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First, we show that the most important equations of the dynamics of the two types of superfluids, He rr and super-
conductors, follow quite directly from the simple assumption that the quantum field of the particles has a mean value
which may be treated as a macroscopic variable. The background of this ansatz is also discussed. Second, we apply these
equations to various physical situations in He rz, notably the orifice geometry and the superfluid film, and show how they,
and particularly the idea of phase slippage accompanying all dissipative processes, can be applied and what kinds of
macroscopic interference phenomena may be expected. The effect of synchronization in the ac interference experiment
is discussed.

I. INTRODUCTION

The material of the first part of this article covers
really much the same areas of basic physics which are
treated by Martin and by Nozieres in their articles at
the same conference at which this was presented.
Nonetheless the reader will find that the emphasis is
sharply different. The striking macroscopic interference
phenomena, the observation of which has been stimu-
lated by Josephson's remarkable discovery, ' call out
for a description in terms of a definite wave function
with a definable phase p in every part of the system,
while quantum hydrodynamics as pioneered by Landau'
has tended to emphasize the superAuid velocity v, and
its equations of motion. The identification of v, =
(fi/»is) Vg has its limitations in relating these points of
view, 'especially in Josephson junctions; while the
opposite point of view, that g exists, makes theorists
uncomfortable because it breaks the gauge symmetry.
Nonetheless I shall choose to take the latter path,
assuming either that the reader has read such a dis-
cussion as Ref. 3 which gives the reason why this
broken symmetry is possible, or that he will understand
that the superRuid system is to be attached at some
point to a large superQuid reservoir, with respect to
which the phase is to be measured.

The idea of off-diagonal long-range order was intro-
duced by Penrose and Onsager. ' They suggested that
superRuidity be described as a state in which the
density matrix

& (», r') = (0'(r)f(") )
could be factorized:

p (r, r') =l(*(r)f (r')+small terms. (I)
~This paper was presented at the Brighton Symposium on

Quantum Fluids at the University of Sussex, England, 18 August
1965. The full proceedings of this Conference will be published
by the North —Holland Publishing Company in 1966, including
the present article as well as those referred to above, in which a
more conventional approach to superfluid dynamics is employed.
Many of the other contributions have of course also been published
in various journals.

' B. D. Josephson, Phys. Letters 1, 251 (1962).' L. D. Landau, J. Phys. USSR 5, 71 (1941).
3 P. W. Anderson, in Lectures on the M'any-Body Problem,

edited by E. R. Caianello (Academic Press Inc. , New York,
1964), Vol. 2, p. 113.

'O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956);
see also O. Penrose, Phil. Mag. 42, 1373 (1951).

Beliaev' extended this for helium to a Green's function
theory in which P was explicitly time-dependent, and
first observed that the chemical potential determined
the time dependence. Sortly thereafter Gor'kov' ob-
served that superconductivity theory could be cast
into the same form by substituting electron pair field
operators l(p for the He atom bose field. In supercon-
ductivity there already existed a set of phenomeno-
logical equations proposed by Ginzburg and Landau'
which dealt with an "order parameter" g, and it was
soon recognized that this order parameter was the
same as the factorized g of the Gor'kov theory. It
was only much later that Gross' and Pitaevskii" pro-
posed similar sets of equations for liquid helium.

The notion that it was possible to regard the func-
tion which appears in these treatments as essentially
the mean value of the quantum particle field has long
been accepted in both helium' and superconductivity
(there the first explicit discussion of the transformation
between the "ODLRO" and mean field points of view
was given by Anderson" ) but only in the case of a
homogeneous system; apparently the general case has
not been discussed until recently even for supercon-
ductivity. ' The basic idea is that it is as legitimate to
treat the quantum field amplitude as a macroscopic
dynamical variable as it is the position of a solid body;
both represent a broken syrrunetry which, however,
cannot be conveniently repaired until one gets to the
stage of quantizing and studying the quantum Quctua-
tions of the macroscopic behavior of the system.

Here we are going to discuss less the microscopic
background of this ansatz than a number of its most
important consequences for He n, many of which follow
without further microscopic assumptions and are there-
fore of fundamental interest. Only some of what we
will have to say is new, in the sense that many of the

s S. T. Beliaev, Zh. Eksperim. i Teor. Fiz. 34, 417 (1958)
[English transl. : Soviet Phys. —JETP 7, 289 (1958)j.'L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
[English transl. : Soviet Phys. —JETP 7, 505 (1958)j.' V. L. Ginsburg and L. D. Landau, Zh. Eksperim. i Teor.
Fiz. 20& 1064 {1950).

SL. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
[English transl. :Soviet Phys. —JETP 9, 1364 (1958)g.' E. P. Gross, Nuovo Cimento 20, 454 (1951)."L.P. Pitaevskii, Zh. Eksperim. i Teor. Fiz. 40, 646 (1961)
[English transl. : Soviet Phys. —JETP 13, 451 (1961)j."P. W. Anderson, Phys. Rev. 112, 1900 (1958).
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appropriate equations have been written down (see the
papers of Martin and Nozieres). The basic idea was
previously stated in a Letter, "and some of the conse-
quences have been explored in subsequent Letters by
Donnelly" and by Zinunerman. ' We will 6rst discuss
a particularly simple point of view on the derivation of
the basic equations, following more closely than usually
the corresponding ideas in superconductivity. '" The
emphasis will be on what can be shown to follow more
or less rigorously from using this ansatz as a general
semimicroscopic definition of superQuidity. Only the
parameter values in the resulting equations require any
other knowledge of the microscopic system. Then we
will discuss the dynamical consequences for the ori6ce
experimental geometry, as well as some more general
situations such as 61m Qow. In Appendix B we discuss
brieQy the interesting connection with classical ideal
fluid hydrodynamics, where the basic "Josephson"
theorem turns out to have a classical analogue which
has not to our knowledge been clearly stated previously.

II. BASIC EQUATIONS

We take as our de6nition of a superQuid that it is a
Quid in which the particle fleld operator P has a macro-
scopic mean value, in a sense which is de6ned shortly.

