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A study is made of the effect of temperature and environment on the absorption spectra of simple systems. In part I
the longitudinal and transverse susceptibilities of a two-level system are analyzed in terms of simple stochastic models.
I articular attention is paid to the different roles played by the phase-interruption and frequency-modulation mechanisms.
A calculation is given of the susceptibility of a harmonic oscillator perturbed by interaction with other oscillators. In
part II the same systems are studied using Green's function methods. It is assumed that the two-level system is coupled to
a crystal lattice by an isotropic interaction that is linear in the lattice displacement. Expressions are obtained for the
longitudinal and transverse susceptibilities and comparison is made with the results of part I. The susceptibility of the
harmonic oscillator is calculated and found to be identical to the susceptibility obtained by more elementary methods.

INTRODUCTION

B(co, T) =B, ,(lV, iV„)p((o), —

where p(&e) is the radiation energy density. If the
atoms are in thermal equilibrium at a temperature T,
then X„/X,= exp (—5&o/k T) and the absorption coeffi-
cient B(to, T) is connected with A(&o, T) by the
relation'

A(to T) = P(oo)B(to T)/Pexp (Sco/kT) —1], (0.1)

with'

(0.2)P (oo) = 25co'/src'

Although there are innumerable papers on the subject
of line shape, there has been very little written on one
particular aspect of this subject, viz. , how the temper-
ature affects the line contour in case the Boltzmann
factor cannot be trea, ted as constant over the profile.
With the increa, sing amount of spectroscopic work at
exceedingly low temperatures, this a,spect is no longer
academic, and so an article on the subject seems in
order. Many of our results are not new, but the existing
presentations are ra, ther fragmentary a,nd sometimes
not entirely correct. Also, quite irrespective of the role
of Boltzmann factors, we discuss and contrast how one
calculates line shapes for rapid interactions both with-
out (part I) and with (part II) the use of Green's
functions.

If LV„and E, denote the number of atoms in the
upper state and lower states, respectively (both sup-
posed nondegenerate), then the rate oi spontaneous
radiation is A (eo, T) = iV„A„, and that of absorption is

since then absorption and emission balance when p(co)
has the Planck form. In Einstein's classic derivation of
(0.1), and for most practical purposes, the distinction
between the impressed frequency &o (measured in angu-
lar units) and the atomic resonance frequency coo is
disregarded. In other words, A(&o, T) and B(co, T) are
considered to be delta functions of (co—coo). The present
article, however, is concerned with situations where
this procedure is not allowable In problems of line
structure, wha, t is sometimes done is to calculate a
shape f(&o) that is independent of temperature, and
assume that the net absorption is proportional to

f(&o) 1V,L1—exp (5coe/k T)] and the emission to
f(oe)N, exp ( —Rcoe/kT). Then a relation of the type
(0.1) is not satisfied, since a factor t exp (As&o/k T) —1j '
occurs in place of Lexp (Sco/k T) —1j ' which is required
in order for there to be equilibrium between absorption
and emission over the entire line profile when p(&o) has
the Planck form. The anomaly has arisen because when
the line sha, pe is not ideally monochromatic, the atomic
levels are "fuzzed out, " be it by interaction with other
molecules through collision, phonon coupling, or even
coupling to the radiation 6eld itself. Consequently
A(co, T) and B(to, T) are not simply decomposable
into thermal and line-shape factors, or in other words,
~ and T are scrambled together so that the problem
ceases to be an elementary one. In principle it should
be possible to treat the entire system, i.e., the given
atom plus other molecules, phonons, etc., as one big

glorified atom, and then each line should be mono-
chromatic, since all disturbances have been incorpo-
rated in the "inner" system. Actually, however, the

are caused by interactions of our atomic system with radiation,
magnons, or phonons, since any of these can be described by the

Alfred P. Sloan I'ellow. oscillator model. With longitudinal isotropic phonons, for example,
A. Einstein, Phys. Z. 18, 121 (1917). P(co) has half the value given in (0.2) (with c now an acoustic
The absorption coe%cient B(co) as we use it is defined as the velocity) as there are not two directions of polarization. The

quotient of rate of absorption of energy to field energy, both corn- fact that electromagnetic fields carry equal amounts of electric
puted per unit volume. The value of P(co) given in (0.2) is on and magnetic energies is the counterpart of the fact that the
the assumption of an isotropic radiation field. The appropriate kinetic and potential energies are equal for a harmonic oscillator.
value of P(eo) for other cases can be deduced from purely geo- Oftentimes one has situations where there is only an alternating
metrical considerationsaslong as the field canbe described by har- magnetic field without an appreciable electric one or vice versa,
monic oscillators, as then generally P(co) =27fAcoE„, where I:„V rather than both equal as in the radiation "wave zone. "Then the
is the density of these oscillator states in co space. This general harmonic-oscillator model is inapplicable, and the factor P(~)
formula for 1'(co) applies regardless of whet;her the transitions has double the value (0.2) since the energy density is halved.

j.87
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PART I. ELEMENTARY METHODS

1. Relation between the Complex Susceptibility, the
Correlation Function, and Absorption

In calculating line shapes or absorption, it is con-
venient and customary to introduce a complex, fre-
quency-dependent atomic susceptibility tensor, defined

by

(Pp)=xs F exp (icct) (cr, P =x, y, s) 1 (I.1)

where the real part (Re) of F exp (i&et) is the im-

pressed rf field, andthereal partsof P, P„, I', are the
components of moment, electrical or magnetic, as ap-

3 For references on the statistical model, as well as to the litera-
ture of line breadths generally, see the review article by R. G.
Hreene, Jr., Rev. Mod. Phys. 29, 94 (1957).

internal dynamics are so complicated that this pro-
cedure is usually not feasible.

Fortunately, other methods are available in particu-
lar the Green's function technique which has come into
vogue in recent years. It is possible to give satisfactory
answers to the problem for special cases, viz. , the two-
level system (especially the spin system 5= —,') and the
harmonic oscillator, to the extent that essentially the
Lorentzian or stochastic model is used. In the extreme
wings of the line this model fails completely, yielding
even an infinite second moment, i.e., an infinite mean
square of the deviation of the frequency from its average
value. In this region one should instead use the so-
called statistical model, in which the perturbations are
regarded as static, and one averages over all possible
distributions weighted with the proper probability of
occurrence. ' This procedure is equivalent to treating
collisions as infinitely slow, rather than infinitely short
as in the stochastic model. Since the statistical model is
essentially static in character, the role of temperature
poses no additional problem, as each static configuration
is weighted according to its appropriate Boltzmann
factor.

Although Green's functions furnish the most refined
approach. they do not provide the most intuitive one,
and so in the first part of the paper (Secs. I.1—I.6) we
derive most of the results in a less rigorous fashion
based essentially on rudimentary examination of the
correlation function for the two level system, and of
the work done in the case of the harmonic oscillator.
In the second part (Secs. II.1—II.S) we use the Green's
function formalism. In part I the accent is on the
stochastic model, equivalent to taking the Fourier com-
ponents of the broadening mechanism as independent
of frequency. In part II this specialization is not made,
and instead the calculation is pointed particularly to-
wards spin —lattice coupling, where the phonon spectrum
is not Rat.

propriate to the problem. The symbol ( ) denotes the
statistical average over the ensemble of atoms. If we
write 7t=y' —ix", then if there are X atoms/cc, the
absorption coeKcient per unit volume is

B(o)) =4scc7t"(cc)X (I.2)

since this expression is' the time average of the product
(Re P ) ~ )Re F exp (sr'))1V divided by the energy
density

~

F ls/Ss. .
The starting point of practically all modern calcu-

lations of line shape is a formula, apparently first given
by Kubo, ' relating the imaginary part of the diagonal
components of the susceptibility tensor to the trans-
form of the correlation function. This formula is

cos (o&t) (P (0)P (f)+P (t)P (0) ) dt. (I.3)

Here and elsewhere, ( ) denotes the thermodynamic
average or expectation value, i.e.,

P (t) =exp (iXt/5)P (0) exp (—BCt/fi). (I.S)

The Boltzmann factors entering in (I.4) are to be
evaluated at t=0. It is not necessary to include the
impressed 6eld F exp(icct) to evaluate the correlation
function (I.4) involved in (I.3). Consequently, the
Hainiltonian X entering in (I.5) is to be taken as
exclusive of this field, but inclusive of the atomic sys-
tem s interaction with the collision agency (e.g. , pho-
nons or colliding gas molecules) responsible for the
line broadening, and also this agency's self-energy, so
that X is a constant of the motion when Ii =0. If
this self energy is omitted, then time-dependent per-
turbation theory must be used, and Xt replaced by

4 In (I.2) we have assumed the radiation case, where the electric
and magnetic energy densities are equal. If the incident field is
purely electrical or magnetic, the factor in the right-hand side of
(I.2) is 8 instead of 4. Cf. end of footnote 2.

R. Kubo, Lectures irl, Theoretica/ Physics, edited by W. E.
Britten and L. G. Dunham (Interscience Publishers, Inc. , New
York, 1959), Vol. I, p. 151. The relation (I.3) is also implicitly
contained in an earlier paper by R. Kudo and K. Tomita, Proc.
Phys. Soc. Japan 9, 888 (1954). For a good discussion of the
Heisenberg representation used in connection with (I.3) see
Chap. VIII, especially sections 10, 14, 19 of A. Messiah's QNun-
tuni 3fechowscs (English transl. ) (North-Holland Publishing Co.,
Amsterdam, 1961).

Tr PP (0)P (1) exp (—X/kT)1P„O P
Tr exp (—K/kT)

(I.4)

The .Heisenberg representation is to be understood
throughout, so that
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JXdt in (I.5), making the exponentials become time-
development operators.

