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The procedure for setting up projection operators to derive symmetrized wave functions in crystals
is discussed. This includes a description of the projection operator method, discussion of irreducible
representations, basis functions, and the multiplication table for space groups, and the application of
these methods to setting up symmetrized plane waves, and symmetrized linear combinations of
atomic orbitals, for use with the OPW and APW methods of approximating to electronic wave

functions in crystals.

1. PROJECTION OPERATORS AND
SYMMMETRIZED PLANE WAVES

The group theory is practically essential for the dis-
cussion of the symmetry of wave functions in crystals,
and yet it is not familiar enough to some of the workers
in the field for them to use it with facility. The stand-
ard treatments of the problem! are rather abstract,
and demand a good deal of knowledge of group theory.
In this paper we outline a treatment of the problem
which is direct, and requires a minimum of mathe-
matical technique. This treatment is presented in de-
tail in the text on “Quantum Theory of Molecules and
Solids” which the author is in the process of writing.?
The present paper is intended to introduce the method
in a more analytical and consecutive manner than is
used in that text, which proceeds mostly by the dis-
cussion of special cases, for pedagogic reasons.

Most treatments of the approximate solution of
Schrédinger’s equation for an electron moving in the
type of periodic potential met in a crystal expand the
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wave function as a sum of functions each of which has
the same type of symmetry as a plane wave. In the
free-electron method these are plane waves themselves;
but other methods use Bloch sums, orthogonalized
plane waves, augmented plane waves, or other types
of functions having the same symmetry behavior. It
is well known that the Hamiltonian has no nondiagonal
matrix elements between functions of different sym-
metry type. Hence if we can make linear combinations
of plane waves, or of functions with equivalent symme-
try properties, having the suitable symmetry type, we
can build up a solution of Schridinger’s equation by
combining such symmetrized functions, called symme-
trized plane waves if we are dealing with the plane-
wave case, with which we shall start our discussion.
The main use of group theory in connection with the
periodic potential problem is to show how to set up
these symmetrized functions, and to define the types
of symmetry which they can have. This involves one
in the theory of irreducible representations of groups
of operations.

The groups of operations with which we are con-
cerned in crystal problems are the space groups, con-
sisting of translations through whole numbers of lattice
spacings, plus rotations and reflections, sometimes
combined with additional so-called nonprimitive trans-
lations, all of which have the net result that if we
apply such an operation to the crystal, it is indistin-
guishable from its original form. Technically, such
operations commute with the Hamiltonian. When we
have such groups of operations commuting with the
Hamiltonian, it can be shown that any solution of
Schrodinger’s equation must have the symmetry of
one of the basis functions for one of the irreducible

_representations of the space group. Our problem, then,
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is to investigate these irreducible representations and
their symmetry properties.

The analytical statement of these facts is the fol-
lowing. Let Ry be one of the operators of the group.
Let #,F be the dth basis function for the Pth irredutible
representation of the space group. Then a new func-
tion is generated by letting R, operate on w,7; it is
denoted as Ryu¥. The statement that #,F forms a
basis function for a representation means that the
function Ryu” can be written as a linear combination



of the functions #.F, where a goes over the total set of
basis functions. The number of basis functions is known
as the order or dimensionality of the representation.
The statement we have just made is expressed in the
equation

Ryt = Z(a) I'p(Ri) attat (1)

where the quantities T'p(Ri) are the coefficients of
the linear combination. They form matrices with a
number of rows and columns equal to the dimension-
ality of the representation (the rows and columns
being denoted by e and &), and are said to form a
representation of the group. This means that if we
have three operators R;, R;, Ri of the group, such
that R;R;= Ry, then the matrix elements satisfy the
relation

2(6)Tp(R:) aolp(R;) =Tp(Ri) (2)

or the matrices multiply, by ordinary matrix multipli-
cation, the same way that the operators multiply. It
can be shown that if the #’s are solutions of Schré-
dinger’s equation, the various functions corresponding
to different values of their subscript @, but the same
P, are degenerate with each other. Hence we are led
in this way to the analog of atomic multiplets, the
dimensionality of the representation giving the num-
ber of degenerate states in the multiplet.

If one knows the representation matrices T'p(Ri) ap,
there is then a very powerful theorem which allows us
to start with any arbitrary function and produce from
it a function of the symmetry of one of the basis
functions for one of the irreducible representations of
the group. This is the method of projection operators.
The theorem is the following. We start with an arbi-
trary function ¢, operate on it with each of the opera-
tors R; of the group, and then form the linear combi-
nations of the resulting functions defined as follows:

fsf =2 (R)Tr(R)w*R, (3)

where the asterisk denotes the complex conjugate. The
theorem states that f,sf so defined forms a basis func-
tion u” for the pth irreducible representation, so that
it satisfies Eq. (1). That is, we have

R (R)Tp(R)sa*Ray
=2 (&) Te(Ri) ) (R) Tp(Rs)aa*Rep.  (4)

The proof of this equation is given, for instance, in
Ref. 2, Vol. 1, Egs. (A12-26)-(A12-34). It holds no
matter which value d has.

In order then to form symmetrized plane waves, we
need two things. We first need the matrix elements
T'p(R;)sa for the group in question. Secondly, we need
to know R#, where ¢ is a plane wave. We shall show
in the next section that Ra/ is another plane wave,
with a wave vector having a different direction from
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that of ¢, though the same magnitude, so that the
sum set up in Eq. (3) is a linear combination of plane
waves, forming the symmetrized plane wave in ques-
tion. In order to verify the correctness of an irreducible
representation, we may want to substitute into Eq.
(4). On the left of this equation we have a linear
combination of quantities RyRa/, while on the right
we have a linear combination of quantities Rgf. To
verify the correctness of this equation, we must then
be able to find the effect of two successive operations
operating on a plane wave. It is a fundamental prop-
erty of groups that such a succession of operations,
RyR;, must be one of the operations of the group, and
the statement of which operation it equals is called
the multiplication table of the group. Consequently
we wish to find the multiplication table. In the next
sections we shall go on to discuss the meaning of space
groups, their multiplication tables, and their effects
on a plane wave, so as to provide the mathematical
foundation for using the method of projection opera-
tors to set up symmetrized plane waves.

2. SPACE GROUPS AND THEIR MULTIPLICATION
TABLES

An operation of a space group consists of the com-
bination of a translation T,=1t;+nte+nst;, where
n1, 2, N3 are integers, and t;, tp, t; are the primitive
translation vectors of the Bravais lattice in question;
of a rotation, or rotation plus reflection, of the point
group characteristic of the crystal class; and, for a
nonsymmorphic space group, of a nonprimitive trans-
lation characteristic of the particular space group we
are dealing with, different for different operations of
the point group, but independent of which translation
T, we are dealing with. It is not generally realized that
these rather vague and general statements can be in-
terpreted to lead to various related, but quite different,
detailed formulations of the problem. The situation
can be greatly clarified if we understand precisely what
we mean and choose the interpretation in a particular
way.

