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The formalism of the coupled-channel analysis of the scattering of nuclear projectiles by nuclei is presented in detail.
Since the necessity for coupled-channel calculations increases with the degree of collectivity exhibited by the target
nucleus, the presentation is particularly suited to collective nuclei, with the target states described by phenomenological
collective coordinates. Within this restriction the formalism given here is quite general so that the following cases can be
considered: The target can be any (collective) nucleus, even-A or odd-A, vibrational or rotational; the projectile can
be either charged or uncharged, and can have any spin; either or both the projectile and the target can be polarized;
anally, the energy of the projectile can be very low since the contribution of the compound-state formation to the cross
section can be included. Using a computer program which was written following the above formalism (which can be
used to do any of the calculations enumerated above) scattering cross sections for several typical cases were obtained
and are presented to show their contrasting behavior when different targets (and different coupling schemes) and dif-
ferent projectiles are chosen. Realistic calculations were also made in order to it a large number of existing experimental
data. Good Gts were obtained in most cases which indicates that the coupled-channel calculation is a very powerful tool
in explaining various complicated scattering data, and further in extracting useful spectroscopic informations about the
target nucleus. Possible future developments of the present analyses are discussed.
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proximation (DWBA)." The reason for the success
of DWBA lies in the fact that the interaction which
causes these reactions is usually comparatively weak,
so the erst-order perturbation treatment is a good ap-
proximation.

In treating inelastic scattering, special care must be
exercised, compared to the treatment of transmutation
reactions. In some cases the inelastic-scattering cross
sections have rather large magnitudes, indicating that
the interactions involved there are sometimes much
stronger than those in transmutation reactions, and
thus that DWBA might become a poor approximation.
Such a situation is often met when the target nucleus
is of a collective nature.

When the DWBA turns out to be poor, one con-
ceivable improvement is to include the second and
higher Born approximations. However, to perform such
higher-order calculations is a rather involved task.

Another possible improvement to DWBA is the
coupled-channel calculation. ' In such calculations the

I. INTRODUCTION

In recent years a large amount of experimental data
has been accumulated on various types of nuclear re-
actions such as elastic and inelastic scattering and
transmutation reactions caused by medium- and low-
energy nuclear particles (nucleons, deuterons, a par-
ticles, and so forth). Many of these data have been
successfully described by the distorted-wave Born ap-

~ Research sponsored by the U.S. Atomic Energy:Commission
under contract with the Union Carbide Corporation.

' (a) See, e.g., R. H. Bassel, G. R. Satchler, R. M. Drisco, and
E. Rost, Phys. Rev. 110, 1080 (1958) and many other papers
which followed. Concerning the comparison of the DWBA to the
coupled-channel calculations, see F. G. Percy and G. R. Satchler,
Phys. Letters 5, 212 (1963}.(b) E, V. Inopin, Zh. Eksperim. i
Teor. Fiz. 31 901 (1956) /English transl. : Soviet Phys. —JKTP
4, 784 (1957)j; J. S. Blair, Phys. Rev. 113, 928 (1958); J. S.
Blair, D. Sharp, and L. Wilets, ibid. 125, 1625 (1962). See also
N. Austern and J. S. Blair (to be published), who discuss the
higher-order Born approximation, particularly in combination
with the strong-absorption model. (c) For the validity of the
strong-absorption model in comparison with experiment, see
J. S. Blair, "Nuclear Spectroscopy with Direct Reactions II,"
Argonne National Laboratory Report 1964 ANL-6878 (un-
published), p. 143.

~A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 27, No. 16 (1953).
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interactions are considered to indnite order in the
sense that, although one restricts the number of
channels to be considered to a Gnite number, the inter-
action is treated exactly within the channels considered.
As is expected, and as shown in the following, the
restriction of the number of channels is not a bad
approximation if we are interested in the explanation
of the excitation of a limited number of lower excited
states.

There is another big advantage in the use of the
coupled-channel calculations over the D%BA. In many
nuclei there are low-lying states that have strong col-
lective natures, but the inelastic cross sections to them
are not necessarily very large. These are, for example,
the higher phonon states in vibrational nuclei, or the
higher members of the rotational bands of deformed
nuclei. The excitation of these states is caused via the
excitation of the states that lie at lower energies. In
other words, their excitation cannot be caused through
single-step processes. If such multiple processes are to
be treated in terms of perturbation theory, it has to
be made through the higher-order Born approximations.
However the formulation and (when one attempts to
use a computer for the numerical analysis) the pro-
gramming become progressively more involved each
time one increases the order of the approximation. In
the coupled-channel calculations, such processes can
be treated by simply increasing the number of the
coupled channels. Furthermore, in this calculation the
formulation, and consequently the coding of the com-
puter program, is essentially the same irrespective of
how many channels one takes into account and thus
can be handled comparatively easily.

VVhen the target nucleus is of a collective nature,
and when the projectile is strongly absorptive, another
approximation, the strong-absorption model which was
proposed by Inopin and extended by Blair'b can be
used. In this the cross section is expressed in a very
compact form and thus very little numerical calcula-
tion is needed for its evaluation. It also gives good
agreement with experiments, " at least for the excita, -
tion of states which are excited with single-step pro-
cesses from the ground state. However, this theory does
not seem to be as flexible as the coupled-channel cal-
culation. For example, when the collective states are
described, not phenomenologically by introducing the
collective coordinates, but in terms of the particle
aspects, it is dificult for this theory to apply, while the
coupled-channel calculation can still be used. Also,
this theory cannot be used to describe the scattering
of weakly absorptive particles, like nucleons. On the
other hand the coupled-channel calculation can be
applied for both strongly and weakly absorptive
projectiles.

The importance of the coupled-channel calculation
in describing scattering processes when the target
nuclei are of collective riature was erst pointed out by

Bohr and Mottelson, ' and then was applied by Margolis
et al. and Chase et al.3 in computing the strength func-
tions of very slow neutrons. The application of this
idea to the description of the inelastic, as well as
elastic, scattering of higher-energy incident particles
was erst made by Yoshida, ' although he performed
numerical calculations only under very restricted
assumptions.

Because of the success of the optical-model analysis'
of the elastic scattering of various particles by various
nuclei, and the easier access to high-speed computers,
more realistic numerical analyses of the scattering
processes based on the coupled-channel calculation have
become meaningful and feasible. Thus, Buck' ~ showed
that with this method it is, in fact, possible to Qt the
experimental diGerential cross sections of both the
elastic and inelastic scattering of protons and e particles
by various collective nuclei.

However, Buck's calculations were limited to the
cases in which the target nucleus is of even A and
only two or three states in the target are coupled to-
gether. On the other hand, there have accumulated a
number of experimental data which use odd-A as well
as even-A nuclei as targets, and give dif'ferential cross
sections of the inelastic scattering to various higher
excited states. It was therefore important to extend
Buck's work so that such experimental data could also
be analyzed theoretically.

The present paper reports on such an extension,
both in formulation and in the analyses of various new
experimental data. As has already been reported on
various occasions' " and is summarized in Sec. VII,
the coupled-channel analysis is indeed quite powerful;
many experimental data were well fitted by our cal-
culations and spectroscopic information about the
target states was derived from such 6tting.

Our formulation of the calculation (and the corre-
sponding coding of the computer program) have been
made in a very general way, so that a variety of
scattering calculations can be made easily. Thus in
Sec. II we start with quite general optical-model po-
tentials, which are usually nonspherical. These poten-
tials are then re-expressed in some approximate ways,
the way depending on the nature of the target, and

'B. Margolis and E. S. Troubetzksy, Phys. Rev. 106, 105
(1957)~ D. M. Chase, L. Wilets, and A. R. Edmonds, Phys. Rev.
110, 1080 (1958).

S. Yoshida, Proc. Phys. Soc. (London) A69, 668 (1956).' R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).
B.Buck, Phys. Rev. 12'7, 940 (1962).
B.Buck, Phys. Rev. 130, 712 (1963).See also B.Buck, A. P.

Stamp, and P. E. Hodgson, Phil. Mag. 8, 1805 (1963).
J. K. Dickens, F. G. Percy, R. J. Silva, and T. Tamura,

Phys. Letters 6, 53 (1963).' T. Tamura, ~Phys. Letters 9, 334 (1964).
"M. Sakai and T. Tamura, Phys. Letters 10, 323 (1964)."G. C. Pramila, R. Middleton, T. Tamura, and G. R. Satchler,

Nucl. Phys. 61, 448 (1965)."R.Wagner, P. D. Miller, T. Tamura, and H. Marshak, Phys.
Letters 10, 316 (1964}."T.Tamura, Phys. Letters 12, 121 (1964).
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thus terms which cause the coupling between different
channels are derived explicitly. Because of these
coupling terms, the Schrodinger equation, which de-
scribes the scattering, becomes a set of coupled dif-
ferential equations, which is derived in Sec. III. If
these coupled equations are solved and the solutions
are matched to appropriately dered asymptotic solu-
tions, one gets a set of S-matrix elements. These ele-
ments are then used in computing various cross sections,
as explained in Sec. IV. The contents of Sec. II through
IV thus complete the formulation of our calculation
for general cases. When, however, the target nucleus
is well deformed and the energy of the incident particle
is sufficiently high, one can perform the calculation
more easily by using the adiabatic approximation. ' '
We therefore give in Sec. V a formalism appropriate to
this approximation. Section VI is devoted to a brief
account of how various (theoretical) cross sections
behave when various types of coupling are considered
or various values are taken for the parameters involved.
The results of the more realistic numerical calculations
and their comparison with experiments are summarized
in Sec. VII. Finally in Sec. VIII we discuss suggestions
for future work, both theoretical and experimental.

II. THE INTERACTION POTENTIAL

The contents of this and the following three sections
are not all new. Rather similar formulations have al-
ready been given by various authors. '~' ~ "Neverthe-
less, in each of these works only a very limited case has
been considered, and thus it is worthwhile to give here
the general expressions and formulas in some detail
so that the piecewise information given in these works
are summarized and their extension can be understood
dearly.

As is easily seen, the coupled-channel calculation is
required to be made only when the (direct or indirect)
couplings between the excited- and the ground-state
channels are strong, that is to say only when the low-

lying states of the target nucleus have a strong col-
lective nature. Such collective motions can be described
fairly well in terms of the (permanent or vibrational)
deformations of the nuclear shape. In this view, the
description of the coupling potentials between channels
can be made in a simple and rather unambiguous way.

Throughout the present work, we use this phe-
nomenological description, and thus assume that the
whole interaction to which an incident particle is sub-
ject is described by an optical-model potential V(r, 8, p)
which is, in general, nonspherical. This potential is
usually complex and includes the spin —orbit interaction
and also the Coulomb interaction if the incident particle
is charged. As for the radial dependence of the potential,
we assume that of the Saxon —Woods4 form and its

"S.I. Drozdov, Zh. Eksperim. i Teor. Fiz. 28, 734, 736 (1955)
(English transL: Soviet Phys. —JETP 1, 588, 591 (1955)g."B.C. Barrett, Nucl. Phys. 51, 27 (1964).

derivative. Thus explicitly we assume that

1
V(r, 8, y) = —(V+iW)

1+exp r R—a

exp [(r R—)/aj 1

I1+exp L(r—R)/ajI' ar

R= Rp(1+ Qn),„V),„(8,Q) ),
XJ4

&=&p(1+Qn~, lr~, (e, y) ) (2)

On the other hand, if the target is an (axially sym-
metric) deformed nucleus, they are written as

R=&p(1+QP), Vu)(e') ) (3)

In (2) and (3), Rp rpA& and——Bp rpA&, where A——is
the mass number of the target. In (3) the angle 0'

refers to the body-Axed system.
Since it is impractical to solve the scattering problem

subject to the potential (1) with (2) or (3), we now

make the following (plausible) approximations.
(i) For the vibrational nucleus we insert (2) into (1)

and expand the latter in powers of Pz„n&„V&„. By
defining e and e by

e= exp L(r—Rp)/a$)

8= exp L(r—Bp)/aj,

and taking the series up to the second order of

' F. G. Percy, Phys. Rev. 131, 'N5 (1963);Paper C2, "Sympo-
sium on Nuclear Spectroscopy with Direct Reactions, " Argonne
National Laboratory Report ANL-6848, 1964 (unpublished) .

exp [(r—R) /a]
I1+exp I (r—R)/~jI'

(X = z -meson Compton wavelength) . (1)

The Coulomb interaction V(:,„& is given explicitly later.
Equation (1) is the same as in Buck.r The potential

used by Chase et a1.s is similar, but simpler than Eq. (1) .
If R and 8 are taken independent of the angle, Eq.
(1) is nothing but the usual optical-model potential,
as used for example by Percy, "but we make R and B
dependent on the polar angles 8 and p, in accord with
the phenomenological description mentioned above.
Their dependence is to be determined according to the
collective nature of the target nucleus considered2; if the
target nucleus is spherically symmetric, but is sus-

ceptible to vibration around that spherical shape, R
and 8 may be expressed as
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From (5), (6), and (10) we now have

V(yy 88 (f8) = Vriiag+Vcoppi

V~;, = —(V+iW) (1+e) ' 4—iWrye(1+e) '
—Vso(8(~'/ar) (8 I)e(1+e) '

ZZ'e y b( ZZye
+ 3—,~8(R,—r)+ 8(r—R,), (12)

2R, R„,'j

V-. i"=+&8. ;i«""(y) i„Vi,
Xp

+ Q V„,i,&'&&'& (r) (XtXs/(4zr) *'X)(Ail&zoo ) Xo)

Qibyrrliryr Vib88, we get

V(r, 8, (t) = —(V+iW) (1+e) ' —4iWrye(1+e) '
—Vso(d 1) (K '/ar) e(1+e) ' whe

—
I (V+iW) (Rp/a) e(1+e)

—4i Wry (Rp/a) e(1—e) (1+e) s}goo,„Pq„'

+ I ( V+zw) (Rp'/2a') e(1—e) (1+e) '
—4iWD(Rpo/2&z') e(1—4e+e~) (1+e) 4I

(Q&ri,s Vi, ) '+ Vc. i (&) and

We can use the following relation in (5):
(g(ri,„V~„)'= g g, 'X"/(4zr)4](VX"00

~
XO)

XQVi„(&r~ Sui-)i,„, (6)
P

where X= (2K+1)&, while the symbol S mea, ns the
vector addition, i.e.,

((r) r Stre"))88= Q(lt l& zd z( I i&id)rrkr88'o(& "88".

We now specify the Coulomb interaction, following
Satchler eI, al. '~ as

~@oui=ZZ'~' P ~', ~', '
g—g' d

ZZ epg p(y 8' P') (2l&+1)—ly xy —&x+tl

&~,„(8,@)&i,„*(8',g') r" dr' dQ'. (7)
Here Ze and Z'e are the charges of the projectile and
the target, respectively, while p(r', 8', p') gives the
charge distribution in the target, which with a reason-
able accuracy may be assumed to be constant within
the Coulomb radius R, (8',8t') and zero outside. Thus p
is written as

p(", 8', ~') = (3/4 R') 8(R.(8', ~') -"),
where 8(r) =1 if r)0 and 8(r) =0 if r&0. Assuming
again that

R,(8', 8t ') = R,(1+g(ri, „Vg„(8', &(') ), (9)
Xp,

inserting (8) with (9) into (7) and then using (6), Vc,„i
is expressed to second order in gq„nq„i'„as
Vc,„i——(ZZ'es/2R8) (3—(rs/R ') $8(R8—r)

+ (ZZ'e'/r) 8(r—R,)
+ g(3ZZ'e'/(2Xy1) )[r"R &~+"8(R,—r)

+RPr &"+'&8(r—R.) 7(&ri,„Vi,„)
+g(3ZZ'es/(2K+1) )L(1—lb)r"R, &"+'&8(R, r)—

+ (&+2)RPr-&~+»8(r —R,) $
~ P(~~"/(4 )4)(v~"00

~
~0)g(,,s „„)„„v„„.

