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The spectral distribution of light scattered by density Quctuations in a dense, monatomic, one-component Quid is cal-
culated from the time dependence of the density Quctuations predicted by the linearized hydrodynamic equations of
irreversible thermodynamics. The results of Landau and Placzek are veri6ed and a procedure for deriving correction
terms is discussed with the dispersion in the velocity of thermal sound waves obtained as an illustration. Particular
attention is paid to the critical region. The properties of carbon dioxide are used to estimate the spectral distribution
of critical opalescence. A comparison is made between light-scattering and sound, -propagation experiments. Space dis-
persion near the critical point in the pressure and the thermal conductivity is examined briefly. Finally, some of the
experimental problems involved in measuring the spectral distribution of the scattered light are discussed.

I. INTRODUCTION quency. "Laser research has inspired the development
of very high resolution interferometers. '4 These develop-
ments have increased the interest in the spectrum of
light scattered by density Quctuations.

This article describes the type of information which
can be obtained by determining the spectrum of the
light scattered by density Quctuations in a dense Quid.
To accomplish this we calculate the spectrum of light
scattered by density Quctuations in a dense, one com-
ponent, classical Quid of spherically symmetric mole-
cules. The linearized hydrodynamic equations of ir-
reversible thermodynamics are used to compute the
relaxation in time of the spontaneous density Quctu-
ations in the Quid. '5 This phenomenological theory is
valid for low frequencies and long wavelengths. Al-
though the frequencies we consider are much higher
than those usually encountered in hydrodynamics, it is
hoped that the results will'be of use in understanding
the properties of Quids.

This approach is essentially that of Landau and
Placzek. "The lowest order solutions of these equations
are well known in the sense that they are quoted in the
literature. We also obtain higher order terms in the
solutions which are of interest to anyone trying to
interpret light-scattering experiments of this type.

This study was undertaken with the hope that the
spectrum of critical opalescence would contain useful
information about the critical point of the liquid —vapor
transition. Sections 5 and 7 are concerned with the
spectrum of critical opalescence.

Section 6 is devoted to a comparison of what can be
learned from a light-scattering experiment as opposed
to a sound-propagation and absorption experiment. As
is shown, the two types of measurements are not
identical.

When a beam of monochromatic light is passed
through a dense, transparent medium, some of the light
is scattered since the density is not uniform. There
would be no shift in frequency of the scattered light if
the density nonuniformities were static. As frozen-in
nonuniformities are not possible in a Quid, density
Quctuations in a Quid are time-dependent. This means
that the frequency of light scattered by density Quctu-
ations in a dense Quid exhibits a spectrum characteristic
of the time dependence of the density Quctuations. '

In the past it has not been possible to study experi-
mentally, in any detail, the spectral distribution of the
scattered light. ' "The changes in frequency are very
small, too small to be resolved fully by the optical
detection systems which were available. This situation
is changing. The gas laser has made possible the de-
velopment of optical heterodyne systems which are
capable of detecting exceedingly small changes in fre-
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In the 6nal section, we summarize the information
one could expect to obtain from the spectrum of the
scattered light. We also discuss the experimental prob-
lem of resolution and the detectors one might use in
such light-scattering experiments.

2. THERMODYNAMIC APPROACH

A qualitative picture of the scattering of light by
density Quctuations can be obtained by separating
density Quctuations into two types, those relieved by
mechanical processes and those relieved by thermal
processes. This separation occurs naturally in the
thermodynamic theory of Quctuations where density
Quctuations can be described in terms of pressure Quctu-
ations and temperature or entropy Quctuations.
Brillouin has suggested that light is scattered by thermal
sound waves in the Quid. ' These waves are analogous
to Debye waves in a crystal. Because sound propagation
is an adiabatic process, density Quctuations should be
decomposed into pressure Quctuations at constant en-

tropy and entropy Quctuations at constant pressure.
This decomposition is discussed in detail by Frenkel. "
We quote his conclusions only.

The frequency of the light scattered by the Quctu-
ations at constant entropy (thermal sound waves or
phonons) is shifted by an amount proportional to the
velocity of the phonons. Energy and momentum con-
siderations require that the proportionality constant be
the magnitude of the change in the wave vector of the
scattered light. Two lines are observed because scatter-
ing can occur from waves traveling in opposite directions
but at the same speed. These lines are broadened
somewhat because of the dissipative processes which
damp out the waves. These lines are known as the
Mandelshtam —Brillouin doublet or more simply as the
Brillouin lines.

The light scattered by the Quctuations at constant
pressure is not shifted in frequency although it is
broadened somewhat due to the thermal dissipative
processes which damp out these Quctuations.