We shall understand the operations to operate on a
function, like a Schrédinger wave function, just as the
Hamiltonian operator and other operators of wave me-
chanics do. We shall denote an operator of a space
group by a symbol {R;|T,}, where R; is one of the
operations of the point group, T, one of the transla-
tions. Then we shall postulate that

{R | Toli (w1, %, 205) =9 (a1, 2/, 25), (5)

where 1, ¥, x; are the rectangular coordinates x, y, z
of a point, so that ¥ (w1, 22, #3) is a function of the
nature of a wave function for a one-particle problem.
Here we are to understand that the quantities x,’” are
defined by the linear equations

= Z (@) ap' gt 75"+ (T) p, (6)
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where p, ¢ run from 1 to 3. In this expression, oy, are
the matrix components describing the rotation, or ro-
tation plus reflection, associated with the operation
R; of the point group. These components satisfy the
relation

(7

where (%)~ is the inverse or reciprocal matrix to «f,
so that we have the orthogonality relations

Z (S) (az) rs—“lastz: Z (S) asriastiz 5,-2

(a?) w = Upa’y

and
Z(S) arst(af) o= Z(S)arsiatsi':art» (8)

If the operation of the point group is a rotation, the
determinant of the o’s equals 1; if it is a rotation plus
a reflection the determinant is —1. The quantity 7,
in Eq. (6) is the p component of the nonprimitive
translation «? associated with the operation R; of the
point group, in the space group in question, and (T,),
is the p component of the lattice translation.

If we consider the point group only [that is, if we
set the translations «¢ and T, in Eq. (6) equal to zero],
then Eq. (6) is very close to an equation describing a
representation of the group. We can get an exact rep-
resentation by rewriting a,,’ in terms of its universe
by Eq. (7). Then we have

Rip=2x,'= Z(‘D (@) g5 tq. 9

This equation is exactly analogous to Eq. (1), with
the x,’s forming the basis functions, and the matrix
elements (a?),, ! taking the place of I'r(R;)a in Eq.
(1). Thus the three functions x;, %, %3, or x, v, z form
basis functions for a three-dimensional representation
of the point group. This representation is often re-
ducible. Thus if all rotations are around the z axis,
the function z is unchanged by the rotation, while «
and y undergo linear transformations, so that z forms
a basis function for a one-dimensional irreducible rep-
resentation, and x and y for a two-dimensional irre-
ducible representation. Since the quantities (af)g,™?
form a representation of the point group, we may
apply Eq. (2), and find

Z () (ai> o (af) = () PR

where R;R;=R;. This equation may be rewritten in
the form

(10)

Z () etsrlorng'= ctsg® (11)

which is an equation which we shall shortly wish wish
to use.

The definition of Eq. (6) is not that used by all
writers. Thus, Koster (Ref. 1) uses a definition which
essentially describes the operations by the inverse of
what we have used. At first sight this seems more
reasonable, since then it is the matrix elements ay,’

of the rotation which themselves form a representa-
tion of the point group, rather than their inverses.
Nevertheless the writer feels that the procedure which
we are adopting is more convenient than the alterna-
tive one. The reason comes from the very simple pro-
cedure which must be used to apply one of the opera-
tions to a given function. Since the point is rather
subtle, we must emphasize just what Eq. (5) means.
No matter what function ¥ we may be dealing with,
this equation means that we are to search through
this function, and every time x, appears in it, we are
to replace it by the linear combination of x;, xs, 3
defined by Eq. (6); and similarly with s, 3. This
results in a new function, {R;|T.}¥, which still is a
function of x1, a2, x3. If we wish to use two successive
operations of the space group, we apply the first one,
resulting in a transformed function of xy, x,, x5 defined
in Egs. (5) and (6); then we apply the second opera-
tion, which means that we are to search for every
time x; appears in the function {R,|T.}¢ (1, %2, 23),
and again replace it by an expression determined by
Eq. (6).

We shall now carry through these steps analytically,
so as to set up the multiplication table for the group.
We shall find {R;| T} {R;| Tn}¢¥ (%1, %2, x5). Follow-
ing the usual convention of quantum mechanics, we
first find {R; | Tn}¥ (%1, %2, %3). If we proceed as in
Egs. (5) and (6), we find

{Ri| T}y (21, @2, %) =¥ D () cag%g+ 71"+ T,
Z (7’) a2rfx,+7‘2j+ Tmﬂ, Z (S) a3sfxs+7'3j+ TmS]' ( 12)

If we wish to use matrix notation, we may set up o’
as the square matrix

o’ o’ oay?

ag’  ag! g’

az’  ag’  agy?

and r as the column vector

and similarly 7 and T,, as column vectors. Then we

may rewrite Eq. (12) in the form
{R; | Ta}¥(r) =Y &1+ 27+Tpn].

We now apply the operator {R;|T,} to this func-
tion, which means that wherever x, appears we are to
replace it by D (#) apy'®y+7pi+ Tup, Or in matrix lan-
guage we are to replace the vector r by er-++°+T,.

(12)



Hence we find
{Ri| T2} {R; | Tl (1, #s, ¥3)
=y 2 (gw) argorgut 20 (9) ng? (rgi+ Tg) +ro+ T,
5 (r0) anriarnitst 3 () ans (ryi+ Tor) +7594 T,
2 (sw) asdorn it 2 (8) etse? (rai+ Tua) + 757+ T
=¥{ () onw [ 20 () ang'rgi+ 7]
| +LE (e Tt T,
() s +[ 20 () endrei+ma]
22 (r) e Tort Toua ],
> (w) astrat-L 0 (5) assiri+7s]
() s ToetTos]},  (13)

where
apl= Z (@) apg’agu’ - (14)
or in matrix language
{Ri| ToH{ Ry | Tyl 1+ &¥(x*+T) +2/4-Ta], (13)
where
oF= alal. (14")

Now let us consider Eq. (13) or (13’). If our opera-
tors are to have a multiplication table, the argument
of the function ¢ in this equation must have the form
given by Eq. (12), or (12’), for some operator { Ry | T;}
of the group. This requires first that the quantities
> (#)ast,, etc., or ofr, occurring in Eq. (13) or
(13’), have the same form as the quantities 2 (q)oug’,,
etc., or or, found in Eq. (12) or (12’), for some
operation of the point group. To see that this is the
case, consider the a’s, which determine the point
group. The expression Y (g) apag’, or e’ai, has the
same form as the expression of Eq. (11), and by that
equation it equals a,.*, or ef, the matrix for the kth
operation of the point group, where R;R;= R;. Hence
as far as the point group is concerned, we have the
necessary conditions for the existence of a multiplica-
tion table.

' The second part of the proof must involve the state-
ment that the translations found in Eq. (13) or (13'),
which in matrix form are

(Ij( 1i+Tn) + "j+Tm1

must be of the form

(15)

<+T,, (16)

where =¥ is the nonprimitive translation associated with
the kth operation of the point group, in our definition
of the space group, as given in Eq. (5) or (12), and
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where T; is one of the lattice translations. These con-
ditions are not automatically fulfilled for any arbitrary
point group, and any arbitrary sets of primitive and
nonprimitive translations. Rather, they furnish the re-
strictions on the point groups, on the nature of the
primitive translation victors ti, t;, t;, and the non-
primitive translations +?, which limit the possible point
groups to 32, the possible Bravais translation lattices
to 14, and the possible space groups to 230. We shall
not go into these individual cases, which have been
adequately treated elsewhere (see Seitz, Ref 1). We
point out only one fact, which we shall meet later in
our discussion. If we apply in succession two opera-
tions of the space group each associated with zero
translation, so that T,=T, =0, the translation found
in Eq. (15), which will in this case have the form
o/zi+xd, can be written in the form of Eq. (16),
namely, =¢+T;;, but it does not follow that in all
cases T;; must be zero. We shall find that the values
of T;; appearing in this case are very characteristic
quantities for the description of the space groups.

