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This review is concerned with the application of dispersion relation methods to direct nuclear reactions. We begin with
a discussion of the assumptions required to relate analyticity properties to the conventional descriptions of direct-reaction
amplitudes. This leads naturally to a description of phenomenological methods such as extrapolation to poles and similar
topics. The use of the unitarity condition provides a framework for the discussion of the distorted wave Born approxima-
tion from the S-matrix point of view Finally we call attention to some dynamical calculations of relevance to our discussion.

I. INTRODUCTION

Some five years ago Amado' considered the plane-
wave Born approximation for (d, p) reactions from the
point of view of its analytic properties. He noted that
the Born amplitude exhibits a pole because of single
nucleon exchange in the complex cos 8 plane very near
the physical region. The characteristic forward peaking
of stripping angular distributions could then be thought
of as resulting from a dominant contribution of this
pole near cos 0=1. Furthermore, the location of the
pole can be calculated from a Feynman diagram in-
volving single-nucleon exchange. Since this situation
has some analogy with many examples from elementary
particle physics, it has prompted attempts to apply
the methods of analyticity, unitarity, and dispersion
relations to nuclear reactions. These efforts have been
in various directions, but as yet there has been no
rev.'ew of the status of these "new methods. " It is the
purpose of this paper to give an account of this re-
search which will be accessible to experimentalists as
as well as theorists.

A few words about the over-all objectives of the
program might be in order. One should recognize that
the application of dispersion methods to nuclear re-
actions is still exploratory, and as such should not be
considered as an immediate replacement for detailed
numerical studies of distorted-wave Born calculations
and the like. What then can be expected at this stage
of developments Much of the work that has been
done to date is somewhat pedagogical in that it has
reformulated what was already known in terms of the
language of analyticity and unitarity. However, new
derivations of oM results are useful when they give
additional insight into the limitations of approximation
schemes and suggest new experiments. Furthermore,
they may serve as a conceptual guide to new calcula-
tional schemes or approximations which, depending
on the type of theory being attempted, may or may
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not include the familiar approximations as special
cases. Since dynamical dispersion theories involve non-
linear integral equations, but only on-the-energy-shell
quantities, these extensions of the theory may be dif-
ferent than those obtained from Schrodinger's equation
or the equivalent Lipmann —Schwinger linear integral
equation which involve off-the-energy-shell quantities
and the construction of potentials. If exact solutions
to both calculational methods were available, one
would expect the results to be identical, but where
approximations must be made, one or the other may
have considerable calculational or conceptual advant-
age. In addition, one may prefer alternate formula-
tions when nuclear reaction theory is extended to
higher energies, as the construction of potentials for
these cases may not be well de6ned. These are some
of the more ambitious aims of this program; however
de6nite conclusions must await further work.

Here we limit ourselves to explicit applications of
dispersion methods, but omit discussing such related
topics as applications of the Bethe —Salpeter equation
and Feddeev equations. In Sec. II we discuss the analy-
tic properties of reaction amplitudes, while the methods
of polology are emphasized in Sec. III. Section IV is
devoted to a discussion of unitarity; in particular a
derivation by Omnes' of the distorted-wave Born ap-
proximation (DWBA) from unitarity and some reason-
able statistical assumptions based on empirical informa-
tion. Attempts at dynamical calculations are brieQy
surveyed in Sec. V and some concluding remarks are
given in Sec. VI. Here we emphasize the status of the
theory without giving a great deal of detail, except for
a few selected topics of interest. The topics emphasized
necessarily reQect the tastes of the author. %e apolo-
gize to those whose work. we have inadvertetly omitted
or, misrepresented.

II. LOCATION OF SINGULARITIES

Vfe are interested in using dispersion relations and
analytic properties as tools for extending our under-

2 Roland Omnes, Phys. Rev. 137, 8649 (T965). We wish to
thank Professor Omnes for making a copy of his manuscript
available to us in advance of publication.
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are the Galilean invariant momentum transfer asso-
ciated with the vertices of the diagram in I ig. 1. The
overlap integrals are defined by

J(E)= drr'G(r)j e(Er) (II.2)

standing of nuclear transfer reactions, and in particular
the so-called direct interactions. It is customary to
consider the analytic properties of the transition
matrix as functions of complex variables as a prelude
to phenomenological applications or dynamical calcula-
tions. For two-body reactions (ajA +bj-B) there are
two independent kinematic variables, energy and mo-
mentum transfer, which can be analytically continued
from physical to unphysical values. In general, the
n-point amplitude has 3e—10 independent kinematic
variables, all of which may be continued. However, in
this review we will emphasize the discussion of the
4-point amplitude, although in many places some
generalizations of the results are possible.

