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It is shown that an earlier study by Hamilton and Woolcock of fixed momentum-transfer dispersion relations may be
complemented by a study of fixed energy dispersion relations. Two main results are obtained. First, by demanding that
the two types of relation give the same value for the amplitude, nontrivial restrictions are obtained on the amplitude
(the fo N N—cou—pling constants and the values of certain integrals over the high-energy sN amplitude are obtained).
Secondly, the fixed energy relation enables one to discuss quantitatively the validity of the" CGLN" approximate method
which Hamilton and Woolcock had used to calculate the partial-wave amplitudes at low energies from the fixed momentum-
transfer dispersion relation alone. The terms neglected by this approximation are evaluated, and found to be large except
at low energies (the authors had themselves suggested that this might be the case). Even when these terms are included,
undesirable cancellations occur, and the conclusion in fact is that fixed variable relations are not suitable for calculating
the partial-wave amplitudes (except at low energies), but only for providing sum rules.
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INTRODUCTION

The starting point for this article is formed by some
previous work of Hamilton and Woolcock. ' In that
work, the authors made a thorough numerical and
theoretical investigation of the 6xed momentum-
transfer dispersion relations for the pion —nucleon
scattering amplitudes. We show in this article that a

*This work was done at University College, London, England.
' J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 137

(1963) {tobe referred to as "H.W.").See also W. S. Woolcock,
Ph. D. thesis, University of Cambridge {unpublished).

similar study of fixed energy dispersion relations com-
plements the study of 6xed momentum-transfer dis-
persion relations in a very satisfactory way.

The idea of Hamilton and Woolcock was to obtain ac-
curate values of the pion —nucleon coupling constant, the
s- and p-wave scattering lengths, and even the s- and
p-wave amplitudes at energies above threshold using
as input data only a knowledge of the resorIant par-
tial waves and the total cross section, plus a roggh
idea of the other partial waves. We are willing to
assume all this, and in addition to use a knowledge of
the amplitude in the crossed channel (srsr~NN), so
that the 6xed energy dispersion relation may be used.
Using this knowledge we shall on the one hand obtain
new results (the fs N Ncoupli—ng —constants and the
values of certain integrals over the high-energy pion—
nucleon scattering amplitudes), and on the other hand
provide a critique of the H.W. calculation of the
partial-wave amplitudes.

This calculation of the partial-wave amplitudes
used the "CGLN" method, ' which basically uses a
truncated Taylor series in momentum transfer. We
shall show that: (i) the evaluation by H. W. of this
truncated series contained rather large errors, the
correction of which tends to morserI, their agreement
with experiment; (ii) the fixed energy dispersion
relation provides a means of calculating the remainder
to this truncated series; (iii) when this remainder is
included, the agreement with experiment is largely
restored, but there is a rather large cancellation be-
tween the truncated series and its remainder and the
conclusion is that the "GGLN" approach is not very
good except at low energies.

It should be emphasized that the calculation of the
partial-wave amplitudes was the least reliable part of
the work of H. W. , and that their values for the coupling
constant and the scattering lengths (except possibly
the p&+l scattering lengths) are unchanged.

2 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Narnbu,
Phys. Rev. 106, 1337 {1957).
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1
G(st) =— ,Im G(st')

dt +gp stt' —tnearby cuts (at fixed a)

where now gs is slowly v&tryimg with respect to t Thus.
one relation contains an unknown term rapidly varying
in t only, whereas the other contains a similar term
rapidly varying in s only, and it becomes eminently
reasonable that where one fails the other may succeed.

In Sec. 1 the notation is introduced, and the basic
dispersion relations are presented. The number of
subtractions needed is investigated, and the rather
troublesome question of the regions of convergence
of the partial-wave expansions for the absorbtive parts
is considered: a figure showing these regions in the
s—t plane is given, which it is hoped will clarify the
situation. In Sec. 2 the input data to be used (i.e.,
the first few partial waves in each channel) are pre-
sented.

In Sec. 3, the new results mentioned above are
obtained, essentially by equating the 6xed energy and
fixed momentum-transfer relations, and in Sec. 4 the
new results are used to correct the H. W. evaluation
of the truncated Taylor series mentioned above.
Finally in Sec. 5 it is shown how the 6xed energy
relations enable one to calculate the remainder to this
series, and it is also shown that an alternative method
of doing this due to Atkinson' does not give good results
in practice.

SECTlON 1

1.1. Notation and Kinematics

The units are such that pion mass p=h, =c=1.
The nucleon mass is then 6.72 and the threshold s value
(M+tr)'=59. 6 60. The standard variables s, t, and
I are used, which are the total four-momentum squared
in channels 1 (prX scattering), 2 (prpr —+inst'W), and 3
(crossed prX scattering), respectively; t is also related
to the momentum-transfer in channel 1, so that it is
natural to consider s and t as the basic variables, u
being defined by the well-known relation

s+t+u= 2M'+2trs =—Z.
' D. Atkinson, Nuovo Cimento 30, 551 (I963).

This is why we said that the study of fixed energy
relations corrrptements the study of fixed momentum-
transfer relations. The complementarity is essentially
a result of one's lack of knowledge of the distant
singularities, which always arises in a dispersion rela-
tion. The Axed momentum-transfer relation will be of
the form

,Im G(s't)
G(st) =- &is +gi(st)

nearby cuts (at fixed t)

where the integral can be evaluated, but the term
gi(st), representing the distant cuts, cannot be evalu-
ated; however, since gj has no nearby cuts it will be
slowly r&aryirtg with respect to s. On the other hand, the
fixed energy relation will be of the form

The scattering is described by the usual amplitudes4

A &+& (st) = &A &+& (ut), (1a)

(W—M)' —1
Fp(st) = [—A (st) + (W+M) B(st) j,16m&'

W=+st, x= 1+t/2q'

(= cosine of barycentric scattering angle). We shall
also need the first few special cases of (3) at threshold
[A'(sp0) =c&/&tt ~, pA(spt) and similarly for Bj

[A (sp0) +8(sp0) j=47r(1+ (1/M) )&rp+, (4a)

8 (sp0) =4rr[( 1/2M) &is++2M(&rr &tr+) $ (4b)

[A'(so0)+8'(so0) 1=4rr(1+(1/M) )s&r . (4c)

The partial waves for channel 2 are denoted as usual
by f~s(t), where & refers to the nucleon helicity
states, ' rot the isospin state; this is fixed by J as a
consequence of the identity of the particles in the

' A, 8 correspond to the possibility of two spin states, (%) to
t»e two isospin states (A&=.4(+)—A( ), A&=A(+)+2A( ), and
similarly for 8).