We see that the fine structure of the scattered light
consists of three lines. The ratio of the intensity of the
central line Io to that of the two shifted lines 2I~ is
determined by thermodynamic Quctuation theory to be

Is/2II —(c„—c„)/c„—
where c„and c, are the specific heats at constant pres-
sure and constant volume. Landau and Placzek have
observed that the widths of these lines are determined
by the lifetimes of the density Quctuations described
by the linearized hydrodynamic equations of irrevers-
ible thermodynamics. '

There have been numerous attempts to observe the

"Leon Srillouin, Ann. Phys. (Paris) 17, 88 (1922').
'8 J. Frenkel, Kinetic Theory of Liquids (Oxford University

Press, London, 1946), pp. 235—46.

spectrum of the light scattered by density Quctu-
ations. ' " It has been possible to detect the presence
of the Brillouin lines in liquids using the conventional
techniques of high resolution spectroscopy. The details
such as line widths and shapes have not been measured
with any precision. ' Only one study of the spectrum of
the central line has been reported. "

In the next few sections the Landau —Placzek theory
is developed in detail. First we point out the relation-
ship between the Quctuations in the density and the
intensity of scattered light. Then we obtain the time
dependence of the kth Fourier component of the density
Quctuation. Finally, we determine the fine structure
implied by this time dependence.

3.HYDRODYNAMIC THEORY OjF FLUCTUATIONS

Komarov and Fisher" have shown, by adapting Van
Hove's" neutron-scattering results to light scattering,
that the intensity I' of light scattered from a Quid is

I'(R oI) = (n'Q4E/2zc4R')Is sin'yS(k co). (2)

The light, scattered at the origin, is observed at R.
The angular frequency of the scattered light is 0, ~ is
the shift in the angular frequency and ir is the chutsge

in the wave vector of the scattered light from that of
the incident light in the medium, k~,

h=hI2 sin (0/2),

where 8 is the scattering angle. There are S spherically
symmetric molecules of polarizability 0. in the scattering
volume. The incident light is assumed to be in the form
of a plane, polarized, monochromatic wave.

The angle between R and the electric vector of the
incident wave is denoted by p. The polarization of the
scattered light depends only on p because the molecules
are isotropic. The intensity of the incident light is Io.
R. Pecora has derived an equation equivalent to Eq.
(2) ss

The information about the density Quctuations is
contained in the generalized structure factor $(lt, Ie),
which is the space and time Fourier transform of the
two-body correlation function of the medium. It is
defined by Van Hove'-' to be

G(r, t) = iY-I (g dr'bLr+rI (0) —r'j3Lr' —r, (t) j ),
z, j=l

'9The Grst measurements of the width of Brillouin lines in
liquids were reported recently by D. I. Mash, V. S. Starunov,
and I. L. Fabelinskif, Zh. EksperiIn. i Teor. Ffz. 47, 783 (1964)
LEnglish transl. : Soviet Phys. —JETP 20, 523 (1965)g.
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Phenomena in the Neighborhood of Critical Points held at the
National Bureau of Standards, 5—8 April 1965 (to be published).

2' L. I. Komarov and I. Z. Fisher, Zh. Eksperim. i Teor. Fiz.
43, 1927 (1962) /English transl. : Soviet Phys. —JETP 16, 1358
(1963)7.
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'- R. Pecora, J. Chem. Phys. 40, 1604 (1964).
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where the sums are carried out over all molecules in
the system. The angular brackets ( ~ ~ ) indicate an
ensemble average over the initial states of the system.
For long times and sufficiently large r, the form. of
G(r, t) reduces to the autocorrelated density

G(r, t) =X-' dr'(p[r' —r, 0]p(r', t) ).

Here we consider only this latter form of G(r, t).
Our main concern is with the frequency dependence

of S(k, &v). We determine this by implementing the
Landau —Placzek observation that the decay in time of
density Quctuations is described by the linearized hydro-
dynamic equations of irreversible thermodynamics.
First we obtain the time dependence of the kth Fourier
component of the density. From this, we construct the
time-dependent density —density correlation function
and the generalized structure factor.

This way of constructing $(k, a&) has been discussed
by Van Hove and shown to be a long-time approxi-
mation. As defined, $(k, pi) is the transform of a den-
sity —density correlation function. Since we are making
a long-time approximation, our results are valid only
at "low" frequencies. This should not lead to any
difficulties, because the time constants involved in the
hydrodynamic small-oscillation problem are long com-
pared to the time intervals characteristic of molecular
scattering processes. This method has been quite useful
in describing the magnetic scattering of neutrons near
the Curie point in iron '

The linearized hydrodynamic equations" are: the
continuity equation

In this linearized theory of small oscillations about
equilibrium, the transverse part of the velocity is not
coupled to the density. For this reason we neglect the
transverse part of the Navier —Stokes equation in our
considerations. This .imits the applicability of this
theory to fluids in which angular correlations between
the molecules are not important. Also, we made use of
the concept of local thermodynamic equilibrium when
we replaced the pressure and entropy deviations which
usually appear in the Wavier —Stokes and energy equa-
tions by the corresponding density and temperature
deviations. Thermodynamic relationships were used to
to this. The choice of density and temperature over
entropy and pressure as independent variables is an
arbitrary one. The final expression for the density—
density correlation function is, of course, independent
of this choice as long as local thermodynamic equi-
librium obtains. The labor involved is less when the
density is an independent variable.

