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A review is given of recent applications of symmetry arguments in particle physics. It deals with the developments
which start with SU(6).

I. INTRODUCTION

The purpose of this paper is to give an account of
recent applications of symmetry arguments in particle
physics. It deals with the developments which start
with SU(6) . The properties of SU(3) LG 1j and those
of Pauli and Dirac spinors and matrices are supposed
known. It has been attempted to make this paper
fairly self-contained otherwise, though it is certainly
not complete in many mathematical details.

In order to explain the plan of the paper we begin
by giving the table of contents.

II. Some Physical Applications of Unitary Groups
A. A Few Definitions
B. Kinematical and Dynamical Unitary Sym-

metries
III. Some Mathematical Tools

A. Representations of SU(tV)
B. Representations of U(X)
C. Reduction of Product Representations
D. Reduction of SU(MÃ) with respect to

SU(3II) X SU(tV)
E. Generators, Labeling Problems, Currents
F. Reduction of SU(M + E) with Respect to

SU(M) && SU(1V)
G. Pseudo-Unitary Groups

IV. SU(6)
A. Introduction
B. Some Specific Supermultiplets
C. Mass Formulae
D. Magnetic Moments
E. Electromagnetic Mass Differences
F. The Semi-Leptonic Vertex
G. S-Wave Nucleon —Nucleon Scattering

*The present paper contains an enlarged version of lectures
given by the author in Krice and in Dubna in the fall of 1965.
It will be attempted to outline the main ideas in this Geld up
till December 1965.

H. Non-Leptonic Decays
I. The Master Problem
J. Triplets: Formal Tool or Reality?

V. Relativistic Explorations
A. Introduction
B. The Boosted 6, 36, 56; the Group U(6, 6)
C. The Meson —Baryon Vertex
D. Groups Related to U(6, 6)
E. Unitarity; other Implications
F. 8"-Spin
G. Conclusion

VI. Current Algebras
VII. No-Go Theorems for Certain Kinematic Sym-

metries
VIII. Questions

Section III can be skipped by readers familiar with
the algebra of unitary tensors. In that section, Lie
groups and Lie algebras are only touched on lightly,
as their treatment is well accessible elsewhere LB 1,
H1] .

During the period covered in this paper, intense
work went on concerning three main and distinct
problems. (The Babylonian confusion of this period
was largely due to the fact that their distinct nature
was not always stated. )

(A) Investigations of approximate dynamical sym-
metries such as static SU(6) and of larger ones, in
which the latter is contained.

(B) Explorations of dynamical equations which
yield SU(6) or related groups as a symmetry of some
of their approximate solutions.

(C) Limitations on approximate kinematic sym-
metries imposed by the rules of quantum theory and
relativity theory.

It seems possible at this time, and it is tried in this
paper, to assess the success and limitations of work
related to (A); to state what preliminary steps have
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been taken and what questions have arisen in regard
to (8), which thus far is an open problem; and to
illustrate the nature of theorems that bear on (C).

The purpose of Sec. II is to make the distinction be-
tween kinematical and dynamical symmetry. Section
IV deals with the properties of static SU(6). In
Sec, V, relativistic explorations are discussed which fall
mainly under the heading of problem (A) . Section VI
contains a brief account of what is known about cur-
rent algebras; here one deals with questions of type (8) .
Some results concerning (C) are summarized in Sec.VII.

Numerous discussions with many colleagues are
gratefully acknowledged, especially with M. A. B.Beg,
B.W. Lee, S. Meshkov, and R. Oehme. Also, I want to
thank M. A. B. Beg for his help in the writing of Sec.
VI; M. A. B.Beg, O. W. Greenberg, and S. B.Treirnan
for helpful criticism of the manuscript; and A. Q.
Sarker for his assistance in compiling the published
literature up till early December 1965.

II. SOME PHYSICAL APPLICATIONS OF
UNITARY GROUPS

A. A Few Definitions

Notation. Matrices will be written as Ap where the
upper and lower indices denote rows and columns,
respectively. x, o. = 1, ~ ~ ~, N denotes a complex
vector, represented as a one-column matrix x. The
vector with complex conjugate components is con-
veniently written as x ~ and as such it is represented
as a one-row matrix xt. (t stands for Hermitian con-
jugate) .

Consider a transformation

x'= Ax or x' = A xt' (2.1)

xtx= x*x. (2 3)

The unitary group U(E) may be defined as the group
of all transformations (2.1) which leave xtx invaria, nt.
This implies that the matrices 2 satisfy

AtA = 1.

The further restriction

detA =1

(2.4)

(25)
corresponds to the unimodular subgroup SU(N) of
U(X) .

The vector x is a particular representation of U(Ã),
or SU(Ã), called the defining representation and often
denoted by its dimension: N. The complex conjugate
vector xt gives a representation with the same dimen-
sion but which is in general inequivalent to iV )for the

The complex conjugate of x transforms as

xt' = xtAt or x '* = xp*Ap* ——xp*(At) s. (2.2)

(Summations over 19 are understood. ) The unitary
length of x is de6ned by

x '~=Ap x& (2.6)

that is, we let A act on the components for Axed axes
of quantization, so that A changes the direction of a
vector in a Axed coordinate system. Cf. the discussion
in [F 1]. In what follows, x~ will mean the uth com-
ponent of a vector, regardless of choice of axes. In the
later discussion of boost matrices (Sec. V), the more
fully specified notation used in Eq. (2.6) will be needed

again.

B. Kinematical and Dynamical Unitary Symmetries

There are a variety of groups SU(iV) which play a
role in physics. As an introduction to our subject, it is
useful to give some examples of these physically in-
teresting cases. They have in common that conserved
quantities for physical systems are dined in terms of
the generators of the group at hand. They are distinct
in the way the region of validity of the conservation is
de6ned.

(I) Strict kinematical group SU(2): angular mo-
mentum. We shall call this strict symmetr'y kinematical
to indicate that the corresponding conservation laws
are valid independently of what may be the detailed

dynamics of the system. The de6ning representation Z

is "the spinor. "
(II) Approximate kinematic group SU(2): isospin.

The group applies in an approximate way, namely,
only in the limit e—+0. This restriction is expressed in
terms of a parameter which is independent of the
dynamical variables (positions, momenta, etc.) of the
system. For this reason the approximate group will
be called an approximate kinematic group. The dining
representation Z is the nucleon.

Of course one can use isospin in practice also when
e/0, for example when we say: isospin works well in
hadron —hadron scattering for energies large compared
with the isornultiplet splittings and for angles large
compared with the region of Coulomb interference.
However, we like to think that the size of these "bad"
regions tends to zero as e—+0. This is probably not a
very physical way of putting things. The only reason
this e—+0 limit is discussed here is to contrast the ap-
proximate nature of isospin, as it is thought of presently,
with approximate symmetries of a different kind.

(III) Approximate dynamical group SU(2): normal

special case X=2 see the discussion of Eq. (3.6) below(.
We denote it by N* and call it the representation con-
jugate to N.

The set of all 2 acting on an x generates an N-
dimensional complex vector space. In this space we
can choose a base of N linearly independent vectors
x,, j=1, ~ ~, N. Thus x;~ is the nth component of the
jth base vector. In physical language, a particular
choice of the x; corresponds to the choice of "axes of
quantization. " We read the transformation (2.1) on

gg as



coupling in atomic spectra [C lj. Write the Hamil-
tonian for an atom as

(2.7)

(2 8)

H' contains all nonstatic effects, for example, spin-
orbit coupling. Whenever it is legitimate to neglect
H' to a good approximation, the orbital angular mo-
mentum 1. and the spin angular momentum S are
separately conserved and we have S-multiplets '8+'L,z
(normal or Russell —Saunders coupling). The group
SU(2) is now the spin group, the de6ning representa-
tion Z is the electron vrith spin.

Take the 'I' and 'I' levels in helium as an example.
Even though (2.8) is explicitly spin independent, a
'I'—I' split arises due to the exclusion principle,
(Austausch effect). On the other hand, we have a
"supermultiplet" in the Bo approximation, as 'E2,~,0

are degenerate. This degeneracy is lifted by spin-orbit
coupling.

The spin-orbit coupling is proportional to e and also
proportional to % via the momentum. Yet we cannot
define the Ho approximation by e—+0, for then we lose
the atom. The normal coupling approximation is thus
to be defined as the neglect of w/c effects, that is in
terms of the small expectation value in specific states
of certain dynamical variables.

Normal coupling may be better in one part of the
spectrum than in another; for heavy atoms it is bad
for the Roentgen part of the spectrum, it is better in
the outer shells provided that there is not too much
excitation. All these effects vrhich make the spin group
SU(2) to an approximate one are not (as for isospin)
expressable in terms of a nondynamical parameter.
Thus we speak of an approximate dynamical group.

With the Hamiltonian (2.7) in hand, the dynamical
nature of the approximation is of course obvious from
the start, and there is no need to discuss trouble vrith

SU(2). There would be trouble indeed if one would
think. of the spin group as approximately kinematical
in nature. This is so because taking a limit of the
kinematical type "coupling constant"-+0 is itself a reh-
tivistically invariant procedlre. In the zero limit we
vrould then have a strict symmetry in vrhich spin and
total angular momentum vrould be separately strictly
conserved. We vrould then have a theory of 6nite
multiplets with more integrals of the motion than the
Poincare group allows which is absurd. This is at the
root of many no-go theorems for certain approximate
kinematical symmetries [W 1g. These theorems will be
brieQy revievred in Sec. VII.

(IV) Approximate group SU(3): strong interaction
symmetry [G 1j. It is not impossible, as far as is
known, that this is an approximate kinematical group,
that there is a symmetry breaking interaction vrhich is
characterized by one (or more) nondynamical param-

eters which in their zero limit de6ne a strict SU(3).
Hovrever, some bootstrap ideas favor a more dynamical
view (which could perhaps also be applied to isospin. )
The dining representation 3 is the triplet.

Regarding the experimental status of SU(3), it
seems that the predictions are best for mass relations
and for semileptonic and electromagnetic vertices. On
the other hand, from the analysis of scattering and
production amplitudes alone one would not be very
clear about this symmetry [H 2, A 1$.

(V) Approximate dynamical group SU(4): nuclear
supermultiplets [W 2j. This symmetry was suggested.
to apply as a dynamical approximation for low-lying
nuclear levels only [W2$. In that region the theory
works well [F2j. The de6ning representation 4 is the
nucleon with spin. This SU(4) has much in common
with the SU(2) of (III). But of course we do not
knovr as much about the Hamiltonian in this case as
we do for (2.7) . All the success of SU(4) really says
about the fundamental dynamics is that there is a
regime in vrhich a spin- and isospin-independent Ho is a
a good approximation. It is not part of the SU(4)
theory per se to derive an Ho and an H' from first dy-
namical principles, as in (2.7, 8) .

This brief discussion of some aspects of the foregoing
unitary symmetries is given in order to set the stage
for the main topic of this paper.

(VI) Approximate dynamical group SU(6) in par-
ticle physics [S1, G3, P 1, G4$. The fundamental
representation 6 is the sextet, an. SU(3) triplet of spin
—,
' particles. Thus (as will be explained more fully in
Sec. IV) this group contains the unitary spin group
SU(3) and the ordinary spin group SU(2). By the
argument given for the case of Russell —Saunders cou-
pling, SU(6) must be an approximate dynamical group
because it contains the spin group. Indeed, what is
often referred to as the difhculties of SU(6) has nothing
to do with the fact that SU(6) contains the internal
symmetry group SU(3). It is instructive to read the
pertinent literature as if it had reference to atomic
Russell —Saunders coupling, where the internal sym-
metry group is shrunk to the identity.

For the nuclear SU(4), it was mentioned how one
may refer back from the validity of that supermultiplet
theory to the structure of a leading part of the Hamil-
tonian. The analog for SU(6) would be to ask for the
"inner" dynamics of a baryon (for example) built up
out of sextets (see Sec. IV J). But this is only one
facet of what has been attempted with SU(6) and its
descendants. Beyond that, there arise questions in
particle physics which have had no analogous treat-
ments elsevrhere. I'or example, can one say anything
new about the scattering of tvro particles each of vrhich
is assigned to an SU(6) supermultipletP The analog
would be the scattering of tvro nuclei on each other
where the state of each one separately is (approxi-
mately) described in terms of the nuclear SU(4).
This clearly must involve questions of recoupling vrith
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orbital angular momentum (except for S-wave scatter-
ing see Sec. IV G) .

There is another type of problem which arises in
the context of SU(6), namely the off-the mass shell
problems as they appear for example in the study of
vertices. In this context belong also many questions
related to the possible existence of a field theory. At-
tempts in this direction must go well beyond the
phenomenological level as it was sketched for SU(4).
These problems, which seem particularly pressing as
the principal encouragements for SU(6) theory come
from vertices, are taken up again in Sec. IV I, V, and VI.

III. SOME MATHEMATICAL TOOLS

A. Representations of SU(N)

(1) Following a procedure familiar from the ordinary
rotation group, one can obtain general. representations
from the defining representation by the construction
of tensors. A tensor Tp, ...p„'" is defined by

Tp, ...p„'" " X"(1) ~ ~ X (223) Xp, (1') ~ ~ Xp (23')

(3 1)

where ~ means: transforms like. This definition of a
tensor holds for U(X) and SU(X) alike. Thus unitary
tensors have two kinds of indices, upper and lower ones.
Apart from the component labels the x's are marked
with " configuration labels" (i), or (2') to distinguish
one unitary vector from another. x transforms with A,
xiI with At, as in Eqs. (2.1) and (2.2), respectively.

For the case of SU(1V) only one can, without loss
of generality, consider tensors which have only upper
(or only lower) indices by introducing the Levi —Civita
symbols &~1'""N. e is totally antisymmetric in its X
indices and e"'"~=1; e)„...qN has similar properties.
Under a transformation of U(N), these symbols trans-
form as follows:

can associate a totally antisymmetric tensor y:

&i=&il2" lNy

y12' "~N = L1/(/ —1 ) t)22 &2" '&Ng .

Note the familiar case E=2:

(3.5)

tp, t =0. (3.7)

This is a (lV —1)-dimensional representation, the ad-
joint representation. The condition t =0 can also be
expressed as follows.

goal ' aN i)pa'N+2Pa2 'a—Nepal+2"P'a3 ''aNalfpa2'

s,=e; y' y'=e"s (3.6)

where one may associate a spinor y~ to a conjugate
spinor x;.

Let us return to the tensor 2'of Eq. (3.1) with both
upper and lower indices. This T corresponds in general
to a reducible representation, for two reasons.

(a) If its trace with respect to n; and P; is unequal
to zero, then the original T contains a nonvanishing
tensor of lower rank which is itself a representation
)as x (i) x (2') is a scalar).

(b) Consider

2 ala2 —. 1
( 7ala2+ 7a2al) +2 ( Tala2 2 a2al)

Each of the two terms in brackets separately form a
representation of SU(1V): the unitary transformations
commute with permutations on the indices, they pre-
serve the (anti-)symmetry. It is true in general for
tensors of any rank that if there exists a permutational
symmetry or antisymmetry of the indices then this is
respected by the unitary transformations, (H 1$. Thus
one step toward getting irreducible representations is to
find "tensors with permutational symmetry. "

Moreover, the tracelessness condition itself can be
expressed as a particular kind of permutational sym-
metry. Consider for example the tensor

g ~1"'~N —D—
&g ~1~ ~ a g ~N@P1"'PN

P1 PN (3 2) ~ ~ +PaNal"'aN —2$PN—1=P (3 8)

& 1" 12 (3 3)

(3 4)

The transformations (3.2, 3) preserve the total anti-
symmetry, while also e""' =e'&...~——j., as is easily
checked. It is in order to preserve these unit values
that the factors D ' (or D* ') had to be introduced.
Thus the ~ symbols do rot behave as tensors under
U($). But for SU(X) where D=D*=1, the 2's are
true tensors. One may call the e's pseudo-tensors under
U(1V), in straight generalization of the terminology
for the rotation group, where e'J~ is a constant tensor
under SO(3) but changes sign under the reflections
included in 0(3).

Confining ourselves now to SU(N), we can raise
all lower tensor indices to upper ones. Thus to x; we

where all signs are + for N odd, while signs alternate
for X even. It is easily checked that (3.8) is tantamount
to the one condition t =0, Ke can therefore associate
to tp a new tensor:

+[+10'2"'+N-1] &N —gPrr1" '+N—1t +N
P (3 9)

where T is totally antisymmetric in its erst N —1
indices and where the symmetrization condition

g f0.1 "0N-1]nN~ gulag "nN]a1

+ +2 [aNal" 'aN 21aN 1=p (3 1p)--
is imposed in addition. It is therefore clear that to any
irreducible tensor Tp, ...p„1'" ~ can be associated a
tensor with upper indices owly. For this new tensor
there must then exist mixed symmetry —antisymmetry
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conditions between these upper indices. Unless specified
otherwise, we mean in the following by tensor always
this latter kind with upper indices only.

According to a general theorem [H 1$ we can find
al/ irreducible representations of SU(N) by classifying
all tensors with permutational symmetry and with one
kind of index (say upper) only.

(2) There are other standard forms for the tensors
which can be arrived at by the use of the c's. For ex-
arnple, in the case of SU(3) one can make all tensors
totally symmetric in upper and likewise in lower indices
and furthermore require tracelessness [8 1j.The form
chosen here is perhaps most easily suited for the ap-
plication of Young tableau rules, which give a quick
and exhaustive way of treating all possible sym-
metry/antisymmetry situations. The rules are the
following [H 1, L 1].

To an irreducible tensor of rank e of the group
SU(N) there corresponds an "allowed" partition

(8]) N2) ''') Sg)g Q Sj—5)

Ni& n2»~ ~ ~ m~ (3.11).

Some of the e, at the back end may be zeros in which
case we do not write them explicitly. In evident short-
hand then, for example for N=6, the partition (31')
stands for (311000).If all e;=0 we write (0). This is
the identity representation. The partition can be
pictured by a "tableau" like

with S rows of successive length e~, ~ ~, m~. The
structure of this tableau is meant to prescribe sym-
metrizations and antisymmetrizations as follows. Fill
each square of the tableau with one of the configuration
labels, as they occur for example in (3.1) . For a given
filling, antisy'mmetrize in the labels occurring in the
columns; then symmetrize in the labels occurring in
the rows. Thus a Young tableau stands for a permuta-
tion operator. When these operators act on T '" "~
x '(1) ~ ~ .x~"(r), rnanyof the N" (r=rank of the tensor)
combinations of tensor indices get annihilated. The
remaining combinations are D~(ni, ~ ~ ~, e~) in num-
ber. D~ is the dimension of the representation.

Remarks (1.) Alternatively, we can 6rst symmetrize,
then antisymmetrize, or follow more complex pro-
cedures of ordering symmetrization s and antisym-
metrizations. Each order gives a set of DN vectors
spanning the representation space. Diferent orders
give different sets. Nor are these sets in general ortho-
gonal sets. For procedures to get orthogonal sets see
[Y1,J1,T1].

(2) Except for purely symmetric or purely anti-
symmetric tensors there are more (independent) ways
than one to distribute the con6guration labels over the
squares. The various independent ways yield eqliealeet
representations of SU(N), for an example see [B 1,
p. 22$. [The number of equivalent representations is
equal to the number of times the tensor (ni, ~ ~, e~)
occurs in the direct product of 11 ~ ~ ~ 81;n factors) .

Proceeding as in (3.11) for all e and all allowed
partitions of e one obtains all irreducible representations
of SU(N). The association: tensor&-+Young tableau
is unique.

(3) Formula for D~.

D~(ei, ~ ~ ~, n~) = [(ei—F2+1)/1!] (ni mal+2)—~ ~ ~ (mi N~+N—1). —

~ (ri,2
—eg+1) /2! ~ ~ ~ (Ng n~+N 2)—. —

(3.12)

This formula gives the dimension for any S.For E= 2
take only the erst column on the right-hand side of
(3.12); for N=3, take both first and second columns,
etc. Note that

Dg(s], g
' '

p Ng)

The case X=2:

D2(ei, e2) =ei—nm+1 (3.14)

—D+(si s+) s2 B+) ' '
) 's+ i 'I+~ 0) (3~ 13)

so we always may strike off the columns of length ¹

This corresponds to the fact that ei„„,qNx" i(1) ~ ~ x"&(N)
is a scalar under SU(N) .

is quite familiar. The e2 pairs of "spins" are each paired
off to zero resultant. The residual e~—m2 spins are in a
totally symmetric state, and therefore correspond to
a total spin (ei—e2)/2=S. Hence D2 2S+1 Thus—— .
given the total spin of an m spin ~~ system its symmetry
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Di„(1)=D~(1&—i) =N (3.15)

(1) is the defining representation, (1N ') its conjugate.
(1~ ') corresponds to the y tensor in (3.5). The
representation (1) is self-conjugate if and only if N=2,
cf. (3.6).

(b)
Dg(21~ ') =N' —1

this is the adjoint representation.

(3.16)

(3.17)

these are the totally symmetric representations. Thus
DI(3) =10, D6(3) =56, etc.

(d)

D~(1') =
IEki' (3.18)

the totally antisymmetric representations; D&(1') = 20,
etc.

(4) Conjugate representations. We have the identity

Dg(Ni) ) Sg)

= D~(44i 44~, rii ——44~ i, ~ ~, 44, 442, 0)—. (3.19)

The partition on the right-hand side (which is an
allowed one if the one on the left-hand side is) corre-
sponds to a representation called the conjugate repre-
sentation of (Ni, ~ ~, 44~). The special case (1) versus
(1~ ') has been met already. Other examples: (3') is
the 10*of SU(3), (3') is the 56* of SU(6).

