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A previous work dealing with bound states in a Coulomb potential is extended to the case of scattering states. The
symmetry of the problem under the Lorentz group 0(1, 3) is used to construct wave functions. Harmonic analysis on two-
sheeted hyperboloids is briefly discussed in arbitrary dimension. The set of scattering states for both an attractive and a
repulsive potential is shown to provide a unitary representation of the group 0(1, 4).

I. INTRODUCTION

In a previous article, hereafter denoted by I, we
have reviewed the symmetries of the Schridinger
equation for a Coulomb potential and discussed the
use of a noncompact group isomorphic to the pseudo-
orthogonal group 0(1, 4) to relate the bound state
levels.! It is of some interest to pursue the analysis
further to the scattering states. This is the goal of this
work. The “hidden symmetry” is now an invariance
under the homogeneous Lorentz group 0(1, 3) and
the space of scattering states can be written as a
direct integral of infinite dimensional Hilbert spaces,
which are carrier spaces of unitary representations of
the Lorentz group. This is a frequent occurrence when
dealing with a noncompact group, the simplest example
being Fourier analysis for the group of translations in
one dimension. We shall follow the usual device of
introducing nonnormalizable scattering states in order
to achieve the decomposition. Physically, of course,
the direct integral is related to the continuous spectrum
of the Hamiltonian. As in the bound state case, there
exists a larger group, isomorphic to 0(1, 4) which
connects the scattering states, but we have to introduce
wave functions for both attractive and repulsive poten-
tials. We shall show that the representation of this
group, obtained in this way, is equivalent with the one
previously discussed in I. This representation is in
fact not unique and the ambiguity which arises is the
same as the one already encountered.

We shall slightly generalize the discussion by taking
an arbitrary dimension f for the configuration space.
In order to construct the wave functions it will be
necessary to use harmonic analysis on a two-sheeted
hyperboloid. This has been developed in four dimen-
sions in a series of papers by Dolginov and collabrators?
but we shall briefly recall the main features including
orthogonality and completeness of the “spherical func-
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tions.” This part can perhaps be used for other purposes
in a different context.

In an appendix we have performed the necessary
transformations in order to show that the wave func-
tions coincide with their ordinary expressions in con-
figuration space, both for scattering and bound states.

We will have to use repeatedly the following
notations:

Sp: unit sphere in a p-dimensional real Euclidian
space, the measure on the sphere being d*~'Q with

2qrl?

[ra=em 507

spn (711, 12) will stand for the ‘6 function” on S,, i.e.,

/:g dP1Q (1) g (1) Sepn (11, 12) = g (n2) .

P

T,: unit hyperboloid in a p-dimensional real Euclidian
space,

-1
wiud— ) ud=1.
=1

T,% will denote, respectively, the upper (#,6>1) or
lower (#,<—1) sheet of this hyperboloid. Our constant
parameterization of 7t will be: #= cosh 0, u;=
sinh 6r; with >0 and »; on S,;. The measure on
Tt will be written as d?~'u with d»~\u= sinh §7—2d0d2Q.
The measure on 7,~ will be related to the one on
T,* by the transformation uel,—wuel,*. Finally,
Onyp (241, #2) will stand for the “§ function” on T',t.

II. THE SYMMETRY GROUP

A. Infinitesimal Method

We study the scattering states in a Coulomb poten-
tial. As in I, we introduce the following two vector
operators:

The angular momentum,
L=3(rxp—pxr)
The Runge-Lenz vector,
M= (1/24) (px L—L x p) — (1)

with 7 standing for r/| r|; p is the linear momentum,
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u the reduced mass; & denotes the strength of the
potential.
The Hamiltonian

H=(p*/2u)— (k/| 1)

commutes with both these vectors. They also satisfy
the following commutation relations:

[Ly, Lil=1hegply,  [Mi, M;]=— (20hH/p)eijLe
[Ls M;]=1he;jMy. (2)

Consider the subspace corresponding to the positive
spectrum of H. In this subspace let M= (u/2H)*M
where the square root of H is defined by the condition
of positiveness. Then L; and M, build up the Lie
algebra of the homogeneous Lorentz group 0(1, 3)
[our notation implies that 0(p, ¢) is the pseudo-
orthogonal real group leaving the metric with p plus
signs and ¢ minus signs invariant]. In terms of L and
M the Hamiltonian reads:

= — (iw/2) (12— DI+ 72T,

The requirement that H be Hermitian restricts L and
M to be likewise Hermitian, and hence we are interested
in unitary representations of the Lorentz group.? These
representations are labeled by two numbers (l, c)
with /, a nonnegative integer and ¢ pure imaginary,
c=1p (the principal series) or /y=0,0<c¢<1 (the supple-
mentary series). (L2—M?)/h? is a Casimir operator
equal for each representation to li?>4¢*—1. From Eq.
(1) it follows that we have one further relation among
L and M, namely,

LMV L=0=2ilc. (3)

Equation (3) thus restricts us to the representations
with Jy=0. Thus

= — (Fu/21?) (1/2), (4)

where E is the energy; and as we have assumed H to
be positive ¢=1ip and we are only concerned with
representations of the principal series.

B. Global Method—The Fock Transformation

As mentioned above, we shall now generalize the
problem to an arbitrary dimension f>2. The
Schrédinger equation in momentum space takes the
form

2uk

Tws_ih

;209

g -
I p—qlf

with E>0. Changing variables from p to (2wE)~*p

and letting

(#°"—2uE)®(p) = (5)

®(p) =Y[(2uE) p]

3 M. A. Naimark, Linear Representations of the Loveniz Group,
American Mathematical Society Translations (American Mathe-
matical Society, Providence, R.I., 1957), Series 2, Vol. 6.
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f- DIMENSIONAL
EUCLIDIAN

Fic. 1. Stereographic projection of an f-dimensional space to
the unit hyperboloid in f+1 dimensions.

