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In this article we review the calculations and experimental information available in the studies of electron scattering
(elastic and inelastic) from the magnetic-moment distribution of nuclei. The corresponding information on the properties
of nucleons has been reviewed previously and is not discussed here. As usual in electron-scattering investigations we are
concerned mostly with the determination of two functions of the momentum transfer, the charge and magnetic form
factors or linear combinations of them, which are closely related to the spatial structure of the charge and magnetic-
moment distributions. We specialize the discussion to the magnetic form factor and the nuclear properties connected
with it.
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I. INTRODUCTION

In this article we review the calculations and experi-
mental information available in the studies of electron
scattering (elastic and inelastic) from the magnetic-
moment distribution of nuclei. The corresponding
information on the properties of nucleons has been
reviewed previously (Refs. I—3) and is not discussed
here. As usual in electron-scattering investigations we
are concerned mostly with the determination of two
functions of the momentum transfer, the charge and
magnetic form factors or linear combinations of them,
which are closely related to the spatial structure of the
charge and magnetic-moment distributions. We special-
ize the discussion to the magnetic form factor and the
nuclear properties connected with it.

In Sec.II we discuss the general structure of scattering
formulas and methods of measuring the magnetic cross

' R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
~ R. Hofstadter, Electron Scattering and Nuclear and Nucleon

Structure, a collection of reprints with an introduction (W. A.
Benjamin, Inc. , New York, 1963);R. Herman and R. Hofstadter,
Bigh Energy Electron Scattering Tables (Stanford University
Press, Stanford, 1960). See also, T. A. Gri8y and L. I. Schift',
"Electromagnetic Form Factors, " to be published in the book
High Energy Physics.

'L. N. Hand, D. G. Miller, and R. Wilson, Rev. Mod. Phys.
35, 335 (1963).

section. The approximations of the theory and possible
extensions are discussed brieQy. In Sec. III methods of
extracting information on nuclear structure are pre-
sented ("radiation tail" problems). In Sec. IV the
connection between the information extracted in Sec.
III and the nuclear properties (such as nuclear currents,
nuclear magnetization, and exchange currents) are
discussed separately for elastic, inelastic, and quasi-
elastic scattering. 4

II. STRUCTURE OF CROSS SECTIONS FOR
ELECTRON SCATTERING FROM NUCLEAR

TARGETS

A. General Form

For any process in which a single (virtual) photon
interacts with a nucleus, as in the electron —nucleus
scattering diagram of Fig. 1, the entire dependence of
the cross section on nuclear properties can be described
by two form factors, 8'& and lV2, which are functions
of the invariant momentum transfer q' and the energy
transfer' (or of q and |f.P) . This follows from the vector
nature of the photons and electromagnetic current con-
servation; it also assumes an experimental situation in
which the target is initially unoriented and all final
nuclear states P' consistent with specified P, q are
summed over (i.e., in the electron scattering process of
Fig. 1 only the final electron p' would be detected) .

Further, neglecting the mass of the electron, the cross
section for electron scattering from a nuclear target
can be given explicitly in the laboratory frame in
terms of these form factors as

do' 4Z2~2 6~2

cos' —,'8LW&+2W& tan' —',8j, (1)

where 0 is the scattering angle, Mp the mass of the

4 For a more detailed review of nuclear structure and inelastic
electron scattering see T. de Forest and J. D. Walecka, Advan.
Phys. (to be published) .

'S. D. Drell and J. D. Walecka, Ann. Phys (N.Y.) 28, .18
(1964).' We use the notation 5=c=vs =1, with m the rest mass of the
electron.
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FIG. 1.Diagram for an electron —nucleus
interaction. p and p' are the initial and
final momentum of the electron, P and
P' the initial and final momentum of the
nucleus, and g the momentum transfer.

target, t. and e' the initial and 6nal electron enegies,
and the 4-momentum transfer q'=4ee'sin'28, q P=
1IIz(e—e'). The objective of such experiments is the
determination of these form factors, S'~ and TV2, and
their theoretical interpretation in terms of nuclear
models.

If one does not neglect the electron mass, the factors
that multiply the form factors in Eq. (1) become
slightly more complicated (see below) . If one considers
a process in which the electron lines of Fig. 1 may be
virtual, as in bremsstrahlung or pair production, the
factors become appreciably more complex (Sec. IIIA),
but the cross section is still of the form AWr+BWs,
where the factors A and 8 can be given explicitly and
all information on nuclear structure continues to reside
in Wt and Ws. Equation (1) is equally applicable to
electron, positron, and muon scattering from a nucleus;
for a given nucleus the sunze form factors 8'~ and S"2
should be used in all three cases.

B. Proof

For completeness we indicate here the proof of the
foregoing statements, following the treatment of Drell
and Kalecka. 5 Ke adopt the following notations~: P
denotes the initial 4-momentum of the target, P'=
—M'p'. q is the 4-momentum of the virtual photon,
and P'=P+q is the final 4-momentum of the target.
%'e assume that the target is initially unoriented and
that experimentally all final nlclear states consistent
with the given kinematic conditions (given q and P)
are summed over. In this case, the contribution of the
nuclear part of the process indicated in Fig. 1 is given by

W„„=, Z Z 8&4&(P—P'+q) (P
I
J.(0) I

P')(2~)sn

(Ze) initial anal
states states

X(P'I Z„(0) IP)(E)
where 0 is the normalization volume, E is the initial
energy of the target, Z indicates an average over the
initial target states (i.e., M'~ of the target),

I P) and

I
P') are the Heisenberg state vectors of the initial

and final nuclear states (that is they are eigenstates of
the nuclear 4-momentum operator P„), and J„(0) is
the electromagnetic current operator of the nucleus at
the space —time point x„=0.The four-dimensional delta
function summarizes the translation invariance of the
theory. Lorentz invariance tells us that 8'„„must be
a second-rank tensor since the current operator is a
4-vector. Because of the sum over initial and final

~ We use a metric such that a„=(a, iae) and a b=a b —apbp.
In this metric g'&0 for both scattering and pair production.

(8/Bx„) J'„(x)=0, (4)

which implies that q„W„„=S'„„q„=0.These relations
are sufficient to eliminate three of the invariant func-
tions and one can thus write a symmetric tensor, with
O'I and R~ both &0 according to the definition in
Eq (1)

W„,=Wt(q', q P)l e„,
qs

1(Pq t(Pq
+W2(q', q.P),l P.—,q, II P.—,q. (5)

This theorem is due to Bjorken, von Gehlen, ' and
Gourdin. ~o

In terms of S'~ and W2 the electron or muon scat-
tering cross section for Axed electron energy and angle
but summing over all else can be computed in standard
fashion:

where

X„„=—-,'Try„(ns iy p)—y„(m iy p')—

=2LP.P'+P.P' o..(P P'+m') —j
Combining gives

dp 1 1
do = 2Z~o.

2e' q4 L(P P)'—nt'Mp']i

2(p. P) L(p-q) Pl, ,X 2(q' —2nt') Wr+2
Mz'

——,'q 8, .

The three independent scalar functions in electron
scattering can be taken as e, e', 8 in the laboratory
system or as the three scalar variables q', p P, and q P.
Measurements at fixed q' and q P can separate 8'&

and 8 2 and check the one-photon-exchange form.

' J. D. Bjorken (unpublished).
9 R. von Gehlen, Phys. Rev. 118, T455 (1960)."M. Gourdin, Nuovo Cimento 21, 1094 (1961).

states, there are only tvro 4-vectors on which this tensor
can depend, P and q. Since P'= —Mz', there are only
two independent scalars which can be formed from these
4-vectors, q' and q P. Thus the most general form of
the tensor 8'„„is

Wt„=A(q', q P)8„„+B(q',q. P)qsq„+C(q', q P)P„P„
+D(q', q P) (q„P„+q„P„)+E(q',q P) (q„P„—q„P„).

(3)

No term in e„„p Ppq, can appear since the current
operator is a polar vector under spatial reQections. We
know further that the nuclear current operator must
satisfy the continuity equation
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The cross section can be written in the laboratory
frame as

d0

dQ'd lp'I

where

2Z'n'/ p" ) 1

q' Ee'lpliMp

X [2(ee'—
I p II

p'
I
cos e—2m') W,

+(-'+
I p lip' I- tl+ )w,],

g =466 sin g8. (10)

C. Interpretation

Considering the electron —nucleus scattering cross sec-
tion as a function of g2, q E, and 0, it is clear that for
fixed energy and momentum transfer to the nucleus
an experiment at small electron-scattering angles is
sensitive to the form factor 8'2 and an experiment at
large scattering angles is sensitive to 8'~. Theoretical
predictions for these form factors depend on a model
for the nucleus. However, it is easy to see that W&,

measurable at large angles, is connected with the mag-
netic properties of the nucleus. Thus, in the case that
we have only elastic scattering from the nucleus,
E"=—%~2 and 2q. P= q2, and a spin-zero target we

have with the aid of Eq. (4)

(Q'FE')&(8'=P+q
I J„(0)/Ze I

F )
= P(q') [&.—(F qiq') q.] (11)

with P(0) =1~ By substituting in the equation for W„„
one finds

Wg= 0,

W2=
I
F(q') I'(Mp'/F-') a(E E' qe), (12—)—

i.e., for a spin-zero nucleus (no magnetic moment) Wi
vanishes for elastic scattering. Similarly (Sec. IVA)
one can show in the elastic scattering from a 6xed
nucleus that, for small momentum transfer q2, le~ is
proportional to the magnetic moment of the nucleus.
In elastic scattering from a fixed nucleus F(q') is simply
the Fourier transform of the charge distribution of the
nucleus.