3. THE ACTION OF SPACE-GROUP OPERATORS
ON PLANE WAVES

Let us now start with a plane wave, exp ik-r, where
k is the wave vector, of rectangular components #;,
ks, k3, and r is the radius vector, of components x;, x5,
x3. If we wish to use matrix notation, we must regard
k as a row vector (ki, ks, k3). We then have for the
plane wave the form

‘l/(xli %2, x3) =exp iZ(P)kPxpzexp ik-r. (17)

We now let {R;|T,} operate on this, use Eq. (12'),
and find

{R;| T.} exp ik-r=exp ik (a't+++T,)

=exp iki-r exp ik« (¢*4T,), (18)

where

ki=k o, kqi:‘ Z (P) kpatpg' (19)
Thus we see that the effect of performing the operation
{R:|T.} on the plane wave can be described in two
parts. First, it produces a new plane wave, with a
transformed wave vector whose rectangular components
are given in Eq. (19). Secondly, it multiplies by the
factor exp ik- (%4 T,), which depends on the trans-
lation.

In the transformation of Eq. (19) for finding the
transformed wave vectors, the coefficients ag,* do not
appear as they do in the expression of Eq. (6) for the
transformed coordinates. Instead of summing over the
second subscript ¢ of ay,?, as in Eq. (6), we sum over
the first, p, which is shown in the matrix form by
writing k as a row vector, and letting it precede the
square matrix «f. If we wished to regard k as a column
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rather than a row vector, we could use Eq. (10), and
write the transformation of Eg. (19) in the alternative
form

ki=2(0) () ky  Ki=(a))7k, (19)
which shows that if k is regarded as a column vector,
it transforms according to the inverse transformation
to that transforming the coordinates. In other words,
it is the matrices transforming the wave vector, in our
scheme, which forms a representation of the group,
rather than the matrices transforming the coordinates,
as in the alternative scheme of Koster. We can have
one or the other, but not both. In treating wave func-
tions, we are more often interested in the wave vector
than in the coordinates, suggesting that our procedure
is more convenient than the usual one.

We can appreciate the advantage of our definition
when we come to consider the translations associ-
ated with the operations, and in particular the trans-
lations involved in the successive application of two
operations, as given in Eq. (15). If we wish to find
{R;| T.}{R;| Tn} expik-r, as in Eq. (13’), we first
find {R;|Tn} exp ik-r. As we see from Eq. (18), the
result is a plane wave exp tk’-r, where k7 is determined
by Eq. (19), as ke, multiplied by the constant factor
exp ik+ (¢¥+T,). If we now allow {R;|T.} to act on
this function, it has no effect on the constant factor. It
results in a further transformed wave vector exp ik*-r,
where K* is to be determined from k by use of the ma-
trix of Eq. (14'), or k*=ke’a?, times a further con-
stant factor exp ik?- (#*+T,). In other words, we have

{R,, l Tn} {R] | Tm} €xp ik-r

=exp ik*-r exp ik;- (zi+T,) exp ik(<x4+T,). (20)

The two constant factors taken together are just what
result from the translation of Eq. (13’). In other words,
this very straightforward way of operating on plane
waves leads to the same result which we found in
Eq. (13"). This direct possibility of operating on plane
waves does not follow in the same way if we adopt the
alternative definition of the operators of the space

group.

4. SYMMETRIZED PLANE WAVES BY THE
PROJECTION OPERATOR

We have now investigated the action of the space-
group operators on plane waves, and have verified the
method of operating with two operations in succession.
We are next ready to attack our fundamental problem
of setting up symmetrized plane waves by the projec-
tion operator. The main difficulty connected with this
is the determination of the irreducible representations
of the space group. Fortunately there are important
general theorems which we can prove about these

representations, though we cannot go the whole way
toward finding them by straightforward methods. First
we shall present these general theorems.

To understand them, we must first recall a few
simple facts about wave functions in periodic poten-
tials. It is well known (see for instance Ref. 2, Vol. 2,
Chap. 5) that one can set up a so-called reciprocal
lattice, and that any wave vector k can be written as
the sum of a reduced wave vector Ko, lying within the
central Brillouin zone, and a vector K of the reciprocal
lattice, which has the property that K-T,=2r times
an integer, where T, is any one of the lattice transla-
tions. Furthermore, the reduced wave vector k, can
be located either at a so-called symmetry position, or
at a general position. If it is at a general position,
each of the vectors kf, formed from it according to
Eq. (19) by one of the operations of the point group
of the crystal, will have a distinct reduced wave vector.
On the other hand, if it is at a symmetry position, a
subgroup of the point group of the crystal operating
on the wave vector will give vectors k? corresponding
to the same reduced wave vector. This subgroup of
operations of the space group involving this subgroup
of the point group is called the group of the wave
vector. These facts are familiar, for example. from the
well-known paper of Bouckaert, Smoluchowski, and
Wigner.? It is only the cases where ky is at a symmetry
position that concern us here, for the symmetrized
plane waves with which we work are formed from a
number of plane waves with the same reduced wave
vector.

The first general theorem which we shall prove is
that the matrix element T'p{R; | Ta}a for any opera-
tion of the group of the wave vector involves the
translation T, only through the simple factor exp iky+Th,.
That is, we have

Tp{R: | To}a=Tp{R;| 0} s exp iko- T,  (21)

We shall prove this theorem by assuming it to be true,
and investigating what it would lead to when we set
up basis functions for the irreducible representations
by the method of projection operators.

We may use Eq. (3) and find that a basis function
fud® for an irreducible representation P is to be given by

fod®
= 32(Ry;, T)Te{R: | Tu}oa*{ R: | T} exp i(ky+K) -1
=22 (Ri. T.) Tp{R; | 0}3a* exp — ik - T,
{R:| T} exp i(ko+K) -r
=22 (Ri, Ta) Tr{R: | 0}sa* exp — ik - T,
exp iki-7 exp ik- (v4T,), (22)

? L. Bouckaert, R. Smoluchowski, and E. Wi , Phys. Rev,
50, 58 (1936). enen TS Bev



in which we have used Eq. (18) for the last step. Here
k is the wave vector Ky-+K, and k is this vector trans-
formed according to Eq. (19) or (19'). Now we note
that the only way in which T, appears in the quantity
to be summed in Eq. (22) is in the factors

exp —iko* T, exp ik T,=exp iK-T,=1 (23)
on account of the fact that K-T,=2r times an integer.
Hence the quantity to be summed in Eq. (22) is inde-
pendent of T,, and the sum equals the term for the
case T,=0, multiplied by the number of translation
operations. The latter is a constant, equal to the num-
ber of unit cells in the repeating range of the crystal
(if we use periodic boundary conditions). Since multi-
plication of all basis functions by the same constant
does not affect their property of forming basis func-
tions, we may omit the summation over T,, and write

folP =D (R)Tr{R:| 0}sa*{R: | 0} exp i(kp+K) 1.
(24)

The expression of Eq. (24) would give a basis func-
tion for the irreducible representation, provided Eq.
(21) was correct. We must now verify this equation.
To do so, we shall operate on fis with the operator
{R;| Tx}, to see if T, occurs in the proper way in
accordance with Eq. (21). If we use Eq. (20), we find
that the effect of {R;|Tn} on fsu? includes a factor
exp #(ko+K) - T,. which is the only way in which T,
enters the result. Since the operator R; belongs to the
group of the wave vector, this means that the trans-
formed wave vector (ky+K)? equals ko+-K?, the re-
duced wave vector kj not being affected by the opera-
tion. Hence the factor is exp iko- T, exp ¢K?-T,,.. Since
K¢ is one of the translation vectors of the lattice, we
have exp iK?-T,,=1, and the factor equals exp ko Tn,
verifying the dependence on T, given in Eq. (21).
Hence we have completed the proof that this theorem
is true.