Eq. (5) becomes
¥(q)
| p—q

We now imbed the f-dimensional space into one of f+41
dimensions and perform a projection of the original
momentum space onto a two-sheeted hyperboloid, 7's41
(the Fock transformation, see Fig. 1). Let # be an
arbitrary point in the (f+1)-dimensional space with
component #, along the f+1 direction and u its ordi-
nary projection in the original space. We introduce a
Minkowski metric into this space, i.e., #?=ul— ul
The hyperboloid is given by the equation #?=1 and
the point p corresponds to a point on this hyperboloid
with coordinates:

(6)

3
(P—1)(p) = 2 [#

W f_lﬁE%

1+ 2p ) U

= (5 )
The region $?<1 is mapped on the upper sheet while
$*>1 is mapped on the lower one. We shall need the
following relations. If p and q correspond to # and v,
respectively, then

|p—gqpm— 0 oo P
(1+u) (1+w) | 1+ue | | 14|
P 26(2—1)d""u  du(u)

[ 1+um [ 1+l

where we remind ourselves that all scalar products
involving # and v must be taken with the Minkowski
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metric. For # given by Eq. (7) and

®(u) = | 1+uo |20 ¥ (p) (8)
we obtain the following equation for ®:
- k(2u)%e(20) 3 (v)
S(u)=—""—71 & _— (9
(u) Yy u(v) =) [i0D 9

with e(ug) =41 if u>1, e(uo) =—1 if u<—1. The
above equation exhibits explicitly the invariance of
the problem under the group of homogeneous, metric
preserving, transformations in a ( f+1)-dimensional
Minkowski space, i.e., under the group 0(1, f).

Equation (9) is of the same type as the one obtained
in I for bound states which was solved using the
properties of spherical harmonics on the sphere. It will
turn out that the solution, in the present case, can
also be obtained by introducing a set of ‘“‘spherical
functions” on the hyperboloid. (The terminology is
somehow misleading and hyperbolic functions would
seem more appropriate; however, we stick to this
name which is apparently of general use.) However,
while the spherical harmonics are well known, the
corresponding functions for the “Lorentz group” 0(1, f)
enjoy less popularity. As mentioned in the introduction,
they were studied in particular for f=3 by Dolginov
and collaborators.2 The case of f=2 was also used in
the context of Regge poles but dates back in the mathe-
matical literature to Mehler. We shall for the moment
interrupt our discussion of the Coulomb problem to
give a description of these functions in order to apply
them to the solution of Eq. (9). However, they cer-
tainly deserve some study for their own sake and,
while exhibiting some results with lots of “é-functions,”
we shall be careful to present the proofs in such a way
that they can, hopefully, be made rigorous.

C. Definition of Spherical Functions on Hyperboloids

Let T FH
boloid T 1

+ be the upper sheet, #,>1, of the hyper-

s
- Zu,z: 1.

=1
Given two points on Tyat, #; and u,, there always
exists a transformation A€0® (1, f) such that =
Awng. 05D (1, f) is the component of the identity of
0(1, f). The set of transformations which leave a point
invariant is isomorphic to a proper rotation group
0P (f) so that Tp 0 (1, £) /0P (f). The meas-
ure of d’u is invariant under 0% (1, f). Hence the
Hilbert space 3C;; of square integrable functions
defined on Tyt

epn=fos [ lgkan<al,
Tf+1t+

is the carrier space of a unitary representation of the

noncompact group 0t (1, f)
g—Usg with  (Uag) (u) =g(Au).

This representation is not irreducible and decomposes
into a direct integral of irreducible ones:

Ur= f T ANU,W.
0

Each U,Y is itself a unitary irreducible representation
of the group but again the noncompactness results in
the fact that it is infinite dimensional. Different N
corresponds to inequivalent representations. Corre-
spondingly, the space 3Cs1 will be split as a direct
integral of infinite dimensional Hilbert spaces and any
function in 3Csy; will have a representation
8= [N T w), (10)
0 14
where » is a discrete index which distinguishes the
components in the space of the representation U,¥.
The function gy ,(%#) will not belong to 3Cry but will
satisfy a certain partial differential equation in terms
of the Casimir operator of the group. Having properly
chosen the indices, gy, will be proportional to a
spherical function. We shall now derive the equation
satisfied by these functions. Let %= (cosh 0, sinh-n),
we shall investigate functions of the type

HN,a,ﬂ(H—l) (M) =ZN,a(f) (9) Ya,ﬂ(f) ( n),

(11)

where YV, 6 (n) is a spherical harmonic on the sphere
Sy. The discrete index « takes the values =0, 1,2, «++

If x=rnis a point in an f-dimensional Euclidian space,
7Y, (n) is a homogeneous polynomial of degree «
in the components of x and

AL (r*Yas?”) (n)]=0
with the Laplace operator given in polar coordinates by

f-19 £

and £? is the generalization of the angular momentum
and operates only on the angular variables. Hence

£V e (n) =a(atf—2)Yas”(n).