'The connection with the other commonly used notation is as
follows: fp+p fi-i, fi ii, fr p, ~ ~ -correspond to-sii, pii, pii, dir, ~ ~ ~,
and fp+&, fi 1, fr+i, fr P ~ ~ correspond to sii, Pn, Pip, &tip ~

means that the niicleons have the same and opposite
helicities, respectively.

and in addition we define a third pair of amplitudes

F&+&(st) =A&+&(st)+[M(s —u)/(4M' —t) jB&+&(st)

= +F&+&(ut) . (2)
The crossing relations (1) imply that at the point

s= u, 8&+'= A & ) =0. Hence it is useful to define

B&+&(st) = 8&+& (st) /(s u) = +—8&+& (u, t),
A&—'(st) =A& &(st)/(s —u) =+A& &(u, t)

(remember that u=Z —s—t).
Finally, G(st) will denote any of the above ampli-

tudes when general statements are made.
The partial waves for channel 1 are denoted as usual

by'

f&
&6& (s)—exp [2ibip&+&(s) j—1

2zg

where q is the barycentric momentum,

q'(s) = [s (M+1) '][s (M—1)'j/4s

We also define h&+(s) =f&+(s)/q" and the scattering
lengths &r i~ =hr~(sp), where sp ——(M+1) ', i.e., the
threshold value of s. The connection between fr~ and
the full amplitudes is given by

I
f&~(s) =—

I F,(st) Pi(pc)+Fr(st) Pr~, (pc) I Ch, (3)
2 —1

where

(W+M) '—1
F,(st) =

16m'' [A(st)+(W —M)8(st) j,
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initial (and final) state, being (+) for even and (—)
for odd J. The connection between f+~ and the full
amplitudes is simpler if F and 8 are used rather then
A and 8 (that is why we defined P). It is

F'+'= —Z (~+-') (8 /p') (p&1)'P ( )f+'(t), ( ')
even

B"'=8~ Z (J+s)L~(~+1)7'(pz)' '
even

XP'g(z)f (t), (Sb)

where p'= (t/4 M—'), q'= (t/4 1), —z= (s—u) /4pq
(= cosine of barycentric scattering angle in channel 2) .

4
0-

(M+1)

1.2. The Dispersion Relations

This subsection contains some essential facts about
crossing symmetry in the dispersion relations, the
number of subtractions needed and the possibility of
evaluating the dispersion relations given the first few
partial waves in each channel. It may be omitted if the
reader is prepared to take the facts on trust when they
are used later.

FIG. 1. Region of convergence of partia1-wave expansions (ex-
plained in text). Shaded regions are those regions where the par-
tial-wave expansions in channels I, P, and 3 diverge.

By using the variable co(st) =-,'(s—u) =s—M' —1+
t/2 instead of s (this merely shifts the origin of the s
plane), all the above relations can be written in the form

G( t) = d( ")Lg(~'t)/(~" —~') j,

1
G(st) =sr ' ds' Im G(s't), +,

1lf& s —s s —Q

s' —u(s't)
ds' Im G(s't), , (6)

s —s s —u

For A& ~ and B&+~, crossing symmetry requires the
opposite sign

G(st) =zr—' j.
ds' Im G(s't)

s —s s —s

ds' Im G(s't)
s —s s —u

However, Eq. (7) gives us nothing new because it
follows from Eq. (6) for 2& & and 8&+& which gives
(say for A& &)

A&—&,Im A& &(s't) s' —u(s't)
ds'

s—u s' —u(s't) (s' —s) (s' —u

ds' Im A&—&(s't) L(s' —s) (s'—u)] '.

7 Remember that I is always regarded as the subsidiary quan-
tity, zz(stl =Z s t——

a. The Basic RelatiorIs, Ignorieg SNbtractioes

All the amplitudes have cuts along oo)s) (M+1)',
o)t)4z and zzo)u) (M+1)', plus poles for 8&+& at

s=M' and I=M' with residue, for the s pole, g'=
183.9+0.6 (H.W. value). These poles will be formally
included in the cuts when dispersion relations are
written down.

Fixed t relations. For A&+), A& &, B~+&, and B( & one
has /using the notation' u —=Z —s—t, u(s't) =—Z —s' —t]

which is a standard dispersion relation in y=oP 8; this
fact is important when considering subtractions.

Fixed s relation. Here the relations for B&+~, A~ & can-
not be deducted from those for 8&+&, A. & &; this is es-
sentially because the fixed s relation does not auto-
matically satisfy crossing symmetry as does the Axed
t relation. The relations for all the amplitudes A ~+~, 8&+~,

A &
—

&, and 8&+' are of the form

, Im G(st')
G(st) = zr

—' dt'

Illl G(u z
Z —u —S)

du' ', , (8)
M& I —Q

where the + or —sign hold according to whether the
amplitude is even or odd under crossing.

b. Regi orts of Cortvergertce of the Partial 8'atze Escpartsior-ts

The absorptive parts Im G(st) are given in terms of
partial waves essentially~ by Legendre expansions

Im G(st) = Rat(s) Pt(sc) )For s) (M+1)'7,
Im G(st) = Zbz(t) Pz(z) Dor t)4j.

The regions of convergence of these expansions
follow from the Mandelstam representation"; we show
them in Fig. 1, which requires some explanation.

The figure is symmetrical under reflection at fixed t
about the line s=N, as is required by crossing. For each
of channels 1, 2, and 3 there is shown: (a) the region
where the absorbtive part; is nonzero for this channel,
i.e., the regions s) (M+1)', t)4 and u) (M+1)'

8 Proof: note that (co'—co) {co'+co)= (s'—I) (s'+u}.
~ The actual expressions, Eq. {S) and a similar one for channel

1 are more complicated, but the results stated are still true.I See Ref. 1 for channel 1, and for channel 2 see %. R. Frazer
and J. R. Fulco, Phys. Rev. 11'V, 1603 (1960).
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respectively; (b) the part of this region, indicated by
two shaded areas, where the partial-wave expansion
for the absorbtive part is divergent. Hence the region
where the absorbtive part for a particular channel is
both nonzero and calculable is given by the region

E(a) —(b) 3.
From Fig. 1 we deduce the following. For the axed

t relation, the absorbtive part is given by a convergent
partial-wave expansion, provided —26&/&4. For the
axed s relation the absorbtive part is given, on the
nearby cuts, by convergent expansions provided that
0 &s &(M+1)', this upper limit may be extended to
s (M+1)'+20 for the cut 4&f& co but rcot for the
cut (M+1)'&tc& oo so that the fixed s relation is not
useable as it stands in the physical region for mS
scattering.

c. SNbrructiort

The relations given in Sec. a above may require
subtractions. As is well-known, if, as s—+co, F(s)/s" +0-
for all n&N (but not for N&N) then N subtractions
are necessary in a dispersion relation for F(z). For the
6xed t relation, crossing allows the variable y=
(s—M' —1+1/2)' to be used, so that here if, as shoo,
G(st)/s"~0 for all N&N (but not for rs&N) (at fixed
f) N' subtractions are necessary, where N'=integral
part of N/2.

The asymptotic behavior for s &0 (t-+ oo ) and
f&0 (s~co) may be determined from unitarity be-
cause these regions are physical (see Ref. 1 for channel
1; a similar treatment for channel 2 is trivial, see
Ref. 11). However, we require the behavior for s)0
and the only approach giving results here is that of
Regge poles. "The details have been worked out for the
mÃ system by Singh and Udgaonkar, "and when they
are applied to determine the number of subtractions
needed one finds that this number decreases as s, t
decrease (for the fixed s, fixed f relations respectively).
The results may be summarized as follows.

(i) Fixed s relatioN. For all amplitudes At+& and
8&+&, Regge theory predicts the following:

80 &s &150, 2 subtractions are necessary;
25 &s &80, 1 subtraction is necessary;

s &25, 0 subtractions are necessary.

For s &0 the unitarity approach gives only the weaker
statement: 1 subtraction is SN@ciercf. In this article,
only the following will need to be assumed:

s &90, 3 subtractions sufhcient (in Sec. 5);
s &60, 1 subtraction suilicient (in Sec. 3);

so the Regge result for s &25 is not, in fact, needed.