(4(r, i))=f(r, 1) exp L~e(r, i)j. (2)

Here we allow slow (on the atomic scale) space and
time variations; the essential point is that (P) has a
mean value in the thermodynamic, quasi-equilibrium
sense. One may think of the situation here as completely
analogous to the definition of temperature in a non-
equilibrium state; it is possible if there are equilibrating
processes of shorter range in time or space than the
coarse-grained scale of our averaging, which in turn is
to occur over regions smaller than the macroscopic
scale of physical measurements. Of course, in every
system one can de6ne a temperature and entropy if
the average is allowed to extend over a long enough
time, while only certain special systems will give a stable
limiting value to Q). More explicitly, we visualize
averaging it over some small region of space —time; if
the region is small enough compared to the rates and
ranges of microscopic Quctuations, we will obtain some
finite value. As we increase the size AV of the region

Q) will decrease to zero in a normal system very
rapidly, in times of the order h/(mean kinetic energy)
and ranges of order interparticle distances. In a super-
Quid system, on the other hand, we assume that at an
intermediate, "coarse-grained" scale (P) approaches a
limiting finite value, not changing until we reach a
scale on which it varies because of the presence of

' P. L. Richards and P. W. Anderson, Phys. Rev. Letters
14, 540 (1965)."R.J. Donnelley, Phys. Rev. Letters 14, 939 (1965).

'4 W. Zimmermann, Phys. Rev. Letters 14, 976 (1965).
'5P. W. Anderson, N. R. Werthamer, and J. M. Luttinger,

Phys. Rev. 138, A1157 (1965).

macroscopic perturbations such as macroscopic fields
and Qows. (In Appendix A we discuss this definition a
little more deeply. )

The whole problem of superQuid dynamics, then,
reduces to the question of how to deal with (f ) (often
denoted the superfluid order parameter) as a thermo-
dynamical variable. It is quite important that Q ) is
a complex order parameter; it has both an amplitude f
and a phase p. There is actually rather a sharp dis-
tinction between the two real thermodynamic variables

f and P, and it is the behavior with respect to p which
is responsible for speci6c superQuid properties. The
distinction is that g is coupled, like a polarization or a
strain, to external forces, where f is merely an internal
order parameter in the sense, for instance, of the original
long-range order parameter of order —disorder systems,
or of the antiferromagnetic sublattice magnetization.
In principle a corresponding force might exist but in
practice it does not, so f simply manifests itself as a
convenient tool by which to describe the condensation
process.

The point of p, then, is that it is not only a thermo-
dynamic but also a dynamical variable. The latter
fact comes from its being the dynamically (not thermo-
dynamically) canonically conjugate variable to E, the
total number of particles in the system described by P.
(The limitations of this statement for systems of few
particlesm are irrelevant here. )

We illustrate this fact by forming wave packets in
many-body wave-function space, just as in discussing
the relationship of p and g it is useful to form wave
packets. Let us write the wave function of one of our
coarse-grained cells of volume AV as

@(AU) = Qaiv+'~ (AV) (3)
N

where, since our cell is only a part of the superQuid, it
is essential to realize that the state is a superposition of
states +~ with different numbers of particles N, with
coe%cients a~ large in some range of values AS N&.

An important simplifying assumption concealed in (3)
is that the cell may be made big enough so that u&
and 0'z do not depend very much parametrically on
the variables of the rest of the system: this is what is
meant (see Appendix A) by a "satisfactory" local
description.

We postulate that Q ) has a limiting mean value,
which must be of order (W/AV)'*; we calculate this
value from (3):

1

AV gyf d (k(r))= Qwr "wrf(v~, 4(r)vx)dr

(e~ i, p(r)ep) dr
~~X—1 +N
N aV

(4)
I lvV. H. Louisell, Phys. Letters 7& 60 (1963);L. Susskind and

J. Glogower, Physics 1, 49 (1964).



300 REVIEW OF MODERN PHYSICS ~ APRIL 1966

t' Bl
dye exp ( icy—No)

/

—i —/0 (y)
B4)+N = (co+) +va, cq

where

=No dp exp (—iyNo)%(p) =No+'~o
0

In the case of the Bose-condensed perfect gas, one eGectasmultiplyingCN, byAO.
may take 2'

so that
Co+N=+AItN I,

(g )=Qav, *a~(N/AV)'.

so that we may take

N~ i (B/—By)

(7) and correspondingly it may be shown that

(12a)

This is the maximum possible value of the matrix
element. (Here we have taken advantage, as we will

always, of our freedom to choose the phase of O'N to
make the matrix element real in order to keep the phase
factors —which of course are rot irrelevant —in the a~'s. )
In real superQuid systems and at finite temperatures
(the case of superconductivity is of course quite similar
if for a single Bose f or c we read Fermion pair opera-
tors) the matrix element does not take on its maximum
possible value —in He, for instance, as McMillan has
shown, '~ the value is about 11%%uz of the maximum when
AV is reasonably large. Even if

~= (+N-i, 0~'~)

is large, however, Q ) will not be large unless the a~
preserve phase coherence. For example, we may form
a wave packet using

a~ ——(2~AN)~ exp L——,
' (N —N)'/(4N)'j exp (i&N)

(9)
In this case if AS)&1,

9 )= I
~ ~ exp (i&)

whereas if the phase factors are arbitrary Q ) will be
very much smaller, even if every individual O'N repre-
sents a pure Bose-condensed state of the volume element
ht/. Ke will very shortly discuss the reason why wave
packets like (9) actually occur in superfluid systems;
first, however, let us dispose of a few formal prelim-
naries.

Any linear combination of the set of fixed-number
states 0'& may be written as a linear combination of
our basic wave packets (3)—(9) Lwhich we will call
4'(P)g. In particular, the number eigenfunction %~,
may itself be written

d@ exp (—+No)@(g)

(=QaN B(N, No)%'~).

The operator -iB/B$ acting on %Q) has the same

'~ W. I . McMillan, Phys. Rev. 138& A442 (1965).

i (B/BN)~y (12b)

5(dy/dt) =BE/BN= p. (13)

Here we have used the standard delnition of the chemi-
cal potential p, if the Quid is in motion so that the
particles have kinetic energy —,mv, ' that is to be in-
cluded in p as well as the internal energy and any
external forces. Obviously the partial derivative holds
S fixed. In an isothermal, assumed incompressible bath
of liquid helium, with free surface at height h in a
gravitational field g,

p= m (P/p) ymgh+ ,'mn, '. -(14)

In the nonisothermal case (14) should contain the
thermomechanical term.

Equation (13) is of the utmost importance in under-
standing superQuidity. It says two things: erst, that if
the state of the superQuid is constant in time, because
P is a thermodynamic variable it will be constant and
p must be constant everywhere: there can be no poten-
tial diGerences in the truly steady state. Second, if there

in the limit that E may be considered a continuous
variable. Thus, as we stated, N and g are conjugate
dynamical variables.

In general, also, S and hS are sufficiently large
that the system's dynamics may be treated reasonably
well classically and the uncertainty in p is not exces-
sive—of course (12) implies ANENT 1.