These are examples of inequivalent representations
with the same dimensions. However, conjugation does
not exhaust the possible equality of dimensions. Ex-
ample: D4(3) =D4(21) =D4(22) =20. Where possible,
representations will often be referred to by their di-
mensions (in italics), with the understanding that
this is not adequate in general. )For SU(2) it is always
adequate. )

Using the language of upper and lower indices as
in (3.1), the connection between a representation and
its conjugate amounts to an interchange of roles of
upper and lower indices. Thus for SU(3), the 10 cor-
responds to T», the 10* to T p~ with total symmetry
in the 3 indices in each case. In SU(6), D8(31')=
D4(3'2') =280. To each representation belongs a trace-
less tensor T~p~. For (31'), the Z80, we have sym-
metry in (n, P), antisymmetry in (y, 8). For (3', 2'),
the Z80*, we have antisymmetry in (n, P), symmetry
in (y, li)

If the conjugate representation is identical with the

is determined. That is why for SU(2) problems like
normal atomic coupling there is not such a great ad-
vantage to use tableaux.

ExamP/es.
(a)

A= (e'4' ~ 1) a, (3.20)

where a is an element of SU(lV), 1 is the N&&N unit
matrix. The factorization (3.20) says that U(N) con-

tains an invariant subgroup U (1). LFor a more refined
discussion of the connection between U(N) and

SU(N) see, e.g. , LE 1j.7 The transformed T is there-
fore equal to its transformed under SU(N) times
a "gauge" factor exp $i (nz —N)p). As det A = exp (iN&)
we may therefore put

D-'= exp ( i.Vy)— (3.21)

in Eq. (3.2).
Even though, as noted above, the Levi —Civita symbol

is not a tensor under U (N) we may nevertheless apply
the entire apparatus of Sec. III A also to the case of

U(N), with one additional stipulation. All we have to
do is to assign to the general tensor T of Eq. (3.1) a
"baryon number" 8=X(m—n), where X is a number

independent of m and e. For the dining representation
8=X. Note that 8 is independent of any possible sym-

metry between upper or between lower tensor indices.
After 8 has been assigned the problem is reduced to
SU(N) and we may again consider tensors with only

upper (or only lower) indices.

Example. Consider SU(3). Let x be a "quark"
$6 2, Z 1) with baryon number 8=—', . Then x * is

an "anti-quark", &8= —3. JET has 8=0 and may repre-
sent a meson octet. Its Young tableau is (21).Consider

the tensor Tt ~~& with

T[~P]v+ Th~!8+Ttsv]~ 0—(3.22)

original one, we have a self-conjugate case. In tensor
language, we have equivalent properties of upper and
lower indices. Thus (21~ '), the adjoint representation,
is the self conjugate tensor Tp . Other examples:
D4(424) =405, D4(2'V) =189 are each self-conjugate
and correspond to a tensor T„4 &, symmetric (405),
antisymmetric (189), both in the lower and in the
upper indices.

Whether a tensor is self-conjugate depends both on
the partition and on the dimension. Thus D3(21)=8
is self-conjugate, but D& (21)= 70 is not. In either case
we can represent the tensor by Tt ~», antisymmetric in

Ln, P$ which satisfies in addition T& t't&+ Th'"'t'+
T»'~=0. For %=3 we can revert from T& ~» to tp

see (3.9); for N= 6 we cannot do so.
Finally, we recall that a familiar way to construct

explicit representations for the rotation group is to
find the spherical harmonics. One can in principle con-
struct analogous "harmonic functions" for all unitary
groups LM 1, B 4, K 2, I 2J.

B. Representations of U(1V)

Let us return to the tensor T, Eq. (3.1), defined as
a tensor under U(N). By definition a transformation
of T involves a product of m factors A, e factors At
where A is an element of U(N). Now generally
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T has 8=1. After having established the value of 8,
we now put

reducibility. %e say that a product representation is
simply reducible if any representation which occurs in
the product appears only once. Equation (3.23) is a
special case of a slightly more general situation.

Lemma 1. For any SU(X) the product (m, m,
m, ~, m)X (I) (where the number of m's is (g)
is simply reducible.

The following special case of Lemma 1 will be im-
portant for later purposes.

Lemma 2. The conjugate representation of (e) is
(e, e, ~ ~, e) where the number of e's is equal to X—1.
The product of (I) and. its conjugate is simply re-
ducible; in particular it contains the adjoint representa-
tion (21~ ') once and only once.

2 SU3.

gt Plv=&~P&8&v

as in Eq. (3.9). Then Bp is traceless. It may represent
the baryon octet. Its Young tableau is also (21). Thus
the same (21) describes a quark —antiquark set and a
three-quark set. There is no source of confusion as long
as the assignment of a 8 value is separately established.

Once this point is out of the way we can restrict the
rest of Sec. III to SU($). The generalizations to
U (X) will be obvious.

C. Reduction of Product Reyresentatton

(3') X (3)= (63)+ (531)+ (432)+ (333)

= (63)+(42)+ (21)+(o).

10~X10=64+Z7+ 8+1.

(21)X (3)= (51)+(42)+ (41')+ (321),
= (51)+(42)+ (3)+(21)

8X10=35+Z7+10+8.
ExumP/es.

(1)X (1)= (2)+(1')
(21)X (1)= (31)+(22)+ (21')

= (31)+(22)+ (1),
= (2)+(o)

(2') X (1)= (32)+ (2'1),
= (32)+ (1'),

(3) SU(6)

(3~)X (3)= (3')+ (43'2) + (53'1)y (634)

= (0)+(21')+ (42')+ (63').

X&3,
%=3,
X=2,
X&3,
%=3.

(Strike columns of length 6). Check:

() ()
Tableaux are also useful for the decomposition of

(e&, ~, e~)8 (I&', ~ ~, m~') into irreducible repre-
sentations. The general procedure is best arrived at
as follows LL 1].

(I). (I&, ~ ~, e~)X(1), product of the general Dimension check )use (3.12)],
tableau with Q. Add Q to the original tableau in all
possible ways such that one still has an allowed parti-
tion (3.11) (of I+1) as a result. Each of these ways Al»
corresponds to an irreducible representation in the
product,

56*X56= 1+35+405+Z695.

(214)X (3)= (41')+ (321')+ (421')+ (514),

= (3)+(21)+(42V)+ (51'),

(II). (m&, ~ ~ ~, vz)X (m). We now multiply with a
totally symmetric representation

~ ~ ~
of m

squares. Proceed successively square by square of Also
this set of m as under (I). But never add two or more
squares of the set of m to the same column.

Examp/es.
(1) SU(2). Let m&e, then

(3.24)

(m)X (n) = (m+n)+ (m+m 1, 1)+(m+—g.—2, 2)

+ ~ ~ ~ +(m s)
= (m+e)+ (m+n —2)+ (m+n 4)—

+.~ ~ + (m —m) (3.23)

where columns of length 2 have been struck away, see
(3.13). Put m=2S, m=2S', then the dimension check
for Eq. (3.23) reads

(ZS+1)X (ZS'+1)
=Lz(s+ s')+ 1]+'"+Lz(s—s')+1].

Thus with the tableau rules we have the reduction for
angular momentum as a special case.

Equation (3.23) provides an example of simple

35X56=56+70+1134+700. (3.25)

(III). (&~. . . err) X (N~', ",N~'). First proceed
with the top row of length eq' as under (II); then add
on the next row of length en' as under (II); ~ ~ ~, etc.
But now mark one last additional rule.

Put a 1 in each of the n~' squares of the top row in
(e&', ~ ~, n&'), put a 2 in each of the 02' squares of
the second row, ~ ~ ., an S in each of the eN' squares of
the last row. Now look at one of the product tableaux
obtained as per previous instructions mith the markings
1, or 2, ~ ~ ~ or X in the various squares inserted. Read
from right to left the numbers found in the 6rst row;
continue to read from right to left what is marked in
the second row, ~ ~, from right to left in the last row.
This gives one total sequence of numbers which should
obey the rule: up to any point within the sequence the
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x„*x =xg;*x"'. (3.28)

For fixed i (or A) we recognize within (3.28) an in-
variant form of SU(M) )or SU(1V)J. In other words,
for fixed i (or 2) but running A (or i), x~4 is a funda-
mental representation of SU(M) for SU(1V)j. We
can represent this content of Eq. (3.28) in tableau
language as follows.

a=(~; ~). (3.29)

number of 1's ) number of 2's ~ ~ ~ ) number of e's.
(This is known as a lattice permutation $1. 1j).

Examples.
(1) SU(3)

(2') X (2') = (4')+ (431)+(42'),

= (4')+ (32)+ (2),
6*X6~=15+15'+6.

(Note the two distinct representations of dimen-

sion 15).

(21)X (21)= (42)+ (41')+ (3') + (321)+(321)+(2')

= (")+(')+ (')+ (")+(")+(')
838=Z7+10+10*+8+8+1.

(2) SU(6).

(21') X (21') = (2')+ (32'1)y (32'1)+ (3'2'1')

+ (3'2') + (42'1') + (424)

= (o)+ (21')+ (21')+ (2'1')+ (3'2')

+ (31')+(42').
Clseck:

35X35=1+35+35+1SP+Z80*+ZEO+405. (3.26)

Exercise. (21) is the 70, (2'1) the 70*. Show that

70*X70 =1+2X35+189+ZSO

+Z80"'+405+3675. (3.27)

It is important not only to know which representa-
tions occur in the product of two representations. Also
one wants to know what is the structure of the trans-
forma, tion which expresses the product of any tensor
component of one representation times any component
of the other as a sum of components contained in the
irreducible parts of the product. This is the problem
of the Clebsch-Gordan coefficients. For a number of
cases this has been discussed in the literature. For
SU (6) see LC 2, C 3, S 8].

D. Reduction of SU(MN) with Respect to
supe) XsU(x)

Consider the invariant quadratic form x *x of
SU(M1V), where x is the defining representation,
0.=1, ~ ~ . MX. We can replace each index value e
by an index pair Ai, A =1, - ~, M; i =1, ~ ~, S, so

where the left-hand side is the (1) of SU(M1V) while
on the right-hand side the first g is the (1) of SU (M),
the second P is the (1) of SU(1V). Thus, equivalently
to (3.29):

1= (1; 1). (3.30)

Still a third way of representing the contents of (3.28)
is by dimensions

M1V= (M; 1V). (3.31)

For the conjugate to the de6ning representation,

(1M%—1)—(lid—i ~ 1N—i) (3.32)

(M1V)*= (M*, 1V*). (3.33)

Another obvious example for this kind of notation is

(0) = (0; 0), (tableaux)

1= (1; 1), (dimensions)

(3.34)

(3.35)

(2)=(2 2)+(1' 1'),

(1') = (1' 2)+ (2' 1'). (3.38)

For SU(6), M=3, 1V=2 (3.38) corresponds to (in
dimensions)

Z1 = (6; 3)+ (3*;1),
15= (3*;3)+ (6; 1) (3.39)

linking the respective identity representations.
We have now three examples where to an irreducible

representation of SU (3II1V) there belongs one ir-
reducible representation pair of SU(M); SU(1V). For
all other representations of SU(M1V) we will have
more than one pair. We can 6nd all such pairs by
operating separately with the tableau rules for each
of the three groups as will be clear from the following
examples.

(1) (1)X(1)=(2)+(1')=(1,1)X(1,1)
= (2+1'; 2+1')

or

(2)+ (1') = (2; 2)+ (1' 2)+ (2) 1')+ (1' 1') (336)

From (3.17, 18) this has the dimension check

-,'M1V (M1V+1)+-,'M1V (M1V—1)
= (-',M (M+1); —,'1V (1V+1))

+ (-,'3II (3II—1); —,
'

(1V (1V+1))

+ (-',3II (M+1); —',1V (1V—1))

+ (-,'M (M—1); -,'1V (1V—1)), (3.37)

with the observation that a dimension pair (a; b)
counts for ub. We want of course to know the separate
content of the (2) and the (1') of SU(M1V). This
also follows uniquely from the dimension check (3.12):
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Of course (3.38) could also have been found from
the observa, tion that the symmetric tensor (2) of
SU(M V) corresponds either to symmetry in both the
tensor indices of SU(M} and SU(X) or to anti-
symmetry in both these cases.

(2) (1MN i) X—(1) (2]MN—2)+ (P)

(1M—1 1N—l)X (1 1)

{2'—2yP 2Pr—~+.0)

Using {3.35) we therefore have at once for the adjoint
representation (21~~ '):

(213EN—2) (21M—2 21%—2)

+(2V' ' 0)+(0 21~ ') (340)
corresponding to

(MAT)' —1= (M2 1, Ã'—1)—
+ (M' —1, 1)+(1, cV-'—1). (3.41)

In equations such as (3.39—4'/) we 6nd examples
where the contents of an SU(6) representation is
completely specifjIed in terms of labels provided by
the subgroup SU(3)g)SU(2). On the other hand,
Eqs. (3.50—52) show that this speci6cation is not
a,dequate in general, as (8; 3) occurs twice in each
instance. This raises the general problem of a full
labeling of the D~ states which span a given representa-
tion of SU(X). This question is discussed in the next
section.

E. Generators; Labe1ing Problems; Currents

A unitary transformation acting on a tensor with
Dz linearly independent components is a linear trans-
formation in the DN-dimensional space spanned by
these components. The transformation can be repre-
sented by a DzPD& matrix U which itself is unitary
and which can be represented by [H1, 31$

For M=3, X=2: U= exp (ie&F~), (3.53)

56= (8; Z)+(10; 4), (3.43)

35= {8;3)+ (8, 1)+(1, 3). (3.42)

The general procedure will now be clear and we give
some further results for SU(6)Q SU (3) SU (2).
Multiply both (2) and (1 ) with (1). This gives, in
dimensions:

where a summation over 8 is implied. For U(&),
13=1, ~ ~, E'; for SU(X), 8= 1, ~ ~ ~, X'—1. The eii
are parameters which may be chosen to be real. Thus
SU(X) is an (Ã2—1)-parameter group. Like U, the
generators P~ can be represented by B~&(D~ Inatrices
which are hermitian for real eii. Moreover, for SU(X)
we have the trace condition

70= (1; Z)+(8; Z)+(10; Z)+(8; 4), (3.44)
(Fii) =0. (3.54)

ZO= (1;4)+ (8; Z), (3.45)

for the three (three-sextet) tableaux (3), (21), (1'),
respectively.

Conjugate tableaux have conjugate content. Thus
from (3.39):

Zl*= (6*;3)+(3; 1), (3.46)

15*=(3 3)+(6*,1), (3.47)

for the SU(6) tableaux (2') and (14), respectively. Now

Zl*XZ1=405+35+1, (3.48)

15*X15=189+35+1. (3.49)

Thus with the help of (3.35) and (3.42)

189= (8+1;5)+ (8+8+10+10*;3)
+ (Z7+8+1; 1), (3.50)

405= (Z7+ 8+1;5)+ (Z7+8+8+10+10*;3)
+ (Z7+ 8+1;1). (3.51)

Likewise, 25*+21 gives

Z80= (10+8;5)+ (Z7+8+8+10+1;3)
+ (10+10~+8,1) (3.52)

while 280* has the conjugate content.
More details and examples are found in [H 3).

The Ii& satisfy commutation relations

[Fs, Fcf=~facriFn (3.55)

Here the totally antisymmetric real f&cd are the so
called structure constants of the Lie algebra of the P's.
The fecD have the all-important property to be inde-
pendent of the particular representation on which the
F's act. The f's are therefore fully speci6ed by what
will be called the defining generators (DG}. The DG
are defined as the representation of the generators bylp3l sized matrices in as far as they act on the defining
representation.

Exampte For SU(2.) the three generators are the
angular momentum operators; fiick = eiicii, the 3-dimen-
sional Levi —Civita symbol. The DG are oiij2 where
the o-'s are the three Pauli matrices.

It is easy to write down the DG for SU(1V). Put
Fz=(Ce, C'p, Hq). Here 0.&P=1, ~ ~, X so there
are E(lV 1)/2 C and the same nu—mber of C' matrices;
k=1, ~ ~ ., S—1. We may put

(3.56)

vrhile the Hp are diagonal matrices whose elements
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along the diagonal may be chosen as follows:
For Hp.'

L2k(k+1)] &(1 1 ~ ~ 1 —k 0 ~ ~ ~ 0)

(3.57)

B=l
P 2

in the present language and for which we introduce
the symbol C2'2).

Cu& gg 2 (3.58)

Furthermore the individual vectors in the representa-
tion space are labeled by the magnetic quantum num-

ber, which we now call Hl. The labeling by C2") and
H& is complete. How is this for SU(E) P

(1) The number of conunuting operators whose
eigenvalues are sufhcient for the speciication of a
state is (N 1) (/+2) /2—, see LR 1, 8 2].

(2) X—1 such operators are given by the H&.

(3) A further set of E 1operators is given b—y the
"Casimir operators" C;~+), i=2, ~ --, F. C;&~) is a
polynomial of degree i in the Fs. It is known $R 2, 8 3]
that there are just E—1 independent nonlinear ex-
pressions in the IlB which commute with all I'B.

It is very convenient to normalize such that Tr IiB2 is
independent of 8, as has been done here. From this
realization of the Ps, the f~m can be computed. For
SU(3) this is done in $G 1].

The HJ, are a set of commuting matrices. From the
main property of the f's it follows then that for any
representation there is such a commuting subset of
(X—1) generators. It is known that this is the maximal
commuting subset. Thus for SU(E) a partial labeling
is provided by N 1add—itive quantum numbers. (The
number X—1 of H&, is the "rank" of the group. )

The important question arises to hand the matrix
respresentation of the P's acting on any representation
of SU(iV). This problem has been solved explicitly
t8 2].

We now turn to the question of a complete labeling
of the D~ "vectors" spanning the representation space
for a tensor in SU(Ã). For SU(2) the answer is
familiar. The representation is characterized by the
angular momentum squared, which we write as

and LK 1].The answer is as follows (sum over repeated
labels from 1 to N).

C,~»=d, c~,Z S'„
C4 ~A.BE~SCD~A.~B~C~D y

Cs'~) =~~BzdzqcdgazI"~I" B~cI"aI'z,

where the d's are defined by the anticommutator of
the DG which can generally be written as

P&F~+FaF~=2C4aFO+d~»chic) (3.60)

where the real d&Bc are totally symmetric, C is a
number depending on the choice of normalization for
the IiB and I"0 is the unit matrix.

A perhaps simpler way of writing the C operators
is as follows L01]. Go to U(X) and write the X'
generators as A s, a, P = 1, ~ ~, E. Then a (non-
Hermitian) representation of the DG is

so that
(A n) .i, —gaig (3.61)

LAp, Ap] fpg, »Ap~, (3.62)

fsg &'vP= $ +$p'Y$gP /PE vgpP—'' (3.63)

These f's are again the structure constants (in a slightly
different guise). The C operators are simply traces of
powers of A:

C~&~&= Tr (A') —=A., &A. ""A &, (3.64)

where now i runs from 1 to 1V (rather than from 2).
C&&~&=A ~ (summed over e) commutes with all A.
Hence (A, ) '=c5' The restriction U(E)~SU(E)
amounts to the condition that on any representation
C(» 0

The C;~~& label fully a representation of SU(N).
We found a previous labeling, namely the partition
numbers (»~, ~, N~) of which only 1V—1 are independ-
ent for SU(N) see Eq. (3.13). These two ways of
labeling are equivalent; C;~ ) is a polynomial of degree
iin the e;.

Examp/es. For SU(3), L8 3],partition (pq):

C2"'= 3 (p'+q' pq+3p—), (3.65)

'"=x&r(p —2q) (2p+3 —q) (p+q+3). (3.66)

For SU(4), partition (pqr), L8 5],

C ' ='(p'+q'+ ) —'(pq+q + p)+;(3p+q

(3.67)
The C2&~) are eas .The C2 are easy.

[There are always constant cofactors to be fixed by a
normalization convention. The present ones correspond
to the normalizations in (3.56—57). See further I W 6].I

(4) We have now found 2(1V—1) of the desired
The other C;&» have been explicitly constructed, see commuting operators which is not yet enough (except
L8 2] (also for the earlier literature on the subject) for 1V= 2) . One way to get a complete set is to consider
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SU(6) Q U(1)8SU(2) 8SU(4) (3.69)

~SU(4)+SU(2) 8 SU(2)

(3.70)

The subgroup in the first link (3.69) was introduced
in LG 4$. In (3.69) we pick up: three labels from the
SU(4)-tableau plus two labels from SU(2) (the
"strange quark spin"):the U(1) chosen in this partic-
ular case (hypercharge) is already contained in the
SU'(3) of the chain (3.68}. Finally the subgroup
labeling (3.69) yields two more labels from one of the
SU(2) ("nonstrange quark spin") while the other
SU(2) (isospin) is identical with the SU(2) used in
the erst chain.

Thus under (III) we 6nd seven new labels and we
have now 19 in all. This is ample to classify the contents
of Z8&J, 405, Z80, Eqs. (3.50—52) . A 20th label has not

the factorization PW 3, B 3$

SU(N)QU(1) 8SU(E—1),
where U(1) is generated by a linear combination of
the X—1 H; and where the generators of SU(S—1)
commute with the generator of U(1). For example,
the DG of U(1) can be given by BN & of Eq. (3.57)
and the DG of SU(X—1) by Eqs. (3.56-57) with
X—+S—1. We may then further label by the C;&~ '&.