"D. H. Lyth, Ph.D. thesis, University of London, 1964 (un-
published) .

'Although Regge poles give results conQicting with experi-
ment in channel 1, this is only in the physical region, t&0. As s,
t increase, the region of the J plane in which meromorphy need
be assumed for our purposes decreases, and, in fact, none of the
suggested modi6cations to the simple Regge theory {known to
the author) would aGect the results given here for s, t&0.

'3 V. Singh, Phys. Rev. 129, 1889 (1962).

(ii) Fixed t relafiors I.f the variable

y= (s—M' —1+t/2) s

is used:

28 &t &80, 1 subtraction necessary for 2(+), B~ ),
none for 8&+~;

t &28, 0 subtractions necessary for A&—), 8(+),
1 for g(+)

The unitarity approach gives the same result for
t &0, and, in fact, we only need the result for t~0, the
other results merely being given for completeness.

d. The Framer Relation

OO 1 1
Irn F'+&(s't), +,

M2 s —s s —I

I'p s ds ds'.

Then a dispersion relation is written for fp+(t) /(4M' t)—
and the integration over s performed, giving

00 1 1 es(s')
Ft+&(st) =sr=' Im Pt+&(s't), +, — ds'

M2 s —s s —sc pg

16m. Im F~'(t')
+or ' dt'

(4M' —t') (t' —t)

1
ds

Sl

Im Ft+&(s't), +,
M& S —S S —Q

e.(")+z- ' Im '+F( &ts), +, — ds'
s —s s —zc pg

" 16sr Im F+'(t')
+sr', , dt'+constant, (9)4M' —f'

where the separation point st is such that only s and p
waves give appreciable contributions to Im F(sf) for
s&s~. The steps in the derivation of this equation, and
their justification, are not given here" since the relation
is only used at one point and is in any case checked
numerically.

"W. R. Frazer, Proceedsngs of the Rochesiler Conference (Uni
versity of Rochester, Rochester, New York, 1960), p. 282.

For 3&+& the axed t relation is not valid without a,

subtraction even for t&0. An alternative relation is,
however, approximately valid, that suggested by
Frazer. " The relation is simpler for the amplitude
Ft+& (since 8'+& does not require subtractions, At+&

can then be calculated without difficulty). Essentially
the idea is to subtract off the contribution of f+'(t)
to give a convergent integral:

16m
Ft+&(sf) — f~' (t)4M' —t
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TanLz II. Various sets of Im f+e(t) .

In order to evaluate the relations, one needs as input
the first few partial waves in each channel. The input
which we shall use is presented in this section.

2.1. Channel 1 Input Data

The partial waves here are obtainable directly from
experiment.

The dominant features are several well-established
resonances (pss, 180 MeV; dis, 600 MeV: Fis, 900 MeV;
Fsr, 1320 MeV) for which a delta-function approxima-
tion is adequate:

0
4.5
5.5
6.5
7.5
8.5
9.5

10.5
20.0
30.0
40.0

Set (1)

0
27.9
23.6
21.7
20.8
20.2
19.8
19.5
18.8
18.6
18.5

Set (2)

0—8.3—12.4—14.6—13.4—7.8
3.0

18.1
99.0

104.5
107.6

Set (3)

0
8.8
9.6
9.8

10.0
10.1
10.3
10.5
8.1
7.2
6.2

Imft~'(s) = (~/V. ) R.~(s—s.) (10)

with the parameters listed in Table I.
The nonresonant partial waves have negligible

imaginary parts below s 100. Hence only the p-wave
resonance contributes here and one has the important
result that the absorbtive parts are approximately
first order po-lynornials in t (p-wave dependence). For
100 &s &200 a recent analysis by Auvil and Lovelace"
may be used to give a rough estimate of the (imaginary
parts of the) nonresonant waves. Above s~200 little is
known; we shall assume only that the cut ~ &s&200
gives a slowly varying contribution and with this
assumption predictions about the amplitude in this
region will be possible.

2.2. Channel 2 Input Data

Here the region of interest (i.e., low t values) is
unphysical, but there have been several theoretical
estimates of the partial waves. For 7=1 and 2 there
are resonances, and one may use

Im f '~R+'5(t —28), (11a)

Irn f~' R '5(t—80). (11b)

E~' are not reliably known so they must be left free for
the moment. E+' are known from various sources; we
take R '=25 0 R '=15.5 (corresponding's to Ci ——

—1.0) .
For J=0, f s(t) =0 since j=0 nucleons cannot

have opposite helicities. f+ (t) has been calculated in
terms of the 7=0, 2'=0 snr phase shift (on the assump-

TAszz I. Parameters R and s„ for the approximations to the
resonant amplituties Im ft~r(s) = (n/qr) RS(s—s„).

tion that distant singularities in a dispersion relation
give slowly varying terms). 's By fitting sr' partial-
wave dispersion relations to experiment, two sets of
Im f+'(t) giving good fits were obtained; they are
given in Table II. (We are grateful to Dr. G. C. Oades
for letting us have these values. )

SECTION 3

3.1. Equating the Fixed s and Fixed t Relations

The considerations of Sec. 1 show that for 0&s&
(M+1) s and small values of t both the fixed variable
relations may be evaluated, except for distant cuts
which give terms slowly varying in either s (for the
fixed t relation) or t (for the fixed s relation). The
basic assumption of this section is that this variation is

negligibly slow, so that the dependence on s or t may be
ignored entirely. Then, by requiring that the fixed s
and 6xed t relations agree we shall obtain an equation
of the form

,Im G(s't)

nearby cuts $ S

I G
gs(s) (12)

nearby cuts

(the dependence of gi on s and. gs on t being ignored),
and we shall obtain as a consequence of this equation
the results listed at the end of the section.

Basically the plan is as follows. First, g2 is eliminated

by differentiating with respect to t at t =0, giving
(we drop the subscript on gi from now on)

n! Im G(st'), , Im Gt"& (s'0)
(+) s' s

Sr

120

150

10

12

Then, roughly speaking, we evaluate the integra»»d
obtain information about the gt"'(0), which gives the
promised restrictions on the high-energy mE scattering
amplitudes, since (if no subtraction is required)

,Im G(s't)
gt =sr' ds'

distant cuts s —s

"P.Auvil and C. Lovelace, Nuovo Cimento 33, 473 (1964).
'6 J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick,

Phys. Rev. 128, 1881 {1962).
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s=0 s=60 s=0

TABLE III. p(+) amplitude.

s= 60

and, therefore,

—1
Im G(u', Z —u' —s) —Im G(u't)

dQ—Z4100 Q—

Total

0 0009 0 0006 -'t F2 —0.0001 0.0004

0.0009 0,0006 Total 0.0005 0.0010

"'Im G(u't)
1

isa u —u

(ii) fixed s (letting the integrations go to infinity
for the moment)

Im G(st')
G(st) =m ', dt'

4

~Im G(u', Z —u' —s)
I

Mn I —I
The difference between the last terms is

&I .
Im G(u', Z —u' —s) —Im G(u't)

6=m '
M2 I —I

Below u'~100, ImG(u't) is, as we have noted, ap-
proximately a first-order polynomial in its second
argument since the dominant terms (pole and p3s
resonance) have a p-wave dependence. Hence

Irn G(u', Z —u' —s) —Im G(u', t)

(function of u') (Z—u' —s—t)

= —(function of u') (u' —u)

We can also fix the unknown fo N —N—coupling
constants, R+', which give a delta-function contribu-
tion to the t' integral in (13) with a known s dependence.