In any case the equations of motion of N and P are

i' =PC, N j=i (BBC/By)

iSC = (X,, yj= i(Me/—BN)

Taking the mean values of these two equations and
assuming that the wave packets are such that AN/N
and 6@ are both small (quasi-classical case) is the
source of the two equations which essentially charac-
terize superQuidity: the equation for superQuid Qow,
corresponding to I ondon's equation or the Ginsburg-
Landau current equation in superconductivity, and
the "Josephson" frequency equation, which is related
to the acceleration equation for superQuid Qow in both
He and superconductivity. The second is somewhat
simpler though less generally known: it is just
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(d/dt) (Svy) =P, (15)

where F is the total force on the particles, and making
the identi6cation (which we shall discuss shortly) of

is any potential difference p&
—p2 between two elements

in the superfluid gt —Ps must change in time. This can
happen in two ways. The simplest is acceleration. If
we take the gradient of (13), we obtain

ISOLATED
VGRTE X

0 LlNKs QF
EQUAL
PHASE

SVJ=P,=ms„ (16)

VQ ds=2Ns. . (17)

this is the statement that the superQuid may undergo
acceleration without frictional damping by whatever
external forces act upon it. A potential diBerence may
lead to continuous acceleration, then.

Slightly more subtle and much more physically

important is the concept of phase slippage by quantized
vortex motion. As we have emphasized, p is the phase
of the thermodynamic variable Q ), which is of course
necessarily single-valued. P, however, being a phase,
need not be single-valued in a multiply connected
system such as a toroid; it need merely return to its
original value ~2' on traversing a path around a
nonsuperQuid obstacle:

(b)

4

Pg

P ~0+6
1

P2

@2=0-6

o ~i

I

P2
(p2 2

yP)
I + -~-&

1

I

y --7T'+6
2

In terms of the superfluid momentum p, this expresses
the idea of the quantization of angular momentum in
units of 5 or of vorticity m=~V xe, through a closed
curve in units of h/2m. As we shall see, however, the
quantity e, is not necessarily a measurable particle
velocity and so (17) is somewhat more fundamental
than the usual concept of vorticity quantization.

A bucket of superQuid may be made multiply con-
nected not only by the presence of actual solid obstacles
but by the introduction of one-dimensional regions of
nonsuperQuidity within the liquid itself: lines where

Q (r) )=0. These are "vortex cores" and may of course
move according to the usual laws of hydrodynamics
along with the surrounding Quid. Around such a line
there can be a circulation of one or, less usually, an
integral number of quanta, according to (17).

Equation (17) shows that the integral of VP along
a path on one side of a vortex core di6ers from that
on the other by 2s. (see Fig. 1). Thus when a vortex
core moves across the line between points 1 and 2, this
may cause a time rate of change of g&

—gs. Mathe-
matically, we may write

d (Pr—ys) t'1 d
(pr trs)gy= T dS dt V@ dl, —

dt T 0 dt

where ( )A„denotes time average, where we consider
the limit T very long, and C is any path from 1 to 2.
If the liquid is assumed to be in a reasonably steady

VORT

z
2 3Tr

4

FIG. 1. Illustration of phase changes at two points P~ and P2
in a channel as a vortex moves between them. From a to b to c
the vortex moves across from left to right; as it moves from one
wall to the other the relative phase changes by 2x.

state, so that at 0 and T the positions of the various
vortices do not differ very much, the integral is just
equal to 2m times the number of vortices which have
crossed C in this time interval. Thus we have

(tl, r ys )A„It (dn—/dt )A„,
——

where (de/dt )A„ is the average rate of motion of vortices
across a path from 1 to 2. This is the "phase slippage"
concept which is used to explain the various "ac
Josephson"-like experiments. "'s Of course, this is not
incompatible with the acceleration equation (15), so
in a sense this phenomenon too is merely a manifesta-
tion of the fact that potential di6erences occur only
in an accelerated superQuid; but it is a point of view
which had not previous to Ref. 12 found its way into
the He literature, nor until recently, with the discovery

"S.Shapiro, Phys. Rev. Letters 11,80 (1963).
'GP. W. Anderson and A. H. Dayem, Phys. Rev. Letters

13) 195 (1964).
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of the Josephson effect and of Qux creep and Qow, into
that of superconductivity.

Let us now take up the current equation, the theory
of which is somewhat more complex. There are two
aspects to this. In the 6rst place there is the quasi-
rigorous Zq. (16) the meaning of which becomes a bit
vague with more careful consideration. If we simply
suppose that the state of a volume element hU moving
with velocity v, is obtained from that of a stationary
element by a pure Galilean transformation, multiplying

p by exp (inzv, x/f'1), this equation is trivially valid.
That is the usual derivation of it, in one form or another.
I know of no acceptable proof of (16), however, in the
sense of showing v, to be a real particle velocity, in
physically important situations such as counterQow of
normal and superconducting Quids, or where e, is
varying reasonably rapidly, as near a vortex core. Since
(16) is the statement which leads to vorticity quantiza-
tion, this means that that concept, often claimed to be
exact, is apparently not so.

The statement has been made in the literature" '4 that
the results —speciQcally the "ac Josephson effect"—
which follow from (13) or the phase slippage concept
can equally well be "derived" from vorticity quantiza-
tion plus perfect Quid hydrodynamics for the superQuid.
Neither of these latter ideas, however, has at the mo-
ment a very quantitative experimental background,
while theoretically as we have just seen the phase has
a much more secure theoretical meaning than v, ; it
seems to us that (13) is a much more rigorous and
complete theoretical statement than the hydrodynamic
equations, which are derived via (15) and (16) from
it. Normal Quid counterQow and dissipation do not
affect it. In a perfect classical Quid, for instance, the
vortices cannot move across stream lines, so clearly
He n is not such a Quid.

Perhaps a more rigorous general reason for using
(16) at least as a def'1NAion for v, (other than that it
allows us to use 1t as a velocity potential for the super-
Quid Qow) is (15), which shows that mdv, /dt does
then give the rate of exchange of momentum per super-
Quid particle with external forces, an excellent opera-
tional definition of v, .

The superQow, however, is best determined not from
the expression for v, but from the other of the two
Hamilton equations for the conjugate variables S and

energy which is a minimum when P1—$2=0:

Assuming the effects of other neighboring elements can
be treated independently (suitable arguments can be
found for this step) we see that the Qow across the
boundary between AU& and AU2 is giv'en by

dX1 de 1 BU(1t1—g2)

dt dt 5 B (P1—P2)
(20)

This is the expression used in the theory of the
Josephson current" across a barrier between two
macroscopic pieces of superconductor; at this point
we are carrying the same reasoning over to the continu-
ous interior of a superQuid or superconductor. As in
that case, we may pause now to point out that it is
this coupling energy which enforces the phase coherence
of each individual volume element of the superQuid.
The kinetic energy matrix element which transfers
particles across the boundary can cause transitions like

I@N~@ N 1 ~ @NI~—@N ~+1
I (21)

U= U, v dv

with a matrix element we may call &12. (Here %1,2 is
the many-body wave function of AV1,2.) If the wave
packets (3) have coeQicients aN which, like (9), have
coherent phase relationships, all transitions 1V'~E'+1
can occur coherently with all transitions E—+X—1.
Mathematically, the energy due to transitions like
(21), inserting wave packets like (3), is

(+1+2 (I E )+1+2) (+11N 12N—1) (+11¹12¹+1)~12.
N N~

(22)

As we see, this energy is orders of magnitude larger for
coherent wave packets like (9), for which p is deter-
minate, than in the incoherent case.