The derivation of (I.3), which is now fairly standard
and best achieved by use of the density matrix, is
given in Appendix A.

2. Longitudinal Susceptibility of a Two-Level System

We will now restrict our calculations to a, two-level
system. Without any essential loss of generality we

may suppose this to be a spin system S=—,'. We then
have I' = —gPS, where P is the Bohr magneton, and in
order to allow the spin to be real or fictitious, we do
not specialize the g factor to the value 2. Ke assume
that there is a large constant magnetic field along the
s axis. Ke examine separately the longitudinal and the
transverse susceptibilities as they must be handled in
somewhat different fashions. With obvious, appropriate
changes in notation, our calculations apply to any
two-level svstem if we understand by /ongitNCheul and
traeseerse the absorption stemming from the part of the
moment, respectively, dia, gonal and nondia, gonal in the
index specifying the two energy levels.

Ke first consider the longitudinal case a=a, i.e., the
aperiodic absorption studied so extensively by Gorter
and his school at Leiden.

At t=O the eigenvalues of 5, are +-', , with proba-
bilities

p =-', +-', tanh (oooo/2kT), p+=1—p-, (Sooo=gpHo)

+ p+ (I.7)

LThe factor 2 occurs in (I.7) because half of the
collision's end life in a given state. $ One cannot dis-
regard correlations after a switch, as the product of
the two eigenvalues of S, before and after a switch is
—4. However, one can avoid the necessity of following
through the correlations by imagining partially dummy
collisions to take place such that in the + state a,

fraction p+ remain in the +, and a fraction p change
over into the —state. Similarly in the —state a
fraction p of the imaginary collisions do nothing and
a fraction p+ are real. The frequency of occurrence
1/ri of such artificially defined collisions is the same in
either state since

+ + + +

= (2' p+) ' (I g-)

by (I.6) and (I.7). After such an artificially defined
collision the mean value of 5,—(5,) is zero regardless
of whether one is starting from +-,' or —-', . Thus one
has a simple decay of S,—(5, ) to zero with time
constant 7~. We can write

and the thermodynamic mea, 'n of the two eigenvalues is

(5, )=-,'(p~ —p ) = —-', tanh (5coo/2kT).

We now assume that tl'e transition between the two
eigenvalues of S, occurs by a purely random, stochastic
process. If r is the mean free time between switches
between the two eigenvalues, the mean lives 7, 7+ in
the states 5,= ——,', +-,' are, respectively,

4 (S,(0) 5,(t) ) cos~t dt= p+(1 o.)(2 —+5(t) —o) cosset dt+ p ( —1—o)L25 (t) o] cos&vtdt—

+ o' cos orat dt, (I.9)

where 0=2(5, )=P+—P and S+(t), S (t) are the values of 5,(t) emanating, respectively, from S,=oi and
S,= ——,

' at t=0. In virtue of what has been said above, the first two integrals on the right-hand side of (I.9) in-
volve a simple exponential decay with the same constant, and so the right-hand side of (I.7) is

GO 2jg
exp ( —( t ~/oi) cos &8 dt+8' cos Mt dt=L1 —o'] +2o'or ' 8(o~) (I 10)

—OO 1+riooio

Because of the factor tanh (Scu/2kT) in (I.3) we can
safely drop the term involving the Dirac delta function
8(co) (really a limiting operator) with singularity at
co=0. Since our calculation is a semiclassical one, we
do not need' to distinguish between S,(0)5,(t) and

' In adapting semiclassically quantum-mechanical formulas in-
volving the correlation function one must select a form which is
symmetric in P (0} and P (t). If one were naively to use the
alternative form, for instance, which involves the antisymmetric
combination one would get zero. The proper transcription of the
antisymmetric form would involve a complicated consideration
of Poisson brackets.

5,(t) S,(0), and so we can identify the integral in (I.3)
with oig'P'/5 times the expression (I.10). Thus (I.3)
becomes

where oooo gPHo. ——
This equation is to be compared with the equation

for the nonresonant susceptibility obtained by Casimir
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4kr (2k r)
A more or less equivalent procedure was used by Van
Vleck and Orbach to obtain the sech' factor, though in
connection with a somewhat difIerent problem, viz. ,
the eGect of anisotropy in the aperiodic susceptibility
of rare earth impurities on the ferrimagnetic resonance
of iron garnets.

3. EBect of Phase Interruptions on the Resonant
Absorption of a Two-Level System

Ke now' proceed to treat the case that the rf field is
perpendicular to the dc field that splits the energy
levels. This is the case involved in the usual experi-
ments in magnetic resonance of a system S=-,'. Also
the analysis applies more generally to any two-level
system, or system with two singled-out "effective
levels" if the broadening due to interaction with other
levels is not important, and if by tV in (I.2) we under-
stand the sum total of atoms in the two particular
levels under consideration.

We note first of all that in the transverse case the
matrix elements of, say, S, for the transition —,'~——,

'
are of the form

(-
I
~

I

—-) = A*~A'—id, (I.13)

' H. B. G. Casimir and F. K. dn Pre, Physics 5, 507 (1938).'J. H. Van Vlcc% and R. Orbach, Phys. Rev. Letters 11,
65, 303 (E) (1963).

and du Pre, 7 viz. ,

x,"( ) =-,'(g'p'/kT) I, /L1+( )')}. (I.12)

Equation (I.12) differs from (I.11) in two respects.
The first of these is the factor of —,'pi/k T as compared to

tanh (5&v/2kT). This difference is indicative of the
fact that the Casimir —du Pre analysis is valid only in
the quantum-mechanical adiabatic limit co=0. It is
usually of little importance in conventional experiments.

Of greater significance is the factor sechs (ticdp/2kT).
Its existence apparently was explicitly pointed out for
the 6rst time by Van Vleck and Orbach. It is inti-
mately connected with the fact that in the limit of zero
temperature, the population of the spin system remains
entirely in the ground state, and so is unaffected by
the alternating field. As a consequence, x,"(co) becomes
exponentially small as T~O. The same factor could
have been obtained from a thermodynamic analysis if
the Curie susceptibility g'P'/4kT is replaced by the
static susceptibility evaluated in a finite field:

d gpH
M(H) =-', gp tanh

dII II=II, dH 2k T

v here the wave function is inclusive of spin. The wave
function P has a pha, se factor e in the sense that
P= } it } exp ( sE—t/fi) exp (—ie). There is no question
of persistence of phase at collision, as the new phases are
random. The situation is different from the longitudinal
or diagonal case, where the same phase enters fore,
and, with reversed sign, aft in the formula for the
matrix element, so that the phase cancels out in the
expression for the matrix element. Consequently in
treating longitudinal absorption, correlation could not
be ignored when one switches from one eigenvalue to
another, and only by introducing the artifice of fake
collisions were we able to disregard correlations.

If there were no interruptions caused by collisions,
the product of spin operators involved in the integrand
of (I.3) for the transverse case would be simply

)P,(0) P,(t)+P, (t) P,(0)j=-,g'P' cos ppot (I.14)

regardless of the initial conditions, inasmuch as

(s I ~'(t) I

—p) =(—s}&.(t)l s)*=sgp exp ts(~ot+p) 3

The value of p&p is gPHp/fi for the particular case that
the decomposition is due to an applied magnetic field.

Since in the transverse case there is no "hang-over
effect" and the coherence is lost whenever there is an
interruption of either the initial or final state, at erst
sight, it appears that allowance can be made for the
gradual loss of correlation by multiplying (I.14) by
exp (—}

t }/rs') with 1/rs' (1/r )+(1/r+)——, where r,
r+ are the mean lifetimes in the initial and 6nal states
associated with (I.13). However, a little reflection will
convince one that the proper value of the constant in
the exponent is instead

The appropriateness of the additional factor —,
' involved

in (I.15) can be seen in a variety of ways. In the first
place, in classical theory the appropriate decay factor
associated with a mean life r is exp (—t/r), and con-
siderations of symmetry require that in quantum me-
chanics 1/r be apportioned symmetrically between the
initial and Anal states. Alternatively or essentially
equivalently, one can say that in quantum mechanics,
the life time of a state is determined by the rate of
decay of the squared modulus of its probability ampli-
tude (i.e., } c; }s in an expansion of the form g,c,it,),
whereas a matrix element is represented by c;c;*, and
c;, of course, decays half as fast as } c; }s. All this is
rather heuristic, but for more rigorous confirmation of
the factor —,', appeal can be made to the results of
Wigner and Weisskopf, ' or to our calculation by means
of Green's functions in part II. In virtue of (I.7) and

P V. Weisskopf and E. Wigner, Z. Physik 63, 54 (1930); 65,
18 (1930).
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(I.8), Eq. (I.15) reduces to

(I.16)

When we multiply (I.14) by the exponential factor to
allow for the loss of correlation and substitute in (I.3)
we obtain for the transverse absorptive susceptibility
the expression

x.. ( ) =-',g'p'f cos (,I) cos ( r) exp (—~

t ~/r, ') d!