The Rosenbluth cross section for elastic scattering
from a spin--,' target is also a special case of Eq. (9)

(Q'ZZ') « (F', X'
I S„(0)/Ze I F, X)

=t'Mr~i (p') [Fi(q') v.+F.(q') a,.q.]»(p) (13)

q—F/M~ e=e'—,

q 2ee 2
I p II

p'
I
cos 0—2m'. (9)

These formulas simplify if one can neglect the mass of
the electron

d~ 4Z2n2 e"
cos' ~gcos,8

X[W2(q', q. F)+2Wi(q', q F) tan'-', 8],

D. Connection with Photoabsorption

If the photon of Fig. 1 were real (and we dispense with

the electron) we would be concerned. with the total
cross section r~ for absorption of a real photon. Our

previous analysis of 8'„, in terms of form factors 8 &

and 8"2 would still be valid, except that here we would

now have the condition q'=0. The cross section is

.= I(2 )'Z' [(q &)']~}lW- I, =o (1g)

We can thus relate 8'~ and 8'2 evaluated at q2= 0 to a~.
The expression Eq. (5) for W„, has no singularities

when one sets q'=0, as can be seen from Eq. (2), since

the matrix elements are just the physical amplitudes
for photoabsorption to individual final states. The
apparent singularities in Eq. (5) hence must cancel as
q2—4, whence one deduces

W2 = O(q'), Wg —[(F q)'/q']W2 = O(q');
q2~ q~

(W„„=2Wi), ~=e (19)
and hence

a = j(2~)'Z'~[(q &)']~}Wi le'=e

For 6xed energy transfer and small q2 we can thus
write the form factors 8'& and 8"2 for electron —nucleus

scattering in terms of the total photoabsorption cross
section at the same energy transfer as

Wi=[(2+)'Z'u] '[(q F)']*a~,

W =L(2 )'Z' ] 'Iq'[(q &)'] },. (21)
"M. N. Rosenbluth, Phys. Rev. 79, 615 (1950)."R. H. Dalitz and D. Yennie, Phys. Rev. 105, 1598 (1957).

in the usual Dirac notation with Fi(0) =1, F2(0) =
2X/Mp the anomalous magnetic moment. Inserting this
in the equation for 8'„„one finds

Wi=q' I -', Fi(q')+MpFg(q') I'3(E—E'—qe) (F-') ',
(14)

W2=M~'[I Fi(q') I'+q'
I
P2(q') I']3(&—e—

qo) (Z') '

(»)
Inserting in Eq. (9) yields (integrating over e')

do Z2cP

, — cos' -', 8
dQ' 4e'sin4 —'0 1+(2e/M~) sin' a8

X l LI Pi I'+q'
I

P2 I']

+(q'/2M'') I Pi+2' F2 I' tan2 —'e} (16)

which is the Rosenbluth result. "
Another method of analysis of electron scattering

involves the separation of the cross section into con-
tributions from longitudinal and transverse currents. "
From q„S'„„=8 „„q„=0 and the similar relation for X„„
one can eliminate all scalar terms in X„„W„,. In the
laboratory frame there is no interference between
longitudinal terms (along q) and transverse terms:

N„„W„„=[1 (qe/qe)']'—NeeWee+Ntt Wtt . (17)



314 REvIEw oF MQDERN PHYsrcs APRIL 1966

E. Extensions and Limitations

From the derivation of the form for 1/I/„„ it is apparent
where the assumption of an experimental situation
appropriate to an average over initial and a sum over
6nal nuclear states enters: without these requirements
there would be more independent 4-vectors on which
the tensor TV„„could depend and consequently more
independent form factors. Hence one can expect to
measure additional nuclear properties, (1) by polarizing
or aligning the target, or (2) by measuring independent
properties of the nuclear final state in addition to
detecting the electron. ERects of nuclear orientation
have been discussed recently by Wiegert and Rose";
some general results for the amplitudes for two- and
three-body Anal states have been given by Herman. '4

On the other hand, the entire method of analysis we
have presented depends on the assumption of one-
photon exchange only; this corresponds to neglecting
higher Born-approximation corrections of O(Zn) and
can only be appropriate for light nuclei. Deviations
from Born approximation (one-photon exchange) can
be tested by observing differences between electron and
positron scattering cross sections, or by detecting viola-
tion of the two form-factor parameterization of electron
scattering. Experimental results on the diRerence be-
tween electron and positron scattering from nuclei at
small angles, both elastic and inelastic, have been
obtained by Goldemberg, Pine, and Yount. " When
many-photon exchange effects must be considered, no
correspondingly simple theoretical analysis of experi-
mental results has yet been developed. Three approaches
have been used in calculation of both elastic and in-
elastic scattering: (1) Second Born approximation, "
(2) numerical partial-wave calculations for scattering
in a potential, 'r and (3) replacement of the free electron
of Fig. t. with a modified plane wave. "When applied
to inelastic scattering these methods generally corre-
spond to the use of a distorted-wave Born approximation
in Fig. 1: the excitation of the nucleus treated only in
lowest order, but the incoming and outgoing wave
function treated more exactly. Both theory and experi-
ment agree that in light nuclei for small momentum
transfers (within the first zero of the form factors) the
one-photon exchange analysis is adequate.

where A (q) and B(q) are functions of the momentum
and energy transfer, related to the charge and magnetic
form factors. Consequently if one has two measure-
ments of do/dQ at two angles but at the same momen-
tum and energy transfer, one can obtain A(q) and
8 (q) .Better yet, in a linear plot of do/dQ o&s as ordinate
against tans se as abcissa, A(q) is the intercept with
the ordinate axis and B(q) the slope of the resulting
straight line. An example is shown in Fig. 2. If the

magnetic contribution to the scattering is not insigni6-
cant compared to the charge scattering, this method

permits the determination of F „with a precision
comparable to F,I,.

The relative order of the magnetic to charge elastic-
scattering cross sections, for example, can be simply
estimated as the ratio of the strength of the magnetic
qp, and Coulomb interactions eZ

&qtt '&1 q tt/tie)l'

l eZ &2Mc Z /
' (23)

where Z is the nuclear charge, p the magnetic moment
of the scatterer, p~ the nuclear magneton, and M the
nucleon mass. This ratio is small for large Z and small
magnetic moments, which is the case of medium and
heavy nuclei; however, it increases with the momentum
transfer. For the case of the nucleons it has been feasible
to use Eq. (22) and separate F,s and Ii „with high
accuracy. "' In other elements however conditions are
not favorable; the slope of the straight line is small
and the precision in its determination poor.

An obvious solution is to extend the measurements
to such large angles that the increase in tan'-,'8 corn-
pensates the smallness of B(q). In particular, if one
makes measurements at exactly 0=180' one has from
(22)

F. The Measurement of Magnetic Scattering

As seen above LEq. (10)) all the processes considered
in this paper have a diRerential cross section which
can be written in the form

do/dQ=o~s[A (q)+B(q) tans-,'(t$,

(Zo/ ' cos'8 A

"L.J. Wiegert and M. E. Rose, Nucl. Phys. 51, 529 (1964);
D. Schildknecht, Phys. Letters 10, 254 (1964). Some time ago
R. G. Newton LPhys. Rev. 103, 385 (1956); 109, 2213 (1958);
and 110, 1483 (1958)g discussed the use of electron scattering
for aligned nuclei for obtaining information on magnetic moment
distributions."S.M. Berman, Phys. Rev. 135, B1249 (1964)."J. Goldemberg, J. Pine, and D. Yount, Phys. Rev. 132,
406 (1953).I S. D. Drell and R. H. Pratt, Phys. Rev. 125, 1394 (1962).

» T. A. Gri8y, D. S. Onley, J. T. Reynolds, and L. C. Bieden-
harn, Phys. Rev. 128, 833 (1962); D. S. Onley, T. A. Griffy,
and J. T. Reynolds, ibid. 129, 1689 (1963); D. S. Onley, J. T.
Reynolds, and L. E. Wright, ibid. 134, 3945 (1964).' D. R. Yennie, F. L. Boos, Jr., and D. G. Ravenhall, Phys.
Rev. 137, B882 (1965);A. Baker, Phys. Rev. 134, B240 (1964);
H. Greenstein (to be published).

=8 q (2&)

"See, for example, D. Aitken, R. Hofstadter, E. B. Hughes,
T. Janssens, and M. R. Yearian, in Proceedhngs of the 196Z Inter
national Conference on High Energy Physics (CERN, Geneva,
1962), p. 185.

'0 The Mott cross section is really proportional to

[1—(v/c) ' sin' —',S]
which for v~c becomes cos' 8/2.

The cross section is then purely magnetic and although
small can be measured without the usually dominating
contribution from charge scattering.



A special method is necessary to measure cross sec-
tions at 180'; the reason is that the detection of the
scattered electrons is usually made in magnetic spec-
trometers which for structural reasons cannot swing to
angles larger than 150' without the incident beam of
electrons hitting the spectrometer pole faces or mount.
In the method developed at Stanford University by
Peterson and Barber" electrons are deQected 10' by
an auxiliary magnet before striking the target and the
ones scattered at 180' are deQected again approximately
10' (in the opposite direction) before entering a mag-
netic spectrometer located at 160' with respect to the
incident beam. A sketch of this experimental setup is
given in Fig. 3. Other arrangements are possible and
are in use at Stanford, Orsay, and other laboratories.

In general what one measures in magnetic scattering
experiments is the complete spectrum of electrons
scattered by a target at some large angle (tI 180') when

MAGNETIC

Fxo. 3. Sketch of
the experimental ar-
rangement for 180'
scattering in use at
the Mark II Stan-
ford Accelerator.

ERED
RON

TARGET

DEFLECTING
MAGNET

4. Region "d" corresponds to quasielastic scattering,
i.e., scattering of electrons by the many individual
nucleons; the shape of this broad "peak" is determined
by the momentum distribution of the nucleons inside
the nucleus.