In the interior of the superQuid, it is more convenient
to go over to a continuum representation of the cou-
pling energy which maintains phase coherence. We
write U as a functional of the gradient of g (as well
as f, of course)

5(dN/dt) =BE/By. E(f, S) (vy)2 dr (23)

Gauge invariance assures us that in fact the energy
of an isolated bit of superQuid is independent of g, so
that in the absence of a coupling to its neighbors
dN/dt=0. Consider, on the other hand, a pair of
neighboring volume elements AU~ and AU2. Our defini-
tion of superQuid implies that Q ) has a tendency to
constancy, so that the mean phases g1 and 1f12 of the
two neighboring elements will be coupled by some

J dSi SU =5 'Evy. -
unit area dt 5hVQ

(24)

If we use the pseudo-identity

V, =AVE/212,

and then by considering a cell of wall area A and
thickness d we 6nd
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we may write

J,=rs. (f, S)e,
=$5r4(T)/mjvy, (25a)

so that we can identify the parameter 8 of (24):

E=PU/b(vy)'=li2e, (T)/m. (25b)

Thus the current equation contains a completely arbi-
trary parameter e,. In pure, homogeneous systems at
absolute zero Galilean invariance can be used to show
that e,=e, the total number of particles; but in impure
systems at T=O, or any system at T&0, no such
identity holds, though in general e, is of the same order
of magnitude as n.

The supercurrent (24) exists even if the phase p is
completely stationary in time, which as we have shown
implies the absence of accelerating forces. In fact, in
the presence of accelerating forces and time-dependent

p we must. expect additional quasi-particle currents, in
general; the system will exhibit a two-Quid hydro-
dynamics, the complexities of which need not concern
us here. So far as I know their proper treatment requires
more knowledge of the actual physical system than we
are assuming here.

One very important point about (24) taken together
with (15) is that it makes it at least highly probable
that there is both a necessary and a sufhcient connection
between the existence of supercurrents and our defini-
tion of superfluidity (1) (which is essentially equivalent
to what Yang' has named ODLRO). Namely, Q )
and therefore p will not exist if the energy is not such
as to maintain spatial coherence of p, so PU/5(VQ)'
must exist and be positive in a superQuid in this sense,
meaning necessarily supercurrents by (24). (15) shows
that they Qow with zero forces and are therefore super-
currents. Hypothetical phases with (it ) but no super-
currents (Cohen" ) seem to ignore this half of the
argument.

Conversely, the only dynamically conjugate variable
to N is the phase as we have defined it, so that the
existence of a dlV/dt in a stationary state implies a
8U/6P, which implies that P is a meaningful variable.
Various hypothetical superconducting phases (e.g. ,
Frohlich") do not satisfy this half of the argument.

This concludes our general discussion of the basic
equations of superQuidity. We restate the conclusions:
the phase equation (13) and the corresponding equa-
tion of phase slippage are exact in the "integrated"
sense that they give the phase difference between two
distant points in undisturbed regions of superQuid.
The existence of the order parameter alone guarantees
the existence of quantized vortices, and according to
(24) these are indeed vortices in that they contain a

'0 C. N. Yang, Rev. Mod. Phys. 34, 694 (1962)."M. H. Cohen, Phys. Rev. Letters 12, 664 (1964).
'sH. Frohhch and C. Terreaux, Proc. Phys. Soc. (London)

86i 233 (1965).

superQuid circulation. However, the quantization of
vorticity in any true sense is dependent on the imprecise
assumption (15) that the phase is the velocity poten-
tial with fixed coeKcient. This need not be true unless
we treat (15) merely as a definition of n„ for instance
near a vortex core, just as the quantization of Qux in
superconductivity is not necessarily precise. Opera-
tionally, for example, the measurement of Ir/e by the
ac Josephson effect, or of h/mg by the helium counter-
part, is more precise in principle than by Qux or vorticity
quantization. In practice, of course, present-day
methods are not capable yet of distinguishing these
niceties, but it is of value to have a clear idea of the
theoretical assumptions behind the various equations,
since it is foreseeable that the most precise measure-
ments of many important physical quantities will
involve quantum coherence.

III. SOME DYNAMICAL CONSEQUENCES

The macroscopic quantum interference effects prom-
ised by the existence of (~) in superconductivity
have been relatively easy to observe for a number of
reasons: the light mass of the electron, permitting weak
superQuid connections to be made easily by use of the
tunneling phenomenon, the coupling to the electro-
magnetic field which leads to Qux quantization, and
most particularly the fact that that coupling provides
a second parameter, the penetration depth t, which
in screening out the current and magnetic field from
the interior of the superconductor creates the Meissner
effect, that is ensures that every superconductor ex-
hibits a finite critical magnetic field H„below which it
contains no vortices and thus essentially exhibits con-
stant g. In He, 'A~ co so that the corresponding cu„=0;
no rotation of a su8Rciently large He sample is too
small for vortices to be energetically favorable. Indeed,
experiments show that few samples are ever free of
vorticity. Even worse, the coherence length —the length
given by the ratio of 8U/5 ) p ~' to 6U/b ) Vf ~', which
determines how rapidly the order parameter can vary
and thus how large a vortex core is—is of order a few

L, so that no channel through which He can Row is too
small to contain a vortex. All this means that the useful
idealization in superconductivity of the "ideal Josephson
junction, " a weak link between two reservoirs having
constant phase, is probably not relevant to the helium
case. Any barrier in which the Qow occurred only by
quantum-mechanical tunneling would have to be of
subatomic dimensions, especially in thickness, to permit
any measurable current to Qow, and could not be
supported mechanically. Any attempt to replace the
ideal junction by a thin channel, on the other hand,
runs into exactly the same difficulties that are encoun-
tered with long thin bridges in the case of supercon-
ductivity, "" namely, that the device a,cts like a

"R. D. Parks and J. M. Mochel, Rev. Mod. Phys. 30& 284
(&964).
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sequence of weak links in series and one is never sure
exactly where the phase rigidity is breaking down.
The closest approximation we could imagine to a single
definable "weak superfluid junction" was the orifice
geometry which is analogous to the "short" thin film
bridge of Anderson and Dayem' in superconductivity.