Xfi ' tanh (A(u/2kT). (I.17)

Evaluation of the integral in (I.17) gives

fscv

x,."(or) =-,'g'P'lt ta.nh
2kT

(or —ore) +(1/rs) (or+ore) +(1/rs)
if we take 7-2=r2'. Ke use different notations 7-2, ~2'

because it will later turn out that (I.16) is not really
the correct value of the transverse damping constant
1/rs which should be used in (I.18) . H„,= +At. , exp (sorr, t) (I.20)

of 5„5„in the perturbing mechanism, and the fre-
quency modulations by that of S,. The reason is that
for a system of spin —'„ the most general Hamiltonian
is a linear function of S, S„, S,. The terms in S, S„
in the collision Hamiltonian are nondiagonal in the
magnetic quantum number, and so induce collisions,
with attendant phase interruptions, whereas the terms
in S, represent, so to speak, a noise field and merely
alter the precession in a wobbly fashion. The term
noise field is a catch-all for any kind of disturbance
which adds to the Hamiltonian function a term linear
in S„and may represent interactions with magnons,
phonons, forces present at collision in gases, or even
coupling to radiation. Our analysis is general, since we
simply incorporate any of these effects in a time-
dependent per turbation theory.

Because of the noise field, the time-dependent phase
factor associated with, say, 5,+i,5„is exp plorpt, +i&(t) )
instead of exp (sorot) . The excursion in phase P(l) caused
by the wobbles in the precession rate can be either
positive or negative. Ke suppose that the longitudinal
noise field is the sum

4. EBect of Frequency Modulation on the Resonant
Absorption of a Two-Level System

If we identify the damping constant 1/r& in (I.18)
with the expression 1/rs given in (I.16) the line-
breadth constant 1/rs for transverse resonance is half
as large as that 1/rr entering in the longitudinal case
LEq. (I.11)j. It is clear that something is wrong or
incomplete, since it is well known that under certain
circumstances the transverse relaxation time r2 is equal
to the longitudinal one ry. In fact, if the collision
mechanism is an isotropic one, then in the limit coo~0
there is no possible way of distinguishing between the
transverse and longitudinal situations, and this, of
course, demands equal relaxation times or line-breadth
constants for the two cases.

The difficulty is due to the fact that there are two
mechanisms responsible for broadenjng in the transverse
case, viz. , phase interruption and frequency modulation,
and we have considered only the first of these. The
existence of the two mechanisms was recognized in the
early work of Bloembergen, Purcell, and Pound, ' and
to distinguish between the two of them, they intro-
duced the notation 1/r&' and 1/rs", which we follow,
for the two corresponding line-breadth constants, with
a combined total

1/rs= (1/rx') + (1/rs") .

The phase interruptions are caused by the involvement

"' N. Hloembergen, E. M. Purcell, and 1&. V. Pound, Phys. Rev.
73, 679 C,

'1948).

of Fourier components without correlation except for
the reality condition A I„-*=31,. Note that since the
phase factor et. in Ar, =

~
Ar,

~
exp (ier) is random we

have

(Ar, gAr, .g )A„——
~

Ar„ i'br,
—". (I.21)

Because the noise field is random, the addition of the
various Fourier components is a random-walk affair,
and, in accordance with rudimentary statistical theory,
the excursion in phase after a su%ciently long time 3

has a Gaussian disturbation"

I'(rlr) = (1/2rr) 1 exp ( —qP/2D)

with the mean-square excursion 5 a linear function of
time. To compute 6 we note that

so that

6=g ti% s{g/exp (iorr, t) —1jAs,/ioraI'A„(I. 22).
If we use (I.21) and replace the sum by an integral
(I.22) becomes

CO 1—cos roti6=2g'P%-' p„|Ag(or)j',
~

dor,
—GO M ]

"The present treatment of. the broadening due to frequency
modulation as a random-walk process parallels closely that
previously given by J. H. Van Vleck in a review article on nuclear
relaxation times in Ned. T. Natuurk. 2'r, 1 (1961).This previous
treatment, however, was primarily for high temperatures,
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a=2~g'P'15 'p, -I A. (0) I'. (I.23)

The extra factor in the integrand of the correlation
function because of the frequency modulation effect is
thus

where p„ is the density of k values in ~ space and we
now use the notation A, (ai) rather than As, . For large
t, all the contribution to the integral comes from the
vicinity of the origin, so that A, (Iu) may be replaced
by A, (0) and tal~en outside the integration sign, giving

x-Fourier component in (I.26) as applied to the spin
state —

~ corresponds in quantum mechanics to a factor
of 1"e fmm &I(j I

A
I
j') I'»'&~ where» is the popu-

lation factor for the perturbing agency: phonons, mag-
nons, or what-have-you, before it is changed by inter-
action with the spin system. The corresponding square
for the state —,

' is (I(j'I A*I j)I'» &A, . The state j
exceeds j' in energy by an amount 5coo in order to ensure
conservation and a thermal average is to be understood
over the various states of the perturbing agency. The
Hermitian property and detailed balancing require that

( exp (ip) exp (—g'/2~) dp = exp (—I
1 I/Ts"),

27K QQ
C j I

A- I
j') =

C
j'

I
A.

I j) *, »'/»r= P /P+-

where

1/T, "=7'-'g'P'po
I A, (0) I'

(I.24)

(I.25)

where p, p~ are the thermal or probability factors
defined in (I.5) . Hence, using (I.15), we see that (I.27)
is replaced by

When now the extra factor (I.24) is inserted in the
integrand of (I.17) the absorptive susceptibility is still
given by (I.18), but now Ts is given by (I.19).

Ke must now examine the conditions under which
T2 =Ts so as to 111ake (1/T2 ) + (1/Ts ) = 1/Ti

I
of (I.16)), i.e., the longitudinal and transverse relax-

ation times equal to each other.
Let us first consider the case of high temperatures,

so that the mean lives ~+, r in the upper and lower
states are equal. Then by (I.15) the part 1/Ts' of the
transverse relaxation rate is the mean decay rate out of
either state. By the "golden rule, "if the perturbation is

gPQLAs, S.+As„S„jexp (iaIt), (I.26)

this rate is

1 1/1 1 t

21T T+j

=2~& YP'(A) LI A*(~e) I'+
I A.(«) I'jp-0 (I 27)

For an isotropic milieu, the averages for the x, y, and s
components will all be the same. Also if, in ad.dition,
the broadening and frequency modulation are ideally
stochastic, in other words if the spectrum of the dis-
turbance is independent of frequency, corresponding to
infinitely rapid collision times, then

I
A. (o) I'po=

I
A*(~o) I'p-. = I A. (~o) I'p-o, (I 28)

and one does indeed have r~'=7-2" and ~&=a~, so that
the longitudinal and transverse relaxation times are
equal. Of course, the Fourier spectrum cannot extend
to infinity, as supposed in the ideally stochastic model,
but the cuto6 may be well above coo, in which case no
harm is done in assuming that it extends to infinity.

To extend the proof to the case that coo is not small
compared to kT/5, i.e., that T Hr~ in (I.15) requires
some more quantum theory, The square modulus of an

Ag'&'~ '~II l(jl A*Ij') I'+l(jl A. l
j') I'l(»+»)I p. o.

Similarly Eq. (I.25) transcribes quantum mechanically
into

1/Ts"= s«YP'l
l (j I A*

I
j') I'(i1'~'+»') I A po

where the energy diRerence between the states j and j'
is negligible. The isotropic and stochastic assumption
means that I I(j I

A, I j ) I'(»+».) }A„ is independent
of q or of the energy difference between the states j and
j', also that p{) p p giving us again Tj=T2. This proof
can be criticized on grounds of rigor, and skeptics can
refer to the treatment by means of Green's functions
in part II. It is doubtful, anyway, if the stochastic
model has much meaning except when 5~0(&kT and
then we do not need to worry about the distinction
between r and r+.

5. Discussion of the Final Formula for the Transverse
Absorptive Susceytibility

The final bracketed factor in (I.18), our expression
for the transverse absorptive susceptibility, yields the
same line shape as that given by Kronig, "Van Vleck.
and Keisskopf" Frohlich" Karplus and Schwinger, "
Garstens, "and others. It can be derived in a variety of
ways, among them transitions between smeared out
initial and final energy levels, '2 or Fourier analysis of
spontaneous emission with absorption obtained. from
detailed balancing. '~ If the absorption is calculated
directly"" from the equations of motion without use

'~ R. de L. Kronig, Physica 5, 65 (1938).» J. H. Van Vleck and V. F. Weisskopf, Rev. Mod. Phys. Q',
227 (tg4S).

"H. Frohlich, Nature 15'7, 478 (1946).
I1'R. Karplus and J. Schwinger, Phys. Rev. 73, 1020 (ig48).
Ie M A. Qarstens, Phys. Rev. 93, 1228 (1954)."J.H, Van Vleck and H. Margenau, Phys. Rev. 76, 1211

(1949).



D. L. HUBER AND J. H. VAN VLEcK Bolt@mann Factors in Line Shape 193

ot correlation functions, it is necessary to tak. e into
account the fact that after collisions the assumed spatial
distribution conforms to the Boltzmann law appropriate
to the instantaneous value of the rf held, rather than
being random. " Otherwise an expression is obtained
which is correct only near resonance —in fact the anti-
resonant term —that in pi+ado even has the wrong sign.
In I.orentz's" original work he was interested only in
the behavior near resonance, and so his assumption of
randomness was warranted.