5. Region "e"corresponds to the high-energy tail of
the momentum distribution where short-range correla-
tions are expected to appear.

6. In region "f" electrons that have lost energy
through radiation are dominant; these can be attrib-
uted to the basic process of bremsstrahlung at very
large angles or to such processes as radiation by an
electron that was already degraded in energy by a pre-
vious scattering. Electrons of this origin are present
also in the other regions and are represented by the
dotted line in Fig. 4. The "nuclear physics" features of
the spectrum are therefore superimposed on a continu-
ous spectrum of electrons that have a basically dif-
ferent origin. Furthermore the radiative corrections
(Schwinger correction) contributes in an important
way to this continuous spectrum. These contributions
make up what is generally called the "radiation tail, "
which must be subtracted before any interpretation of
the nuclear physics can be made.

2-0

/cr = A(q) + B (q) tan
dg/ Ns

INTERCEPT = A(q) * 0.282
SLOPE = B(q) = 0.276

2 -2I.2 —q = IOF
b

0
0 4.0 6.05.03.0

tan 2 e
2

2.0I.O

FIG. 2. Typical plot of the diGerential cross section for scat-
tering as a function of tan~ ~~8. This corresponds to electron-
proton scattering data at a q2=10 F 2. Measurements of cross sections at 180' have special

problems associated with them. The basic ones are:
electrons of incident energy Eo are incident upon it.
Figure 4 shows a sketch of the expected features of
this spectrum. This sketch shows six regions in the
spectrun~ which we discuss separately:

(a) The cross section at 180' is a minimum and it
increases very rapidly because of the charge-scattering
contributions (which goes as cos'-,'8/sin4 2~8) as the

do
dQ
Ji

1. In region "a" one has magnetic elastic scattering
by the magnetic moment of the nucleus, as well as a
contribution from electrons that are scattered by the
charge of the nucleus but enter the detector for reasons
discussed below.

2. In region "b" discrete nuclear energy levels are
excited. It is shown later that they correspond mainly
to magnetic multipole transitions; at low incident elec-
tron energies they constitute what one could call a
"giant magnetic-dipole resonance. "

3. In region "c"electric-dipole transitions resulting
from the transverse terms in the electromagnetic inter-
actions of the electrons are outstanding; they corre-
spond to the "giant electric-dipole resonance, " which
is generally studied with real photons.

C Ib'
I I I

SCATTERED ELECTRON ENERGY

FIG. 4. Regions of the spectrum of high-energy electrons scat tered
at large angles by a nucleus: Region "a"—magnetic elastic scat-
tering; region "b"—magnetic dipole transitions; region "c"—
electric dipole transitions; region "d"—quasielastic scattering;
region "e"—tail of quasielastic peak; region "f"—radiation
tail. The dotted line represents the radiation tail in regions "b",
c cc&) c cd'7 J and ccelt

"G. A. Peterson and W. C. Barber, Phys. Rev. 128, 812
(1962).
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angle decreases from 180'; on the other hand, spectrom-
eters have a 6nite entrance angle (typically 0.01 sr)
and consequently some charge scattering enters the
spectrometer. A solution of this problem is to measure
an angular distribution about 180'; since the magnetic
scattering is proportional to 1/sin'-,'8 and the charge
scattering to cos' sr(t/sin4 rstt these contributions can be
separated.

(b) The multiple scattering of electrons in the target
either before or after scattering can represent a con-
siderable complication to the experiment since it effec-
tively increases the entrance angle of the spectrometer
in an energy dependent way; at low energies and for
thick targets considerable care must be taken with this
eRect.

(c) The radiation tail at 180' cannot be calculated
using the usual approximate formulas which deal only
with bremsstrahlung by the nuclear charge. Not only
a better expression for this spectrum has to be used but
in addition the bremsstrahlung resulting from the
magnetic moment of the nucleus (if it has one) has to
be considered. This point is discussed in greater detail
in Sec. III.

IIL EXTRACTING INFORMATION ON
NUCLEAR STRUCTURE

A. Bremsstrahlung at Large Angles

The spectrum of electrons scattered at a given angle,
regardless of the direction of the accompanying photon
in the bremsstrahlung process, has been calculated by
Parzen et al.22 for point nuclei with no magnetic moment.
We are interested here in finite-size nuclei with magnetic
moments. Calculations have been made for this problem
by Ginsberg and Pratt" in Born approximation, neglect-
ing nuclear recoil and processes in which the nucleus
is left in excited states.

X
/

@oh jpT.h+I —
(

~'
I
~ "['T-s, (25)

'9+1
Eze & 3I

with the notation:

C =Z'r, s/137,
A =c=sf~= 1)
p, e initial electron momentum and energy,
p', e' scattered electron momentum and energy,
k, k= e—e' photon momentum and energy,
d, =p —p' —k 3-momentum transfer,
I, p=Xe/2M„nuclear spin and magnetic moment,

3f~
—nucleon mass.

T,h is the familiar expression from the Bethe —Heitler
equation and T „is a similar function of p, p, k, e,
and e'. The form factors Ii,h and F,g for the nuclear
charge and magnetic-moment distributions are, respec-
tively,

p~(6) = (r ) fp(r) exp'(~A. r)dr,

F,s(h) =i@ ' p(r) exp (j~ r)dr. (26)

These are exactly the same form factors that enter in
the elastic scattering cross sections, as we see later.

The spectrum of the electrons that constitutes part of
the radiation tail can be obtained. from Eq. (25) by
integrating over the photon angles dQI, . The result is

The differential cross section for bremsstrahlung from
a nucleus with a charge and magnetic moment, after
sunning over 6nal electron and nuclear spins, photon
polarizations, and averaging over initial electron and
nuclear spins, was found to be

do C p'dk 1

dQ„.dQ), (2pr)' p k A4

do C p' &~a* dx ( p &)'(I+1)—,
I
ra I'r"+l,r—,I I, ll

x2l -P. I' rj (27)

where

Rph ———2g—'—(2e'—X) (nPp+X)8) X-&—(2e"—X) (nP+7d3p) Xp
—1

+I2('+ ")+ —x—2r(1+ )("+"—x) —K( —x) 'I(X '*—Xo '), (2g)

& .s= 2~-'(2p'+x) (~Pp+x8) X ' (2p"+x) (~P+—xPp) Xo '

+ I ("+e")—~+x—L(1+~) (p'+p"+x) —&'3(~—x) ')X —Xo, ( )

"P.T. McCormick, D. G. Keister, and G. Parzen, Phys. Rev. 103, 29 t'1956).
"Edward S. Ginsberg and R. H. Pratt, Phys. Rev. 134, 3773 (1964); 13'7, 81500 (1965).
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and where

Xmin= 2& min= 2 (a k)

Xmsg 2~ msx 2 (a+k)
o,=ee —P .P—1

&2= %'p= p' —p'p

p=q p'=p p'-p"
Xe=p2X2+2ylk2 —c).(c'ee—1)$+ p "a2

X=p"X2+2XLk2—n(e'. —1)3+p2~2.

Equation (27) is the exact Born-approximation result for the spectrum of scattered electrons due to bremsstrahlung
from a static spherically symmetric distribution of charge and magnetic moment.

In the limit of point nuclei, high incident energies and large scattering angles one obtains

da'= do'eh+do'mng,

with

C p'de'dQo'
do, i,=——— )A,i,(y, 8) log 2g+B,h(y, 8) j,

2ir p k

C p'de' 2p. ' I+1)
da .g—————dQ„. —'

~LA .g(y, 8) log2g+Bm. g(y, 8)$,2gp k "Ze 3I i
Q,nd

(1+F2)' cos' -'8
A.h(v, 8) =

2y' sin4 ~0

(1+F2) (1+ sin' -'8)
Amag(V) 8) =

"f sin g8

1+F2 cos' —,'8 1+y' 1—y+y'
2p' sine 28 2 sin4 28 sin' 28 ),sin' 28 (1 y') sin' 28

B,g(y, 8) = logy— , ,
* + jog ( )+(1+,, ) loii (Ooio'-', ii). (33)

In these expressions, y= g'/g and

a = (1—7)L(1—7)2+47 sin2 -'28)~.

The result for do;h was obtained by Parzen et al.22 The
'tructure of Eq. (31) is interesting since the term
A,h(y, 8), which is dominant at all angles except near
180', has the familiar cos'-,'8/sin'-', 8 and thus is impor-
tant where the charge scattering cross section is. The
approximate formulas used at forward angles consider
only this 6rst term. However, B,h contains terms
which do not vanish with cos'-,'8 and so dominates the
large-angle charge bremsstrahlung. LIn Eqs. (31)—(33)
the electron mass has been neglected in comparison to
the energy. As usual it is due to this approximation
that charge scattering vanishes at 180', the corrections
due to finite m, must in some circumstances be con-
sidered. $

The ratio of the magnetic to the charge elastic
bremsstrahlung for the point case LEq. (32) divided
by Eq. (31)) is

do, g X ' I+1 e ')'A, glog2e+B, g

do, ), Z 3I IVi A, ), log 2e+B,h
(34)

where we have put tt=Xe/2M. As expected, the mag-
netic bremsstrahlung is most appreciable at 8=180',
where A,h=0, and becomes less important as Z in-
creases. For 6xed y and 8 as E—+ the magnetic
bremsstrahlung becomes relatively more and more
important. In Fig. 5, we illustrate the relative contribu-
tions of the point charge and point magnetic moment
for E=54 MeV and 8= 180' using Eqs. (3) and (4).
The contribution of the magnetic bremsstrahlung is
large for scattered electrons undergoing small energy
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FIG. 5. Relative
contributions to the
radiative tail of the
elastic peak from a
point charge (Ze)
and point magnetic
moment (Xe/2Mo)
in the limit e, e'»1,
0))e '

loss, i.e., near the elastic peak from magnetic scattering.
The relative importance of the magnetic bremsstrahlung
can be inferred from Fig. 5 by multiplying the ratio of
the two curves by the factor (X/Z)s(I+1)/3I, which
in the case of AP~ is 0.037 yielding a ratio of
do~«/do. h 0.026 for y=0.7 and ~1.75 at y=0.95.
(For Cu these percentages are reduced by a factor of 10.)