X'X' '

(10)

'7 R. H. Bassel, R. M. Drisko, and G. R. Satchler, Oak Ridge
National Laboratory Report ORNL-3240, 1962 (unpublished).

Q(red. ,S~i„)i„Vi,p, (13)

with

t( .q&u&8'(r) = —
I (V+iW) (Rp/a) e(1+e) '

4iWr—8(Ro/a) e(1 e) (1—+e) 'I

+ (3ZZ'e'/(2K+1) ) Ir"R, &"+'&8(R8—r)

+RPr &"+'&8(r—R,) I, (13.1)

t(8D. q«" "& (r) = ( V+iN ) (Ro'/2a') e(1—e) (1+e) '
—4zWn(Rp'/2a') e(1—4e+e') (1+e)

+ (3ZZ'es/(2X+ 1) ) I (1—X)y&'R &"+u8 (R —y)

+ (X+2) RPr &"+'&8(r—R,) I. (13.2)

The potential V~;„ is diagonal with respect to the
total spin j of the projectile and the eigenspin I of
the target nucleus, and is nothing but the usual optical-
model potential. ' On the other hand, V„„~~&'& gives
the coupling potential between channels which have
different j and I, the superfix (t() meaning that we are
considering vibrational nuclei as targets.

(ii) For a rotational nucleus, one should use (3)
in (1) . If the resulting potential is again expanded in
powers of giAFqo(8'), one gets exactly the same ex-
pression as in (i), namely Eqs. (11) through (13),
except that O,~„and Fz 8, , are replaced, respectively,
by 8» eed rre(8') = „D„,( )rr8r„(8, 8).Here D„er(8;)
is a rotation matrix' and 8; stands for the Euler angles
between the body-6xed and the space-fixed coordinates.
As was noticed by Buck, ' while the first term of (13)
in the vibrational nucleus has vanishing diagonal ele-
ments, the corresponding term in the rotational nucleus
has nonvanishing diagonal elements, and this dif-
ference can give rise to a large difference in the cal-
culated differential cross sections, in some cases.

This is certainly an important remark. Nevertheless,
as was discussed by Chase et al. ,' and is also exemplified

"See, e.g. , D. M. Brink and G. R. Satchler, Angular Momentum
(Oxford University Press, Oxford, 1962}.
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in Sec. VI, the approximation of expanding the po-
tential in powers of PgqVqp(8') and then retaining a
few of its leading terms turns out to be ~ather poor
when P), is as large as, say, 0.3, as is the case in many
actual deformed nuclei. Since the parameter P), is a
c number, contrary to uz„which must be treated as a
(7-number operator, one can expand Eq. (1) with (3),
not in powers of gqP), Fqp(8'), but in terms of the
Legendre polynomials P), (cos 8'), or rather in terms
of F),p(8') = (2)+1/4')&P), (cos 8'), and then replace
V) p(8') by g, D„o"(8,) V),„(8, t&&). If this is done, the
radial function which appears as the coeKcient of
F),p(8') for each given X is the sum of the contributions
of an infinite number of terms in the power-series ex-
pansion in g)A F'z p(8') . Therefore the Legendre poly-
nomial expansion can be a much better approximation
than the power series expansion. (It is unfortunate that
a similar procedure is very hard to make for vibrational
nuclei. )

The calculation of the I.egendre polynomial expansion
is straightforward, and it is enough simply to give the
final result. We again have

V(r, 8, P) = Vg;„p+ V,.„pi'"', (14)

where V„„~i~")is given by

i"= Z ~"(""")(r) D p" V).(8, 4) (15)
Xp(X&0)

with"

() (x) (r) (r)
1 —( V+iW)= 4m.

1+exp [[r—Rp(1+ QP), .V), p(8') )]/a ]

respectively. Then if the energy of the incident particle
(in the center-of-mass system) is Ei the energy of the
particle which leaves the target in its eth state has
energy Z„=El—co„.

In a channel corresponding to the eth state of the
target consider a partial wave of a projectile of a spin
s that has orbital angular momentum E„and total
angular momentum j„(=l„+s).Couple this j„ to I„
vectorially and define an angular momentum J of
the whole system together with a parity operator II
also of the whole system:

I=j„+I„and II= ir„(—)". (17)

=I +-,' if s=o and I„is a half-integer,

X,(")= 2I„+1 if s=-', , all I„,
X,(")=3I„+2 if s=1 and I„is an integer,

=3I„+$ if s= 1 and I„is a half-integer. (18)

Corresponding to e,t'") and F,&"& we delne

With the interaction (13) or (15), it is easy to see that
none of /„, j„,I„,ir„or (—) '" is a good quantum num-

ber, but J as well as II is good. In other words, several
partial waves whose l„and j„satisfy (17) for a given
set of J' and II are coupled together through (13)
or (15) to form a set of coupled differential equations.
We denote the number of such a set of (/„j„) by e,(")

and call its maximum possible number as X,~"&. For
a given value of I„the value of X,&"& is as follows:

X,(")=I„+1 if s=0 and I„is an integer,

4iWr)—exp [Lr—Rp(1+ +),P), V), p(8') )$/a]
I1+exp [[r—Bp(1+QP), V), p(8') )]/a]I'

alld

e,=Qe, (")
n=l

(19)

(20)

&& V),p(8 ) d (cos 8 ) . (16)

On the other hand, Vq;, p is the same as in (12), except
that the first two terms in it are to be replaced by (4~)
times v,„(&("&(r) of (16).In (15) with (16) we gave only
the nuclear part of the coupling potential. For the
Coulomb part perhaps the power-series expansion is a
suKciently good approximation. Therefore, the Cou-
lomb interaction for a deformed nucleus can be taken
into account by adding to (15) the Coulomb part of
(13) after replacing n&„Y),„by P),D„PV),„.

IIL THE COUPLED EQUATIONS

Let us assume that there are E, states in the target
nucleus which are coupled strongly (directly or in-
directly) to the ground state by the V,„„p& given in

(13) or (15). We label these states with )p=1 to X„
m=1 meaning the ground state, and we let the spin,
parity, and energy of the nth state be I, x„, and cu„,

which give, respectively, the total number of the
coupled partial waves (t„j„) for a given I and II,
and its maximum possible value.

The terminology to be used is as follows: If we say a
"partial-wave channel, " it means a channel corre-
sponding to a particular set of values of /„and j„.
On the other hand if we say a "nth state channel",
it means e,(") sets of values of (l„j„), as a whole.

In the actual numerical calculations the values of
J are to be varied for each II from its minimum valueJ;,which is equal to 0 or ~ depending, respectively,
whether I„+s is an integer or a half-integer, to its
maximum value J, , which may be taken as equal
to Ii+j, where j, is the maximum value of ji
of the partial wave that gives a non-negligible contri-
bution to the (elastic) scattering.

Ke now introduce the Hamiltonian

H= T+H,+V(r, 8, P) = T+Hg+V~;.p+V.,„p), (21)
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where T is the kinetic energy of the incident particle In (23)
and H~ is the Hamiltonian for the internal motion of
the target nucleus. The Schrodinger equation can then
be written as

'JJi„;„~,=.g (lsmim, Ijm;)i'Ui tÃ, glim„
wltse

BC = E&%,

where the total wave function 4 may be written as

X,„,being the spin wave function of the projectile, while

C~„~~„ is the wave function of the target nucleus in its
nth state. By definition we have

+=r-' Q RJ.i„;„(r)('gi„;„8cr„)JM +&~'r,m, =~~'r. u. (24)
Jnlnjn

=r ' P RJ„i„;„(r)g (j „I„m;M„I JM)'JJ&„;„~,Cz„~„.
Jnln jn m j'~n

(23)

Inserting (21) and (23) into (22), multiplying it by
('JJi.;„8cz„)J~* from the left, and integrating over all
the coordinates except the radial variable r, and lnally
dividing by E„, one gets the following equation:

( d' l„(l +1) 1——Uu;, a+1 RJ„i„;„(r)=E„' g (QJi„;„84z„)Jiz I
U.o pi I

('tlt„z„84'r„)Jztz)RJ i„z (&).
k~p '

p
' ~/l fj /

(p =k„r; k„ is the wave number) . (25)

Equation (25) represents a set of n, coupled equations.
Equation (25) is quite general and holds irrespective

of the nature of the projectile or the target nucleus.
Assumptions about the nuclear structure only aGect
the matrix elements that appear on the right-hand
side of that equation, and the evaluation of that
matrix element is the most crucial part of the whole
calculation. However, the coupling term V„„~q can still
be written in a general form as

U-.pi= Qpd" (r) (Qdo I'~), (26)

with

A (jlI& l'j'I'; )|,Js) = (4ir) *(—)J ~"+'+"+&&" '&

~ ll'j j '(ll'00
I XO) W(j Ij 'I'; JX)W(ljl'j', sX) . (28)

The factor A(jlI, l'j'I'; XJs) in (27) is completely
geometrical. When s= —', it reduces to

A (lj7, l'g'I'; XJ-', ) = (4s.)-'*(—)J '*z'+~I'+'*&"—'&

~jj'(jj' ,','I) 0) W(jIj'I';—I-)-),

while if s=0 it becomes

A (jlI, l'j'I', )I JO) = (4s ) -&(—) -"+'+"+«"-'&

~ u'(lPOO I)0)W(aPI'; J)) b»b, ,'.
The reduced matrix element (I II Qi&" II I') appearing

where the superscript t conveniently discriminates terms
of diferent character but the same tensorial rank X,
and Qzt'& means an operator which operates only on the
coordinates of the target nucleus. The calculation of
the matrix element is straightforward and the result
is given by

(( glz8 C'z) J3f I Ucoupl I (Jl'z'8 C'r') JM )
—= (eI I U-, i I

~'j'I')

= Qpgi')(r) (I II Quito II I')A(lj7, l'j'I', XJs), (27)

in (27) is defined by

(IMz I
Q»«&

I

I'Mz')

= (I II Q~'" I', I')I '(I') M'I
I
IMr) (3o)

and contains all the dynamics involved in the problem.
Here I stands for all the quantum numbers needed
in specifying the state that is simply written as

I
I).

We now give the explicit form of the reduced matrix
elements (I I I

Qi"& II I') for various interesting cases."'
A. Vibrational Nucleus (Even Mass)

Comparing (26) with (13) one can write

Q»"'= ~», (31.1)

Q»"'= Q (XiX2i(4s.) iX) ()iih200 I XO) ( zr8peri, ,)».

(31.2)

Following Bohr" we introduce the creation and an-
nihilation operators bq„and bq„*, and express the
operator uq„as

~»=Pi& '(b»+( —)"bi „*). (32)

Using this bi,„~,and denoting the no-phonon (ground)
state by I 0), the wave functions of various vibrational
states (with spins I and its projection M') are written
as follows.

(a) One-phonon state:

I 1; IM)=bi~*
I
0). (33)

(b) Two-phonon states (one phonon of multi-
polarity Xi and the other with multipolarity X2):

I
2; IM)= (1+&i,~,) '(4,*84,*)r~

I
o). (34)

"'The reduced electric transition probability is related to this
reduced matrix element by 8 (EX;I~I') = (I'/I) 2I3(EX; I'~I) =
f(I II O'" ll I') I'z'~'.

"A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.
26, No. 14 (1952).
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TA&L~ I. Values of the quantities needed in describing the coupling of the one- and two-phonon states to the three-phonon states.

A. Fractional parentage coefBcients Nz(z') of Eq. (35).

0
(1/6)'

2

(7/90)1
(2/63)'
(2/55)1

0
(5/42)'

—(1/21) &

0
(11/126)&
(5/63)'

0
0

(1/6) &

B. Quantities Bzz of Eq. (36-3).

0
(6)1
0

(14)4
(40/7)'
(72/7) ~

0
—(30)&

(12)1

0
(198/7) &

(180/7)1

0
0

(78)~

C. Quantities C~ of Eq. (37-2).

0

0
—(6/35) &

0

(7/5)'
—(8/49) &

(72/245)1

0
(2/21) &

(4/105)&

0
—(198/245) &

6/7
0

(78/35) ~

(c) Three-quadrupole-phonon states:

I 3; m)=QNz~"&((b2*8b2*)z Sb2*)z~ I o), (35)

where the values of the fractional parentage coefB-
cients Nz&z'& are given in Table I(A).

Using (31) for the operators Q&,„&'& and Q&,„&'&, and
(33), (34), and (35) for the wave functions, the
evaluation of the matrix elements (I II Q&,

&'&
ll I')

of (27) is straightforward and the results for those
~ra.ich are used in the calculation of Secs. VI and VII
are summarized as follows.

(i) Operators lirtear iu n&,

(a') Ground state~one-phonon states (arbitrary X):

(0 0 II Q~o& II1 I)=b,.(—)'P

(b') One-quadrupole-phonon state- -two-quadrupole-
phonon states:

(1 2 II Q2'" ll 2;»=p2I2(»+I)/5j (362)

(c') Two-quadrupole-phonon states~three-quadru-
pole-phonon states:

(2;I I I Q 0&
I I 3; I' )= (p /10'*) gN & "& (25 "(—) + 'I'

r//

+4II'I"W (222P; I"I))
=—(P2/101) Itzz,

where the values of the quantities 8»' are given in
Table I(B).

(d') One-octupole-phonon stat-: ~quadrupole-octu-

~ (2 bz"&,I& '+4II"W(222I; I"X))/(4m)'*

=P22Cz~/(2n )', (37.2)

where the values of the quantities Cl), are given in
Table I (C) .

(c") Ground stat-- -.quadrupole-octupole-two-phonon
states:

(0 0 II Q&,&'&()I,)=2, X2= 3) II (283);I )

=t, 8~(2300
I
IO) (—)z+'/(4~)1. (37.3)

(d") One-quadrupole-phonon state- &one-octupole

pole-two-phonon states:

(1 3 II Q '"
ll (283);I)=p,L(2Iy1)/s]1. (36.4)

(e') One-quadrupole-phonon state~quadrupole-octu-
pole-two-phonon states:

(1;2 II Q3&'& ll (283);I)=p3(—) L(2I+1)/7]&. (365)

(ii) Operators quadratic irz aq
(a") Ground state -two-quadrupole-phonon states:

(0 o IIQ""() =~ =2) ll2;I)
=pp Ized(2200 I

IO)/(2~)'*. (37.1)

(b") One - quadrupole - phonon~three - quadrupole-
phonon state:

(1 2 IIQ~"'()z=)2=2) II3 I)
=p22(2200 I XO) ZNz&z
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phonon state:

&1' 2 II Qi"'(7 &= 2, &o=3) II 1 3 &

PoP3 (2300 I XO) /(4n-) '*. (37.4)

All of (36) and (37) are nondiagonal elements.
Since

holds, the matrix II (I II Q&,
&'&

ll I') ll which we refer
to as the 8 matrix in the following is not Hermitian.
Since, however, the A matrix (28) has the same
property as (38) with respect to the interchange of
its row and column, the whole matrix (27) is Hermitian,
as it should be.