Our primary interest, however, is the way that the
temperature enters. If one refers to the papers by Van
Vleck, ' Karplus and Schwinger, "etc. , it is found that
they used a factor

(tp/oop) tanh (Soop/2k T)

in place of tanh (Sop/2k T) in (I.18) . If one has both

(Sop/k T)(&1, (koop/k T)&(1 (I.29)

then there is no distinction between the two expressions.
This is also true near resonance, where

opo I/kT«1 I
oi ~o I/op&&1 (I 30)

even though SM may not be negligible compared with
kT. Fortunately, in most cases one of the conditions
(I.29) or (I.30) is satisfied, e.g., (I.30) is well-tuned
resonance experiments and (I.29) in the propagation

"It is an advantage of the Kubo approach based on correlation
functions that it gives the spectral shape without the necessity of
investigating how the rf Geld affects the distribution after collision
as it is a little 'hard to see what is implied in the assumption that
the collisions readjust themselves to conform to the instantaneous
value of a rapidly oscillating field. It should, however, be men-
tioned that if it assumed that such adjustment takes place,
it is possible to show that for the stochastic model one has ~I =v 2

without the need of isolating the two kinds of contribution to r2.
This was done by one of the present authors (V.V.) in J. Appl.
Phys. 35, 882 (1964), footnote 13. He assumed following Van
Vleck and Weisskopf, or Karplus and Schwinger, that each
collision restores the distribution to that appropriate to the
instantaneous value of the total Geld. If r' be the interval between
such collisions, then the work of Karplus and Schwinger (Ref. 15)
shows that rg is the same as the transverse damping constant r'.
Elementary considerations such as given in our Sec. I.2, and not
elaborated in the original article of Van Vleck, sho&v that the
v~ is the same as r . It is at Grst sight rather surprising that with
this appioach one obtains the full value of 1/rs without ostensibly
invoking the frequency modulation effect. The explanation is a
rather subtle one. Adjustment to the proper orientation relative
to the applied transverse Geld can be obtained by rephasing
without changing the eigenvalues of s,. Thus what looks like a
"do-nothing" collision as far as s, is concerned is a real one as
regards s, s„and such rephasing is another way of looking at
the FM effect.

'9H. A. Lorentz, Proc. Amst. Akad. Sci. 8, 591 (1906), or
The Theory of electrons (Teubner, Leipzig, 1909, or Dover
Publications, New York, 1952, note 57).

~ J. H. Van Vleck, Phys. Rev. Vl, 413 (1947); an attempt by
the same author )Conference on the Broadening of Spectral
Lines, Pittsburgh, {1955)j to improve on the thermal factor
he originally used is not satisfactory.

of radar or far-infrared waves, or in conventional studies
of nuclear magnetization. However, with the modern
techniques of very low temperatures achieved by adia-
batic demagnetization, one can thirik of situations where
the distinction is important. Also, from the sheer logic
of the situation, it is desirable to know which form is
correct, and there is no doubt that the proper factor is
tanh (titp/2k T) . This conclusion is not a new one, since
the correct factor has long been used in the Ouctuation
dissipation theorem, as adapted from Nyquist to the
quantum-mechanical case by Callen and Kelton" in
connection with the study of the Johnson noise in
circuits. This theorem is frequently used by workers
on many-body problems.

It should be emphasized that the relation ~i= 7-2 holds
only under the particular condition that the pertur-
bations responsible for the broadening are isotropic and
the noise spectrum is independent of frequency. If one
uses for a solid instead of the stochastic model a more
realistic mechanism in which the perturbations are due
to interaction with either phonons or magnons, then
the spectral density pp at zero frequency is zero (i.e.,
p ops for the well-known Debye law). In such cases
we expect that 1/rs" ——0 and 1/r& ———', (1/ri), as already
emphasized by McCumber. "The other extreme is where
the noise spectrum is so narrow that it is largely cut o8
for the 1/ri and 1/rs' effects, which depend on pertur-
bations being able to bridge the gap between S,= ——,

'-

and S,=-,'. Then the broadening is caused almost en-
tirely by the FM effect, and. we expect 1/rs ))1/Ti.
Under such circumstances the line shape must be calcu-
lated by the statistical rather than stochastic model,
The classic experiments of Bloembergen, Purcell, and
Pound' on nuclear resonance in liquid mixtures reveal
vividly how 1/rs begins to deviate from and exceed 1/ri
as the viscosity is increased and the perturbations by
collisions become slower and more nearly static.

Finally it should be noted that as long as the sur-
roundings are isotropic even if the noise spectrum is
not Qat, the formulas for the transverse and longitudinal
susceptibilities should become identical when the static
applied 6eld is made to approach zero and the resonance
frequency ~0 hence is small compared to the impressed
frequency co. This is an obvious consequence of sym-
metry, for in the limit cop=0 thele call be no distinction
between the longitudinal and transverse situations. This
requirement is fulfilled by our formulas, for in the limit
co~0 there can be no distinction between ~i and v~

inasmuch as A, (oi)—+A, (0) if there is isotropy, and if
vi=v-2, ~p=0, the longitudinal and transverse expres-
sions (I.11) and (I.18) both reduce to a common
expression

x"=rg'P'5 ' tanh (Soi/2kT) fbi/(1+vi oi') j (I.31)

"H. B. Callen and T. A. Weiton, Phys. Rev. 83, 34 (1951)."D. E. Mccumber, Phys. Rev. 133, A163 (1964).
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0. Line Shape for a Perturbed Harmonic OsciIIator

We now turn to a completely different problem- —a
harmonic oscillator X perturbed by interactions with
other systems x&, x2, ~ ~ ~ . Ke assume that these other
systems are themselves harmonic oscillators, and that
the interaction is linear in the coordinates which it
couples. These conditions are met if, for example, the
perturbing systems are phonons, magnons, or even
photons. We assume that the applied 6eld E acts only
on x, so that the Hamiltonian function is

3c@= mf(—px/sr)'+«x 7++ Prf(—pk/rir) +orr» 7

the true upwards absorption 8+(or, T) and the stimu-
lated emission 8 (or, T), which are connected with
8(or) by the relations

exp (Sor/k T)
8+ orr T 8(or,

exp (Sor/k T) —1

8 (or, T)= 8(or)

exp (Sor/k T) —1

Only the difference 8+—S is independent of temper-
ature. It is particularly to be noted that the thermal
factor for the spontaneous emission is

+Xgcr,» eXEO —cos ort. (I.32) and not
Lexp (Sor/k T) —17

—'

t exp (5«/kT) —17
—'.

We attach a subscript E to K in order to emphasize
that the Hamiltonian (I.32) is inclusive of the inter-
action —

@XYLO cos cot with the impressed rf field, and
in order to distinguish it clearly from the Hamiltonian
exclusive thereof which we throughout denote by $C

and which we use generally in evaluating the correla-
tion function Pcf. e.g. , Eqs. (I.3)-(I.S) 7.

We suppose we are dealing with a one-dimensional
problem, but the extension to the isotropic three-dimen-
sional problem occasions no difficulty. For concreteness
we assume that we are dealing with a harmonically
bound electric charge e of mass m. Without resorting
to any mathematical analysis, one can imniediately
conclude how the temperature enters in absorption and
emission. If we take EO=O, the dynamical problem is
simply that of a system of coupled harmonic oscillators
whose Hamiltonian is a quadratic form. In either classi-
cal or quantum mechanics, it is possible to introduce
normal coordinates $r such that the Hamiltonian is
reduced to a sum of squares ', p, (ur—pr2+p,$p). The
extra term from the perturbing field acquires the form

g,y,$;Eo cos or/ In other wo. rds a fraction of the per-
turbing field acts on each of the new, uncoupled ha, r-
monic oscillators that correspond to the normal co-
ordinates. The absorption by a ha, rmonic oscillator in
thermal equilibrium is independent of tempera, ture in
both classical and quantum mechanics. Its emission is
proportional to 1//exp (Aor/k T) —17 in quantum theory
and to kT classically. The absorption coefficient 8(or)
for our system is thus independent of temperature and
the corresponding coefficient associated with spontane-
ous radiation is

pp (sy+ork~s%%d) + AX= 0

for the coordinate xt, gives immediately

xp= Lcy/pp(or —orI )7x (I.34)

Consequently the low frequency tail of the line can be
emitted when Ace/kT 1 even though 5«/kT«1 pro-
vided only that F(or)8(or) is not negligible. If the
oscillator X was uncoupled to other oscillators, the
absorption coefficient would be a line-strength factor
times a delta function located at co=coo. Because of the
interaction terms Xgr, c~xq the myriads of other oscil-
lators x~, x2, ~ ~ ~ steal a fraction of the line strength
otherwise associated purely with X, and it is this
stealing effect which is responsible for the line shape.
We allow the ensemble of perturbing oscillators to
become more and more closely spaced, and in the limit
the absorption becomes a continuum rather a discrete
set of closely spaced delta functions. The original oscil-
lator I has then lost its identity and contributed all its
line strength to the ensemble, as some of the oscillators
x& fall so close to X in frequency that in this region
there is complete scrambling.

Our problem is now to determine how the absorption
intensity is distributed among the various new eigen-
frequencies. It turns out to be remarkably easy to solve.

Instead of using correlation functions, it is easiest to
compute directly the work done by the impressed field
Eo cos cot. All the coordinates will oscillate in phase with
the 6eld, i.e., have time factors cos cot. The equation of
motion

A (or) = F(or) 8(or)//exp (%or/kT) —17, (I.33) and substitution of (I.34) into the equation for X yields

where F(or) has the value 25co'/rrc' if the electric field
arises from isotropic radiation. The for'm of the temper-
ature-independent function F(or) for other cases is dis-
cussed in footnote 2.

The absorption 8(or) is the net difference between

where

X=CEo cos ort/f(or), (I.35)
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X= QLgp(pi)/(pip' —pp) ], (I.37)

where coal' is not quite the same as peak, and gi, (co) is
finite at co=~1, . There is absorption only if the impressed
frequency is accurately tuned to one of the poles co&'.