Let us analyze this system in some detail, as we
did the Josephson junction previously. First, a note
as to the driving term to be inserted to represent any
externally applied conditions. In the case of normal
systems it is natural to place the ends of a specimen
in contact with reservoirs at di fferent chemical poten-
tial levels p», p2, giving an "applied" potential gradi-
ent Vp, and to describe any situation in terms of
solutions of the resulting applied field problem; we
calculate J as a function of the pressure gradient or
field, even though actually we may be driving the
system with a constant current generator. The micro-
scopic theory is done by inserting pT terms into the
Hamiltonian, as is well-understood in the calculation
of resistance, for instance, or thermoelectric power.

It is precisely the nature of superfluids that they
cannot assume a stationary state under a 6eld or pres-
sure gradient. but will, as explained by Anderson,
Werthamer, and Luttinger, " have to be described by
phases with a time dependence obeying (13). This
condition follows when we insert the appropriate pX
terms, as there described; but that does not lead to a
way to discuss the equally interesting case of an
imposed current. One obvious technique is to impose
a fixed phase difference by postulating an in6nitely
tight coupling to reservoirs consisting of large super-
fluids of fixed phase, but that is often quite unphysical.
We have used without discussion' the technique of
inserting a term

~~= A2 (Pit —A)
in the energy to describe the effect of a 6xed super-
current J»2 between regions 1 and 2. In superconduc-
tivity a rather rough physical derivation of this can
be given in terms of the electromagnetic interaction
between J and the magnetic flux of a vortex line. It is
analogous to, but more general than, the technique of
inserting a p ff, term sometimes used to derive the
hydrodynamic equations.

In the case of He we may return very simply to
Kq. (19). We showed that the particle accumulation
rate dNf/dt in a volume element EV1 is given by:

dN, /dt =5 ' (8U/Brett ) .

If no net accumulation is to occur, and if the current
leaving 6V» to neighboring elements is given in- terms
of the coupling energy between them by

112 dN1/dt) into euperfluid ~ (fl coup ling/~4'1)

Similarly, to make the corresponding current leave
element (2) we must have dN2/dk), .g.=5J12ftf2 so we
may represent a constant current generator by

~geo ~~12 (P2 $1)~ (26)

(r'/a' cosh' u) + (s'/a' sinh' u) = 1

(r'/a' sin' ll )—(2'/a' cos' ll) = 1;

8=8 (27)

(u& 0(p(fr/2, 0&0&2&,

or
r= a cosh u sin v

s =a sinh u cos v. (28)

The potential (i.e., phase) is

du
@(r, s) =C =2C tan-'e",

cosh u
(29)

so that the total phase difference between the two
large reservoirs separated by the orifice is

fhi
—

fbi = C=ftr(+ )-fh'(- )

The velocity is in the "u" direction and is

C

ma cosh u (sinh' u+ cos' p)'*

Some special values of the velocity field are:

Along the axis:

(30)

(31)

r= 0, sin v=0, a=a sinh u

Using this let us discuss the orifice problem in the
presence of a constant driving current. Current accelera-
tion can be important only on the time-scale of the
U-tube oscillations, which is usually longer than the
time necessary to create a vortex or otherwise change
the phase but can be included if desired. Also, it will
greatly simplify one's thinking without falsifying any
important physical features to assume T—4; i.e., only
incompressible, superfluid Qows.

Under these conditions 5/mVp= ff, and

V -v, =0
so

V2$=0

Thus we can solve for the flow in the absence of vortices
by a simple potential calculation. Let the radius of the
ori6ce be a. The equipotentials and streamlines are
along coordinate surfaces in a set of oblate spheriodal
coordinates, defined in terms of cylindrical coordinates
r, 0, s through the axis of the ori6ce by

there must be a compensating term

dN1/dt)current generator = &.I'124'1 ~

AC AC a
p, = (cosh u) —'=

ma m a'+2' (32a)
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In the orifice:

s=0, r=u sin v,

v, = (Fc/m) [C/ (a' —r') &].

On the plane:

(32b) (a')

r=&a cosh I, cos v=0

s, = (SC/mr) [a/(r' —a') &].

The total particle Qow is

p 2mSccp 2AQpes'd~= 1 2
m

'
m2 m2

(32c) -477 —277 o --~~ ~sr s7r

[using (30)] and the total kinetic energy is

E= p 8 d7

~ p= lp—(~~)' d.' m2

5't'= —',p—,
i

85+ — dS )gird
m2&

s Jft(41 42) = (pa/m)[&s(4r —4s)'/m] (34)

Thus this energy is a quadratic function of the phase
difference ($r—$s). However, it is essential to realize
that this is only one branch of a multiple-valued func-
tion, because by gauge invariance E must be a periodic
function of @r—Ps with period 2u That .is, if we were to
pin down the phases in the two reservoirs by coupling
to reservoirs of Axed relative phase (P~ —ps)o we could
satisfy the boundary conditions by any Row

J= (25ap/m') [(Qr—Ps) o& 2'+]
and the corresponding kinetic energy

E= (pa/m) (5'/m) [(y,—ys)o~2nu]'. (34)

Equation (34) must also be used, then, in the presence
of a current generator (27); thus the total energy is

8= (pa5/m )[(@&—Ps)&2eu]' —5J»(yr —ys). (35)

This energy considered as a function of p&
—ps has

an infinity of points of metastable equilibrium where

J= J)2

(pr —ps) = 2mu. + (m' J/26»ap)

Z= J»[ma+—(m J»/4ap)] (36).

The situation is diagrammed in Fig. 2. The first
drawing assumes a small current generator, J»(hap/m',
which is the current value when @r—Ps=a, the value
at which the parabolas cross. For this current, although
none of the energy minima are truly stable each is at
least the lowest energy state for a given fixed phase
difference (this has not been proved but seems obvious).

FIG. 2. Energy parabolas for potential Qow in an orifice as a
function of relative phase for different constant current generators
Jjs (6@)o is the relative phase "slippage" de6ned by E (h@o) =
J~26@0. (a) Low current; (b) J~2 v, ; (c) J~2 approaching ob-
served critical current.
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The system can still absorb energy from the current
generator by "running downhill" in phase, but only
if some fluctuation or external perturbation lifts it
over the energy barriers between parabolas. In principle,
if Jts)hap/m' the third drawing is correct, and there
is no true energy minimum; this corresponds to a
"zeroth-order" critical velocity (we take the mean
value over the area of the orifice)

(s,)'= 2'/ma (37)

=7.55/ma. (37')

This is also far smaller than observed critical velocities,
indicating as discussed by Vinen that the great difh-
culty in forming vortices in most situations is probably
nucleating them at the walls.