When Xi——&&2 in (31.2), it contributes nonvanishing
diagonal elements. We give here only the expressions
for ) &

——)2= 2 for zero, one- and two-quadrupole-phonon
states.

(a'") Ground state:

(0; 0 II Q&&o&(Xi——Xo
——2) II 0; 0)=Poo B&o/(47r)&. (39.1)

(b'") One-quadrupole-phonon state:

&1; 2 II Q&,'o'(4=4=2) II 1; 2&

=Po'(2200
I XO) (2+5 l&&o)/(4m)&. (39.2)

(c"') Two-quadrupole-phonon states:

(2 I II Q "&(7 =X =2) II 2; I')
=Po'(4m. )='X '(2200

I
XO)

X I5'I &&o &rr +4II'XW(2I2I'; 2X) I. (39.3)

B. Rotational Nuclei

We consider here only the excitation of the states
which belong to the ground rotational band. Then the
expression for the coupling matrix becomes extremely
simple:

&ijI I
I'-.» I li''I'b~
= g&& &"&&"&(r)B&,(I, I') A (jlI, lj''I', XIs), (40)

where
B&,(I, I') =I'(I'7 KO

I IK) . (41)

If excitations of the P and/or y vibrations are also
considered, the expression for the matrix B&,(I, I')
becomes more involved [cf. Sec. VII(83)].

IV. SCATTERING MATRICES AND CROSS
SECTIONS

We are now ready to solve the coupled equation (25)
for the radial wave functions Rs„&;(r). If the solution
thus obtained is matched at an appropriate matching
radius, E, to its corresponding asymptotic solution,
the scattering coefficient or the 5 matrix is obtained.

In order to write down the asymptotic solution ex-

plicitly, we erst assume that initially both the pro-
jectile and the target are in some polarized states
(including the unpolarized state as a special case),
and that their polarized states are described by the
amplitudes a,&') and b~,~"), respectively. Here the
superscripts (i) and (i') specify different spin ensembles
when more than one ensemble is needed for the de-
scription of the polarized state. It is understood that
amplitudes for projectiles or targets which belong to
different ensembles do not interfere, but the amplitudes
for those which belong to the same ensemble but have
different magnetic quantum numbers do interfere with
each other.

As will be seen at the end of this section, the expres-
sions for a„„&') and b~,&"~ become very simple if only
unpolarized projectiles and unpolarized targets were
considered. In such a case the expressions for the cross
sections which are given below are also very much
simplified, being reduced to those that were already
given in literatures, ' 47'5 and we could thus dispense
with the present section completely. In order to make
the present paper self-contairied, however, and to make
it clear how the amplitudes a ~'& and b~ &") play their
role when either or both of the projectiles and the
targets are indeed polarized, it is desirable to give all
the following expressions explicitly.

A. Shaye Scattering Cross Sections and Polarizations

Using the amplitudes a, &'& and b~,&"), the asymp-
totic form of the wave function may be written as

+„„=[(4m)~/rki(&i)~] Q a,&'&b&r, &"&

(iiI)m, ~VI

~ g(iso~, lq~~, )(qI»~,u, I m)
ljJ3I

~ Q [l exp (i . 0' &)&&I&„, 8«8;.rF&&'&

+ (ki/k„) &l' exp (ia &
&"')

G&,;.v,'s(G&'"'+iF& '"') 7('&f&;SC'r„) . (42)

In (42) F&&"& and G&&"& are, respectively, regular and
irregular Coulomb wave functions (at r= R„),specified
with the orbital angular momentum l and the energy
F„, as well as the parameter r&„=rr&ZZV/fi'k„(m is
the reduced mass of the projectile). 0&&"& is the corre-
sponding Coulomb phase shift.

All the expressions in the present section including
Eq. (42) are given for charged projectiles. It is easy,
however, to get the corresponding expressions ap-
propriate for uncharged projectiles by putting equal
to zero the parameter g„, the Coulomb phase shift
o.&&"& and the Rutherford amplitude f, (0) that appear
below. We should further replace F~("& and G~&"', re-
spectively, by p„j&~") and p„e&~"& where j&&") and e&~"&

are spherical Bessel and Reinsman functions, respec-
tively, while p„=-k„R .
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Comparing the forms of (23) and (42) we can im-
mediately write down the matching equation and the
scattering coefficients C&;.„&;J are obtained by solving
these equations.

In deriving the expression for the scattering cross
section from (42), we 6rst note that the first term of
(42) is just the incident wave 4'; „which is the sum
of the (Coulomb distorted) plane wave and the Cou-
lomb scattered wave;

+;,=L1/(or)b] {exp I i(krs —
&)r ln (2k& I

r s I))]—
~ {1—Lrl as/ikr (r—s)]}+r—'f, (8)

~ exp Li(krr —
r&r In (2krr) )]}

F,(-) sin (Z,(-)), (44)

with
Z((")=k„r—rj„ ln (2k„r) —(ls./2) +o &("). (45)

Adding the second terms of (42) and (43), the wave
function for the scattered wave, 4'„,tt, , is now given as

~ exp I i(k„r—ln (2k„r)]
+scatt am, '

bas&
'

r(o„& (ii/) meM I

~ {f.(8) b»x,„,Cr,as,+ Q (4'/k„')~l'
Jj)/j/J

~ exp (2io&("') C&;. ,„p; s(lsOm,
Ijm, )

~ (jI&m,M& I IM) ('happCr„)gas}. (46)

The shape scattering di jferential cross sections
o ('&(8, P), which leaves the target in its rath state is
given as the absolute square of the second sum of (46) .
Therefore we get

o (s)(8 y) = Q I Q(a (s)b~ (sl)

ii/me/Mn ms&My

{f.(8) 8» 4, , bas„as,+
Lj l,/j / JN7, l,/my/

(4s./k„') ll'

~ exp (2ioa ("&)Ca a s(lsOm, Ij m, ) (jIrm M& I JM)
~ (l'sma'm, ' Ij'm ) (j'I„ms'M„ I JM) Fp, (8, y) } I'.

(47)

Note that o„('(8, g) depends in general on the azimu-
thal angle (b.

If the square of each term of (47) is actually taken
and summation over the magnetic quantum numbers
is performed, o„('&(8, P) can be expressed in terms of

(a ."bas,"x. .C's,as„(43)
(ii/)m, MI

where f, (8) is the Rutherford scattering amplitude.
Corresponding to (43) we rewrite the second term

of (42) by noting that asymptotically

G&(") cos (Z)("))

the Racah and Z coefBcients." For the machine cal-
culation, however, it is found that the form of (47)
is more suitable, and thus we leave it as it is."

In order to express (47) in a more compact form,
we shall introduce an amplitude X,as, , , as„(8, Q)
dehned as

Xte,as';tn, 'as„(8y f) fc(8) owl bm, 'm, bas„asg

+ Q (4s./k ')'*l' exp (2io ( ("&)
lj t,/j'J77sl'm~/M

~ C&; »p; .
,s(lsom,

Ijm, )(jI&m,Mt I
IM)'

~ (l'sm 'm, ' Ig'm ) (g'I„m M„ I IM) 7 ~, (8, y). (48)

Then, of course, (47) is reduced to

""(8,~)= Z I ZX-. ,:-. .(8, ~) -. 'b, " I.
iiImg/%ra tnsaMI

(49)

The amplitude (48) allows us to write down the
expression for the polarization also in a compact form.
The (vector) polarization I' (8, @), parallel to a given
unit vector n, of the particle scattered in the direction
speci6ed by the polar angles (8, p) and leaving the
target in its eth state, is defined as the expectation
value of the operator (d.n) with respect to the scat-
tered amplitude, i.e., the second sum of (46), divided

by o„('&(8, t&b). We thus have

."(8, e) I'-(8, ~)

=Q QX*,as, .as. (8, 4)X-,as, ; , as. (8, y-)
ii/ (fn)

~ (m,
'

I (d n) I m, ')a„(')*bas (")e(a„- (*')bas,("), (50)

where g( ) means summation over all the magnetic
quantum numbers that appear.

B. Tota1 and Reaction Cross Sections

If the I=1 part of (42) is written as 4, and the
quantity

8%'g+ 8+g
— —4~+ r' dr dQ

2im Br Br

is computed, this is nothing but the reaction cross
section o„.In (51) dr means summation and integration
over all the internal coordinates, while dQ means inte-

~ L. C. Biedenharn, J. M. Blatt, and M. E. Rose, Rev. Mod.
Phys. 24, 249 (1952).

"In treating the polarized targets and projectiles, it is custo-
mary to introduce the statistical tensors rather than the ampli-
tudes e and b as we did here. See, e.g. , L.J.B.Goldfarb and D. A.
Bromley, Nucl. Phys. 39, 408 (1962). We believe, however, the
use of a and b is much handier particularly when the polarized
state of the target is rather complicated, as for example we shall
see below in Sec. VIIB. Also, the fact that it is easier for the
machine calculation to compute the amplitude 6rst and then to
take its square as made in (47), justifies the use of a and b, rather
than the statistical tensors.
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gration over all the angular variables of the relative
motion. If the total shape elastic cross section O,i
Lthe integral of (47) over dQj is added to 0„, the result
is the total cross section 0~ (which is to be compared
with the experimental total cross section as obtained
by the transmission experiment) . If the incident
particle is charged, 0,& and a & are both infinity and thus
consideration on these cross sections has meaning only
when a neutral particle is used as the projectile.

The expressions for 0-& and 0-„become simplified by
introducing an amplitude Z M I M I ~ $ which is
intimately related to the amplitude X .M, ~„(e, p)

~ (Im Gm, Gm, ' bMr bM&' ~m, 11Iam, 'M, ~', l' I 1
(') 1 )8 (')s q')Z

and

7iIm&m IM~M7I

(53)

of (48),and is defined as

g,~,~ ~ p= g (lsom ) jm ) (JItm Mt
~
JM)

le IJMmgIm~~

~ C&, t&; s(l's0m, '
~j 'm, ') (j 'Itm, 'Mt'

~
JM) . (52)

Then

~)= (4e/kt2) g(2l'+1)

(7 0 t (4K/kt ) Q(2l'+1) ~ Q ~ Q a,"'b~, t"&g(ls0m, (jm, ) (jIlm Mt I
.IM) ~~, ;it ~" I'. (54)

Equation (53) is nothing but the optical theorem in
our case and the operator Im appearing there means
to take the imaginary part of the expression which
follows it.

C. Comyound Contribution to the Differential
Scattering Cross Sections

Using this generalized scattering coeKcient, we first
define a generalized S-matrix element S„Ej,„.~ j J as'4

S.&s,.pp'= b. ~ &tt b;, +»C.tp" t s", (55)

and use it to define the generalized transmission coeffi-
cient T„~;J as

&nl =1 gLl"/—&')&nlj;ml &el;; ip". (56)
n!)Ijf

Using (56) and the idea of detailed balance, " the
contribution from the compound process to the scatter-
ing cross section leaving the target in its eth state may
be given as"

~ "(8)= (~/&') Z (~ "')'(b~ "")'ZL1/ZT-~~'j
A Im, ~II J nlj

~ g (2l+1) (ls0m, ~gm, )'(j Itm, Mt
~
IM)'

l jlI jI(m)

~ (l' s&m' m'~j'm, ')'(j'I„m,'M„) IM)'

(57)

which is now independent on P. Note that T~e is a
real quantity.

D. Expression of the Amylitudes a,(' and bM, '"

In order to complete the description of the cross
sections it would be desirable to give an explicit account
on how the amplitudes a, (') and bM, "') are computed.
We begin the explanation with that for bM, (".

It often is possible to choose an axis, say s' axis, in
space, such that if this is chosen as the axis of quantiza-
tion of the nuclear spin states, the state of polarization
of that nucleus is completely described by giving the
occupational probabilities P(Xt) of the magnetic sub-
states S&, which satisfy the normalization condition

Q I'(IVt) =1. (58)
KI=—II

"J.M. Slatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley Bz Sons, Inc., ¹wYork, 1952).

"An expression very close to this has been given in Refs. 3
and 4.

When the energy of the incident particle is low,
one should not compare the prediction of (47) with
experiment but should add the contribution of the
compound process to (47), and then compare the sum
with the experimental differential cross sections.

It is customary to use the Hauser —Feshbach (HF)
formalism" in evaluating the compound cross section.
Although it is known that this formalism can give rise
to some error, "'4 we follow it since we do not know
any other way to handle the problem simply enough.

As is well known, the original HF cross section was
given as a function of the penetrabilities T~(") for
various channels m and the orbital angular momentum /.
In computing T&("), the scattering coefficient, say C&("),

is first computed for an appropriately assumed optical
model potential. If the optical-model potential had a
spin —orbit interaction in it, one gets C~j("), instead of
C~("), and thus the HF eros ssection is to be expressed in
terms of Tgj("), instead of T~("). In our calculation, the
scattering coefficient is of the form C~j,„~.j and thus
our HF cross section is to be modified accordingly.

As is seen from (42) the scattering coefficient
C~j., ~ j is defined as the amplitude of the outgoing wave
in the channel (nlj'') when there is an incoming wave in
the channel (1lj) with the amplitude l exp (io&'"), .
and can be used in defining the penetrabilities in the
ground state channels as is seen below. Since we need
the penetrabilities in the excited channels too, we shall
extend the scattering coefficient C~, .„~j J into Cn~j;n ~ j
which gives the amplitude of the outgoing wave in
the channel (e'lj'') when there is an, incoming wave
in the channel (elj) with the amplitude l exp (io&&"').

"W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
~ P. A. Moldauer, Phys. Rev. 123, 754 (1961};129, 968 (1963)."G.R. Satchler, Phys. Letters 7, 55 (1963).
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Since the amplitudes, that result from the scattering
due to nuclei occupying these diferent magnetic sub-
states, do not interfere with each other, E~ can be used
to specify diferent ensembles. In other words one can
identify the set (i') as the set (X&). Thus in general
the total number of different ensembles equals 2I~+1.

As is seen in the explicit forms of the wave functions
and the cross sections given above, the direction of
incidence of the projecticle was taken as the z axis,
and it was also used as the axes of quantization along
which all the magnetic quantum numbers appearing
there were de6ned. If the z axis were parallel to the
z' axis dered above, we could identify the magnetic
quantum number E& with M& that appears as the
suf5x of the amplitude b~, ("~ and thus one can put

4r,(")=4r,&""=P'(%)j'* 8&Lry i (59)

In general, however, z and z' axes are not parallel to
each other. In such cases let us assume that the orienta-
tion of the former relative to that of the latter is de™
scribed by the Euler angles (8&, 82, 83). Then we get

b~ &"&=b~ (~»=D&r ~ (»(8&. 8g 83)LP(Sg)$&) (60)

(61)

Sometimes the state of polarization of the target
is more complicated than can be described by (60).
For example, a single crystal of the metal holmium
under a comparatively weak magnetic 6eld"'~ consists
of several domains, nuclei belonging to each domain
having diGerent orientation of the axis of quantiza-
tion as defined above of Eq. (58). It should be noted,
however, that the nuclei belonging to diGerent domains
belong to diGerent ensembles in the sense that the
waves scattered by nuclei belonging to diGerent do-
mains do not interfere with each other. Therefore, we
can use (60), by taking appropriate Euler angles (8,)
separately for each domain, in order to compute various
cross sections. The theoretical cross sections that are
to be compared with experiments are obtained by
adding the cross sections corresponding to each type
of domain weighted by its relative population.