Actually, however, any impressed field is not strictly
monochromatic, and will have a practically uniform
intensity over the small region separating two roots,
which in the limit becomes negligible as they finally
contract together to make the perturbing agency (mag-
nons, phonons, etc.) have a continuous spectrum, If
instead of being monochromatic, the electric energy
has a spectral distribution described by

Ke now assume that the values of ~1„ the original fre-
quencies of the perturbing oscillators, are closely spaced
at intervals eI, which are small compared with cv,

and which vary only slowly with the region of the
spectrum so that they can be regarded as sensibly con-
stant in the vicinity of a given co~. The denominator
(I.36) of (I.35) has one simple zero &vp in the interval
pi2+0 to pip~i —0 as it seings from + ~ to —pp in this
interval. (There are no higher order zeros, as we will

later find a non-vanishing derivative at each root. ) The
expression (I.35) can thus be written in the form

enough to include n, roots of (I.36), then E'(&ui. ') =
22Ep2/p~22. The factor 22 cancels out of the formula for
dW/dt, in terms of Ep, since an extra factor 22 must be
inserted in the right side of (I.41) to allow for the fact
that there is now absorption from e resonances of
approximately equal strength. The absorptive suscepti-
bility x" is (dW/dt) /2Ep2~ and is consequently

x~ = prgp (PP) PÃy (I.42)

g(,
—— e/Pdf/d p—ij„=„„. (I.43)

To evaluate the derivative needed in (I.43) we write
the function f defined in (I.36) near some particular
root mA,

' in the form

where pi ——1/pp is the density of the roots of (I.36) in pp

space and we use a value of k such that co~ is near co.

Since the coefficients c& are very small, and the roots
crowd very close together, we do not need. to distinguish
between the spacing between consecutive infinities (the
&up) and that between consecutive zeros (the ~p') of
(I.36) .

Our problem is now to compute the pole strength
g~(co), which by (I.35), (I.36), and (I.37) is

—2'Epp= E(cv) d(v (I.38)
where

f(pp) = m(p&p2 —~2) +6+Q, (I,44)

the absorption arising from a given term of (I.37) is
proportional to g(&p&') E(&p&') . The proportionality factor
is most readily determined by comparison with the
time-honored and familiar result tha, t an undamped
harmonic oscillator of frequency ~p absorbs radiation
from a field of the form (I.38) a, t a, rate"

~= ZL~~ /» (pi &"'~ )-j -Q

c1,
' 0 1 1 1

~ ~ ~

Q2 (ip)2 Q2 (22p)2 Q2 (Pp)2

(I.45)

(I.46)

dW/dh= (e'/4m) ~ 22rE(~pp). (I.39)

The response of a harmonic oscillator near resonance is

eEp cos o)t eEp cos 4)/

m(ppp2 —~p2) 2mppp(ppp —pp)
(I.40)

Each member of (I.37) is evidently equivalent to a
fictitious harmonic oscilla, tor having an apparent e/m
value 2&p&'g&(pp&'). Any one term of (I.37) therefore
absorbs energy at a rate

dW/dt= 7repip'gl, (p~p') E(~p') . (I 41)

2'Cf. , for instance, M. Planck, Vorlesungen Uber die Theoric
der Warmestra/ilying (Barth, Leipzig, 1921), 4th ed. , part IV,
Chap. 1.

If, instead of being strictly monochromatic, the in-

tensity in (I.35) is spread uniformly over a, band wide

cA:

PIc de], ,
p pa(pi &A )— (I.47)

where (P denotes the principal part. The validity of the
expression (I.47) for 6 is a consequence of the fact
that the pole of the second term of (I.45) just cancels
that of the erst one, and the principal part of the inte-
gral associated with the second (Q) term is zero.
(Strictly speaking this is true only if the lower limit of
integration is —~, but the resulting error is inconse-
quential. ) Were it not for the fact that cp, pp, pq are

where p=pi' a,nd where 0=a&——2'(&pi„.+pp„+,) is the fre-
quency measured relative to the midpoint of the interval
which is bounded by two adjacent infinities of f(pp) and
which contains the particular zero of f(pi) that is being
studied. If we let el, gradually contract towards zero, we
can ultima, tely replace the sum in (I.45) [but not in
(I.46)] by an integral that can be written in the con-
venient form
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slowly varying functions of k, the entire expression

( l. .45) could also be set equal to zero. The displacement
of the resonance maximum which will later turn out to
be a consequence of the nonvanishing 6 is thus an
expression of the nonuniformity of the perturbing spec-
trum.

Thanks to a mathematical formula'4 tailor-made for
our purposes, the series in brackets in (I.46) can be
summed exactly, and has the value

—(s-/2eQ) tan (sQ/s).

The expression (I.44) is consequently

f(oI) =m(oIss —o)s)+6—(CI,'Ir/2@I. (dI e) tan (sQ/e).

(I.48)

In evaluating df/doI, we need only consider the term
coming from the differentiation of the tangent, as this
throws down a factor 1/e, which is large compared to
1/oI. Hence

df cI~ Il (WQ

de =to &r 2Py~Mp~6 2

Since (I.49) is to be evaluated at a root of (I.48) we

see, using (I.43), that formula (I.42) becomes

2s.e ps (cs /oIA ps)
x" = I.50

4[m(Ms oI )+~j—+(cs IrpA /lsvoIA )

where pA' ——1/e and k' is determined by oIA ——oI. Equation
(I.50) is also obtained in part II by a different method.
The contrast between the two approaches yielding the
same result is quite striking.

In conclusion we should mention that the model that
we have used, in which the perturbing mechanism is
an ensemble of harmonic oscillators, is somewhat speci-
alized, and does not portray the most general stochastic
or collision process. Since even after the coupling our
system remained harmonic, any light scattered from
incident monochromatic radiation should be coherent
and have the same frequency as the latter. On the
other hand, Holstein" and Towne" have shown that
an oscillator excited by a monochromatic beam inter-
rupted. by strong collisions can reradiate part of the
energy absorbed from the beam as light which is not
monochromatic or coherent, and is centered around
the resonance rather than the impressed frequency. To
yield this effect, essentially a Raman process involving
the states of the atomic + colliding system, something

more general than a completely harmonic total system
is required,

II. GREE¹SFUNCTION APPROACH

1. Preliminaries

In this and the fo11owing sections we attack the
line-shape problem using powerful, but more formal,
Green's function techniques. Seven of the remaining
eight sections are devoted to the treatment of a two-
level (spin--;) system interacting with a crystal lattice.
In the final section we discuss the behavior of a har-
monic oscillator which is also coupled to a lattice.

To a certain extent our treatment of the two-level
system parallels the recent work of McCumber. '~ He
discusses the inQuence of the spin —phonon coupling on
the optical spectrum. There are, however, important
differences between optical- and magnetic-resonance
phenomena which are relevant to the line shape analy-
sis. First, because of the enormous separation between
optical levels, population effects arising from thermal
excitation can usually be neglected. Second, there is
no optical analog of the longitudinal susceptibility,
where the absorption is measured with the alternat-
ing field parallel to the static field. Our analysis also
overlaps somewhat with a study of the inQuence of
the spin —phonon coupling on the magnetic-resonance
spectrum that has been made by Aminov and
Kochelaev. '8 They, however, were mainly interested in
determining the magnitude of the shifts arising from
the interaction.

Prior to introducing the Hamiltonian appropriate to
the spin problem it will be convenient to rewrite (I.3)
in terms of the Fourier transforms of the spin —spin
correlation functions. The Fourier transform (or spec-
tral intensity function) associated with (5,5, ) is de-
fined by

By making use of (II.1) we can rewrite 7t„"(oI) in the
following fashion (specializing to the magnetic dipole):

7tg, "(oI)= (sg'P'/k) tanh (5oI/2kT) (J**(oI)+J"(—oI))

(II.2)

In the case of the xx and yy components of p" we
introduce the spectral functions associated with the
operators S~= 5,+i S„and S = 5, i S„by m—eans of

24 Knopp, Unendliche Reihee {Springer-Verlag, Berlin, 1922),
p. 197; quoted by O. K. Rice in Phys. Rev. 33, 755 {1929).

2'T. Holstein, Phys. Rev. 72, 1212 {1947), Appendix IA.
2' D. Towne, Ph.D. thesis, Harvard, 1954 {unpublished).

"D. E. McCumber, J. Math. Phys. 5, 222 {1964);5, 508
{1964)."L.K. Aminov and B.I. Kochelaev, Fiz. Tverd. Tela 4, 1604
(1962) /English transl. :Soviet Phys. —Solid State 4, 1175 (1962)j.
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the equations

(S-(t)S+(t ) )

J + co exp 5+ I T exp —$ao t—t dc@,

Here 6(os(=gPB) is the splitting between the upper
and lower spin levels, and Sco~„ is the energy of a phonon
having wave vector k and polarization p. The ak„and
aq„+ are phonon annihilation and creation operators
with the commutation relations

(II.3)

{S+(t')S (t) )= J +((o) exp P—s(o(t —t')7d(o,

(II.4)

L~» (rk'o'3=0'

L(rk&+, (rk &+(=0;

L(rkpy okla' j ~kk'tI)&p"+1 x' (II.9)

{S (t) S (t') )= J- -((o) exp t —io)(t—t') j d(o.

The A (kp) are coupling constants which depend on
the detailed properties of the magnetic ion and its
crystalline environment.

Rather than work with the general Hamiltonian we
will find it convenient to consider a simplified isotropic
approximation to (II.S) which we write in the form

(II.6)
~iso=KM()Sz+ 5(okCko Qko

owin +QAks s(kp) ((rk.++.a k„), (11.10)Itshouldbenoted that Eqs. (II.3) and (II.4) sh g
the interdependence of {S+S ) and {SS~) follow
from the dehnition of the correlation function and the
cyclic properties of the trace."

