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The quality of the crystals of zinc sulfide investi-
gated at present is very poor indeed compared with
that of, say, the silicon crystals readily available.
Addamiano and Aven" have reported that the density
of the vapor-grown crystals normally investigated is
several percent lower than that deduced from crystal
spacing and atomic weights, or that obtained for melt-
grown crystals. Similarly, most specimens are polytypes

"A. Addamiano and M. Aven, J. Appl. Phys. 31, 36 (1960).

or are heavily twinned. Methods of growing more
perfect crystals are therefore vital to progress in this
Geld. One approach being made in this laboratory" is
to grow zinc sulfide epitaxially on silicon. Present re-
sults indicate that the first layers of zinc sulfide are
almost as perfect as the silicon substrate, suggesting
that the use of silicon as a seed may be valuable in the
growing of good quality crystals of ZnS.

' P. L. Jones, C. N. W. Litting, D. K. Mason, and V. A. Wil-
liams (private communication) .
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The irreversible equations of evolution of classical gases, as obtained by Prigogine and Resibois from a study of the
Liouville equation, in the limit of the system being very large, are examined, and the structure of the Markovian equation
of evolution of the velocity distribution function is studied for homogeneous systems. It is then shown that the Markovian
equations completely contain the Bogoliubov theory.

I. INTRODUCTION

Much of the recent work on irreversible statistical
mechanics has been concerned with derivations of
kinetic equations for the probability densities describ-
ing the time evolution of the system. For the case of
classical systems, the most general kinetic equations
ever derived have been given by Prigogine and his
collaborators. ' ' These authors have also shown how
the general kinetic equations can be reduced to a set of
Markovian equations' and how these can be further
simplified in the so-called instantaneous collision ap-
proximations' (ICA) . In doing this, these authors
have demonstrated, under very general conditions, how
the irreversible equations of evolution are obtained
by appropriate asymptotic procedures from (reversible)
mechanical equations of motion of the system under
consideration.

In view of this generality and of the rigor of deriva-
* Financial support of this work by the U.S. Once of Naval

Research, Physics Branch, under contract Norn. 228(23) NR013-
307, is gratefully acknowledged.

f'On leave from the Polish Academy of Sciences, Institute of
Physical Chemistry, Warsaw, Poland.' I. Prigogine, Eon-equilibrilm Statistical Mechanics (John
Wiley Bz Sons, Inc. , New York, 1962).

'R. Balescu, Statistical Mechanics of Charged I'articles (John
Wiley 8z Sons, Inc. , New York, 1963).

I. Prigogine and P. R6sibois, Physica 2F, 629 (1961);Ref. 1
Chap. 11.

No "memory e6ects"—the time evolution of probabilities at
time t depends on values at time t only; in the non-Markovian
case it depends on values at earlier times t'(t.' F. Henin, P. Rbsibois, and F. C. Andrews, J. Math. Phys. 2,
68 (1961);F. C. Andrews, ibid. 2, 91 (1961)„Ref. 1, /hap. 11,
p. 242, par. 6.

tion of the results of Prigogine and his co-workers, it
is imperative to compare other approaches with the
Prigogine theory. In this paper such a comparison and
evaluation is presented, of a kinetic theory of classical
gases advanced by Sogoliubov' in 1946.

The Bogoliubov theory is worth particular attention
for several reasons. It is a strictly statistical-mechanical
theory; it does not make recourse to thermodynamic
arguments or concepts; and the kinetic equations are
obtained by a systematic and well-defined procedure.
On the other hand, it does not attempt complete gen-
erality nor any discussion of the question of how the
irreversible equations can be obtained from the re-
versible ones; it starts from simplifying assumptions.
Ke also note in passing that recent applications to
specific problems have been most often based on either
of the two theories, and that in some cases identical
kinetic equations were obtained. (e.g. , for classical elec-
tron plasmas. ~ 9 The Gnal result of a study of the
Bogoliubov theory is presented below; it is shown how
the Bogoliubov prescription results in a well-defined
approximation to the Markovian kinetic equations of

e N. N. Bogoliubov Problems of a Dyuamica/ Theory iu Statist'
cat Physics (1946). LEnglish translation in Studies iu Statistical
mechanics, edited by J. de Boer and G. E. Uhlenbeck (North-
Holland Publishing Company, Amsterdam, 1962).g

~ R. Balescu, Phys. Fluids 3, 52 (1960); R. Balescu and H. S.
Taylor, ibid. 4, 85 (1961).' A. Lenard, Ann. Phys. (N. Y.) 10, 590 (1960);R. L. Guern-
sey, thesis, University of Michigan (1960) LOfEce oi Naval Re-
search Technical Report Nonr. 1224(15), unpublishedg.

'This led one of us to make a preliminary study of the rela-
tionship between these two theories in an unpublished work
(H.S.T., 1961}.
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Prigogine and Resibois, ' still being more general than
the simplified I.C.A. equations. '

In Sec. II we recall the customary description of a
system in terms of the reduced distribution functions
(probability densities) of positions and momenta, and
we introduce the Fourier expansion used by Prigogine";
in Sec. III we summarize the basic procedure used in
solving the Liouville equation. In Sec. IV we recall
the general kinetic equations of Prigogine and Resibois, e

and in Sec. V we examine the Markovian equation for
the velocity distribution function and we give the re-
cursions which express the Prigogine —Resibois results
in the ordinary p, r space. In Sec. VI we outline the
Bogoliubov theory in the X-version as recently re-
formulated and carried on to all orders in ) by one of
us." Finally, in Sec. VII we show the equivalence of
Bogoliubov results and the Markovian kinetic equa-
tion of Sec. V.

II. DISTRIBUTION FUNCTIONS AND THEIR
DECOMPOSITIONS

(2.1)
ol

8
ctt+P p, +j,—P=O. (2.2)

ctpi did i

To be specific, consider a system of E spherical struc-
tureless particles interacting with conservative forces,
with the Hamiltonian

(2 3)

(2.4)

H=Htt+)t, U,

Ho= gp;s/(2m),

U= QN;;, tt,;=st(I r;—r; I).
i&j'

The Liouville equation LEq. (2.2)j can be rewritten as

(Bi+Ettt) P=0 (2 6)

with the following definitions:

z,=r,o—as'„ (2.7)1&s&X,

The usual statistical description of a classical system
starts from the specific E-particle probability density
P(xt, ~ ~, xN) of 6nding the system about a state
represented by a point x&, - ~, xz in the phase space—
thus, particle 1 about x~, ~ ~, particle X about xN .
Each x is a 6-vector p, r. P(x) is conserved along the
natural trajectory of the closed system

6P = 0

(~i+its) fs= iJXa+lg~i, 1+1fe+I ~ (2.14)

The so-called transport or kinetic equations are usually
differential equations for the one-particle distribution
function ft In the . Bogoliubov theory, the closure of
the system (2.14) is achieved because of the assump-
tion that f,(s&2) are functionals of ft. In the Prigogine
theory, various components of f, are separated accord-
ing to the time scales of their variation, and when
those dying-oG rapidly are neglected, closed differential
equations again result.