Three points must be added to the above outline:

(a) We use A. ~ &, 8&+~ since they fall off faster than
A( ~, 8(+& for large s and t.

(b) For u&3 the t' integral in (13) is so weighted
towards t 4 that the resonance approximations for the
J= 1 2 contributions to Im G(st') will hardly be good;7

hence the equation will only be used for e= 1, 2.
(c) A straightforward numerical evaluation of each

side, with subsequent comparison, would be very
clumsy since the poles and part of the 33 resonance
contribution are the same for both sides. Hence the
relevant terms are first canceled.

The rest of this section is devoted to the detailed
working out of the above ideas.

3.2. The Cases of B(+&, A(-&, and B( )

For these amplitudes the relations to be equated are:

(i) fixed t (the integrals can be taken up to s = 200 using
the information of Sec. 2)

"'Im G(s't)
G(st) =or—' ds'+

S S

+constant.

Hence on equating (14) and (15), and differentiating
with respect to t, the I' integrals cancel below n' 100.
After slight rearrangement, one obtains, in fact,

"Im G(st'), , "Im G(u', Z —u' —s)
— dt'+7r '

/t' —t 100 Q —I
"'Im G(s't)

ds
S S

200 ]. i
Im G(s't), +, ds'

100

+g (t) +constant. (16)
0

The two integrals of the right-hand side can easily
be evaluated in terms of the data mentioned in Sec.
The second integral on the left-hand side involves
u')100 and. Fig. 1 shows that Im G(u', Z —u' —s) is

unknown here except for s~0. Ke have calculated the
integral at s=0 and found it to give a negligable con-
tribution to all the equations below; it is assumed that
the integral can also be ignored for s&0."

The first integral on the left-hand side is assumed for
the moment to be dominated by the J=1 and 7=2
resonant contributions, Eqs. (5) and (11). Thus we
obtain, on differentiating (16) once and twice with
respect to t at t=0

c/t, m= F,(s) +g'(0), (17a)

2c/t, '= F2(s)+g"(0), (17b)

where Ii1 and Ii2 come from the integrals on the right-
h d 'd f (16) and are known. The constant c is

(—) (—} bgiven in terms of R ' for 8(+& or R+ for, 8 y
Eqs. (5), and t„ is the position of the resonance (t„=
28, 80 for J=1, 2, respectively).

Equations (17) clearly require that, for all s in the
range considered (i.e., 0 &s & (M+1)2j,

/t'= F ( )+ (o) =t./2LF ( )+g (0)j (18)

In the first row of Tables III, IV, and V we show, from
left to right: Fi(0), Fi((M+1)'), (t,/2) Fs(0), and

(t„/2) F2((M+1)'). We cannot, however, assess how
well (18) is satisfied without some idea of either the
relative magnitudes of g', g" and F1, P2 or of the value
of c.

TABLE IV. p( ) amplitude.

s=0 s=60 s=0 s=60

Total

—0 ' 002 —0.004

—0.004 —0.006

-'t, Pg —0.003 —0.002

Total —0.006 —0.005

"The denominater increases and there seems no reason w y
Im G should increase rapidly.
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Case of B&+&

Here we do not know c, but a rough estimate of g',
g" is possible. A rough estimate of Im8&+&(st) for
s) 200 has been made by H. W.,' so using

obtains at s=185 and t=0

Im A'= —0.44,

Im 8'= 0.065,

Im A"= —0.010,

Im 8"=0.0014.

c& i'~—0.0025

b(-)'=0.10

a&-)"=—0.00020

b(-~"=0.012.

(20)

(21)

Using these values, Fi(s)+g' and -',t„(Fs(s)+g") are
shown in the second row of Tables IV and V. The
equality (18) is seen to be quite well satisfied.

Estimate of a& & and b& & Ising Im A& & and Im8& &

H. W. assumed that Im A&—) =Im 8& '=0 for
s) 200 (except in one case which does not concern us).
However, the Auvil —Lovelace analysis" gave quite
large values for these quantities at s=185; after
subtracting out the resonance contribution of f,r one

spp (s' —s) (s' —I)
one obtains the order-of-magnitude predictions

5&+&'(0) 0.00005, 5&+&"(0)~0.00001. (19)

Looking at Table III, we see that 5&+&' is negligible
compared with Fi(s). Fi is roughly constant, so the
first equality of (18) is approximately satisfied with
c/t, s~0. 00075. Using this value the second equality
of (18) requires that b"=0.000015 )taking the average
value for Fs(s) j, which is in approximate agreement
with the value (19).

In the second row of Table III are shown, from left
to right; Fi(0)+g', Fi((M+1)')+g', t,/2$Fs(0) +g"j,
t„/2$Fs((M+1)')+g"j. The equality (18) is quite
well satis6ed, and taking the average value of c gives
6n ally

R '=0.7&0.2

Lwith Im f '(t) =R 'b(t —t,)j.
Cases of A & &, 8& &

Here c is known because R+' are known (Sec. 3).
Using Eqs. (5) and (11) we obtain c/t„'= —0.0055 for
P& & and +0.19 for 8& &. The equality (18) together
with the values for Iij, Ii2 given in the 6rst row of
Tables IV and V now requires Ltaking average values
for Fi(s), Fs(s) )

Now 6(—) and b& ) are given by

" Im A& &(s't)
g& &(t) =sr ', , ds'

happ (s'—s) (s'—I)

b&-&(t) =~-'
200

1 1
Im 8& &(s't), +, ds'.

s —s s —I

Summary of this Subsection

The requirements that the fixed s and 6xed t rela-
tions should agree for 8(+), A( ), and 8( ), and that
Im 6 in channel 2 should be dominated by the J=1
and 2 resonances leads to the equality (18). The
equality is quite well satisfied with values of g' and
g" compatible with what is known of high-energy mE
scattering, and with values of c compatible with the
known amplitudes Im f+'(t) . We also predict that
R s=0.7&0.2 where Imfs ~R sb(t —80).

In the next subsection, a study of A'+) will yield a
value for E+' also.

3.3. The Amplitude A(+)

The 6rst integral is well convergent. Taking Im A~
constant, and using the Auvil —Lovelace values one
obtains

~'-—0.002,

a"~—0.0001,

which are in satisfactory agreement with the values
(20), obtained by entirely different considerations.
The second integral diverges logarithmically if Im 8
is assumed constant, so it depends sensitively on the
manner in which Im8 approaches zero. However, if
the Auvil —Lovelace values were heM constant up to a
cutoff at s'~1000, order of magnitude agreement with
(21) would be obtained.

Fairly recently h&, 9 and h3,» resonances have been
suggested around 28eV.' However, even if purely
elastic these would only give contributions of —0.001,
—0.00005, —0.015, and 0.0007 to a', a", b', and b",
respectively, which are not large enough to allow
anything to be said concerning the existence of these
resonances.

TAar, E V. 8( ) amplitude.

s=O s=60 s= 60

Here the Frazer relation (9) is used instead of the
fixed t relation. The Frazer relation is for Ii(+&, and
A&+' may be calculated from this relation and the
unsubtracted fixed t relation for 8(+), using

Total

0.08 O. ii
0.18 0.21 Total 0.20 0.17

0.036 0.003 g = F PM(s I)/(4M—' t) jf—l-
es A. Diddens, E. Jenkins, T. Kycia, and K, Riley, Phys. Rev.