The index B distinguishes the finitely many, linearly
independent, solutions of this equation. Once normal-
ized, the spherical harmonics satisfy:

2 Vs (m) (Vg9 (1) Y= bpn(m1, m2) ~ (12)
a8

[g AQ(1) Va5, P (1) (Vg 8. (1) )= 8,00 01,82 (13)
f

In f41 dimensions we write the wave equation in the
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neighborhood of T'7,t:

02 Zf: 92

D S owz 0 p 0

where @ is the Casimir operator on the hyperboloid and
wy=p cosh 6, w;=p sinh 6u; p close to +1. Then
Hy op(u) is required to be an eigenfunction of €, or
P Hy o (u) defined in the neighborhood of Ty + to be

2,10 ¢

E:

(14)

—+f cosh 6

@ d  aletf-2)
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an homogeneous function of w=pu, of degree A\, with
A=—3(f—1)4+iN (N will turn to be real) such that

g1l 2y o (n) ]=0.

The condition on N will be obtained by requiring that
Hpy oYY (u) be a continuous function of Tyt with
the smallest possible growth at infinity. The above
conditions provide for Zy ,(f) the following equation:

{sinh2 0

d cosh 62 d cosh 6

sinh? @

| N2+(f . 1)2}ZN,a<f> 0)=0. (15)

The boundary conditions just mentioned require NV to be real and the relevant solutions of Eq. (15) are for our

purpose—including a normalization to be discussed later:

For f;>3 odd;

Zy o (0) = {(3nN2(N2412) « - - [N2+ ( f— 1+a)?]}2X sinh ea(

For fr>2 even;

d 30—t
) cos N6, (16)

d cosh 6

Zna(0)= [ N tanh 7N

where it is understood in Eq. (17) that the factor on
the right-hand side reduces to (V tanh #N)?} for f=2;
Py—4(cosh ) is the Legendre function, and we shall
follow throughout and use Chap. IIT of Ref. 4 for
these functions which in this context are called conical
functions. In both cases we have an even function of ¥;
in the following it is assumed that IV is positive. With
Zn 9 (0) given by Eq. (16) or (17), we have the
following basic three relations for spherical functions:
Orthogonality relations, N1 and N are positive:

/ & u(u) Hyy 00,69 () HNz.az,BzUH) (u)
Tf+1+

= 8ay,0:081,80 6 (N1— N2),

completeness relations in 3Cpy:

(18)

/ AN D Hy o 6940 (1) Hy a6 (t42) = Sty (242, 12),
0

a,B
(19)

integral equation

Hy o590 (v) QAU+
[ ono a2
Tr+14 (14+24-2tu0)20-0 T3(f—1)

)
§30-D cos (IV log 2) Hy o g™ ). (20)

N sinh 7V

In Eq. (20) ¢ is a complex variable in a cut plane
from — o to 0; log ¢ is real for ¢ real positive and the
argument of the expression (14-£24-2iuv) which appears
in the integrand is O for ¢ real positive. As is apparent

[+ )21V (8)2]- - AV H3[ (f—2) ta—3T) rx sinh ea(

1—D+a N .
Pina 6), (1
d cosh 0) v-y(cosh 0), (17)

from their definition [Egs. (16) and (17) 7], the spherical
functions are somehow different according to whether f
is even or odd. This again reflects the fact that the
kernel in Eq. (20) has a square root singularity for
even f. Hence, we shall distinguish between the two
cases to prove our basic three relations.

D. Proof of the Three Relations in the Case f Odd

We start with the orthogonality relations. According
to Egs. (11) and (13) one has

/ (1) Hyyay,6.90 () Hug e 8,90 (%) =8y 08162
Tr+1t+

X/ sinh 0"1ZN1,a1(f) (o)ZNz,al(/) (0) djg.
1]

Using the definition of Zy " [Eq. (16)], this reduces
to the study of the integral:

o d
inh §/—1+2« (
/; df sinh [ Tcoshd

4 \iU-D+e .
X [(d cosh 9) cos 20]’

Let us introduce the notation
go(NV, @) = sinh 67(d/d cosh 6)? cos N6.

We want to evaluate

[ d0g,(201,0) 45 (3, 0).
0

3 —D+en
) cos N4
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It is understood that N, and N, are positive. The
auxiliary functions ¢,(V, 6) enjoy the following prop-
erties which are easily eatablished:

gp+1(N, 0) =[(/d6) — p coth 61g,(N, 6)
LV (p—1)*]gpa(N, 0)
=—[(d/d8)+ (p—1) coth 01g,(N, 6)

@&, _P(P—l)} _
{d02 PN e %N, 0)=0.

go(N, 0)=0 if p>1 and ¢,(&V, ) has an oscillatory
behavior at infinity. Using the recurrence relations
given above we find by using integration by parts that
for p>1:

| dog, (1, 00,27, 0)
0
© d
= [0, (0,0) (3~ (1) coth 0)g, 4(s,)
0
= [y 2(002,0) (5= (6= 1) coth 03, )
0

=DV (o= )7 [ 00y, 0)05-a (V5 0).
Since for p=0, g,(IV, 6) reduces to cos N8 and
/mdﬁ cos Nif cos Nof=2%(m) 6(N1—Ny)
we find f(:r p>1
[ 40050, 000522,

=[N2(Ne+12) - (N4 (p—1)J5(x) 6(N1—Na).

lim ST 1 00 [ a-10.(n) sinh 09 (0 )(
- - n
6111; (2r) 1002, s, (n) sin (0,

= Elffo 2(2m)10-D

We now use the fact that sinh 8(d/d cosh )¢ sinh 6/—2
goes to zero for 6—-0 as long as ¢<3(f—1) (recall
that f is odd and greater or equal to 3), while

o d \v-n _ r(f-1)
S sinh 0(d cosh 0) S O e (D)

Our integral is thus ¥ (0) (which stands for (0, n), n
arbitrary, the value being the same for all (n) times
T'(f—1)/(4m)¥=DT[3( f—1) Jws which is in fact equal
to 1, using the area of the sphere given in the intro-
duction 2#/12/T'( f/2). In short, Eq. (19) is proved.