The procedure used is to first eliminate the velocity
by taking the divergence of each term in Eq. (7) and
then substitute for div v from Eq. (6). Next we obtain
the Fourier (space) and Laplace (time) transforms of
these equations. Then we solve the resulting equations
for n(k, s), the Fourier —Laplace transform of the den-
sity. The inverse Laplace transform of rt(k, s) is the
time-dependent, kth Fourier component of the density,
n(k, t):

e(k, s) = dr dt exp (—ik r) exp ( st) pi(r, t—),
o 0

Dpi/Bt+pp dlv v=0;

the Wavier —Stokes equation

(6)
T(k, s) = dr dt exp (—ik r) exp (—st) Ti(r, t).

Bv C()
po
—+
BI

Co'8po
grad pi+ gra, d Ti

—(s'q, +pic) grad div v=0;

The elimination of the velocity (longitudinal com-
ponent) and the transformation of the density and
temperature leads to two simultaneous linear equations
for e(k, s) and T(k, s) in terms of the initial values

and the energy-transport equation

cjTi c„(y—1) Dpi
Po&~

—XV'Tg ——0.
Bt P Bt

(g)
and

n(k) = dr exp (—ik r) pi(r, 0)

In these equations, p= pp+pi is the number density,
T= Tp+Ti is the temperature; pp and Tp being the
equilibrium values. The ratio of the specific heat at
constant pressure to the specific heat at constant volume
is denoted by y= c~/c„. The shear and bulk viscosities
are rt, and itii, X is the thermal conductivity, P is the
thermal expansion coefficient, and Co is the low-fre-
quency limit of the sound velocity.

Leon Van Hove, Phys. Rev. 95, $374 (1954)."B.Jacrot, J. Konstantinovic, G. Parette, and D. Cribier,
Symposium on Inelastic Scattering of Neutrons in Solids and
Liquids, Chalk River, 1962.

26L. Passell, K. B1inowski, T. Brun, and P. Nielsen, J. Appl.
Phys. 35, 933 (19M).

T(k) = dr exp ( ik r) T, (r, 0). —(10)

m(k, s) [—sc„(y—1)/P]+T(k, s) [ppc„s+Xk']

= —e(k)c, (y —1)/P+ppc, T(k). (12)

These equations are

n(k, s) [s'+Cook'/y+ (xg,+gii) k's/po]

+ (Cp'Ppok'/y) T(k, s) = m(k) [s+ (~q, +rtii) k'/po]

(11)
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Only the magnitude of k is important so the vector
notation is no longer used. Because the density and
temperature are thermodynamically independent, it is
unnecessary to include terms involving T(k) in the
solution for n(k, s).

The solution of Eqs. (11) and (12) for n(k, s) is

s'+ (a+b) k's+ abk4+ Coo (1 1/y—)k'
n(k, s) =n(k) s'+ (a+b) k's'+ (Cook'+abk4) s+aCook4/y

Ke have introduced the notation

a= X/pocg

(13)

While an exact algebraic solution of a cubic equation is
always possible, it is not particularly useful in this
case because of its algebraic complexity.

It is more convenient to develop a convergent scheme
for approximating the solutions to the dispersion equa-
tion, Eq. (15), in a power series of the coefficients.
To do this, we first note that k=10' cm ' is typical of
the changes in the wave vector which occur in light
scattering. (This corresponds to a scattering angle of
approximately 60' when a 6328-A He—Ne laser is used
as the light source). With k=10' cm ', the ratio of
ak to Cpk and of bk'- to Cpk is commonly on the order
of —,oo. The parameters to use are ak'/Cok and bk'-/Cok.

The solutions to Eq. (15) to lowest order in ak'-a,nd
bk' are

s= &iCko ,'(a+b —a/-p) k', —
s= —(a/y) k';

I

or, in terms of the original parameters,

(16)

b= (EAn. +~E) /po

The next step is to compute the inverse Laplace
transform of n(k, s). This inversion requires that we
find the roots of the denomins, tor of Eq. (13) set equal
to zero,

s'+ (a+b) k's-'+ (C 'k'+abk4) s+aC 'k4/y =0. (15)

n (k, t) =n(k)
"

exp [—(xk'/poc ) t$
Cy

+—"exp (—I'k't) cos Cokt . (22)
cp

The kth component of the density —density corre-
lation function F(k, t) is

F(k, t) = (n( —k) n(k, t) )

cy cy= (n( —k)n(k) )
" "exp

t
—(Xk'/poc, )tj

+—exp (—Fk't) cos C,kt . (23)

The angular brackets ( ~ ~ ) indicate an ensemble aver-
age over the initial values of the variables.