The first step in this program was made by Arpado'
who pointed out that the Butler mechanism for deuteron
stripping led to a pole in the complex cos 8 plane on
the real axis at value of cos 8&1, but near the physical
region. This result can be reinterpreted as a pole of a
Feynman graph due to particle exchange, shown in
Fig. I, for the reaction A (u, b) B. In this language, the
pole dominates the exchange reaction because it is the
nearest singularity to cos 8=1, giving the qualitative
features of the forward-peaked angular distribution
characteristic of these reactions. (Later we give a
more systematic discussion of the assumptions made in
locating singularities. ) One can explicitly write down
the plane-wave Born approximation for a particle ex-
change of the type A(a, b)B, where particle x is ex-
changed. Aside from inessential kinematic factors (and
neglecting spin complications), the matrix element is'

T(PWBA)~It(q) (E'jcee) I(E), (II.1)
where

the bound-state radial wave function of particle u—+

bjx, F (r) is the bound-state wave function of particle
B~A jsc, jt are the spherical Bessel functions, and
ia is the bound-state wave number of particle x asso-
ciated with the vertex a~b jcc. We assume that the
potentials that bind x, V(re ), and V(r~, ), can be
described by superpositions of Vukawa potentials. We
hope that this is not unreasonable, since the nucleon—
nucleon interactions from which these potentials are
derived are of this type. 4 This then enables us to use
the results of Bertocchi et al.~ to discuss the analyticity
of the form factors occurring in Eqs. (II.2) and (II.3).
The bound-state wave function Ft (r) is given by a
superposition of spherical Hankel functions:

where

Ft(r) = — pt(o) ahP&(ior) do,
0

pt(o) =Xtb(o —k,) +pt'(o) 8(o —P'),

pt(o) o" do=a (e= —l, ~ ~ ., +l), (II.4)

ik is the wave number for x in the vertex B-+A jsc,
and tc is the longest range Yujawa potential in V (rz, ) .
Throughout this paper we take p to be the pion mass
since we wish to identify the longest range interaction
(and hence the nearest singularities) with the lightest
strongly interacting particle that can be exchanged
between A and x. On the other hand, if one wanted
V(rz, ) only to be an equivalent interaction (as is
customary in DWBA calculations), then we would use

p ff instead of p, where p,«
—' represents the phenomeno-

logical size of this interaction. In general, p, ff(Qp,
hence we are faced with the problem of an interaction
which is large over a distance much larger than the
range characterized by the lightest particle exchange.
We postpone a discussion of the problem, emphasized

by Eden and Goldstone, ' to Sec. U and concentrate on
the formal question of locating singularities. Using the
wave function of (II.4), we 6nd.

I(q) = «r'F (r)J (qr)
0

(II.3) q)~ 1 q&' 1
It(q) =Et —

i
+ dopt(o) —

i
(II.S)

k j q'+k, ' o j q'+o'

where A, u, b, and x are assumed to have spin zero,
l is the captured orbital angular momentum, G(r) is

Fro. i. Pole diagram or single-
particle exchange in the reaction
a(a, b)a,

X

3 For example, see N. Austern in Serected Topics in ENclear
Theory (International Atomic Energy Agency, Vienna, 1963),

p . 17 and in particular pp. 42-43.

and a similar expression for J(E). Therefore, aside
from trivial factors, '

T (PWBA) ~ (q/ke) 'Xt/&EI'& (q) P, (E)/(q'+k, ') j)

4 J. Charap and S. Fubini, Nuovo Cimento 14, 540 (1959);
R. J. Eden and J. Goldstone, Nucl. Phys. 49, 33 (1963).

'L. Bertocchi, C. Ceolin, and M. Tonin, Nuovo Cimento 18,
'tI'70 {1960).

e C. Dullemond and H. J. Schnitzer, Phys. Rev. 129, 821
(1963); and Proceediegs of the Padsca Corsferelce oo Direct lrster
actions and ENclear Reaction Mechanisms (Gordon and Breach,
Science Publishers, New York, 1963),p. 420.
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with

FIG. 2. Diagram for one-pion contribu-
tion to the vertex b—+a+x.