In this way the use of the amplitudes b~,~"& allows
us to handle rather complicated targets fairly easily.

Derivation of the amplitudes a,&') is exactly the

~ Cf. Sec. VII 82.

as a natural extension of (59), where D~,)r,&r» is the
rotation matrix. " Clearly (60) reduces to (59) if
8)=02= 83=0.

Since all the cross sections considered above contain
the amplitude b~,&N» bilinearly, the over-all phase of
b~,&~» is immaterial. We therefore understand that
P'(X&)$' means the positive square root of P(X&).

When the target is unpolarized, we can take z'

parallel to z. Since furthermore, in this case, the oc-
cupational probabilities must be the same for all the
values of E&, E(E~) is equal to 1/(2I&+1). From (59)
we thus get

4r, (~'=4r, jr/i '

a)&'&=a )&'&=-'(1+8/100)&

&&:)»= —a )(2)= -,'(1—P/100) &.

V. ADIABATIC APPROXIMATION

(63)

We can make use of the adiabatic approximation""
in the coupled-channel calculation when the following
three requirements are satisfied: (a) The target nucleus
is well deformed and thus its excitation spectrum is
closely that of an ideal rotational band; (b) the
incident energy of the projectile is much higher than
the excitation energies of the above rotational states;
(c) we are interested in the excitation only of the states
which belong to the ground-state rotational band.

When this approximation is used, the coupling to
all states of the ground band is included automatically,
and therefore (when the above requirements are
satisfied) one can get quite accurate theoretical results
with less complicated and thus much faster machine
calculations, than when the nonadiabatic coupled-
channel calculation is made.

Recently Barrett" gave a formulation of the adiabatic
coupled-channel calculation (abbreviated in the follow-
ing as ACC, compared with the nonadiabatic coupled-
channel calculation which is abbreviated as NACC)
in a form particularly suited for the coding of a com-
puter program. His formulation, however, included
neither Coulomb nor spin —orbit interaction, and thus
could be used only when the scattering of neutrons is
considered under the assumption that the spin —orbit
interaction is negligibly small, which does not seem
to be the case in general. For more practical purposes,
it is therefore necessary to extend Barrett's formulation.

The potential we'start with is the same as that given
in (1), and since we assume again that the target
nucleus and thus the potential which it exerts on the
projectile is axially symmetric, the radii R and R
are given by (3). If (3) is inserted into (1), and the
latter is expanded in terms of the Legendre polynomials,
one gets (14) again. Since we prefer, however, because
of reasons which we shall see shortly, to write down
the coupled equations referring to the body-fixed co-
ordinate system, we write V,.„,&&"), instead of (15), as

p' „&(~)= P ~,o)(t)(r) F&or
X(X&0)

(64)

where v,„o')&')(r) is the same as in (16). The prime
attached to F&,0' in (64) means that its arguments are
polar angles referred to the body-6xed system.

Denoting by m; the projection along the nuclear

same as that of b~, t'"&. It is enough simply to replace
I& by s. Thus one gets, for example, for an unpolarized
beam of s= ~~ projectile,

ay(»=a y&')=(-')& and a ~&»=a~('&=0 (62)

while for a beam polarized in the x direction by P%
a situation often met with in the actual experiments,
one has
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symmetry axis of the total angular momentum j of a
partial wave of the projectile, the total wave function
in the internal region may be written as

4'= r 'QR(;-,.(r) 'g'(, „-, (65)

Using (14), (64), and (65) the coupled equation is
easily written down as

f

d' l(l+1) —Z- V„„+1~Z„.-,.
P P

=~'Z&a';=, |Z",("")( ) I".
I
e', =, )&;=,.

(66)

The similarity and difference between (23) and (25)
on the one hand, and (65) and (66) on the other
hand are worth noting. One can easily derive (65)
and (66), respectively, from (23) and (25) by deleting
all the quantities which describe the properties of the
target, by replacing J by m;, and then quantizing the
angular momenta with respect to the body-fixed system
rather than the space-fixed system.

The reason why the body-fixed system was preferred
is clear from (66), because otherwise there would be
coupling between partial waves with different values
of m;, in addition to the coupling between those
with diGerent values of j.

The evaluation of the coupling matrix that appear
in the right-hand side of (66) is straightforward and
one gets

(V';=, I Z".(")("»'
I ~';=, )

(")(")(r) P(4zr) Ill'ii% '( )'(" —"(ll'00
[ l(0)

~ W(ll'qq'; 7, ) (—)'+ ( ji'—m,m;
~
I)]. (67)

Comparing this expression with those that appeared
in Sec. IU, we see that the matrix which was called
the 8 matrix there is now replaced by a c number,
which is unity, and the whole coupling matrix is com-
pletely geometrical t except for the radial functions
z), (~) (&) (r)]

Corresponding to the derivation of (65) and (66)
from (23) and (25), the asymptotic form of the total
wave function may be derived from (42) as

~.„-=L(4 )-'/r~, (.,):] Z ~.,(')l,(")
(ii~)msMI

~ g(lsOm,
~jm, )D, , '(8,) pl' exp (i-«(")

, 8,, P(, ( )+C), ),, '(G), ( )+zPz, ( ))]
' g 1'j'rn;4I &M&. (68)

Contrary to (65) and (66) there appear factors in
(68) which describe properties of the target nucleus.
There exists, however, an important digerence, be-
tween (68) and (42), in that in the former no coupling

of the angular momenta I& and j occurs. This is a
consequence of the adiabatic approximation which sup-
poses that the target nucleus is inert during the scatter-
ing process, and thus carries no angular momentum
dynamically. The reason why we had a rotation func-
tion D, ,&(8;)-, whose arguments 8; describe the Euler
angles between the body- and space-6xed coordinates,
is that (68) was first obtained in the space-fixed system
and then transformed into the body-fixed system. Kith
the form of (68) the construction of matching equation
to (65) is clearly understood.

Using the same technique as was used in deriving
the scattered wave (46) from (42), we now derive the
scattered wave%', zz(" o) from (68) as

exp (ipi iz)—i ln
scatt

r(z)i) &

.
L f.(8)x-.+L(4~)'*/&I]

( pi))
(ii~)msMI

l' exp (2io) ('))
ljL~j~~i'ms~rn l~mil

~ Cz; );. ~.,(lsOm',
~ jm, ) (l'smz'm, '

~j
'm )

'Dm, m; Dmj'm; I Vmg'Xnm, ']4 IzMz (69).

A new rotation function D,. ,
&'* appea-r. s in (69),

since the surface harmonics I'~. , is expressed in terms
of the polar angles referred to the space-Gxed system.

If the right-hand side of (69), excepting the factor
exp (ipi —izn ln (2pi) )/(r(z)i)'), is expanded in terms
of the eigenfunctions C~„~„of the target states, each
expansion coefBcient gives just the scattering ampli-
tude that leave the target in that particular state.
The evaluation of this expansion coefficient is easily
made, if one notes that C~„~„is written as

ci„M„——L(2l„+1)/8zr']'* DM~™(8;) (70)

where E is the projection of I„to the nuclear symmetry
axis.

Instead of giving this expansion

coefficient,

however„we give a closely related amplitude
X,M, M,.("oo)(8, @), which plays exactly the same
role as the amplitude X,M, M,.(8, g) given in (48)
did j

Xm, Mgzlm, 'Mn (8~ Q) fn(8) 8nl t)m, 'm, 8MnMz

$(4zr)'*/k, ]l' exp (2ioi (')) C);,);"I
lj Vj~&ml~mi

~ (lsOm, )jr)z.)gP( ) 'I I '(I J—KO [
'I K)

~ (I,~~,~,
~
I.~-) (ii'm; m; I

JO)—
(jj'm, m/

~

JMg)(Psm)'m—,' ~j™,') Yzm, (8, 4)].
(71)

Similarity between (71) and (48) is again remarkable.
Expressions for various cross sections and polarizations
derived for NACC in Sec. IV can be used for ACC by
simply replacing the amplitudes X,M, M, .(8, g) and

Zm. M, ,m, .M,.,z, reSPeCtively, by Xm.M, ,m. M„" (8, P)
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and by

~»r ~1 ~ 'MI'l' ~ khOJNs l j~s) Clj;l'j'--
j l j™jmg,~m&I

(&'smi'n4'
[jI ) g[(—)"--'(I,JE0 [ I,X)

JM

~ (IiJMiM&
~

IiMi') ( jj'm, —m;
~

JO)

~ (jj'm.—m
~

JMs)$. (72)

We close this section with several remarks which
are important from the practical point of view of the
numerical calculations.

As is easily seen from (67), the coupling matrix
element is multiplied by a phase factor (—)&+&'+"+"

if m; is changed into —m, . Therefore, Lwhen the parity
of X is unique, as is the case for a pure quadrupole de-
formation of the target where we have (—)"=1j,
there holds a relation

C, ,-m, ( ) i+i +2m(, ,my' (73)

On the other hand, the factor in the square bracket
in (71) and (72) is multiplied by (—) &'+&+s+28 if
m; is changed into —m, . Thus the summation over
m,; in (71) and (72) can be limited, say to non-
negative values m; if the bracket factor is multiplied
by (1+(—)~)/(1+8-;,p) at the same time. In other
words the coupled equation (66) is needed to be
solved only for nonnegative m, , which means a large
saving in the machine time and the core storage needed
for the computation.

Based on this fact and the form of (66), let us now
consider how much numerical work is involved in
solving the coupled equations. We 6rst assume that
we have found somehow a quantity j, , which is the
maximum value of j of the partial waves that give
nonnegligible contribution to the scattering. We also
assume, for de6niteness, that the spin of the projectile
is s=-,'. Then when m;=-', , (67) is a coupled equation
between partial waves whose j ranges from 2 to j, ,
and thus is a coupled equation between n, =j~'"+
2 (—=n, '") functions. When m;= 2, j= ~iwave is not
coupled together and thus e, reduces to e, ' —1.
In this way each time m; is increased by unity, m, is
decreased by unity and finally when m;=j, we have
a single uncoupled equation.

Thus, what the computer has to do for each given
value of the parity operator II= (—) '= +1 is to solve
a e;coupled equation only once for each value of I,
ranging from j,„+—,'to unity. Therefore unless j
is extremely high (i.e., unless the incident energy is
extremely high) the machine time needed in solving
the coupled equation in ACC is much shorter compared
with that made with NAAC where E, coupled equation
$cf. Eq. (20)j had to be solved many ( J,„) times.
Another, and perhaps more important merit concerning
the machine time of ACC over NACC is that the sizes
of the coupled equations to be solved are unchanged,
if the incident energy is fixed, irrespective of how high

we go up in the excited states to calculate the scattering
cross sections.

When the spin s of the projectile is zero, j deGned
above becomes an integer / „,say, and e, ' is reduced
to

n. '*=I /2;

n, *"=(l,+1)/2;

(l, =even),

(l . =odd),

which is only half of its value for s=-,'. Therefore in
this case the computation can be made very quickly.

Fp= Tp= r = 1.25 F, a=0.65 F,

a=0.47 F (A(150), a=0.76 F (A)150),

U,p=7.5 MeV, 8'=0.0 MeV. (75)

VI. REMARKS ON THE NUMERICAL
CALCULATIONS

Based on the formulation developed in Secs. II
through V, a program was written to be run on the
CDC-1604 computer at Oak Ridge. The detailed ac-
count of the coding of this program is to be published
elsewhere. This program was written in such a general
and Qexible way, that only a single binary program is
needed in order to perform all the calculations that are
presented in this and the next sections, and also other
calculations to be reported in the future.

Our theoretical results show very good agreement
with experiment in most of the cases considered. In
the course of trying to obtain such agreement, a
number of interesting features were found concerning
the dependence of various cross sections on the param-
eters and the assumed scheme of the coupling. (We
mean by "scheme of coupling" the set of states of the
target nucleus between which the strong coupling is
considered and the type of such coupling. ) In the
present section we give a brief account of such general
features; knowledge of which will make easier future
attempts to 6t the theory to experiments in a way
similar to the examples given in the next section.

The radial factors of the coupling terms given in
(13.1), (13.2), and (16) are complex in general. In
the literature' the imaginary terms were usually
neglected. If this is done, we say that our calculation
is made with RFF, meaning that we use real form
factors, while if the whole complex factors are used we
say that the calculation is made with CFF (complex
form factor). As was defined in Sec. V, ACC and
NACC mean, respectively, the adiabatic and non-
adiabatic calculations.

It is also convenient to give a stag, dard set of optical
model parameters. In most of the calculations the pro-
jectiles considered are nucleons, and for nucleons the
following set of parameters given by Percy'6 is found
to be usually very good, if the energy of the nucleons
is not too large; less than, say, 30 MeV. Therefore we
used this set as much as possible:
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&=«0'~~&i&.'. (77)

Here c is a constant and is very roughly of the order of
0.01 sec when our code is run on the CDC 1604. (ro
and ki are measured in F and F ', respectively. ) This
6gure is when RFF is used. If CFF is used, c has
to be doubled. If higher-order terms that were neglected
in (5) are considered, c increases roughly in proportion
to the total number of terms in the coupling potential.
When ACC can be used, T is reduced very much as was

emphasized in Sec. V.
(i) We first consider how the cross sections vary

when a particle is scattered, on the one hand, by a
deformed nucleus, and on the other hand, by a vi-
brational nucleus, but of the same A (mass number)
and Z (atomic number). Such calculations were sug-
gested to the author by Bohr. ' The result shown in
Fig. 1 is an example which was made with 2=156
and Z= 64 for a 17.5-MeV proton. ', Since these A and Z
are those for "'Gd, and since "'Gd is a well-deformed
nucleus, the deformed nucleus calculation is realistic,
while the vibrational calculation is hypothetical. Never-
theless, since the theoretical cross sections are rather
insensitive to a slight change of A, we can expect that
the results given here predict the general features
of what one would observe"if he bombards, with protons
of the above energy, several isotopes, of, say, Sm or Nd,
whose lightest and heaviest stable elements are, re-
spectively, vibrational and deformed nuclei.

~ A. Bohr (private communication).

';I. he set of radius parameters ro, ro, and r, and the dif-
fuseness parameters g and a, is sometimes called the
"geometrical parameters. "

Contrary to the fixed parameters of (75), the param-
eters U and 8'~ are varied from case to case in order
to get a good agreement of the theory to experiment, but
the following are a standard set of values of these
parameters which provide a good starting point;

U= (52.2—0.3E) MeV, W'i! = 11.5 MeV. (76)

This U is for protons. For neutrons it is larger than
(76) by a few MeV. Wg& of (76) is good when no
coupling is considered. It is a rather sensitive function
of the coupling scheme.