Upon inserting {II.3)-(II.6) into (I.3) we obtain
the result

where we assume &ok=(o k and Ak=A k. Here e(kp) is
the polarization vector associated with the mode desig-
nated by k and p. Our reasons for choosing to work
with the model interaction are twofold. First, the iso-
tropic nature of the coupling makes possible a direct
comparison of the effects of the spin —lattice interaction
with the efleets of analogous broadening mechanisms
in liquids and gases. Second, the use of an interaction
involving the scalar product of the polarization and
spin vectors leads to a considerable simplihcation in
the calculation of the spectral functions. Although there
is an accompanying loss in generality, we will relate
the results obtained with K;., to what would have been
obtained with a more general Hamiltonian in the situ-
ations which are of experimental interest.

x"„,„„(co)= (ng'){i'/45) tanh (5(o/2kT)

)& I L1+ exp (5(o/kT) jJ +((o)

+.L1+ exp ( S(o/kT) $J—-+( o)) a J++(—(o)

~J.+(- )~J--(-)~J--(--) I, (».7)

where the plus and minus signs refer to the xx and yy
components, respectively. Equations (II.2) and (II.7)
from the basis for our subsequent discussion. We empha-
size that the expressions for y"„and x"„,» are com-
pletely general. No assumptions have been made about
the nature of the interaction of the spin with its en-
vironment.

3. Gr een's Function Formalism

Having specified the Hamiltonian we are left with
the problem of calculating the correlation functions. A
convenient way of doing this is to make use of the
double-time thermodynamic Green's functions intro-
duced by Zubarev. "We define the Green's function
({A(t); B(t') ) )~ associated with the operators A and
8 by means of equation

2. Hamiltonian

We consider a system having spin —,
' that is coupled

to the crystal lattice by terms that are linear in the
lattice displacement. If we take the direction of the
static magnetic field to define the s axis, then the
Hamiltonian, in its general form, is written

tl(t —t') E {A(t) ~(t') )~ {&(t')A (t) )3. (».11)

Here 8(t—t') is the unit step function with the property
+A„(kp) S„+A,(kp) S.)((r„.++(s „,) .

8(t—t') =1, tl(t —t ) =o, «t'. (II.12)
"D. N. Zuharev, Usp. Fiz. Nauk 71, 71 {1960) pEBghsh

trausl. : Soviet Phys. —Uspekhi 3, 320 {1960)$. It is show~ in Ref. 29 that ((A (t); p(t') ) )+ satisfies
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where the spectral function J+" (co) is defined in terms
of the limiting values of ( (A; B) )~(E) as E approaches
the real axis. That is, we have

where the limit s-+0+ is understood.
In the spin--,' problem we are led to consider the

Green's functions ((S; 5+))+ and ((S„S,))+. In
the subsequent sections we will solve equations for
these functions. With the aid of (II.17) we will obtain
expressions for the spectral functions which appear in
the formal definitions of the susceptibility. In order to
obtain closed expressions for the Green's functions it is
necessary to employ a simple decoupling approximation
similar to that used in Ref. 29. The details and signifi-
cance of this approximation are discussed at appropriate
places in the calculation.

t ~&I
((A; B)),(E) =— -p I l ((A(~); B(0) ) ), d~.

k&j
(II.14)

The transform of (II.13) is then written

E((A; B)&~(E) = {1/2~)L(AB~BA )7

+(&LA Kj B))~(E) (II.13)
In Ref. 29 it is demonstrated that the correlation

functions (A(t)B{t') ) and (B{t')A(t) ) can be ex-
pressed in the following for'm

4. Calculation of X„"

the equation of motion

jA{d/dt) ((A (t); B{i')) )~

=58{t—t') L(A {t)B(t)&B(t)A {t))j
jh

+ ( ((A {L)X{'t) R{/)A (/) )' B{3) ) )y (II.13)

where K{t) is the Hamiltonian.
For the most part we will work with the Fourier ~(& ' ))+( +

transform of ((A {t);B{i')) )~ which we define by the
integral

(A(i)B(i ))= f'hM

kTj
exp

~

J+"E{~)exp [ i&o{t t'—)]d+,—

(II.15)

(II.16)

(B{t')A{i))= J~"E(cu) exp c
—io)(i—t')) A),

From the analysis given in the preceding sections it
is evident that the Fourier transform of the Green's
function ((5,{t);5,{t') ) )~ can be directly related to
the longitudinal susceptibility. In this section we will
outline the calculation of ((5,; S,) )+. The application
of (II.13') together with the Hamiltonian (II.10) leads
to the equation

E((5~» Sg))+(E) —1/4Ir j,+Ak(e, {kP) ie~{kP))(((5+uk~+» Sg))+(E)+(&S~u k„» 5,&)+(E))

——',ZAk{..{kP)+z.„{kP))(((5 a»+; 5.))+(E)+((5 a k„; 5, ))+(E)). {11.1g)

It is evident that the equation for ((5,; 5, ) )+ involves the Green's functions ( &5+uk„, 5, ) )+ and ((5+ii k„,
S.) )+. Following Zubarev" we are led to consider the equations of motion for these higher-order functions. We
will discuss in detail only ((5+ak~, 5, ) )~ since a nearly identical analysis can be made for the other functions.
The equation of motion for ( &5~uk~+; 5, ) )+ is written

(E+~o+fi~k) ((5+~kB+' 5.) )+(E) = ZAk (~*{&'P')+i"( 'P') ) ((5*( k'++ -k ') ~km+' 5*))+(E)

—2 A.'"(lr'P') (&5+{~."'+ -'")~"" 5*))+(E)——:A.(.{&P)+i"{&P))

&&(((S„S,))+(E)+-', ((1; S,))+(E))+-',Ake, (kp) ((S+., S,))+(E). (II.19)

We see that the equation for ((5+ak~, S, ) )+ has in it still higher order Green s functions. It follows that an
exact expression for ((5,; 5, ) )+ can only be obtained by solving an infinite set of coupled equations. In order to
reduce the problem to manageable size we introduce an approximate decoupling scheme. We replace the products
of phonon operators appearing on the right-hand side of (II.19) by their thermal averages taken in the absence
of a spin —phonon interaction

(IIk'»»' {i)+U—k'»»'{~) )~Ik»» {~) + ({haik'»»' +iI—k'i»') haik»» ) 8k—k 6»& {Ok+1) . (II.20)
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Here rtRL=Lexp (Sees/kT) —1j ] is the Bose—Einstein occupation number. The significance of the approxgnation
will beco'me more clear in the subsequent discussion. At present it suKces to say that the approximation takes
into account only one-phonon processes in which a single lattice mode is created or destroyed. Making use of
(II.20) Eq. (II.19) is written

(E+Scoo+Sco ) ((S ai„+; S,)) (E) =-'Ag{,(kP)+is„(lrP})(2rtR+I) ((S S )) (E)
—A'A&{eg(kp)+iso(hp) ) ((1; SN) )p(E) ——,'ARe, (kp) (2NR+1) ((S+i S, ) )+(E). (II.19')

Analogous equations for the functions ((S cry„,' S,) )+ and ((S+a R~, S,) )+ can also be derived in a straight-
forward fashion with the help of the decoupling approximation. Insertion of the expressions thus obtained into
(II.18) leads to an inhomogeneous equation for ((S„S,) )+. The algebra is especially si'mplified when the or-
thogonality properties of the polarization vectors are taken into account

Ze-(&P) et (&P) = ~-e. (II.21)
p

For this reason the terms involving e, (kp) in the equations for the higher order functions do not appear in the
equation for ((S„S,) )+. This simpli6cation is a particular feature of the isotropic interaction and the assump-
tion that the phonon energies are independent of polarization. The resulting expression for the longitudinal
Green's function is written

E((S.; S.) )+(E) = 1/4~+-,'g~, s(2n, +I)
k

XE(E+Scos+Sco&) + (E+Scoo Sco&) +(E Scoo+Sco&) +(E Scos Sco&) j((S~i Se ) )+(E)
+sr ZA&'t (E—Scos+Sco&) '+(E+Scos—Sco&) '—(E+Scos+Sco&) '—(E—Scoe—Sco&)

—'j ((1; S,) )+(E). (II.22)

The function ( (1; S, ) )+ can be evaluated from its equation of motion

((1; S,))+(E)= (S,)/rrE= —(1/2srE) tanh (Sco,/2kT). (II.23)

Here we have made the approximation of replacing (S,) by its value in the absence of a spin —phonon coupling,
—-', tanh (Scoo/2kT).

The spectral function J'*(co) is obtained from Eqs. (II.22) and (II.23) and the defining equation, (11.17).
Insertion of the expression for 2'*'(co) into (II.2) leads to an equation for x„"(co).Omitting a number of inter-
mediate steps we arrive at the result

1 Sco
x,."(co) =—gsP' tanh

2', 2k T

t.{I'(co+coo)+I'(co—coo) ){1—f&(co)/coj tanh {Scos/2k T) )—L+(co)/cog tanh (Scos/2kT) {co—K(co—coo}—&(co+coo))j,X {—K(,) —K(~+~,) ) +{r(~—~,)+ I'( +,) )

where"
I'(co) = (rr/2S) QAg coth (ScoR/2kT) {h(Scoz+Sco)+5(Sco]c Sco) )p

K(co) = (cP/2S) QA)p coth (Scot,/2kT) p(ScoR+Sco) '—(Scop—Sco) 'j,

(II.24)

(II.25)

(II.26)

since

Also, we have
2nR+1= coth (Scot,/2k T). (II.27)

e(~) = (sr/2S) QAg'{b(Sco —Scow+Scop) +b(Sco+ScoR—Scoo) —8(Sco—ScoR—Scoo) —5(Sco+Sco~+Scoo) ), (II.28)

A(co) = (cP/2S) ZA&sE(Sco Sco&+Scos) i+ (Sco+Sco& Scos) i (Sco Sco& Scos) i (Sco+Sco&+Scos) r3 {II29)

Ke defer discussion of these rather formidable expressions to the following section.