We now brieRy discuss the Fourier analysis of the
r dependence of P and of f„as introduced by Prigogine
and Balescu. '' Introduce the 3-X-dimensional com-
plete orthonormal set

I I&})=l I&, "., & })=III»), (21~)

I Ik;})= V-& exp (ik; r;) .

Under periodic boundary conditions

k;= V—'2~n, ,

(2.16)

(2.1&)

Besides P, one introduces a set of generic reduced dis-
tribution functions (RDF) f, (xt, - ~, x,) which are
probability densities for finding a set of any s particles
at x&, ~ ~, x,. Necessarily they are symmetric functions
of x, and under the assumption of symmetry of P, the
(standard) definition is"

Et
f,(x„., x,) = dx,+r dxirP(x, ,

~ ~ ., xttt).
(Q—s) t

(2.13)

All macroscopic properties of a Quid can be expressed
with the aid of a few f, (s=1, 2, ~ ~ ~; s«Ã). The d.e-
tailed properties of P are irrelevant insofar as a statis-
tical description is concerned and the evolution of the
system may be considered to be fully known if the
evolution of f, is known for s«X.

Under a weak restriction of P vanishing fast enough
at the boundary of the part of the phase space acces-
sible to the system, the Liouville equation is integrated
over X—s 6-vectors to give the well-known Bogoliubov-
Born—Green —Kirkwood —Yvon (BBGKY) hierarchy of
coupled equations:

Ere(t) =v,' (8/ctr;),

BNg 8 BN;;8"= ~ +4I
Br; Bp; Br; Bp;

"J.Stecki, Phys. Fluids 7, 33 (1964).

(2 8)

(2.9)

(2 1o)

(2.11)

(2.12)

"Each f. is symmetric with respect to permutations of its
6-vector arguments irrespectively of any symmetry properties of
I'. A fully general definition of RDF has been introduced by
Irving and Kirkwood, e.g., f2 is defined as

f(x', x") = gx& Z ZB(x' —x;)b(x"—x;) E'(xI, .~, x~) ~i'
One usually writes f(x&, x..) instead of f(x', x") although really one
should distinguish between specific particle indices and geleric
indices; the first ones label particles, the latter ones label variables
of a function of several 6-vectors. The assumption of symmetry
of P does not affect the actual calculations because the Liouville
equation is linear and the Hamiltonian symmetric; hence even if
I' is not symmetric, one can always define a new symmetrized I'
from which f, will follow now rigorously as given by Eq. (2.13).
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where Q; is a 3-vector with integer components. Then

P=Z. * Q I {k})({k}IP), (2.18)

({k}I
P)= V I dr+ exp (—jgks ri)P. (2.19)

One simply integrates I' over r; whenever in the chosen
set {k}={k,, ~ ~, k~} the vector k, happens to be
zero. In particular

V+""({o}
I
P)= «"P—=ps(pt " p~) (2 2o)

and set

F,=c 'f„ c=E/V, — (2.21)

Pl ut+c 1 (2.22)

Fs ——us+ut(1) C&t(2) +ut(2) Ct(1) +C&s(1, 2), (2.23)

and in general

P,=g gu„C, „.
r=0 y„

(2.24)

is the 1V-particle velocity distribution function (VDF) .
Consider now a Fourier component of a RDF f,—it
can contain up to s nonzero k vectors chosen from the
set kt, ks, ~ ~, k,. The expansion (2.18) is ordered ac-
cording to the number of nonzero k vectors"; the VDF
is expressible in terms of the "all-zero" Fourier com-
ponent; the one-particle DF is expressible in terms of
the Fourier components with one nonzero k vector
and the "all-zero" one; the two-particle DF is expres-
sible in terms of the Fourier component with two, one,
and no nonzero k vectors, etc. An ordering of the
expansion of f, according to the number of nonzero
k vectors leads to the following new decomposition
of f~.

Define

We shall see below the indications of sound physical
mea, ning of functions u„.

III. THE RESOLVENT METHOD

The basic problem of statistical mechanics of ir-
reversible phenomena is to formulate an unequivocal,
general, and the least restrictive prescription for con-
structing the kinetic equations describing the time
evolution of the system whose microscopic equations
of motion are known. The latter are time-reversible
and it is one of the basic principles of physics to re-
quire that any new equations of motion be time re-
versible. Kinetic equations describe an irreversible
time evolution and lead (for a large class of systems)
to the equilibrium state as described by Gibbsian
statistics.

The Poincare recurrence theorem proves that any
isolated classical system will sooner or later approach
as close to a phase point X= {xt, ~ ~, @sr} as desired
even if X was realized at some earlier time tp. This
makes irreversibility, strictly speaking, impossible; the
only possible answer is that the irreversibility can only
appear as an approximate property. The results of
Prigogine' show that it is an asymptotic property of
large systems; one obtains irreversible kinetic equa-
tions by considering causal soLutions's of the Liouville
equatioN iu the limit of very large system 1V—+co, V +ro, -
iv/V finite. Thus a simple reconciliation: irreversibility
can be realized strictly in an inhnite system and is only
approximately realized in Qnite, but large, systems.
The smaller the (closed) system, the worse the ap-
proximation, and Gnally no trace of irreversibility can
be found in a mechanical system of several bodies.

Consider now, after Prigogine et al.' ' the Liouville
equation LEq. (2.6)j and the "initial value" problem:
given P(0) find P(i) for t)0. A very compact formu-
lation results if one introduces the Laplace transform

({h}Iu )&0, (2.25)

if and only if the set of nonzero k vectors present in
{k}is identical with the set of r variables of u„. The
Prigogine —Balescu decomposition is different from de-
compositions of f, which are generalizations of known
decompositions of the equilibrium RDF; this one is
made automatically if one works with the Fourier co-
efficients classified according to the nonzero k vectors.