In case kg lies within the Brillouin zone, rather than
on its boundary, we can go further and give the form
of the matrix elements of the irreducible representa-
tions of the space group completely from the matrix
elements for the point group. Let the matrix elements
for the point group of the wave vector be T'p(R;)a.
Then in this case we can prove that

Tp{R;| 0}ss=Tp(R;)w exp iko- 7 (25)
or, from Eq. (21),
I‘p{Rz | Tn}abz PP(R,) ab €XP lko' (‘EZ—‘—Tn) . (26)

To prove this result, we proceed as in the previous
proof, by assuming its truth, setting up basis functions
by the projection operator method, letting the opera-
tors operate on these functions, and showing that they
are in fact basis functions, with the matrix elements
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given by Eq. (25) or (26). This proof is given in the
Appendix. For a symmorphic space group (one in
which the nonprimitive translations =* are all zero),
this proof holds also when ko is on the boundary of
the Brillouin zone, but for a nonsymmorphic space
group it does not.

The proof of Eq. (25) in the Appendix depends on
the assumption that the reduced wave vector k, is
not changed by the operation of the point group. How-
ever, if ko lies on the surface of the Brillouin zone,
the group of the wave vector can include operations
which change ko, provided the transformed k, equals
the original ko plus one of the wave vectors K of the
reciprocal lattice. For instance, the operation could be
one which transformed Kk, into —ko, in case the vector
ko— (—ko) = 2k, was one of the vectors of the reciprocal
lattice. In such a case, for a nonsymmorphic space
group, the proof in the Appendix breaks down, and
we cannot assume that Eq. (25) holds. We do not
have a general method of handling these reduced wave
vectors on the surface of the Brillouin zone. In the
next section we shall illustrate a method which can be
used by a specific example. The problem is to find
quantities T'p{ R; | 0}4 like those occurring in Eq. (24),
such that the resulting functions will be basis functions
for irreducible representations. By Eq. (1), these quan-
tities must then satisfy the equations

{R:| 0} 22(R)Tr{R; | 0}ua*{R; | O} exp i(ko+K) -x
=2 (a)Tp{R;:| 0} ) (Re) Tp{Rs | 0}ua™{ Rs | O}
Xexp i(k+K)-r. (27)

On the left side of this equation, we have the product
of two operators, {R; |0} and {R;|0}, acting on the
plane wave exp i(ko+XK) -r. Now we have investigated
the effect of the product of two such operators in
Eqgs. (13) to (16). We have found that

{Ri| 0} {R;| 0} exp i(ket+K)-r

=exp (Ko+K)*-r exp i(ko+K) - (¢*+T;;), (28)

where the modified wave vector is to be found from
the matrix of Eq. (14). The primitive translation T;
is the same one introduced following Eq. (16). If we
compare with Eqs. (18) and (19), we see that Eq. (28)
is very closely related to that defining the effect of the
product operator {R;R; |0} on the plane wave, where
RiRj= Ri. In fact,

{R:|0}{R;| 0} exp i(ko+K)-r
=exp tko- Ty{ R:R; | 0} exp i(ko+K) -, (29)

where in the factor exp iko-T;; we have made use of
the fact that exp iK:T;;=1. In other words, the effect
of the successive application of two operators of the
space group, corresponding to zero translation, on a
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plane wave of reduced wave vector kg is the same as
that of the single operator of the space group whose
point-group operator is the product of the point-group
operators of the two factors with an additional con-
stant factor exp iko-T;;. By listing these factors for all
products of operators of the point group, it is possible
to get the multiplication table for the operators {R; | 0}
directly from that for the operators of the point group.

We may now insert the result of Eq. (29) in Eq.
(27). This gives on each side of the equation a.sum of
operators like {R;R;| 0}, or { R |0}, operating on the
plane wave exp i(ko+K) -1, each multiplied by a co-
efficient. Since the plane waves arising from these vari-
ous operations are independent of each other, and in
fact are orthogonal if. integrated over the repeating
volume of the crystal, the two sides of the equation
must agree term by term. That is, we may take the
term bearing the index R; from the left side of the
equation, and equate it to that bearing the index Ry
on the right, where R;R;=R;. Thus we obtain the
equation

exp iKo T;;Tp{ R; | 0}0a™
=>"(a)Tr{R;| 0} aTr{R:R; | 0}us*.

Such an equation involving elements of the represen-
tation matrix I'p{R; | 0} must hold for each value of
1,7, @, b, d,and P. If we can solve this set of equations,
we shall have found our desired representation matrix
elements for the irreducible representations for a wave
vector on the surface of the Brillouin zone. In the next
section we illustrate the sort of method which can be
used in practice to get the desired solutions. We illus-
trate these methods by a simple case: the point 4 in the
hexagonal close-packed structure, the space group Dg*.

(30)

5. THE SPACE GROUP Dy AS AN EXAMPLE

The point group Des, which is found in the space
group Dgi%, has 24 operations, which are described in
Ref. 2 in terms of cylindrical coordinates. Though for
many purposes it is more convenient to go to rectangu-
lar coordinates, we can illustrate our present point by
retaining the cylindrical coordinates, which we shall
take to be 7, ¢, 2. We then have introduced in Ref. 2
the following notation for the operations of the point
group:

Yb(r, ¢, 2) =¥(r, —¢+3im, 2),
X Y(r. ¢, 2) =¢(r, p+37q, —2),
Y (r, ¢, 25) =¥(r, —¢-+3m, —2),
where ¢=0, 221, 2, 3. These notations are different

(31)

4 C. Herring, J. Franklin Inst. 233, 525 (1942).

from the standard ones for this group,* but they have
the advantage that in terms of them the multiplication
table for the point group can be expressed very simply.
We have in fact

Xquszwhq
XpV,= Y~p+<1

YV, X= Yotor

Ypyqu—erqa (32)

as the reader can easily verify. The product of an
unprimed by a primed operator has the same form as
that of two unprimed operators, but the product oper-
ator is primed; the product of two primed operators
is the same as of the corresponding two unprimed
operators. In any case, if the subscript p4¢ or —p+¢
of the product operator lies outside the allowed range
0, =1, £2, 3, we are to add or subtract integral mul-
tiples of 6 to bring it within this range.

From the multiplication table, it is simple to find
the classes of operations. There are twelve classes,
comprising the following operations respectively: Xo;
X1 and X_1; X2 and X_g; Xg, Yo, Y:hg; Yﬂ:l, Y3, and
six equivalent classes formed from the primed opera-
tions. By general principles there are as many irre-
ducible representations as classes, and the sum of the
squares of the dimensionalities of the irreducible rep-
resentations equals the number of operators. In this
case there are eight one-dimensional irreducible repre-
sentations, and four two-dimensional, satisfying these
conditions. Basis functions for the one-dimensional
representations may be taken to be 1, sin 6¢, cos 3¢,
sin 3¢, and these same quantities multiplied by z; for the
two-dimensional representations, ¢ and e~%, ¢ and
e?%, and the same quantities multiplied by z. Matrix
elements for the irreducible representations, using these
basis functions, are given in Table L

In the space group, we have a nonprimitive transla-
tion of t;/2, where t; is the lattice spacing along the
hexagonal or z axis, for the operations X, X3 V.
Vs X, Xio, Yo', Y./, and no nonprimitive transla-
tions for the remaining operations of the point group.
When we take account of these nonprimitive transla-
tions, we find values of the translation T, given in
Eq. (29) in finding the effect of two successive appli-
cations of operations {R;|0} of the space group, as
found in Table II.