Continue next likewise: SU(X—1)Q U(1)8SU(N —2)
which yields the C;&~ @, etc. A full labeling is then
obtained. by: P—1 H; (or linear combinations thereof)
and the C;(~~, 4=2, 3 ~ - ~ E; i=2, 3 ~ - ~ k which
yields the desired total number.

ExamPle. SU(3) Q U(1) 8SU(2). The 5 labels are:
C2'", CP& or equivalently the partition (pg); C&&2&:

isospin; the hypercharge Lgenerator of U(1) $; and the
s component of isospin.

While this procedure is sufhcient for any E, it is
not the only one and in fact it is not the one commonly
used. To conclude this section, we discuss the method
followed LB 5$ in the discussion of SU(6) .

For a full labeling in SU(6) one needs 20 operators.
The following have been used:

(I) The partition numbers (e&, ~, e6) of the
SU(6)-Young tableau, equivalent to the C @:ive in
number.

(II) The contents classification by the chain

SU(6) +SU(3) 8SU(2) (3 68)

where the two subgroups are commuting ones. This
gives: 5 labels from SU(3), 2 from SU(2), thus seven
in total.

From (I) and (II) we get 12 labels. These are suK-
cient to label fully the representations 35, 56, 70, ZO

as was already seen in Eqs. (3.42-45) .
(III) The labeling by a second chain t B 5$

so far been necessary. It would suKce to take one of
those H&, of SU(6) that have not been explicitly used
till now.

It should be stressed PB 5$ that the operators of the
B.rst chain (3.68) do not all commute with those of the
second one (3.69-/0). This, however, is not an objec-
tion of principle, and such a situation has been met
before LM1). The use of noncommuting chains is
dictated by physical arguments to be discussed below
LSec. IV). It necessitates additional recoupling trans-
formations to which correspond such phenomena as
cu —P mixing.

We conclude this section by recalling the well-known
properties of the operators Fg under the transformation

Fg'= U~Ii~U, (3.71)

where U is given by Eq. (3.53). This transformation
can also be written as

CAB(e) FBy (3.'/2)

where C is an X&(X-sized matrix which is unitary. In
fact, with a hermitian choice for the generators, C is
orthogonal. C depends on the values of the parameters
e~. These properties of C are easily veriied when the
eA are infinitesimal. From Eqs. (3.55), (3.71) we have
in this case

J'A'"&'(x, x) = JA+'& (x, x) (3.76)

if we choose a Hermitian set Il&. Finally

g JA&~&(x, y) JA&~&(0, w) =inva, riant under U(X) .

(3./7)

F. Contents of SU(M+N) with Respect to
sU(M) xsU(x)

In Eq. (3.69) we met the chain SU(6) +SU(4}8
SU(Z). This raises the question stated in the title of

CAB(e) = 4B+eCfCAB (3.73)

so that C is orthogonal as the f's are antisymmetric.
Thus the set of operators F~ themselves form an

(N' —1)-dimensional representation of SU(/V) ("angu-
lar momentum is a vector"); and if we add the identity
operator we have a representation of U($).

Consider two unitary vectors x, y and construct the
quantity

JA&"&(x, y) =xtFAy=x *(—FA) p~y&&, (3.74)

where (FA) t& are the DG matrices. Prom Eqs. (2.1—2)
and (3.71-72) the JA&~& behave as follows under a
transformation of U(X):

JA'&~&(x y) =CAB(e) JB&B&(x, y). (3.75)

Thus they transform as a representation of U(X}.We
shall call the JA&~&(x, y) the currents of U(S). Note
in particular that
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this section. Once again we start with the quadratic
invariant in terms of the defIning representation, now
for SU(M+IV) and write

M+K M M+N
g *g = x *x x ~x (3.78)

or in dimensions

1= (1, 0)+(0, 1), (3.80)

M+IV = (M; I) + (I; 1V) .
In a similar (but of course not identical) way to
SU(McV) +SU(M) g SU(IV) one now starts building
up higher representations of SU(M+1V) in terms of
sums of representation pairs. Full details are found in
LH 4g. Some examples are given a,t the end of Sec. IV B.

G. Pseudo-Unitary Grouys

Following the notations of Sec. IIA, let x denote a
complex vector in an (M+1V)-dimensional space and
xt its Hermitian conjugate. We de6ne an adjoint x as

The erst term on the right-hand side is the correspond-
ing quadratic invariant for an SU(M), the second one
for an SU(1V). In terms of Young tableaux the fol-
lowing identification is evident.

(3.79)

where 0 stands for the identity tableau. Equivalently

The further restriction

F@t= Fg (unitary case) (3.88)

corresponds to the subgroup SU(M, 1V) .
/The restriction: A real, would lead to the pseudo-

orthogonal group O(3/I, N) of which the Lorentz group
O(3, 1) is an example. j

Also for SU(M, 1V) we can start to build tensors I',
again defined as in Eq. (3.1), but where now "trans-
forms like" means that an upper index transforms with
A as in Eq. (3.83) and a lower index with A as in
(3.84). It is therefore clear that there exists a one-to-
one correspondence between the representations of
SU(M+1V) and the finite dimensional representations
of SU(M, 1V) . Therefore we have at once a full classifi-
cation of these latter tensors in terms of SU(3II+1V).
Moreover the product reduction (nq, ~ ~, n~+~)
(I'i, '', e'~+N) in SU(M, 1V) is one-to-one to the
same reduction in SU(M+Ã) . Also the considerations
of Sec. IIB, D, F adapt at once to the pseudo-unitary
case.

In regard to the question of generators of U(M, IV)
one has to be careful with questions of Hermiticity.
The action of a transformation in. U(M, 1V) on a DN
dimensional representation may again be represented as
in Eq. (3.53). (We consider only finite dimensional
representations. ) However, for real cs, not all the gen-
erators are Hermitian. In fact the Hermiticity condition

where

$=$ F, or (3.81) is replaced by

Gz —= I'G&tI'= Gz (Ps-unitary case), (3.89)

=0

Under the transformation

1&m, P&M

M+1&m, P&M+1V (3.82)

otherwise.

where we denote the generators of U'(M, Ã) by G~.
Note that I' itself may be taken as one of the G~.

Using the D6 it is easy to establish a one-to-one corre-
spondence between the Gg and the F~ of U(M+1V).
As I' is Hermitian it may also be taken as one of the
DG of U(M+1V). We have for the DG

X becomes

x'= Ax,

s'=xA,

(3.83)

(3.84)

where

I'Fg+gaFaI'= 0

y~ ———1 for M'+1V2 of the F„,

(3.90)

(3.91)

(3.85)

as I"=1.The transformations (3.83-84) which leave
invariant the "pseudo-unitary length"

ill M+N

$$ S+ S S S
1 M+1

form a "pseudo-unitary" group denoted LH5j by
U(M, 1V) and defined by the matrices A for which

HA=1. (3 87)

LOne may restrict oneself to M&1V; U(M, 0) = U(M) $

if v~=+1. (3.93)

LThe subset of Gz which satisfy (3.93) generate a sub-
group U(M) SU(1V) of U(3II, 1V). This is the "maximal
compact subgroup" of U(M, 1V).g

F«~Ply: U(2) «r w»c»i**'+$2*x =invariant,
has DG: o.q, o2, &8, and 1. For U(1, 1): g, *g&—g2+~2=
invariant. I'= 0.3 and the DG are io.~, io-2, a.a, and 1.

=+1 for the other 2MÃ F~, (3.92)

and we have )by verifying that (3.87) is satisfied]

G@= Fg lf g~ = —f~
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Finally we define a set of currents for U(M, N) by

JA'~ N& (x y) = exp {(kr/4) (1+i!A) } xGAy. (3.94)

The phase factor is introduced so that Lsee (3.90) $

JA'~N&(x x)"=JA&~Ni(x x). (3;95)

As we shall see in Sec. VI { see the remark after Eq.
(6.14)j for SU(2, 2) these phase factors are quite
familiar from relativistic theory. Now xo&y=xtFG&y
and I'GA ——exp I (im/4) (1+gA) } I'FA. As we have re-
marked before, I' may be considered as one of the DG
of SU(M+N), thus for some fixed X we may put
I'=Fx. Now from Eqs. (3.55) and (3.60)

FxFA= QpxAcFcy
C

No; NAe n —1 ~ ~~ 6' i=1, 2, (4.4)

with the following correspondence between o. and (Ai):
u= 1, 2, 3, 4, 5, 6

A = 1, 2, 3, 1, 2, 3

i = 1, 1, 1, 2, 2, 2

(4.5)

where the spin index i = 1, 2, corresponds to spin "up, "
"down. " For any dynamical situation where SU(3)
invariance holds and where, in the static limit, no spin
dependence appears, the physical wave functions I
satisfy the property that

write the one particle wave function for zero three-
momentum as

pxAc CbxAbco+ 2 (dxAc+&fxAc) y (3 96) u *I =invariant under SU(6). (4.6)
and where Fo is the identity. If we insert (3.96) into
(3.94) and compare with (3.74) we get (sum over C,
but keep X final!)

JA(M, N) (x y)

= exp {(i~/2) (1+gA) } QpxAC&c' +N'(x, y) (3 97)

so that the currents J~&~ N& are linear combinations of
the currents J~' +~& belonging to the compact group
U(M+N). It is this connection which plays a role in
the algebra of currents, see Sec. VI) Appendix.

Thus the I, may be considered as the de6ning repre-
sentation of that group. Call X„ the DG of SU(6).
The X„can be expressed in terms of the DG of SU(2):
S, and the DG of SU(3): Fp as follows.

X„:S.si, ig Z„S.@Z„. a= 1, 2, 3) I' = 1, ~ ~ ~ , 8)

(4 7)

so e= 1, ~ ~ ~, 35. The Q) means the following. The I„
are 6&6 matrices and

A. Introduction

IV. SU(6) ~= (A'), P= (a)). (4.8)

I3 2
—

2
1 0

Q

yo

8 b

qo
—i qo

—1

go

b (4.1)

Consider the fundamental triplet I" of U(3), A =1,
2, 3. Name them: I'=p I'=I u'=k (p, n) is the
isodoublet, X the isosinglet. (To avoid confusion, we
denote proton and neutron by I', S, respectively, in
this paper )II, th. e charge Q, the hypercharge I', and
the baryon number 8 are as follows.

X:X=S„
with the commutation relations

PX„Xp]=i&~X.,

LX., Xpg=0,

LXp, Xo]=ifpogXg,

PX„X~p3=ica~Xep,

{ Xp, Xto]=~fpozXaz,

X,p ——S,Fp, (4.9)

Having explained the notation, we now go to the
customary shorthand:

(4.10)

There are well-known degrees of freedom of choice for LX'p~ '@~ (i/ ) b~'fpc" ~+ ' ~'(3~ CX'+dpc"X'ii)

go, yo, b LG 1, 8 7, G5, N 1$. Until further notice
Dn Sec.-IVJj we shall take

qo= 3)

Correspondingly,

3'o= s)

Q= Ia+ Y'/2.

(4.2)

(4.3)

More speci&cally, let the triplet have spin 2. Ke

Here thefp@z, dpca refer to SU(3), cf. Eqs. (3.55,60).
)We have used the normalization c= 6 in (3.60).$
They are tabulated in t G 1$. Equation (4.10) specifies
the structure constants of SU(6). (Note that X,p is a
simple direct product only in the de6ning representa-
tion of the generators. )
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We are now going to discuss the consequences of the
assumption that static phenomena involving hadrons
are approximately described by the dynamical group
SU(6). We are not yet going to raise questions about
the meaning of such an assumption as regards the
underlying dynamics. To this question we return in
Sec. IV I. The order of business is here reversed as
compared with for example the discussion of Russell-
Saunders coupling where we could start with the secure
underpinning of the Hamiltonian (2.7) . For the present
it cannot be otherwise. The exciting thing about SU(6)
is that, if there is anything to it, it must give stronger
clues to the almost totally unsolved problem of strong
dynamics than can be gotten from kinematical sym-
metries.

The following items will be discussed. In Sec. IVB
we treat the question of SU(6) representations for
hadron states. It may at once be noted that, whereas
all generators of SU(6) commute with parity, all states
within a SU(6) supermultiplet should have the same
parity. In Sec. IVC, mass formulae are discussed. Then
we turn to the static electromagnetic and semi-leptonic
vertices, Sec. IVD, E, F, non-leptonic decays, IVH,
and the 5-wave nucleon-nucleon scattering Sec. IVG.
Questions about the structure of the dynamics lead
us into the discussion of the reality of triplets Sec. IVJ.
Up till there we will often use triplets I as a good
mathematical tool, but without prejudice as to their
actual existence.

Concerning the interpretation of SU(6) synUnetry,
the early papers contain the following comments. The
nonrelativistic nature of SU(6) is stated in [S 1). A
possible kinematic origin of the symmetry is contem-
plated in [G 3].Limitations on SU(6) due to recou-
pling of spin to orbital angular momentum are stated
in [P 1$. The study of baryon-meson interaction then
begins with the analysis of effective vertices [G4j.
Here one is already one step beyond the static limit,
however, as will be further discussed in Secs. VA and C.
The survey in this section is in part an elaboration of
an earlier review of SU(6) as a dynamical group [B8j.

B. Some Speci6c Suyermultiylets

The erst kind of clue to SU(6) stems from a simple
counting problem. Can one All representations of this
group with known hadronsP

(I) The 56.+ This is the dimension of the representa-
tion (3), corresponding to the tensor structure B~»,
with total symmetry in (42, p, y) . Its SU(3) SU(2)
content is given in Eq. (3.43). Thus it can be 611ed
with the usual baryon octet and decuplet which have
indeed the same parity [63$. There are other baryon
resonances inside the 56-mass range. Thus closeness
in mass alone is not a su%.cient ground for this sym-
metry.

=1
6&

n=PAy,

n, P, y distinct. (4.12)

Consider now as an example the state
I
X~+'2 ), where

12is the S, value. From (4.1, 4, 5, 11) we see that it
is a mixture of 8'" and 8'".The mixture is determined
from the fact that this state is totally symmetric in
spin and in unitary spin separately. Hence

I X +-, )——,[I'(1)24'(2) u'(3) +24'(1)24'(2) 24'(3)

+~'(1)I'(2) I'(3) +~'(1)I'(2) ~'(3)

+I'(1)I'(2) N4(3) +242(1)I'(2) 244(3)

+N4(1) I'(2) 24'(3) +24'(1)I'(2) 24'(3)

+242(1)I'(2) I'(3) i
—gP15+2+124 (4.13)

where the over-all norm is such that II
X*+21

II =1,
see (4.12). Also

I
P—,

'
) is a normed mixture of 8'" and

8124 and it must be orthogonal to I X*+21 ), hence we
may put I

P 12 )= 2'*(8'"—8"4) .
Note. One does not need to keep track of the I-spin

in such derivations. The reason for this is that for
SU(2) the tensor symmetry itself determines I, see
(3.14).

One can construct likewise by hand the other mem-
bers of the 56. However there is a quicker way. From
Eq. (3.43) we know the content of 56 with respect to
spin and unitary spin. One knows the tensor structure
of the individual SU(3) and SU(2) representations
involved. This makes it possible to write down the
answer almost at once [39$.
ga» —

X427idABC+(1/ IQ) E&ij+k&ABD/DC

+eyk~aeBcDb A+e24xpecADf1DB j (4 14)

where the following definitions have been used:

(1) x"'=0', x'"= (1/v3)4',

x"'= (1/A34-', ~222 —'f I (4 1$)—
where p is a normed wave function for S=2, S,=a.
The x' are normed spin-~ wave functions.

Next we construct 8», at first using quarks (q) as
a tool. Thus we put

-'+24 (1)24e(2) I (3). (4.11)
P

The summation is over all permutations of the con-
6guration labels 1, 2, 3. Otherwise the notations are
as in Eq. (3.1).Let III II, the norm~4of N for fixed
n be unity. Then

ll~" II =1
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(2) lEABc is the decuplet tensor:

dill —+4+ + $112—(1/v3) g 4+ d122 —( ]/v3) 1V40 d222 —+8-

dl»= (1/~) I'*+ d128= (1/6&) y'*o d228= (1/~) y'*—,

d188 —(1/~ ~~40 $288 —( 1/3 g8— d888 —Q-

I The numerical coefficients are of course derived in a way similar to the derivation of Eq. (4.13).g
(3) 8'J and 8" are the Levi-Civita symbols for SU(2) and SU(3), respectively.
(4) bBA is the baryon octet

1'= (&'/W+(A/ ') &2'= —(&'/W+(A/ ') &8'= —( A/6')

(4.16)

$1 g+

by =~™~

$2—g— b3'= E
(417)

8"X'+8'"X'+~"'X'=0 (4.19)

&ABDAL c+&BcDb A+&cADb B P (4 2P)

(4.20) is a special case of (3.8) .
(II) The 35 . This is the dimension of (21'), the

tensor is Mp with 3f =0. Its content is given by

The coefficient (342)—' in Eq. (4.14) follows from the
condition:

g I I
8»

I I
= sum of norms of the individual

~Ps

particle states, each with norm 1. (4.18)

The following two identities are often useful.

Eq. (3.42) . Choosing odd parity, it is filled by a nonet
of vector mesons and octet of pseudoscalar mesons
LS1, G3j.

However, it is now well established that there exists
a ninth pseudoscalar meson as well with a mass ~960
MeV which is inside the 35-mass range LG6, G7, K3,
K4, L 2j. It is called X (also 2I' or q~). The mixing
with the g appears to be rather small, ~12' LL 2$.
We shall see later on in Sec. V that a set of 9V and 9I'
mesons comes in naturally from relativistic considera-
tions.

The structure of Mp can be determined as for the
56, |:ither by building up from a qq system' or directly
from the tensor structure read off from (3.42), LG 4$.

Mp = 25 'PB" (d—s) '.VB— (4.21)

Pl'= (~'/m~+(0/6') P2'= —(~'/~&) +(~/6') P8'= —2g/6&,

Px'= K, P '=m+ Ea' ——E+, Pg'= Z E2' ——Zo- (4.22)

Vg' ——p—, V'= p+ V8'= K+*, V2 +04 /0+ (4.23)

II M+ II =M ~l'Ms satisiesagain arelationlike (4.18).
In (4.23) 108 is the isosinglet member of the vector 8.
@8 is the unitary singlet vector meson.

(III) The 70 . The SU(6) multiplets contained in

the product of 35 X56+ are given in Eq. (3.25) . With
the parity assignments chosen for P5 and 56, the specific
product considered reduces to a sum of representations
with odd parity.

It has been suggested LP 1j that the 70 might
perhaps be useful for the classiication of some higher
baryon resonances which decay strongly into baryon
(in the 8)+meson (in the 35). From the content
formula (3.44) the 70 could accomodate a (2)
octet. This "y octet" has often been suggested, but its
status is presently quite unclear. Another candidate
for the 70 would be the F8*(1405).A recent analysis

LK5j indicates that this is a (-,') state, as was often
supposed. For a detailed discussion of the 70 see
[G8, G9].

The tensor structure of the 70 is T& I'», antisymmetric
in (12;, p) and subject to the constraint equation (3.22) .
2'&. &» has been constructed explicitly, I B 10, Eq.
(4 2) 3.

The 70 with odd parity provides a good starting point
for a very preliminary discussion of strong vertices.
As 35X56 contains 70 only once, Eq. (3.25), the
"decay vertex" of the 70 is unique, namely,

2*~.&~,8 'M~. (4.24)

Equation (4.24) is SU(6) invariant and parity-con-
serving. One may now„discuss relative decay rates in
a way often done in a discussion of higher symmetries:
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compute matrix elements from (4.24) and correct for
mass differences within a multiplet by adjusting the
phase space. Regardless of whether this is a reliable
procedure, it should be stressed that for SU(6) there
arise new questions as compared to a purely internal
symmetry group like SU(3), for the following connected
reasons. (1) In an actual decay we cannot have all
particles with zero momentum; but we have not yet
given meaning to "an SU(6) multiplet with finite
momentum. " (2) The 70 contains S=~ states. These
cannot decay into baryon (S=2) +pseudoscalar meson
unless orbital angular momentum appears. Correspond-
ingly, (4.24) gives zero for this particular kind of
decay, as one can readily verify from Eqs. (4.14, 20)
and LB 10, Eq. (4.2) 7. Again the question of including
(angular) momentum appears.

We shall discuss in Sec. V the attempts which have
been made to include momentum in a systematic way
in vertex structures. Other examples of the urgent need
do so are given by decays like V—&2P, S*~Xx,etc.

(IV) A discussion has been given recently of static
baryon resonances in a 700+ $G 10$.

(V) "Recoupled" multiplets. By way of model, let
us consider the 35 as given by Eq. (4.21) to be a qq
system in an orbital S state. We can imagine that this
system has "higher excited states" with L&0. Take
for example P states. The contents of these states is
given by 35&(3, where the 3 denotes the dimension of
the 1.=1 representation of O(3). Coupling l. to S one

gets from Eq. (3.42)

35@3=(8+1;5)+(8+8+1;3)+(8+1;1), (4.25)

where the number following the semicolon is 2 5+1, J
being the to/al angular momentum of the system. For
a 35 with odd parity, the multiplets on the right-hand
side of Eq. (4.25) all have even parity.