The permutations p, are over the assignments of vari-
able to functions I„,but not within variables once they
are assigned. g is the m-particle VDF obtained from

f, upon integration over s positions. Then

P(s) = dte "P(t),

whereupon the Liouville equation gives

(s+K~) P (s) = P (0),

insofar as

(3 1)

(3.2)

'2 When the expansion (2.18) thus ordered is substituted into
the deanitions oi f, PEq. (2.13)g, important restrictions on the
volume dependence of the Fourier components are found resulting
from the requirement that in the limit of large system (37—+~,
V—

& a'; ÃjV =c Quite) f, depend only on the ratio c thus remaining
6nite too. This is called the postulate of Pnitezzess of tIze RDF of
Prigogine and Balescu (Refs. 1 and 2).

lime "P(i)=0
g~m

(3.3)

This is assumed to be true under a sufhcient condition

Re s&0. (3.4)

'3The important concept of causality is well known in the
scattering theory. The following simple example might be helpful.
An incoming plane wave with an outgoing radial wave form the
causal solution describing the scattering experiment. But the
Schrodinger equation allows equally well a solution consisting of
an incoming radial wave and an outgoing plane wave; this is the
anticausal solution. It does not correspond to the scattering
experiment.
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The formal solution of the Liouville equation is

P(s) = (s+Eir) —'P(0) . (3.5)

The Laplace transform P(s) can be inverted in a
standard way. It is here that the causality principle
is satisfied in a very natural way. On inverting the
Laplace transform, one finds the causal solution for
t&0 and formally 0 for t&0. Now if one would take a
generalized Fourier transform, with —oo &t&+oa, on
inversion one could find either causal or anticausal
solutions depending on the choice of the contour of
integration. If one starts with the Laplace transform,
appropriate for the initial value problem, causal solu-
tions result.

Further complication arises because of the behavior
of the resolvent (s+Kir) ', which is of course crucial
for the entire theory. For a finite system the resolvent
displays isolated singularities on the imaginary axis. '
In the asymptotic limit E, V ~00 a finite discontinuity
appears. The function P+(s), analytic in the right
half-plane, together with its analytic continuation into
the left half-plane, corresponds to the causal solution. ' '
This function eventually leads to quantities showing
irreversible behavior.

z= zs (4.1)

and Laplace-inverting the Fourier expansion of Eq.
(3.5) one expresses the Fourier coefficients of the
S-particle DF at time t in terms of all Fourier coeffi-
cients at time 0:

1
(fu} I P(t) )=—— Zse-*'*

27r ~

xg(fk} 1(A~—is)-'
I

f&'} )(f&'}
I
P(0) &. (4.2)

IV. GENERAL NONMARKOVIAN EQUATIONS

We outline now very briefly the general results of
Prigogine and Resibois. ' Introducing the new variable

In view of (2.11), a typical term is of the form

Z Z(fk} 16'( ) ZIl" I

fk" } )

x g (fk"}
I
lp(s) Zt„ I

fk- } &".
fir/1 I} i&j'

xZO„~P(.) I fk }&(fk } I P(0) &. (4.5)

Each 8E~ introduces a pairwise sum of X(X—1)/2
terms, each intermediate state fk} introduces a 3X-
tuple sum over k vectors. The matrix elements of 0;;
modify the wave vectors subject to simple conservation
laws' which follow from the translational invariance
of (2.12). One can speak of a state fk} which is propa-
gated (from right to left) subject to tralsitiorss intro-
duced by the matrix elements (fk} I 8;;

I
fk'} ). In the

diagrammatic notation invented by Prigogine and
Balescu, ' the state is symbolized by labeled horizontal
lines (nonzero k-vectors) and transitions occur at the
vertices at which the lines meet or cross. The terms in
(4.2) expanded as indicated in (4.5) are classified and
rearranged so that they can be expressed in terms of
three functions defined below. Those leading from a
"lower state of correlation" (less nonzero k vectors)
at the right to a "higher sta, te of correlation" (more
nonzero k vectors) at the left, thus "creating correla-
tions, " are isolated from those representing "diagonal
transitions" (the final-left identical with the initial-
right f k} state), and from those "destroying the corre-
lations. "The corresponding general creation, diagonal,
and destruction operators are defined:

C(fk}, fk'};.) = Pl-(fk}19'(s)~Z 7-1 fk'} &,
1

(4.6)

~(fk}')=El "(fk}
I
~~

I ~( ) b~ 7='
I fk} &,

2

(4.7)

The contour of z integration is now a straight line from
right to left just above the real axis, closed by a su%-
ciently large half-circle in the lower half-plane. The
resolvent is expanded in powers of X,

&(fk}, fk'} «) =g&"(fk} 1[&lf'ir6'(s)7"
I
fk'}).

1

(4.8)

(EN —iS) '=g'A"(E~' —is) '[SEE(EN' —is) '7"

(4 3)

and this is used in conjunction with the multiple Fourier
expansion of each term in the sum (4.3) into the com-
plete set

I fk} ). Then the "free-particle propagator, "
which is (4.3) with X=O, is diagonal. We denote it by
~P (s):
(fk} 16'(s)

I
fk'} &—= (fk} I

(&~'—is) '
I

fk'} &

N

i (Q—k; v; s.) '—Di—ix"(ki, k, '). (4.4)

The multiple Fourier expansion as exemplified by (4.5)
is understood. A very important restriction is also im-

phed; no imterrlediate fk} state identical to the initial
(right) state is allowed by definition; thus all are finite
at Im z=0 and it is assumed that their poles in the
lower half-plane are all at finite distances from the real
axis. This assumption is corroborated by explicit cal-
culations for some simple examples. Their inverse
Laplace transforms are then defined and denoted by

"1"&=-k&' for all l/i, j;k;+k;=k +k; otherwise

&{b} I o'~ I
fb'}l=o.

It is a function of k vectors and a differential operator in the
P-space.
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6({k},{0'};r), G( jk};r), and D({k},jk'};r), respec-
tively, r being the resulting auxiliary time variable.

Then Prigogine and Resibois' find the following set
of general kinetic equations. First, the expression for
the all-zero Fourier coefficient (the VDF) at time t

yields upon differentiation the following non-Markoviandifferential

equation:

drG({k} r)p'({k} t—r)+D~(t) (411)
0

One can prove'" that in the limit of long times p'

vanishes,

Pl, '-+0 F00 . (412)
The other set of terms which make up the other part,
pI,", represents the persistent correlations. These are
created by operators 8(r) acting, as the detailed cal-
culation shows, on the primed parts of Fourier co-
eScients of lower state of correlation

p~" (t) =
lower fk~) 0

&Ere({k},{k'};r) p'({k'}, t r)—
(4.13)

These equations are the most general kinetic equations
ever derived for a classical Quid. The remarkable feature
is that they are non-Markovian; a memory is extended
into the past. The extent of memory is governed by the
time dependence of 6(z) or G(r); if 6(r) is virtually
zero after some time z~, the right-hand side of (4.13)
evaluated at t depends upon p' in the interval (t, t r*)—
and no further into the past. If, therefore, all these
operators vanish for 7 large enough, say r)r~, then
for time t long enough

(4.14)

the integration limits can be extended to infinity with-

"Ref. I, Chap. 12.