Since the nonprimitive translation is along the z or
hexagonal axis, it is only reduced wave vectors with a
nonvanishing z component which will illustrate the
effect of such a translation, since only for these will
the factor exp iko-t; be nonvanishing. Let us therefore
consider the following illustrative cases: first, ky=0,
the point T in the notation of Herring (Ref. 4); sec-
ondly, ko0, pointing along the z direction (the case A) ;
thirdly, the boundary of the Brillouin zone in this
direction (the point A), where |ko| ==/ |t;|. For T,
the factor exp,iko-f;=1, so that at I' the matrix ele-
ments of the irreducible representations of the space
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TaBLE I. Matrix elements and characters of the irreducible representations of the point group D The notations Iy*+, T, etc., are
the notations of Herring (Ref. 4) for the corresponding irreducible representations of the space group Dg: at the point ko=0. The
matrix elements of the primed operators are equal to those of the unprimed operators for the first irreducible representations of each
pair tabulated, and are the negative of those of the unprimed for the second representation tabulated. For propagation along the direc-
tion A, the group of the wave vector is C,, including the unprimed operators only. The irreducible representations for the space group,
for kg along the direction A, are obtained from the entries of the table, by multiplying the elements corresponding to operators with odd
subscripts by the factor exp k- t3/2. The irreducible representations along A, as given by Herring, are indicated in the table. The ab-
breviation « stands for ¢2™/3, Basis functions for the irreducible representations of Des, using the notation of Herring, are as follows:

nt 1 T~ 2

Tyt sin 6 Iy~ zsin 6¢

T's~ cos 3¢ I'st zcos 3¢

T sin 3¢ st zsin 3¢

F5+ 8*“ s 2 e:!:t'é

T et T+ zet%id

The operation X3’ is the inversion; Herring’s notations have superscript + for functions even on inversion, — for those odd on
inversion.

Representation Xo Xi Xa X2 X2 X Y, i Ya Y. Y, Y
ot Iy, A 1 1 1 1 1 1 1 1 1 1 1 1
I, T, Ay 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
Ty, Iyh, Ay 1 -1 -1 1 1 -1 —1 1 1 -1 -1 1
I, Ts*, Ae 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1
(s, s, As)n 1 w w? w? w 1 0 0 0 0 0 0
(Ts*, T's™, As)zt 0 0 0 1 ) w? w? 13 1
(F5+, I's, A5) 12 0 0 0 1 w? w? 1
(T, Ts™, As)2e 1 w? w w w? 1 0 0 0 0 0 0
x(Ts*, Ts™, As) 2 -1 -1 -1 -1 2 0 0 0 0 0 0
(T, Tet, Ae)u 1 —w? —w w W - 0 0 0 0 0 0
(I‘s", I'5+, Ag)a 0 1 —w? —w w o —1
(Tg, Tet, As)12 0 1 —w  —w? w? w —1
(Fa-, Ps+, Ag) 22 1 —w —w? w? w —_ 0 0 0 0 0 0
x(Ts~, Tst, Ag) 2 1 1 -1 -1 =2 0 0 0 0 0 0

group, T'p{R; | 0}4, are as given in Table I. The irre-
ducible representations are labelled by Herring as
shown in Table I. Along the direction A, the group
of the wave vector includes the unprimed, but not
the primed, operators. We may still use Table I for
the matrix elements, but as in Eq. (25) we must
multiply all those elements arising from operators hav-

ing a nonprimitive translation by the factor exp iky- ts/2.
This factor goes from unity at the point T, to em#/2=1¢
at the point 4. The irreducible representations along
A, as given by Herring, are indicated in Table I, and
the compatibility relations between the various irre-
ducible representations at I" and at A are obvious from
the table; those representations having the same sets

TasLE II. Translation T;; associated with product of two operations { R; | 0} of the group D, as in Eq. (29).

Tirst operation Second operation Ti;
X:i;ly X3; Y:tl; Yﬁ, XO’i XiQ,x YO/: Y:i:2, Xilx X3) Ytl’ Y3 t;
X, Xay Vi, Vs, X, Xy Vo, Vo' X, X, VY, ¥ —t3

All other cases 0




76 REVIEWS OF MODERN PHYSICS « JANUARY 1965

TasrLe III. Basis functions for dlfferent irreducible representations and partners for propagation along direction A, immediately

adjacent to point 4. The functions #,-

+, 32 are obtained by applying projection operators formed from the various rows of the matrix

of Table 1, modified for the point 4. Note that we have arranged the order of these functions according to the subscript of A, giving a
different order from that of Table I. The functions #;” are obtained from the corresponding functions #; by operating on them with X'.

A12 U= (Xo—in——'iX_rI‘Xz—l-X_z—iXa"}- Yo-“in—i Y_rl— Y2+ Y.g—il@)lﬁ
Ag: o= (X o+ X1+ X 3+ Xo+-X o +iXs+YVot+i VitiV o+ Vot Voo i Vi)
As: = (Xo—tX1—iX 3+ Xo+X 2—iXs— Yo +iVi+iV1— Vo— Y o +iVa)y
A4Z Us= (Xo+iX1+iX_1+X2+X_2+iX3— Yo—in—'iY.r— Yz—- Y_z—iys)lﬁ
(As)u:  us= (Xo—1? X1 —i0wX 1+t wXotwX _o—iX3) Y
(A5)21: U= (Yo~'iw2Y1—1:wY_l—l-sz—l—w?Y_z—iYg)l[/
(A)12:  wr=(Yo—iwV1—i?V 1+w? VotV o—i¥s)y
(A5)2zt Uug= (Xo—inl—inX_1+w2X2+wX_2—1:X3)¢
(Ae)n:  us= (XoHiwXi+iew?X 1+ XotwX_24-iXs)y
(At o= (YotiwV1+ie?V 1+w?YotwV o3 Vs)y
(Ae)1z: un= (Yot+ictV1+i0V 14w VetV o+i Y3y
(Ae)22:  ma= (XoFiw2X1+HiwX 1 +wXe+w?X o+iXs)w

w'= (X +iXy X o+ X + X o +HiX ViV iV Vo -+ Vo iV )y
= (Xo/ =Xy —iX A+ X X o —i X+ YV — iV =iV + Vo' + Vo —i Ve )y

ug' = (X o'+ Xy +HiX oy + X+ X o i Xy —
= (X —iXy' —iX_/+- X'+ X o' —iXs' —

Yo—iVy/—iV_/— Yo' —
Yo/+iVy/ iV =Yy —

Yo' —iVs)y
Y/ +iVs )y

= (Xo/+iw2X1, +1.0JX_1' "l"sz,‘l‘sz_g/ +¢X3,) ¢

= (Yo' +i? Vi tiwlV 1tV 4tV o +i V)Y

i’ = (Yo' +iwVi+i? V' +o? Vo'tV o/ +i V5 )y
usl = (Xol +‘in1'+1:w2X_1’+w2X2'+wX_2 +1/X3’) 50
1y’ = (X o —iwXy' —i?X '+ X' toX o —iXs )y
um' = ( Yol — 1w Y] —w? Y_1’+w2 Y21+w Y_‘z -1 Yzl) gb
’un’ = ( Yo’ —‘l:(u)2 Yl’—’iw Y_1'+(.0 Yz""'wz Y...z, '—Z Y3,)§0
g’ = (X' — 1P Xy —iwX 4 +oXy +w?X o/ —i X5 )y

of matrix elements are compatible, such as A; with
P1+, Ty

The point 4 is the one which introduces new fea-
tures, which we are illustrating in the present section.
Here the point group of the wave vector is the com-
plete group Dg, including the primed as well as the
unprimed operations. The reason why the primed op-
erations are included is that they correspond to chang-
ing z into —32, which means that the reduced wave
vector, which has a magnitude of 7/ | t; | and is along
3, is transformed into its negative, differing from it by
27/ | ts], which is the fundamental interval in the
reciprocal lattice along the z axis. Hence the trans-
formed value of ky, equals one of the vectors of the
reciprocal lattice plus ko, so that it corresponds to
the same reduced wave vector.