It remains to prove Eq. (20). Let ¢ be for the moment

[0 “d0 fs 0(n)3(6=) sinh o(

Let now p=oy+3(f—1) and introduce the proper
normalization for Zy .. One sees that we have just
proved Eq. (18).

We turn to the completeness relation. For that pur-
pose we use the following addition theorem (see Ref. 4) :

D H a8 (1) (Hy 90 (12) )*
a,p

(— 1)%(!—1)/ d
"~ (2m)¥x\d cosh §

f off >3, uyue= cosh 6.

Integrating this result over IV requires a little atten-
tion, since in interpreting the result as Snyp (21, #2) We
shall naturally want to adapt the coordinate system
on the hyperboloid in order that, say, #; be the point
(1,0, 0, +++, 0). Integration of Eq. (21) over N will
introduce “8 functions” of §. However, with this special
system of coordinates, §=0 will be an end point of the
integration interval in 6. Hence we use the following
procedure. We multiply Eq. (21) by cos (Ne), with
€>0, e will be allowed to go to zero at the end of the
calculation (the same device will later be used without
comment in the case of f even). With this in mind we
find:

1=
) cos N6, (21)

J AN S B a9 (1) (B g (1))
0 B

-0
) ] (012—- G) .

The right-hand side does not appear at first sight to be
equal to &nyp (41, %), but is indeed equal to it. To see
that, recall that d’u= sinh 6/~1d9d"~'Q. Adapting the
coordinate system as explained above, we compute
with a test function ¢:

(—1)iv=n7 g
(27)3— \d cosh 6y,

= lim

>0

17-1 .
d cosh 0) 5(0—e)

d
d cosh 6

30-D
) sinh 6/~%(6, n).

a real positive variable with log ¢ real and compute the
following absolutely convergent integral:

o dN in N6
1 / - cos (IV log £) Slsliln i (2 sinh 6¢)!
o Sinh

X/mdN<sin N‘(0+ log#) | sin N.(H— log #) )
o sinh 7V sinh 7V

It is easy to show that
too  gin yx

f dx — 4
—» sinhx

=7 tanh 73y.
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Hence our integral is equal to

1
4¢ sinh @
6+ log ¢ 6— log t} 1
tanh + tanh = .
X{ T TR T 14212 cosh 0

The integral is absolutely convergent for complex ¢ as
long as ¢ varies in a plane cut from —o to 0, such
that log ¢ is real for real positive ¢. For these values of ¢
we get by analytic continuation:

1
14242t cosh 6

—1 /= dN d
=—| voo% log! ,
‘ /0 ¥ s 2y S0 (W log ) 2 (cos NE) - (22)

The addition theorem (21) together with Eq. (22)
yields with the same restrictions on ¢

1
(1+t2+ 2¢u1’u2) -0

w1 /w dN
T [A(f—1)—1]1A¢-DJ N sinh =N

X D Hy a8 (1) (Hy 0,89 (us) ).
py

cos (N log t)

Hence, using the orthogonality relations Eq. (18), we
get the desired result Eq. (20)

E. Proof of the Three Relations in the Case of f Even

We first must give some properties of the Legendre
functions which will be used in the following, principally
the Mehler’s transformation formulas. P—4(3) is the
solution of the Legendre equation:

[(d/ds) (2—1) (¢/de) +N+31Pavy(5) =0 (23)

with the property that it is regular at the point +1
where it takes the value +1. For z real greater than
one, N real, which is the domain in which we are
interested, P;v—3 is real and is even in N. For @ real
positive, the following two integral representations
hold*:

V2 o sin Nydy
« tanh 7NJy (cosh ¢ — cosh )%

_\E/" cos Ny iy
B i Jo (cosh 6— coshy)? ™™

These two integrals are reminiscent of the theory of
Abel’s integral equation. We propose to show that it
leads us to the theory of Mehler’s transforms. Let g(¥)

P;N_;(cosh 0) =

(24)

4 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi,
Higher Transcendental Functions (McGraw-Hill Book Company,
Inc., New York, 1953), Vol. 1.

be a function defined for ¥>0 vanishing for ¢=0,
square integrable between 0 and « and sufficiently
regular for the following integrals to be well defined.
One has the couple of equations:

() =2 f “sin NYG(N) dN

™/

G(V) = [ “sin Ngw) dv. (25)
0
Consider the linear transformation:
_r g
~0= "m0

where §>0. The inverse formula of this Abel equation
is defined, if say g(¥) <Ay for small ¢, and gives us
1d [~ f(6) sinh6dd
g =[S :
wdyJy (coshy— cosh )}
Combining Egs. (26) and (25) we find

2w = sinNy
1= w./; an G(N)j; (cosh ¢— cosh 6)}

(27)

ay

- / “dN Piy_s(cosh 6)V2(tanh xN)G(N)  (28)
0
where we have used the first integral representation in
Eq. (24) for the Legendre function. Similarly com-
bining Eqgs. (27) and (25) we find:

G = [ap(sin N)g)

e i e () sinhg
- fo W sin Nt oot g

_ [_sin Y [  f(8) sinh 6 de]m
- 7 Jy (cosh 6— cosh )}

[ ®  f(f) sinh @
N 1/0 #N cos Nlp./; (cosh 6— coshy)t

Assuming that g(¢) is the derivative of a function
which vanishes at infinity, we can drop the integrated
term and we find, using the second integral representa-
tion in Eq. (24):

0

G(V) =§A; / “sinh 646 (6) Pay_y(cosh 6) d. (29)
0

If we call F(N)=G(N)V2 tanh #N we deduce from
Eqgs. (28) and (29) the couple of Mehler transforms:

7(6) = / “F(N) P:y_y(cosh 6) dN
0

F(N)=N tanh =NV / " d6 sinh 6f(8) Piv_y(cosh 6).  (30)
0

We can express Eq. (30) in a different language with
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x1, %o real and greater than one, N; and N, positive;

f AN Piyy (1) Pey (1) N tanh oV =8 (21— xy)
0

© 8(N1—Ne)
AxP iy, Py =
‘/1 i %(x) VH(x) N1 tanh TI'N1

We are now in a position to derive formulas (18), (19),
and (20) in the case of f even >2. From Egs. (11)
and (13) we get as before

(31)

/ dp (74) I{Nl,ax,ﬂl (M) (HN2,a2,ﬁz(u) )*: Occr 2 081,82
Tr+1t+

X / sinh 0/1d0Zy ;0. (0) Zng,a, (6) .
0

Using the definition of Zy ., Eq. (17), leads us to
study the integral:

/ 73-2r+a1 (N1, 0)737-2+a1 (N, 0) sinh 640
0

where the auxiliary function 7,(N,6) (equal up to a
factor to the associated Legendre function) is defined
through:

7»(IN, 0) = (sinh 8)?(d/d cosh 8)?Py_3(cosh 6).

This function satisfies the following relations deduced
from the analogous ones valid for the Legendre
functions:

- 7p11(N, 0) =[(d/d6) — p coth 61, (N, 6),
[V (p—3)Trpa(N, 0) = —[(d/d6) +p coth 017, (N, 0),

p?

d \? d
she 2 1_ =
[smh 0<d oy 0> +2 cosh 6 Toodh 6+N +1 e o]rp(N ,0)=0.

Hence, by integration by parts using the fact that 7,(V, 8) is bounded at infinity by 4 (cosh 6)*:

(eo] (o] d
f 40 sinh 8r, (N, 8)7,(Ns, 6) = / 40 sinh 67, (s, 0) (Ee~(p—1) coth 0>r,,_1(N2, 6)
0 0

—— / %40 sinh 67, 1 (Vs, 0) (d%—l— $ coth O)rp(Nl, 0)
0

=[N+ (p—

1)7] / “d0 sinh 07,1 (N1, 8) 7ps(Ns, ).
0

Since for p=0, 7,(N, 6) reduces to the Legendre function for which Eq. (31) holds, we get

/ “d0 sinh 67, (N4, ) 75(N2, 6) = {[ N2 (p—1)2]- - - (N2+1) } (N1 tanh wNy) = 6 (N3— o).
0

The coefficient in front of the §-function is to be understood as (V; tanh #Ny) 7! if p=0. Comparing this result
with the normalization of Zy .7 (0) we see that we have proved Eq. (18).
For the completeness relations we use the addition theorem*:

2 H g0 (1) (Hv o g0 (1) )=
B

»n tanh TN
(2m) 712

d
d cosh 6

3/-2)
(— 1)%0—2)( ) Piy_y(cosh 6). (32)

cosh 0= uu?

To prove Eq. (19) it remains to integrate Eq. (32) over N. With the same trick as in the previous section, we

find with the help of Eq. (31):

[N S 0749 () (g4 ) Y= i
0 a,B >0

(—Div=2r 4\
)P \dcoshﬁ) d(cosh §—1—¢).

Again, this is indeed 8y (%1, #2) since with the test function ¢

(=1 g

lim [ &u(u)y(u) (2m)712 \d cosh §

e>1+0 Y

= lim oosinh 0d65(cosh 6—1—¢)

e>+0 Y

12
) 8(cosh §—1—¢)

1 d \iU-2 L g ) o
R N N
(21r)f'2(d cosh o) st fs ,\l/( , 1) (n)
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Again

lim (d/d cosh 6)? sinh §/~2= [
8>+0

1(f—2) 120~

if ¢<3(f-2)

if ¢=3(/-2)

so that the integral reduces by Leibniz rule to ¥(0) times ws ( f—2)/2]120-2/2(27)/2=1. The completeness

relations, Eq. (19), are thus proved.

It remains to obtain the integral equation (20). For this we use the alternative integral representation of

P ;N_;( cosh 0) H
cosh 7N [« j-iN
P; h §) = f dt. 33
w(cosh 0) === | i com oty (33)
By Fourier transformation Eq. (33) gives
o N 1
I / cos (N log t) Piy_3(cosh ) (34)
0

cosh N (1-42¢ cosh §+2)¢

This result can again be continued analytically in the complex ¢ plane cut from — e« to 0, with the principal
determination of the logarithm in the left-hand side and the square root on the right-hand side such that it¥will

be positive for real positive :.
Combining Eqgs. (32) and (34) we get

= dN
—_— 4+ (f+1) -
L e €05 (V108 ) Sl (06) W49 ()

AU=D

1:3+++(f—3)

T (2m)712 (14 2ty up+2) 20D (35)

with 1-3-++( f—3) replaced by 1 if f=2 and the same restrictions on ¢ as before. With the help of the orthogonality
relation, Eq. (18), we deduce from Eq. (35) the desired integral equation (20).

F. Solution of the Integral Equation for the
Coulomb Potential

Having now the required tools, we compare Egs. (9)
and (20). If we let ¢ go to 1 in Eq. (20) the expression
is well defined. If we approach —1, either by the upper
or lower imaginary plane, we again find a unique limit.
Using these facts, let g(#) be a function defined on the
whole hyperboloid T'yy1=Tf4t+Tr1, by

€T,  g(#)=Nyap(u)
€T,  g(u)=aHyap(—u).
One deduces from Eq. (20) that

g(») _
| (u—v)2 |90  Ti(f—1)N sinh =N

a+ cosh Nw  if u€Typyt

2pi+D

&u(v)

Tf+1

Xg(u)

a“‘—l— cosh N«n if -u€ Tf+1_.