~&ps(t) = G o(r) po(t r) —dr+Do(t). (4.9)

Here Go is G({k},r) with an all-zero final and initial
state and Do stands for the sum of all destruction terms
with a anal all-zero state. Thus in Do is lodged the de-
pendence on initial correlations.

To conform with the Prigogine —Resibois notation
we denote from now on the Fourier coefficients by
p&, (t) or p({k}, t). For each nonzero {k}Fourier co-
efficient pa(t), the terms in expanded Eq. (4.2) Lcf.
Eq. (4.5)j are split into two groups showing entirely
different time behavior. The Fourier coeKcient pk(t)
is correspondingly decomposed

pa(t) =pa'(t) +pt "(t) . (4.10)

The primed part results from propagation and destruc-
tion of initial correlations, and is shown to obey a
differential equation similar to (4.9):
(8,+igk, 'v;) p'( jk}, t)

out affecting the result. In such a way a Markovian
regime results. The set of Markovian kinetic equations
is discussed below. It may be noted that all equations
result from the solution of the initial value problem,
as outlined above; then p"(t) are best expressed in an
explicit form, whereas the expressions for p' and p0

simplify remarkably upon taking the time derivative
8&, and accordingly are best expressed as solutions of
differential equations (4.9) and (4.11).

Now, as Prigogine and Resibois have shown, ' for
times distant enough from the initial time 0, a Marko-
vian regime is established. Then (4.9) simplifies to

~& o(t) =Xpo(t) (4.15)

X stands for the time-independent Markovian operator
(Oint in Resibois notation) which will be examined
below. Mathematically, &&to(s) =f({O},z) is expanded
in powers of z around the origin z=0. Similarly one
obtains

(8,+zonk, v, ) pk'=Xltps' (4.16)

which replaces (4.11). Equation (4.13) is left un-
changed but now p' appearing in the right-hand side
are solutions of Markovian differential equations (4.15)
and (4.16) .

A transparent pattern emerges if one considers an
initial state at t=0 given in terms of all po(0) or alter-
natively of po(0) and I functions Ni(0), Ns(0), ~ ~ ~ ."
To solve the Markovian equation for po(t) all we need
is po(0) . Similarly the Markovian differential equations
for p' will give Ni'(t) in terms of Ni(0), I (ts) in terms
of Ns(0), etc. On the other hand the double-primed part
represents terms which are fully expressible in terms
of lower correlations; thus Ni"(t) can be obtained if
only po(0) is known, Ns"(t) can be calculated if only
po(0) and Ni(0) are known, etc. Significantly, in the
Markovian regime no term appears expressing a lower
I function in terms of a higher one, thus no informa-
tion about zzs(0) is needed if one wishes to calculate
zzs(t). These terms are present in the general non-
Markovian equations and are expressed by the destruc-
tion operators Do(t) . Hence Eqs. (2.1) to (2.3) coupled
with these observations show us that the Markovian
scheme, valid for large systems and long times, un-
couple the BBGKY equations Lcf. (2.14)j.

We are in a position now to appreciate the Prigogine-
Balescu decomposition of f, into the I functions, as
imposed by the Fourier expansion. It is the I function
which is decomposed in turn into two parts (corre-
sponding to p' and p"). Any typical decomposition
using f, only, such as

fs= Us+fr ft, etc

is bound to lump together and mix the primed and
double-primed parts which show entirely diferent
time behavior.

"Cf. Sec. II. (}k}~
«„)~J&tps' 'p&, and there are r speciiic

nonzero k vectors in (jk} }.Hence are«essentially ps expressed
in the ordinary p, r space.
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V. MARKOVIAN EQUATION OF EVOLUTION
OF THE VDF

It is instructive to consider the simpli6ed deriva-
tion of the Markovian equation (4.11) as given by
Prigogine. ' Neglect in (4.9) the short-lived destruction
term Do(t) (i.e., D, (t)—&0 as t gets large), extend the
time intergral to infinity, and expand po(t —r) in Taylor
series around po(t); then one can express the moments
of Go in terms of 2 derivative at a=0 of its Laplace
transform, Po(z); the result is

~(po=iilo(0) po, (5.2)

is known as the instantaneous-collision approximation
(ICA) introduced by Prigogine. It is only P(0) that
appears in the general H-theorem. ' " As Balescu has
shown, ' the stationary current in the electric conduc-
tivity problem, is given in terms of ib(0) only.

Our intention is to express the quantities appearing
in the Markovian equation (4.15) in the ordinary

p, r space and without the aid. of the Laplace variable z.
This wi11 make possible an explicit comparison with
the results following from the rigorous generalization
of the Bogoliubov theory, as made by one of us."Two
points are to be made. First, there is a simple connec-
tion between the operator fo(z) and the creation opera-
tor Coo ——C( fkj, fO}; z) with the initial all-zero state.
In the de6nition of f the outmost left 0-vertex can be
separated out explicitly:

&o()=&{0}I Ze' I fk'k' o " }&

XC(fk;, k;, 0, ~ ~ ~ j, {0};z). (5.3)

Now take Eq. (4.13) and consider the creation from the
all-zero state only, evaluated asymptotically (t~ce)
in the integration limit):

e =e ( (o)))t)'.O=J s e((&) (o)' )e (e )
0

(5.4)

This can be manipulated identically as the simplified

Eq. (4.15) leading to
8&"~p

p~,."(t)= C~.(0)po(t)+Z —C~.("', (5.5)
pl 8f

where C~,&"& are, in abbreviated notation, again deriva-
tives at z=0. Comparison of (5.5) with (5.1) shows
that

a„o= &{Oj I
~ZN

I fkj &»,.". (5.6)

'r R. Baiescu, Physica 27, 693 (1961).

~ po=i&o(0) po(t)+Z(v') 'A(")(0) (5 1)
Bt"

This can be solved successively leading to the same
operator X in (4.15) as is obtained from a more rigorous
Prigogine —Resibois derivation. The erst approximation,

This is a counterpart of the Grst of BBGKY equations,
Eq. (2.13),

c)(Fi(1; t) =c dxs8isFs(1, 2e t). (5.7)

dp'G'(rp
I
r'p') f(p'r'), (s.s)

'QO N

dre "lI i)(p;—p/)b(r; —r —v r). (5.9)G'= lim
a~+0 0

Thus

(P(+iO) f(P, r) =lim dre "f(p, r s)r). (5.10)—
e-++0 0

Ke see immediately that (P(+iO) can be also identified
with the propagator introduced by Bogoliubov and
used by Choh and Uhlenbeck, " Guernsey, and in
Ref. 10,

o(+eo)=f exp( IcN')s =— s s, —(5.11)

which is further discussed and used in Sec. VI. It aver-
ages a given function over the straight-line (unper-
turbed) trajectory backwards in time.