Yet another "critical" velocity may be estimated if
we suppose that the mechanism for phase slippage is
the most plausible one in a simple orifice geometry,
that of blowing vortex rings out on the downstream
side of the orifice, of approximately the size of the
ori6ce itself. The energy of a vortex ring of radius a is

Z„„,= (2~'paw/m') ln (a/])

which can be produced from an energetic point of view
only if the energy available from the current source in
each cycle, 2~5J», is equal to E„.„g. From this we get

which is —', cm/sec for a=10 tr. Actually, the crossing
points between parabolas do not represent possible
transitions, because the two parabolas represent entirely
different "sheets" of the energy connected only by
passage of a vortex across the ori6ce, and we must
consider the activation energy problem for creation
of a vortex, as has been discussed by Vinen. '4 At the
very least a length of vortex line of the order 2a must
be created, which has energy of order

(E„.,t,, );„=(s.pS'/m') ln (a/]) &(2a,

where $ is the coherence length, 1 A. This inust be
compared to the energy gained when a vortex line is
halfway across the orifice. which is of order

~5Jis ——(ir'pa'5/m) v, .

The result is another "critical" velocity

w.&'&= (2/s ) (5/ma) ln (a/$)

dZ Jp s.a'&

dt mA A&' (38)

where A is the area of the surface in the smaller reser-
voir. J also determines the rate of generation of vortices;
if J is greater than the observed J„vortices will be
generated very rapidly, and conversely; but actually
of course there is a functional dependence of the rate
on the current:

large random fluctuations, presumably either in the
generation near the walls or in the motion of vortices
already present. In general, the working point of an
orifice is found to be not near the lowest intersection
of two energy curves, where

v, =N/mu and (4s re—,)o

but at a phase-difference of the order of 10+, where the
energy available is much greater than that necessary
to form a vortex and thus we may expect rather irregu-
lar and unstable behavior. When vortices are created
under such conditions they are accelerated rather
strongly and give up considerable energy to the normal
excitations.

It is because of this large value of the phase difference
that the orihce geometry —and, correspondingly, to a
lesser extent superconducting thin 61m bridges —are
more dificult to demonstrate spacial interference effects
with than the Josephson tunnel junction, for which the
system moves adiabatically from one energy minimum
to the next, 2x away, whenever that is energetically
possible. Incidentally, it is clear that since v, is not
very dependent on channel length, the total phase
difference for a long channel at v, is even greater than
for a short one, and as a result even more randomness
in the creation of vortices and even less sensitivity to
the precise value of phase difference is to be expected
for long channels.

It is probably for these reasons that of all the macro-
scopic quantum interference effects, only the driven ac
experiment has as yet succeeded in He. This experiment
depends on the principle of synchronization, in which
a strong external ac signal is introduced which can
override the internal Quctuations.

First let us consider a free-running orifice connecting
two reservoirs with a height difference Z. This height
difference will decrease at a rate

tt, &'& = (f'i/ma) ln (a/g) —11.5 (fi/ma). (37")
dm/dt=f (v, ) (39)

LNote that the momentum conservation equation, as
opposed to these energy considerations, simply gives
us the frequency condition (13) as expected from (15)).

The essential physical point here is that all of these
"critical" velocities are much less than real observed
superQow velocities, indicating that in all cases the
generation and motion of vortices is controlled by

'4 W. F. Vinen, Proceedings of the International School of Physics
"Fermi" (Verenwa) 1961, edited by G. Careri (Academic Press
Inc., New York, 1963), p. 336,

which will be rather steep, as shown in Fig. 3(a), but
at least 6nite at very low v,-. Finally, we have the
Josephson relation (13):

mgZ= —h (dis/dt) =
hfdf (A/rra') (dZ/dt—)$ (40).

Equation (40) neglects the possibility of phase change
by acceleration, i.e., it really contains a term in d J/dt
or d'Z/dt', which will have no effect in the mean but
does lead to the U-tribe oscillations. If f were a step



function, dZ/df would be fixed and the height differ-
ence would decay linearly, but presumably f is some-
what "soft," and as Z decreases the decay rate will
do so also, but perhaps less slowly. Figure 3 (b) shows
a hypothetical decay curve which fits qualitatively with
the vortex generation rate shown in 3 (a).

Now suppose that as the height diGerence drops, we
are causing an ac Row to be superimposed on the dc.
During half the cycle we will be increasing the tendency
to form vortices, during the other half decreasing it.
When the height difference is such that dn/dt= he, one
vortex per cycle will be formed —presumably in the
positive half-cycle, with quite high probability. %hen
formed it uses up some considerable fraction of the
available energy so another cannot be formed imme-
diately; thus there will be a strong tendency for exactly
one vortex per cycle to be formed, since the second
half-cycle is not available. Because of (40) this will
mean a tendency to fixed Z, i.e., a plateau in de/dt
LFig. 3 (a)] and thus in Z. Another way of putting it
is that when the vortex formation is in a definite phase
relationship with the ac signal, power can be transferred
from the ac generator to the system as a whole, enough
power to appreciably change the Qow rate. If the alter-
nating current is larger than the dc—as in our experi-
ment" —clearly it is quite possible to stop the dc Aow

entirely, because we can control vortex formation
wholly with the ac.

I have found a very simple mechanical analogy useful
for understanding the ac Josephson effect. (See Fig. 4.)
The relative phase of the two reservoirs I think of as
the angular position coordinate p of a set of locomotive
wheels, and the velocity of the locomotive is the height
difference Z; the ratio of position to phase is then the
radius of the wheels corresponding to fs/mg. The equa-
tion (40) for the rate of generation of vortices as a
function of the How (acceleration) may be inverted to
give an effective nonlinear frictional force on the
"locomotive"

A dZ mgZ (dNIf 'I —
I

~-
m.u' df & ( dV

(41)

If f is a step function, this gives a constant frictional

dn
dt

ID EALI ZATI ON

VS t
I"IG. 3.(a) Rate of vortex formation as a function of v, . "idealiza-

tion" is the sharp critical current assumption; reality is probably
more like f(v, 'I shown. (b) Decay of a helium head through an
orifice or channel for critical current idealization and real situation.
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(b)
Fro. 4.. (a) illustration of "locomotive" mechanism of ac

Josephson-type effect. (b) "Locomotive" system which could be
driven at submultiple velocities.

force—i.e., the height (velocity) decreases linearly to
zero. If f is as in Fig. 3, we get a "braking" action
which leads to a decay between linear and exponential.
It is an oversimplification to think. of this as a constant
force in time. Think of the locomotive as having square
wheels and rusty bearings, so that the losses occur in
some definite but not simple way during each cycle.