Though the group of the wave vector at 4 is thus
the same as at I', the multiplication table is quite
different, on account of the factors exp iky-T;;, which
here have the value —1 for the products of operators
given in Table II. Hence the irreducible representa-
tions are quite different from those at the point T,
and must be found by independent methods. The first
step in doing this is to look at the basis functions for
the various irreducible representations along the direc-
tion A, for values of k, immediately adjacent to the
point A4; we should naturally expect a continuity of
properties as we approach 4. We can set up such a
function from each row of Table I, by using Eq. (3),

and remembering that we have the extra factor 7 in
all the rows having operators corresponding to non-
pr1m1t1ve translations. In this way we set up functions
given in Table III, where we express the functions as
linear combinations of various operators operating on ¢,
which is assumed to be the plane wave exp i(k;+K) -1,
where kq is the value at the point 4.

The functions found in this way are described as
w1, * + +, t2 in Table ITI. Each one forms a basis function
for an irreducible representation of the group involving
only the unprimed operators, but at the point 4 we
have the primed operators as well. Therefore we may
operate on these functions with the primed operators,
and see what we get. In the first place, if we use only
the primed operator X', and operate on each function
in successmn we get the functions denoted by u,/, - -,
up' in Table ITI. We then find that these functions
are all we need to describe the irreducible representa—
tions at point 4. In fact, we find that #; and %’ form
basis functions for a two-dimensional irreducible rep-
resentation, which we call 4;. The pair of functions
uy, s, form a second pair of basis functions for this
same two-dimensional representation. Similarly 2; and
uy’ form basis functions for another two-dimensional
irreducible representation, which we call Ay; and 2./, u,
form another set of basis functions for this two-dimen-
sional representation. Next, us, us, us’, us’ form basis
functions for a four- d1mens1onal irreducible represen-
tation. Additional sets of basis functions for this same
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TasLe IV. Matrix elements and characters for the irreducible representations for the point 4, Dex’.

X
T
iw
;2

X
7w
Tw?

— —IW

Xo
1
1

(41)u
(41)a
(A
(A1)2e
X(Al)
(42)u
(A2)n
(A2)12
(As)e2
x(42)
(4s)n
(43)a
(A3) 31
(A3)41
(43)12
(As)22
(43)a
(43) e
(43)1
(As)2s
(4s)ss
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representation, which we call 4;, are the sets of func-
tions Uz, Ug, u7', ug'; Mlgl, unl, Uy, U11; and ’M«m’, ug’, Mlo,kug.

We thus have found three irreducible representations
at A4, two two-dimensional and one four-dimensional.
The sum of the squares of the dimensionalities, 22+
224-42 adds to 24, as it must to equal the number of
operations, but we see that the whole situation is
entirely different from what it is at T, even though
we have the same number of operations. In Table IV
we show the matrix elements of these irreducible rep-
resentations. It is perfectly straightforward to find these
matrix elements. Suppose for instance we operate on
u; with the operator X;. We use the rules of multiplica-
tion, and find that the result is

Xy = (X1+’5X2+’iXo+X3+X—1+’iX~2

F+V 4+ iV iV o+ Vi Vi Vo)y=1du.  (33)
Thus for the operator X the entry (4;)y in the table
is 4, indicating that we have i%; in Eq. (33), and the
entry (A1)a is zero. When we have found the table
of matrix elements in this way, we then find that by
applying projection operators formed from the various
rows of the table, we get back just the functions of
Table III, in the order in which we have enumerated
them in the preceding paragraph. We can verify by sub-
stitution that these matrix elements satisfy Eq. (30).

We see, then, that a very simple procedure has
sufficed to investigate the irreducible representations
at the point 4 in the group Dgt* In many cases the
problem is equally simple. Other cases lead to more
complication. but it does not prove to be difficult in
any case to work out the required matrices. In Ref. 2
some 20 space groups are worked out, and further
explanation is given of methods which can be used in
more complicated cases than the example which we
have treated here.

6. MATRIX ELEMENTS OF THE HAMILTONIAN

We have now investigated all the steps required in
applying the method of projection operators to set up
symmetrized plane waves. In actual applications of
the method, we are interested in finding the matrix
elements of the Hamiltonian between different sym-
metrized plane waves. There are relations here which
are more general than this special case, and we shall
work them out in the present section. Let us start
with two basis functions of the form given in Eq. (3),
found by the method of projection operators, and find
the matrix element of the Hamiltonian between them.

In order to check the general theorem that we have
nonvanishing matrix elements of the Hamiltonian only
between two functions of the same symmetry type,
let us start out by taking functions of general symme-
try, and show that it is only in the case where the
symmetries are the same that we get a nonvanishing
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element. Let us then start with two functions, fu*’
and F.*’, determined by Eq. (3) from different func-
tions ¢ and ¢/, and find the matrix element of the
Hamiltonian between them. We have

[ 1aFH E)opu” do= [T (R)TH(R) (R *(H)ap
X 2 (R)Tpr (Ry)ea*(RgY/) dv. (34)

Let us operate on the whole integrand with the opera-
tor (R;)~%. Since this is an operator which merely
makes a rotation, reflection, or translation, it will have
no effect on the value of the integral, though it will
affect the integrand; it merely results in a change of
variables in the integrand, of a type leaving the inte-
gral invariant. We shall have (R,)7'Rg=y, in the
first term. The operator (R;)™' commutes with the
Hamiltonian, so that the remainder of the integrand
will involve (R;)'Ry/. Let

(R,')_le= Rs, Rj=RiRs. (35)

We may replace the summation over R; and R; by
one over R; and R;. Then the expression of Eq. (34)
is transformed into

/fabp*(H)achdpldv

= Z(Riy R)Tp(R:) wl'pr (RiRs) cd*f\b*(H)op(Rs\[/) dv.
(36)

We may use Eq. (2) to write I'pr(R;R,)a* in the form
PP' (Rst) cd*: Z(e> PP’ (R’L) ce*PP’ (-Rs) ed*- (37)

Then the quantity multiplying the integral in Eq.
(36) is ,

> (Ri, Rs, €) To(R:) b Tpr (R;) o*Tpr (Rs) a™.