Letters 10, 262 (1963).
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1.D-

0
0

I

60 s

Fzo. 2. X(s) and I.(s). E I"~, L= t,F—p/2—

One obtains, after some cancellation,

1
Im A(s't), +,

$ —s s —I
si

A&+&(st) =sr ' ds
(3II+1)2

1 1 Qp(s')
+sr ' Im F(s't), +, — ds'

s s s Q ptj

M(s —u), , 1 1
Im B(s't)4'—t s —s s —Q

" 16m Im F+'(t')
dt'+constant.

4M' t' t' t— — (22)

Upon equating this relation with the Axed s relation,
the low-energy I' integrals cancel as before, and so do
the contributions from Imf~P(t'). One thus ends up
with relations similar to (17) above. "

Im A &+& (st')
sr ' „dt'=Fg(s),

2 Im A&+& (st') dt'= Fp(s).
7r t'3

Im A. means Im A with the s-wave contribution
L16~ Im F~P/(4M' —t) ) subtracted out. As before
P& and P2 may be calculated except for the I' integra-
tion in channel 3, which is only calculable at S~O.

In Fig. 2 are shown F~(s) and t„/2F2(s), with. t,=80
and si=100.2' The channel 3 integral has been set
equal to zero; the arrow indicates its contribution
to Pi at S=O, and its contribution to P2 is negligable
at s=0. It is seen that F, and t„/2F2 are approximately

' There are no terms like g', g" in (36) since order-of-magnitude
estimates predict that they are negligible.

"The separation point sI may be taken anywhere between the
first and second resonances (at s=80, 120) without altering the
results very much.

equal, hence we can predid that

Im A (st') a(s) 5(t'—80) .

Assuming that the 7=2 contribution dominates as
before, Eqs. (2), (5a), (5b) and (11) give tt(s) in
terms of R+' and IL'. The dotted line in Fig. 2 shows

a(s)/t, ' with R 2 fixed at the value of the last sub-
section (R '=0.7) and R~' fixed to give a best fit,
R+' ——8.5. The error bars show the change caused by a
20% change in KP; a similar change in R ' would
have a much smaller eRect. H a diRerent partial wave
had been assumed to dominate, or if t„had been
greatly altered, the 6t would have been worse, so we
have in fact predicted that

Im F~'= R~'S(t t„), —

R+'~8.5+2,

R '~0.7&0.2,

with

80.

The only other estimates of R~' are due to Kane and
Spearman" (R '~R '~1.0) and G. C. Oades"
(R ' 0.3), but both these estimates involved the
use of the partial-wave expansion for 3, 8 in terms of
P+ at points far outside its region of convergence, and
the 6rst estimate did not clearly isolate the eRect of
the Po resonance from other possible eRects.

A Check Oe the Praser Relation

The accurate scattering lengths obtained in
Ref. 1 give, via Eqs. (4), an accurate value for
F&+&'((&+1)', 0). On the other hand, the Frazer
equation also gives a value, in terms of known channel
1 integrals and Imf+'(t). Equating these two values
gives

16sr Im f+'(t')
(4M' —t') (t' —t)

The sets of values (1) and (2) of Table II give for this
integral the values 0.58 and 0.45. The agreement gives
added confidence both in the sets (1) and (2) and in the
Frazer relation.

3.4. Summary of the NumericaI Results of Sec. 3

Defining

Im G(s't)
g(t) =~—', , ds',

ppp (s' —s) (s' —tt)

I
g(t) =sr ' Im G(s't), +, ds'

2CO s —$ $ —I
)roughly independent of s for 0 &s &(M+1)21, we

"G. L. Kane and T. D. Spearman, Phys. Rev. Letters ll, 45
I', 1963).

~~ G. C. Oades, Phys. Rev. 132, 1277 (1963).
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have obtained

5&+&"(0)~0.000015,

a&
—&'(0) ~—0.0025,

a& &"(0)~—0.00020,

b&
—"(0)~0.10,

b' &"(0) ~0.012.

SECTION 4

4.1. The Hamilton-Woolcock Calculation of the
Partial Waves

The rest of this article consists essentially of a dis-
scusion of the H.W. calculation Inentioned in the
Introduction. It is of interest because that calculation
required no knowledge of the channel 2 (mr +E1V)—
amplitude (it essentially used the "CGLN" method,
proposed by Chew et u/. ' in the 6rst-ever application
of dispersion relations to the pion —nucleon problem),
and yet it appeared to give good results.

However, as H.W. pointed out, the results may be
subject to large errors except at low energies. Our
conclusion is that these errors are indeed present, and
that, therefore, the "CGLN" method is not reliable
except at low energies; furthermore, even when the
method is modified by using a knowledge of the ampli-
tude in channel 2 (trn —+%1&&r), so as to give agreement
with experiment up to higher energies, undesirable
cancellations occur. It may fairly be said, therefore,
that single-variable dispersion relations are not suitable
for discussing the partial waves except at low energies,
and that their principle role in a complete theory
would be to provide sins rules of the type used by
H.W. in Ref. 1 and by us in Sec. 3.

As was mentioned in the Introduction, H.W. used a

In addition we have obtained16, , dt'=0. 5&0.1,
Im f+'(t')

4M' t' —t"

R+.'——8.5,

R '=0.7
with

Im f~'= R~'8(t —80) .

Finally we shall need a value for A &+&&'& ((M+1) ', 0)
in terms of Im f~' Eith.er the 6xed s or the Frazer
relation gives

A &+'"((M+1)' 0)= (0.009&0.010)

2 167r Im f+'(t')
(4M' —t') t"

where the large error on the first term is due to a
cancellation at large quantities; however, the second
term is almost certainly dominant.

Taylor series

G(st) ~G(s0) +tG'(s0) +-', t'G" (s0) . (23)

Error may occur, therefore, either from an incorrect
evaluation of this series D.e., incorrect values for the
G&"' (s0) j, or from the neglected remainder term
being large. In this section we investigate the errors
from the first source, and show that the improvement
of the H.W. values for G&"&(s0) makes the agreement
of the H.W. results with experiment worse rather
than better. Then in the next section we show how to
calculate the remainder and restore to a large extent
the agreement with experiment.

G(st) =G((M+1)', t)+m ' Im G(s't)

1X, +, ds .s' —s s' —u s' —(M+1)' s' —L(M —1)'—t)

However, there is a complication in the (—) case.
The s- and p-wave scattering lengths had been calcu-
lated by making a least-squares fit to several relations
involving them; one of these relations was the umslb-
tracted fixed t relation

G((M+1)' t)=s. ' Im G(s't)

1X, +, ds .s' —(M+1)' s' —L(M —1)'—tj
Now in the case of the p& & scattering lengths this was in
fact the most important piece of data. Hence it is true
for our purposes to say that A~ &, A~ ~', and 8& ~ were
calculated by H.W. from Neslbtracted relations, except
that the combination LA& &(s0)+8& &(s0)$ at s=
(M+1) ', which is proportioned to the s-wave scattering
length, was known from other sources.

In the case of A~ ~", B~+&', and 8&+'", an unsub-
tracted relation was used since no accurate information
was available with which to make a subtraction.