Recently magnetic bremsstrahlung in electron —proton
scattering has been observed for the first time. This
constitutes an interesting problem in itself. Figure 6
shows the results of a measurement of the elastic peak
in hydrogen for an incident energy of 54 MeV and a
scattering angle of 180'.24 The experimental points have
not been corrected for magnetic bremsstrahlung. The
dashed curve represents our approximate theoretical
result for the elastic magnetic bremsstrahlung given by
Eq. (32). (At these energies effects of the finite size
of the proton are small. ) We have interpreted y as
the fraction of the peak energy, i.e., we replace Es by
the peak energy (the effects of recoil are about 10%).
It is encouraging that Eq. (32) agrees fairly well with
the data."

0.6—

0.2-

0 1 ! I ! I

0.25 0.55 0.45 0.55 0.65 0.75 0.85 0.95
~'/ E

FIG. 7. Ratio of the cross section for scattered electrons after
bremsstrahlung calculated with form factors (determined from
elastic scattering) to the point charge result, for some spinless
nuclei.

In the case of finite nuclei the integral in Eq. (27) can
be evaluated numerically. The e8ect of finite nuclear
extension in reducing the radiative tail is clearly shown
in Fig. 7, where we have plotted the ratio of cross section,
given by Eq. (27), to the point cross section, for some
spinless nuclei (the situation is not complicated by the
presence of magnetic bremsstrahlung). For simplicity,
we have chosen a form factor corresponding to a trape-
zoidal charge distribution for all three nuclei, with
values of the half radius and skin thickness taken from
Table 3 of Herman and Hofstadter. '

Finally, in Fig. 8, we illustrate the effect of the
contribution of magnetic bremsstrahlung. Inelastic
scattering experiments have been performed on Li~ at
180' using 41.5-MeV incident electrons. '~ This nucleus

5 x IO

2x IQ
o IO

LU

(h

44 45 46 47 48 49 50
g'(MeY )

FIG. 6. Elastic
peak in electron scat-
tering from hydro-
gen (J. Goldemberg,
unpublished) . The
dashed curve is
the approximate an-
alytic result for a
point magnetic mo-
ment given by Eq.
(32)
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'4 J. Goldemberg (unpublished) .
"Calculations for electron —proton bremmstrahlung that do

not neglect proton recoil have been reported by R. A. Serg and
C. N. Lindner, Phys. Rev. 112, 2072 (1958); Nucl. Phys. 26,
259 (1961).See also Y. Tsai, ProcecChngs of the 1963 Conference
ON Eucleorl, Structure (Stanford University Press, Stanford, 1964).

FIG. 8. Spectrum of scattered electrons due to bremsstrahlung
from Li~, showering contribution of the charge and magnetic-
moment distributions.

~W. C. Barber, J. Goldemberg, G. A. Peterson, and Y.
Torizuka, Nucl. Phys. 41, 461 (1963).
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has a large magnetic moment and a low Z.
I the factor

(X/Z)'(I+1)/3I is approximately 0.65] so we expect
m.agnetic eGects to be important. As a 6rst approxima-
tion we may set I F,b Is= |Ii „Is and assume a trape-
zoidal form factor with parameters taken from Herman
and Hofstadter. ' Besides the differential cross section,
the separate contributions of dr, h and do. ,g are also
shown in Fig. 6. The ratio da,ada, b is about 0.24 at
p=0.7 and rises up to 8.0 at y=0.95. t This compares
with ratios for the point case from Fq. (22) of 0.25
and 17.4, respectively. ]

Maximon and Isabelle'~ have extended these calcula-
tions in order to include inelastic scattering; in their
integration of the Bethe —Heitler formula they separate
terms of order ln 8/trtcs ("peak contribution" ) which
are dominant at most angles and terms of order unity
("background contribution") which are in general
neglected at forward angles, "but which become domi-
nant at angles near 180'.

B. Radiative Corrections

These corrections are well known and ha, ve been
used extensively in the literature; they account for the
fact that in a scattering event there are higher order
corrections (such as emission and absorption of virtual
photons and emission of many low energy photons)
which are responsible for the removal of electrons from
a peak to a continuous spectrum that extends down to
lower energies.

To obtain the real cross section of the peak it is then
necessary to multiply the observed cross section by a
correction factor. If one divides the spectrum of electrons
in bins of width be starting at the highest energy at
which electrons are present (e') then the cross section
in the highest energy bin is given by

(da/dQ) )
——(da/dQ) ob-. .e exp I y(&4) ] (35)

where y is given by Tsai'9 as

y(8e) = (2n/s-)

y I Dn(e/rt'be) +-,' ln (e/be) —x-t't]I 2rrt (g'/M') —1]+m'r I,
(36)

where u is the Q.ne-structure constant, M is the nucleon
mass, and

rt =1+(2e sins -'0/Mc') . (37)

In the case of a spectrum of electrons such as the
one in Fig. 4 in which one has not only an elastic peak
but others as well, the radiative correction is applied
using an iterative procedure that treats all the scattered
electrons (elastic and inelastic) in a similar way': the

'~L. C. Maximon and D. B. Isabelle, Phys. Rev. 133, B1344
{1964);136, B674 (1964)."L.I. Schiff, Phys. Rev. 8'7, 750 (1952)."Y. S. Tsai, Phys. Rev. 122, 1898 (1961); see also N. T.
Meister aq.d D. R. Yennie, ibid. 130, 1210 (1963), and N. T.
Meister and T. A. Gri8y, ibid. 133, 1032 (1964).' H. Crannell (private communication).
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Fxo. 9. Spectrum of electrons, initially 70 MeV, after scattering
180' from a water target. Shown also are the experimental points
after the radiative correction (Schwinger correction) has been
applied. The dotted line represents the bremmsstrahlung contri-
bution.

cross section of the second bin Lbetween the energies

(e—28e) and (e—8e) ] is reduced by the amount that
comes from electrons that would have been at higher
energies had there been no radiative corrections and
then multiplied by its own e~ factor to correct for the
electrons that were removed from it. A similar proced-
ure is applied to the third bin and so on. This iterative
procedure can be programmed in a computer and other
corrections such as energy loss, electron —electron colli-
sions, etc. , incorporated. Alternatively the radiation
tail can be computed using analytical expressions in-
stead of being extracted by the procedure described
above. "These problems have also recently been dis-
cussed by Nguyen-Ngoc and Perez-y-Jorba. ss

As an example of the application of the methods
discussed in this section, Fig. 9 shows the uncorrected
data obtained from the scattering of 70-MeV electrons
in a HsO (water) target at a scattering angle of 180',
and the importance of the corrections.

IV. INTERPRETING INFORMATION ON
NUCLEAR STRUCTURE

A. General Remarks"

"D.B. Isabelle and G. R. Bishop, Nucl. Phys. 45, 209 (1963l.
"H. Ngugen-Ngoc and J. P. Perez-y-Jorba, Phys. Rev. 136,

B1036 (1964)."R. H. Pratt, J. D. Walecka, and T. A. GrifFy, Nucl. Phys.
64, 677 (1965).

In agreement with our general result, the formula for
the diGerential cross section for an unpolarized electron
beam to scatter through an angle 0 and at the same
time take an unoriented nucleus from the state J,—+Jf
is given in Born approximation (which should be good
if Z is not too large), and with the neglect of nuclear
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recoil, and the electron mass bys~"

(d~/dQ) ( J.~~f)
8~n' p'k'&

q4 pk jILVz(8) IVz(q')+ IV~(8) JV~(q') ~, (»)

where the nuclear structure form factors are

Mzsr(h) = dxp~(x) Yzsr(Q, )gz(hx) ) (41)

and the operators TI,~'g and TI,~" are the transverse
multipole operators

Tzsr"(&) =& ' dx{j&(x) LVs jz, (A*)Yzzt~(Q*)]

+&j'z(») Yrrr~(Q. ) ~ @zan(x) } (42)

&zM- (&) = dx{p&(x) [v'a jz(zlx) Yz„(Q.))

+jz(hx)Yzpt (Q,).jz(x) ), (43)

'4 L. I. Schiff, Phys. Rev. 96, 765 (1954)."K. Alder, A. Bohr, T.Huus, B.Mottelson, and A. W. Winther,
Rev. Mod. Phys. 28, 476 (1956).

"The main effect of including nuclear recoil is to add a phase-
space factor

PdWr/dP f] {1+DP' Pcos 8)/Fr J} '—
where Bf is the 6nal total energy of the target.

'~ The use of the 3-momentum transfer 6 in the form factors
that appear in electron-scattering formulae indicates that the
target is treated nonrelativistically (no recoil). For the case of
elastic scattering in this approximation one has q2=62. Since a
relativistic generalization would probably contain the 4- instead
of the 3-momentum transfer this substitution is made usually.
For inelastic scattering in general p=p', and consequently again
q'~r9. In the case of excitation by real photons, on the other
hand, q'=—0 and b, =By —B; (excitation energy).