A

FIG. 4. A one-pion contribution
to the 6nal-state rescattering in
the reaction A (a, b)B.

(q'+k. ')I&(q) =Ã&(q/k, ) 'I'&(q), (II.6)

(&'+n') J(E)=%pl', (E).
The existence of the pole at q=ik is independent of
our assumption of Yukawa potentials; it just comes
from the asymptotic part of the wave functions. How-
ever, the vertex functions I'n(q) and I', (E) have
branch cuts, coming from the continuum of integral
(II.5), which do depend on this assumption. It is
easily seen from (II.6) that the normalization of the
asymptotic amplitudes, i.e., the reduced widths, play
a role analogous to that of coupling constants in ele-
mentary particle theories. One can also discuss the
analytic properties of the DWBA if the Yukawa
assumption is again made for the potentials. This has
been studied by Yazaki, ~ using methods similar to
those of Bosco.' He assumes that both optical potentials
have the spectral representation

where p(r) is real and Er is the threshold for inelastic
processes. As usual, it is further assumed that

CG ~
—or

U(E, r) = doU(E, o)
r

where p has a meaning similar to that discussed in
connection with the pole term. The initial and final
distorted waves are solutions of the Schrodinger equa-
tion with optical potentials, Eq. (II.7), and the bound-
state wave functions taken as in (II.4). To discuss the
wave functions, the work of Bertocchi et al.5 and
de Alfaro and Rossetti~ is relevant. One then can do
enough integrations to exhibit the singularities for a
single partial wave explicitly. One can verify that this
calculation gives the same analyticity properties as
those computed from Feynman diagrams (taken in the
nonrelativistic limit, of course). One again obtains a
pole and the contributions of the vertex functions of

(II.6). These can also be obtained from Feynman
graphs, with leading cuts coming from one-pion ex-
change. "The location of the singularities are found to
be identical in the two approaches with the graphs
contributing to these nearest singularities being those
of Figs. 1, 2, and 3. Similarly, diagrams in Figs. 4, 5,
and 6 give the same singularities as the rescattering
terms of the DWBA.~" We And it quite natural to
de6ne the class of singularities we have been discussing
as potential singularities. This terminology will be used
throughout.

To extend our discussion of the analyticity of nuclear-
reaction matrix elements beyond the DWBA, still
further assumptions are necessary. Our previous dis-
cussions make the following hypotheses plausible':

(a) The singularities of a nuclear-reaction matrix
element can be determined from the set of all possible
eoerelatieistic Feynman graphs for this process. There-
fore, all nuclei (including excited states stable under
strong interactions) are treated on the same basis as
the nucleon. Virtual meson exchanges must not be
omitted from these diagrams if potential singularities
are to be included in the discussion of analytic proper-
ties. With these assumptions nuclei can emit either
virtual nucleons or mesons.

(b) To add dynamics to the discussion, one can
further assume that the discontinuity across a branch
cut of a matrix element is given by the discontinuity
of the corresponding reduced graph. "

Although these assumptions are very reasonable, they
certainly cannot be considered to have been derived
from the A-nucleon Schrodinger equation. Only the
two-nucleon problem and . single-particle potential
scattering can be considered to be solved in this
sense. ' ""In fact, the study of the analyticity of three-.
nucleon Schrodinger amplitudes is still not complete.
On the other hand, the analytic properties of Feynman

a'

FIG. 3. One-pion contribution to the
vertex B-+A+a.

A'

FIG. 5. A one-pion contribution
to the initial-state rescattering in
the reaction A (a, b)B.

'K. Yazaki, Progr. Theoret. Phys. (Kyoto) 31, 772 (1964}.
However, the location of left-hand singularities by Yazaki at
k, s,/2 and k ==r/2frfor this DWBA matrix element is in error.
These singularities are absent.' B. Bosco, Phys. Rev. 123, 1072 (1964).' V. DeAlfaro and M. Rossetti, Nnovo Cimento 18, 783 (1960).

