that the second condition can be
obeyed (7~constant) only if the first is obeyed (cVp~
independent of ap); but the converse is not necessarily
true, since R(u) may fall off too slowly for the integral
to be convergent Las in (8.81)7. A necessary condition
for R(pp) to vanish is k(pp) =0, but this condition is
not sufficient, since the equation

Mp(t —tp) = exp —X k(t —s) a(s) ' ds (8.83)
dR/du= 2IiR —4DR'— (8.88)

= LI'(t —tp) 7 l exp L
—apPR(t —. tp) 7, (8.84)

F (t—tp) =exp 4D
t—tp

R(u) du . (8.85)

'4 This special case is worked out by Deutsch, Ref. 4 Chap. 7,
using forward equation techniques.

admits two special 'solutions R=O and R= —(A/2D).
The first of these solutions is stable, but the second
can readily be shown to be unstable. If one even
arrived at R& —(It/2D), one would find a runaway
solution R~ ~. We shall now show that k(u) )0 is
sufhcient to prevent such runaway solutions. Since
most smoothing functions obey k&0, and we have
not found the necessary condition on k to prevent
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cannot approach a constant. Integration of Eq. (8.52)
yields

runaway solutions, we shall suppose k&0 in all that
follows.

Since k(0))0, dR/du is positive at u=O, so that
R increases from zero and achieves a positive value.
Thenceforth, E can never become negative, for if E.
were to become zero at u=ui, we would have dR/dui=
Xk(ui))0. Moreover, if k~p as u-+oo then R must
likewise approach zero, for if R remains larger than
(say) Ri) 0, then for sufliciently large u, dR/du would
become negative and lead to a contradiction. The same
argument essentially tells us that the condition k—+0
is necessary as well as sufFicient for R(u) to vanish
as u—+~, i.e., for 3IIo in (8.83) to "forget" ao2. A
similar argument tells us that if k—+constant as a~~
then R must also approach a constant, which explains
the results in Cases 1 and 2 above.

We must next investigate (8.87), i.e., whether R(u)
is integrable. We shall first show that if h.)0, E is
integrable if and only if k is integrable. Integrate Eq.
(8.47) for R from u=p to u= oo to obtain

d Y/dt+2tt Y=2Ii+4XD k(u) Y(u) du. (8.90)

If Y(u) —+constant as u—+oo, the right-hand side di-
verges, which forces d Y/dt to diverge and contradicts
the possibility of Y remaining finite when Jk du di-
verges.

We shall now show that for A. =O, R is never inte-
grable. The transformation

R=$4Du+Tj '

d T/du= —Xk(4Du+ T) '.

(8.91)
yields

(8.92)

Thus T is a monotonic decreasing function of u. For
u)ui, T(u) (T(ui) and

R (u) )L4Du+ T(ui) ] '. (8.93)

Thus R(u) is not integrable. Our results may be sum-
marized in the2h. Ru du 4D R'u du=A. k u du —R

0 0 0 Asymptotic Theorem: Within the class of posi tive smooth
(8 89) ing functions k(t —s), the average

Suppose now, that k is integrable, then

e( )(xf k(u) s~(

Thus the right-hand side of (8.89) is finite, and each
of the positive integrals on the left-hand side must
converge.

Suppose now that the integral of k diverges. We
shall show that the integral of R diverges by proving
that

I"=exp 4D R du

t
ufo exp ———X k(t —s) a(s)' ds

tp

((vohere a(s) is an Ornstein Uhlenbeck—process subject to

a(to) =a()] becomes independent of ao as t to~(e if an—d

only if k(u) +0 as u—~oo, and Mo becomes independent

of the time in this limit, if and only if AWO (the O.U.
process does not reduce to a Weiner process) and the

i rItegral

k(u) du(~

comerges.