"In obtaining (II.25)-(II.29) we have made use of the symbolic identity (co+is) =4'/co —ized(co), where 6' denotes the
principal part t Ref. 29, Eq. (3.29) g.



200 REVIEWS OE MODERN PEYSXCS ' JANUARY 1966

(II.30)

K(p1p)+K( —p1p) =0, (II.31)

4(0) = (1r/5) QA1, '8(6p11,—5p1p) =r1 ' tanh (hp1p/2kT),

(II.32)

A(0) =0, (II.33)

where 7~ is the spin —lattice relaxation time for the
direct process. " With the help of (II.30)—(II.33) we
obtain the following equation for X„"(p&) (p1«p1p)

25 2kT 1+(p1r1)' 2kT' (II.34)

which is identical to Eq. (I.11). Although our expression
for x„"(p&) was obtained from a particularly simple
Hamiltonian, a similar but more lengthy analysis based
on (II.S) shows that (II.34) is still valid in the limit
co&&~0 provided the value of 7-~ appropriate to the more
general interaction is used.

Examination of the steps in the calculation of X„"(p1)

S. Discussion of the Longitudinal Susceptibility

In typical experiments measuring X„"(p1) the fre-
quency of the alternating field is much less than the
precession frequency. Thus in evaluating (II.24) we
are justified in neglecting ur in comparison with coo. In
which case we have

I (ppp) +I (—p1p)

= (1r/5) QA1,'5(fhp11, —Sp1p) coth (hp1&/2kT) =rr ')

indicates that the terms in the interaction which couple
the s component of the spin to the lattice make no
contribution to the susceptibility. The linewidth arises
solely from the phase-interrupting (5, and S„) terms.
This last result is rigorously true for the model Hamil-
tonian. In the case of a more general Hamiltonian it is
valid to the extent to which Green's functions of the
form ((5+', S,) )+ can be neglected in the equation for

( (5„' 5, ) )~. A rough calculation shows that
((5+, 5, ))+ (1/a&pr1) ((S„' S, ))+ in the region of
interest. The dropping of these terms is justified as long
as ~or&))1, a condition which is nearly always satisfied.

The presence of the relaxation time for the direct
process in the expression for X„"(p1) reflects the fact
that the decoupling approximation takes into account
only one-phonon transitions. Transitions involving mul-

tiple phonon emission are neglected. . General phase
space considerations show that these higher order e8ects
are negligible in comparison with the direct process as
long as there are lattice modes with energies comparable
to ficta.

6. Calculation of the Transverse Susceptibility

The spectral functions for the transverse suscepti-
bilities are obtained from Green's functions associated
with the operators 5+ and 5 . From the symmetry of
the model Hamiltonian it is evident that y„"=x»"so
that we need solve only for ((5; S+ ) )+. The terms in
(II.7) involving J (p1) and J++(p1) make no contri-
bution as long as the two transverse susceptibilities are
equal. The equation of motion for ((5; 5+))+ is
written

(E—fi~p) ((5-' 5+) )+(E) =1/2~ —K~1(p*(&p) —cpu(&p) ) (((5*1h1 +' 5+) )+(E)+ ((S*U-1 ' 5+) )+(E))

+g~...(1 P) (((S U»+; S+))+(E)+((SU,„; S,)),(E) ). (II 33)

As before we are faced with the problem of calculating higher order Green's functions involving products of
spin and lattice operators. In order to do this we make use of the decoupling approximation introduced previously.
Because of the orthogonality of the polarization vectors we need keep only terms having the factor p, (kp) +ip„(kpj
in the equations for ((S,a»+; 5+ ) )+ and ((S,a», 5+ ) )+. By the same token we keep only terms proportional
to p, (kP) in the equations for ( (S a1,~+; 5+ ) )+ and ( (S a», 5+ ) )+. The results of the calculation are as follows

(E+Spp1) ((S,a»+, 5~) )~('E) = 421, (p,—(kP)+zp„(kP) )(2',+1) ((5; 5+) )+(E),

(II.36)

(E—Sp1p+5a)1,) ((5 a»+; S+))+(E) = (1/21r) (a»+)+-', A1,p, (kp) (2+1,+1) ((5; 5+) )+(E), (II.37)

(E—Sp1p —Sp11,) ((5 a»', 5+))~(E) =(1/21r) (a»)+221,p, (hp) (2e1,+1) ((S; 5+))~(E). (II.38)

The functions (a» ) and (a») can be calculated, by making use of the time-independence of the expectation
value"

15(d/ch) ( ~ ~ )=0= (L" ', ,iej ). (11.39)

» R. Qrbach, Proc. Roy. Soc. {London) A264, 458 (196I).
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iS(d/dt) (at~+)=0= —Sept, (ai,„)+-,' tanh (Scop/2kT) p(kp)Ap,

iS(d/dt) (a i,„)=0=Scot,(a i,„)——,
' tanh (Scop/2kT) e, (kp) Ai„

where we have kept only terms proportional to p, (kp).
With the help of (II.36)—(II.41) we obtain the following equation for ((5; 5+) )+ .'

(E—Scop) ((5; 5+) )+(E) = (2zr) i+z QAi, z(2rti, +1)

(11.40)

(II.41)

&&((E—Sppi, ) '+(E+Scpi,)
—'+(E—Scop—Sppi, ) '+(E—Scop+Scot, ) ')((5 5 )) (E)

tanh (Sppp/2k T)
Q(Ai, z/Sept, ) L(E—Scop—Sept, ) '+(E—Scop+Spot, ) '). (II.42)

4m- k

From (II.42) we obtain the spectral function J (cp) by means of the limiting procedure described in Sec. II.3.
Inserting the expression thus obtained into (II.7) leads to the following equation for the transverse susceptibility

g'p' Sop (r(pp)+r(&p —cpp) )(1+-,' tanh (Scop/2kT) e(cp —cp,) )x.,"(cp) =x„p"(cp) = tanh
4S 2k T (cp —

pep
—K(cp) —K(cp —pop) )'+r ((pp) + r (pp —ppp) )'

-', tanh (Scop/2kT) (pp —coo—K(co) —E(pp —coo) )C (co—ceo)

(co cpp K(pp) K(tp ppo) ) +(r (ce) + r(co —pop) )

(r(cp) +r (pe+co, ) ) (1——,
' tanh (Scpo/2k T) 8(co+cop) )

(op+coo —E(pp) —K(co+cop) )'+ (r (co) +r (op+coo) )'

(II.43)
-', tanh (Scop/2k T) (co+pop —E(pp) —K(co+coo) )4'(co+coo)

(+ .-K( ) —K( +,))+(r( )+r( + .))
where r(co) and E(cp) are defined by Eqs. (II.25) and (II.26), respectively. The functions 8(cp) and C'(pp) have
as their defining equations

e(~) = (o/S) g(A, '/S~, ) L(S~+Sa&,) '+(fin& —S~,) '),
k

C (cp) = (pr/S) Q(Ai, '/Sept, ) LS(Sop+Scot,)+b(Scp —Sept, ) ).

(II.44)

(II.45)

We postpone discussion of (II.43) until the following section.

C (0) = (27r/S) Q(Ai, '/Sept, ) 8(Sept, ) =0,

as well as
e(o) =K(o) =o.

(II.47)

(II.48)

Neglecting the second-order shift, K(cop), in comparison
with cop"we obtain the result (pp cpp)

g'P' Scp 1/2ri
4S 2kT (cp —cop)z (1/2ri)z

'7. Discussion of the Transverse Susceptibility

In typical paramagnetic resonance experiments only
the values of y„"(cp) in the neighborhood of co=cop are
of interest. In this region the equation for z, "simplifies
considerably. Because of the vanishing volume of phase
space accessible to phonons of zero energy we have

I'(0) = (pr/S) +At,z6(Sept, ) coth (Sppi,/2kT) =0,
k

(II.46)

We note that the susceptibility has a Lorentzian
profile with a width 1/2ri. As was pointed out in part I,
this width rejects the absence of a contribution from
the frequency modulation terms in the Hamiltonian.
Indeed such terms are represented in the factor
r(~—~p) in (II.43) which vanishes at, resonance in
virtue of (II.46). $1n the stochastic case, where the
spectrum is flat, one has r(cp) =r(cp —cop) and 1/ri
appears in place of 1/2ri in (II.49) and the transverse
and longitudinal relaxation times become equal, in
agreement with Sec. I.6, where the situation is discussed
more fully. ) Our expression for x„"(cp) in the vicinity
of the resonance is easily modified to include the effects
of an anisotropic interaction. As in the case of y„"it is

only necessary to replace the expression for 7& by the
corresponding relaxation time calculated from the more
general Hamiltonian.