JV~(q') =Z(»'+1)-'

&& {I (&z II
2'~-'(&)

ll ~') I'+
I (~z II T~"(&) II ~ ) I'k

(39)
with the following definitions'~:

Vz, (8) = (q'/5') 2P P' cos' -'8:2I"cos' —,'8,
n=n'

Vr (8) = (2p p'/6') sin' -', 8

&&L(p+P')' —2PP' cos' s8$ -P'(1+ sin'-,'8), (4O)
n=u'

y(y') =initial (anal) electron wave numbers,

(y—y')' is the 3-momentum transfer, q'= 6 '—(p —p')'
is the relativistic invariant 4-momentum transfer.
Mzm(h) is the Lth multipole moment of the nuclear
charge density,

where j&(x) is the nuclear convection current density
and yz(x) is the spin magnetization density. The
YI,L,~~ are the vector spherical harmonics as dehned in
Edmonds. " The transverse multiple operators are
exactly the same as those governing radiative p transitions
in nuclei. "The only difference in the latter case is that
there

I
A

I
=Ez E, (—Ef and E; are the initial and

6nal energies of the nucleus) while here it is the momen-
tum transferred by the electron.

We note the following important feature of the diGer-
ential cross section. If we fix 6, and then look in the
backward direction, 8/2 =rr/2, only the tratssverse multi
pole terms contribute. If we further restrict to elastic
scattering as in the experiments of Goldemberg and
Torizuka, " then Jf= J;=—J, and there is no parity
change since the Anal and initial states are just the
nuclear ground state. In this case the selection rules are

iqv22't~-'(&): dxLp~(x) +-,'x, j„(x)]
Qmp 3

~ LV x Vtsz(Q. ) ]=Liq/(6s. )'*]p,sr, (44)

where p&~ is just the magnetic-dipole operator, then
we can relate the transverse Mi matrix element to the
static magnetic moment by

(JJ
I its I

JJ)=—p

(2~+1) 'l (~ II» II ~) Is

t'

I,—J o z)
(2/+1) '(/+1) J 'p'. (45):—

' A. R. Edmonds, Angmlar Momentlm in Qmantnm Mechanics
(Princeton University Press, Princeton, New Jersey, 1957)."J.M. Blatt and V. F. Weisskopf, Theoretical 1Vuclear I'hysics
(John Wiley Bz Sons, Inc. , New York, 1952). This ordering does-
not remain valid for higher momentum transfers.

40 J. Goldemberg and Y. Torizuka, Phys. Rev. 129, 312 (1963).
4'L. Durand, P. DeCelles, and R. Marr, Phys. Rev. 126,

1882 (1962).

j.(I&2J
Am. =So.

This means we can have M1, E2, 3I3, E4, M5, E6
multipoles, etc. Time-reversal invariance eliminates the
even electric multipoles. ss 4t Thus only the odd magnetic
transverse multipoles remain, M1, JIf3, M5, etc.

In the limit as the momentum transfer 6 goes to
zero, we can make use of the fact that the transverse
multipole operators are just those of p decay, and use
the results of Blatt and Keisskopf39 for the ordering of
the magnitude of the contributions of the various
multipoles. )The expansion parameters are essentially
hc/Mc' and AR divided by the various f'actors that
come into the expansions of the spherical Bessel func-
tions jz, (ER) .$ The dominant multipole will be the M1.
If we now use the fact that
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Therefore,

(46)

where tt=—)It/2Mc (M is the nucleon mass). If we set p'= p we 6nd the simpler form"

(47)

srhere

I
~"(&) I'= 2 I (~ II ~~(A) II ~) I'

27+1 r~

In the backward direction, as 6—4, one sees just the
static rrtagnetic morlertt The .above formula (if one sets

I F,i, (&) I'=Z') is identical with the formula originally
derived by Jauch~ and independently by Scofield4' for
the scattering of an electron by a point system with a
charge Z and magnetic moment ) .44 The present deriva-
tion has the advantage that it holds for an extended
target with arbitrary charge and current distribution
and with any spin.

B. Elastic Scattering

As seen in the discussion above the magnetic scat-
tering cross section given by Eq. (47) has a very simple
structure that can be compared with experiment by
measuring the scattering cross section at 180' as a
function of Z at a given (small) momentum transfer.
The form factors simplify in this case to F,h=Z' and

F „=Xand we get

1 do J+1E' fPLP
M. ' 1+ — (1+2 tan'-,'8)

IZ' dQ 3J Z' 4m'c'

( e2 )2 cos2 ~0
OMott . 4 g j

(2eoi sin —,'0 ' E=tt/(eA/etc) . (49)

At 180' there should not be any charge scattering
but the finite solid angle of the spectrometer and
scattering in the target (which is particularly important
at low energies) gives an appreciable contribution to
the cross section; the proper subtraction of this back-
ground constitutes an important part of this type of
experiment (at low momentum transfers) .

Figure 10 shows the data obtained for a number of'

elements by Goldemberg and Torizuka' using incident
electrons of 41.5 MeV. The data are presented as the
cross section divided by Z'. For spin-zero nuclei, E=O,
and the cross section reduces to

ELASTIC SCATTERING CROSS SECTION
AT I77.4
4I.5 Mev

(1/Z') (do/dQ) = o M,~@=constant. (50)

R

A

0
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lO
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der p J+ l K
2 2—= tr l+ — tl+2 ton —8 )

2 I

dQ ligate 3 J 2

(2Mc)

~Be

IO
0

eC~ ~80 l2MO
1 t

5 lo 15 20 25 30
A

ca

pl8
I

35 40 45

"J.M. Jauch, Helv. Phys. Acta 13, 451 (1940).
4' J. Scofield (private communication}.
44 A similar result was obtained by R. Gatto, Nuovo Cimento

12, 613 (1954), in a calculation of the scattering of muons by
nuclei.

I IG. 10. The elastic magnetic cross section at 180 for light
elements.

This is then a base line above which the magnetic
scattering contribution appears. The solid line of Fig.
10 was obtained using Eq. (49) and the known static
magnetic moments. Except for a few anomalies (8'a
and B") agreement between theory and experiment is
reasonable and one of the main features of the problem
becomes clear: since the magnetic moment is attributa-
ble always (according to the shell model) to one or a
few unpaired nucleons, it does not change much as Z
increases; the Mott cross section however increases with
Z' and thus the relative contribution of magnetic scat-
tering decreases.

There are two ways in which the magnetic scattering
can di6er from that determined by the static limit of
the magnetic moment, Eq. (49):

(i) The magnetic moment can have a structure and
hence a form factor for elastic scattering. This is con-
tained in the 5 dependence of

I (J II Tt (6) II J) I'.
In particular, if the system has J&1, and if Born
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approximation is valid, this is the owly may the scat-
tering can differ.

(ii) The cross section will always be increased by the
contributions of the higher multipoles which can con-
tribute. Thus one might expect that the higher the
spin J, the faster one will see a positive deviation from
the cross section containing just the static moment.
This is probably the case for 8",which has an anomal-
ously large magnetic scattering cross section.

The two eGects above tend to compensate each other
if the magnetic-moment form factor is a decreasing
function of 6 as is usually true (but does not haec to
be true) . The second effect is only seen for J)-,s.

In order to learn about the spatial distribution of the
Inagnetic moment one has to make measurements at a
variety of momentum transfers. In the shell model the
orbits are expected to be fairly well de6ned in space
and consequently pronounced maxima and minima
might be expected in the differential cross section for
magnetic scattering; while the charge scattering probes
the nuclear charge as a whole, magnetic scattering
probes in general the part, of the nucleus responsible
for the nuclear magnetic moment.

Furthermore exchange currents contribute to the
magnetic scattering although they do not contribute to
charge scattering. As is well known, electric multipole
moment operators are independent of exchange effects4'
(Siegert's theorem)4', the reason is tha, t the electric
multipoles depend on the charge distribution only while
the magnetic moments are determined by both the
charge and current distribution. In other words, in
making predictions concerning electric moments or
electric-multipole transitions one can feel reasonably
secure even if one does not have a full knowledge of
the exchange effects. However, the wavefunctions are
needed (and might be affected by the exchange cur-
rents) but in general either they are known by other
methods (as in the deuteron) or can be calculated
according to some model. The study of electric multi-
poles constitutes then a test of how good they are.

In the study of magnetic-multipole transitions or
moments one can only test the adequacy of the wave
functions if all the exchange contributions are known at
the outset. Consequently, if one knows the, wave func-
tion (as in the case of the deuteron), one can obtain
information on the exchange contributions.

Somewhat detailed studies of elastic magnetic scat-
tering have been made for the deuteron, tritium and
helium-3 and helium-4; we discuss them brieQy. Very
few measurements have been made of the form factors
of nuclei heavier than He'. Results have recently been

4' R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing
Co., Inc. , New York, 1953), mainly pp. 241-258."The conditions for the validityof Siegert's theorem in electron
scattering have been investigated recently by J. M. Eisenberg
and M. E. Rose, Phys. Rev. 131, 848 (1963).

@+=Ps s(IJs s—)In&— (51)

where 1Js Ijp+p~, —p—r and ys are the static magnetic
moments of the proton and neutron, respectively, and
I'z is the D state probability in the deuteron ground
state. This equation has been used in the past to deter-
mine I'D which comes out to be —0.04.

Using the latest information on I'D obtained by
analysis of the quadrupole moment of the deuteron, "
of the photodesintegration studies" and the coherent
photoproduction of pions" one obtains however I'~—
0.07. Using this value in Eq. (51) above one obtains
pz ——0.84. This is a well-known discrepancy in the value
of the static value of the magnetic moment of the
deuteron for which several explanations have been
offeredss (such as relativistic corrections, and exchange
effects) .

Measurements of the magnetic elastic scattering from
the deuteron yield the magnetic moment as a function
of the momentum transfer and therefore oGer two

47R. E. Rand, R. Frosch, and M. R. Yearian, Phys. Rev.
Letters 14, 234 (1965); also Phys. Rev. (to be published);
J. Goldemberg, D. B. Isabelle, T. Stovall, D. Vincigverra, and
A. Bottino, Phys. Letters 16, 141 (1965); G. J. Vanpraet and
P. Kussanyi-Demay, Nuovo Cimento 39, 388 (1965).Early work
is due to G. A. Peterson, Phys. Letters 2, 162 (1962);and Goldem-
burg and Torizuka, Ref. 40.' T. A. GriGy and D. U. L. Yu, Phys. Rev. 139, B880 (1965)."J.Goldemberg and C. Schaerf, Phys. Rev. Letters 12, 298
(1964).