Now let us introduce the driven alternating current.
This gives us an energy proportional to the phase
coordinate, and alternating at frequency ~; it may be
schematized by attaching a piston through a simple
linkage to our locomotive wheels, and applying a force
on the piston by (for instance) admitting steam inter-
mittently at a rate a&/2s".

P= Ps cos (tet+ps). (42)

(See Fig. 4.)
As we very well know, such an alternating force is

capable of keeping the locomotive going at a steady
velocity Z if it is large enough, and if

~= 2m (dn/dt),

i.e., the force is applied once per revolution of the
wheels. Also, as is less well-known but obvious, this
mechanism can act as a brake or an accelerator at this
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Fn. 5. Suggested space interference experiment with Heir.

velocity. The system will attempt to synchronize itself,
even where the power available is not adequate to hold
it in synchronization.

Another possibility is to run the wheels at m times
the frequency of the valves which admit the steam.
Clearly if the velocity of the locomotive is not perfectly
uniform, or the valves do not regulate the steam har-
rnonically, the two can run in synchronism and drive
the locomotive. This kind of harmonic (V=m5~/2e) is
often observed in the true ac Josephson effect.

In helium and in the thin film bridges, the phase
slippage takes place by means of vortices. This means
that the motion to which the driving ac is coupled is
highly anharmonic (square wheels). Another valid
schematization of this is to make the piston linkage
highly anharmonic —let it roll on a queer-shaped cam,
for instance )see Fig. 4(b)]. Then not only can the
wheels be driven faster than the frequency of the force,
but also they can be driven at subharmonics, since,
for example, the vortex may be formed only every xth
cycle of the driving current. Thus we expect and observe
both harmonics and subharmonics, in the Anderson-
Dayem and Richards —Anderson experiments. ""

Both of these experiments, for final quantitative
description, must wait for quantitative theoretical
treatments of the generation and motion of vortices.
But the basic principle of phase synchronization of the
external signal with the relative phase of the order
parameter in the reservoirs is independent of detailed
mechanism.

As for spacial interference experiments, the most
promising seems to be the orifice analog of the Mercereau
"current" experiment. "Here one drives a supercurrent
through two orifices in parallel, and at the same time
causes a superflow past the orifices on one side (see
Fig. 5).

The second superflow enforces a phase difference AP
at the two orifices on one side so that both orifices can-
not simultaneously be at metastable minima of their
energy curves (see Fig. 2), unless that phase difference
is 2em. Another way of putting it is that the circulation

"R.C. Jaklevic, J. Lambe, J. E. Mercereau, and A. H. Silver,
Phys. Rev. 240, A1628 (1965).

through the two orifices must be quantized, leading to
an additional circulating current which may aid break-
down (vortex creation) at one or both orifices. This
eBect would be periodic in the phase. Unfortunately,
it is very sensitive to Quctuations and instabilities.

A phenomenon in which the idea of phase slippage
must play an important role is the superQuid creep of
films. It has been suggested that vortices form at the
critical velocity with axes parallel to the film and
perpendicular to the Qow." That is almost certainly
correct—it gives dimensionally the correct critical
velocity, which again is of order 105/md. However,
I would speculate somewhat differently on certain
details.

First, the motion of the vortices. Examination of
typical estimates indicates that the frictional forces
on He vortices allow them to move with a velocity
component parallel to the Magnus force of about 1%
of the Qow velocity. Thus vortices of the type postulated
above will be generated at the solid surface and move
out of the film into the free surface only a few thousand
A downstream (or vice versa, but this seems less likely).
This will be the predominant dissipative mechanism if
it occurs. It is hard to believe that vortex Qow into
the bulk Quids at either end can play an important
role in a direct fashion.

There is, however, a somewhat more subtle question
to be considered. If we are to take seriously the usual
vortex creation critical velocity expression, Is/md, it is
not obvious that the smaller dimension of the film is
really the value of d which must be considered. Why
do not vortices form perpendicular to the film and
move across it from one edge to the other& While at
velocities h/mW, where W is the width of the film

1 cm (velocities 10 ' cm/sec) one would expect
the formation of such vortices to be dificult dynamic-
ally, at velocities of 10'-10' times that, still small
compared with critical film velocities, there appears
to be no such process at work.

It is suggested here that the predominant mechanism
in film flow is the pimping of such vortices by surface
Qaws and thin spots in the film. Thus the film is a
"hard superQuid". its Qow is maintained by a pinning
eBect rather than by an absence "of suitable vortices.

Vortices of the parallel type can also become pinned
at either end and retard the motion of other vortices
by their mutual repulsion. This is probably a mechanism
which increases the critical velocity for rough substrates.
Finally, the interaction of the pinned perpendicular
vortices and the moving parallel vortices can lead to
quite complicated effects: such things as the vortices
reattaching themselves after a crossing in such a way
that the pinned end attaches itself to the parallel
vortex can occur, and become a mechanism for pinning
of parallel vortices which may increase the pinning,
and thus the critical velocity, as a function of the
vorticity Qowing into the 61m from the bulk Hquids.
Another mechanism which may play a role is motion
of the free end of a pinned perpendicular vortex under
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the Magnus force until it becomes a pinned parallel
vortex. This could be a copious source of vorticity.

In conclusion, then, the fundamental point made
here is that in helium rr, as in superconductivity, the
Josephson equation and the associated concept of phase
slippage are the most fundamental and exact conse-
quences of our present theoretical understanding of
superfluidity. Where phase slippage in superconduc-
tivity can occur in the absence of identi6able flux
quanta, in helium with present technology it will always
involve vortex lines because their core size is only a
few A, and no tunneling medium is available. Thus the
crucial problem in helium flow is to find the vortex lines
and study how they move across the flow path into
the walls or disappear into the bulk. The complicated
dynamics of vorticity is beyond the scope of this paper;
we have merely speculated, with little quantitative
study, in order to present concrete examples of the
central ideas.

ACKNOWLEDGMENTS

I have bene6tted throughout from the close collabo-
ration of P. L. Richards. Discussions with P. C.
Hohenberg, J. M. Luttinger, and W. L. McMillan
were of value. A suggestion of D. J. Scalapino was re-
worked into the form of the space-interference experi-
ment using orifKes suggested in Sec. III. Questions
asked by F. Reif and P. A. WolG stimulated the 6rst
part of the work.