We also give here an idea of how the machine time
T needed in performing a particular calculation varies
depending on the coupling scheme and the parameters
involved in each calculation. Most of the machine
time is taken in solving numerically the coupled equa-
tions (25) in NACC or (66) in ACC. The time needed
in solving a n;coupled equations is roughly proportional
to e,' times E, where R is the matching radius. H
NACC is used, E,-coupled equations have to be solvedI (=I&+j,„) times as was mentioned below Kq.
(20), where N„ Ii, and j were defined in the begin-
ning of Sec. III. This J is roughly proportional to
kg+0 and thus T is proportional to rg ENk].+0. Since
further R and Ro are both proportional to rod&, we
can write
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FIG. 1. Scattering cross sections of 17.5-MeV protons by a
nucleus with 2=156 and Z=64. Solid lines are for deformed
nucleus and dotted lines are for vibrational nucleus.

The solid lines )which are the same both in Figs.
1(A) and 1(B)$ were calculated under the deformed
nucleus assumption by using CFF and ACC. (These
curves are realistic and, as is seen in Sec. VII-B are
in good agreement with experiment. ) The optical-model
parameters used are (75), U=50 MeV, and Wn ——

7.5 MeV. In the potential (16) the summation over X'

is restricted to a term with X'=2, and p, is put equal
to 0.32.

The dotted lines in Fig, 1 are calculated by assuming
an ideal 0+—2+—4+ vibrational level scheme. The cal-
culation was made with CFF, using the same optical-
model parameters as in the deformed case. The ele-
ments of the coupling matrices to be used are found in
(36.1), (36.2), and (37.1), and in all these elements a
common single value of pm is used; (hence we assume
an ideal vibrational nucleus) . The value of P2 used wa, s
0.32 in Fig. 1(A), in accord with the deformed nucleus
calculation, while it was 0.20 in Fig. 1(B), a value of
the order of magnitude that is found in many actual
vibrational nuclei. A remarkable feature observed in
Fig. 1 is that the structure of the cross-section curve
is much more pronounced in the vibrational case tha, n
in the deformed case.

Comparison between the vibrational curves in Figs.
1(A) and 1(B) shows that the structure is rather in-
sensitive to p2, but the magnitudes of the cross sections
varies. If p2 is sufficiently low the cross section to the
2+ state is expected' to be proportional to p22 and that
to the 4+ state to P2'. Since our P2 is large, the saturation
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Fxo. 2. Dependence of the elastic scattering cross section on
the coupling schemes and the parameter S"~. (A) vibrational
nucieus; (8) rotational nucleus.

phenomenon~ has already occurred and the 2+ cross
section is reduced by going from Fig. 1(A) to Fig. 1(B)
by a factor 1.5 which is about half the ratio of the two
values of Pss, i.e., 2.6. The reduction factor of 4+ cross
section is 3.3, which is again about half of the ratios
of the two values of Ps', i.e., 6.5.

(ii) Next we shall see how the elastic scattering
cross section varies depending on whether the coupling
to the higher states is considered or not. We reproduce
in Fig. 2 the elastic cross section curve of Fig. 1. In
Fig. 2(A) the curve 1 is the same as the dotted elastic
cross section curve of Fig. 1(B),while that in Fig. 2(B)
is for the deformed case of Fig. 1. As mentioned in (i),
8'~ was taken as 7.5 MeV in obtaining these curves.

The two curves 2 and 3 of Fig. 2(A) are the results of
uncoupled calculations for the elastic scattering with
8'D=7.5 MeV and 11.5 MeV, respectively. As is seen,
the curves 2 and 3 brackets the curve 1 in most of the
angular range, and this suggests tha, t by taking 8'z
which is in between the above two values, one can get
a curve that coincides with the curve 1. In fact we
found that the result with 8'~=9.5 MeV coincides
with the latter almost perfectly. This result is quite
important since it indicates that about 20% of the
absorptive potential observed in the (pure) elastic
channel is accounted for by the coupling to the 2+
state (when Ps ——0.2) .

In the actual calculations which aim to 6t the ex-
perimental data on the scattering cross sections from
vibrational nuclei, we found the following procedure

is very powerful and time saving. First of all, we dis-
covered that the geometrical parameters of (75) were
usually very good. Therefore we keep them axed. By
taking the diGerential cross-section data of the elastic
scattering, we &st adjust V, W~, and sometimes V~0,
to Qt the experiment. This calculation can be made
very quickly (a few seconds per run); cf. Eq. (77).
%e then consider the experimental cross section to the
6rst excited 2+ state and perform the 0+—2+ coupling
calculation by reducing the value of 8'D obtained in
the pure elastic calculation by about 20%, and then
adjust Ps to fit the data. (This step is still fairly fast;
one or two minutes per run). In this case the fit to the
elastic cross section is usually guaranteed, as we have
seen in Fig. 2(A). We then couple, if there exist data,
to the two-phonon states. Since this coupling reduces
the cross section to the erst excited 2+ state, we in-
crease the previously obtained Ps value by about 10%,
still guaranteeing the fit both of the elastic and first 2+
state cross sections. The Ps values to be used for the
coupling between the one- and two-phonon states are
then adjusted to 6t the cross section curve of each two-
phonon 0+, 2+, and 4+ states. These P values are usually
found to be smaller than that used between the ground
and the erst 2+ states, and the square of the former
divided by the latter gives the factors by which the
B(E2) values between the two- and one-phonon states
are reduced. In turn, this is a measure of how badly
the simple harmonic nature of the vibrations is violated
in the nucleus under investigation. Thus it is a very
important quantity from the nuclear structure point
of view. Until recently these reduction factors were
supplied almost exclusively from Coulomb excitation
experiments. As was found by Buck.'" and as is seen
in the next section, inelastic scattering data and its
analysis in terms of the coupled-channel calculation
is beginning to be a very powerful tool for such purposes.

(iii) The situation concerning the elastic cross section
for a deformed nucleus is not so simple as for a vibra-
tional nucleus. Since we use a Legendre polynomial
expansion, as emphasized in Sec. II(ii), the diagonal
part of the optical model potential (14) is not the
same as that of (12) if Ps/0. Therefore even if we cut
off the coupling to the higher state (we now consider
NACC instead of ACC of Fig. 1), the elastic-scattering
cross section is still a function of Ps. The curves 2
and 3 of Fig. 2(B) are the results of the uncoupled
elastic scattering calculation with Ps ——0.32 and Wn = 7.5
and 15.0 MeV, respectively. In about half the angular
range these two curves lie on a same side of the curve 1,
so in this case the simple adjustment of 8'& cannot
reproduce the result of the coupled-channel calculation.
In other words we cannot follow such a procedure as
to increase the number of coupled states step-by-step
as we did in the case of vibrational nuclei. If we use
ACC, however, this fact does not matter, since we
have to solve the full size coupled equations all the

» H. W. Broek, J. L. Yntema, B. Buck, and G. R. Satchler,
Nucl. Phys. (to be published).
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FIG. 3. DiBerential cross section of I2.16-MeV protons to the
octupole 3 state in "4Cd under various coupling schemes.

time, irrespective of how many excited states we
consider.

(iv) Corresponding to the discussion in (ii) con-
cerning the dependence of the elastic-scattering cross
section on the parameter 8'~ and the coupling scheme,
it is interesting to see how they affect the cross section
of the one-phonon state. We take "4Cd and erst
consider the following coupling scheme: 0+ (ground
state) —2+ (one quadrupole-phonon state at 0.56
MeV) —3 (one octupole-phonon state at 1.95 MeV)—
3 (one-quadrupole —one-octupole phonon state at 2.51
MeV, c.f. Sec. VII A2).

The differential cross section to the 3 state at
1.95 MeV, calculated for 12.16-MeV protons with the
above coupling scheme and with CFF and then with
RFF are shown, respectively, as curves 1 and 2 in
Fig. 3. The optical model parameters used were (75),
V= 48.8 MeV and 8'~ = 12.2 MeV. The coupling
matrices are constructed by using (36.1), (36.4), (36.5),
(37.3), and (37.4) with P~ ——0.2 and PI ——0.136. As is
seen in Fig. 9 below, the curve 1 has a shape that fit
the experiment in that the first and the second peaks
appear at 8=43' and 8=105', and that the first valley
appear at 8=75'. The corresponding peaks in curve 2

appear at 8=35' and 95' and the valley appears at
8=70' and thus this curve fits the experiment less
well than curve 1, indicating that the CFF is preferred
in this case.

We next consider the 0+—2+—3 coupling scheme,
cutting oG the coupling to the second 3 state in the
above calculation. The resulting 3 cross section is
given as curves 3 and 4 in Fig. 3 for CFF and RFF,
respectively. It is seen that their shapes are similar
to the corresponding curves 1 and 2, but the magnitudes
are slightly increased. A similar feature has already
been noticed in (ii) in comparing the one-phonon 2+
state cross sections which were obtained with and
without the coupling to the two-phonon states.

The curves 5 and 6 of Fig. 3 were obtained, again
with CFF and RFF, respectively, but assuming only
the 0+—3 coupling, and it is seen that their magni-

tudes (particularly at forward angles) are f'urther in-

creased compared to their corresponding curves 3 and 4.
This result may seem surprising considering the fact
that in the above 0+—2+—3 calculation the 2+ and 3
states were coupled together only indirectly through
separate coupling to the ground state. We should
recall, however, that with Pq=0.2 about 20% of the
absorption in the ground channel was accounted for
by the 0+—2+ coupling. Since this coupling was cut-off
in the 0+—3 calculation, we should have used a value
of Wn in the ground state channel which was 20%
larger than that used in the 0+—2+—3 calculation in
order to obtain the same elastic scattering. The actual
calculation showed, however, that the increment of
Wz& by 20% was too large, but if the increment was
10% the 0+—3 calculation gave a 3 cross section
which agreed very well with that obtained in the
0+—2+—3 calculation. LA similar comparison, as made
in (ii), of the elastic cross sections with and without
the 0+—3 coupling was made which showed that
about 10% of the absorptive potential in the ground
channel was accounted for by the 0+—3 coupling if
P3 was of the order of 0.14.]

As another example of the dependence of the excita-
tion cross sections on the coupling scheme, it would
be interesting to see with what accuracy we can ap-
proximate a Oo+—2~+&~+—2~+—4~+ (the suKx means the
phonon number in each state) coupling calculation by
performing separately the 00—2y—

Oy, , 00—2]—4p coupling
calculations. For that purpose we compared the results
of the 00+—2I+—2~+ and 00+—2I+W&+—2~+—4~+ coupling
calculations for the scattering of 17.5-MeV protons
by "Zn, assuming P&

——0.2 in all the matrix elements.
The results showed that, for example, the 2g+ cross
sections in the former case was about 10% larger
than that of the latter case (though the shape was the
same) which indicates that the above-mentioned
separate calculations can cause as much as 5% error
in the P values.

As emphasized in (ii), the purpose of performing the
coupled-channel calculation and fitting the experiment
is to Gnd out what Pq values we should use between
various collective states. The preceding arguments
show, however, that the theoretical cross sections
change their magnitudes depending on what coupling
scheme was used for a given value of Pq. In other words
the Pz values deduced by Qtting the experiment depend
on the coupling scheme used in each calculation. This
ambiguity could be removed, of course, if a sufficiently
large number of excited states were coupled together
(and if it is assumed that the same Wn can be used in
all the channels) . Unfortunately, however, such a
calculation with a very large number of coupled states
cannot be performed with the presently available com-
puter-. In some of the calculations which are given
in th&. next section the effect of the neglected coupling
to the possible higher excited states are taken into
account phenomenologically by using larger values of
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8'~ in the higher excited coupled states than that are
used in the lower coupled states (Cf., e.g. , Sec. VII A2) .

The analysis of Coulomb excitation is a variety of
coupled-channel calculations (at least when the excita-
tion probability is large as when collective states are
excited by heavy ions), although the technique usually
used" in solving the coupled equation appearing there
is quite different from that used in the present paper.
Therefore, although in the Coulomb excitation there
exists nothing that corresponds to t/I/'~, and thus the
situation is less ambiguous, the dependence of the
deduced Pq Lor B(EX)$ on the assumed coupling scheme
still remains. In obtaining the B(E2) values between
the one- and two-quadrupole-phonon states in vi-
brational nuclei, it was so far customary" to use the
formulas" which is based on the perturbation theory.
These formulas certainly neglected the coupling of the
two-phonon states to the three-phonon states. Although
theories were developed' to avoid the perturbation
(in the coupling terms) and couple many states at a
time, their applicability is again restricted by the
smallness of the suddenness parameter $. In order to
get more accurate results for the pq values to be deduced,
clearly some refinement is to be made for the Coulomb
excitation calculation, as well as for our coupled-
channel calculations. lVote added ie proof. We learned
recently that a new technique has been developed by
J. de Boer and A. Winther to treat the Coulomb
excitation process with a high accuracy (J. de Boer,
private communication) .

(v) The dependence of various cross sections on
the coupling scheme is more clearly seen if one compares
the result of the NACC calculations for deformed
nuclei with those of the ACC calcula. tions, and such
comparison is made here. In Fig. 4(A) we show results
of calculations made for the scattering of 17.5-MeV
protons by "~Ho whose lowest states are members of a
E= 7/2 rotational band. The solid lines are the result
of a NACC calculation with RFF and with the 7/2=
9/2=11/2 coupling, by using the optical model param-
eters of (75), V=50.0 MeV and W~ ——7.5 MeV, and
Ps=0.30. The dotted curves are the corresponding
results of an ACC calculation with the same parameters.

As emphasized in Sec. V, the ACC calculation auto-
matically takes into account the coupling of all the
members of the ground state rotational band. Since
the low excitation energies of the states of ' 'Ho and
the high energy of the incident proton guarantee the
validity of the ACC calculation, the ACC results are
more accurate in this case than those of the NACC.

~ K. Alder and A. Winther, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd. 32, No. 8 {1960);D. W. Robinson, Nucl. Phys.
25, 459 (1961).

"See, e.g., F. K. McGowan, R. L. Robinson, P. H. Stelson,
J. L. C. Ford, and %. T. Milner, Bull. Am. Phys. Soc. 9, 107
(1964) and work to be published; D. Ecceleshall, B. M. Hind,
M. T. L. Yates, and ¹ McDonald, Nucl. Phys. 3/, 377 (1962).

~ K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther,
Rev. Mod. Phys. 28, 432 (1956);A. C. Douglas, Nucl. Phys. 42,
428 (1908).
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Fro. 4. Comparison of ACC (dotted lines) and NACC (solid
lines) calculations for the scattering of 17.5-MeV protons by
"'Ho and '66Gd.

A feature that is clearly seen in Fig. 4(A) is that the
two curves for the 7/2 state almost agree with each
other, while for the other two states NACC gives a
larger cross section than ACC does. This result is
quite natural since in the NACC calculation the strong
quadrupole coupling of the 9/2 state to the 13/2
state and that of the 11/2 state to the 13/2 and 15/2
states were artificially cut-off, while all the possible
strong quadrupole couplings of the ground 7/2 state
to the higher states were taken into account. If in
NACC the coupling to the 13/2 and 15/2 states
were also considered, the cross sections to the 9/2
and 11/2 states would have been reduced so as to
agree with that of the ACC, but such calculation is
too extensive to be made with the presently available
computer. Even with the 7/2=9/2=11/2 coupling,
the number E, of (20) is already thirty and the machine
time needed for one run was about seven hours.