The quantity which is of direct interest in a light-
scattering experiment is the generalized structure factor
S(k, oi);

S(k, 4o) =2 Re dt exp (io~t)F(k, t).
0

It follows from Eq. (23) that

(24)

found to be quadratic in k:

s= +i(Cok+Cok') —Fk',
where

Co =L3F'+ab —2F (a+b) j/2Co. (20)

The velocity of a thermal sound wave, e&h, exhibits
dispersion when k is large enough;

3F'+.ab 2F—(a+ b),
&th 0

2Cp'

The significance of this dispersion and its relationship
to the sound propagation problem are discussed in
Sec. 6.

Using the first-order solutions, Eq. (17), the lowest
order terms of the inverse Laplace transform of n(k, s)
are

, EIt +gE 1 X Xs= +iCok —-,
'' +——— k'

pp pp c„ c„

s= —Xk'/poc, . (17)
where

s(k, oI) = S(k) 0 (k, 4o),

S(k) = (n( —k) n(k) )

(25)

(26)

These are the predictions of the Landau —Placzek theory.
The real part of the first two solutions is effectively
the low-frequency sound-absorption coeKcient. In the
rest of this paper, it is denoted by I'k'; i.e.,

1 E.rt, +ps 1 tX

po po kc. c,i

Higher order corrections to the usual solutions, Eq.
(17), can be generated by the same procedure. The
first correction to the low-frequency sound velocity is

is the ordinary structure factor and

c„—c„2Xk'/poc&
0' k, oo

c, (l~k'/poc„) '+io'

c Fk' Fk'

CI, (Fk')'+(o&+Cok)' (Fk')'+(4o —Cok)'
(27)

This way of constructing the density —density corre-
lation function, Eq. (23), is essentially a convolution
approximation. It is not the same as the "convolution
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approximation" introduced by Vineyard'7 in the analy-
sis of neutron-scattering experiments. This distinction
has been discussed by Singwi and Sjolander. '

The method used to obtain Eq. (23) is the same as
that used by Kadano6 and Martin. " Their results
diGer in that they used the density and the heat energy
density as the independent variables. Because the heat
energy density is linear in the density, it is diKcult to
obtain a direct evaluation of the generalized structure
factor from their equations. I.eontovich' "and Rytov"
also have used this approach to study time-dependent
Quctuations.

Away from the critical point, the structure factor

S(k) = (n( —k)n(k) )

is proportional to the compressibility and is independent
of k. As the critical point is approached, k dependence
develops reQecting the long range of the correlation
between two particles. The Ornstein —Zernicke" expres-
sion for the two-body, time-independent correlation
function is

g(r) —1=A exp ( xr)/r, —

where ~ ' is the two-body correlation length. The quan-
tity A has been shown by Fixman to be on the order
of the range of intermolecular forces. '4 The structure
factor associated with Eq. (28) is

S(k) = A/(k'+x2) (29)

2' Q. H. Vineyard, Phys. Rev. 110,999 (1958}.
2 K. S. Singwi and A. Sjolander, Phys. Letters 9, 120 (1964}.
2~L. P. Kadanoil and P. C. Martin, Ann. Phys. (N.Y.) 24,

419 (1963).
~0 M. Leontovich, Z. Physik 72, 247 (1931).
3~ M. Leontovich, J. Phys. (USSR) 4, 499 (1941)."S.M. Rytov, Zh. Eksperim. i Teor. Fiz. 33, 166, 514, 671

(1957) )English trans1. : Soviet Phys. —JETP 6, 130, 401, 513
(1958)g. These papers are concerned mainly with viscoelastic
Quid s.

~'L. S. Ornstein and F. Zernike, Physik. Z. 19, 134 (1918);
27, 761 (1926).

3'Marshall Fixman, J. Chem. Phys. 33, 1357 (1960); V. L.
Ginsburg, Compt. Rend. URSS 36, 8 (1942). A term similar
to Eq. (32) was discussed in connection with early measurements
of Brillouin scattering."J.E. Thomas and Paul W. Schmidt, J. Chem. Phys. 39,
2509 (1963).A brief discussion of other experiments is contained
in this paper.

O' J. E. Thomas and Paul W. Schmidt, J. Am. Chem. Soc. 86,
3554 (1964).

"M. S. Green, J. Chem. Phys. 33, 1403 (1960).
3'H. L. Frisch and G. %. Brady, J. Chem. Phys. N', 1514

(1962).
39 I. Z. Fisher, Statistical Theory of Liquids (University of

Chicago Press, Chicago, 1964), pp. 202—205.

Equation (29) is commonly used to describe scattering
of light and x rays in the critical region. '~36 The ap-
propriateness of Eq. (29) has been questioned by some
authors. '7 'e Since the exact form of S(k) is not really
important for this discussion, we do not examine these

interesting questions. The recent review by M. E.
Fisher is particularly recommended for that purpose.