In order that g(u) be a solution of Eq. (9), it is thus
necessary that (e+ cosh #V) =— (a~14 cosh #N), in
which case a=—e¥™™. Correspondingly we have two
solutions (up to a normalization) :

Hy ap(u)

—6;"NHN,a,p(—u) if u€ Tj+1'"

if uE T j+1+

By 0,6 () = (36)

which satisfy

- TG
‘I:’N,a,p(i) (u)==%N W € (M)
' B o % (v)
X du(v) ————. (37
Tr+1 w(®) | (u—v)2ps—D (37)

Because of the completeness relations, Eq. (19), one
can convince oneself that the functions, Eq. (36),
exhaust the solutions of Eq. (9). The fact that for
given N, a, 3 there exist two solutions is a natural
consequence from the fact that choosing N positive
was a matter of indifference; indeed Bw a ™ (%)=
®_y a7 (). On the other hand, this double solution
reflects the fact that we can as well treat attractive or
repulsive potentials. & corresponds to the attractive
case (k>0), ™ to the repulsive case (k<0). Com-
paring Eqgs. (9) and (37) we get the following relation
between the energy E and N:

E= (uk?*/21?) (1/N?) (38)
independently of the dimension f. Equation (38) is
the analytic continuation in the index X of the equation
corresponding to bound states [Eq. (19) in I] from
real integer values to complex values of the form
A=—3(f—1)+iN. So, in fact, are the eigenfunctions.
We observe also in the case f=3, from the Lie-algebra
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analysis, that the eigenvalue ¢ which characterizes our
representations of 0(1, 3) is equal to ¢N.

Each set of functions Hy og*tP(u) for fixed N
provides a basis for an irreducible unitary representa-
tion of 0% (1, f) through
Hy a9 (A7) = Dot ;0,87 (A) Hy o0 oV (). (39)
This is clear since the equation satisfied by this func-
tion for fixed N is invariant under the group. We
shall not exhibit explicitly the matrix elements of
these representations; it would require too lengthy
calculations. We return to this question in the following
section.

III. TRANSFORMATION GROUP

We shall discuss briefly the introduction of a larger
group of transformations. The motivation is the same
as in I: We want to find a group which relates the
various scattering states corresponding to different
energies but we have to mix solutions for attractive
and repulsive potentials. Consider the space 3Cr11 of
square integrable functions on 7'y with the measure
d’u. It is spanned by our scattering states Sy a8 (u).
We are looking for a group which contains 0(1, f) as
subgroup and has a unitary representation in 3Csy
which reduces to the ones described above when
restricted to 0(1, f). Again, the answer is in terms of
projective transformations.

We recall the construction of this group. Let us
denote for the moment by # an arbitrary point in
Euclidian ( f4-1)-dimensional space. Introduce the
quantity z=u#? (where #? denotes the Minkowski
square). In the (3, #) space we are restricted to the
previous “paraboloid.” Consider the projective trans-
formations which leave this paraboloid invariant.
Introducing the homogenity variable ¢ we find the
homogeneous group, leaving

1
sl—u=3(3+1)2—3(z— )2 —u+ D _u
=1
invariant. That is the “conformal Lorentz group”
0(2, f41). Going back to our f41, Euclidian space
we ask for the subgroup of 0(2, f+1) which leaves the
initial hyperboloid 7y invariant. The condition is
z—1t=0. Hence the required group is G=0(1, f41).
The result turns out to be the same as for the bound
state case. This will appear clear at the end of this
section. Going through the previous transformations,
the action of G on the hyperboloid is found to be
u—Au=u’, #, 4 €T s

wa=( Zﬂ:aapup—}—aa;) /( ;atﬁuﬁ‘l“att) . (40)

The Greek indices run from O to f, the Latin ones

from 1 to f. The real matrix A belongs to G; that is

Qo Qat
A:
Qta Qg

Y= ’
L —14

ATyA=".

(41)
The hyperboloid is clearly invariant since one finds

u/2"‘1= (Mz_l)/(zataua+att)2=0' (42)

It is to be remarked that in Eqs. (40) and (42) the
denominator may vanish for certain transformations.
This means in fact that in order to consider the action
of G on Ty we have to add to the hyperboloid extra
points “at infinity.” In other words, 7Ty has been
compactified by the adjunction of a surface at infinity.

We build the following unitary representations of G
in 3Cs41 which depend on the index p:

& (u)—>T 2 (u)
- O (A u)
] Dt (AY) st ay (A7) |G+

Using Eq. (42) one checks the unitarity of these
representations:

[ andy= [ anCraeliri
Tr+1 T

JF+1

(43)

(44)

We have studied in I similar representations of
0(1, f4+1) realized in the Hilbert space of square
integrable functions on the sphere Sy1; denote it by
Ksp1. It may be interesting to know whether we have
constructed equivalent or inequivalent representations
of the same group. The remainder of this section will
be devoted to the proof of the unitary equivalence of
the two sets of representations. All the properties
investigated before, such as irreducibility, will thus
hold true in the present case.