Now we return to the problem of making the con-
nection with the Bogoliubov theory; we discuss 6rst
the instanteneous-collision approximation as expressed
in the ordinary space in terms of the distribution func-
tions f, Therefore, we. take the first term of (5.5);
the creation operator is an infinite sum Lcf. (4.6)j:

C ( {k j, {0j; +i0) = QX"C„({k }) .
1

(5.12)

"P. R6sibois, Theoric formette (tu scattering ctassi(Iue, thesis,
University of Brussels, 1960 {unpublished}.

» P. Rbsibois, J. Math. Phys. 4, j.66 {1963)."S.T. Choh and G. K. Uhlenbeck, U.S. Once of Naval Re-
search Technical Report Nonr. 1224{15), j.958 {unpublished).

Strictly speaking fs=c'Fs is a complete two-particle
DF; here the p' part of it is excluded as it was included
into the short-lived term Do(t), whose contribution is
neglected in the Markovian equation (4.11) or (5.1).
It follows that a correct lilfarkoviars equation(4. 1, 1) is
obtained even if in the BBGKY equatioss one uses only
that part of fs(1, 2) which comes from p". Moreover,
it is sufFicient to consider creation from the all-zero
state only.

Secondly, the free-particle propagator as given by
(4.4) is to be evaluated at z=0 in (5.2) as well as in
(5.1) and (5.5). To be sure that we do not introduce
inadvertedly anticausal solutions, we shall approach
the origin from the upper half-plane, thus taking the
limit z=+i0 rather than unspecified z=0. Then we
can make use of the results by Resibois" ' who has
shown that for any function f(p, r),

(P(+i 0) f(p, r) —=LEA(' —i(i0)] 'f
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Symbolically in an abbreviated notation Lcf. (4.6)] relation":

C„((PSE~)", (5.13) 7i,"=(P8E 7i " '

the Fourier expansion with given anal state, initial
all-zero state, and no other all-zero states, and the
limit s=+i0, being understood. Hence the simple re-
cursion relation:

S

+Sf ~"+ Z&'. + [h + " '—4" '[~; s+1)i
(5.20)

C -6'bK~C„1. (5.14)
h,'=—1. (5.21)

h ~f ICE—

dpi'

8/p +Q— ~ {p})p «j
{k}

(5.15)

Order p" according to the number y of nonzero k
vectors in the final set {k}, and introduce ordered
generic indices by collecting terms of the same struc-
ture differing only in labeling of the particles, dropping
also terms of the order Ã '. Then for a homogeneous
system (u& ——0)

This however cannot be directly inverted into the ordi-
nary p, r space because of the restriction of no all-zero
state between 6E~ and C„1.As one of us has shown, "
one can circumvent this difficulty by following closely
the procedure used by Resibois" who added and sub-
tracted adequately chosen terms so as to have a full
sum (—~(k(+~ with no restrictions) over each
of the k vectors of interest. This involves the following
steps. Define h„s&2, a set of approximate RDF in
which the I.C.A. results:

This expresses the recursion (5.14) in the ordinary
space in terms of reduced distribution functions h, .
Clearly this recursion can be carried on in a most
straightforward way. An example is given in Sec. VI.
Also this recursion forms a basis for the connection
with the Bogoliubov theory.

Turning now to a more general problem of general
Marimvian equation (5.1) in the configuration space,
let us stress that, in view of the complexity of the opera-
tor X, Eq. (4.15) or Eq. (5.1), there are certainly
numerous such representations. One could, for instance,
consider f(0) as determined by (5.15)—(5.21) with
(5.7) and use the expressions of Prigogine and Resibois'
in which X is an infinite sum of products of f and its
derivatives at z=0. Ke rather chose to derive recursion
relations for the X expansion of complete X in which
all terms belonging to different f's are mixed together.
The resulting recursion will enable us to make a direct
connection with the Bogoliubov theory.

Together with (5.6), Eq. (5.5) also expresses the
operator X. Define therefore an operator 0 by

XLpo+g g g C({&}) po(&) I {&}0 ..0j.
y=2 p~ {k}~&{0}7

(5.16)
iV

O= C+Q —C'"&X"
{ 7

V.
(5.23)

(5.22)

Comparing with (5.5), the {k}dependence being from
now on tacitly understood,

Sy a careful consideration of terms with k;=0 and
k;~0, and by taking advantage of the simplifications
introduced by the integral over N —s momenta (dia-
grams with two particle indices "destroyed" simul-
taneously do not contribute"), one arrives after some
manipulations to the following result:

where we used

8"pp/Bt" =X ~ Xpo(t) =X"po(t) .

Now consider the A. expansion of each 0:
(5.24)

(5.25)

Ii o+Q),n7i n

1

h = d p

(5.17)

(5.18)

jv 3E

Ollt= CM+g —Q CM '"'LX"jV
V=1 V ~ n=l

(5.26)

h,"= dQ —'Ii,"po(t),

where the operators h," fulfill the following recursion

"J.Stecki, J. Chem. Phys. 40, 1197 (1964).
~ Ref. j., Chap. '?, p. 161, par. 8.

All we need to know about X at this stage is that
Lcf. Eq. (4.7)j its expansion starts with X':

(5.27)

The interpretation of the z derivative of C is quite
important. We have shown above the meaning of
(P(s=+i0) in the ordinary space {cf. (4.4), (5.8)—
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Using the simplified notation of (5.13) or (5.14), we
can write

Ci"& (P(PSK~ (v= 1),

C ~~gv+lgg+

(5.31)

(5.32)

In general C„&"& can be constructed by following the
rules for differentiating a multiple product; however,
it verifies the following remarkably simple recursion:

C„&"& (PbKNC„ i'"&+iv(PC„" ' v&1, N&2. (5.33)

For 1=1 and v=0, (5.32) and (5.14) are to be used,
respectively. Now taking (5.26), introducing the re-
strictions M&2v+1, [X7 "=0 unless m) 2, applying
the recursion for C's and separating out the X farthest
to the right, by

[X"j„=[X" 'X$„= Q [X" '7„[Xj, (5.34)

we 6nd after some algebra the final recursion relation
in the abbreviated notation

3f—1

O&vr = (Pt'&K~0~ i tP Q 0&a. [X—j . (5.35)

The first term gives the ICA, Eq. (5.14); the second
term contains 0 to the lower order and [X7 which
is to be represented by (5.6) in terms of O~i({k}~),
where {k}»contains two nonzero vectors:

LXj-=&{o}I Ze' I {»,», o, "}&
~&j

XO i({k;,», 0, ~ ~ ~ }). (5 36)

Thus, in principle, the recursion (5.35) enables one to
find explicitly X and 0({k}) to any desired approxima-
tion, Now we could consider O~ as a matrix element of
a corresponding operator in the ordinary space, thus
putting

O~({k}~)—= ({k}„,0, ~
~

O~'
~ {0}), (5.37)

and try to find a recursion relation for O~'. However,
this will not be done because we show that (5.35) in
the ordinary space is exactly the general recursion de-
rived from the Bogoliubov theory.