We now use the general orthogonality theorem of ma-
trix elements of the irreducible representations of a
group, which is

D (R)Tp(R) e (Ri) o™= (g/np) 8pp+ dac 8. (39)

This theorem is proved in texts on group theory, and
is discussed in Ref. 2, Vol. 2, Appendix 12. Here g is
the number of operations in the group, #e is the dimen-
sionality of the P’th irreducible representation. When
we use Eq. (39), we then have ’

/ FuF*(H)opF o’ do

(38)

= (g/’ﬂP)BPP’ BGCZ(R3> PP(Ra)bd*/‘p*(H)op(Rs¢l) dv.

. (40)
The first thing which we note from Eq. (40) is that
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the nondiagonal matrix element vanishes unless P and
P’ are the same, or we are dealing with matrix ele-
ments between basis functions for the same irreducible
representation, and furthermore a=c, or we are dealing
with basis functions for the same partner of the irre-
ducible representation. In such a case we can find the
matrix elements by carrying out a single summation
over R,, of integrals [¢*(H),,(Ray’) dv. In other words,
we need to perform the symmetrizing operations only
on the function ¢/, and are not required to carry out
these operations on ¢ as well. The reason for this can
be understood in the following way. An arbitrary func-
- tion ¥ can be decomposed into parts by the use of
projection operators, each of which is a basis function
for one of the partners for one of the irreducible
representations of the group. The only part of this
decomposed function which will have a nonvanish-
ing matrix element with a symmetrized function
> (R)TH(R,)pa* Ry, is the part which has the same
symmetry as this symmetrized function. It is then
unnecessary to symmetrize ¥ before carrying out the
integration. The most familiar example of this situa-
tion is found when we wish to find the matrix element

[ ety as [ ([ go e dof Pt o)

of the Hamiltonian between two antisymmetrized or
determinantal functions. The antisymmetrizing opera-
tor is a projection operator, of the type which we are
considering. It is a well-known theorem that in com-
puting such a matrix element, we need to antisymme-
trize only the second function ¢/, and can leave the
first function ¢* unsymmetrized.

Our functions ff and F4F’ are not normalized. Ordi-
narily we wish to find matrix elements between nor-
malized functions. In this case we should divide Eq.
(40) by the square root of the product of the normaliz-
ing integrals [fuf*fuf dv and [F P *Ff dv. To find
the first of these integrals we may use Eq. (40), let
P'=P,c=a,d=0,y =y, and omit the operator (H)op,
replacing it by unity. Then we have

[ 141 dv=(g/me) [9* 2 (RO (Rw* Rt o

(41)

with a similar quantity for the other symmetrized
function. Then we find for the matrix element of the
Hamiltonian between normalized functions the quantity

= (W4 (H) 0y (R To(R)sa* (R do / [ SV EROTR(R)w* R do [ * (R To (R sy’ d] (42)

We note that this result is independent of ¢, showing
that we have the same matrix element no matter which
partner of the set of basis functions we use. This is the
origin of the degeneracy mentioned in Sec. 1, between
the various basis functions of an irreducible represen-
tation.

7. APPLICATION TO TIGHT-BINDING, OPW, AND
APW METHODS

A large part of the analysis in the preceding sections
applies irrespective of the form of the function ¢; only
a small part of the treatment is restricted to plane
waves. Let us now consider how to build up functions
of a suitable symmetry to serve as symmetry orbitals
for the solution of Schrodinger’s equation in a periodic
potential, using different types of functions as a start-
ing point. So far we have considered only plane waves,
and an expansion of the wave function in plane waves
is too slowly convergent to be of much practical value.

In many ways the simplest approximation to the
wave function of an electron in a crystal is found by
the method of linear combinations of atomic orbitals,
the LCAO method, which for a crystal involves the
Bloch sums. Suppose we let the function y be an atomic

orbital on one of the atoms of the crystal. Then we can
use our projection operator method, with the same
matrix elements of the irreducible representations as
before (these depend only on the symmetry of the
problem, and are quite independent of the functions ¢/).
The only difference comes in the effect of the operators
{R;|T.} on one of the atomic orbitals. If an atomic
orbital is written as a(r), where ¢ can depend on the
angle as well as the radial distance from the origin,
which is taken to be the nucleus, then by Eq. (12’) we
have

(R:| To)a(r) =a( wir-+eitT,). (43)

That is, the effect of operating on the atomic wave
function with one of the operators of the space group
is to produce a new atomic function, centered on an
atom displaced by the amount —«*—T, from the
origin, and rotated in space by the operator related
to the matrix .

When we produce a symmetrized function by the pro-
jection operator method, we first take account of Eq.
(21), which says that the matrix element T'p{R; | T} e
contains the factor exp iko:T,. In setting up the pro-
jection operator, we use the complex conjugate of this



matrix element and sum over T, (as well as over R;).
This summation of atomic orbitals displaced by the
amount —T,, multiplied by the factor exp —ikq:T,,
is simply an ordinary Bloch sum, showing that this
procedure of using Bloch sums is a direct result of the
translational symmetry of the space group.

We must give more attention, however, to the rota-
tional operations, and to the nonprimitive translations
<%, Suppose we have an atom at the origin, and suppose
we consider the operations of the space group for which
T,=0. There will be some of the operations of the
point group for which =?=0, others for which it is not
zero. For instance, in the space group of the diamond
structure, if we take the origin at an atom, we find that
the operations for which ='=0 are those of the tetra-
hedral group 7; the additional operations for which
=i%( are those belonging to the cubic group On which
are not included in the tetrahedral group. If we start
with an orbital of no special symmetry at the origin,
the first set of operations will produce a symmetrized
atomic orbital at the origin, having one of the appro-
priate symmetries for the point group 7s. The remain-
ing operations corresponding to T,=0, in this particular
case, will produce an atomic orbital at the location of
the second atom in the unit cell, like that at the first
atom, but suitably rotated or reflected to accord with
the symmetry of the space group. When we have carried
out these operations for T,=0, we can next sum over
T., producing Bloch sums of these symmetrized atomic
orbitals extending over the whole crystal. Such a Bloch
sum of suitably symmetrized atomic orbitals is the
type of symmetrized function formed by the projection
operator method when we start with an atomic orbital.

If we start with an atom which is not located at the
origin, we can find the effect of the operators of the
space group on this atomic orbital by transforming
the expression of Eq. (43) to the new origin. We can
understand the situation better if we consider what
are called special positions in the crystal lattice. If we
start with a given atom at position r, and operate on
this position vector with all the operations of the space
group, each operation in general will produce from it
another position r'= a’r++*+T,. Since the potential
is assumed to be unchanged by any operation of the
space group, there must be an identical atom at each
position r’. The number of operations equals the prod-
uct of the number of operations of the point group, and
the number of translations required to go from a given
unit cell to each unit cell of the crystal. Hence the
number of positions r’ located inside a given unit cell
will in general equal the number of operations in the
point group. This is characteristic of so-called general
positions in the crystal.

There are, however, certain special positions within
the unit cell, such that if we construct all the positions
1’ as before, these positions will not all be distinct. The
origin, in a symmorphic space group, is an extreme
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case of such a special position: every operation of the
point group transforms the origin into itself. The exist-
ence of these special positions is of great importance
in studying possible crystal structures. An atom located
at a special position will be one of a number of equiva-
lent atoms in the unit cell, this number equalling the
number of operations in the point group, divided by
the number of operations of the point group which
transform the vector r out to the atom into itself. It
is clear that in a space group connected with a point
group with many operations, such as the cubic point
group with 48 operations, any crystal with only a few
atoms in the unit cell must have these atoms located
at special positions.