"In the case of A~+)' the value of 8&+)' is also required; the
value obtained from. f.he unsubtracted relation is used.

4.2. The H.W. Calculation of the G&"&(s0)

H.W. used a fixed t dispersion relation, making sub-
tractions for some amplitudes but not for others. We
discuss the question of subtractions first, then we dis-
cuss the evaluation of the dispersion integrals.

a. The Question of Subtractions

In the case of A'"', A &+&', and 8&+& the s- and p-wave
scattering lengths which H.W. had already calculated
were used to calculate the values of the amplitudes at
s=(M+1)' using Eq. (4)." Using these values, the
amplitudes were then calculated from the subtracted
relation (for A&+&, A&

—
&, 8&+&, and 8& &)
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In the case of A~+)" also there was no accurate in-
formation, but since the A&+~ amplitude requires a
subtraction H.W. were forced to make one. The
subtraction constant was estimated roughly using the
available data on d waves at 310-MeV pion lab energy;
however, H. 'tA'. emphasized that this procedure was
liable to serious error.

b. The Accuracy of the Dispersion Integral

The H.%. evaluation of the dispersion integrals was
probably substantially correct" except that in the (—)
isospin case Im G(st) was set equal to zero for s) 200
Since H.W. used (actually or effectively) unsub-
tracted relations for the (—) case, this means that they
electively used our relation

200

G&
—

&(st) =sr ' Im G&
—&(s't), +, +g(t)

3f2 S —S S —I
with g(t) =0, except that the combination L4Ma& &(0) +
b& &(0)j was known from the s-wave scattering length.
LNote that s—u=4M at the point (s= (M+1)', t=0).j

4.3. Corrections to the G&"& (s0)

From the above discussion, two main errors seem
likely in the H.W. evaluation of the quantities G&"&(s0):
first, A&+&"(s, 0) may be in error by a constant term
since the subtraction constant was unreliable; second,
the ( —) amplitudes may have appreciable errors
coming from setting g& &(t) =0. Our work of Sec. 3
enables these errors to be corrected.

a. Case of A&+&"

Here we need an independent estimate of

A&+&"((M+1)', 0)
to check the H. W. value. This is provided by the
analysis of Sec. 3 which gave

A &+&"((M+1)', 0) (~0 009&0.010).
2 16m Im +' t'

dt )(4M' —t') t's

where the large error was caused by a cancellation of
large quantities. The integral is unfortunately strongly
dependent on the set of values used for Imf+'(t);
we obtain A&+&"((M+1)', 0)=0.14, 0.02 using sets
(1) and (2) of Table II. However, the H.W. value
was —0.056, and no set of Imf~'(t) allowed by the
analysis of Ref. 16 will produce this value; hence the
II.W. ealue of A&+&"(s, 0) must be increased by a con
stant amount, probably about 0.1 to 0.2.

b The (—). Amplitudes

The corrections to be made to the (—) amplitudes
due to the neglect of high-energy integrals are

hA& &(st) =(s—u)a& &(t),

DB& &(st) =b& &(t),

2 With the exception mentioned in footnote 26.

4.4. The Effect on the Partial Waves of the Corrections
to the G'"&(s0)

Having calculated the 6'"), H.W. calculated the
partial waves using the Taylor series (23) and the
projection formulas (3)."H.W. give results only for
s and p waves up to s=70 (100 MeV) and s=90
(300 MeV) for the (+) and (—) cases, respectively.
This was because they rightly considered the truncated
Taylor series to be unreliable for the other cases (see
5.1 below). However we shall be calculating the re-

l& Re ho+

./
/

b)~j
/

~3 /
/

0

-.2
0 100

d) c)
L.S. FIT (l)

i L.S. FIT(3)

PION LAB.
ENERGY
(Mev)

300

Fxo. 3. ho+&+&(s). (a), (h), (c), and (d) have the meanings
assigned in Table Vl. Experimental points are taken from Ref. 28
at 100 MeV, and Ref. 29 at 310 MeV.

~ One obtains the series

f&~ (s) = X Lc&~"(s) F&&"&(s0) +d&p" (s) 1's&'"& (s0) g
0

(with fairly simple coeKcients t, l+", dl+") already obtained using
slightly different considerations by Chew et al. (Ref. 2). H.W. set
P~(@=0, but this makes a negligible difference.

except that one must have ALA& &(s0)+B& &(s0) j=0
for s=(M+1)', to preserve the s-wave scattering
length. Vsing the values of a( )', b|: ", a' '", and b' )"
obtained in Sec. 3, one thus obtains

AB& &(s0) =b& &(0),

DB& &'(s0) =0.10,

AB& &"(s0) =0.012,

AA& &(s0) =—
I (2s—Z)/4Mjb& &(0),

AA& &'(s0) =a& '(0) —0.0025(2s—Z),

t&&A & &"(s0) = —0.0025—0.0004(2s—2) .

a& & (0) and b& & (0) are unknown, but a connection can
be established between them since the total cross
section is quite well-known to high energies. This
enables one to estimate" that

a& &(0)+b& &(0)/4M 0.008.

Hence b& ) may be eliminated from the above equations.
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Fro. 6. he+& &(s). (a), (b), (c), and (d) have the meanings
assigned in Table VII. Experimental points are as in Fig. 3.

Fro. 4. hz &+& (s) (see Fig. 3 for explanation).

mainder term, so we give s, p, d, and f waves, up to
s=90 for both (+) and (—) cases. In the cases where
H.%. did not give results, we have calculated them
using the values for G&"& (s0) given in Woolcock's
thesis. '

The s- and p-wave" results are given in Figs. (3)-(8)
Lcurve (a) ) and those for d and f waves at s=90'r in
Tables VI and VII Lrow (a) j." "

Next, we show in curves and rows (b) the corrections
to the ht~ coming from the corrections to the G&"&(s0)

given in the last subsection, using the value 0.14 for
A&+&"(s&&, 0) (that obtained using column 2 of Table

II) and setting &t& & =0 for the moment. The corrections
are seen to destroy the agreement with experiment
for s and p waves; furthermore, the s waves especially
are seen to be very sensitive to these comparatively
small corrections Lthe situation for the (—) case is
worse than it looks because the various corrections
tend to cancelj, so the method already begins to look
rather dangerous. Also in the (+) case the results are
much too large, indicating that the remainder term
is going to tend to cancel the truncated series; this is
to be expected according to the discussion of 5.1 below,
but is a further objection to the method.

SECTION 5

5.1. Qualitative Discussion of the Remainder Term

.16-

.14-

.12.04

.02-

—.02-

-.04-

—.05
0

PION LAB.
ENERGY
(Mev)

300

s

a)

L.S.FIT(3)
L.S.FIT (1)

TOTAL

100 200

The results for the partial waves given by the
truncated Taylor series alone may now be obtained

by adding curves or rows (a) and (b) of the figures
and tables. The qualitative features are the same as
those shown by (a) alone (H.W. result), namely that
there is fair agreement with experiment at s=70,

tl Rgh', '

.02-

.01-

Fro. 5. tzz+&+& (s) (see Fig. 3 for explanation).

'0 In the case of h~ (+& there is an additional source of error in
the H.W. calculation due to the neglect of the rapidly varying
Im fz t(s) in calculating the G&"&(s0). This has been corrected
for (see Ref. 11 for details and the reason why probably only
hI t'+& will be aft'ected).