(5.10)j. Its derivatives in the lr space are

(~"/»") ~'0(Q»v~ —s) '=vi(Z»~& —s) " "I*-+*0

(5.28)
and we notice that

&{lr}
I
[6'(+ 0) j" I {lr})=[&{lr}I 6'(+ 0) I {lr})j"

(5.29)

Hence we can interpret the 2' derivative as

&{k} I [6'(+ 0) j" I {k}&

( i)w dv —1)
(g» v;—s) '. (5.30)

VI. THE BOGOLIUBOV THEORY

This remark. able theory was proposed as early as in
1946. After having derived the set of BBGKY equa-
tions, (2.14), Bogoliubov noted that the macroscopic
transport equations are closed differential equations
for Fi(P, r, t), where in the set (2.14), B~Fi depends
on F2, 8~F2 depends on F3, etc. Next Bogoliubov con-
sidered the simple-minded expansion in powers of t

(thus around t=0) and demonstrated it to be entirely
inappropriate in case one is interested in times of much
larger order than the collision time. He then proceeded
to formulate his theory in uniquely dined mathe-
matical terms. In the Bogoliubov theory, which is
really an algorithm for approximate solution of the
BBGKY hierarchy by successive approximations, two
basic assumptions are made:

(A) F,(t) is a functional of Fi(t) and the whole
time dependence of F, is lodged in Fl's.

(B) The "boundary condition" discussed below is
satisfied; for homogeneous systems it reads

(61)
As Bogoliubov pointed out, these assumptions depend
upon (i) separation of time scales (t))t„ii;„., in the
simplest case) and (ii) weakening of correlations with
the increased spatial distance. By the latter it is meant
that as the positions ri, r2, ~ ~ ., r, in F,(xi, ~ ~, x,)
tend further and further apart, the function F, be-
comes "uncorrelated, " i.e., it approaches a product
Fi(xi) Fi(xm) ~ which represents a probability of
independent events. This is a simple and physically
quite obvious assumption. It is incorporated into (6.1)
as

S F,= exp ( rK—)F,({p;},—{r;};t)

Clearly, as v increases, positions r are separated from
one another. The boundary condition also incorporated
the causality principle by the choice of signs in r—+~,
exp ( r ~ ~ ). As ment—ioned in Sec. III, the causality
principle poses no di%culty in the "initial value prob-
lem"; here, however, one is dealing with differential
equations and at time t (as we shall see below) already
away from t=0, and some care has to be exercised.

Bogoliubov actually developed his theory in two
versions: either expansions in powers of c=XjV or
expansions in powers of X were used. The c version
was used by Bogoliubov to rederive Boltzmann equa-
tion, by Choh and Uhlenbeck" to derive the next,
ternary collision term, and was also considered by
Cohen, "who simplified the Choh and Uhlenbeck result

'3 E. G. D. Cohen, Physica 28, 1025, 104S, 1060 (1962).
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to an expression which was proven by Resibois" to be
exactly equivalent to the ternary collision term in the
I.C.A. The X expansion was used in application to
plasmas; notably Guernseys showed that it can be used
to rederive the Balescu —Lenard kinetic equation for
a homogeneous electron plasma in a positive back-
ground. The latter was obtained by Balescu~ from
Prigogine theory and independently by Lenard, ' who
solved the integral equation for the screened potential
proposed by Bogoliubov. Guernsey" also applied the
A, version in considering the two-particle correlation
function and arrived at the results identical with those
obtained from Prigogine theory by Balescu and Taylor. ~

There was one notable attempt at studying the bound-
ary condition" in which also general relations for the
c version, valid to all powers of c, have been derived.

Having in view an evaluation of the Bogoliubov
theory within the framework of the Prigogine —Resibois
general kinetic equations, we considered the ) version,
expecting the comparison to be easier because the
Prigogine theory is based on an in6nite X expansion.

Another aspect of the comparison of these theories
should also be explained. As we indicated above, the
Prigogine theory is based upon a detailed study of the
solutions of the Liouville equation; the resulting mul-
titude of terms is classified and there results a "hier-
archy of approximations. "Definite mathematical prop-
erties of the functions involved are presupposed;
however, in dealing with applications one can always
generalize a detail of the treatment or use a more gen-
eral set of equations. And the most general kinetic
equations are identities (for large isolated systems) in-
cluding every possible term in the X expansion of the
causal solution of the Liouville equation. "On the other
hand, the Bogoliubov theory does not lend itself to
generalizations. The basic assumptions (A) and. (B)
restrict the results, in words of Bogoliubov, to a "par-
ticular solution. " Once these assumptions are made
and. the mathematical formalism (unequivocally given
by Bogoliubov) is adopted, the final and most general
result (in form of kinetic equations) at which one can
possibly arrive, is set once and for all.

In view of these diGerences in the approach as well
as in view of the mathematical formulation being so
very different, we decided to study the resllts to which
Bogoliubov procedure leads, rather than discuss the
Bogoliubov assumptions. In the latter case one is led
to discuss the physical arguments which Bogoliubov
gave to make his assumptions plausible and thus to
leave the 6rm ground of mathematics for more or less
vague speculations. '~

'4 R. L. Guernsey, Boeing Laboratories Technical Report
D1—82-D083, 1960 (unpublished) .

'5 C. F. Curtiss and H. G. Hollinger, J. Chem. Phys. 32, 1386
(1960);H. S. Hollinger, ibid. 30, 3208 (1962).

~ A preliminary study indicates that one also can, for example,
study and incorporate fluctuations (by retaining terms of the
order E ') without destroying the framework of the theory.

"There has been an abundance of these in published and pre-
print literature and it is virtually impossible to quote here all
comments and remarks about the Bogoliubov theory.