We now see that if an atom is located at a special
position, there will be several operations of the space
group which will transform its position into itself. Other
operations will transform it into another position, either
in the same or another unit cell. The operations which
transform it into itself will form a point group; they
leave the atomic position invariant. They are like the
operations 7¢ which transform the atom at the origin
in the diamond case into itself. We may call this point
group the group of the special position. It is analogous
to the group of the wave vector, which in a similar way
transforms a position in reciprocal space into itself. If
we now choose the origin of coordinates at the special
position where the atom is located, the point group of
the special position will then appear in standard form,
so that we can recognize it and consider its irreducible
representations.

Any wave function forming a basis for an irreducible
representation of the space group can be expanded in
power series about such a special position, and the
resulting polynomials of various powers in the coordi-
nates will form basis functions for an irreducible repre-
sentation of the point group of the special position. By
such expansion, then, we can find what type of behavior
at each atomic position is required to produce the de-
sired type of symmetry. We now see the relation of
this discussion to the study of linear combinations of
atomic orbitals. For a function of a definite type of
symmetry, the symmetry of an atomic orbital located
at any special position is prescribed. If we start with
an atomic orbital function of arbitrary type at this
site, and use the projection operator, we shall remove
everything except that part of the orbital which has
the correct symmetry. The problem can be simplified,
however, if we start from the beginning with atomic
orbitals of the correct symmetry type. We thus have
in our study of symmetry orbitals of space groups the
machinery for setting up linear combinations of atomic
orbitals of any desired symmetry, as well as of symme-
trized plane waves of the same symmetry.

The OPW, or orthogonalized plane wave, method
for approximating to the solution of a periodic poten-
tial problem can be described in the following way,
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though this is not exactly the method ordinarily fol-
lowed. We first set up a linear combination of symme-
trized LCAQ’s, by the method just outlined, corre-
sponding to each of the inner atomic orbitals in each
of the atoms of the crystal. Since a linear combination
of these by themselves will lead to a rather poor ap-
proximation for the true wave functions, we supple-
ment them with symmetrized plane waves of the same
symmetry. The linear combination of symmetrized
LCAO’s gives the wave function the proper behavior
near the nuclei, and addition of a linear combination
of symmetrized plane waves corrects the wave function
in the regions between atoms. From our study we
have learned how to set up these symmetrized functions.
From Sec. 6 we understand how to find the matrix
elements of the Hamiltonian between such symme-
trized basis functions. In the discussion of that section,
such as Eq. (42), there is nothing demanding that the
functions ¢, ¥’ which we are symmetrizing should be
plane waves; one or both could be atomic orbitals. We
then have the foundation of the method of computing
the energy matrix for the OPW method, a matrix
which must be diagonalized in the usual way to give
the best OPW approximation to the solution of the
periodic potential problem.

The APW, or augmented plane wave, method in-
volves symmetry in a very similar way. Here we sur-
round each atom by a sphere, within which we expand
the wave function as a linear combination of spherical
harmonics, each multiplied by a radial function which
gives a solution of Schrodinger’s equation for a spheri-
cally symmetrical potential approximating the true
potential within the sphere. Outside the sphere we
expand the wave function in plane waves. At a sym-
metry position in the Brillouin zone, we use a symme-
trized plane wave outside the spheres. Inside, we have
exactly the same symmetry problem as for the LCAO
method. We use only those spherical harmonics or
combinations of them which form basis functions for
the suitable irreducible representations of the point
group of the special position where the atomic sphere
is located.

We shall not go further here into the details of the
method used in these various schemes for setting up
the symmetrized functions. In actual applications the
process of symmetrizing is usually carried out by pro-
gramming the computer. The underlying principles,
however, are those which have been outlined in this
paper, which are discussed for a number of individual
cases in Ref. 2, and which are the same, no matter
what method of approximation to the solution is used.

One remark should be made regarding the text men-
tioned in Ref. 2: it contains extensive bibliographies of
topics related to the symmetry of wave functions, and
methods of calculating them in molecules and solids.
For this reason we have not included an extensive set
of references in the present paper.
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APPENDIX
We start by finding fyef by Eq. (24), where
Tp{R;|0}w
is assumed to be given by Eq. (25). Thus we have
JodP= 2 (R;)Tp(R;)a* exp —iko+ o9
{R;] 0} exp i(kp+K) -r
=2 (R)Tp(R;)ba* exp — ko2
exp i (ko+XK)7-r exp 7 (ko+K) - 27
=Y (R;)Te(R;)sa* exp i (ky+K) /-1 exp iK- <7,

(A1)
where

(koK) o= 2 () ape’ (lo+K) .

The group we are considering is the group of the wave
vector. That is, it leaves k, unchanged, or

(ko) g’= Z (P) apg’ (ko) p= (ko) q

so that (ko+X)7=ko-+K/.

Now we let the operator {R;|0} operate on the
function fieF, to see if it forms a basis function for the
Pth irreducible representation, with matrix elements
given by Eq. (25). We have

{Ri| 0}fiP =D (R;) Tp(R;)2a* exp i(ko+KF) -1

exp ko ©? exp iK7- ¢ exp 1K 27,

(A2)

(A3)

(A4)
where

K= Z(P) apKp (AS)
with a,* given in Eq. (14), and where again we have
used the fact the ko is not transformed by the opera-
tions of the group of the wave vector.

We now use Egs. (15) and (16), which hold when
we perform two operations in succession on a plane
wave. We take the scalar product of the vector K
with the expression of Eq. (15) set T, and T, equal



to zero, and find
Ki-zi+K-t/=K-t*+K-T,;. (A6)
Hence we have
exp iK7- ¢ exp iK- v/=exp iK- <F, (AT)

where the factor exp ¢K-T,; equals unity. Thus the
expression of Eq. (A4) can be rewritten as

{R: | 0}fol = 20 (Ry) Tr(R;)ua*

Xexp i(ko+KF) -r exp tko+ vi exp iK- 7.  (A8)
Following Eq. (1), we should like to prove that this
expression is given by

22 (@) Tp{R: | 0} fud®- (A9)

where fuf is given by Eq. (A1), with @ substituted

for b. That is, we should like to prove that the right

side of Eq. (A8) equals

2 (@) Tp(R:)an exp ik =i ) (Ri) Tp(Ri) aa®
Xexp i(ko+KF*) -r exp iK-2¥, (A10)

where we have used R; as an index of summation
rather than R; as we have in Eq. (Al).
When we compare the expressions of Egs. (A8)
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and A(10), we see that they would agree if we had
2 (R)To(R)oa*= 3 (a, Re) To(Ri) ol (Ri) ad™
(A11)

The proof of this equation is similar to that for Eq. (4).
We note that R;R;= Ry, where these are operators of
the point group. Hence we can use the multiplication
rule, Eq. (2). Furthermore, for matrix elements of
irreducible representations, we can prove that

I'p(R:)a=Tr(R:™)b*, (A12)

where R;™ is the inverse operation to R;. Then the
right side of Eq. (A11) can be rewritten in the form

> (Ri) 2o (@) Tp(Ri™)5a*Tp( Re) aa™
=2 (R Tp(RiR)wa*= D (R)Tp(Ry)u*, (Al3)

as was to be proved. We have carried out the final
summation in Eq. (A13) over R; rather than R;, but
we cover the same set of operations, namely all opera-
tions of the point group, in either case. With this equa-
tion we complete the proof that the matrix elements
of the operators {R;|0} for the basis functions of
Eq. (A1) are those assumed in Eq. (25), so that these
latter values form in fact the matrix elements for
irreducible representations of the space group.