The curves in Fig. 4(B) are the results of corre-
sponding calculations performed for the scattering of
17.5-MeV protons by "'Gd. The optical-model param-
eters used were the same as in Fig. 4(A), but Ps was
0.33. The relation between the NACC and ACC results
is qualitatively the same as in Fig. 4(A). Namely, in
the NACC calculation in which 0+—2+—4+—6+ coupling
was considered, all the strong quadrupole coupling of
the 0+, 2+, and 4+ states to the higher excited states
were taken into account, but the coupling of the 6+
state to the 8+ state was not. Therefore the NACC
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and ACC results agreed with each other for the lower
three states, but the NACC cross section to the 6+
state was too large compared to the corresponding
ACC cross section. Thus the results shown in Fig. 4
are quite reasonable.

(vi). In Sec. II Labove Eq. (15)$, we remarked
that for deformed nuclei with large Ps, the expansion of
potential (1) and (3) in powers of Ps is a rather poor
approximation and thus we should use a Legendre
polynomial expansion. In order to see how bad the
power series expansion is, we show several curves in
Figs. 5 (A) and 5 (B), which were calculated for "'Gd
with the same parameters as used in Fig. 4(B) .

All the curves in Figs. 5 (A) and 5(B) are the results
of ACC calculations. There the dotted and solid curves
were obtained by using coupling terms that were derived

by the power series and the Legendre polynomial ex-
pansions, respectively. For Fig. 5(A) only the first
term of (13) (with )I.=2) or the term in (15) with
X=2 was considered, while for Fig. 5(B) the second
term of (13) or the )I,= 4 term of (15) was also included.

The results of the power series expansion are drasti-
cally different from those of the Legendre polynomial
expansion, although the situation is somewhat better
in Fig. 5 (B) than it is in Fig. 5 (A) . If a similar calcula-
tion were made with NACC, with coupling only of
0+—2+ state and using the potentials obtained by the
power series expansion, ~ the results will further deviate
from the solid curves than the dotted curves do in
Fig. 5 and thus it is quite likely that conclusions ob-
tained by 6tting such theoretical results to experi-
ments are misleading.

So far we have considered only protons as pro-
jectiles. In order to see how different results are ex-
pected if the projectile were neutrons, we made a

calculation under the same condition as the solid curves
of Fig. 5(B) were obtained, except that the charge of
the projectile was put equal to zero. The results are
shown in Fig. 5(C) and it is seen that they are quite
different from the solid curves in Fig. 5(B). The very
large oscillations in the elastic scattering cross section
are remarkable. Also it is worthy of note that the 2+
cross section is much larger than the corresponding one
for the protons, which was perhaps caused by the fact
that the nuclear and Coulomb interactions in Vq;„
are canceling each other when the projectile is charged.
LNo Coulomb excitation was included in Fig. 4(B),
but its contribution was found to be very small in
this case.)

We close this section by giving a remark concerning
the magnitude of Vqp. If it turns out that we can put
Vgp= 0 without losing much accuracy of the result, we
can perform the calculation for an incident nucleon by
assuming that it is a spinless particle. If this can be
done, it helps very much in saving the computational
time as can be seen by comparing E,(") for s=0 and
s= —', in Eq. (18) or observing Eq. (74). We have not
yet made systematic calculations to see the dependence
of various cross sections on Vqp, but it was found that
at least, when we consider scattering of nucleons of not
too low energy by heavy and well-deformed nuclei,
Vap=0 gives practically the same result as Vap of, say,
7.5 MeV does. Therefore the above-mentioned sim-
plified calculation can be made in such cases, at least
in the process of parameter searching.

Clearly, however, this argument does not apply to
the discussion of the polarization. In fact in the calcula-
tion in which the solid curves of Fig. 5 (B) were obtained
(and thus Vao= 7.5 MeV was used), the largest magni-
tudes of the polarization predicted theoretically in the
0+, 2+, and 4+ state scattering were 0.2, 0.6, and 0.3,
respectively.

VII. COMPARISON OF THE THEORETICAL
RESULTS WITH EXPERIMENTS

Ke now proceed to the discussion of fits so far ob-
tained and the information about the properties of
target nuclei derived from such analyses.

A. Scattering by Even Vibrational Nuclei

In this category we have so far analyzed the data
of the scattering or protons by "Xi "Ni, '"Cd, and
"'Te. We summarize the result here in the chronological
order with which these analyses were made.

1. Scattering of 11-MeV protons by &Vi arid ' A'i

The experimental data were obtained by Dickens,
Percy, and Silva and the calculation was made by
Percy and Tamura. The experimental differential cross
sections to the one-phonon 2+ and two-phonon 0+,
2+, and 4+ states, and their corresponding theoretical
curves are given in Fig. 6, and as is seen the agreement
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assigned to Ps that appear in (36.2), where the spin I
in (36.2) and in Table II correspond to each other.
The fact that these Ps values can depend on I and its
physical significance have already been discussed in
Sec. VI(ii).

There is another place where Ps values appear in
the coupling matrices. Namely, there are Ps's that
originate from (37.1),which again can be functions of I.
In order to keep the number of free parameters as
small as possible, however, we put them equal to their
corresponding values of Ps of (36.2). This may cause
some ambiguity in the interpretation of our analysis.
Fortunately, however, there is a reason to believe that
the anal result of the calculation does not depend very
strongly on the Ps's of (37.1).

We show in the upper half of Fig. 7 the theoretical
cross sections to the two-phonon 2+ state of "Ni. The
curve M (which stands for the multiple process) is
the result obtained by putting Ps of (37.1) equal to
zero, while the curve D (which stands for the direct
process) is the result obtained by putting Ps of (36.2)
equal to zero. As is seen, D is much smaller than M
and this fact shows that the slight change of Ps of
(37.1) does not affect drastically the final result,
M+D, which is obtained by using nonvanishing Ps
both in (36.2) and (37.1). LHowever, (37.1) cannot
completely be neglected, because the M and D terms
interfere with each other as is seen from the shift of
the peaks and valleys between the curves 3f and
M+D in Fig. 7.j

A similar situation was observed in a calculation
that lead to the 4+ state. The situation is somewhat
diferent, however, when the 0+ state is concerned.
As is seen in the lower half of Fig. 7, the D cross section
is rather large at least in the forward angles, and as a
consequence the M+D curve has a sharp dip in the
forward angle which did not exist in the M curve.

The interference eGect of the M and D terms were
already discussed by Buck' in the excitation of the
two-phonon 4+ state of "Ni in the (u, rr') process.
In that case, however, the D cross section itself was as
large as the M cross section, in contrast to the above
mentioned (p, p') results for the 2+ and 4+ states.

The origin of this difference may be traced back
to the diGerences in the absorption of protons and
n-particles. If we restrict ourselves for simplicity to
RFF, the radial form factors of the 3f- and D-coupling
terms are given by the first terms of (13.1) and (13.2),
respectively; and while the former has a de6nite sign
in the whole range of r, the latter changes its sign at
r= Eo. Therefore, the radial matrix element of the
3f term can be much larger than that of the D term,
if the wavelength of the projectile is sufficiently large
and its absorption is not too strong, so that its amplitude
is effectively constant within the range of r in which
the above form factors have nonvanishing values. The
above requirement is satisfied by protons of moderate
energy and this explains the result observed in the

upper part of Fig. 7. On the other hand, the 0. particles
feel (because of the strong absorption) only the tails
of the above form factors which are more or less of
the same order of magnitude with each other. Therefore
the D cross section can become as large as the M cross
section. The fact that the forward D cross section is
large in the excitation of the 0+ states in the (p, p')
process is understood in the same way, since for the
zero angular momentum transfer in the forward angles,
the peripheral scattering is dominant and in this case
only the tails of the two form factors are felt by the
protons. Whether the forward dip as seen in the M+D
curve for 0+ state in Fig. 7 will appear or not depends
on the energy of the protons and the target size, since
it is an interference eGect. Under favorable conditions
that it does appear, however, it could be used in
identifying the two-phonon 0+ state.

The reduction factors of B(E2) values fcf. Sec.
VI(ii) j obtained from the Ps values of Table II are
very interesting. They are given in the last column of
Table II and they are seen to be consistent with the
corresponding reduction factors known for the B(E2)
values observed in '"Cd by the Coulomb excitation
analysis. "

%hen the analysis of Fig. 6, was made, the spins of
the two-phonon states were not known, but the knowl-
edge of the above reduction factors, as well as that of
the shape of the cross-section curves, made us dare to
assign the spins that are given to these states in
Table II. (Unfortunately, the shapes of the experimental
cross-section curves to the 2+ and 4+ states do not
differ very much from each other. ) Shortly after our
analysis was made, however, results of (p, p'y) experi-
ments from "Ni and "Xi were reported by Sen Gupta
and Van Patter, " who showed that our spin assign-
ment was correct. This result meant that the coupled-
channel analysis can not only supply the knowledge of
the P values, but also be used sometimes in assigning
spins to unknown states, and this experience encouraged
us to perform similar calculations which were made
afterwards.

One unsatisfactory thing concerning the Ps values in
Table II is that their absolute magnitudes are somewhat
too large compared to those obtained from other
sources. '4 " As can be seen, for example, in Fig. 3
and in many other calculations presented below, it is
seen that CFF usually gives larger inelastic cross
sections (for a given P) than RFF does. The result of a
CFF calculation made for the present case showed,
however, that it gives smaller cross sections than RFF
does. In other words we need even larger P values than

33 A. K. Sen Gupta and D. M. Van Patter, Phys. Rev. 131,
318 (1963); Bull. Am. Phys. Soc. 8, 375 (1963)."P. H. Stelson and F. K. McGowan, Nucl. Phys. 32, 652
(1962).

~P. H. Stelson and F. K. McGowan, Phys. Rev. 110, 489
(1958).

ss H. Faraggi and J. Sandinos, Paper C7, "Symposium on Nu-
clear Spectroscopy with Direct Reactions, " Argonne National
Laboratory Report ANL-6848, 1964 (unpublished).
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those given in Table II if we had used CFF. We do not
yet know why this discrepancy between our P2 and
those of other sources occurred. In most of the other
cases to be presented, the P values deduced from our
analyses were consistent with those derived from other
sources, in particular when our calculations are made
with CFF.

2. Scattenng of 12.16-Me V protons gy u4gd io

The experimental. data were supplied by Sakai"
and Fig. 8 shows the spectrum of '"Cd states, for which
the angular distributions of the inelastically scattered
protons are observed in this experiment. In this figure
the states 8 and H are known as quadrupole and
octupole one-phonon states, respectively, while states
C, D, and E are known as triad states of two quad-
rupole-phonons. a' The nature of the states P and G
is not very clearly known, but they may be considered
as quasi (or single) particle states. Concerning the
last Ave states I through M, it is interesting to note
that they are closely spaced to each other and that
their mean energy 2.53 Mev is approximately equal
to the sum of the energies of states 8 and H. It is,
therefore, tempting to consider that at least some of
them could be members of the Ave quadrupole —octupole
two-phonon (QOTP) 1, 2, 3, 4, and 5 stat s,
that were considered in Eq. (34) with Xi= 2 and Xm
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We show that this idea is not inconsistent with the
cross section data to these states.

As discussed in Sec. VI(iv), ii all these states were
coupled together, we would get a rather accurate result,
but such a calculation is impossible. We therefore per-
formed the calculation in the following way: (A) The
states A, Jt, C, D, and E are coupled together: (8) The
states A, 8, H and one of the QOTP states are coupled
together at one time: (C) The states F and G are
coupled separately to A, assuming a very weak. coupling
parameter Pz, the calculation thus giving essentially
the same result as that oi the DWIlA'. (D) Similar
DWBA-type calculations were made for 0+, 1—, 2+,

3, 4+, and 5 states assuming an excitation energy of
2.53 MeV for all oi them. In both (C)- and (D)-type
calculations the radial part of the coupling term had
the collective form factor as given in Eq. (13.1).

The type (A) calculation is exactly the same as
we did for Ni isotopes in subsection (1) except that
CFF is used rather than RFF this time. The optical
model parameters, other than those in (75), and P~

values used are again given in Table II and the theo-
retical cross sections obtained with these parameters
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are compared with experiments in curves 8 through E
in Fig. 9. The agreement is very good, except that the
fit of curve 3 is somewhat poor.

In spite of this good agreement of the cross sections
and the fact that P2 values of Table II are of reasonable
magnitude, "there is some unsolved problem concerning
the reduction factors of B(E2).As is seen in Table II,
they are 0.42, 0.74, and 0.67 for 0+, 2+, and 4+ states,
respectively, which are to be compared with the corre-
sponding values 0.43~0.09, 0.61&0.13, and 0.83~0.11
obtained from the analysis of the Coulomb excitation
experiment. " The two sets of reduction factors agree
very well concerning the 0+ state, while for the 2+
state our value is barely within the error of the Coulomb
excitation value. For the 4+ state our value is definitely
smaller than the Coulomb excitation value.

We have discussed in Sec. VI(iv) that it might be
reasonable to use larger values of S~ for the highest
energy states that are considered in the coupling,
than its value used in the lower states. In the present
calculation 8"D=12.2 Mev as given in Table II was
used in the ground and the first 2+ state, but for the
two-phonon states Wz was multiplied by a correction
factor m, which was equal to 1.2, 1.3, and 1.4, respec-
tively, for 0+, 2+, and 4+ states. The choice of these
values were made rather arbitrarily, except that we
cared to chose larger zv, for larger spin states motivated
by the following reason: A higher-spin two-phonon
state can be coupled with larger number of three-
phonon states of higher spins, than a lower spin state
can, and thus the neglect of such couplings to the
three-phonon states could be treated by assigning a
larger m, to the former than to the latter.

If the ratio of w, and P2 Lof (36.2)j is kept fixed,
the cross section obtained is almost kept fixed. There-
fore, if we had assumed a larger value of m, to the
4+ state than that was used above, we could have
obtained a larger value of P2 and in turn a larger re-
duction factor, in agreement with the result of the
Coulomb excitation.

One can conceive of several reasons why the discrep-
ancy, if any, of the reduction factors exists. As noticed
in the end of Sec. VI, an improved analysis of the Cou-
lomb excitation process is hoped to be made. It is de-
sirable to redo our calculation by coupling the possibly
existing three-phonon states. The absolute value of the
4+ experimental cross section might be suspected. All
these considerations clearly indicate that more work
has to be done both experimentally and theoretically.
The P2 values deduced from the Coulomb excitation
are those that describe the motions of the charge dis-
tributions, while our P2 values are those of the whole
nucleons, and thus they may not necessarily be needed
to agree with each other. If it becomes definite that
they are indeed diferent, it will give us an interesting
new problem of nuclear structure theory.

The results of the (C)-type calculations made for
the states Ii and 6 are shown as curves F and 0 in

Fig. 9, and the good agreement seen there will mean
that the assignment of the quasi-particle nature to
those states was correct. The Bq values used in the fit
are 0.0161 and 0.0238, respectively, for states Ii and G,
as are shown in the figure. Since the single-particle
value P.„ofP for a pure single-particle transition may
be estimated as P,~=0.0338 /which equals 0.2/(35)',
where 0.2 is the P value of (36.1) while 35 is the en-
hancement factor of the B(E2) value of the 0+—+2+

transition as deduced from the Coulomb excitation
experiment"j, these transitions seem to be slightly
inhibited compared to the pure single-particle transi-
tions.