(6.3)

where the variable labeled 0. is a dummy variable which
is integrated over. The assumption (A) means that
one can obtain F, by an action of an appropriate opera-
tor on Fi(t). It might be different for different s. Also,
Fi of different variables: Fi(xi, t), Fi(x2, t), ~ ~ ~ can
appear. We can write this down as

P, (t) =n.'I P, (x;, t) I. (6.4)

Also 0,' are time-independent operators. Now the
Bogoliubov expansion

p —p 0+gynp n (6.5)

is the expamsiom of the time indeperidee-t operators Q in
powers of X. For the particular case s=2, one obtains
automatically from (6.3) a X expansion of the time
derivative 8 ~F~'.

(6.6)

~o( j)=——&i'(j) pi( j)

A„(j)=cfdx 8;,P," '(J, ),

(6.7)

(6.8)

We cannot yet substitute our expansion into (6.3)
because the time derivative 8&Ii, has to be expanded
also. Bogoliubov introduced for this purpose his D
operators which allow us to write formally

8(F,=+X D F„
0

(6.9)

where D is defined by a description: differentiate (6.4)
with respect to t and substitute the X term of (6.6)
for B,pi(t) (for each j).Thus we can write:

P —Q Qgn+mD P n

0 0
(6.10)

BP," Dpi( j) 8P," ™'" =~~p(') a =&~p(') ~''-(j)
(6.11)

D.p,-=g~ '. ~ (j).
~ &Fi(i)

(6.12)

We shall give below explicit expressions for the action

'I.'herefore we derive first the most general results to
which the mathematical procedure set by Bogoliubov
can lead. We follow closely the treatment in Ref. 10,
using the same compact notation. Bogoliubov used the
1~", functions defined by (2.21) rather than f, . Then,
with the use of (2.7), the BBGKY hierarchy (2.14)
reads

S
(8,+E,') F,=ME,F,+he Cx +8;„F,+i( I SI, n),
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of D operators. Now we can use (6.5) and (6.10) in number equals the power of c. Hence a combined X

(6.3); collecting the same powers of X we arrive at the and c expansion results. It was asserted and proved
basic set of equations: by induction" that

(DO+K'') Fs'=0, (6.13) n —I
p n'= QClP nl (6.20)

n

(D +K 0) P n — Q D F n m+tlK—P n I—

+c fA g 8; P+," '((sl, ), (6.14)
ie{a}

which are solved successively as follows. Bogoliubov
chose as the zeroth approximation the factorized dis-
tribution function

P3 = Fl(hip ~) Pl(h2p ~) ' ' Fi(ha~ f) ~ (6 15)

This is a physical choice which is not necessitated
mathematically. '8 Bogoliubov showed that it is a solu-
tion of (6.13) consistent with the boundary condition
(B), Eq. (6.1). Then he showed that the solution of
an equation

(D+KO)Pn gn (6.16)

where the right-hand side is a functional of PI, is

dr exp (—rK, ')g,"

X( ~, {exp (+rK10( j))pi( j) I) (6.17)

under the boundary condition (B); g, may stand for
the right-hand side of (6.14). We now limit ourselves
to homogeneous systems in which PI depends only on

p and not on r. The general relations can be found in
Ref. 10.

Bogoliubov used (6.17) to derive the first approxi-
mation which reads

= g lI Fi(j)c dh, 8, Fp '(i, n)
ic{S}jgi

n—I
=pc' dh Q 8, Q2" '' '(i, n)F1(n)F1(i)

ie{S}

XQP, (j) g F,(p).
jQi Pe fl—I}

%hen these operations are performed and the resulting
expressions together with (6.22) are substituted into
(6.17) and (6.14), we obtain the recursion relations
determining the operators 0,"'. For l=0,

for 1&i&m—2,

g n, 0 gag g n—1,0. (6.23)

nl —p gg gn —I, l

+ dh Q 0, (Q n 1l 1Q ,—n——1,l—1(i n))
$8{8}

m' —1 m"—I—(P g g g g 6x"(m'+m", n 1)5x"—

F,"'=Q,"'({SI,{lI) p g Fi( j)Fi(n;). (6.21)
je{S}O, iaaf l}

Now the action of the D operators can be written down
explicitly. %e quote here only an example

D.P,o=D„g F,(&) = g g F,(&.)~„(')
je{S} ie{S} j&i

dr exp ( rK, ) 8K,F,—, (6.18)
m~)1 m~~)1 v~=0 v~~=0

and can be rewritten on the basis of (5.8)—(5.10) as x(1'+1",i—1)Q ~'"' Q dh 8 Q ""1""(i)n; (6.24)
ie fS}

I', '= pbE, P,0. (6.19) and for /=e —1,
On the basis of this result and of earlier calculations' '
we can assert that the operator Q, ' in (6.4) operates
on a product of FI's of diGerent variables. The latter
falls into takeo groups; the main set of s variables,
j., ~ ~, s, and a set of / additional dummy variables
which are introduced by the integral term of (6.14) or
from the action of D operators, with (6.8) and are
always integrated over. Because of the factor Xc in
(6.3) here can be at most i=n 1of them —and their

"That .is, once the boundary condition has been accepted and
it has been "split" into: exp (—rE')F'~F&(x, t) ~ ~ ~ FI(x, t)
and exp (—vE') F,"~0 for each rl, , there is not much choice and
(6.18) seems to be unique. But to say that one derives (6.18) is
to put the cart before the horse; we take the boundary condition
(8) with the "uncorrelated" F, as a product and we split it as
above just because me mast the zeroth approximation to be a
product, on basis of physics and experience of known kinetic
equations, such as Boltzmann equation.

n, I o=6&Z., (6.26)

and all 0,"' operators can be determined successively.
They are essentially sums of various products of (P

and of 0;;. It is instructive to consider the triangular
table (Table I) resulting from allowed powers of X and
c. The outmost left column (l=0) corresponds to suc-
cessive approximations to the evolution of s particles by
themselves. More and more dummy variables, repre-
senting the scattering at given s points of the phase
space with particles of the medium (hence powers of c),

Q nn 1—(p , —
dh g g, (Q n l, l 1Q—n l, l—1—(i n))—

iefS}

(6.25)
The starting equation is
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Tsazx I. A schematic representation of 0,"' and its recursion
relations. Similarly gridded terms (boxes) are related by the
indicated recursion relations.

O l 2P-. .
p 00 CK

kx

h&

(t.23 ta, 24) f 6.25)

are involved, as we move to the right of the table. The
terms with maximum / for given m, i.e., X"+'c" are the
ones retained in the Balescu —Lenard equation which de-
scribed the collective motion of an electron gas. It is
interesting to note that for these two opposite limiting
cases separate recursions exist. Also a glance at (6.25)
shows that it is indeed not very easy to generalize
the Bogoliubov —Lenard' result, as pointed out by
Guernsey, by trying to include some more terms, for
instance X"+'c". Then we see that, to take an example,
the recursion for 0,4 ' involves the 0's with superscripts
(3, 2), (3, 1), (2, 1), (1, 0)—in this case all lower
0 s, and the simplicity of (6.25) is entirely lost.