"No comparison with experiment is possible for s&90.
'8 D. Edmonds, S. Frank, and J. Holt, Proc. Phys. Soc. (Lon-

don) 73, 856 (1959); also D. Edwards and T. Massam (private
communication to J. Hamilton, quoted in H.W.).

'90. Vik and H. Rugge, Phys. Rev. 129, 2311 (1963).
30 P. Auvil, A. Donnachie, C. Lovelace, and A. T. I.ea (to be

published) .

—.01-

PION LAB.
ENERGY

(MeV)

0 100 200 300

Fro. 7. itz & & (s) (see Fig. 6 for explanation).
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l~-Re h';,'

a

.075-

.050-

.025-

tributej. Hence lo is effectively ~28 and the series
should give reasonable results for q' &7, i.e., s &90, as is
indeed observed.

This discussion suggests that the way to calculate the
remainder to the truncated series is to consider the
analytic properties of the amplitudes at fixed s. We
present two methods. The first (which is original)
uses an explicit knowledge of the amplitude in channel 2

and gives good results; the second (due to Atkinson' )
uses only a knowledge of the position of the nearest
singularities, but it does not give good results in
practice.

—.025-

100

Zl 4
sIM PION LAB.

ENERGY
{MeV)

3I)0200

Fin. 8. hi+I & (s) (see Fig. 6 for explanation).

—4q'& t&0.

Hence the Taylor series converges for all the f values
required provided that q'&1, i.e., s(68. If the full
series does not converge, the truncated series will

probably have a large remainder term, so this explains
why the results for the partial waves become worse
above s 70. H.W. explained the fact that the (—)
results are better than the (+) ones by noticing that
the (—) amplitudes will have a small discontinuity
across the cut t)4 below about t=28 [the position
of the resonance in f+'(t), the lowest wave to con-

TABLE VI. d and f waves at 310 MeV, (+) case. (a) Trun-
cated Taylor series using H.%'.'s G("&(s0). (b) Corrections to
truncated series arising from our correction to A(+)"(s0). (c)
Born pole contribution to remainder to Taylor series. (d) Chan-
nel 2 contribution to remainder.

104Xh, 104Xh,+ 105Xh, 10 Xh~

(a)
(b)
(c)
(d)

Total
Experiment

(Ref. 29)

—2.5
31.1

—1.6
—16.9

10.1
6.7

—7.0
31.3

—1.9
—18.4

2.0—6.5

0.6
—1 ~ 7

0.4
1.7
1.0
1.0

0
0
1.2
3.5
4.7
2.8

but that above this point the results become in-
creasingly bad, especially for the (+) case. Hamilton
and Woodcock. had already explained this state of
affairs in Ref. 1, as follows.

The full Taylor series converges for
~

1
~
&

~
Is ~, where

fs is the position of the nearest singularity of G(st) in
the t plane, at Axed s. In fact, to

——4 for all amplitudes
and all s values, so the series converge for

~

t
~
&4.

In order to calculate the partial waves one needs
G(st) for all physical t values, which are (for a given s)

co
l'+s. ' Im G(sl'), —„dh'

4
t' —t t"

1 (e—Z+s) '
+m

—' Im G(N', Z —I'—s) dQ )
M2 n' N(N—' Z+—s) '

(24)

the erst three terms constitute the truncated Taylor
series (23) and therefore the integrals must constitute
the remainder. The projection of the partial waves
may be carried out without difhculty, the denominators
(t' —I) and (I'—I) giving rise to Q functions in the
usual way.

There are three contributions to this remainder,
each of which will be considered in turn.

The pole at I,'=3P gives a small but not negligible
contribution, which is shown in Figs. 3—8 Lcurve (c))
and Tables VI and VII (row (c)j.

TABLE VII. d and f waves at 310 MeV, (—) case. (a)-(d) as
for Table VI, except (b) corrections to truncated series arising
from proposed corrections to A', A", 8', and J3"with u( ) (0) =0.

104Xh2 104Xh2+ 10Xh3 10'Xh3+

(a)
(b)
(c)
(d)

Total
Experiment

(Ref. 30)

6.7

0.8
1.6
2.8

11.9
4.7

0.9
1.3
1.9
0.8
3.8
2.6

1 ' 2
1.3

—0.4
—1 ~ 6

0.5
2.0

0
0
1 ~ 2

—0.2
—1.4—1.4

The integral u') (M+1)s causes a difhculty, since
Fig. 1 shows that the absorptive part is not given by a
convergent partial-wave expansion except for I'~

5.2. First Method of Calculating the Remainder to
the Taylor Series

This consists in noting that in the three-times sub-
tracted fixed s dispersion relation,

G(st) =G(sO) +tG'(s0) +-,'-t'G" (sO)
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(M+1) '+3 Lwe are in the region s) (M+1)'].
However the three subtractions suppress this integral,
and it will be assumed negligible. This assumption is
supported by the fact that the contributions of the
first two resonances to the (divergent) partial-wave
expansion for the absorptive part give negligable
contributions to the integral.

The irltegral t')4 can be evaluated since Fig. 1
shows that the absorptive part on the nearby part of
the cut is given by a convergent partial-wave expansion
for s &80 and hopefully for somewhat larger s values.
The contributions from Irn f+' and Im f+' affect only
the (+) (—) isospin cases, respectively; they are
shown in Figs. 3—8 )curve (d) ] and Ta,bles VI and VII
(row (d)], set (1) of Im Fe+(t) (Table II) being
taken for the moment. The contributions from Im F+o(t)
are seen to be large, and to tend to cancel the divergent
behavior of the Taylor series as is expected.

The Anal results for the partial waves are shown in
Figs. 3—8 (curve marked "TOTAL") and Tables
VI and VII. The addition of the remainder of the
truncated Taylor series has clearly improved the
results obtained by using the truncated Taylor series
alone Pi.e., the sum of curves (a) and (b)], and we
conclude, therefore, that this method of calculating the
remainder has been successful. It is shown in Sec. 5.4
that the results for s and p waves can be still further
improved by making slight changes in the Gt"&(s0),
and it is also shown there that the results are not very
different if set (2) of Im P+'(t) is used instead of
set (1).

5.3. Second Method of Calculating the Remainder

From now on G will represent any of A&+& or B&+&.

Next one transforms from the variable t to a variable

where

x= 1+t/2qs

xi——1+4/2y',

x,= 1+1Z —(M+1)'—s]/2q'.

It is then shown that the Taylor series in u for

This method was suggested by Atkinson, ' and we
refer to his paper for details. Atkinson only applied
the method to one wave $fe+& &(s)], and his result
actually contains a numerical error (Atkinson, private
communication) .

The 6rst step is to subtract out the Born term
explicitly from the 8 amplitudes, defining a quantity

1
B&+&(st) =B&+&(st) —g'

3P—s M2 —e

G(st),

G(st) =pa (s)(u"
n=0

is convergent for all values of s and t (on the physical
sheet) . This series may be rewritten

by the series

2

G(st) ~Q —G&"&(s0) t"
n=o + ~

t
(23)

G(st) QC„'(s) G&"&(s0) t"
n=O

ol

I
G(st) gC '(s) G&"&(s0) t"+g' W—,(26)

n=o M2 —s M2 —I
where the g2 term only appears of course in the B
amplitudes. The remainder to the Taylor series in this
approach is clearly given by subtracting (25) from
(26) giving

R(st) QG'"&(s0) LC '(s) —(n!) ']t"

ft' $ $ 2 ~9n 1
+g' ItM' —s M' ss „=—0 0t",=o M' —s

The term in g' is equal to the corresponding term
obtained by the first method (described in the last
section). Hence the first term should correspond to the
integral over t' in the first inethod (plus, strictly, the
integral over I' but this is probably negligible as has
been seen). The contributions to the partial waves of
this 6rst term and of the t' integral are compared in
Table VIII. For s= 70 there is complete disagreement,
and even for s=90 there is only qualitative agreement.
Looking back at Figs. 3—8 and Tables VI and VII it is
clear that if curve (row) (d) were replaced by the
corresponding term obtained from this method there
would be violent disagreement with experiment.