Through the type (D) calculation it is found that
the states J and 3f are both consistent with the assign-
ment of 4+ quasi-particle states having some admixture
of the hexadecapole-phonon state amplitude (since
their P values are larger than P,„), although 2+ assign-
ment to M may not be excluded. In the type (8)
calculation it is found that 2 and 4 states are expected
to be rather weakly excited and seem not to have been
observed in this experiment, while the quantum num-
bers 1—,3, and 5 could be assigned to the I, L, and E
states, respectively. Comparison of the cross sections
with experiments for states H through M is also made
in Fig. 9, and the good agreement seems to support the
above assignment of the nature and of the spin to
these states. As was already remarked in Sec. VI(iv),
the curve H in Fig. 9 is obtained in the 0+—2+—3=3
calculation, where use is made of P2=0.2 and PS=0.136
all the way in Eqs. (36.1) (with X=2 and 3), (36.4),
(36.5), (37.3), and (37.4). The same values of Pq
were used in obtaining the curves E and L.

We used CFF throughout the calculations that lead
to the curves of Fig. 9. If we had used RFF, we would
have obtained cross sections that are smaller by factors
of about 1.5. In other words, if RFF were used, we
could not fit the data unless we used values of P2 and
Pq which were larger than those used here. Since the
present P values seem reasonable, ao'r we may conclude
that CFF is preferred to RFF.

We remarked in subsection (1) that the similarity
of the experimental cross sections of the two-phonon
2+ and 4+ states made the definite assignment of these
spins somewhat dificult. Similar problem appears
here; see for example, the similarity of the cross sections
to states I and L. Considering that a part of this
ddBculty could be removed if the same experiment
were performed with a higher energy protons, we cal-
culated. the differential cross section for the QOTP
1 and 3 states both for E„=12.16 and 40 MeV,
using the same optical model parameters as given
above but with RFF for all the cases, and the results
are compared in Fig. 10. For E„=40 MeV, a rather
marked structure appears for the 1 curve and the
difference between the 1 and 3 curves seems to ue

~' See, e.g. , G. R. Satchler, R. H. Bassel, and R. M. Drisco,
Phys. Letters 5, 256 (1963).
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significant. These features suggest it would be worth-
while to perform such a high-energy experiment in
the future, although a calculation made for E„=40
MeV with the type-(A) coupling did not lead to as
much structure in the angular distributions for the
states C, D, and E.

3. Scattering of 12-MeV protons by "6Te"
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0.2
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0+

t
1.40 MeV

The experimental data were obtained by Pramila
and Middleton" and the theoretical analysis was made
by Satchler and Tamura.

The experimental cross sections to the one-phonon 2+,
two-phonon 2+, and 4+ states are shown in Fig. 11.
A theoretical calculation was made by taking 0+—
2+—0+—2+—4+ coupling scheme and by using RFF,
V=53 MeV and 8'& ——12.4 MeV. In every element
of the coupling matrix p2 ——0.18 was used. The result
of this calculation is compared with experiment in
Pig. 11, where the curves for the two 2+ states are
given in dotted lines. Although no state that could be
assigned to the two-phonon 0+ state was observed
experimentally, the theoretical cross-section curve to
this state (assumed to lie at 1.4 MeV) is shown in
this figure. A calculation was also performed by con-
sidering only a 0+—2+—2+ coupling, but taking into
account the Coulomb excitation Lcf. (13.1)7, and the
results to the two 2+ states are given by full lines.

The over-all agreement with experiment shown in
Fig. 11 is very satisfactory. The discrepancy at back
angles for the two-phonon states may not be too
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FIG. 10. Comparison of the theoretical differential cross sec-
tions for E~=12.16 and E~=40 MeV.

FIG. 11. Comparison of the theoretical and experimental differ-
ential cross sections of the scattering of 12-MeV protons by
'"Te. Full and dotted lines for 2+ states are the results with and
without Coulomb excitation, respectively.

important; the cross section here is known to be quite
sensitive to small changes in parameters. The absence
of the 0+ state is puzzling; it does not seem likely that
it is unresolved from either the 1.36- or 1.42-MeV

group of the spectrum of the scattered protons because
if it were it would severely modify the corresponding
angular distribution and change the relative magnitude
of these two groups. Although excitation of the corre-
sponding 0+ state in Cd and Ni isotopes was found to
be somewhat inhibited, as was discussed in subsections

(1) and (2), it was only by a factor two or so.
It is remarkable to see in Fig. 11 that the inclusion

of the Coulomb excitation improves the 6t to the two
2+ state very much. Even the small oscillations that
are seen in these cross sections at smaller angles are
reproduced theoretically. Unfortunately the inclusion
of the Coulomb excitation makes the machine time
needed very long, since in that case we have to give
very large values to J and R L(cf., text above Eq.
(77)7. We therefore could not perform similar ca,l-

culations when the larger number of states were coupled
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FIG. 12. Assignments of spins to possible three-phonon states
in '~Te.

"Y. Yoshisawa, Phys. Letters 2, 261 (1962) .

together, but the effect is expected to be much less
on the 4+ excitation because the crossover transition
is an E4 and the multiple-Coulomb-excitation effect
is small.

In the experiment" a band of states were observed
at about 2 MeV which were more weakly excited than
those shown in Fig. 11. The angular distributions of
five of these states are shown in Fig. 12. Since their
mean energy (2 MeV) is close to three times the energy
of the first 2+ state, it is tempting to interpret at least
some of these as members of the three-quadrupole
phonon quintet (with spins 0, 2, 3, 4, 6, and even
parity) expected at about this energy. Evidence has
already been adduced3' from p decay for the existence
of three-phonon states in the nuclei Pd, Cd, Xe, and Pt.
Inelastic scattering could prove very useful in providing
complementary evidence concerning the nature of these
states. It is then of interest to calculate the differential
cross sections for this quintet of states, and this was
done using the same parameters as for the tv o-phonon
calculation, but this time using CFF. The results are
included in Fig. 12. The chief effect of switching from
RFF to CFF is to increase the cross-section magnitude
somewhat as was already remarked in subsection (a);
the changes in angular distribution are insignificant in
comparison to the experimental errors.

The coupling matrix elements in which three-phonon
states are related are found in Eqs. (36.3) and (37.2).

In order to make the calculation feasible, only one of
the three-phonon states is taken as a coupled state
each time and among the two-phonon states only
those that are coupled directly to the concerned three-
phonon state are included. Therefore the coupling
considered were Op+—2»+—22+—03+, Op+—2~ —02+—22+—4~+—

23+ Op+—2i+—22+—42+—33+, Op+—2i+—22+—4~+—43+, and Op+—

2&+—42+—63+, where the suffices show the number of
phonons in each state.

Although definite theoretical curves have been
associated with the four angular distributions of the
experiment in Fig. 12, it is clear that the accuracy of
the data does not allow unambiguous identification.
This is emphasized by the fact that both the 2.j.9- and
2,227-MeV levels are condidates for the 2+ assignment,
and the same theoretical curve is shown for both angular
distributions. Although, as mentioned above, the
theoretical cross sections were originally obtained for
Ps——0.18, those shown in Fig. 12 for the 2.054, 2.19,
and 2.413 levels have been further increased by 30%.
This is not serious when it is remembered that the
three-phonon cross sections are roughly proportional
to Pzs. The 3+ cross section is very small (approximately
1 tabb/sr and less) and is not shown in Fig. 12. This
occurs because multiple excitation is much more im-
portant. than direct transitions Lcf. subsection (1)j,
and the 3+ state can be excited via both the 2+ and 4+
members of the two-phonon triplet. These two con-
tributions to the amplitude, however, have opposite
signs and produce considerable cancellation; (cf. the
I'=3 column of Table IB). The 6+ state is also pre-
dicted to be rather weak, and cannot be identified in
this experiment. It would be valuable to have more
precise data in this region of excitation.

B. Scattering by Deformed Nuclei

1. Scattering of 17.5 MeV Protons by -' sHo and "'Gd

The experimental data shown in Fig. 13 are those
that were given by Lieber and Whitten. "The theoreti-
cal analysis was first made by performing YACC
calculations, ' but we now know that ACC gives results
more accurate than NACC does as was discussed in
Secs. V and VI(v). Therefore we show only the com-
parison of the ACC result with experiment.

The curves shown in Fig. 13 are similar to those
that were shown in Fig. 4 as dotted lines except that
now CFF is used, and thus need not be explained anew
$cf. Sec. VI(v) j. The agreement of these curves with
experiment is very good, considering the fact that
there were essentially no free parameters in our cal-
culation in the sense that the standard parameters
(75) and V=50 MeV and 1Vr1

——7.5 MeV were used
together with Ps

——0.30 and 0.32, respectively, for
'"Ho and '5'Gd, which were already known from other

"A. Lieber and C. A. Whitten, Phys. Rev. 132, 2582 I,'1963).
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sources. "~ With these parameters RFF gives inelastic
cross sections that are somewhat too small. )The dis-
agreement of the inelastic cross sections seen in Fig. 13
at smaller angles is probably due to insufhcient un-
folding of the contribution from the tail of the elastic
scattering, "and so is not serious. The disagreement of
the 0+, 2+ (and 5+) cross sections of 's Gd at 8=
110 ~130' is somewhat disturbing. The reason for
this disagreement may be due to unsuspected experi-
mental errors, although the authors of Ref. 39 feel
this is unlikely. 4')

2. Scattering of 350-he V Neltrons by "'Ho

The experiment was performed by Wagner, Miller,
and Marshak" 43 and a remarkable feature in it is that
part of this experiment was made by using a polarized
target. The analysis of this experiment was the reason
why we had to write down explicitly the lengthy
formulas in Sec. IV, by introducing the amplitudes

and b

We first made the analysis of the diGerential cross
section o(8) of the elastic scattering of unpolarized
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'0 E. G. Fuller and E. Hayward, Nucl. Phys. 30, 613 (1962);
M. Danos and W. Greiner, Phys. Letters 8, 113 (1964); E.
Ambler, E. G. Fuller, and H. Marshak (to be published).

4r B. Elbek, Determirsotiort of Sstcteor Trortsstiow ProboNlities
by Coulomb Elicitation (Ejnar Munksgaards Forlag, Copenhagen,
Denmark, 1963).

4~ A. Lieber (private communication) .
I R. Wagner, P. D. Miller, T. Tamura, and H. Marshak, Phys.

Rev. 139, 829 (1965).

neutrons by an unpolarized target. Since the energy of
the neutrons is low the theoretical cross section is now
the sum of ot('&(8) and o.&('t (8), given, respectively, by
(47) and (57), contrary to the preceding calculations
in which (57) could be neglected. The result is to be
compared with the experimental result given in Fig. 14.
Since the target is not yet oriented we can use (62)
and (61) for the amplitudes a .('& and bt(s, ("& just as
was done in the preceding calculations. In spite of the
large deformation of "'Ho, we used NACC contrary
to the preceding subsection, because the energy of the
neutron was low.

With calculations made using (75) and V~45 MeV,
Wo~3 MeV, the following features were found. (A)
with P=0 (which is the uncoupled optical-model
calculation), the theoretical o (8) is too small for small
8 and too large for large 8. (8) When Ps is taken as 0.3
$cf. subsection (1)$, but only the partial waves belong-
ing to the 7/2 ground-state channel are coupled, the
situation becomes better. Still the difhculty met with
in (A) is not completely removed. (C) If furthermore
the partial waves which belong to the 6rst excited
9/2 state channel are coupled (an approximation
which may be called two-channel coupling), the shape
of the theoretical o(8) agrees well with experiment,
though not necessarily the magnitude.

These features clearly indicate the importance of
the coupled-channel calculation, with at least two
channels being coupled. We therefore made within the



/04 REYIEws OF MoDERN PHYsIcs ~ OcTQBER 1965

framework of two-channel coupling a fairly extensive
survey of the parameters V and 8'&, and also of ro

of (75), as summarized below.
In the course of our calculation we also calculated o-&,

the total cross section Lcf. Eq. (53)$ for an unpolarized
beam and unpolarized target, and it was found that
o-~ is a very sensitive function of V for each set of Gxed
values of g~ and ro. Utilizing this fact it was then
always possible to find a value of V for a Gxed set of
8'~ and ro so as to get exact agreement of o.

~ with its
experimental value, o.&~' »=7.94 b. It is also found
that 0(8) is in good agreement with experiment not
only in shape but also in magnitude when the relation
o.~=o~~'» is achieved. In other words we can find a
number of sets of V, 8'~, and ro that give the measured
values for 0 i and 0 (8) .

We now turn to the calculation of the cross sections
from polarized targets. In order to be able to perform
such calculations, however, we have to know the state
of polarization of the target, or have to establish a
dehnite model so that we can write down the coefB-
cients b~,&') explicitly. The derivation of such a model
has been discussed in detail in our previous paper. 4'

Here we give only a brief description of the model
which was used in our coupled-channel calculation.

The holmium target used was in the form of a metal
single crystal. It consists of two domains n and P if
a moderately strong magnetic Geld is applied to it
in its basal plane. The nuclei in the 0. domain are all
polarized in the direction of the applied magnetic field,
while those in the P domain are separated into six
equally populated groups. All the directions of the
polarization of these six groups of nuclei also lie in
the basal plane and make an angle of 60' with each
other. It is thus clear that the nuclei in the P domain
give vanishing polarization. In other words only the
n domain contributes to the nonvanishing polarization
or the magnetization of the holmium crystal. The
weight (or the fraction) of the a domain was 0.19
when the applied magnetic field was 10 kOe and the
temperature was 0.34'K, under which the experiments
were performed.

The experiment was made with the geometry so that
the direction of the incident beam, which was taken
as the s axis in Sec. IVD is perpendicular to the basal
plane. Let us then take the positive x axis in the direc-
tion of the external magnetic Geld which is nothing but
the direction of polarization of the n domain and thus
can be identified with the s' axis (for the n domain)
also introduced in Sec. IVD. If this choice is made
the Euler angles (8;) introduced in Eq. (60) become as
(0, —90', 0). If the s' axis is taken in the direction of
the negative x axis (8;) become as (0, 90', 0). The
Euler angles corresponding to the six groups of the
P domain become more complicated, but we shall
show below that for our present purpose we do not
need to know these Euler angles.

Since (8;) are thus given, our knowledge needed in

If the total cross section for the unpolarized target
o-&~'"» given above is subtracted from the mean value
of o &tt('*» and 0 it&('*», we get a quantity Aoz, ( (which
we shall call the deformation effect) and its experi-
mental value was found to be" ~

, ~' ~ =350&100 mb. (79)

We start with the calculation of the deformation
effect: ho~, ~&~&. Since o~,i&' », 'is small"as is seen in
(78) and consequently the spin —spin interaction which
is introduced below is also small, we shall neglect the
latter at this stage. (Then theoretically o&tt=o&t&. )
Considering this fact and the fact that all the nuclei,
both in the 0( and P domains are polarized (or rather
oriented) in the basal plane while the incident hearn
is perpendicular to this plane, it is easy to see that the
nuclei in the n domain and the six groups of the P
domain contribute to the total cross section simply in
proportion to their weight. In other words we can get
accurate Ao.z,&~' & by subtracting o& from the total
cross section obtained by assuming that there were
only n domain with weight unity and thus no P domain.
Clearly this latter cross section, o&~&'~, is obtained
from (53) by using b~,(") of (60) with (8,) = (0,—90', 0) and P~, of Table III. LThe result does not
change even if (8;)= (0, 90', 0) is used, since 0

hatt

——o it".
The result is also independent whether we use (62)
or (63) with P=55 for a, (o.)