APPENDIX A. ODLRO VS MACROSCOPIC
PARTICLE FIELDS

As explained in the introduction, Penrose's initial
de6nition of the order parameter4 in terms of a large
eigenvalue of the density matrix was later extended by
Beliaev, ' by Gor'kov (in terms of Green's functions),
and a generalization conveniently named "oG-diagonal
long-range order" (ODLRO) by Yang. ss That is, one
writes

(0~ I f*(x)f(x') [ Osr) =Q) „f„*(x)f„(x') (A1)

and "ODLRO" is present when ) ~ X, giving a con-
tribution to the sum comparable to the sum of all
others. One may then de6ne a "ground state" (Osr &

~

of the system with a different number of particles so
that ft becomes a matrix element

Czrfr(x)j&= &0~, I 4(*) I 0~&. (A2)

In this way the necessity for dealing with states which
are coherent mixtures of states with different numbers
E of particles in the system is avoided, apparent1y, and
for this reason most of the above authors prefer this
scheme.

We argue that this approach is physically unneces-
sary, though valid, and occasionally inconvenient. For
one, this definition does not permit convenient sub-
division of a system. The over-all phase of f& is quite
arbitrary —as it correctly should be for an isolated

system with no particle exchanges permitted. On the
other hand, once the phase at any space —time point is
fixed the phase of the rest of the system is. Thus one
cannot use the same description for any subdivision of
the system; the X and f for half of a bucket of He 11

simply do not describe it adequately. On the other
hand, if one abandons the attempt to hold on to the
broken gauge symmetry and ascribes a fixed, measurable
phase to every superfluid system, recognizing tha, t in
principle the relative phase of any two may always be
measured by a Josephson-type experiment, one imme-
diately has a usable local description.

This is a satisfactory expedient unless the full gen-
erality of (A1) is meaningful —i.e., unless it is conceiv-
able that more than one eigenvalue ) ~ is "large" and
more than one intermediate state ) Osr &) is involved.
That is, we may ask whether the system may ever in
any sense be a superposition of several distinct types of
ODLRO. An attempt at such a theory was made by
Gor'kov and Galitskii" for the d-state BCS theory, and
proven invalid by various groups. "The question enters
in many other cases—even, for example, in discussing
Aux quantization, one must be assured that one type
of ODLRO only is present.

The most generally applicable argument here is that
made by the author" in the Gor'kov —Galitskii case. It
is that the two intermediate states ) 0~ &,) and

~ Osr &,s) are demonstrably in entirely distinct Hilbert
spaces in the limit g—+~, in the sense that N differ-
ent particle states must be changed a finite amount to
get from one to the other. Thus the ( 0~) state must
be simply a superposition of a ( 0&,&) state communi-
cating with I Osr t,t) and a

~
Osr, s) state, and no inter-

ference eGects whatever can connect the two types of
states. In particular, every measurable quantity —en-

ergy, current, etc.—is the simple linear superposition
of the two values. Then such a state is no more meaning-
ful than Schrodinger's famous superposition of the
quantum states of a dead cat and a live cat: a possible
mathematical description of a physical absurdity.

APPENDIX B. A "NEW" COROLLARY IN
CLASSICAL HYDRODYNAMICS'

Euler's equation of motion in a classical ideal Quid is

(Bv/Bt)+V Dv'/2)+pj=v x V x v. (81)

p is an appropriately de6ned chemical potential per
unit mass. We now consider a general flow and draw
a path C entirely inside the fluid —otherwise general—
between two points I'j and I'2 in the Quid. Points I'I
and I'2 are to be thought of eventually as being in
reasonably quiet regions where the flow is steady over
a long time T.

L. P. Gor'kov and V. M. Galitskiip Zh. Eksperim. i Teor.
Fiz. 40, 1124 (1961) /English transl. : Soviet Phys. —JETP
13, 792 (1961)j.

sr D. Hone, Phys. Rev. Letters 8, 370 (1963);R. Balian, L. H.
Nosanow, and N. R. W'erthamer, ibid. 8& 372 (1962).

ss P. W. Anderson, Bull. Am. Phys. Soc. 7, 465 (1962) .
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Let us now perform two integrations on (81): first,
along C from I'j to I'2

r
Bv—dl+( 'e'+-p)r ~&= (s xV xv) dl. (82)

C

PIt was brought out in the discussions of the conference
that (82) is even more general than I had thought, in
that most types of viscosity terms which might be added
to (81) involve gradients, so that if viscosity is not
acting at P, and P& they cancel out. j

Second, we integrate over a very long time interval
T and divide by T, thus taking a time mean value as
is done in the virial theorem:

f
P2 T gv (v2

dlT ' —dt+
(

—+ti i

—
i

—+ti
Py Bt k2 )P2 Av &2 PI Av

—T 2 dl' 'v &M . 83
0

%'e have defined ~, the vorticity, as —,'V' x v and written
the time mean value at the points of steady flow in an
obvious notation. The 6rst term on the left-hand side is

T-' v dl — v dl

%e define a "quasi-steady" fmow as one in which this
difference increases less rapidly than T; almost any
turbulent flow one wishes to consider, or periodic Row,
etc. will satisfy this condition. Then as far as time
mean values are concerned ve arrive at the basic
corollary of Euler's equation:

Pg

((si'+&)& )A (( i'+&)& )A 2 dl'(s x&)
PI

It is easy to interpret the quantity on the right-hand
side. Writing w as dr/dt, the particle velocity, this is

Pp

2 (dt)& dr/dt) ~ ei,
PI

which is the rate at which vorticity is berg carried across
the curve C by the particle motion. Thus

(~L(s'/2)+t j &A
= (2"(d~/dt)")A' (85)

Ke see immediately that this equation is far more
important in a superAuid, where vorticity is conserved
and quantized, than it is in ordinary fluids, where in
a laminar Bow, for instance, the right-hand side has
little or no special signi6cance. In helium, in fact, by
turning to the integrated form of (81) involving the
potential we get the detailed Josephson equation with-
out the special assumptions necessary here.

A number of somewhat surprising consequences
immediately appear. One example is that the Pitot
tube, "for instance, must involve transport of vorticity
and thus motion of vortex lines in liquid He n. Ordinary
aerodynamic lift and drag also would do so if the surface
condition were v=o, but of course it is not; the vorticity
there can be thought of as all in the surface layer out-
side the superAuid and thus not quantized.

I have tried at length to find a clear statement of
(84—5) in the classical literature, including the volumi-
nous works of Rayleigh and Lamb, but have so far
failed to And anything but corollaries and lemmas
related to it. I will be pleased to hear from any reader
who can 6nd the theorem stated in this form; one can
only assume that it was understood by the "classics"
but is of no value in classical hydrodynamics so was
never stated.

s' J. R. Pellam, Phys. Rev. '78, 818 (1950).