4. ACCURACY OF THE APPROXIMATE
SOLUTIONS

The approximation procedure used to solve Eq. (15)
is valid when ak' and bk' are suKciently small in com-
parison with Cok. To obtain some idea of the usefulness
of the approximate solutions, Eq. (17), we solve the
dispersion equation numerically, Eq. (15), when the
parameters u, b, Co, and y are given numerical values
appropriate to water at 22.9'C and 1 atm pressure. 4'

Under these conditions a=1.46X10—' cm'/sec,
b =4 47 X 10 ' cm'/sec, Ce ——1.49X 10' cm/sec, ' and y =
1.009. With k=10' cm ', the dispersion equation is

s'+ (4 62X10 )s'+ (2.22X10' +9 92X 10' )s

+3.14X10"=0. (30)

The roots of Eq. (30) obtained numerically are

s = —1.46X 10r/sec

s= —2 24X10s~1 49X10"i/sec.

The approximate solutions, Eqs. (16) and (17), yield
the same results to three significant figures. Increasing
k to 10' cm ' does not alter the agreement significantly.

The value of the bulk viscosity used to compute b

was inferred from ultrasonic absorption data and found
to be about three times as large as the shear viscosity. 4'

Recent measurements of Brillouin scattering in water" "
have found a small amount (on the order of three
percent) of negative dispersion in the phonon velocity.
In order to have Eq. (21) account for this shift in the
phonon velocity it is necessary that the absorption
coefficient, I', be about one order of magnitude larger
than required by the ultrasonic measurements. The
approximate solutions give good estimates even if bk'/Ce
is as large as ~0. If larger values of this ratio occur it
probably would be worthwhile to solve the dispersion
equation by a procedure which takes the large value of
b into account.

S. CRITICAL OPALESCENCE

As stated earlier, a primary reason for this review
was an interest in critical opalescence. In this section
we examine the structure predicted by o(k, ~), Eq.
(27), of the light scattered in the supercritical region
of carbon dioxide.

Figures 1, 2, and 3 contain most of the relevant
parameters for carbon dioxide in the supercritical region.
LT,=31.04'C, E,=72.85 atm, p, =236 amagat. (For

40 Michael E. Fisher, J. Math. Phys. 5, 944 (1964}.
"M. Greenspan and C. E. Tschiegg, J. Res. Natl. Bur. Std.

(U.S.) 59, 249 (1957}.
4'N. E. Dorsey, properties of Ord'. nary Water Substance (Rein-

hold Publishing Corporation, ¹wYork, 1940).
43 J.J. Markam, R. T. Beyer, and R. B.L. Lindsay, Rev. Mod.

Phys. f33 353 (195I).
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FIG. 1. The half-width of the undisplaced line in the super-
critical region of carbon dioxide for 4=10' cm '.

carbon dioxide, 1 amagat=0. 0019764 g/cm'. ) ]44 ~'

Figure 1 is the width of the central line; twice the
thermal diffusivity times 4 =10' cm . The shift of
the Brillouin lines, Cok with k=10 cm ', is shown in
Fig. 2. The fraction of the light contained in the central
line, (1—y '), is indicated in Fig. 3.

Estimates of the width of the Brillouin lines, 22k,
are not reliable near the critical point of carbon dioxide
because the bulk viscosity, q&, is not known as a func-
tion of density and temperature. There is reason to
believe that I'k' is on the order of Cok/10. This is based
on the large sound absorption observed near the critical
point. 5' In any case the Srillouin lines are much broader
than the central lines. If I'k'/C, k —,'0, there is also a
small ( 1%) amount of nega. tive dispersion in the
phonon velocity. This would result in a corresponding
decrease in the separation of the Brillouin lines. This
small effect has not been included in Fig. 2.

Figure 4 gives the relative intensity per unit solid

'4 Figures 1—4 have been constructed from a compilation of the
properties of carbon dioxide prepared by J.V. Sengers. The author
wishes to thank Dr. Sengers for his aid and encouragement in
preparing this section. References 45—51 are the sources of the
data.

4'A. Michels and H. Wouters, Proc. Roy. Soc. (London)
A153, 214 (j935).

6 A. Michels and C. Michels, Proc. Roy. Soc. (London) A153)
201 (1935); A160, 348 (1937).

4'A. Michels, B. Blaisse, and C. Michels, Proc. Roy. Soc.
(London) A160, 358 (1937).

48A. Michels and S. R. deoroot, Appl. Sci. Res. Sec. A 94
(1948).

49A. Michels and J. C. Strijland, Physica 18, 613 (1952).
'~ A. Michels, J. V. Sengers, and P. S. Van der Gulik, Physics,

28, 1216 (1962).
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(Bp/Bp)z gra, d pi

would be replaced by

(ap/ap) p grad Lp, —~
—'V'p, ],

(31)

(32)

where ~ ' is the Ornstein —Zernicke" two-body corre-
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FIG. 2. The frequency shift of the Hrillouin lines in the super-
critical region of carbon dioxide tor k= 105 cm '.