One can phrase this procedure without necessarily
talking of quarks. The formal question then is to
discuss supermultiplets which correspond to the group
SU(6) XO(3), LM 2$

Possible assignments of meson resonances to the
states given in Eq. (4.25) have been discussed LB 11j.
These "P-state mesons" may indeed be of interest in

view of the recent evidence for a 2+ nonet of vector
mesons LB 12$; for a theoretical discussion of their
decay rates see

C
G11j. Added No&e: see also PA 19(.

As the coupling with orbital angular momentum does
not of course affect SU(3), one can generate in this

way only unitary octets and singlets from the 35. In
this respect the situation is diBerent if one asks, on

the other hand, whether spin 2 mesons should be
accomodated in higher SU(6) multiplets without re-

coupling to L,. To get spin 2 one needs at least systems
which transform like ggqq. These are found in Kqs.
(3.50, 51, 52). In particular the spin 2 content of the
$89 is a nonet only, while Z80, Z80* do not contain
a nonet of this kind. As the f*—jo mixing LB 12)

(15 1)0+(1 1)0+(1 3)0+(& Z)i+(c*, z) i

= ( px(a)+(g)+(y)+(E, Z+)+(E, E*),

where the ~ and p are the physical states given in Eq.
(4.31) below.

C. Mass Formulae

As an introduction to the discussion of SU(6)-mass
formulae, the following two remarks on the SU(3) case
may be helpful.

(1) As is well known PG 1$, in SU(3) one assumes
that the mass split operator transforms like the hyper-
charge operator Iis, which is a member of the octet of
SU(3) generators. There are two operators of this kind
which may be written as

8C2"&/BF8 Fs, BCa~ i/BF8 d8ABFAFBq (4.26)

see Eqs. (3.59, 60). Thus from two independent "scalar
operators, " the Casimir operators, one gets two "vector
operators" by formal differentiation. A procedure of
this kind holds for all SU(Ã) (and more generally)
LG 12$. The effective mass operator is therefore gen-
erally of the form

W++F8+fid8ABFAFB) (4.27)

which is equivalent to the usual SU(3) mass formula.
The number of vector operators determines the

muximlm number of parameters in the mass formula.
For a specific representation R, the actual number is

appears to be comparable to the ~—p mixing, the 1g9
is perhaps a more plausible subject for further study
than the 405. At any rate, the main qualitative distinc-
tion between these SU(6) multiplets and the recoupled
35 is the appearance of the Z7 of SU(3). For this
reason it would be of great interest to know if further
experiments will confirm the indication of a I"=2
meson reson. ance LF 3$, in the same mass range as the
2+ states. For the I'=2 state one needs at least a Z7.
Either picture, the recoupled 35, or a new SU(6)
multiplet, leads to a quite complex set of resonant
states. The region of resonances above the 35 may
well give further dynamical clues.

We conclude this section with a few examples of the
decomposition of SU(6) multiplets under the subgroup
given in Eq. (3.69). Speciically, U(1) corresponds to
hypercharge, SU(2) to X-spin and SU'(4) to the union
of (P, e)-spin and isospin. With the help of Eqs.
(4.4, 5, 14, 21) one finds

56=(ZO, 1)i+(10,Z)o+(4, 3) i+(1, 4) 2

= (1V, iV*)+ (A., Z, Fi*)+(, .*)+(0—).
The first (second) number in brackets is the dimension
of the SU(4) LSU(2)7 representation, the subscript
is the F' value. (The ZO of SU(4) corresponds to the
tableau (3) .$ Likewise
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equal to the number of times that 8 appears in the
reduction R*XR, where R* is conjugate to R. For
R=S, 8 occurs twice and we have a three-parameter
formula. For R=10, 8 occurs once and a two-param-
eter formula results (equal spacing) . Correspondingly,
for the 10, the expectation values of the second operator
in (4.26) is itself of the form (m+aP8)

(2) Call dynamical mass split operator the part of
a Hamiltonian which induces the effective mass split.
If we say that the dynamical mass operator transforms
like 8, then this is equivalent to the statement under
(1) only in erst-order perturbation theory. Because
the SU(3) breaking eRects are not obviously small in
any known scale it is a much discussed puzzle how to
understand the simple structure of the effective mass
operator from a simple structure of a dynamical mecha-
nism.

Now let us turn to SU(6). At least two mechanisms
for eRective mass splits are involved. (1) A spin-
dependent eGect to separate different spins within the
supermultiplet. (2) SU(3) breaking effects. It is not
obvious a priori that these eRects should be linearly
independent. For example the SU(3) theory does not
preclude that the two mass parameters in (4.27) should
be spin-dependent. Nor is there a known ground to
exclude that the spin dependent terms should have
SU(3) -dependent coefficients.

Let us nevertheless consider an additivity assump-
tion [P 1]: (1) SU(3) breaking transforms like Fs
but with spin-independent coeKcients [at least within
an SU(6) multiplet7, (2) a spin-dependent eRect inde-
pendent of SU(3) [at least within an SU(6) multiplet].
This leads to the following results. For the 56, the mass
operator is

(1) For I"
4E2—m2 = 3g2. (4.30)

(2) Mixing between coo and &0 such that the physical
states are

These are the mixtures proposed before [02, S 27.
They appear here in a rather natural way because of
the (8+1)-vector meson degeneracy in the strict SU(6)
limit.

Remark ~—p mixing was introduced to expla, in devi-
ations from an octet mass formula for vector mesons.
It also serves to explain the suppression of such modes
as ~pe compa, red to p~EK. From phase space,
barrier factors, and spin —isospin weights one estimates
a rate ratio [L 27

(y &p7r) /(y~—EE) 4,

in the absence of any other inhibitions. Recent experi-
mental results for this ratio are: 0.22&0.09 [L3];
0.3&0.15 [L 2] which indicate a p~ supression by one
order of magnitude. This fits well with the mixing
given by Eq. (4.31) which forbids @—+p7r. On the other
hand, another recent measurement [B 137 gives a
quite high relative rate for @-+n. mesons which appears
to be in confiict with the other two measurements.
For other discussions of o&

—g mixing see [K6, C 77.
For the connection between &a —P mixing and a sub-
group of SU(6) see [64].

(3) For V:

M+aV+b[1(I+1) —F']+c(S), (4.28)
p2 Q)2

2+42 4,2 —p2 (4.32)
where a, b are constants and c depends in some way
on S(S+1).M is the "central mass, " the value to
which all masses collapse in the absence of SU(6)
breaking. Equation (4.28) enables one to calculate
from the 8 an equidistance ~130 MeV for the 10
which compares rather well with the experimental value

145 MeU [P 17. It may be noted that this result is
independent of the way c depends on S.

For the 35 we use Eq. (4.21) and write the mass
operator as

nMp* M~e+PfdM*7gg" [dM$~~+yMp*"M;a~, (4.29)

where the n term corresponds to the central mass, P
gives the SU(3) -independent and spin-dependent
effect. [ ]denotes spin trace. In the internal symmetry
breaking y term, the summation over i= 1, 2 guarantees
spin independence; the singling out of the unitary
index value "3"corresponds to the proper hypercharge
dependence. Equation (4.29) has the following conse-
quences.

(4) The I' Vrelation—
Q +2 p2 —+2 ~2 (4.33)

which is well satisfied [P 1].
Thus for the 56 and the 35 the simple further assump-

tion of additivity seems to work rather well. This may
indicate that spin-dependent effects appear dynamically
in a diRerent mass scale than SU(3) breaking eRects.

A different starting point is to assign definite tensor
properties under SU(6) to the SU(6)-breaking effec-
tive mass operator. A first attempt was to assign this
operator to a representation 35. By an argument
similar to the derivation of Eq. (4.26) there are 5 such
operators [K7].But by Lemma 2 (Sec. IIIC), 56*X56
contains 35 only once. Hence one gets a one paraxneter
mass formula for the 56. In particular no spin depend-
ence is introduced: 35 does not contain (1; 1).Also Z
and A. remain degenerate.

A more systematic approach in this direction then
developed [B67. For a representation R of SU(6),
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project out from all representations in R*R the parts
which transform like (8; 1) .These give each a candidate
for SU(6) breaking with the desired SU(3) properties.
In addition project out all parts which transform like
(1; 1). These do not break SU(3) but may give
S(S+1) terms.

The detailed application of this program I B 57
necessitates a further labeling of the representations
180, 405 as brieRy discussed in Sec. IIIE. More details
are given in t B 67 and we state the results.

(1) For the 56 one obtains Eq. (4.28) . The central
mass M is found to be

M 1065 MeV. (4.34)

(2) For the 35 one finds Eq. (4.30), but no other
relations, unless more restrictive assumptions are made.
The central mass of the 35 is found to be

p~615 MeV. (4.35)

(3) A detailed discussion of the 70-mass formula
has also been given LB 5$.Here several mixing problems
have to be resolved. These mass formulae are analyzed
further in L68, G9j.

In conclusion, there are several quite suggestive
indications from mass parameters and ~—p mixing
which fit in with SU(6) in a natural way. Relations
like (4.32, 33) are compatible with the tensor analysis
of mass splits under special conditions $B 8$. It appears
that the tensor method is too general.

The foregoing discussion refers to the effective mass
split operator in SU(6). As for SU(3), we must also
ask the deeper question of the dynamical mechanism
for this effective split. It is at this point that the distinc-
tion between kinematical and dynamical symmetry
plays an important role. As was discussed in Sec, IIB,
the SU(3) breaking could well be characterized by
nondynamical parameters while for SU(6) this is
impossible. As will be discussed further in Sec. V, the
kinetic energy terms in the free part of a Hamiltonian
must give rise to spin-dependent mass terms in the
presence of interaction. Thus there is a natural mecha-
nism for the breakdown SU(6)-+SU(3) 8SU(2) .

Fgrther remarks. (1) It has been noted LH 6$ that
the coefficients of tensors which appear in the general
tensor method must be baryon number-dependent. (2)
A more specific model for mass breaking is found in

LD 17. (3) It has been attempted to unify the 56- and
the 70-mass formulae in terms of a higher symmetry
LB 17j

D. Magnetic Moments

The electric charge and the magnetic moment of
particles are static limits of effective vertices. Their
discussion within the static SU(6) picture is therefore
appropriate. We recall first some SU(3) results.

(1) The electric charge operator Q is supposed to

transform like the component of an octet operator, in
accordance with equation (4.3) which can also be
written as Q=Fs+Fsjv3. In the defining representa-
tion Q is the 3)C3 matrix

Qg~=-'s 0 —1 0 (4.36)

(In Sec. IVJ a more general form of the charge operator
is discussed. ) Charge conservation implies the F-cou-
pling

ebg~(Qb —bQ) g~ (4.37)

for the baryon 8, where e is the proton charge. For
the 10, the coupling is 3ed~~nd cQp, etc.

(2) The magnetic moment operator is also supposed
to transform like an 8'. The most general form for the
baryon 8 magnetic moments,

p, (N) = ——;pn, etc. (4.40)

For the 10, Lemma 2 of Sec. IIIC implies that there
can be only one type of magnetic coupling. Hence for
the members of the 10 their respective magnetic mo-
ments are proportional to the charge:

pm ——const. Qqs. (4.41)

(3) If one assumes in SU(3) that the electromag-
netic form factors transform like an 8 for all momentum
transfers q, then one has generally a D and an E contri-
bution for all q which may be diR'erent for different q.

We now turn to the SU(6) theory.
(1) The charge operator is assumed to transform

like an (8; 1) member of a 35. The SU(6) analog of
(4.36) is

q s= b.~Q„~

The static electric charge of the 56 is

3eB* p,qp'8 ~'

(4.42)

(4.43)

which gives the respective charges of the 56 members,
as is verified by inserting Eqs. (4.14-17). The electro-
static interaction is equal to (4.43) times an external
Coulomb potential.

(2) The magnetic moment operator m is assumed to
transform like an (8; 3) member of a 35:

m ~= (d),&'Q~~. (4.44)

The crucial consequence of this straightforward assump-

vs=nab~ (Qb+bQ)s"+F4 (Qb —bQ)a~, (4.38)

contains an arbitrary mixture of D and Ii coupling.
From (4.38):

p(F) =Ijr+sjJn& (4.39)
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IJ~/Pr =k.

Hence from Eqs. (4.39, 40)

~(&)/u(P) =—3,

(4.46)

(4.4'7)

in good agreement with the experimental ratio —0.68.
The 8-magnetic moments are discussed further in
Sec. IVJ.

(b) Baryon-10 magnetic moments tB 9$. In Eq.
(4.45) the 56-wave function in the SU(6) limit is
used. Hence the constant in (4.41) is expressible in
terms of p(P):

In particular

pro= y(P) Qm (4.48)

tion is that the D/F ratio in (4.38) becomes unique
because, by Lemma 2, the 35 can be coupled in only
one way to the 56. The magnetic moments for the 56
are given by

3p(P)B* p, (m) pB s', (4.45)

where 3p(P) ensures proper normalization. The mag-
netic interaction is equal to the scalar product of the
3-vector (4.45) and the magnetic field [which is a
3-vector external to SU(6)7. The consequences of
(4.45) which go beyond SU(3) are the following.

',=. (a) Baryon-8 magnetic moments [B9; S 3). The
ratio of pz and pr in Eq. (4.38) is now fixed and is
given by

analysis of photoproduction [G 13j gives a value 1.6
times the right-hand side of (4.51) [B9j; while a
much closer agreement is claimed with electro produc-
tion [G 14, G 15j. I am indebted to R. H. Dalitz for
the communication of a re-analysis of photoproduction
and electroproduction by him and D. Sutherland,
which continues to indicate an eGective discrepancy
by a factor ~1.6.

Further remarks (1). The same assumptions applied
to the 35 yield one additional SU(6) relation: p(p+) =
3(~'I~ I~') [»j.

(2) Magnetic moments have been calculated for the
baryon ZO [S3g.

(3) The magnetic moments of the baryon 70 can be
related to those of the 56 by a symmetry stronger
than SU(6) [R3$.

(4) It has been observed [A 2) that Eq. (4.47) is
more stable against symmetry breaking than are SU(3)
relations like p(h.) =p(1V)/2. This is perhaps not sur-
prising as the neutron and proton belong to the same
isomultiplet.

(5) Several attempts have been made to relate Eq.
(4.47) to the weaker assumption of invariance under
the subgroup SU(4) discussed in [G 4j. This author
finds himself in agreement with the conclusions on this
subject in [B 14$.

(6) Several authors have discussed radiative decays
p', (o, ~'7 [B 15, T 2, A 3, R 4, S 4, B 20j.

u(fl ) =—~(P) (4.49) E. Electromagnetic Mass Di8'erences

See further Sec. IVJ for remarks on mass corrected
magnetic moments.

(c) Transition moments between 10 and 8. By
Lemma 1, 8X10 is simply reducible. Hence SU(3)
says that all transition moments ($~10) are express-
ible in one of them. We denote the M~-transition
moment between states with S,=-,' by (P I y I

1V~+
&,

etc. Then [B9$

&P I.l~* &=- &~ I. I
~* &= &~ I.I~*'&

=2&~'I
I I'o*&=(2/~3) &A I~ I

I'o*&

= (=-' I ~ I
=. *'&. (4.5o)

According to (4.45) these moments can be expressed
in terms of p(P) . One finds [B9g

(P I p, I
E*+)=(2%2/3) Jx(P). (4.51)

Comparisons of (4.51) have been made with photo-
and electroproduction data at the 33-resonance. This
involves the assumption that transition form factors
do not vary much from their SU(6)-limit value to
the region of physical interest. While such an assump-
tion is open to question, it is nevertheless interesting
that the E2 transition at resonance is much smaller
than M1 [G 13j; in the static limit there is of course
no room for Z2 [B18). Regarding M1, an earlier cV*++ E~=3(E*+ E*').— —

(4.53)

(4.54)

There have been several investigations of these mass
diGerences. The starting point is to consider to second
(and higher) order the effects of the charge operator
and of the magnetic moment operator which have been
discussed to first order in the previous section. We
shall discuss the various attempts in increasing order
of generality.

(1) Charge operator to second order [S3). The
charge operator is assumed to be in the (8; 1), part
of a 35, as in Eq. (4.42) . Consider the electromagnetic
mass splits as second-order eGects in q t'. For the 56
this amounts first to finding the independent SU(6)
invariants contained in 56*X56)&35&(35 and secondly
to project out those terms in the 35's which transform
like qJ.With the help of Eqs. (3.24) and (3.26) it is
easily seen [S3g that there are only two such invariants,
corresponding to one tensor 35 and a 405 contained
in the product of 56*)(56as well as in 35X35.A two-
parameter mass split operator results which leads to
the following relations.

Se+ Zoo P,e+ F eo P E Z+ go (4 52)
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(2) Charge operator to all orders [C 4]. This leads
to only one additional parameter in the mass split
operator. This is so because if Qp is a 35, then for
arbitrary powers of Q we can at most have the following
three distinct baryon contractions:

BappQp ~ B8
p

BaesQ pQ y ~ B8
p BberQ~nQ pQp

(4.55)

The first two terms correspond to the 35 and 405
mentioned above; the third one is a contraction of Q's
with the Z695 in 56*&56. The inclusion of higher
powers of Q can no longer give any new baryon density
structure.

The consequence of the inclusion of the Z695 density
is [C 4] that the relation (4.54) no longer follows. On
the other hand, the relations (4.52, 53) both survive.

(3) Charge operator and magnetic moment operator
to second order [K 8, D 2, V 1].One includes here to
second order not only the effects of qp but also of mp,
Eq. (4.44) . The resulting mass relations are as follows.

'= Z Z+—N+P—,— — (4.56)

N*' N*+= I'—i*'—Fi*+=N —P, (4.57)

gg— ggp p g— p' Qp ~~ ~p

=N —P+(Z +Z+—2Z'), (4.58)

N* N*++=3—(N P). —(4.59)

These relations are weaker than (but of course compati-
ble with) Eqs. (4.52—54).

The agreement of the strong relations (4.52, 53)
with experiment is not too impressive [S3, C 4]. The
weaker relations (4.56—59) involve first of all the SU(3)
relation (4.56) [C 5] which is well satisfied [K 8]:

Z —Z+—N+P=6.38 MeV

'= 6.5~1.0 MeV.

Furthermore one derives [K4] a predicted value
V~* —I"~*+=4.47 MeV. This is to be compared. with
two experimental results for this difference: 17&7 MeV
[C 6] and 4.3&2.2 MeV [H 7]. One can therefore not
yet judge the agreement with experiment, but the
third approach outlined above seems so far the more
reasonable one.

The last method has also been applied to the 35
mesons. Three relations are obtained which for the
present are not very useful [K4]. For applications to
the baryon 70 see [D 11].

F. The Semi-Leytonic Vertex

Some of the most interesting results obtained with
SU(3) follow from the assumption that the effective
hadron currents associated with semi-leptonic processes
transform like the adjoint representation of SU(3)
[C 8]. The simplest extension of this idea to SU(6)
is to assume that these currents transform like mem-

bers of a 35 [B 19].This incorporates the SU(3) results
and in addition gives rise to new predictions. As has
been stressed several times now, we may only use
SU(6), as so far defined, provided we neglect hadron
recoil. On the other hand, the lepton current which is
an external probe may carry any momentum. This
makes it possible to include such nonstatic effects as
weak magnetism.

To begin with, we write the vertex for the 56 in the
following form

3B*p,CP'(q) B P' (4.60)

D/F = (4.66)

which. agrees within the error with the best experi-
mental value 1.7&0.35 [W 4]. See also [R5].

Remark. The D/F value given in (4.66) was first
obtained in [G 4] for a somewhat different, but closely
related, situation namely the pseudo-vector baryon—
meson vertex. If in the latter instance one neglects
the baryon recoil and treats the pseudo-vector coupling
P as an "external field" the value (4.66) follows also
in that case. Ke return in Sec. V to a Inore systematic
expose of the strong vertex.

(2)

(N*+2- -N2) F= —(2v2/5) (N2~P2) r.-m- (4 67)

(N*+~~N~) g = —Me~. (4.68)

In Eq. (4.67):.the:. subscript "V, magn" refers to the
contribution from the ps term in Eq. (4.61) only.

and put

Cp(q) =(G„/~ZP, (I;)„+g„~(g qx L„),~]

+(3'/~2 (NLRB~) & (4.61)

'[I (N) -1(P)]—/e (4 62)

The lepton currents are de6ned as follows.

0 lp cos tI l~ sin 0

(II,)~s= v2 I„+cos 0 0 0

~

~I+sino 0 0

—'~.=r(P) 7.(1+vp) "(P+q)
+e(X)v.(1+& )"(u+q) (463)

0 is the Cabibbo angle. Normalizations are such that

[N', :P,']ir Gr/V2; -——[N,'-P ,'$g Gg/V2. (4-.64)——

Individual transition elements are computed with the
help of (4.14-17). From SU(3) only one finds the
amplitude relations

(0 ~ ) cote=(N~~N) = —(N*+~N)V3 (4.65)

while the specific SU(6) predictions are as follows.

(1) The semi-leptonic D/F ratio is
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With a similar warning as was made for the electro-
magnetic transition elements, one may attempt to
compare (4.67, 68) with experiments on X*production
by neutrinos. Given the present rough data, the com-
parison is not discouraging [A4, P 2, A57. Added
note. See further [A207.

(3) 0 decays should be strongly dominated by the
axial vector contribution, as is discussed in more detail
in [M 37.