For that purpose we first define a transformation
which maps the sphere

s
Spa= {v: 924 > m2=1}
e
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on the hyperboloid
s
Trp={u: ud— D u=1}.
=1
It is the following mapping [see Fig. 2(a)]
u= v, (—vi/w)]
v="[ue, (—ui/uo)]. (45)

Let 9—Av=17" be a conformal transformation of Sy.s;
A€0(1, f+1) and

v'o= (@oov0+ ZGOjvj+doz) / (@wvot Zatjvj-i—dtt) )
2 J

€ Sf+1"‘m=1'216 Tf+1;

uc Tf+1'—>'1) =71y Sf+1;

Vo= (@iotot Daiitai) / (@uwt D agitau), (46)

Qg A
A= 3 ATyA=y,
Aot aaﬁ

v being as in Eq. (41). Performing the projection = we
find that the corresponding point on 77 undergoes
the following transformation:

with

(47)

u—Au=u'

= (awan—_ajui+an) / (Goan— 2 oo+ o),
7 7
ti= (= attot D @isu— o) / (Gostto— Dottt aoo) -
3 i
(48)

(a)

(b)

F16. 2. Transformations between a sphere and a hyperboloid,

That is, with

10 O 1 0 O
A= 0 0 —I; A=} 0 0 1
01 o 0 -1, O
one has
@y — 0y @y
ApAAyI= — Qi Qi;  —aqp (49)
Qo — Qoj Qo

1, is a unit f X f matrix. The correspondence A—A, is an

inner automorphism of 0(1, f/+1) and one even remarks

that A always belongs to the component of the identity.
If #=7v one also finds, using Eq. (45), that

&Q(v)  du(u)/|uo |’ (50)

Hence, if ¢(v) is a function defined on Sy;; and belongs
to Kry1;

LI+‘[¢(v) K dfg(v):/

Tf+1

U=177.

[ (u) |2

]uo [f/2

Using Eq. (51) we define a unitary mapping U, from
K41 to 3rqa by

¥(0) €RXpo[U () =Y (77 u) /| o |[VPF#] €301
®(u) €3¢ U, 712 (v) =[2(10) /| 0 [VPFP] € K.
(52)
The unitary representation of 0(1, f+1) that we
investigated in I for 3Cs;; was defined through
Y (A )
e‘)‘(A—l) Vot Gis (A—I) |(f/2)+ip

du(u). (51)

YO-IRNIO)= T

(53)

with Av given by Eq. (46). Similarly, Eq. (43) defines
a unitary representation 7',2 of the same group in JCyy.
We will now prove that

URA=TAU,. (54)
Since in virtue of Eq. (49)
T =T MT A (T4 (55)

and all operators are unitary, Eq. (54) is indeed a
statement of unitary equivalence. The proof of this
equality is rather straightforward. Consider for instance
LUR, A ](w)
_ V(A ) )
| as:(AT) Mo_‘zatj(A—l) wi+an(AL) |12+ ’
J
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on the other hand,
[TPATUp‘/’] (u)
- Y (A )
B | @oo(A™) 20— Zaoj (A uj+ao (AY) |Ui2rtie
i

aoo( A tg— D ja0; (A u54aoe(A™Y) | U/D+in
(Ao~ 2 ai (A ui+an(A™) ’
7

and since by definition of the automorphism ¢, 771A, 1=
A7, Eq. (54) is easily obtained and the unitary
equivalence established. The geometric transformation
(45) which was at the basis of our proof is best under-
stood by adding an homogeneous coordinate such that
uo=Y /T, u;=X;/T and the same for ». The sphere and
the hyperboloid appear as cones centered respectively
around the 7 and the YV axis; the abstract group
0(1, f+1) is realized in two different ways as homoge-
neous linear group which leave one of these cones
invariant. A rotation of 180 degrees around the line
X;=0, Y=T which is tangent to both cones is the
substitute for the transformation 7. This is pictured
in Fig. 2(b).

As a matter of fact, one can prove that the unitary
representations of 0(1, f) constructed in Sec. IT with
the help of spherical functions and those obtained in
the section by means of conformal transformations on
a sphere or an hyperboloid are equivalent. The proof
is an extension of the one given in the case of f=3 in
the third paper of Ref. 2.

Before concluding this section we shall briefly men-
tion the case of zero energy. From the commutation
relations, Eq. (2), we note that [M;, M;]=0 and the
operators L, M, build the algebra of the Euclidian
group in three dimensions, £(3). In f dimensions this
may likewise be realized globally. We project the
f-dimensional momentum space onto a paraboloid in
f+1 dimensions, Pyi. If # is a point on the paraboloid
uy=u2/2, with #o in the f+1 direction and u in the
original f-dimensional subspace, we let p—u=[1/(2p?),
p/p%]. Performing this transformation on Eq. (5) we
obtain, with & (u) =& (p/p?) 1/p™+.

@18 (20—3v?) & (0)
|u—v |/

- 2uk
B(u)= —

wwsafi ’

which exhibits the invariance of the problem under the
Euclidian group in f dimensions, E;. It may also be
noted that the group of conformal transformations in
f+1 dimensions which leaves Py invariant is again
0(1, f+1). The action of the group on functions defined
on Ps;; may be obtained from its action on Sy or
Ts41 by noting that in Fig. 2(b), if we make a rotation
of 45° in the (7, Y) plane, we transform Sy and
Ty41 into Ppya. It is amusing to note that the large

group of transformations in all cases is 0(1, f+1) and
the subgroups which are symmetries of the problem
in the cases E<0, E=0, E>0 are 0(f+1), E(f),
0(1, f) respectively, which are the little groups of the
Poincaré group in an (1, f+1)-dimensional Minkowski
space.

IV. CONCLUSION

The hydrogen atom illustrates several aspects of the
use of group theory, and especially noncompact groups,
in quantum mechanics. The theory of infinite dimen-
sional representations can be of interest in various
problems. We hope to have shown in this work that it
can be used beyond the realm of Lie algebras.
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APPENDIX

In Sec. IT, Eq. (36), and Ref. 1, Egs. (12) and (40),
we obtained representations of the wave function in
momentum spaces, in the scattering and bound-state
cases, respectively. We shall explicitly transform back
to configuration space and show that we obtain the
usual expressions. We set, of course, f=3.