'o R.Wilson, The Nucleon-Nucleon Interaction (Interscience Pub-
lishers, Inc. , New York, 1963).

5'M. L. Rustgi, W. Zernik, G. Breit, and D. L. Andrews,
Phys. Rev. 120, 1881 (1960); M. Matsumoto, ibid. 129, 1334
(1963);F. Partovi, Ann. Phys. (N.Y.) 2'7, 79 (1964).

5'F. T. Hadjioannou, Phys. Rev. 128, 1414 (1962); J. I.
Friedman and H. W. Kendall, ibid. 129, 2802 (1963);E. Erickson
and C. Schaerf, Phys. Rev. Letters 11, 432 (1963).

"G. Breit and R. M. Thaler, Phys. Rev. 89, 1177 (1953).

reported for Li6 Li~, Be, 8' B" and N'4 4 magnetic
octupole moment effects have been observed. As an
example of the form factor one can expect from a
typical shell-model magnetic-moment distribution we
give also in this section the calculation of the form
factor for the magnetic scattering of F".Further shell-
model calculations have been made by GriGy and Yu.4'

1. The Deutero'

The magnetic elastic-scattering cross section of the
deuteron was measured at 180' at low momentum trans-
fers (0.26 and 0.41 inverse fermis) by Goldemberg and
Schaerf. 4' The measurements were made relative to the
photon cross section. From the data, the magnetic
moment of the deuteron at the q values mentioned
above can be obtained (Fig. 11).Also available in the
literature is the static magnetic moment of the deuteron
which is known very precisely (pD

——0.857 nm) .
In the impulse approximation and neglecting ex-

change effects a simple nonrelativistic expression can
be written for the static moment of the deuteron
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additional pieces of information:

(a) An independent check on the absolute value of
the magnetic moment of the deuteron can be obtained
by extrapolation of the measurements to low momentum
transfers. This is the information which may be ob-
tained from the Goldemberg —Schaerf experiment, and
as can be seen in Fig. 11 corroborates what is known
for the static value of y~.

(b) The q dependence of the form factor can be
calculated from theory and compared with experiments.
Calculations were made using Gourdin's'4 formulae and
the wave functions given by Breit et al "an.d P~ ——0.07
(Fig. 11).The experiments described in Ref. 49 cover
a rather limited region of momentum transfers to be
very useful for this kind of comparison. "

Fro. 12. H' and
He' form factors as
a function of momen-
tum transfer.
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Calculations have been made recently by Harrington'6
and by Adler and Drell57 on the contribution of 3-meson
exchanges to the magnetic moment of the deuteron and
the results are of the order of magnitude necessary to
explain the experimental results. "

The relativistic corrections to the magnetic moment
of the deuteron have not been calculated yet in detail.

2. Tritilns md Belie-3

After the deuteron, the simplest nuclear systems are
the three-body mirror-nuclei H' (3 protons) and Hes

(2 protons, 1 neutron) . Naively, one can think of these
systems as formed by a pair of protons with spins up
and down, thereby canceling their magnetic moments,

1.0

0.9-
~STATIC LIMIT 0.857

0.8

Fxo. 11. The deu-
teron magnetic mo-
ment as function
of the momentum
transfer. The theo-
retical curve has been
calculated with a D-
wave contribution of
0.07.
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'4 M. Gourdin, Nuovo Cimento 28, 533 (1963).
"This experiment was extended to higher momentum transfers

(up to q'=5) recently by D. Drickey, D. Frerejacque, and D.
Benaksas, Phys. Rev. Letters 13,353 (1964),and the q-dependence
of the form factor electively agrees with the theoretical predictions
of the impulse approximation with no relativistic or exchange
effects (Jankus formula).

"D.R. Harrington, Phys. Rev. 133, B142 (1964)."R.Adler and S. D. Drell, Phys. Rev. Letters 13, 349 (1964) .
~8 See also, D. J. Drickey and L. N. Hand, Phys. Rev. Letters

9, 521 (1962).

so that the magnetic properties of the systems are then
determined by the remaining nucleon (proton in H'
and neutron in He') . A detailed analysis of the magnetic
moments of these nuclei in the light of the mirror
theorem for nuclear rnoments4' gives a clear indication
of the existence of exchange currents in He'.

These nuclei have been recently investigated by
electron scattering (both charge and magnetic) by
Hofstadter and collaborators'; the form factors ob-
tained are shown in Fig. 12 where it is seen that they
are approximately equal except for Ii,h of He' which is
appreciably larger than the others. The rms radius (R)
that can be obtained are the following:

Rg, (Hs) =1.64 F R,s(Hs) =1.64 F

R,h(He') =1.80 F R,s(He') =1.64 F.
Thus there is a concentration of the magnetism of He'
as compared to its charge distribution.

Schi6 et a/. ' have made a detailed analysis of the
data of Hofstadter et al. and derived among other things
the form factor for the exchange part of the magnetic
moment of He'.

3. Helilm-4

Since He' has spin 0 and no static magnetic moment,
Eq. (47) predicts that no magnetic scattering should
be observed in this case. However the presence of a
nonvanishing electric-dipole moment (edm) or "anomal-
lous" magnetic moment for the electron (not the
anomalous magnetic moment which has origin in elec-
tromagnetic corrections and can be shown to be un-
important at the momentum transfers at which the
scattering experiments are performed") would lead to

"H. Collard, R. Hofstadter, A. Johansson, R. Parks, M.
Rynewel, A. Walker, M. R. Yearian, R. B. Day, and R. T.
Wagner, Phys. Rev. Letters II, 387 (1963).

L. I. Schiff, H. Collard, R. Hofstadter, A. Johansson, and
M. R. Vearian, Phys. Rev. Letters ll, 387 (1963).' S. D. Drell and F. Zachariasen, Phys. Rev. 111,1/27 (1958).
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a differential cross section given by6'

do/dQ= o~
~
F.h(q) ('L1+n'(q) (Sg/moc)'(cos' |I)-g,

n'(It) =X'(g) +P'(q), (52)

where X(q) and p(q) are the form factors of the edm
or anomalous magnetic moment of the electron.

The second term inside the bracket is generally very
small but becomes more important as q increases and
also as 0—&180. Consequently one can measure do/dQ
at large angles and And out what is the value of n(q)
necessary to explain the observed value. Burleson and
Kendall6' have done the experiment at angles up to 135'
and have found that n in units of e5/nsoc was (2X 10

Goldemberg and Torizuka 4 repeated the experiment
at 180' with the result that a(3X10 ' e5/IOI;. The
experiment does not distinguish between an electric-
dipole moment and an anomalous magnetic moment.
Attributing the upper limit above to an edm one can
say that the dipole moment of the electron is smaller
than 10 "e-cm. The limit placed on the same number by
other methods such as an analysis of the Lamb-shift
experiments are ~3 times larger. Rand" subsequently
used 180' scattering from C" at higher momentum
transfers and obtained o. &6X10 eh/~c.

4. F/NorirIe-19

As an example of the calculation of the form factors
to be expected for large nuclei we reproduce here the
zalculation33 of the magnetic elastic scattering form
factor for I'". We assign F" as an odd proton in the
s~ state; since the known magnetic moment p~ ——+2.629
agrees so well with the Schmidt value p(Schmidt) =2.79,
the single-particle shell model may be applied with
some confidence. We have

-'(&I f&xj [&=x)II» [D.I L'I~[x)+&,p„[x)1,

(53)

Computation of the integral gives

&lf ose
~

~

)
(58)

C. Inelastic Scattering in Levels

As one measures the energy spectrum of scattered
electrons down from the elastic peak (region "b" of
Fig. 4) some outstanding levels such as the one at
3.56 MeV in Li' are seen" (Fig. 13).This is a well-known
0+ state and since the ground state of Li' is a 1+ state,
its excitation involves a magnetic-dipole transition. The
same is the case for other levels of light nuclei such as
the 15.1-MeV 1+ level in C"; these are in general bound
levels of nuclei and therefore quite narrow. ' The pres-
ence of these levels is to be expected as one can see in
Eq. (39) above; the transverse magnetic matrix ele-
ments are proportional to (1+ sin'28) which has a
maximum at 180' while the longitudinal matrix elements
which are dominant at forward angles are proportional
to cos'-,'0 and vanish at 180'. However there is also
present at 180' a transverse electric term which has the

l=0 part of the operator contributes, we 6nd

TUr 'II(6)-+ixhpo(x) &jo(dx;) Ld; Y~o~ (Q„.)7. (56)

The only difference from the static case is the radial
function jo(hx). We can thus compute the form factor
for the transition as

p[s) = [x/v~, ).f [m, '[x) ['x'chjo[sx), [57)

in the notation of Elliott and Lane and the oscillator
wave functions are

N~, (x) = (x'—-', ) exp (——,'x'),

S2,=~,8

and we want to calculate p(0-', )-', )~ TI "(&) )) (0-', )-,'7
where the notation is

~
(ls)j). The erst term can be

written (for a single particle)

(i/V2) Evj, (ax;) Y, (Q„.) 7 l; (54)

and since f
~

(0-,') —',) =0 this term makes no contribution.
The second term can be written

-3I0.5 -xi0
l~

LIJ~ o.4—

~ 0.5-
LLII-
~~ O. 2—
E

6
3Li (4l.5MEV)

3.56 MEV

ELASTIC
PEAK

dXII~(X) t'Vz jI (Ax) Y~&,~(Q,) 7, (55)
)

O. I—

where p~(x) =Xpoa;8(x—x,) (for a single particle).
With the aid of identities on the vector spherical har-
monies in Edmonds" and using the fact that only the

'2B. Margolis, S. Rosendorff, and A. Sirlin, Phys. Rev. 114,
1530 (1959)."G. R. Burleson and H. W. Kendall, Nucl. Phys. 19, 68 (1960)."J. Goldemberg and Y. Torizuka, Phys. Rev. 129, 2580
(1963)."R;E. Rand, Phys. Rev. 140, B1605 (1965).