The foregoing discussion is independent of the ratio
G~/Gr in (4.61). It is a natural further assumption
that the 2 and V currents belong to the same 35- repre-
sentation of SU(6) . From this condition it follows that
in Eq. (4.61):

G~/Gr= 1. (4.69)

6. S-Wave Nucleon-Nucleon Scattexing

Within the static theory, only I.=O scattering chan-
nels are amenable to treatment. For the nucleon-
nucleon scattering 1+2-+3+4 this has been discussed
in detail in [B217. We summarize their argument.

As [D 3]
56X56'= 462+1050+1134'+4ct0, (4.71)

there can be only four independent amplitudes. More-
over, the Pauli principle allows the 490 and 105'0
only [D 3], so that only two parameters remain. The
scattering amplitude can be written as follows.

aB" p (3)B»(1) B*g (4)B"&"(2)

+bB*-p~(3)B'"(1) B*".(4)B""'(2)

+cB*-pv(3)B ""(1).B*~.(4)B""(2)
+dB*~ (3)B"""(1).B*~.(4)B"(2) ~ (4 72)

In physical terms, Eq. (4.69) means that the (effective)
coupling of the fundamental sextet, but not of the nucleon,
is of the V—A type iu the SU(6') limit In .fact from
(4.60) and (4.69) one can compute the corresponding
ratio for nucleons:

(G&/Gv) nualeon 'K ~ (4.70)

Remarks. (1) With the same comment as was made
after Eq. (4.66), it should be noted that Eq. (4.70)
also appears in [G 4].

(2) For a connection between generalized Gold-
berger —Treiman relations and the ratio G~/Gr see
[B 197, and also [S5, L 47.

(3) It has recently been shown [V 2] that many
of the consequences of the static U(6) actually follow
from the weaker requirement of invariance under
the subgroup U(3) XU(3) generated by 1, Ss, FI,
SSFJ [notations as in Eq. (4.7)]. For a different
(chiral) U(3) &(U(3) see [H 117.

(4) For the question of the renormalization of V-
and 2-coupling constants see [A 12, G 257.

with the additional constraint

(4.73)

Equations (4.72, 73) are then applied only to nucleons.
In terms of the usual exchange operators, the nucleon-
nucleon scattering matrix becomes

[a—(b/27) ](1—P,P,) (4.74)

which is bad in the sense that equal scattering lengths
are predicted for 'S and 'S [K 9, A 67. The reasonable
suggestion is made [B217 to apply the theory only
at energies large compared to the 'S—'S mass split.

It is then seen that the curves for phase shifts b('S)
and b('S) are close in the region of 100—400 MeV
[B217. Of course this is necessarily a qualitative state-
ment. Perhaps the main thing we learn is that there
appears nothing untoward from the comparison of an
SU(6) four-poin. t function with experiment.

Further remarks. (1) An attempt has been made to
classify two-baryon resonances by means of the 490
representation. It appears that such an assignment to
a single SU(6) multiplet does not work well [D 37.

(2) A- and Z-nucleon scattering is discussed in [C 97.
Addendum. 8-wave scattering is also discussed in

[B487.

H. Non-Leytonic Decays

In SU(3) one commonly assumes that the non-
leptonic decay interaction transforms like an 8-com-
ponent. Under more stringent conditions the following
amplitude equality was derived [L4, S 67

v3(Z+ ) p~')+(A ) pn )—2(. (
h~-)=0. (4.75)

for both the S and the P wave. For the variety of the
additional conditions, see, e.g. [L5, P37. Experi-
mentally these relations appear to hold well [S 77.

S-wave hyperon decay is a natural case for treat-
ment with SU(6) . For this channel the simplest exten-
sion of the SU(3) discussion to SU(6) is to assume
that the interaction transforms like a 35 component.
The S-wave problem can then be treated as follows.

Let I' ~=8;&I'g~ be the pseudoscalar part of the
meson 35, see (4.22) . Introduce a corresponding spurion
S~p= b,&'s~ with E'(s) —=sp2= 1; Z'(s) =—sn' ——1, all
other sate =0. The lt.o(s) are the spurions for ) AI )

=
2

transitions. For example write A~P+m as Eo(s)+
A~P++ .The amplitude f-or this and similar processes
can then be obtained by taking a linear combination
of all fully SU(6)-contracted Hermitian scalars made
from 8*,8, I', and S. These are

B*p,B P'P.'S, ; B*p,B P'(PS+SP)P;
8* p~B 'I'g~S, &,

of which the first one does not contribute to the proc-
esses of interest. Thus we get a two parameter expres-
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sion for the set of all S-wave decays. As a result, Eq.
(4.75) follows at once for S waves, without any
additional assumptions. See LR 5, S 9, A 77 and LK 10,
B22, I 1, M47. These papers deal also with other
amplitude relations. For example, (Z+ )

XII+ )e——0
from SU(6), a current)& current interaction and

I~ I
I
=-; PA87

This concludes the survey of consequences of the
static SU(6). Non-leptonic I' wave relations belong
properly to the subject of Sec. V, but they will be
reviewed briefly at this point. There have been many
discussions of the P-vrave situation. The common
feature is a much greater theoretical complexity and
less transparent predictions. The methods used are to
introduce a further spurion (1; 3) to describe one unit
of orbital angular momentum; or alternatively to use
dynamical groups of the kind mentioned in Sec. V.
There appears to be a consensus that the P-wave
relation (4.75) does not appear in any natural way.
However, a rather straightforward analysis gives the
I' wave rel-ation (4.75) but with the rhs equal to
2(Q )AE )I/V3, so that the validity of the P wave-
triangle gets linked with a presumed smallness of this
0 -decay amplitude PA 9, I 17. For further literature
see LA 10, 0 19, H 8, I 3, K 11, K 12, 04, R6, R 7,
S 197. Finally, it may be recalled Lp 37 that non-
leptonic asymmetry parameters depend very sensitively
on the way mass split eGects are introduced.

L The Master Problem

We have now learned that SU(6) gives interesting
results for counting states, for mass regularities and
particle mixing, for magnetic moments and semi-
leptonic vertices, for S-wave non-leptonic decays, and
that the S-vrave nucleon scattering results, though not
compelling, are not unreasonable or paradoxical either.
Faced with this situation, we must consider a much
more dif5cult question.

The master problem: to Gnd the structure of dynam-
ical equations such that SU(6) appears as a symmetry
of some of their approximate solutions; and to state the
dynamical nature of vrhat is meant by "approximate. "

If one assumes that the answer to this question lies
within the framework of present-day theory, the fol-
lowing comments and further questions are in order.

(1) The dynamics should be relativistically invariant.
(2) The question before us is

dynamics?~S U(6) . (4.76)

It may be good to emphasize once more LB 107 that
this question is distinct from the one to be discussed
in Sec. V:

SU(6)—+larger or other dynamical groups? (4.77)

In Sec. VA the motivation is discussed for this question',
to ask for larger dynamical groups which contain SU(6) .

These groups appear in connection with the so-called
relativistic completion procedures, to be discussed be-
lovr. The question whether there is such a useful group
is evidently not identical with the question of the under-
lylIlg dynamics. II1 fact a grollp wlllcl1 colltMIls SU(6)
is a group which contains spin. Hence by the argument
sketched in Sec. II, such a larger group must itself be
of approximate dynamical character.

(3) Consider as an example the magnetic moment
result (4.47). We have all learned in school that the
"anomalous" values of the nucleon moments are due
to the virtual meson cloud. In the cloud virtual scat-
terings take place and many-particle virtual states
appear, involving arbitrarily high virtual momenta. Is
this picture correct? If so by what mechanism do spin
orbit interactions in the cloud average out to give the
SU(6) answer?

(4) For dynamical approaches involving bootstrap
methods see for example PB 25, C 107. A short discus-
sion of the algebra of currents is deferred till Sec. VI.

(5) An interesting dynamical question is the con-
nection between the nuclear physics SU(4) fW 27 in
which the nucleon is the representation 4 vrith that
subgroup SU(4) of SU(6) in which the nucleon is in
the ZO PG 47. For a discussion see PC 117.

(6) In the nuclear SU(4) case, the dynamics is
divided in tvro stages. First, it should be shown that
the (mean) potential between nucleons (in a many
nucleon system) is spin- and iso spin-independent.
Secondly, one discusses energy levels in such a potential.

Is there a similar adiabatic approximation in SU(6)?
Should one understand the SU(6) dynamics in terms of
spin-unitary spin-independent properties of real triplets?
The concluding part of Sec. IV is devoted to some
aspects of this question.

J. Triplets: Formal Tool or Reality?

In Sec. IVB we started to construct, baryon states
"as if" they vrere three triplet configurations. This was
a mathematical illustration and we switched soon to
a tensorial method. Likewise, certain selection rules
can be expressed vividly in terms of triplet properties

t L 6, L 77, but equally well as a property of tensor
products. Added note: see also $L 147.

The question is whether one can, make any predictions
from properties of the 35, 56 or higher representations
of SU(6) which are predicated on the real existence of
triplets. Thus we must ask for the dynamics of multi-
triplet systems.

It has been suggested that the internal dynamics of
these systems might be nonrelativistic P N 6, M 57. Con-
sider a two-triplet (or triplet —antitriplet) system bound

by a square well. If the range is a, the velocities are
h/MIa, where MI is the triplet mass. Thus for a

h/M „,I c, II/c~M „,I~n/MI which is 0.1 for MI 10
BeV. However, such estimates depend very importantly
on the potential shape. They may not be applied to a
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Yukawa potential for example LM 57. This point will

be discussed in a forthcoming paper by 0.%.Greenberg,
to whom I am indebted for an illuminating discussion.
At any rate, a potential in which nonrelativistic dy-
namics can be justiied is just what lends itself to an
SU(6) picture. With its help an analysis of higher
meson resonances has recently been attempted PD 4g.

The baryon 56, viewed as a genuine three-body prob-
lem raises interesting questions. As the 56 is symmetric
in the internal variables, the generalized Pauli principle
requires that the space part be totally antisymmetric,
if the triplets satisfy Fermi-Dirac statistics. In the
nonrelativistic picture under consideration, this is a
puzzlement, at least if we suppose that simple (non-
exchange) two-body forces are responsible for the
binding. Several suggestions have been made for a
way out of this dilemma.

(1) The baryon is not just a three-triplet structure
but has a "core" in addition; attractive core-triplet
forces overcome repulsive triplet-triplet forces t G 37.

(2) Attractive three-body forces overcome repulsive
two-body forces (K 13$.

(3) There exists more than one kind of SU(3) trip-
let, see for example I H 9$, and the 56 is made up out
of triplet members belonging to diferent kinds. The
internal part of the wave function is then not necessarily
totally symmetric in all internal variables —which now
further include a variable specifying which triplet we
use. Ke come back to this point below.

(4) The triplets do not obey Fermi-Dirac statistics
but follow para-statistics PG 16$. Because of the dis-
tinction between triplet and antitriplet this assumption
does not affect the interpretation of the 35. Higher
para-states have been constructed which may possibly
accomodate higher resonances t G 16j. For a survey of
parafield theory see LG 17).

Let us see next what realistic triplet models can say
about electromagnetic properties.

(n) Assume one set of triplets only, embedded in an
internal symmetry not larger than SU(3) . For deinite-
ness one may imagine a baryon model of the kind (1)
or (2). Instead of using the tensor method described
in Sec. IVD, one can (equivalently) use vector addition
of triplet magnetic moments LB 9, S 10], very much
as in nuclear physics calculations [B26$. We do this
next, but use the general charge assignments of Eq.
(4.1) instead of Eq. (4.2). The corresponding charge
operator is given by Q=I&+7/2+(go ',)t tis the- -.
triality, see, e.g. LB 7$ and go is deined in Eq. (4.1).
The corresponding static magnetic moment operator
M is assumed to be proportional to Q, as in (4.44).
Hence for a set of triplets and anti-triplets

M =pI t.Vo~"'+(8—1) (~'"'+~'"') 3

-le~'"+(~o-1) (~'"&+~'"&)j}. (4.78)

Take the expectation value of M in the composite

three-body states of the 56. Then LB 8j
p(P):p(&):p(A) = (3'—4):(3@+1):(3'—3).

(4.79)

For qo
——~3 we recover the results of Sec. IVD. The

"nuclear physics ' calculation described here rests on
the additional assumption that "internal exchange
currents" between the triplets, which may give addi-
tional terms in (4.78) do not play an appreciable role.
(Such additional assumptions cannot appear in the
formal method of Sec. IVD.)

Equation (4.79) shows that qo/e will spoil the good
relation (4.47). Thus if only one set of triplets exists
Land the internal symmetry is not larger than SU(3) $,
then it is indicated that they should be fractionally
charged. Note that SU(6) considerations play an
essential role at this point. For example in an SU(3)
model with a core, the core should be an SU(3) singlet
but may carry spin. According to SU(6) a possible
core should be an SU'(6) singlet, hence spinless. Thus
in SU(3) but not in SU(6) could the core give an
additional magnetic moment itself.

It has been noted tN 1$ that for general qo the
hyperon magnetic moments need not take on the values
predicted LC 5] on the basis of Eq. (4.3). This would

give two independent sources for deviations from a
relation like p(h) =p(iV)/2: (a) because of the qo

effect, (b) because of breakdown of SU(3). Let us
now exclude cause (a) on the grounds just mentioned.
Then cause (b) only remains. As an extension of the
successful description of mass splits as 6rst-order effects,
the assumption is plausible that the SU(6) magnetic
moment ratios for the 56 should be corrected by the
inverse of the true mass ratios [B8j. The resulting
magnetic moment values are found in the "Mass-
corrected" column of (Table I, B 8j. In particular

p(A) = —0.78'(P)
which agrees within the error with the weighted average
of available experiments LH 10$

p(A) = (—0.73+0.17)p, (P) .

Remarks. (1) If one takes Eq. (4.78) seriously, then
one can express the magnetic moment of p(p) in terms
of p(P). For qo

——-', . p, (p) =2p(P)/3. At first sight it
seems curious that the triplet moment should be of the
order of the nucleon moment, if the triplet mass is
quite high (&10 BeV). It has been noted, however
LB 27(, that triplet magnetic moments can be en-
hanced by strong binding in an external Geld of the
scalar type. The Dirac equation in a scalar potential is

$M+V+Pa(p —eA,) gN=PZN.

In a region where V is constant, the effective mass is
M+V tL Sj. Applied to triplets, a large M can be
compensated by a large V. The situation is distinct
for external acids other than the scalar kind PL 8, G 18j.
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QB "'=
3 (4.81)

This corresponds to three SU(3) triplets with respec-
tive charges: (1, 0, 0); (1, 0, 0); (0, —1, —1). The
56 is supposed to be made up of one triplet member of
each kind and instead of 8», Eq. (4.14), the baryon
tensor is taken to be

gnPy~~A ~B~c~gnPy (4.82)

which is now totally aetisymmetric in the internal
variables.

Next define a magnetic moment operator as in (4.44)
but with QAB replaced by (4.80) . The baryon moments
are computed by replacing J3~» in (4.45) by (4.82).

Observe the identity

CA'B'D'Qa' e =0 (4.83)

from which it follows that the second term in (4.80)
does not contribute to the magnetic moments. Hence
Eq. (4.47) has recovered.

Much more experimental information is needed before
one can know which if any of these preliminary models
of multi-triplet systems will survive. Nor are more
complex models excluded LF 57. The possibility may
finally be noted that SU(3) is perhaps not the full

group of internal symUDetry and that there are larger
groups (see, e.g. $N 27) in which there is room for
the 8- and 10-representations of SU(3); but not for
triplets.

In summary, SU(6) results obtained from quark

(2) For attempts to deduce radiative vector meson
decay rates from a realistic triplet model see LT 2, B 207.
The importance of these calculations lies in the fact
that the 3I1-transition element for cd~mo+y is ex-
pressed in terms of the elcleom magnetic moment via
Eq. (4.78). The method appears to depend more de-
cisively on the real existence of quarks than in any of
the problems mentioned earlier, as is also evident from
the fact that the results obtained carrot be deduced
from SU (6)-algebra alone.

(P) The case of three triplets tH10, B 277. The
introduction of more triplets allows one to retain Eq.
(4.47) in a theory with integrally charged triplets. I am
indebted to Professor A. Tavkhelidze for an illuminating
discussion of this point. The argument is as follows.

Consider a second group SU(3) ' with corresponding
tensor indices 3', 8', ~ ~ .. Let I ~

' denote a three
triplet set, where A is the usual SU(3) index. Define
a charge operator as follows

QB BP
A, A —

QBA ~B'A +~BA QB A (4 80)
where QB" is given by (4.36) and

models are often suggestive, yet they do not appear
to be compelling for the reality of quarks. On the
other hand, such stronger than SU(6) results as, for
example, the co +—no+ad decay rate seem more difFicult
to understand without a real structure of the nucleon
with three quarks in its "outer shell. "

V. RELATIVISTIC EXPLORATIONS

A. Introduction

In parallel with the sorting out of the consequences
of the static SU(6), discussed in the previous section,
several distinct attempts began to develop to embed
the static SU(6) in a relativistic description. Up till
now there does not exist a satisfactory solution to this
question. The main approaches to the question stated
in Eq. (4.77) will be outlined in this Introduction.

(A) It was realized from the start (G 37 that it is
possible to give a classification of supermultiplet states
also for p/0. To see this, recall that for spin ~~ a
relativistic spin S(p) can be defined LF67 which
commutes with the free Hamiltonian np+Pm. For
each p it is possible to dehne a group by DG as in
Eq. (4.7) but with S replaced by S(p). This is the
group called SU(6) ~, see fG 207.

It is possible to generalize the Foldy —Wouthuysen
spin description Land hence SU(6)„7 to a relativistic
X-body system with interaction. More precisely, one
can construct for such a system a corresponding repre-
sentation of the Poincare group t F 77. One must next
ask whether a system so described is necessarily a
physically reasonable system, in particular whether it
is separable $F 77. In a concrete instance, one means
the following by separability. Consider a three-body
system with its assigned representation. Move one of
the particles to in6nity. Do we approach in this way
a system of two interacting particles plus a free particle
in all frames? This is a far from trivial question. In
particular separability in the center-of-mass frame does
not guarantee separability in all other frames LF 77.
The question is clearly of interest if one wishes to
find connections with local dynamical theories, because
of creation and annihilation processes.

In the context of such theories, SU(6)„runs into
difficulties. For specific examples it has been shown
that local interaction violates the symmetry (M 6, R 87
and it has been proved, more generally, that this sym-
metry implies a unit S-matrix LJ27. This approach
will not be discussed further in this paper.

(B) The starting point for a second approach is to
seek for an approximate dynamical syrrUnetry which,
in the language of a Lagrangian field theory, is broken
by free kinetic energy terms LB 8, B 167. This new
symmetry is supposed to contain the static SU(6)
and to be of use for p~0.

It may be helpful to illustrate the idea by an example
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e(q) = e+Lq( qe)/~(qo+~) 7,

«(q) = qe/u (5.2)

qe(q) =0. (5.3)

(8 87. Consider a 12&(12 matrix

"ORi (q) = ifr(q') (ye(q) )„"Vo"
—f~(q') f»(hq)/~7}. "&~' (5 1)

where V and I' are given by Eqs. (4.22, 23) . q = ( q, iqo).
y„=(y, ») are Hermitian Dirac matrices„(yq) =
(y„@), etc. The polarization four-vector e„(q) =
(e(q), i«(q) ) is related to the e in Eq. (4.21) as follows

M t' is odd, N & is even under space reQection. We
now de6ne the baryon-meson vertex in the no-baryon
recoil limit to be LB 87

8* s~Xp(q) 8 s'.

The vertex depends on the single three-momentum q.
To order % (I'-wave vertex) one should retain only
terms of the first power in ! q!. This means that to
this order Eq. (5.10) is valid.

Using the methods of Sec. IVD, one obtains from
Eq. (5.12) all the nonrelativistic vertex results first
given in $G47 and reviewed in LB 87. The use of
Eq. (5.10) is essential. It follows that such strong inter-
action relations as

D/Il =$, g~/gi =z (strong int. )In regard to indices, the ranges for cx, i, A will be
maintained as in Sec. IVA. In addition we shall use
from here on the following conventions. The early
letters a, b, ~ ~ ~ of the Latin alphabet run from 1-12.
The middle letters ), p, ~ ~ ~ of the Greek alphabet
run from 1—4.

Un1ess otherwise specified, we use the representation

(5 4)7=P2&~ ps= ps74= P3)

Then '"5K~' can be written as

P'o (q) —~o (q))
'"m (q) =! I, (55)

(~o (q) —&o (q))
~ (q) = f (q') (& (—q) ) 'V " f (q')—(qo/ ) & "~"

(5.6)

& «) = —f (q') (q»"V '—)' (q') L(&q) '/~3' "-

(5.7)

Define the static limit qo of q by qo= (0, ip) . Then

Xp (q') =0,

Ãp (q') =DID,

(5.8)
while

(5 9)

provided that

fv( y') =f~( —p')— (5.10)

The right-hand side of Eq. (5.9) is just the static SU'(6)
matrix of Eq. (4.21) and Eq. (5.10) may therefore
be regarded as the static SU(6) form factor condition.

Note that

( 0, 3'")—
!'"ORP (q') =!