An interesting limiting case of (II.43) is obtained
when we take the doublet splitting to be much greater
than the maximum phonon energy. Since there are no
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phonons "on speaking terms" with the spins we have displacement. We take as the Hamiltonian Pcf. (I.32) j
I'(pip) =0. The resulting expression for the suscepti-
bility has the approximate form X= -,'mL(.P /m) '+pip'X'1+ Q I

pg, L ( PA/pp) '+oI„'x»']

g'p', Soi I'(x)+-', x tanh (f»ppp/2k') C (x)
45 2kT $2

+Xgc»xp. (II.52)

g'P' 5pi
tanh

45m' 2kT

s f Sppp
X —QAR' (nR+-', )+-,' tanh

~
3(5ppR —Sx)

&2k'
Atop )+—QAR' (nR+ ', ) ——', -tanh

~
B(5o)A+Sx)

(II.50)

where x =oi —oIp. The terms in the numerator of (II.50)
arise from the FM part of the interaction. They char-
acterize vibrational sidebands associated with the simul-
taneous creation or destruction of phonon —photon pairs.
In the zero-temperature limit mi,

——0 and tanh
(f»ppp/2k'') =1 so that x„"differs from zero only for
&o)p. These sidebands have been extensively studied
in recent years in connection with the optical spectra
of magnetic ions imbedded in insulating crystals. "

A check on the consistency of our analysis can be
made by setting Mt) equal to zero. We then find

g'P' f»oi 21'(cp)

25 2k T (oi —2K(pp) )'+ (2l'(pp) )"

The imaginary part of the susceptibility, X"(oI), can be
written in terms of the Fourier transform of the electric
dipole-moment correlation function

e2 Sa)
x =—tanh cos pptL (X(t)X(0)+X(0)X(&) )j d&.

25 2k T
(II.53)

We introduce the spectral function J„(oi) through
the equation

(X(t)X(t') )= J„(oi) exp L
—ioI (t—1') $ IEoi,

(II.54)

so that x"(oi) is expressed as

X"(oi) = (Ire'/f») tanh (5pp/2k T) (J„(oi)+J,(—oI) ).

(II.55)

The spectral function can be obtained from the
Green's function ((X(l); X(0) ) ) . By making use of
the commutation relations pX, P, j=i5, t xp, A j= i%3»».

we find the following equations for ((X; X) ) .

(II.51) (dp/dp) ((X(,) . X(0) ) &

as can be seen from (II.24). The equality of x„"and
g„"in the limit of zero field is to be expected in view
of the isotropy of the model interaction.

Finally we would like to point out that although we
have explicitly considered a system having S=~~ the
Green's function techniqu, es can be applied equally well
to a system having arbitrary spin. However for S)~

the analysis becomes complicated. One encounters
Green's functions of the form ((S Ss, Sr »+ which do
not appear in the spin —,'problem. The simplification
for S=—,

' results from there being only three linearly
independent spin operators. Any product S SpS~ ~ ~

can be expressed in terms of the operators S„S„,S,
and the unit operator.

8. Harmonic Oscillator

$f'»3(t)/m5+oips ((X(t); X(0) ) )

+m »pcs ((xs(l); X(0) )), (II.56)

—(d'/«') ((»(1) X(o) ) )-=~"((»(~) ' X(o) ) )-

+"((X(~); X(0) ))-/" (»57)

The equations are readily solved without approxi-
mation for the transformed functions ((X; X)) (E)
and ((xp, X) ) (E). In particular we have

((X; X)) (E)
(1/2mm)

(E/f») p —o7p' —g(css/mph) ((E/k) —oIA') '

(II.58)

In this section weuse the Green'sfunction formalism The spectral function can be obtained from (II.58)
to calculate the susceptibility of a harmonic oscillator with the help of (II.17). Omitting several intermediate
coupled to the lattice by a term linear in the lattice steps we arrive at the result

'p For example, G. F. Imbusch, W. M. Yen, A. L. Schawlow, X&&(~)
e' Im G(oi) (II.59)

D. E. McCumber, aud M. D. Sturge, Phys. Rev. 133, A1029 m Loips —MP+Reg(pp))s+LImG(oi)7P'
(&w4) .
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where

Re G((a) = ((P/mpj, ) QcI,'(cu' c—a,P)

pl, cI,'(~' —&e') ' d~l =—,
5$tMIt,

m'

cation of the field, one has

W'. (t)=) Tr p
dP (t")

—
ting

where —IJ3 is some time prior to —t~, and the Boltz-
(II.60) mann factor or density matrix

with the symbols pA, and 6 having the same meaning as
in Sec. I.6. Also, we have

Im G(a)) = (7r/apl, ) Q (cg'/2(vp) f6 ((v—a)p) —8(co+(oI,) j,

p = exp P—BCD/k T/Tr (exp f—BCO/k Tg)

is to be evaluated at t= —4 and so involves only the
Hamiltonian function X, exclusive of the field. The equa-
tion of motion for P is

= (~/mpI, ) (c~'pa /2~~. ), (II.61)
dP /dt=z5 '[XP —PK]—

where k' is fixed by the equation col, ' ——or. If we rewrite
(II.59) using (II.60) and (II.61) we obtain the ex-
pression

e'(~cl, 'p„.) /2~~, pa.x"(ao) = . . . ,, (II.62)
(~(~o —~ )++) +(~cI ps /2~a'pA, )

in agreement with (I.50) .
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APPENDIX A: RELATIONS BETWEEN THE COR-
RELATION FUNCTION AND THE

SUSCEPTIBILITY

The change in the component of moment P along
the nth direction, which arises from the interaction
—P F exp (icot), is given by

8P (t) =(i/5)

X (P (t) P (t') —P„(t')P (t) )F exp (i~t') dt'.

(A1)

This formula can be established as follows by a
method slightly diferent from that of Kubo, 5 or of
Kadanoff and Martin, "whose procedure we follow in
the main in this appendix. I.et us imagine the field F
to be first applied at a large negative time —I~. Since
there is no outstanding polarization prior to the appli-

»L. P. Kadano8 and P. C. Martin, Ann. Phys. (N.Y.) 24,
419 (1963), particularly Secs. I and II and Appendix A.

inasmuch as P commutes with the part —P Il

exp (i~t) of the Hamiltonian that arises from the
applied field. From the fact that the change in inner
energy just equals the work done by the applied field,
we have

dBC/dt= (dP /dt) F exp (i&A).

Since 6P =0 for t( —t~, we can write

8P =i5 ' dt" 8(t', t")F exp (i&et') dt', (A2)
&B &A

where

8(t', t") = Tr p, P.(t")—P.(t")

Ke now utilize the fact that v e wish an expression for
0P that is correct only to the first power of Ii . This
means that the factor 8(t', t") can be evaluated as
though the field were not there, and K treated as a
constant. In the unperturbed condition, any expression
of the form (A(t')B(t") ) is a function only of the
argument t' —t" since the equilibrium distribution is a
stationary one. This permits us to replace 8(t', t") by
8(t", t'), and after this permutation, the integration
over t" in (A2) can immediately be performed. (It is
really a partial integration, but the portion coming from
the fact that the upper limit of the t' integral involves
t" makes no contribution because of a cancellation of
terms when t'=t".) Such terms as (P (—ta)P (t) )
resulting from the integration can be dropped since
—t& can be taken an arbitrarily long time before —4,
and lim ~,„(P(—ta) P (t) )=0 if there is no mean
polarization in the absence of the applied field —in other
words, all correlation is lost if the time interval is
sufFiciently long. The integration over t" when t&—&—~
thus reduces (A2) to (A1), which we wished to es-
tablish.

On introducing the integral representation of the unit
step function e(t—t'), by means of the equation

i exp L
—is&(t —t') j d(v

e(t—t') =-
27I —~ N+ 1e
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(with e-+0+) we can rewrite (A1) as follows:

~ chal'dt '
h)P (t) = (—,. exp P —i (co'+ca) (t—t') j (P (t) P (t') —P (t') P (t) )) F exp (i(ot) .

2Il S —co —co(t) +LE

In view of the defInition of X t), (I.1), we have

(A3)

(~) = (P (t)P (0) P (0)P (t) )2TS —ox —co (I) (I)+16
(A4)

In obtaining (A4) we have made use of the fact tha, t X is independent of t so that we can set t equal to zero in the
bracketed factor of (A3). Noting that

exp (i I) (P (0) P (t) ) rtt= Trf exp )
—K/S?'SP, exp (tKI/Fi]P, exp L

—IKI/Aj exp (I I] St, (AS)
~ ~ ~ ~

and making use of the cyclic property of the trace, Tr ABC= Tr BCA =Tr CAB, we see that the right-hand side
of (A5) can be written as follows:

exp (i(0t) (P (0) P (t) ) dt= Tr exp L
—K/k Tj exp I iK(t—(iS/k T) )/S7Pa

&& exp P
—iK(t—(iS/k T) )/SjP exp (i~t) dk,

( 5o) 't= exp~ —
~

exp (ia&t) (P (t)P (0) ) dt
kT) =

With the help of (A6) X becomes

1 d(0' dh exp (i(o'h) Scu'
x. (co)'=, tanh -(P (0)P (t)+P (t)P (0) ).2' S —co —co It) (I)+16 2kT

Upon expanding (P (0) P (t)+P (t) P (0) ) in terms of the eigenstates of BC

(P (0) P (t)+P (t) P (0) )=2+ exp ( E„/kT) )(m (
P —

j
n')~' cos ['(E„—E„.)t/Sj,

(A6)

(A7)

it is evident that the bracketed expression in (A7) is both real and an even function of t. Utilizing these properties
together with the symbolic identity, (&o+ie) I=((t'/a& im8(~—), w. e infer that the real and imaginary parts of the
susceptibility, x =x ' —ip ", can be written

&to dt cos u t Ao)
X..'(~) = (p, tanh (P.(0) P.(t)+P.(h) P.(0) ),2' 5 —co —co CO GO 2kT

Ace
"(a&) =—tanh cos cut(P (0)P (t)+P (t)P (0) ) dt.

25 2k T'

Comparing (A10) with (A9) we immediately deduce the Kramers —Kronig relation

(P -X.."( ') d '

Xaa
CO

—M

relating the real and imaginary parts of the susceptibility.

(A9)

(A10)

(A11)