Also the two separate recursions do not alter the
sequence of propagators and 0 operators, which is the
same as in C(z=+i0) or fe(z=+i0), i.e., (P8(P8(P8 ~ ~ ~ .
The recursion (6.24) alters this sequence through the
second term of it. Now if we drop this term from the
recursion, the resulting recursions are very similar
to the ICA recursions we derived from Prigogine theory
in Sec. V. Indeed it is not difficult to show that they
are exactly equivalent provided

S

dp" 'ps=II Fr(p t).
j=l

(6.27)

and the left-hand side integral annihilates the super-
Quous Fl's of X—s—/ variables on which H," does not
act. Then we And for II," exactly the earlier recursion
(5.20), the starting point being

II,'=n, i o=o sE„ (6.29)

and the zeroth approximation F,' as before being given
by (6.15) which makes the agreement complete:

(6.30)

That is, the VDF is assumed factorizable. Thus we can
define II,"by

n—l s+l
dp~ a;p, =g -c'n, - lI F,(j), (6.2g)

the Bogoliubov theory' Therefore, now reversing the
argument, the simplified recursion (6.24) together with
(6.23) and (6.25), lead to kinetic equations

8rpo=i4's(0) Po (5.2)

dx 8,,0s""""Fi(i) Fr(cr) lI Fr(P), (6.31)
Pe() II)

is nothing else than a term in the expansion of 8,Fr(i)
in double series lt "i"". It corresponds to LX7 "+r
further expanded in a power series of c. The erst part
of the considered term is similarly a term in the c ex-
pansion of O~ . And the rest of our recursions has
been shown to correspond to ICA to which corresponds
(in the abbreviated notation) the first term of the
right-hand side of (5.35). Thus the structure of these
recursions, (6.23)-(6.25) and (5.35) is essentially the
same. The details of algebra showing their exact identity
is based on the following observations. (a) The inter-
rnediate Fourier state between O~ and LX7~ must
be zero, by the very definitions of O and X (cf. (5.23) 7.
(b) Although Xpe(t) is equal to 8&ps which contains
many derivatives 8&Fr( j), there is an implicit restric-
tion following from integration over X—s momenta
in calculating any RDF F„namely that any term
8&F(j) will vanish upon this integration unless the
variable j is operated upon before the integration or
it belongs to the final set {s}of variables which will
not be integrated upon. In the diagram language we
are restricted to semiconnected diagrams. Thus, as-
suming again (6.2/), we rewrite (5.35) as follows:

M—l—fP g Osr g &rFr( j) P Fr(t) (6.32)
m=2 jefS) )y4j

E.{S)

where {S} stands for the set of variable labels appear-
ing in Osr at least once plus the set of {s}variables

» The approxilIIation is

p"({k},t) =C({k},{0};+i0) p (t) (5.5)

We proceed now to show that (6.23), (6.25), and the
complete recursion (6.24) lead to the complete Mar-
kovian kinetic equation for the VDF (5.1) {i.e., (4.15)7
and to the full expression (5.5) for p" Li.e., (5.22)—
(5.24) 7 instead.

We note that the only difference with the ICA re-
cursion is the presence of the second term of (6.24).
The latter is composed of two terms which are similar
to the second term of the recursion (5.35) derived in
Sec. V. Indeed the second term, when allowed to operate
on the corresponding product is Ii's;

Thus the ICA corresponds to an approximation toitlnn for every I, in the right-hand side of (6.14).
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whose 3-vector projections into the p space will not
be integrated over. (c) The powers of c can be hidden
formally by the same device we used in (6.28). Then
the second term of (6.24) takes the appearance of the
second term in (6.32) and the identity of (6.32) and
combined (6.23)—(6.25) is apparent.

VII. DISCUSSION

To summarize the result; the set of Prigogine-
Resibois Markovian equations reads

a,po ——Xpo(t) (x=—~g), (4.15)

p({&j ~) =p'({&},~)+p"({&j,i), (41o)

(~&+iZ~ivi) p ({k} i) =X(i ).tl lp ({k},&), (4 16)

and also

ln dr (B) (7.3)

together with

dP (~) =II P (P
j=1

the following system of equations results:

~spo= Xpo

p"({k},t) = dr8({k},{0};r)po(i —r).

(6.27)

(4.15)

(5 4)

This system was shown to be strictly equivalent to the

pa"= g 8({kj, {k'j;r) p'({k'};i r) dr. —(4.13)
0 f&I)

When the following simplifying assumptions are in-
troduced

p({k},t) =p"({k},t) (p'=0) (A); (7.1)

hence

Z ~({kj {k'} ) &({kj,{o} ) (72)

Bogoliubov theory carried on to all powers of X in a
most general way.

It is not very easy to assert the validity of the
simplifying assumptions precisely because of the gen-
erality of the Prigogine —Resibois derivations and of
the generality of our discussion. It seems clear to us
that (B) is linked to the Markovian regime; our dis-
cussion in Sec. VI shows that (B) leads to a correct
Markovian equation (4.15) and therefore it would be
inconsistent to try to keep the equation for p" more
general while agreeing to (4.15). Thus it appears that
the most serious approximation is the neglect of p'.
These Fourier coeKcients vanish as we approach the
equilibrium state and they are functionals of them-
selves at time t=0. Unfortunately, no calculation of
p' for any system has so far been made. Prigogine and
Resibois discussed. very briefly' the implications of
assumption (A), (7.1). They gave arguments that,
indeed, one can expect p' to vanish quite rapidly after
times of the order of several collision times. It should
be perhaps stressed that one cannot expect to reach
specific conclusions which would be generally valid
since the relaxation times as vrell as all other relevant
quantities depend crucially on the intermolecular force
potential. The validity of the reduction to a Markovian
system of equations may depend very strongly on the
particulars of the system under consideration and on
the initial conditions; the latter are expressed by the
destruction term D in the general equation (4.9), and
it remains to be checked in each case whether really
in the physical problem considered D(t) is negligible.
However, we have shown in full generality that if
these assumptions can be made, then the resulting
equations are identical whether arrived at from either
the Prigogine —Resibois of the Bogoliubov theory. Con-
versely, our considerations show the extent of validity
of the Bogoliubov theory in precise terms. The extent
to which the physical conditions underlying "the
Bogoliubov regime" (4.15), (5.4) are verified can be
calculated or estimated in quantitative terms by making
recourse to the more general Prigogine —Resibois kinetic
equations, of which the Bogoliubov kinetic equations
will be a particular case in any situation.