(iV;, 0 )
(5.11)

do riot irwolve any further relation be/weel form factors
thaN thoseimpLied by the static SU'(6). It has been shown
in LB 107 and will be discussed further in Sec. VC
that under the same conditions the inclusion of baryon
recoil to order e/c is also possible. (It may be noted
incidentally that up to this order the Foldy-Wouthuysen
spin is identical with the nonrelativistic spin. ) See
further the derivation of Eqs. (5.63) and (5.76) below.

The prescription just described amounts to associat-
ing to the static meson tensor its "relativistic comple-
tion" Eq. (5.1), the even parity part of which is cou-
pled to the baryon current. The general theme to be
discussed in several variations may now be stated as
follows.

(a) To a,ssociate to any static SU(6) representation
their relativistic completion or completions. This is
done by "boosting, " a procedure described in Sec. VB.
It will be shown there that there are in general more
than one completions to a given static SU(6) tensor,

(b) To give rules for the coupling of the completed
SU(6) tensors to each other in the form of effective
vertices which are covariant. This can be done in more
than one way and the variety of these ways can be
classiled by means of a "booster group" which is
U(6, 6) (S 13, 3 287.

U(6, 6) is a special case of the pseudo-unitary groups
discussed in Sec. IIIG. It was seen there that the
transformations of such groups leave invariant pseudo-
unitary quadratic forms, Eq. (3.86). What is this form
for U(6, 6)? Let u"(p) be a four-component Dirac
spinor, X=1—4, and let u""(p) be a triple of such
spinors describing the relativistic SU(3) triplet.
U(6, 6) is the group of transformations for which the
"relativistic mass term"

This doubling of the matrix is weO known from the
treatment of the S'& &t representation (four-vector) of
the orthochronous Lorentz group in the SI.(2, C)
language LS 117.The doubling is necessary in order to
assign a definite parity to the representation.

um(p) u""(p) = invariant, (5.12)

where u= ut». Using the representation (5.4) one sees
that this quadratic form has six +, and six —signs,
whence U(6, 6) .The structure of this group is explained
in more detail in Sec. VB.
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Equation (5.12) may be looked upon as a covariant
generalization of the invariance requirement (4.6) for
SU(6). As SU(6) is an approximate dynamical sym-
metry, the same is true therefore for U(6, 6), as the
latter contains SU(6). Moreover, one knows explicitly
at least one mechanism by which U(6, 6) is broken:
As will be seen in Sec. VB, U(6, 6) does notleaveinvari-
ant the "kinetic energy term" uzz(p) (yp)„u" (p).
Thus in the presence of imteractiols [where the identity
u(&p)u=imuu is not valid), U(6, 6) is intrinsically
broken by the spin-orbit couplings inherent in (yp)
terms. While the intrinsically broken character of
U(6, 6) was often well appreciated, the applications of
U(6, 6) and some of its subgroups was nevertheless
pursued further, motivated by the idea (see Sec. IVI)
that, where the static SU(6) is successful, an effective
damping out of these symz&etry breaking spin-orbit
couplings must be at work. However, it was soon
realized that no systematic application of such invari-
ance ideas is possible for all n-point functions. This is
because of the unitarity problem, as is explained in
Sec. VE.

The approach just sketched is only one of several
which were followed in the fall of 1964 in order to And

approximate dynamical symmetries which contain
SU(6) . For example, others took the structure of four
quark interactions as a starting point. Independently,
the following groups were suggested: the chiral group
U(6) U(6) [F4, D 5, 8 16); the nonchiral group
U (6) U (6) [0 3, 8 16): SL (6, C) [F 8, R 9, S 12);
U(6, 6) [S 13, 8 28, 8 16, R 10). [The latter group
went for a while under a variety of names: P(12),
U(12)z, M(12), V(12).)These groups will be discussed
in Sec. VD, As they are all related to U(6, 6) it is
convenient to take the latter as a starting point.

It may directly be noted that the matrix ~'~BR&'(q)

has a vanishing 12-trace:

&'&5K ~(q) = 0 (5.13)

This is true for all q and therefore in particular in the
static limit q= qa see Eq. (5.11). Observe an important
difference between the SU(6) condition M =0 and
Eq. (5.13). The former implies that P~"=0, corre-
sponding to 8 pesudoscalar mesons. On the other hand,
Eq. (5.13) is also true if Pz"W0. It will be shown more
systematically below that in fact all the larger groups
mentioned above accomodate a 36th meson along with
the 35 of SU(6). It is natural to identify this extra
meson with the X' mentioned in Sec. IVS. Accordingly
we shall from now on redefine I'~~ as follows.

Pg"=[PIs" of Eq. (4.22))+(Xo/~38~~ (5 14)

(c) Closely related to the methods of (8) are
attempts to embed SU(6) in a kinematical symmetry
by means of the formal introduction of more than the
four usual translation operators p„. The idea, first
mention dine [S 1), is the following. Consider the

kinetic energy y„p„ for a free relativistic quark. In the
notation of Eq. (5.1) this term can be written as a
12X12 matrix (p„p„)+le". Thus the kinetic energy
can be brought in formal correspondence with the
qP-meson part of the meson matrix and the fact that
the kinetic energy breaks all of the symmetries men-
tioned above can be expressed as the formal statement
that (y„p„)& 8o" is not a full representation of any of
these groups. In essence, the idea is now to enlarge the
set of 4 translations to a set of 36 (or a multiple thereof) .
In this way one can obtain descriptions which are
invariant inclusive of these generalized translations,
which contain the four usual ones. See [F 8, 8 29,
8 30, R 11, N 3, K 14, N 4, R 12, Z 2); also [N 5).
Added vote See f.urther [8 49).

For physical applications it is necessary, however, to
introduce the boundary condition that the operators
of the theory act on such states which depend on the
four translational variables p„only. Thus till now the
extra translations have not led to physical predictions
that cannot be obtained as well without their introduc-
tion. In practice, we are back to some of the methods
included in (8) . Extra translations will not be discussed
further in what follows.

(D) Another line of development finds its origin in
the observation [8 31) that for a vertex in the brick
wall system one can define a conserved "spin" 8':

TKT 1 1
g+4&1) 2+402) g03) (5.15)

(where all vertex momenta are in the 3-direction)
which has the same commutation relations as —,'d. Thus
one can define a group isomorphic to SU(6) by re-
placing S by W in Eq. (4.7). This group is called
SU(6)~. It can be applied to any collinear configura-
tion [L9).It is a subgroup of U(6, 6) see Sec. VD.

The S'-spin will be discussed in more detail in Sec.
VF, but we state some of its main consequences right
here. (A detailed survey of W-spin predictions is given
in [H 12).)

(1) When applied to baryon vertices it leads to the
relations [8 31)

G- (q')/G='(q') = —
e G ~(q') =0 (5.16)

are independent of q', (5.17)

where the respective numerators refer to any member
of the baryon octet or to the (Z'

~
A)-transition form

factors.
GP(q') is known to have a nonzero slope near q'=0

but G (q')/G (q') (0.2 in the known region. Within
such ~20% margins the relations (5.16) appear to
be reasonable up to q2~(1 BeV/c) P see, e.g. [D 6).

for all q' where 6, G, are the magnetic and electric
Sachs form factors, respectively. Slightly more gen-
erally it gives [8 31, P 4)

G-(q')/G-'(q') and G.(q')/G'(q')
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(2) Applied to the forward meson-baryon scattering
amplitudes one obtains the Johnson-Treiman relations

(1)
u(i)'=

I

E0)

(0)
N(2)'= (5.19)

SU(2) we consider the two-base vectors u(i&', u(o)'.

(5.18)

for scattering oB protons. Of the many ways in which
this relation has been derived, the one using S-spin
seems to be the most transparent. The J-T relations
appear to be well satisfied for not too low energies
LG 21, L 10$ (especially for the K-particle equalities) .
There are many puzzles why these relations work, in
the face of SU(3) breaking effects $H2), but these
relations are currently regarded as one of the more
promising consequences of 5' spin. It has been noted,
however, LS 14$, that the J-T relations may perhaps be
understood by dynamical approximations which do
not invoke 8'-spin or other symmetries.

SU(6) )( is necessarily an approximate symmetry of
the dynamical kind, as collinear and noncollinear con-
6gurations are dynamically coupled. It is interesting
that at least some noncollinear diagrams do not violate
the J-T relations t H 13$.

(E) Finally we mention the kinetic spurion approach
LA 11„G22, F 10, 8 32, 0 5, F 9g. One introduces in
all possible ways spurions (yp)„"8+" into U(6, 6)
vertices or other effective matrix elements. Here p can
be any 4-momentum characteristic for the problem at
hand. This implies the breakdown of U(6, 6) to a
lower symmetry (see Sec. VD). One finds the following
symmetry survives: (a) U(6) 3U(6) (nonchiral) for
one-particle states. (b) SU(6))( for collinear conf'(gura-
tions. (c) U(3) (8& U(3) for coplanar configurations
(d) SU(3) only for more complicated situations. This
hierarchy has been noticed by several authors LO 6,
D 7, H14j.

The remainder of Sec. V is devoted to the discussion
of techniques, consequences, and difhculties for the
approximate dynamical symmetries mentioned above.
In VB, boost matrices are deined, boosts are performed
on the 6, 36, M and the group U(6, 6) is introduced.
In VC the meson —baryon coupling is discussed under
the weakest conditions which give the "good" results for
the phenomenological vertex. In VD some subgroups
of U(6, 6) are treated. Section VE deals with the im-
plications of the higher symmetries in the nonstatic
domain; in particular the unitarity difBculties are
discussed. Finally in VF more details about 5' spin
are given.

B. The Boosted 6, 36, 56; the Group U(6, 6)

7. Boost Matrices

We return brieQy to the labeling explained in Eq.
(2.6) by means of components and base vectors. For

These I's, enlarged as follows,

0

N(j) = Q(2) (5.20)

0 0

represent Dirac spinors for p=0, po&0. The number
of components for given state has doubled. In addition
we introduce the p=0 negative energy spinors

&(2) (5.21)

0

where the index ) numbers components, and the
bracketed index {p) labels states. In the representation
(5.4) we have correspondingly for pWO (and mass m)

m —o(yp) y4

{2m(po+m) I& („)'
(5.23)

where to (p) =1, 2 correspond solutions of the Dirac
equation for p, po and to (p) =3, 4 the solutions for
—p, —po (po&0). From (5.22):

(5.24)

D0,)" is a matrix with one index in component space,
and one in base vector (state) space. Dp(p) is the
same matrix but with both indices in component space.
Dp (p) is called. the boost matrix LW 5$.

Deine as usual

(5.25)

Tote. In the nonrelativistic two-component language,
u' (upper two u") and v' (lower two e") may both be
considered as 6-representations of one and the same
U(6). Even at p=0, this is no longer true in the four
component language, as is shown by the distinct
structure of (5.20) and (5.21). The four-component
quantities I" and e" are actually representations of a
group U(6) 8 U(6), as will be seen in more detail after
Eq. (5.88) below.

We have now an array Do„)"(0) de6ned as
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for all p. Hence (5.24) gives

D&(a) (p) =D„(a)(0)D&v(p),

where

(5.26)

that is,
t' 0 0)

OR, (0) =i
(M()a 0j

From now on the matrices D, D dined by Eqs.
(5.23, 24, 27) will always be meant to be the boost
matrices. We list some of their properties.

DD= 1,

a+5D +5)

D»D = —i(yp) /m,

D yeD =ye(p),

D»+ED= (Tavpa4v(p) /mV

& = —i' 7 j/2

(5.29)

(5.30)

(5.31)

(5.32)

where 4a(p) is defined in Eq. (5.2) .Let C be the charge
conjugation matrix, C 'y„C= —y„', C'= —C; t= trans-
pose. In the representation (5.4) C may be taken as

Ke have

CD'=DC

C=iy5o-2.

DtC—1 C—ID

(5.33)

(5.34)

Z. The Boosted 6

We go from the static sextet u'" defined in Eq. (4.4)
to the corresponding I"~=u by using the transition
(5.19)~(5.20) . The boosted sextet u'(p) is

Next we boost the static matrix to momentum q with
the help of D(q) and D(q) (for mass t4):

OR4 (q) =OR„B""(g)=DP(q)OR, B""(0)Da (q), (5.37)

an.d find with the help of Eqs. (5.29-32):

ORP(q) = 'OR, (q)+ OR,.(q) (538)

("OR~ (V) =i(V4(C})."l'B"—I»L(~V)/) 3)."~B", (5.39)

("OR~ (C) = —(i/t ) (c"C" (C) I."l'B'—i(»)."~B".

(5.40)

Dropping indices, one notes that

»OR(q)»= —("OR(q) +(2)OR(q) . (5.41)

Remarks. (1) Equation (5.39) is proportional to the
expression (5.1) Pro(i)ded that fv((t') fA(q') for all (t'.

(2) ("OK is a second matrix which has static SU(6)
limit properties in the sense described in Sec. VA. (3)
We could have started from»OR(0)» instead of from
Eq. (5.39) and would have obtained (5.41) directly
by boosting because of Eq. (5.30). (4) OR and»OR»
obviously have the same parity.

4. The Boosted 56

Once again we enlarge the zero momentum SU(6)
tensor Ba&&, Eq. (4.14).

and likewise

ua(p) uxA(p) D x(p) uaA

&a(p) —
&RA(p) D h(p) &@A

(5.35)

(5.36)

B(A,jB,kC~B) A, aB,vC(0) Baba(0)

Babe(0) —u(Xav) (Q) dABC+ (1/3V2) $&Xauv(0) XABC

+&avuX(0) g BCA+&vkua(0) XCABj (5 42)

I and v are associated to the sextet and antisextet,
respectively, in the sense of the canonical expansion

ip'(x) = Q (m/E)&
(~)=&,2

&& rc(ou(')'(P) exp (ip~) +b(')'~(')'(P) exp ( ip*)3—
where u" (0) is given by Eq. (5.20) and X" c= 4AB bnc
u"a" (0) is the correspondingly enlarged spin- —', wave
function LWe may construct u(~&v) (0) as a totally sym-
metric direct product of three functions u" (0).$ We
have to enlarge 4"of Eq. (4.14) as follows.

The particle —antiparticle conjugation operation is not
part of SU(6), but it can be implemented as an addi-
tional rule. In Eqs. (5.35, 36) we have reverted to the
dropping of state labels and @rill continue to do so
from novF on.

3. The Boosted 36

q&J~g~l(t—

0 1 0 0

—1 0 0 0

0 0 0 0

0 0 0 0

(5.43)

Start from Eqs. (4.21) and (5.14). The static SU(6)
matrix JIt/I, ~' has erst to be "enlarged" in a similar
way as was done for the 6 in going from (5.19) to
(5.20) . This can be done as follows.

M;B'A—+OR(, (0) =OR gPA (0) = L:,'y4(1+») M)„B"A,

see Eq. (5.33). LNote that e"a represents a spin-zero
state constructed out of two four-component spin- —,',

sta, tes given by Eq. (5.20).i We now define the totally
symmetric boost to momentum p (for mass M):

B '(p) =D "(p)D."(p)D."(p)B'"' ' (0) (5 44)
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The p and the 0- sets are each made up of the 2X2 Pauli
matrices and a 2&(2 unit matrix. The direct product
notation in (5.48) is explained after Eq. (4.7), 'we

write briefly I'x: (p" ) .oThe I'x may be considered as
the DG of a U(4). Equivalent to (5.48) is the set

rx: (1, p«, ~„„6„7~,p5) (5.49)

of 4&4 Hermitian Dirac matrices. In analogy with
Eq. (4.7) we can define a 144 set of 12)&12 matrices

Note in particular that

e""u"(o)~2 ID —(~VP/~) 37~C)""u"(P) (5 45)

By means of Eq. (5.44) we have obtained a boosted
56 which is totally symmetric in (a, b, c). By means of
y5-insertion we can obtain alternative boosts, in a
similar way as was described for the 36. For example
we can start from (yq) «"(ys),«B«~'a "o(0) instead of
from Eq. (5.43), and we can insert yq pairs in a variety
of ways, always ending up with a boosted 56 which
has the same parity as does 8"'(p) . This is the variety
of boosts discussed in I B 28$ (where a y-representation
was chosen in which yn is diagonal) . These asymmetric
boosts will not be used explicitly in what follows, but
we shall comment further on them in Sec. VC and D.

The totally symmetric boosted anti-56 is given by

C "(P)=D &(P)D.«(P) D, (P) C» "a"o(0), (5.46)

where C(0) is obtained from B(0), Eq. (5.42) by the
replacement

u'"«"~(0)~a'"""&(0), u"(0)—w"(0), (S.47)

where v" (0) is given in (5.21) and a&"«"&(0) is the nega-
tive energy function which corresponds similarly to
u'" " (0).

Remarks. (a) The enlargment of the number of
components which we have met several times is always
necessary in order to have boosted super multiplets
with a definite parity LS 11$. (b) The wave equations
satisfied by the boosted functions are the Bargmann-
Wigner equations t B 32, S 13, S 15$.

5. The Group U(6, 6)

Consider the set I'~ of 16 Hermitian matrices de6ned
by

FX'. pX

uxA(p)~ei««S ku»(A —ip)
'

It is important to note that the matrix

(5.55)

(5«"bo") is contained in the (Tx) i, (5.56).
One can build a tensor calculus for U(6, 6). For

example u, (pi)u (p2) is a (reducible) U(6, 6) tensor
for any pi, p&. In particular we meet the following finite
dimensional, and therefore nonunitary, representations.

(a) 5Kt,'(q) given in Eq. (5.37) is the 143 of U(6, 6) .
(b) 8'~'(p) given in Eq. (5.44) is also a U(6, 6)

tensor. $1t belongs to the representation with partition
(3) and dimension D»(3) =364 of U(6, 6) see Eq.
(3.12) . For more details on U(6, 6) tensor calculus see
LD8j1

Once one has a tensor calculus one can build interac-
tions. Consider as a simple example

of a unitary group. Following the prescriptions given
there we dehne a set T~ by

Tx= ,'(1-g~) Tx+ ,'(1 -i) I'TxI, (5.51)

where the 12)&12 matrix F is given by

rb = (&4)„"b&", o= (l~a), b= (~a). (5.52)

Thus F is the direct product of y4 and the unit DG of
U(3). I' is of the form (3.82) with M=X=6. Hence
the Tx are the DG of U(6, 6) .

For ouy p the u'(p) defined in (5.24) may be regarded
as a fundamental representation of U(6, 6). Indeed,
the infinitesimal transformation (with real cx)

u (P)~(1+~e Tx) ~ u'(P) (5 53)

satisfies

u. (P) u (P) =invariant; u.=u *r; (5.54)

where we have a special case of Eqs. (3.81—86). Here
we have used Eq. (3.89), namely Tx= I'Tx"I'.
u, (p)u'(p) is "the mass term" and U(6, 6) is the
group which leaves the mass term invariant. But it
does not leave invariant "the kinetic energy term"
u, (p) (yp)q'u~(p) as is evident from Eq. (5.53). (At
this point we recognize the formal device of introducing
more translations as a means to get an "invariant gen-
eralized kinetic energy term, "as discussed in Sec. VA. )

The quadratic form (5.54) is also a scalar density
with respect to the Poincare group, as is seen by the
application t S 11$ of an inhomogeneous Lorentz trans-
formation (a, A):

Zx. I xpP. (TK) a (Px) x(FP) A (5 50) g(V')u. (Pi)~~ (V)u'(P2), C=P2 pi (5 57)—
I'=0, 1, ~ ~ ~, 8, X=1, ~ ~ ~, 144.

The F~ are the DG of U(3), and the Tx are those of
a group U(12).

It has been explained in Eq. (3.89) how one can
associate the DG of pseudo-unitary groups to the DG

where g(q') is a form factor. For definiteness we con-
sider the sextet to.be on the mass shell. (5.57) is an
U(6, 6) scalar. It also has the right covariance structure
because of (5.56) . Equation (5.57) involves an assump-
tion of analytic continuation. By boosting, OR( j) was
obtained for q's for which q'= —p,'. It is assumed that
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this expression may be continued oG the mass shell,
as in (5.57).

Crossing symmetry is not part of U (6, 6) but is not at
variance with the latter symmetry. For example [B 28j
the substitution rules u&(p~)~~( —p2); q= (pm

—pq)~
q= —

p&
—

p& applied to Eq. (5.57) bring us to a crossed
channel.

The baryon —meson vertex proposed for U(6, 6) is
f(q')B~b. (p))ORg'(q)8""(pm), [S 13, B 28, S 157. This
form implies a common form factor for all values of q2.

This is a far stronger assumption than the one given
in Eq. (5.10) in connection with a preliminary discus-
sion of the P-wave vertex. It has become clear in the
intervening period that the strong f(q')-assumption is

by no means necessary to derive any of the vertex
predictions that are considered "good." In Sec. VC we
turn to a discussion of the vertex under what appear
to be minimal conditions for obtaining the good results.

Remarks (1).Concerning mass formulae for U(6, 6)
and related groups see [R 13, C 12). (2) Trilinear
meson couplings are discussed in [B32, G23, H 15,
G24). (3) Other boosted supermultiplets and their
vertices are discussed in [S 16, D 9, D 10, D 12, H 18$.
Note in particular that in the U(6, 6) limit many decay
modes of higher resonances are forbidden [H 16$. (4)
For parity assignments to U(6, 6) representations see

[C 13$. (5) Instead of considering the vertices men-
tioned above to be of the effective kind, one can also
try to think of them as a Lagrangian interaction. Then
the free kinetic energy terms are explicit symmetry
breaking terms. In this way one formulates at least
in principle a dynamical theory. See the survey [D 8]
and also [06j. In this approach the boosted 36, 56,
etc., are considered as primitive fields. The frustrating
thing is that one does not know how to calculate
reliably with such a scheme. (6) Added note. For a
relativistic version of the "recoupled" multiplets dis-
cussed in Sec. IVB, see [G 287.