1. Bound States

Using the results of I, we find for the radial wave
function with principal quantum number # and angular
momentum /:

(—1)8pet
¢n.l(7)=—*ﬁ{;‘"‘
©  gidg
2__ ceo(p2— —3
XL (2 12) -+« (2= ] / T
o rho\ . z( d )’sinm?
X]l(qﬁ)sma d cosd/ sinéd
g= tan §/2, (A1)

where po=(—2uE)}. We want to evaluate the last
integral; denote it by I.i(rpo/#). It is clear that
I,,1(9)y-0=0(¥*). We consider the following sum for
[t] <1

SuLa(y) r= (1—£) A28 (14-1) |
1

X, duita [q2(1+t>2i<1—t)2]m'
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The integrand is even; we can extend the integration form of the Hankel function® and obtain:
from — o to 4 and use

3 HH) 1241 e/ tol
. o » N — o A —
34(8) = (1/20) (9 (8~ O (3) ). 2l = e
The Hankel functions satisfy:? On the right-hand side we recognize the generating

It (=) = (—1) HUD (3), T (5) 0= 0(z1). function of associated Laguerre polynomials:

. eyl (461 Iy (__1)
Hence we can write

A+ =0 (pk) !

Lfy)  [t]<1

2onLaa(y) e and thus get
(l—t ) Lo (1) | L a(y)
_ fm ¢*dq Ji(gy) sin & ( a )’(sin na)
y /+md . ( q 142 o (14¢%) d cos 8/ \ Sin & /5= arctan
. gh™ (gy) q2(1+t);—?(1_t)2> (—1)1
= ——— g2 2ylev], , 2H1(2y). (A2)
(1—2) i (d\MH nnt)!
=" g2 (140 +2\(Z]) Introducing the Bohr radius
- a= h2/ ku, (AS)
q
X{h“)( )(______> } btain b bining Egs. (Al d (A2) th
PN +i(1—0) | eitamsrason Zﬁﬁiﬁ vj;,ge fﬁnccﬁfﬁnmmg @ (A1) sud (42) the
where the integral was performed by closing the con- (—1)»1 2 (n—1—1) It
tour in the upper half ¢ plane. Since the sum behaves ¥n,:(r) = r— = ple 2L, ; 2H1(p);
like y* for y—0 we can drop in the derivative all the @ wi[(nt) 1]
terms which are of smaller power in y. We use explicit p=(2r/na). (A4)

2. Scattering Case

With the necessary adjustments for normalization we find for the radial wave function with angular momentum /
and energy

N 1
(ZW)*{( — eV ) N2(N24-12) (N2+12)}

2 2 d 41 o 2 2 d 41
o inh gt NO_—e—rN f g (———) ho ( > Ne ]
X[ fo qq]z(qp)(l_q2> sinh § (dcosho_) cos e 99%:(gp) —¢ sinh 0, Toosha,) oSN

(AS)

Y a(r) =

N=Fk(u/2R2E), p=[(2uE)}/fJr, tanh (6_/2)=q for 0<g<1,tanh (6;/2)=(1/q) for ¢>1.
The positive (negative) values of N correspond to attractive (repulsive) potentials. Of course we must give
some prescription to deal with the singular point g=1. We introduce
1 ([ d M1 cos N
sinh 7NV \d cosh 0) sinh 6’

i sinh 1(—1)!(1+1) !
(cosh 8+ cosh ¢)#+2

Fiy(N,0)=—

~ +o
Fi(t, 0) = / ANeNF, (N, 0) =

i1 N R

= <2 [ [(1— ‘”N)NZ(N?—l-l?)~"(N2+12)] (=11 2
+oo . . +o0 . g L2
X/_w dt exp (—iNt) sinh l/_w dgji(gp) <q2|:1— cosh (t—i€)J+[1+4 cosh (t—z'e)]> .

5 A. Messiah, Quantum Mechanics (North-Holland Publ. Co., Amsterdam, 1964), Vol. I.
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The prescription cosh (¢—ie) takes care of the
singularity at ¢g=1. We replace again j; by (1/2%)
(l =" ), close the contour in the upper half of
the ¢ plane and use the explicit form of the Hankel
function to.calculate the derivative which occurs at
the point ¢= coth [ (¢—ie)/2]. The result is

8n%l |
EI/N,Z—‘ W sinh 7N
N —1—2,1
X[(l_ —21rN)N2(N2+12),..(N2+l2):|2 p

+co dt

X = IW exp[z cosh (¢/2)p—iNt].
We take x= cosh ({/2) as a variable, the region of
integration being the real axis except the segment (—1,
-+1). We can close the contour in the upper half-plane
(p is positive) and move it to (—1, 4+1). Taking into

account changes of arguments in the integrand we get

. N i —ip\! e™v
= sinh S S I G D,
Yn,1= sinh =N (27r1——e*2“")( 5 )[Nzo--(NZ—HZ)]*

1
X | dweios(1—x) =il (x4-1) tHiv

-1
with Arg (x+1)= Arg (1—=x)=0. Apart from a
proportionality factor and an exponential, the integrand
is a classical representation of the hypergeometric

- function. Taking this factor into account and

CrN2(N2-1) -« (V2-2) I
= (N sinh #N)} | T((HiN+1) |
our result reads

B | TO+iN+1) |20\
¥w(r) = exp (wN/2) ——(2_1-{_—_1_51——< i ) ‘

XF(+iN+1]| 2142 | 25p) (A6)
with p as in (AS).