'~V. P. Skripov and Vu. D. Kopalakov, Tr. Soveshch. po
Kriticheskin Yaveleniyam: Flyuktuatsii v Rastvorakh, Akad.
Nauk USSSR, Otd. Khim. Nauk, Moscow 1960, 126 (1960).

angle of the scattered light for a 1-cm' scattering
volume as predicted by Eq. (29) of Ref. 21. No attempt
has been made to correct for the angular dissymmetry
indicated by Eq. (29). Estimates of this effect based
on the available I'VI' data and Fixman's'4 expression
for If. ', the correlation length, indicate that the aniso-
tropy is less than 10 percent for the indicated isotherms.
These estimates are in agreement with the measure-
ments of Skripov and Kopalakov. 53

In Fig. 5, 0 (k, ~) de6ned by Eq. (27) is plotted as a,

function of frequency, co, for carbon dioxide at
T=32.1'C, p=230 amagat, and k=10' cm '. Near the
critical point, the central line of 0(k, a&) is dominant
because of the large value of the ratio of the specific
heats, y. As the scattering angle is decreased, the width
of the central line is strongly reduced since k is pro-
portional to sin |t/2, where 0 is the scattering angle.

In Fig. 6, o. (k, ~) is plotted for the same density and
wave vector but for T=75'C. While the spacing be-
tween the lines is not to scale, the lines themselves are.
The width of the Brillouin lines was computed under
the unverified assumption that the shear and bulk
viscosities are equal.

Fixman'4 has modified the basic equa, t.ions, Eqs. (6),
(7), and (8), slightly by including a term which de-
scribes the effects of the long-range density correlations
on the pressure If thi.s term were included in Eq. (7),
the term
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), ( 1+ks/z' )
c„poc,&1+k'/y I('j

1 H4I).+r)E

Po Po

and the absorption coefficient I' becomes

(35)

be taken outside of the integral so that

X(~ r—r'
~)
7"T(r') dr'=XV'T(r) (39)

These results have been obtained by Botch in his
published thesis. "

The term (32), introduced into the hydrodynamics
by Fixman'4 to account for the long range of the two-
body correlation function, can be discussed best in
terms of its Fourier transform. The term (32) implies
k dependence between the pressure and the density of
the form

p(k) = (Bp/r)p)rL'1+k'/pr']rp(k). (36)

A reasonable extension of Eq. (36) is to suggest that
Eq. (36) contains the first two terms of an expansion
of the transform of the nonlocal expression

rp(r|=fQ([r —r'[)rr(r') dr', (37)

X(( r—r'
~) Iv'"T(r') dr'. (3g)

The Fourier transform of Eq. (38) is —ks) (k) T(k).
When the range of )t(r) is much less tha, n k ' and when
'v(sT(r) is effectively constant over this range, Iv'T may

54 W. D. Botch, thesis, University of Oregon, 1963;W. D. Botch
and M. Fixman, J. Chem. Phys. 42, 199 (1965).

~5M. S. Giterman and V. M. Kontorovich, Zh. Eksperim. i
Teor. Fiz. 47r 2134 (1964) )English transl. :Soviet Phys. —JETP
20, 1433 (1963)g.

~6 M. S. Green, J. Chem. Phys. 22, 398 (1954).
"H. Mori, Progr. Theoret. Phys. (Kyoto) 28, 'M3 (1962).

where 6p and 5p are the deviations from equilibrium.
Some of the consequences of Eq. (37) for both light
scattering and sound propagation have been investi-
gated by Giterman and Kontorovich. 55 Because the
functional form of Q(r) is not known, their results are
formal.

Some of the transport coefficients also may be non-
local near the critical point. In the "derivation" of
hydrodynamics, the transport, coefficients appear as
integrals of current —current correlation functions. ""
The macroscopic coefficients are the k~0 and co—+0

limits of these integrals. In Mori's Markoffian, nonlocal
theory of Quctuations, the "transport coefficients" may
be k-dependent; i.e., the k~0 limit need not be taken. '~

Near the critical point, the current —current corre-
lation functions may have a range which is comparable
with the reciprocal of the change in the wave vector of
the scattered light. This is suggested by the long range
of the two-body correlation function.

If the thermal conductivity were a nonlocal quantity
which is spherically symmetric, the term APT(r) in
Eq. (6) would be replaced by

exp (sk. r) X(~ r—r'
~) PT(r') dr'= —ks)(T(k).

(4o)

Nonlocality has the e8ect of making the transport
coefficients k-dependent.