C. The Baryon-Meson Vertex

Ke consider the covariant coupling of the baryon
octet to pseudoscalar and to vector mesons in the
SU(3)-symmetry limit and make only one additional
assumption [P 4g.

(A) The baryon octet is part of the totally sym-
metrical boosted 56.

The vertex then has the following form

&.~.(pi) &"(q)&""(Pm), q=P2 P~, (5 58)—
where we mean by 8 '" the octet part of Eq. (5.44)
and where

&"(q) = t fr(q') i&~(q) 1'—f~(q')»[(vq)/~3'

fr(q') [' „,q„e,(—q)/p/V ifp(q')»P} g' —(5.59).
The form factors fr, f~, fr, fp are considered to be four
independent functions of q'. We take the baryons to

be on the mass shell, so no questions arise of analytic
continuation of boosted functions.

SU(3) contractions reduce (5.58) to

4(D+F)uÃu[1+(q'/4M') J

,'(D———F—2T) u[Z2Z&K}u

——', (D—T) uZgm'Zgu, (5.60)
where

Z;= 1—(imp;/M), K'=»CK''C 'yr.

} denotes a trace with respect to the Dirac matrices.
The following definitions have also been used:

Dumu =u~" (Otu+uX) g~,

FuKu =ug (Xu—uX) g

~I+I=Na~&cclza (5.61)

Equation (5.60) yields the following results (divide by
6 and drop the u, u symbols) .

1. Pseldosculur Vertex

i[D+—(2F/3) T/3'j —1+(q'/4M') 3»

so that
&&[(2M/~)f~(q')+fp(q') I (5 62)

D/F= ', for all q'. - (5.63)

Remarks. (1) From SU(3) alone it follows in general
that the D/F ratio may be a function of q'. (2) The
alternative boosts of the 56 with ys-insertions as de-
scribed in Sec. VB give different values for D/F [B28,
R 9j. I learned from N. Cabibbo and M. Veltman the
following elegant way to obtain these various alterna-
tive vertices from the BSKB vertex, where 5K is given

by Eq. (5.38): insert in this vertex in all possible ways
pairs of "» spurions" (»)„"8~".This gives the various
D/F ratios including the "regular" as well as the
"irregular" couplings [R9$. In Sec. VD the connec-
tion between these» insertions and the group SL(6, C)
will be explained. The preceding remarks make clear
the necessity of assu'mption (A) to obtain (5.63).

Z. Vector Vertex

i[v. ~(q')+o"q F2(q') 3"(q) ~

q' ( 2F T)
F (q') = F+T+ ID+———

I fF(q')
4M'& 3 3J

(5.64)

q' t' F 4T')
l
D — lf, (q~) (—5.65)

2MpE 3 3 j

t' P 4T'I}
2MF2(q') =

l
D —

l
fr(q')— —

2M 2P T q'
+ D+——+ (P+&))f (q )(&«)'

p, 3 3 4'
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Iv( p')lf~( p') =—5, — (5.73)

The Sachs-type form factors are de6ned by

G,= F, (q—'/2M) F2, G~= (Fi/2M) +F2, (5.67)

so that

G, (q') = (F+T) [1+(q'/4M') $

XLfv(q') (q'/—2M&)fr(q') 3, (5.68)

2F T&/ q' &
2MG. (q ) =

~
D+——

~~ 1+
3 3j & 4M'&

X [ fv(q') + (2M/p) fs (q') j(5..69)

Note that the D/F/T ratios factor out for G„G but
not for the Dirac —Pauli form factors Il j, Ilq.

(1) Equation (5.17) follows from '(5.68, 69) and
the SU(3) assumption that the electromagnetic cou-
plings are proportional to the strong (po+cP/V3)
coupling.

(2) The relation [B34)

G (q') = const. G (q ) (5.'/0)

which appears to be in good agreement with experiment
[D 67 does not follow from the present considerations.
It demands an additional constraint between fv and

fs [B35, P 47. In this connection it is worth while to
ask "how relativistic" the Eqs. (5.16, '70) really are
and the following remark is perhaps instructive [F 11j.
Consider the proton as a rigid sphere which bounces
off a brick wall with a momentum transfer of say 500
MeV/ cWe have neglected the Lorentz contraction,
but (1—v'/c2)&~. 97 so we make only a 3% error.
Thus the "experimental" relations (5.16, 70) may be
approximately described as a property of the static
charge and magnetic moment distributions. In this
connection it is of interest that these relations have
been derived from an essentially static quark model
for the region q~/M'&1 [B2/j. From this point of
view it is of considerable interest to know how good
the relations (5.17, 70) are in the truly relativistic
region.

(3) The U(6, 6) limit corresponds to

fv(q') =f~(q') =f~(q') =f~(q') (5 71)

This does give a connection between G, and G„[see
also the preceding remark (1)$, namely [S 13, S 157
G,~/G ~=1+q'/2M@. This relation can be modi6ed,
however, by arguments about how to continue analyti-
cally to q'= 0 [F 12j.

(4) Returning to the strong vertex, we make one
additional assumption.

(B) The form factors in (5.59) satisfy the static
SU(6) limit conditions [B 107

f ( &') =f ( &')' f ( &') =f (—') —(572)

one of which was already encountered„Eq. (5.10).
Put [B 10$

where $ is a free parameter. From Eqs. (5.62-66) one
Ands the following results for gz, gz defined by the
P wav-e vertex part gvP Ppo+ggP dPVir/p (po is
the longitudinal component of po):

g =fr[f ( p'—)+(p/2M)f ( p'—)j
gv=fv( p'—)+(H/2M)f&( p') ~ (5 75&

Thus

gg/gv=i'r independent of $. (5.76)

This concludes the discussion of the octet vertex under
minimal conditions. For more details see [S 13, S 15$.
The closely related vertex for semi-leptonic processes
is discussed in [R 15, A 13, K 15$.

Z (z) . p(x) pz (5.79)

U(6, 6)QGL(6, C).

The corresponding F~ ~ and I'&x~ are

F~x~: 1, y5, 0-„„1'x~:1, F5, d, ipse.

(5.80)

(5.81)

The corresponding group (5.'79) is homomorphic with
GI.(6, C).

This group has two bilinear invariant forms, namely,

S»S; ZNi, g(+5)» I» (5.82)

Corresponding to this doubling there are more higher
rank tensors in this group than in U(6, 6) (for given
number of indices). Thus of the set

5R) +55K+5) (5.83)

with OR defined by Eqs. (5.37-40) only one is a U(6, 6)
tensor while both are GI.(6, C) tensors. The "yq inser-
tions" discussed in Eq. (5.41) and after Eq. (5.47)
just correspond to the breakdown Eq. (5.80). For
more details about the tensors of SI.(6, C) see [H 17].

(a')

GL(6, C)~GL(6, C) SGL(6, C) (5.84)

by means of the following procedure. Use Eq. (5.81)

D. Groups Related to U(6, 6)

Equations (5.48—52) imply that the group U(2, 2)
has the DG

rx=-,'(1+i) rx+-,'(1—i)~,rx~, . (5.77)

A subgroup of U(4) has as DG a subset of the Fx,
call it the set F'~). The corresponding subgroup of
U(2, 2) has the DG

r&»=-', (1+i)r»+-,'(1—i)~,r& 7,. (5.78)

We are interested in such sub groups of U(6, 6) which
have as DG those matrices obtained by substituting
P' ' for I'x in Eqs. (5.50, 51):
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and de6ne
(x) i(1~v ) F(x) (5.85)

r(»: &, &4, a=r(». (5.88)

Consider a one quark state with its U(6, 6) breaking
kinetic energy operator. In its rest frame vp =iv4Po. In
this situa, tion only that subgroup of U(6, 6} survives
generated by those DG of U(6, 6) which commute
with v4. This leads to the set (5.88) [0 6, D 7, H 14j.

The determination of the particle content of U(6, 6)
multiplets by means of this compact subgroup U(6)
U(6) proceeds as follows. The factors of the SU(2)
SU(2) subgroup of U(6) U(6) with respective
DG (1&v4) d/2 correspond to quark spin (v4

——1) and
antiquark spin (v4 ———1), respectively (in the rest
frame) . Correspondingly, the U(6) factors refer to
particles and anti particles, respectively. The sextet is
(6, 1), the anti sextet is (1, 6*). See also the note
after Eq. (5.21). The meson 36 corresponds to (6, 6*)
and the 56 to (56, 1), the anti-56 to (1, 56*), etc.

(d) SU(6) w. Consider two Lorentz-orthogonal unit
vectors e„', e„': (e„'e„&)= (e'e') = ()"'. Define

~i= k&(v~') v~ ~2= k&(v~') vs II'I= 2&(v") (v") .

(5.89)

W satisfies the same algebra as does 8= 6/2. Choose
the e„' to be orthogonal to a four-vector P„: (e'P) =0.
Then

I
~' (vP) j=o (5.90)

so 8' commutes with "the kinetic energy. " Choose
P„=(0, 0, P, ipo);e„'= (1, 0, 0, 0):e„'=(0, 1, 0, 0), then
W reduces to the expression (5.15) .

One also arrives at (5.15) as follows [0 6, D 7, H 14j.
Consider the kinetic energy operator (vp). For P in
the 3-direction this becomes vqpa+iv4PO Let P repre-.
sent any of the four-vectors which may occur in a
collinear configuration. The breakdown of U(6, 6) to
a lower symmetry then amounts to 6nding the subset
of the Fx, Eq. (5.49) which commute with vz, v4. This
is the W-spin set (5.15) . The consequences of SU(6) a-
symmetry are discussed further in Sec. VF.

(e) U(3) U(3). Consider a coplanar configura-

(This is a "complexification" because the vs appears
without an i )I.'~( )F generate GL(6, C) (IGL(6, C).
(The subgroup SL(2, C) (3 SL(2, C) is associated
with the proper complex Lorentz group [S 11j.)

(b)

GL(6, C) (3GL(6, C) QU(6) (3U(6), chiral (5.86)

is achieved by contracting I'~(» such that I'( & is
restricted to (1, d). For details on this group see
[F 4, D 5, 8 16j.

(c)

U(6, 6) Q U(6) SU(6); nonchiral. (5.87)

In this case

tion with "3" the direction normal to the plane. The
corresponding surviving set F&» is

r(»=r(» 1 y4(r (5.91)
and the group in question has DG (1&v408) F~/2.

U(6) representations are reducible under this group,
for example [D 7j: 56=(3, 6)+(6, 3)+(1, 10)+
(10, 1). The decuplets are the S3——+$ components
of the 56. The remainder corresponds to the Sg=&—,'
parts.

Equa, tion (5.91) implies spin conservation normal
to the plane. From this symmetry alone nucleon-
nucleon scattering predictions have been derived [D 7j
which were found and are further discussed in [K 9,
A 6j.

E. Unitarity; Other Implications

For any of the groups discussed in Sec. VD one can
by tensor contraction construct scalars which (when-
ever applicable) can represent effective matrix elements.
This is true not only for vertices but also for scattering,
annihilation processes etc. SU(3) -violating effects
must play a quite important role for many of these
processes [A 1, H2j and a systematic method for
dealing with such violations is not available at present.
This is to be compounded with violations of the higher
symmetries under discussion.

1. The Ueitarity Problem

Soon after the examination of the consequences of
U(6, 6) and related groups had begun, it was realized
that these symmetries are not compatible in general
with the unitarity conditions [8 36, 8 37, G 26j. An
example will clarify the point.

Consider an SU(6, 6) invariant scattering amplitude

f(» ~) ZN (P4) (& )~ I'(Pi) &.(P~) (& ) ~'~"(P~)
K

(5.92)

for the scattering S(pi) +S(P2)~8(P3) +S(P4),
(S=sextet, S=antisextet). The summation overE'
ranges over the 143 DG of SU(6, 6), see Eq. (5.51).
Equation (5.92) is SU(6, 6) invariant for any set of
values Pi —P4. Strict SU(6, 6) implies a common form
factor f(s, 3) for all the 143 terms in the sum. But this
is in convict with unitarity in the elastic region, as a
simple calculation shows [8 36$. Briefly stated, the
closure in the unitarity sum is effected by the introduc-
tion of projection operators which behave like the
kinetic energy terms often referred to, and which
almost always break the invariance. The unitarity con-
vict exists independently of any details regarding a
possible underlying local field theory. A few technical
comments follow.

(a) Stripped of its inessential SU(3) details, the
mentioned example amounts to saying that a four-
fermion interaction cannot be an equal mixture of
P, t/, A, and T for all s, t without violating unitarity.



A. PAxs Dynamical Symmetry in particle Physics 247

(b) It was noted in [B36) that the unitarity con-
flict is not confined to U(6, 6) but holds true for more
general relativistic completions. This aspect is dis-
cussed in more detail in [A 14, B 39), where it is
shown that the same problem arises also for SI-(6, C)
and also if one allows for the introduction of all possible
(yp) spurions.

(c) The unitarity condition is satisfied "a,symptoti-
cally" as we go to zero velocities [B36). The unitarity
violations are of the characteristic order (v/e)'. In the
nonrelativistic limit one can implement one-particle
unitarity for meson —baryon scattering. This leads to
SU(6)-coupling constant sum rules [B36) which are
closely rela, ted to the J—T relations. Sum rules of this
kind ior broken SU(6) are considered in [C 14).

(d) For some cases unitarity can be saved at the
price of crossing symmetry [B 38). Added ecole. See
also [8 49).

(e) As far as I understand it, it is a matter of
language whether or not the collinear group SU(6)s
is compatible with unitarity. The group makes no
claims concerning nonforward directions which are
coupled to the forward direction in the unitarity sum.
One may say that this coupling is not comprehended
by SU(6)s.

(f) A formal unitarity condition can be satisfied if
extra translations are introduced [H 19).

The unitarity conRict would be a violation of our
physical principles if an approximate kinematical sym-
metry were involved. From the present phenomeno-
logical point of view it means a most severe restriction:
the two sides of a unitarity relation cannot both be
right. This circumstance together with the SU(3)-
breaking problem mentioned earlier makes it no great
surprise that not many encouraging phenomenological
clues have emerged in the subsequent investigation of
speci6c processes.

Z. Meson —Baryon Scattering

Static SU(6)-type studies have been made along
the lines of Sec. IVG [C 2, B 40, B 41). However, no
5-wave projection has been studied separately as was
done for the nucleon —nucleon case. It is therefore not
easy to interpret the results. Relativistic calculations
[R 16, C 15, B 37, M 7) give several bad predictions
in the symmetry limit such as no polarization in
E' p—&" E+.

3. Baryon Baryon Scattering [—K 9, A 6, S 17, F 137

No suggestive regularities are found. Some disagree-
able 1eatures remain also in the presence of spurions.
The most detailed numerical comparisons are in [K 9).
For BB-scattering see [A 6, B 42).

4. SNcleon —Antinlcleon Annihilation at Rest

The following discussion is for annihilation purely
from the S state. First consider the case of U(6, 6)

7i+P—&e+e: forbidden. (5 94)

(b) 2 mes-oe annihilation. Equation (5.93) gives

nucleon+antinucleon~2 mesons: forbidden, (5.95)

not only for PP channels (P=pseudoscalar meson)
[H 20, H 21) but also for PV combinations [D 13,
C 16). There are some models which involve some PP
suppression, but in any case (5.95) is not good for
the px mode which is appreciable. Its rate is ~10
times the 2m rate [B43).

Several investigations have been made about 2-
meson annihilation using lower symmetry. First, a
single spurion of the type (dq) was introduced but this
leads to a new difliculty. It predicts (2=rate)

R(Z+Z ) 16
R(Z'ioE20) 1

(5.96)

see [H 20, D 14, A 15). (The result of [K 167 does not
agree with this answer. } This is to be compared with
an experimental ratio (1.1&0.1)/(0.61&0.09), [B43).
Other attempts to treat 2-meson annihilation proceed
by the introduction of a pair of (yg) or of yz spurions
[H 22, L 11).This leads to better results for the ratio
in Eq. (5.96). Also the result E(p~)/R(m~)=6 was
obtained [M 8). It appears that so far no compelling
conclusion can be drawn from 2-meson annihilation.

(c) 3 nwsoe aneihila-lion Returning . to U(6, 6), the
identity Eq. (5.93) implies a unique coupling in this
case. A main consequence is that annihilations invo1ving
a P or strange mesons are forbidden [D 13, C 16). In
7ip annihilation, p production is rare and the EEm to
3m. ratio is small [B44, B 45). (Note that EEL means
a true three-body channel, not E*Z.) The predictions
also hold for np annihilation for which no detailed data
are yet available.

More detailed predictions in the 3-meson case include
the following [C 16). [Note that these allow for the
inclusion of the parameter $ deflned in Eq. (5.73).)

(n) The 3P annihilations should be in the 'S state.
This is in agreement with an experiment [845) on
nonresonant 3z annihilation.

(P) The ratio R(7r+~ m )/E(7r+7r vP) should be 3.
The experimental ratio is (3.3&0.5)/(1.2&0.3) [F 14).

(y) The PPV annihilation should be in the eS state.
This is in agreement with an experiment on coxw

annihilation [B467.

symmetry. Then the nucleon is in B~'(0), Eq. (5.44)
and the antinucleon in C"'(0) Eq. (5.46).

(a) The following property of the once contracted
product is important

C.g.(0)B "'(0)=0. (5.93)

This is a direct consequence of 8,(0)N (0) =0, Eqs.
(5.20, 21) . This type of orthogonality can be expressed
in terms of a selection rule [H 23). Equation (5.93)
applied to the CB-current gives [H 21)
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(8) The ratio E(m+x p)/E(m+m 4o) should be ~1.
This is to be compared with an experimental ratio
(5.8~1.0)/(3.9~0.5) [F 143.

The U(6, 6) predictions therefore reproduce some
of the striking experimental regularities about pre-
ferred angular momentum states. Moreover the pre-
dicted (3n./2n. g) and (2~p/2m&) ratios are not in dis-
agreement with the present experimental information.
All these results do not depend on a prescribed relative
strength of pseudoscalar meson/vector meson coupling.
They do depend on the totally symmetric boosted
structure for baryons and antibaryons. It will be very
interesting to see how the 4oe predictions [C 16j will
fare.

(d) 4-meson aleihilatioN, U(6, 6) forbids pp~
K+E ~+n. [H 23$; for more details on these channels
see [L 12j.

Added vote. The reactions PI'—&BB are discussed in

[8 50].

F. F-Syin

We now continue the discussion of SU(6)s started
in Sec. VC. It was noted there that W, Eq. (5.15),
acts in the same way on a sextet (but not on an anti-
sextet) state at rest as does S. The same is therefore
true for a multi-sextet state. It follows that the baryon
56, looked upon as a representation of static SU(6)
is likewise a representation 56 of SU(6) s . In addition,
8' commutes with the DG y~|73 for Lorentz transfor-
mations in the 3-direction of motion. Thus also for pe WO

we may assign the baryon to the same SU(6) s repre-
sentation 56 as for pe= 0; and likewise for other baryon
representations. This is sometimes called the boost-free
property (in the direction of motion) of SU(6)s
representations [L 9].

For mesons we have a 35 (not 36) of SU(6)s which
is &35 of static SU(6) (even for pe ——0), because
mesons are like a sextet-antisextet system. To see
what happens, let Vp, p, y and I' be a degenerate quartet
of vector mesons (with helicities 1, 0, —1) and a,

pseudoscalar meson which are (for illustra, tion purposes
only) written as fermion pairs as follows.

Vi= ftft Vo= (1/W& (f~f4 A ft) —V ~= ftf»—
P= (1/ 2) (ftft+ftft).

f is the fermion, f its antiparticle, the indices denote
S3 values. Let S be the spin lowering operator:
S Vy= Vo 5 Vp= V y S V y=0. There is a corre-
sponding W'-spin operator lV which acts the same
on f but with different phases on f [for which y4 ———1
in Eq. (5.15)$. We now have W V~

——P, W P= V ~,

W V ~
——0. Going from a single f to the SU(3) triplets

we therefore get the following multiplets for SU(6)s
[C 17(.

35= (8, 3)+(8, 1)+(1,3); (W),

where (a) (8, 3) is an SU(3) octet with W-spin 1.
It contains the vector octet with Se=~i and the

pseudoscalar octet. (b) (8, 1):W-spin 0. This is the
vector octet with SB=O. (c) (1, 3): unitary singlet,
W-spin 1. Its members are PP, Xo, P P. Note how the
inclusion of Xo in a U(6, 6) multiplet remains necessary
in the SU(6)s subgroup.

In addition one has the representation 1= (1, 1) to
which the tt oo is assigned.

Furthermore a photon 7+& with helicity &1 may be
considered as a W-spin 1 (and U-spin zero) member
of an (8, 3)s, while a virtual photon yo is like a member
of an (8, 1)s [C 17]. Such assignments enable the
analysis of photo- and electroproduction by means of
H/"-spin methods.

The following are some applications of SU(6) s .
(a) Recalling that W=S, We ——S3 for baryons, one

easily veri6es that p-+2m, S*—+S~ are 8'-spin allowed

decays.
(b) MB-+MB, elastic and inelastic. From Eq. (3.25)

applied to 35~ and 56~, it follows that there are four
independent amplitudes. This leads to many relations

[C 17) always for forward or backward colfax g44ratioms

(n) The J—T relation, It should be noted that this
relation had been shown to be independent of any
particular form of relativistic completion [8 36, C 18j.