We mentioned before that there are many sets of V,
Wi), and ro which give 0(8) and O. i that agree with
experiment. In the course of obtaining such sets, we
also computed o.~&&"~ and it was found that it is also
a sensitive function of V for a Gxed set of 8'~ and ro,
just as o.

& wasp but the difference Ao Jef~~&=o.]~&'&—o.(

TABLE IIL Population numbers of the nuclear magnetic
substates for 'SHo.

+k +~a +Il +4
Eg 0.587 0.241 0.097 0.039 0.015 0.006 0.003 0.001

describing b~,&' ~ is completed if the occupational
probabilities P(Xi) introduced in Eq. (58) are given.
They were found to have the values as given in Table
III, under the 10-kOe external magnetic Geld and the
temperature of 0.34'K.

Two experimental quantities were obtained by using
this polarized target. They were the total cross sections
of the 350-keV neutrons which was polarized by 55%%uq

in the direction of the positive x axis Li.e., P=55 in
Eq. (63)$. The target was polarized once in the di-
rection of the positive x axis and in another case in the
negative x axis. Let us call the total cross sections thus
obtained as o &&& and o &~~, respectively. Their difference,
which we shall call the experimental polarization effect
and denote as o~,i ' & was"observed as""

(exp) —& tt(exp) & t$(exp) —30~$5 mb (7g)
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is rather insensitive to V. The value of hog, g&~&, how-
ever, varies from one set of 8'~ and ro to another.
Thus, it is possible to discriminate between sets of
values of V, 8'&, and ro by comparing And, &&' & with
experiment, a feature which the consideration of only
0 i and o (8) did not have. In Fig. 15 we plot Aa.q, i&'"&

as a function of ro for values of 8'~ ——3 and 5 MeV,
where the value of V has always been taken so as to
satisfy o-&——o-t, &' ». Since the shaded area in this figure
indicates the experimental value of the deformation
effect (79), it is seen that if Wing=3 MeV is used, one
gets very good agreement with the measured hoq, &&' »
for any value of rp ranging from 1.25 to 1.45 F. On the
other hand, if W&=5 MeV is used, the theory predicts
too small a value of 5o-q, f|.""), and thus this value of
8'~ can be excluded.

The theoretical angular distribution of the elastically
scattered neutrons was calculated using a set of param-

600
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400
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FIG. 15. Comparison of the theoretical and experimental defor-
mation effects.

eters that gave good agreement with the experimental
values of 0& and 60.&,&, namely, (75), V=45.18 MeV
and S~——3 MeV. In Fig. 14 the result is compared
with the experiment, and it is seen that very good
agreement was obtained.

Using the same parameters as in Fig. 14, we also
computed o.

& for E„, the neutron energy, ranging from
290 to 420 keV, and the results are in good agreement
with experiment, as is seen in Fig. 16.

Having established a satisfactory set of parameters
we turn to the calculation of the polarization effect.
In order to study this e6ect, we first introduce a spin—
spin interaction of the following form4'.

—V„(d I) (1+e) ', (80)

where I is the spin operator for the target state, while

e was defined in Eq. (4). The matrix element of (80),
which is given by

—V„(1+e) ' err 5ii L6I(I+1) (2I+1)$'

gg'( )~+'+"+~' rW( ,'',jj—', 1l) W( JIj 'I'; J—1-), (81)
44 K. T. R. Davies and G. R. Satchler, Nucl. Phys. 53, 1 |',1964).
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FIG. 16. Comparison of the theoretical and experimental total
cross sections of neutrons by '65Ho as a function of the neutron
energy.

—130 keV& V„(280 keV. (82)

Thus it is seen that the spin —spin interaction is more
than one order of magnitude smaller than the spin—
orbit interaction.
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FIG. 17. Determination of the strength of the spin-spin inter-
action through comparison of the theoretical and experimental
polarization sects.

is to be added to (40) in solving the coupled equa-
tions (25) .

From Eqs. (78) and (80), and from the fact that
the P domain has zero net polarization, it is easy to
see that only the o. domain contributes the polarization
effect. In other words, we add (81) to (40), calculate
o.

& of (53) by using b~, &"& of (60) with P(iVi) of
Table III, and one time with (8,) = (0, —90', 0) and
the other time with (e,) = (0, 90', 0'). Then we take
the difference of the two total cross sections thus ob-
tained and finally multiply it by 0.19, which is the
weight of the a domain. Of course one has to use (63)
for a &') with 8=55.

The theoretical op, &" ) thus obtained is plotted in
Fig. 17 as a function of V„. Since the corresponding
experimental value 30+85 mb is expressed by the
shaded area of that figure we can conclude that the
possible values of V„satisfy the following inequality;
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4.250
4.(20

FIG. 18. Spectrum of "Mg states.

have a pattern close to that of the experiment though
the former is slightly rotated. from the latter counter-
clockwise. The 3s+ cross section (solid line) has a
phase opposite to that of experiment at larger angles,
but the agreement at 8&60' is very good. The experi-
mental error quoted in Fig. 19 is only statistical. If
the systematic errors were also added, the total experi-
mental error must have been much larger, at least for
the higher excited states.

The parameters that were used in this calculation
were the following:

0+
[77

0.0
MBV

V= 54.4 MeV,

@=0.413 F,

r0=1.76 F,

P=0.34,

LV=5.6 MeV,

a„=0.405 F,

r„=1.80 F,

yp=0. 62 (rad). (83)

3. Scattering of 28.5 Hate V n Prtrti-cles by s4tM'g

So far we considered nucleons exclusively as pro-
jectiles, but here we shall give an example of the
scattering of o. particles. The data were those of
Kokame et u/. ,

4' and Fig. 18 shows the spectrum of the
states of '4Mg for which scattering data were obtained,

Since the detail of this calculation has been reported
elsewhere, "we shall simply summarize the result here.
Among the states of Fig. 18 the lowest three would
be members of the k=0 rotational band, while the
other three would be members of the y-vibrational
k=2 band.

If we take this interpretation, we have to extend the
first equation of (3) by adding EpP&2

—&(F'ss(e', g')+
Ys s(0', p') ) on the right-hand side so that the excita-
tion of the y-vibrational state is described. " (We put
8'n ——0 for n particles. ) Equation (1) with this modified
Eq. (3) is then expanded in powers of y (to the first
order in y) and then the coefficients are further ex-
panded in terms of the Legendre polynomials in a way
similar to that made in (16).The interaction potential
(15) and the coupling matrix (40) are modified ac-
cordingly, and the new matrix elements that are to
be added. to (40) are proportional to yp, the zero-point
amplitudes of the y vibration, which becomes a new
parameter. When y vibration is considered, ACC can
no longer be used and the whole calculation has to be
made with NACC.

The result is compared with experiment in Fig. 19,
the over-all agreement is very satisfactory. In particular
the agreement of the Op+ and 2p+ (the suKces meaning
the E quantum number) cross section is almost perfect
except at angles larger than, say 85' in the former and
75' in the latter. The theoretical 4p++2p+ cross sections

~K. Kokame, K. Fukunaga, N. Inoue, and H. Nakamura,
Phys. Letters 8, 342 (1964); K. Kokame (private communica-
tions)."T.Tamura, Nucl. Phys. (to be published).
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FIG. 19. Comparison of the theoretical and experimental cross
sections of the scattering of 28.5-MeV a particles by 24Mg.

As is seen the imaginary part of the optical model
potential is assumed to have the Saxon-shape (not its
derivative) and the diffuseness parameter a„and the
radius parameter r„ for this imaginary part were taken
somewhat differently from c and ro.
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The coupling scheme considered in the calculation
was 0()+-20+—40+-60+—2~+-32+. The addition of the 60+
state (assumed to lie at 9.0 MeV) was needed to give
accurate cross section to the 4e+ state fcf. Sec. VI(v) j.

There is some reason4' to suspect that the experi-
mental 32+ cross section shown in Fig. 19 is given a
little too large absolute value than it actually has,
and thus that the corresponding theoretical cross
section is to be multiplied by a factor which is larger
than unity, before it is compared with experiment.
We took this factor, somewhat arbitrarily, as 2 and
thus the theoretical 32+ curve in Fig. 4 has twice the
magnitude of the computed cross section. If this
manipulation is indeed allowed, the good agreement
obtained in Fig. 4 leads us to conclude that the multiple
excitation process, which is embodied in our coupled-
channel calculation, does explain the excitation in the
(cr, rr') process of the unnatural parity states4r not only
qualitatively but also quantitatively.

However, the agreement in shape achieved by the
solid curve for the 32+ cross section in Fig. 19 is not
necessarily very good at larger angles, as was noticed
above. Since the explanation of this cross section had
been the primary purpose of the present analysis, we
thought it worthwhile to seek for another set of param-
eters (other than that of (83)j, which gives better
agreement to this cross section, although the agree-
ment to the cross sections to other states may be
worsened in this way. The dotted curve shown in Fig. 4
is the result (times 2) of a run in which r„=r„=1.94 F
was used, other parameters being the same as in (21).
As is seen, the agreement is now almost perfect, even
the small hump at 8 55' being reproduced.

VIII. DISCUSSIONS AND CONCLUSIONS

As we have seen in Sec. VII, coupled-channel cal-
culations give very good agreement with a number of
existing experimental data. It is gratifying to know
that such good agreements were obtained (when
nucleons are used as projectiles) by using optical-
model parameters that are (almost) independent of
mass numbers and the types of the targets. The values
required for Pz that describe the collectivity associated.
with the excitation of various states were also found
quite reasonable. These results indicate that the
inelastic, as well as elastic, scattering experiment and
its analysis in terms of the coupled-channel calculation
provides a powerful tool in investigating the spectro-
scopic properties of various states in collective nuclei.

This sort of analysis sometimes allows us to assign
spins to states for which they were unknown before-
hand, as for example, were made for "Ni, '4%i, '"Cd,
and "Te. Although such assignments of the spins
and the interpretations of the properties of those
levels may not always be t,aken too seriously at the

7 W. %. Eidson and J. G. framer, Jr., Phys. Rev. Letters 9,
497 (1962}.

present time, if some complementary experiments, such
as P~ spectroscopy, (p, p'y) correlation experiment
and so forth were performed for those nuclei, we would
have a very clear understanding of the properties of
these (collective) states. Such combined experiments
would be very welcome.

Although we have made so far a fairly large number
of calculations, many more interesting problems could
be analyzed by using our code. Experiments which
excite higher phonon states in vibrational nuclei,
intrinsic states in deformed nuclei (in particular p
and y vibrational states), and states in transitional
nuclei are quite interesting Pcf. Sec. VI(i) ). Certainly
data for the scattering obtained by using ce particles
and deutrons as projectiles will also be of interest. In
fact several analyses of this sort have been reported,
although so far they have been limited to the excitation
of one or two lower excited states. e "4a (See, however,
Sec. VIIB3) . I Note added in proof. Recently an analysis
of "Ni(d, d') "Ni* processes was made with the 0—2-0-
2-4 coupling (vibrational nucleus) and it was found
that deuteron is a very useful probe for our purpose
$T. Tamura and R. K. Jolly, Phys. Letters (to be
published) $.I

In order to be able to analyze experimental data
which have been and will be accumulated rapidly, it
is desirable to know more systematically the behavior
of the cross sections as functions of various parameters
and coupling schemes. In other words the sort of cal-
culations as exemplified in Sec. VI have to be made
more systematically and more extensively.

Modifications of the way of calculation should also
be tried in order to increase the flexibility in data
fitting. For example, it may be desirable, if possible,
to use wave functions for the collective state, not
described phenomenologically as were made in the
present paper, but derived from 6rst principles. "

Even using the phenomenological description, how-
ever, there are ways to improve the present scheme of
the calculation. For example, for vibrational nuclei
we used for the wave functions of their states those
which are correct only for ideally harmonic vibrational
nuclei, i.e., (33), (34), etc. of Sec. III, and in order
to describe the deviation from the harmonicity, we
simply made Pz adjustable parameters.

One of the possible ways to improve such a situation
would be to describe various states as linear combina-
tions of the wave functions of the ideal vibrational
states. We show in Fig. 20 the result of a preliminary
analysis of the scattering of 17.5-MeV protons by
'Zn. The data were given by Roberson' and our
theoretical result for aO+—2+—2+-4+ (and of a 0+—2+—3 )
calculation are given by solid lines.

In obtaining these curves the wave function of the

'ST. A. Belote, J. H. Bjerregaard, O. Hansen, and G. R.
Satchler (to be published}.

"See, e.g. , T. Tamura and T. Udagawa, Nucl. Phys. 53, 33
(1964) and the other works cited in this paper.

"N. R. Roberson (private communication).
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second excited 2+ state was described as a small ad-
mixture of the one-phonon wave function to the
dominant two-phonon wave function. Qn the other
hand, a similar 0+—2+—2+—4+ coupling calculation in
which the wave function of this 2+ state is described
purely in terms of the two-phonon wave function was
performed, and the resulting cross section to this state
is given as a dotted line. The difference between the
solid and dotted curves, and the good agreement of
the former with experiment is remarkable (although
the latter type of calculation may give somewhat
better agreement than is shown here, by searching for
a better set of parameters. )

Whether the amount of the mixture of the one- and
two-phonon wave functions in the former calculation
was correct or not can be tested by calculating the
ratio of B(Z2) values of the y rays from the second
2+ state to the ground state and to the 6rst 2+ state.
The ratio is estimated to be 0.033 by using our wave
functions, which is to be compared with the experi-
mental value" of 0.007. Although there still exist dif-
ferences of a factor of 5, they are of the same order
of magnitude, and the agreement can be said to be
very good. More systematic calculations along this
line thus seem quite interesting.

In addition to improving and extending the sort of
calculations reported in Sec. VII, many more other
kinds of calculations can be made by using our form-

"A. K. Sen Gupta and D. M. Van Patter, Nucl. Phys. 50,
17 (1964).

alism and the computer program. For example, some
time ago we have discussed a possibility of performing
the coupled-channel calculations in order to explain
intermediate resonances observed in light nuclei. " A
recent calculation made by Lemmer and Shakin" is
very closely related to what we did, though there are
some diGerences between their emphasis and ours.

As for slow neutrons, we have considered only 350-
keV neutrons so far. We can certainly treat slower
neutrons too and thus can compute the strength func-
tions. ' '4 So far all the theoretical analyses of the
strength functions were made assuming that the
targets were of even-A, while the experiments were
made by using both odd-A and even-A nuclei as
targets. Experiments" seem to show that there is not
any significant difference between the strength func-
tions of even-3 and of odd-A targets in deformed
regions. The theory also predicts that this is true, at
least if only the s-wave strength function is considered
and the adiabatic assumption is assumed to be good.
On the other hand, some question still exists" about
the diGerence in the behavior of the strength functions
for even-A and odd-A vibrational nuclei with A 50.
Since our code allows us to treat even- and odd-A
nuclei differently, we can investigate whether such an
odd —even eGect would be expected theoretically, al-
though perhaps very much care has to be exercised
in the description of the target states in performing
such calculations and deriving definite conclusions.
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