In principle, it should be possible to detect non-
locality, if it is present, by measuring the variation of
the line width as k changes. In practice, this would be
possible only if the k=0 values of the transport co-
efficients and the values of the thermodynamic functions
are known quite accurately. To illustrate this, we dis-
cuss the effect of a k-dependent thermal conductivity
on the width of the central line.

If the thermal conductivity is k-dependent, care must
be exercised in using the solution to the dispersion
equation which produces the unshifted line, Eq. (17) .
If )(.(r) is always nonnegative, there is no problem
because )(, (k) &X for all values of k and the approxi-
mation scheme we have used will converge rapidly.
However, if ) (r) (0 for some range of values of r, it is
possible that X(k) may be appreciably greater than X

for some values of k and the first-order solution, Eq.
(17), with X replaced by X(k), may not be adequate.
To this question there is no definite theoretical answer
at present. Should the experimental results indicate
that the first-order solution is not sufficient, there is no
problem in generating the higher order terms in the
diffusive solution.

There would be a problem in distinguishing non-
locality in the thermal conductivity from nonlocality in
the pressure. This, in principle, could be overcome by
first determining the pressure term from measurements
of the shift of the Brillouin lines.

Nonlocal effects do not change the basic shape of the
lines; their shapes are still Lorentzian, but their widths
no longer have such a simple dependence on k. The
problem of classifying lines would be even more compli-
cated if the transport coefficients were to depend on the
frequency. "It is not our purpose to discuss this possi-
bility. ' If more than three lines were observed, or if
the line shapes were not Lorentzian, then frequency-
dependent transport coefficients might be necessary to
account for such effects.

This discussion assumes that the range of any non-
local terms remains microscopic. If the range should
become infinite (macroscopic), then the phenomeno-
logical equations would not be capable of describing
the behavior of t.he stu'ill-scale density Ructi&ations.

"Robert Zwanzig, Phys. Rev. 124, 983 (1961).The origin of
frequency-dependent transport coeKcients is discusscds
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The resolution needed to measure the frequency
spectrum of the scattered light is much higher than the
resolution available with conventional optical tech-
niques. An optical resolving power a&/ha& 10' is needed
to resolve the central line. Light modulation systems
are in principle capable of providing the necessary
resolution, although the experimental difhculties are
increased due to the relatively wide spread in the
frequency of scattered light. "

Light-scattering experiments are particularly appeal-
ing near the critical point where experiments are no-
toriously difficult, because in a light-scattering experi-
ment no gradients are imposed on the system. This
makes it much easier to maintain thermal equilibrium
during the experiment. In fact, it is possible to de-
termine optically whether or not true equilibrium has
been achieved. " Density measurements can be made
precisely if optical methods are used. ' ~ ' (It may be
that only optical methods are suitable for accurate
density determinations near the critical point. )

Light-scattering experiments are also of value in
probing the very high frequency properties of materials.
In the next section, we compare the information ob-
tained by light-scattering and the information obtained
by sound-propagation and absorption measurements.

It is important to keep in mind that Hght-scaNerimg

experiments are only as good as the I'VT data used to

specify the thermodynamic state of the scattering system.
In this respect, light-scattering measurements are no
different from conventional determinations of transport
properties.

6. RELATIONSHIP OF LIGHT SCATTERING
TO SOUND PROPAGATION

When we solved the dispersion equation, Eq. (15),
for the "frequency" s as a function of the wave vector
k, we assumed that k was a real, positive quantity. The
result was a complex frequency. This is in keeping with
the representation of thermal sound waves (phonons)
damped in time, but not in space.

The propagation of driven sound waves involves
waves of a fixed frequency, s=2xiv, where v is a real
quantity. The dispersion equation is then solved for
the complex wave vector k. This corresponds to a
stationary wave train which is spatially damped. The
distinction between the two types of waves has been
recognized for may years. 4'6-'

The point of this discussion is that the dispersion in
the phase velocity measured by the light-scattering
experiment is predicted to be negative by Eq. (21).

'OE. M, N. Schmidt and K. Traube, Adeunces in Thermo-
pIzysicul Properties ut Extreme Temperutures und Pressures
(American Society of Mechanical Engineers, New York, 1962).

'OS. Y. Larsen and J. M. H. Levelt-Sengers, Progr. Therm.
Transp. Prop. 1965."S.Y. Larsen, R. D. Mountain, and R. Zwanzig, J. Chem.
Phys. 42, 2187 l1965l.

8~ R. B. Lindsay, Koninkl. Vl. Acad. Wetenschap. Letter.
Schone Kunst, Belg. , p. 86 (1951).

%e ignore the s=0 root as it has no physical meaning.
First, the light-scattering problem requires that k be

real. The solution of Eq. (41) is

s= ——,'bk'&iCskpi —b'k'/4Css j&.

The phase velocity is

(42)

stan= &CsL1—b'k'/4Cs'$&, (43)

which decreases as k increases; the dispersion is nega-
tive.