I I I I I I I J

24 26 28 30 52 34 36 38 40 42
SCATTERED ELECTRON ENERGY —MeV

FIG. 13. Spectrum of 41.5-MeV electrons scattered from Li6
at 180.

"J.P. Elliot and A. M. Lane, in Handbuch der Physik, edited
by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 248.

"Further experiments on Na" have recently been reported
by %. C. Barber and G. J. Vanpraet, Nucl. Phys. 72, 63 (1965).
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same angular dependence as the magnetic transitions;
distinction between them has to be made from inde-
pendent information on their spins. In the limit of low
momentum transfers the ordering of the diferent terms
of the multipole expansion is the same as the one used
in photon excitation so the dominant multipoles are
electric dipole (E1) and magnetic dipole (M1).

The identi6cation of transitions as E1 or M1 is not
easy because they have the same angular distribution;
information from other sources helps to establish their
character but whenever this is not available the com-
parison of the q dependence of the form factor with
models helps in making the distinction.

In comparing the measured cross sections with calcu-
1ated matrix elements there is one important piece of
information which can be included. That is the cross
section for photoabsorption in the level considered. In
this case the operators T~" and Tg '& are exactly the
same ones that describe emission and absorption of
real photons but the relation between the momentum
transfer and the energy of the photon is

Et—E =Eexeit= I &ph I. (60)

Lewis and Walecka" have shown that the integrated
absorption cross section in one level is given by

1. Ml I.eeels

These are the most outstanding levels in experiments
at large angles because of the tendency for all the transi-
tion strength of M1 transitions to be concentrated in
a few, generally one or two, levels. Furthermore, as
bound levels their width is generalLy very small; this
was predicted by shell-model calculations by Kurath
in 1p and 2s—1d shells and confirmed by experiments.
The most outstanding levels are found in Be', Li' C",
Mg", and Si".

Measurements were made recently on some of these
levels for a number of momentum transfers. ~ %e discuss
only the 15.1-MeV level of C" for which many experi-
ments existr' (Fig. 14) r' If one assumes the 15.1-MeV

"F.H. Lewis and J. D. Walecka, Phys. Rev. 133, 849 (1964)."D. Kurath, Phys. Rev. 130, 1525 (1963).
~o J. Goldemberg, W. C. Barber, F.H. Lewis, and J.D. Walecka,

Phys. Rev. 134, B1022 (1964).
r' F. Gudden, Phys. Letters 10, 313 (1964); 3. Dudelzak and

R. E. Taylor, J. Phys. Radium 22, 544 (1961);H. Schmid and
W. Scholz, Z. Physik 175, 430 (1963)."Ia analyzing data of this kind one usually plots reduced
transition probabilities J3~1 which are related to the reduced
matrix elements that appear in the formulae of this paper by
the relation

(net)'Biri(1~0, 6) =5.28X10'(1
~~

2' 'e(tt)
~~

0)'.

o. (e) de= (2z-)'nE.x„t '(J+1) '
level

&& 2» & Jr II T~"(~ h& II J &'+ (Jt II T~ "(~"& II J &'I

(61)

In general, the parity of the transition allows only one
of the matrix elements to contribute.

l.o-s
+, v, o a DARMSTADT

GOLDEMBERG-BARBER

0.5-

level is due to single-particle transitions from the (1p~)
to the (1') shell, and uses j—j coupling, rs one obtains
for the reduced matrix element

((ipse) (1pi)-', Jr=i+, T=O
I

T,~«(d)
I
J=O, T=O)'

= (9~) '(z/~) 'I I:(t ~—
t ~) —z]Fs'(~)

+L-'(t ~—
t N) —z]Fs'(t)) }, (62)

where M is the proton mass, p~ and p~ the proton and
neutron magnetic moments, and

Ft(&) = (alp(r)]'jt(&r)r'«,
0

(63)

where R~~ is the radial wave function for a particle in
the 1p shell. Calculation of Fs(tk) and Fs(h) using
harmonic oscillator wave functions gives

Fs(h) = exp (——,'x') L1—-',x'],

Fs(h) = exp (——,'x') I,sx'],

(64)

(65)

where x=Ab, b being the oscillator length parameter.
As seen in Eq. (62) the 5 dependence of the reduced

matrix element is all contained in Fs(t)) and. Fs(h).
Its absolute value depends on a coefficient related to
the magnetic moments of the nucleons. It turns out
that the absolute value depends sensitively on the
assumed amount of spin —orbit coupling; however this
choice has little eGect on the radial dependence. ~' Two
independent pieces of information can be obtained
from experiments. The curves of Fig. 14 were drawn
for a spin —orbit coup1ing ratio of a/X=4. 6 and two
oscillator strengths; the best 6t is obtained with an
oscillator parameter 6=1.9 F, which is larger than the
one obtained in the analysis of charge scattering experi-
mentsr' (b=1.64 F).

Calculations and measurements for other transitions
were also made by Bishop. ~'

"D. Kurath, Phys. Rev. 134, B1025 (1964).
~4 U. Meyer-Berkhout, K. W. Ford, and A. E. S. Green, Ann.

Phys. (N.Y.) 8, 119 (1959)."G.R. Bishop, Phys. Letters 8, 128 (1964).
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Fxc. 14. The reduced transition probability 8~1(1—&0) for
the 15.1-MeV level in C'2 as a function of the momentum transfer.
The curves are calculated for diQerent values of the harmonic
oscillator parameter. The data are from various experiments.
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THE GIANT RESONANCE
CROSS SECTIONS

In this model one obtains
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Pro. 15. The ratio
of the transverse and
longitudinal cross
section to the elastic
cross section as a
function of the mo-
mentum transfer.
For the transverse
part this ratio is plot-
ted for several angles
of scattering.
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Z. El L,evels

Electric-dipole transitions of low energy ((10MeV)
are strongly suppressed in nuclei due to the existence
of correlations between the neutrons and protons. "
This can be understood simply by considering a system
consisting of protons only; in such a system the electric
center is the same as the center of mass; for every charge
moving to the left there is an equal one moving to the
right since the center of mass stays at rest; hence the
dipole moment is always zero. In fact few electric-dipole
transitions of low energy are known to exist. For higher
excitation energies, however, more complicated motions
of the neutrons and protons are possible7' (such as
moving all the neutrons against all the protons) and a
strong electric-dipole transition may occur. These have
been studied extensively by photon excitation, although
experimental difhculties have prevented measurements
of the detailed shape and absolute magnitude of most
cross sections. The general name of "giant dipole
resonance" is given to the group of levels (or continuum)
in which strong electric-dipole absorption is observed;
these occur in general between energies of 15 and 25
MeV and are not bound, so their widths are expected
to be large enough to cause overlapping.

Inspection of Eq. (39) shows that these transitions
can be investigated by inelastic electron scattering
either at forward angles (through the longitudinal
operators) or at large angles where only the transverse
operators are present. An analysis of the most favorable
conditions for the observation of the E1 "giant reso-
nance" in electron scattering was made by GoMemberg
et al.~~ using a simple model for the nucleus: protons
oscillating as a unit against the neutrons —this is
referred to sometimes as the Goldhaber —Teller model. ~
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Pro. 16. Inelastic form factor versus momentum transfer for
the giant electric-dipole resonance in 0". The solid curve is
calculated using a spin-dependent force with zero range for the
residual interaction. The dashed curve is calculated using an
ordinary force with zero range and leaving the high-lying state
in C'~ out of the calculation. The long-dash short-dash curve
is calculated using a Serber force with a Yukawa potential well
for the residual interaction. We also show the curves for the
collective models and the data of Goldemberg and Barber. But see
discussion in Ref. 4.

for the longitudinal part,

(
do. ~ && 1/iV '

&u (1+ sin'-', 0)

dQ;„dQ, I 2&2 pc' cos'-', 8

for the transverse part, where (do/dQ), I is the elastic
cross section, g and A are the neutron and mass num-
ber, respectively; p= 4AM, M being the nucleon mass;
co is the peak energy of the resonance. These expressions
are valid under the assumption of fun&&~.

Figure 15 shows the ratio of the transverse and
longitudinal cross sections to the elastic one as a func-
tion of the momentum transfer. For the longitudinal
part this ratio is independent of the angle and depends
only on h. For the transverse part the ratio is independ-
ent of the momentum transfer and depends only on
the angle of scattering. Large angles (8~180') are
more favorable for the observation of the transverse
part of the cross section.

Other models were used by Lewis and Walecka' to
compute the reduced matrix elements ("inelastic form
factors") of the transverse part of the cross section.
For the case of C", which we will discuss here, these
were the hydrodynamical model of Steinwedel —Jensenv
and the Brown mode17' (independent-particle model

7'M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).
7' J.Goldemberg, Y.Torizuka, W. C. Barber, and J.D. Walecka,

Nucl. Phys. 43) 242 (1963).

78H. Steinwedel and J. H. D. Jensen, Z; Naturforsch. Sa,
413 (1950).

~9 G.. E. Brown and M. Bolsterli, Phys. Rev. Letters 3, 472
(1959).
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v ith particle —hole interactions). The important result
of these calculations is that they give tIIidely digerertt
form factors, both in absolute magnitude and in their
q-dependence. One has, therefore, a sensitive method
of testing nuclear models.