(P) A number of reactions are forbidden, like

E P—+E E*+,E+P—+E'Ã*++ etc.
(7) Relations for V=2 systems:

do(K+P~K'*+P) =. 2/3d o(K+P~KoN. ~+ +)

= 16do(K'P +K'"P.)-
= 16/3do (KoP~K+N) .

(8) Many relations for F= 1 and 0 amplitudes.
Note in particular:

do(x P~ N~+):do(m P=xoN*'):do(.7r P &7r+N. * )—
=2:9.24.

See [07j. Several MB-scattering predictions are in

disagreement with experiment [C 19, J 4j.
(e) For photoproduction see [C 17$ and also [D 15$.

Added note See fur.ther [J5, K 18j.
(c) For the application of non-leptonic decays see

[Hgj.
(d) For the vertex one obtains the results stated in

[831).
6. Conclusion

From the phenomenological study of approximate
dynamical symmetries which contain static SU(6) we

have so far learned the following. Regarding the main

motivation, the inclusion of the baryon —meson vertex,
the treatment of the vertex to order % is possible
with the only additional nonstatic assumptio~ that the
boosted 56 remains totally symmetric, Sec. VD. Phe-
nomenologically I regard this vertex to be neither better
nor worse understood to o/c than the static vertices dis-

cussed in Sec. IV. From the order (o/c)' on, the unitar-

ity troubles set in which make illusory as a matter of
principle any systematic phenomenological comparisons.
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Those that have been made give many bad results
along with a few interesting ones, such as the J-T
relations which emerge as the result of whatever
relativistic completion one chooses. Annihilation proc-
esses into two mesons have not led to very constructive
conclusions so far. There appear to be a number of
regularities for PI' +3 me—sons (in which the number of
triplets and of anti-triplets are separately conserved!).
Whether these will be of further interest will perhaps
be clearer after the corresponding PE experiments will
be available. Regarding the form factor relations like
Eq. (5.17), one may question the extent to which they
are truly relativistic for q'((1 BeV/c)', Sec. VC. A
number of new and interesting methods have emerged,
notably the 8' spin. No compelling directions have
emerged so far from asking the question stated in
Eq. (4.77).

VI. CURRENT ALGEBRAS Then

Q~ fd'x =j~(xt) . , (6.5)

Let P(x, t) =P""(x, t), (X=1-4, 2=1-3) denote
the bare field operator for an SU(3) triplet of spin-q
particles. p, (x, t) is its Hermitian conjugate. They
satisfy the equal time anticommutation relations

I:4-'(x, &), P(y, t) 3+=~'~(x y)— (6.2)

De6ne 144 Hermitian current densities

Jx(x, t) =p, t(x, t) (Tx)i+~(x, t). (6.3)

From an uncritical application of Eq. (6.2) and with
the help of Eq. (6.1) one obtains

LJx(x, t), J~(y, t) j =ifx J (x, t)b(x —y). (6.4)

De6ne

This section was written in collaboration with
M. A. B.Beg.

[JK(x l) QI,j &/xI, M J3I(»
K L ~ ELM M

(6.6)

(6.7)
A. Xntrodcction

This section deals with some of the applications of
current commutator algebras LG27j to dynamical
problems involving hadrons. These applications have
so far gone in two rather distinct directions.

(I) Current commutation relations supplemented by
external information (such as the experimental values
of scattering cross sections) have been used for the
derivation of strict sum rules. This direction is very
promising. In particular an approximately quantitative
evaluation of the absolute value of ) C~/C~

~
has been

achieved in this way fA 16, W 77.
(II) It has been attempted to derive SU(6) and

related results as internal consistency properties of
some of the approximate solutions of sets of current
commutation relations. This approach is aimed at the
master problem (B), Sec. I (see also Sec. IVJ). Its
status is presently unclear. In particular it is not yet
understood in what sense the solutions are approximate.

This survey would not be complete without a dis-
cussion of current algebras, but for two reasons this
section must be very brief. First, because it is restricted
to such applications only which bear on the interpreta-
tion of the symmetries discussed in this paper. Secondly,
because of the many still open questions which are met
in this connection.

B. The Current Algebra U(12)

In Eq. (5.50) quantities Tx were defined (E= 1, ~ ~

144) which are the DG of U(12). In the language of
Eq. (3.55) the generators Tx satisfy

TK TL$ —zfKLAN TM (6 1)

where fx~~ are the structure constants of U(12).
Acting on the defining representation, Eq. (6.1) is a
matrix relation between the (Tx)i, , a, b=1, ~ ~ ~, 12.
The (Tx)p are Hermitian matrices.

However, it is well known LS 18$ that the above
"derivation" of Eq. (6.4) is open to serious objection.
More strongly singular terms may appear in the right-
hand side of Eq. (6.4) because of the singular nature of
bilinear products of Pt and P taken at the same space-
time point. Concrete counter examples to special cases
of Eq. (6.4) have been given tS 18). At this stage the
study of current commutators branches out in two
directions.

(a) For such cases where the converse has not been
proved, one introduces relations of the kind (6.4) as
an explicit new postulate LG27j. Furthermore one
abstracts from the fact that the relations (6.4) are
initially suggested by a representative quark model
and makes the additional assumption $G 27j that the
relations (6.4) hold (qualified as above) for the set
of full (rather than quark) current densities which we
shall continue to call Jx(x, f) . Which particular current
density one has in mind is speci6ed by the nature of
the corresponding representative T~.

ExamP/e. Tx: 7'/2, (7'=isospin). Jx is the isocharge
density. Call P the corresponding Qx, Eq. (6.5) . From
Tx: year'/2 one obtains the isocharge raising and lower-

ing axial densities ysr+=yr, (r'&ir2)/2. Denote the cor-
responding Qx by Q,+. Then

LQ.+ Q. j=2I'. (6 8)

This is the relation which has been applied successfully
in the calculation of ) Cg/Cy ~, PA 16, W 7j.

(b) One asks for specific dynamical conditions under
which at least some of the Eq. (6.4) can be guaranteed
to have no extra singular terms on the right-hand side.
See for example LA 17$ where in particular Eq. (6.8)
is justified for some models. Also, nonforward neutrino
reactions have been studied with the inclusion of such
extra terms in those current comrnutators for which
their existence has not been disproved PA 187.
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Rerearks. (n) Because integrations as in Kqs. (6.6, 7)
may average out some extra singularities t such as for
example a constant times a 8'(x—y)-function(, Eq.
(6.6) may be safer than Eq. (6.4) and Eq. (6.7) may
be still safer.

(P) The circumstance that Kq. (6.2) does not depend
on mass (because of its eqnal l&ne character) has led
to the view LG 27$ that the validity of the generalized
Eq. (6.4) may persist in the presence of symmetry
breaking.

(p) The density corresponding to Ip is the 4th
component of the isovector 4-vector. Likewise Q,+
corresponds to the 4th component of the isovector axial
vector. As the Fx run through the set defined in Kq.
(5.49), we meet all the invariant S, V, T, A, I' densities
with factors i automatically included to guarantee
Hermiticity. For example, PtdF f= i%'p&yF"—P the
space part of the axial vector unitary nonet density.
The group U'(l2) of Eq. (6.4) l

D 7j is therefore the
group of the Hermitiam current densities. See also sub-
section D) below.

(8) Subgroups of U(12) can be recognized by the
same method as was used in Sec. VD for U(6, 6), see
for example LF 4]. In fact, U(6, 6) and U(12) have
such subgroups in common which are less than or
equal to the maximal compact subgroups U(6) 8 U(6)
of U(6, 6). Thus the recognition of the role of the
chiral or nonchiral U(6) U(6), of SU(6)s and of
U(3) U(3) is no unique property of the current
algebras per se.

(p) The group U(12) has also been recognized t0 8J
in a different physical context as the maximal compact
unitary symmetry of quark —antiquark systems. This
symmetry group U(12) has quite distinct implications
such as the inclusion within a given supermultiplet of
states with difI'erent baryon numbers.

C. AyyHca. tions

Take Eq. (6.8) as an example. From this equation:

Zl (&. I Q' I v) (v I Q. I &')—"Q'~Q. ")
=(F, ll'lF, ), (69)

F is a proton state with 4-momentum q„(or q„'), v is
a complete set of intermediate states. The ) C~/Cv l

calculation proceeds by separating out the neutron
from v and relating the full remaining v-set to off mass-
shell nucleon cross sections via I'CAC. For the present
purpose the following is relevant.

(a) Sum rules are obtained for each value of qp(= qp') .
In the l Cg/Cv l-calculation the limit qp~ pp is some-
times taken, but this is not essential LW 7$.

(b) Treating the v-set in full gives l C~/Cv l
—1.2

l A 16, W7j.
(c) Truncating the scattering cross section integral

so as to take only the 33-region into account gives

l C~/Cv l 1.44, LA 16(. The mentioned results are
for a calculation of the type (I) mentioned above.

In order to go to type (II), consider the set of Eqs.
(6.7), or a subset thereof. As in (6.9), put these rela-

tions between baryon octet states (for example) and
consider a further approximation of the v set, in which

one takes out not only the possible baryon octet states,
but also decuplet states of zero width, degenerate (or
approximately degenerate) with the octet, in the spirit
of approximate SU (6) symmetry.

The input of scattering information is now lost.
Instead, one asks

l
L 13, D 7$ if there are self-consistent

solutions of such sets of equations (not identities) ob-

tained from (6.'7) by truncating the v-set to 56 states
only ("one-particle saturation. "of intermediate states) .

The subset chosen for this purpose is the group of
currents corresponding to the chiral group U(6) U(6),
LL 13, D 7j but one may also consider smaller sets,
see further LB 47, 0 9, R 18j.In this way self-consistent
solutions

l Cg/Cv l
=s-,

l D/F l
=—', were obtained.

These include the SU(6) answers gg/gv
——~, D/F= 2.

No explicit S*—S mass degeneracy need be used.
(This was also true for the initial derivation, Sec. IVF).

This result raises the general question whether all

SU(6) results can be obtained from sum rules like

(6.4) and related ones by truncating the intermediate
v set. This seems possible. For example, the charac-
teristic 56 results for the magnetic moments can be
obtained by taking matrix elements of magnetic moment
operators between 56 states only. In fact, such matrix
elements are just the Clebsch —Gor dan coe%cients

l
F 15$ of the group U(12), or of a specific subgroup

such as SU(6)w which is of interest for vertex calcu-
lations.

The question arises if we have learned anything
really new from this one particle saturation. In this
connection the following theorem

l
C 20( is important.

If one assumes t D 7J that matrix elements are strictly
saturated by states which belong to the same SU(6) s
representation then SU(6) s would be a group of the
Hamiltonian. Thus the saturation assumption is equiv-
alent to earlier results and difhculties, but in another

language, and the master problem remains open. See
also

l
S 21j. Also, the notion of "approximate satura-

tion" leads to complications LC 20]. Moreover, the
uniform application of one-particle saturation for all

q„appears to lead to difhculties LK 17j.
Alternatively one may proceed without the explicit

a,ssumption of saturation, but hope that higher states in

the ~ set cancel in the comwltator so as to produce the

SU(6) results wherever desired LL 13j. Now the
burden of proof changes to the demonstration that this
cancelation indeed takes place.

There are many other interesting predictions from
commutator algebras, combined with the restriction
to one-particle v states only, such as for the charge
radius of the proton LL 13,D 7).But also new questions
are raised. Under what dynamical conditions is the
algebra, consistent (question of extra singularities)?
What is the extent to which the algebra exhausts
dynamical informationP Can the approximate sense of
one particle state calculations be justified by a degree
of cancelation of higher states in the commutator'



A. PAIs Dynamical Symmetry in Particle Physics 251

D. Appendix. Symmetry Group U(6, 6), Current
Group U(12) and GL(12, C)

The following mathematical remark may perhaps
help to make clear how such distinct 12-dimensional
unitary groups as the noncompact U(6, 6) and the
compact U(12) have both put in an appearance in the
discussion of strongly interacting particles.

Consider the four 2X2 matrices 01'=(d, 1) with
matrix elements 0. „&.One sees that

+&ma"&ra"= 2&ms4' (6.10)

With the help of this relation and of Eq. (5.48) one
obtains a similar relation for the 16 Dirac matrices.
It is in fact easy to show the following [for example
with the help of Eqs. (3.56, 57].

Let the Fx be the Hermitian DG of a unitary group
U(N}, represented by matrices (F«) „;X=1, ~ ~ ~, X',
rN v=1 ~ ~ ~ X. Norm the matrices so that Tr(F«)'
is independent of X. Then

QF „«F„,«= const. 5,b,„, (6.11)

where the constant depends on the scale set by Tr(I'«) 2.

Equation (6.11) is invariant under the similarity
transformations

(6.12)

where S is any nonsingular complex valued matrix.
Thus the group of Eq. (6.11) is GI.(1V, C). Of course
the transformed I"x remain Hermitian only for those
S which are in U(X).

For X=12, consider the following special choices for
s.

(n) S satisfies the U(6, 6) condition

8S= 1, 8=y4S"y4. (6.13)

Multiply Eq. (6.11) by |t (x)P„(y)P,(u)f, (v), where

f„ is a relativistic quark field operator and P„=g„y4.
One gets

ZP( ) 4(y) 0( ) 0( ) =P(*)B'(y)F'( )34( )

(6.14)

which is a U(6, 6) current identity in the restricted
(quark) sense. The corresponding bilinear invariant
P(x)P(x) is "the mass term. " Note that P(y}F«+(y)
is not generally a Hermitian density. Shrinking SU(3)
to the identity one obtains U(2, 2) relations of a kind
that have long been known [P 5j.

(P) S satisfies the U(12) condition

S~S=1. (6.15)

Multiply Eq. (6.11) by/ t(x)P„(y)P„t(u)P, (w}:

Z4'(x)F 4(y) 0'(u)F k(~)

=f (x) [f'(y) P '(u) jg(J) (6.16)

which is a U(12) identity for non local current densities.

The corresponding bilinear invariant Pt(x)P(x) plays
no special role. The connection between unitary and
pseudo-unitary currents was referred to before in
Eqs. (3.93, 94).

Note that U(12) is a group acting on tensor indices
only [like U(6, 6)j and not on the arguments like x
of the fields (or field operators) .

VII. NO-GO THEOREMS FOR CERTAIN
APPROXIMATE KINEMATIC SYMMETRIES

At the time that the SU(6) theory began to develop,
several theorems were known already which showed
that, under a number of rather general conditions, a
union of the Poincare group and an internal symmetry
group can only be achieved in the trivial sense of a
direct product, unless violence is done to some gener-
ally accepted physical principles.

In the language of Sec. IIB, these theorems are
applicable to approximate kinematic symmetries. As
was noted there, it is a relativistically invariant opera-
tion to take the limit "coupling constant —+zero."Hence
the no go theorems may be applied to this limit world.
If inconsistencies appear in the limit world then, in
the kinema, tic case, it is no excuse that the symmetry
is broken in the real world. The inconsistency %ould

apply to the real world as well.
The no-go theorems have no bearing on approximate

symmetries of the dynamical kind. In this case the
symmetry appears in an approximation which itself is
not defined in a covariant way. Then it has no meaning
to apply to the limit world a symmetry which contains
the full Poincare group. In this class belong static
SU(6) and the dynamical groups discussed in Sec. V
which contain the static SU(6) .

Neither the scope of this paper nor the competence
of this author permit a detailed discussion of what has
been achieved in the study of no go theorems. However,
as they have added so much to the hilarity and confusion
in recent discussions of the symmetries at hand, and
as they are quite important for the future use of sym-
metry arguments, it may not be out of place to mention
just a few examples. For detailed references, see, e.g.
[J 2, S 20, 0 10$. For these rigorous theorems, the
rigorous de6nition of a symmetry operation applies:
a one-to-one correspondence which associates to any
physically realizable state another such state in such
a way that all transition probabilities are preserved
LS 11j.

A number of no-go theorems were derived in response
to the following question. In the conventional way of
dealing with internal symmetries, one assumes that
the over-all symmetry is the direct product TI'
(&=internal symmetry group, P=Poincare group) in
the kinematic limit in which T is exact. As a result,
all particles in a T multiplet have the same mass. Is it
possible to have a symmetry group G which (in the
kinematical limit) contains T and P, but not as a
direct product, so that the imposition of G would allow
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for the possibility of a unified description of particles
with diGerent mass?

Consider erst the case: T is any semi-simple Lie
group, with generators T~,. the set of generators of 0
is neither less nor more than the combined set Tg and
the ten generators L, of P. One can next proceed in
either of two ways.

(n) Assume in addition that [T'g, J„„]=0 where the
six J„,are the subset of L; corresponding to the horno-
geneous Lorentz group. It follows from these assump-
tions [M 9] that also PTg, P„]=0,where the four P„
are the translation operators, so that G= TSP again.

(P) Assume in addition that [O„L;]=0'.Here the
H are the maximal commuting subset of the T~ in
terms of which the (additive) quantum numbers of
T are defined, see Eq. (3.57) . It follows also from these
assumptions that G= TQP [C 22]. See also [T 3].

Thus, in physical terms, the Lorentz invariance of
the internal quantum numbers is sufhcient to prove
that all members of multiplets must have the same
mass and spin. The two theorems just mentioned can
also be applied to the case that T is any compact group.
Their proofs do not exclude [M 9, C 22] the possibility
that something renew might happen if the number of
generators of 6 is larger than was specified above.

The next important step in weakening the conditions
on G is contained in the following theorem [011].
Let G be a Lie group of finite order which contains P
as a subgroup. The irreducible representations of 6
define a Hilbert space. The mass operator P„2 and any
power of P„' are assumed to be self-adjoint over this
Hilbert space. Then the spectrum of P„' is either a
single point or else it is continuous. (It was not shown
that the continuous case is actually realizable. )

Subsequently, this theorem was still further strength-
ened as follows [R 17].Let G again be a Lie group of
finite order, the Lie algebra of which contains the Lie
algebra of P as a subalgebra. Then in any irreducible
representation of G, P„2 cannot have more than one
eigenvalue.

Thus for 6nite order Lie groups there is no way
known to escape from the T P structure. There are no
general theorems known for infinite parameter groups,
but such groups do not seem too attractive for other
reasons. One special no go theorem in this category is
the result [J2] mentioned in Sec. IVA.

Finally, a conjecture should be noted [C 23] which
has been stated for the case that the kinematic group
6 is a connected Lie group which is "particle finite. "
This means that (a) GQP, (b) G has at least one
locally faithful unitary representation which under P
decomposes into the direct sum of a finite number of
positive-mass representations of P with mass (M
(where iV is any finite positive mass). The conjecture
says that any connected particle 6nite Lie group is
locally isomorphic to TP', where T is a compact
I.ie group, and P' is a trivial extension of P. The
conjecture has been proved for the case that 6 is

locally isomorphic to the semi direct product of a semi-
siinple Lie group and an Abelian group (the latter
containing the P„); no counter examples to the con-
jecture are known.

VIII. QUESTIONS

Many of the questions collected in this concluding
section were met in the previous parts of this survey.

(a) In explaining the distinction between kinematical
and dynamical symmetry, atomic analogies may have
been helpful. It is clear, however, that this distinction
can be fully abstracted from the question of a possible
substructure of baryons or mesons. Nevertheless, the
question remains: is there such a substructure in terms
of prime matter? Could such matter have unusual
properties (such as parastatistics) which "avera, ge out"
for the usual hadror)s? As to whether or not triplets
are the answer, it has been seen that one must further
ask: is SU(3) the biggest internal symmetry group?

(b) Is it at all true that SU(3) is an approximate
symmetry of the kinematic type? There is a perhaps
related technical question: why have all higher sym-
metries that have had some measure of success been
more manifest for masses and vertices while scatterings
etc. are much less transparent? Higher symmetry means:
higher than the direct product of isospin and hyper-
charge. Are even the latter two of the kinematical kind?

(c) Are there other ways to think of symmetry in
particle physics than the approximate ways discussed
before? (Lorentz invariance is globally an approximate
kinematic symmetry in the presence of gravitational
coupling. Yet it is a strict symmetry in local inertial
frames!)

(d) The master problem (B), Sec. I is so far still
open. In spite of its successes for the derivation of sum
rules, it has not been shown that the algebra of currents
provides the answer. Is it possible to show, where
desired, that the contributions of higher intermediate
states inserted in the comrnutators cancel out, some-
times to a very high degree?

(e) The intrinsic breaking of some of the symmetries
discussed here by kinetic energy terms is reminiscent
of strong coupling approximations [P 1, B 9] where
the interaction terms are diagonalized first. I~ the
old-fashioned strong coupling calculations some masses
are put equal to in6nity from the start. Can one obtain
some dynamical symmetries in strong coupling approxi-
mations with masses kept finite? [C 21].

(f) To what extent are dynamical symmetries other
than static SU(6) useful for a phenomenological de-
scription? Is the independence of q' of a number of form
factor ratios an indication for the approximate validity
of 8'-spin, or should this approximate q'-independence
[for q'&(1 BeV/c)'] be explained as a property of
static charge and magnetic moment distributions?

Are noncornpact spectrum generating algebras a
useful tool in particle physics [D 16, C 21]?

(g) Are there any alternatives left to the internal
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