The sound problem requires that s= ice, where ~ is the
angular frequency (real) of the sound generator. The
dispersion equation is

k'(Cs'+ibo)) —a&'= 0

O'= LoP (Cs' —ib(u) 1/(Cs'+b'(u') . (44)

The phase velocity for the driven sound wave is

o,= (o/Rek

&VZCs(1+b'oP/Cs4) &

$1+(1+b'oP/Co') '*$&

This phase velocity is an increasing function of fre-
quency; the dispersion is positive. A discussion of why
the two-phase velocities are diferent may be found in
Sec. 10 of Ref. 43.

From this example, it is clear that the information
contained in light-scattering experiments is not to be
interpreted in the same way as the information obtained.
in sound. -propagation experiments. This does not seem
to have been appreciated widely.

Positive dispersion in the phase velocity of the ther-
mal wave has been observed in some liquids. ' This
means that for those liquids, the theory we have used
is not adequate to describe the density fIuctuations. A
reasonable modification might be the inclusion of angu-
lar correlations between the molecules which modify
the propagation of waves in the Quid. ' %'e do not
discuss this aspect of the problem further.

'~ C. Truesdell, J. Rational Mech. Anal. 2, 643 {1953).
64 W. A. Steele and R. Pecora, J. Chem. Phys. 42, 1872 (1965&

Ref. 18, pp. 294-302.

The phase velocity of driven sound waves can only
have positive dispersion when Eqs. (6), (7), and (8)
are valid. "The reason for this difference is that the
dispersion equation, Eq. (15), contains four unknowns,
the real and imaginary parts of the frequency and of
the wave vector. Two of these quanti. ties are specified
by the experiment and then the other two are obtained
in terms of the specified quantities.

This situation can be worked out exactly for the case
of zero thermal conductivity. ss Then a=0 and Eq. (15)
becomes

sos'+bk's+Cs'k'] =0.
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7. SUMMARY

A «neasurement of the spectrum of the light scattered
by density Ructuations contains four pieces of infor-
mation. The Brillouin doublet contains two of these,
The separation of the doublets is determined by the
speed of the thermal sound wave while the width of
these lines is proportional to I', the sound a,bsorption
coefficient. By measuring the speed and lifetime of the
phonons, it is possible to examine the high-frequency
properties of the Quid. A precise measurement of F
wouM be very useful in inferring the value of the bulk
viscosity, q~. Direct measurement of q~ has not been
possible, and sound absorption measurements, which
also measure I', are often difficult to make with suffi-

cient precision to determine a,ccurately the bulk vis-
cosity.

The width of the central line is proportional to the
thermal diffusivity, X/psc~. Interest in this quantity is
greatest near the critical point where conventional
measurements of the thermal conductivity are difficult. "

Finally, the ratio of the intensity of the central line
to that of the doublet lines is

Is/2' = (c~—c„)/c„.

The integrated intensity of each of the hnes ca,n be
used to determine y, the ratio of the specific heats. The
intensity of the central line, Io, increases rapidly as the
critical point is approached. The intensity of the dou-
blet, 2I~, remains more or less constant because their
total intensity is proportional to the isothermal com-
pressibility divided by c„, the specific heat at constant
pressure. This ratio is not varying rapidly in the critical
region. Of course, to utilize this information as e%-
ciently as possible, measurements shouM. be made for
several values of k (scattering angle) .

So far, we have examined only the. theoretical side. of
the problem. What is possible experimentally? As in
all scattering problems, what is possible depends on the
intensity of the scattered light and the resolving power
of the detector. To date, only the intensity of'the three
lines and the position of the Brillouin lines have been
measured in liquids. "'-

A resolving power on the order of 10' is needed to
measure the widths of the Brillouin lines. Resolving
powers as large as 3)(10 have been obtained, using
a spherical-mirror interferometer of the type invented

by Connes. ' ""It may be quite difficult to detect the
Brillouin lines in the critical region. These lines are
broa, d and, in comparison with the central line, very
weak.

The central line is much narrower than the doublets
and probably will require another type of detector.
Optical heterodyne detection techniques have been used
to obtain extremely large resolving powers. "It should
be possible for this technique to operate in the range of
frequencies appropriate to the width of the central line.
However, because this system requires a large amount
of scattered light in order to work, its usefulness may
be limited to the scattering in the critical region. Since
this is the region where the central line is most inter-
esting, this is not a serious limitation.

In conclusion, it is now possible to study the spectral
distribution of light scattered by density Quctuations.
Such experiments are of interest because they provide
a means of probing the dynamical behavior of a Quid

on a scale which is not a,vailable by other means. Also,
they are a way to measure transport properties of the
Quid without imposing some sort of gradient on the
system. This is particularly desirable nea, r the critical
point. The inference of the bulk viscosity from the
width of the Brillouin lines and the possibility of
studying nonlocal effects near the critical point are two
examples of what can be examined in this way.
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