"R. Blankenbecler and L. Cook, Phys. Rev. 119, 1745 (1960).
» H. J; Schnitzer, Nucl. Phys. 36, 505 (1962).
"These assumptions have been emphasized by P. Stechel,

Nuovo Cimento 31, 250 (1964)."I.. B. Okun and A. P. Rudik, Nucl. Phys. 15, 261 (1960)."R. Blankenbecler, M. L. Goldberger, N. Khuri, and- S. B.
Treiman, Ann. Phys. (N. Y.) 10, 62 (1960).
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FIG. 6. A diagram for the
reaction A(a, b)8 with both
Gnal- and initial-state rescat-
tering.

B'

Fn. 8. Quasi compound-
nucleus contribution to
A(a, b)B.

A
D

graphs can be determined by means of Landau rules. ""
Furthermore, if one is considering eoerelativistic dis-
persion theory, one can assume that the kinetic energy
of a nucleon or nucleus is small compared with its
rest mass. Then the relativistic Feynman denominators
p' —rn'+ie are replaced with the nonrelativistic de-
nominator 2rnE p'+—ie, and the integration variables
for independent loop momenta are d'kdEI, . A detailed
study of nonrelativistic Feynman graphs is possible
and has been made for a subset of possible graphs by
Blokhintsev et al. ," where all graphs containing no
meson limes are considered. This is equivalent to the
analyticity obtained using only zero-range potentials.
We will call such graphs cluster graphs, and the result-
ing singularities cluster singularities. They exhibit some
of the many-body structure of the nuclei involved, but
with zero-range potentials. The remaining diagrams
contain many-body features, but the inclusion of meson
lines means that the 6nite range of nucleus —nucleus
interactions are included.

The preceding discussion summarizes the assumptions
needed to compute the singularities of reaction ampli-
tudes from distorted-wave theories or from Feynman
graphs. We now give a brief sketch of some results,
but detailed derivations, which can be found in pub-
lished papers, will be omitted. There are problems in-
volving analyticity which cannot be answered by the
general formalism, but require reference to speciic
reactions; among these is the location of nearest singu-
larities. It is rather simple to exhibit those graphs giving
the nearest singularities. Recall that graphs such as
shown in Fig. 1 give rise to a pole in the cos 8 plane
at a value of cos 8)1. Similarly there is an exchange
stripping pole (Fig. 7) which occurs for cos 8(—1.
In addition, there are graphs which are of a quasi
compound-nucleus character (Fig. 8), where nucleus
D represents any stable (to strong interactions) nuclear
state which can be reached by @+A. This diagram
gives a pole on the real axis of the energy plane below

the energy threshold for any physical two-particle re-

action connected to a+A. Multiparticle exchanges give
rise to branch cuts in the appropriate energy or mo-
mentum transfer complex planes. For example, Figs.
4 and 5 will contribute cuts to both planes. In general,
real two-particle intermediate states, which can be
reached from tr+A, give branch cuts in the energy
planes associated with the channel thresholds. "When
momentum transfer is held axed, nonrelativistic two-

body reaction graphs only have "right-hand" cuts
(cuts running from Es to E'=+ ~) in the energy
plane. These just reQect the consequences of unitarity"
and do not give much insight into the reaction mecha-
nism. One also can transcribe compound-nucleus re-
actions into this language, where single-particle reso-
nances give rise to a pair of complex conjugate poles
in the second energy sheet which can be reached by
analytic continuation through the unitarity cuts. Much
more interesting from the point of view of understanding
the nature of the reaction mechanism is the singularities
in the invariant momentum transfer or (linearly re-

lated) cos 8 plane. The potential singularities nearest
to the particle exchange pole are given by Figs. 2—5.
It can also be shown that Fig. 2(3) has the same cos 8

branch point as does Fig. 4(5)." To illustrate the
above points for a specific example, we plot the leading
singularities for a typical reaction, Siss(tg, p) Si", in

Fig. 9 when the deuteron laboratory energy is 6.2
MeV. The direct pole is at cos 0= 1.4, and the exchange
pole is at cos 8= —15. The singularity at cos 8=2.7
is from the nuclear vertex and that at cos 0=3.0 is
from the deuteron vertex. The nearest cluster contri-
bution to the nucleus form factor is given in Fig. 10.
There is a similar contribution to the reaction ampli-
tude, a triangle singularity, shown in Fig. 11.In general,
one finds that the cluster singularities are more distant
than the nearest potential singularities. Again appealing
to the Si"(d, p) Si" example, one finds the nearest
cluster singularities of the triangle diagrams of Figs.