Figure 16 shows the "inelastic form factor" for the
giant resonance in C"as a function of momentum trans-
fer for the different models. Figure 17 extends the
calculations to higher momentum transfers and includes
also the longitudinal form factors. The data of Goldem-
berg and Barber' shown also in these figures are in
reasonable agreement with the Brown model. For a more
recent discussion of this problem see Ref. 4 and refer-
ences cited therein.

The choice of the two-particle residual interaction is
an important parameter which can affect the results;

Pro. 17. Longitu-
dinal and transverse
form factors versus
momentum transfer
for the giant dipole
resonance in C~. The
curves are calculated
using a spin-depend-
ent force with zero
range for the residual
interaction.
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'0 J. Goldemberg and W. C. Barber, Phys. Rev. 134, B963
(1964).

in general, one chooses a Serber force with a Yukawa
potential 'well or an ordinary force with zero range.
An experimental study of the form factors then gives
information on the adequacy of one choice over the
other. This was done in detaiP for one of the E1 levels
of C" and Figure 18 shows that a Serber force fits the
data considerably better than an ordinary force.

In the independent-particle model the "giant reso-
nance" consists of a number of closely spaced levels
which are located in the region of 20—30 MeV below
the elastic peak. Each one of these levels corresponds
to transitions from the ground state to one of the
particle —hole Anal states; since these may have a
different spatial distribution a measurement of the
6-dependence of the form factors which "probes" this
structure might give a result that is typical of each
level. This was predicted by Lewis and Walecka" and
confirmed by experiment; it explains why the shape of

0 DARMSTADT l52 ( I9.5 MeV LEVEL)
~ DARMSTADT 152 (I9.5 6 IB MeV LEVELS )

X STANFORD IBO

~ FROM B (p, y)C

Fro. 18.Form fac-
for for the lowest 1
state in C" plotted
as a function of the
momentum transfer.
The two curves are
for independent-par-
ticle-model calcula-
tions with two dif-
ferent assumptions
for the two-particle
residual interaction.
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the giant resonance may be diGerent for photon and
for electron scattering excitation.

Figure 19 shows the relative transition probabilities
for transverse excitation of the 1, T= 1 states of 0"."
The height of each line is proportional to the square
of the form factor corresponding to excitation of that
state. The relative magnitudes change with the momen-
tum transfer. Figure 20 shows the experimental data
obtained for 0"by Burgov et al.ss (photon absorption)
and by Goldemberg and Barber" (for electron excita-
tion at 1th=120 MeV/c) . This shows clearly the
inversion in strength of the two main levels at the two
momentum transfers. This 6gure also shows the shell-
model calculations of Elliot and Flowers~ for photon
excitation in the two main levels of 0' .

A considerable amount of detailed, high-resolution
work of this type remains to be done; it is expected that

Fro. 19. Relative
transition probabil-
ities for transverse
excitation of the 1,
T=1 states in 0'8.
The height of each
line is proportional
to the square of the
form factor for ex-
citation of the cor-
responding state at
the given energy and
momentum transfer.
Two types of resid-
ual interaction were
used.
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' P. H. Lewis, Phys. Rev. 134, 8331 (1964).
N. A. Burgov, G. V. Danilyan, B. S. Dolbilkin, E. Lazareva,

and F. A. Nikolaev, Zh. EksperinI. i Teor. Fiz. 43, 70 (1962)
)English transl. :Soviet Phys. —JETP 16, 50 (1963)g."J. P. Elliot and B. H. Flowers, Proc. Roy. Soc. (London)
242A, 57 (1957).
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inelastic electron scattering in levels will prove to be
an important tool for nuclear structure studies. Experi-
mental ' and theoretical" studies are proceeding rapidly.

846. Vanpraet, Phys. Letters lV, 120 (1965); G. Vanpraet,
Nucl. Phys. V4, 219 (1965); G. J. Vanpraet, W. C. Barber,
P. Kessanyi-Demay, and G. J. Vanpraet (to be published).

5T. deForest Phys. Rev. 139, B1217 (1965); T. deForest,
J. D. Walecka, G. Vanpraet, and W. C. Barber, Phys. Letters
16, 311 (1965);J. L. Frian {tobe published).

D. Quasielastic (Incoherent) Scattering

Extending the measurement of inelastic scattered
electrons to include large energy losses, one finds the
region of "quasielastic" scattering ("d" in Fig. 4).
The reason for the name is related to the analogous
process of Compton scattering of x rays by bound
electrons; if one measures the scattered x rays at a
given angle one 6nds a modified Compton line. In the
case of high-energy incident electrons the modified line
(scattered electrons) is found in a position determined

by the binding energy of the nucleus and the recoil in the
electron —nucleon interaction. In addition however the
nucleons are moving with high energies inside the
nucleus; consequently the scattered electrons are spread
out in energies, the spreading being determined by the
momentum distribution of the nucleons. Each individual
nucleon gives a spread-out contribution to the inelastic
scattering and the superposition of all of them con-
stitutes the quasielastic or "incoherent" peak.

The relation between the shape and integrated area
of this broad peak and the momentum distribution of
the nucleons has been studied extensively by Drell and

Schwartz, ' McVoy and van Hove, ' Gottfried and
Czyz" and recently Czyz." These calculations show

that the main part of the quasielastic peak is determined

by the Pauli principle correlations and the results are
rather model insensitive, to the point that even a free
degenerate Fermi gas gives roughly the right shape and
position.

Figure 21 shows measurements of Leiss and Taylor, '0

with 148.5-Mev incident electrons at 135' in C", and
the calculations of Czyz considering all single-particle
excitations compatible with the Pauli principle. The
momentum distribution for the C" nucleus was taken

Several values of the effective mass M',
gq of the nucleons

inside nuclear matter were tried. Agreement between
theory and experiment is reasonable. Other data for
C' at higher energies is reported by Bounin and Biship."

The high-energy tail of the quasielastic peak is deter-
mined by short-range nucleon —nucleon dynamical corre-
lations, which are the most interesting to study; it is

located however in a place where experiments are diK-
cult. Kendall and Isabellee' obtained some information
of this kind. The high-energy tail contributes little to
the total area under the peak; the calculated sum-rules

are insensitive to details of the correlations. Further-
more the radiation tail over the extended region of the
quasielastic region cannot be obtained with high
accuracy. "
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FIG. 21. Comparison of impulse approximation calculations
for C" with measurements of Leiss and Taylor. The energy of
the incident electrons is 148.5 MeV and the spectrum was measured
at 135'.

"S.D. Drell and C. L. Schwartz, Phys. Rev. 112, 568 (1958).
87K. W. McVoy and L. Van Hove, Phys. Rev. 125, 1034

(1962}.
«W. Czyz and K. Gottfried, Ann. Phys. iN.Y.) 21, 47 (1963).

W. Czyz, Phys. Rev. 131, 2141 (1963).
0 J. E. Leiss and R. E. Taylor (quoted in Ref. 66).

9' J. I. Friedman, Phys. Rev. 110, 1257 (1959);P. Bounin and
G. R. Bishop, J. Phys. Radium 29, 974 (1963}."D. B. Isabelle and H. W. Kendall, Bull. Am. Phys. Soc. 9,
95 (1964}.
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However it has been pointed out recently by Czyz9' that an interesting case occurs at very large angles
(e 180'). The sum-rule of McVoy and van Hove@ is

f e cos'-'0
(& ~ 0) d~= If(&) I'I I. ,

' C&(f)+&(f)+ tan'-'07
ko dQ &2Pi& sin' ~~0

where ce is the energy loss of the electrons. f(h) is related to the conventional form factors by

(69)

f(A) =Fin(6) = Fs„(h) = Fs„(h); Fi„(h) (assumed zero). (70)

At 180' one can measure B(h), which is given (to second order in 6/M) by

~(~) =(~/M') (~" +~'t ')+~~(&P )"/M )
A A

+ (0 I gg exp Ci& (r;—rs) ]ftt, tts(2M') 'I 6'tt; ds —(4 tt, ) (A. dt ) g+ttees(P, ,P,/M') I I 0), (71)

where Z and S are the number of protons and neutrons,
p„and p their magnetic moments inside nuclear matter,
e;= 1 for protons and 0 for neutrons; 6, are spin opera-
tors; p„ is the component of p, in a direction normal
to A. The summation extends over all nucleons.

The first term of B(h) is the dominant one (for
6=1 F) it makes up 90% of the total) and becomes
more dominant as 6 increases. The others can be
evaluated with an accuracy of perhaps 25% and
although model-sensitive do not contribute much in
the result. Consequently a precise measurement of 8(6)
could be important in establishing the equality of the
magnetic moments inside nuclear matter with their
values for the free nucleons; it seems feasible in this
way to 6nd out about the "quenching" of magnetic
moments inside the nucleus. "

The electrodisintegration of the deuteron is an im-

portant special problem of the type discussed in this
section. Calculations have been made using well-known
wave functions due to Yankus. "The deuteron has no
bound excited states and it disintegrates at 2.23 MeV
so there are no levels in the spectrum but only a broad
peak that extends down to lower energies. Measurements
have been made at forward angles by many authors. "
Peterson and Barber" and Barber et a/."measured the
spectrum of electrons inelastically scattered from the

9' W. Czyz (private communication).
O' B. Bremond, Nucl. Phys. 35, 49 (1962).
"V. Z. Jsnkus, Phys. Rev. 102, 1586 (1956).

deuteron at 180' using 41.5-MeV electrons and com-
pared their results with the Yankus theory, "neglecting
exchange currents. All multipole order transitions were
taken into account although the magnetic dipole (M1)
process is predominant; final-state interactions were
not taken into account. Agreement with theory was
obtained with little evidence for effects due to exchange
currents although they are expected to contribute.
These experiments have been recently extended to
higher energies by Goldemberg and Schaerf' and some
disagreement with theory is apparent from the data.
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