Thus it appears that this second method of deter-
mining the remainder to the Taylor series is not satis-
factory with this low order of truncation; it is necessary
to know more than just the first three G&"&(s0) if the
amplitude is to be determined from a knowledge of the
analytic properties alone.

G(st) = lim QCP(s)G&~&(s0) t",
N~~ n=o

where the coefficients CP(s) are known functions of s.
Atkinson now argues that since this expression con-
verges for all s and t it will be more accurate even if Ã
is kept finite than the corresponding truncated Taylor
series. Thus he replaces the series
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TAzzz VIII. Taylor series remainders (non-Born). (a) From 6xed s dispersion relation. (b) From the mapping method.
The results for h&+, h2+ and h3+ are very similar to those for h~, h2, and h3 .

(+) case,

(a)

s=70 (+) case,

(a)

s=90

(b)

(—) case,

(a)

s= 70 (—) case, s 90

(a) (b)

ho+ —0.015 0.000 —0.29 0.001 —0.007 0.017 0.023

0.006 —0.003 0.035 0.052 -0.0060 0.0012 —0.002 +0.008

104Xh2

OsXh3-

—15.0 00.5 —20

2.0 0.3
0.7

—1.4

—6.3
—0.4

2.9 2.4

scattering lengths calculated by H.W.,' all weighted
according to their quoted errors. Parameters to be
varied: the scattering lengths co+, ui, and aI+, giving
rise to variations in A, A, and 8 and hence to varia-
tions in the theoretical values of the results to be Qtted.

The partial waves obtained from this 6t are shown in
Figs. 3—8 t'curve "L.S. Fit (1)"j. There is clearly a
considerable improvement. The corresponding scatter-
ing lengths are shown in Table IX; ao+ is seen to agree
well with the H.W. calculated value, u~+ to agree
only moderately well.

So far only one set of Im f~'(l) has been used, set
(1) of Table 2. We have repeated the whole calcula-
tion using several widely diGerent sets of Imf+'(t)
(calculated by G. C. Oades' in terms of a two-param-
eter formula for the s-wave mm phase shift; we are
indebted to Dr. Oades 1'or supplying the sets) . The set
giving best values" for the least-squares Gt described
above are shown in the last column of Table II and the
results for the partial waves are shown in Figs. 3—8.
The values obtained for ao+ and aI+ are shown in
Table IX. It is seen that the improvement in the fit to
the partial waves and scattering lengths when these
new values of Im f+s(t) are used is not very great and
in fact Im f+'(l) is more likely to be given by one of
the 6rst two sets; however it is of interest that our
fixed variable approach gives results for Imf+'(t)
in at least qualitative agreement with the partial-
wave approach of Ref. f.6.

5.4. Further Improvement of the Results Obtained
in Sec. 5.2

The results of Sec. 5.2 are in Inoderate agreement
with experiment. In this subsection it is shown that if
certain small changes are made in the G&"&(sO) good
agreement can be obtained for s and p waves (leaving
the d and f waves practically unchanged). However,
since we cannot properly assess the error to which
either the G&"&(sO) or the remainder term are liable, it is
not clear whether these small changes are significant.

a. (+) Case

If the values used by H.W. for the s- and p-wave
scattering lengths (as+, ai, and at~) were in error, this
would affect their values for A, A', and B as follows:

2M+1
AAt+&(s0) =4s. has+ 2M(ha, —ha,+), —

M+1,
aA &+&'(s0) =4~

saba,

+,

2s —Z
68&+& (s0) = 4rr

4M

2M+1
X 2' lLas+ 2M (Dai —bar+)—

TAzLz X. Alterations in scattering lengths, (—) case.
TABLE IX. Alterations in scattering lengths, (+) case.

aa

and the results for the s and p partial waves would be . j—j Case
changed accordingly.

We have therefore carried out a least-squares fit as In Sec. (4.2) a& &(0) was set equal to zero. The
follows. Results to be fitted: the experimental s- and results for s and p waves using a' &(0) = —0.02 are
p-wave results at s = 70 and s = 90 and the values for the

Set (I)
Set (3)
Changes proposed in

Ref. 16
H.W'. errors

—0.003
—0.004

~ s ~

0.004

0.009
0.004

0.010
0.005

0.007
0.004

This calculation
Changes proposed in Ref. 32
H.W. errors

—0.001
0.004
0.003

—0.0008
0,0007
0.0020

0.008 3'A set which changed sign also gave a good 6t, in analogy
with set (2), but the corresponding rate of change of the wx
phase shift is so large as to be hardly acceptable physically.
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given in Figs. 3—8. The agreement with experiment is
clearly improved, but again we cannot be sure that
this is significant. The small changes32 predicted in the
p wave scattering lengths from the H.W. values are
given in Table X.

SUMMARY OF CONCLUSIONS AND RESULTS

be improved if small changes were made in the p-wave
scattering lengths (used in evaluating the truncated
Taylor series), and still further improved by using a
set of values of Im F+e(t) somewhat smaller than
those of Ref. 16;however, it was emphasized that these
improvements may not be significant.

Note added irt proof. The constants ~', defined by

Im f~'(t) ~R~'(t —80)

which we have loosely called 'the f' N N— c—oupling
constants' are more precisely given by

E~ (kinem—a—tic constant)

X (f' sr sr —cou—pling constant)

X (f' N Nco—up-ling constant)

but of course the erst two factors are known. The
first is just a matter of de6nition and the second is
known in terms of the width and elasticity of the
observed f' resonance in srsr scattering.
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In Sec. 3 the 6xed s and 6xed t relations were equated;
the assumption that distant singularities give slowly
varying terms led to Eqs. (16) in the cases of 5& &,

8(+&, and 8( ~, and to a similar equation in the case
of A&+&. The evaluation (where possible) of the inte-
grals, using the input data described in Sec. 2, led to
the results given at the end of the section for the
unknown terms in the equations (i.e., the fe N N— —

coupling constants and the integrals over the high-
energy srN amplitudes) .

In Sec. 4, the results of Sec. 3 were used to improve
the H.%. evaluation of the truncated Taylor series
(23) . The agreement of the result with experiment was
made morse by this improvement, but in Sec. 5.2 the
hitherto neglected remainder term was evaluated (by
using a fixed energy dispersion relation) and fairly
satisfactory agreement with experiment was obtained
for s and p waves up to 300-MeV pion lab. energy.

In Sec. 5.3 an alternative suggestion due to Atkinson'
for evaluating the remainder term mitholt an explicit
knowledge of the channel 2(srsr —&NN) amplitude was
shown not to give good results in practice. Finally in
Sec. 5.4 it was shown that the results of Sec. 5.2 could