'

12 and 13 to be at cos 8=5.4 (Es=6.2 MeV). This

COS 8 PLANE

CLUSTER SINGULARITY

Fro. 7. Exchange (stripping)
pole contribution to A (a, 6}B.

-l5
EXCHANGE POLE+

s ~////////////
////// / / / / //

I l.4 2.7303.05 q
~DEUTERON VERTEX

NUCLEAR VERTEX

"L.D. Landau, Nucl. Phys. 13, 181 (1959}."See R. Eden in Brandeis Lectures in Theoretical Physics, l96l
(%. A. Benjamin, Inc. , ¹wYork, 1962), Vol. I, for detailed
applications of this method.

'~ L. D. Blokuntsev, Nucl. Phys. 40, 117 (1963).

FIG. 9, The positions of the leading singularities in the complex
cos 8 plane for Si's (d, p) Si'e when the deuteron laboratory kinetic
energy is 6.2 MeV.

"I.S. Shapiro, Nucl. Phys. 28, 244 (1961}; and Selected
Topics in Nuclear Theory (International Atomic Energy Agency,
Vienna, 1963), p. 85, contain further details.
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X

" (A-y+x)

A+x

FIG. 10. A simple cluster con-
tribution to the nuclear vertex
(2+x)—&(A) +x. Fxo. 12. A cluster contri-

bution to Si" (d p) Si".

illustrates a typical case in which the singularity
nearest the pole is a potential cut.

Although this situation is generally true, there are
some exceptional cases'9 where the cluster singularities
are the closest to the Butler pole. This occurs for re-
actions with light nuclei, usually when (A —y) LFig. 10$
has a closed-shell structure and y is a single proton.
If x is a neutron and y is a proton, Stechel Ands that
the cluster diagram gives the leading singularity if
either

(1) the nucleus (A —y) has a doubly closed shell
or subshell,

or
(2) the nucleus (A —y) has a closed proton shell

(or subshell) and one hole in the same shell (or
subshell) for the neutrons.

The examples he found of this type are shown in
Table I."The entry (Pjp) indicates the range of the
equivalent Yukawa potential e ~"jr, normalized to a
one-pion exchange potential e &"jr. Additional examples
for x= 1 are known if nucleus (A —y) has an a-particle
structure. They are tabulated in Table II.'9 There
are probably more examples, but an exhaustive search
for them has not been made. In the region of heavier
nuclei, the cluster singularities are in general not the
nearest singularities.

In the preceding we have summarized the assump-
tions used in ending the singularities of reaction ampli-
tudes and given some of the simpler results. However,
we remind the reader that this should not be considered
a closed problem, since the analyticity of even the
three-body Schrodinger amplitudes is not yet com-
pletely known. It is certain that there is much to be
learned from the study of the analyticity of the E-
body Schrodinger problem. Even though our knowl-
edge of analyticity is still limited, the properties dis-
cussed here still can be a useful tool in the study of
various reaction problems.

. 28
Si Al

matrix elements. One of the results obtained was the
analogy between renormalized coupling constants of
elementary particle reactions and reduced widths of
nuclear reactions of the form A +8+x-, which came
from the connection between the residue of the particle
exchange pole and the asymptotic normalization of the
bound-state wave function. This defines the interaction
strength (reduced width) for the vertex A—+8+x since
at the pole all three particles are on the energy shell.
Since this definition is kinematically unique, it provides
an invariant description of the reduced width which
does not depend on which of the three particles, A,
8, or x, is "exchanged" in a nuclear reaction; at the
pole all three are physical.

One can press the analogy with particle physics
further and attempt to obtain reduced widths by an
extrapolation to the pole'0 in a way similar to the suc-
cessful extrapolation to the pion pole in nucleon—
nucleon scattering. ""However, this procedure en-
counters many complications when applied to experi-
mental direct-interaction angular distributions. The
pole is generally further from the physical region than
in the nucleon —nucleon applications and is not far
enough removed from branch cuts to make things
simple. "The Coulomb interactions further complicate
matters. In diagram language, the lowest-order Gnal-

state Coulomb scattering contributes to diagrams of
the form shown in Fig. 14. These give singularities in
the cos 0 plane which begin at the Butler pole. Finally,
to extrapolate experimental angular distributions with

any degree of reliability, very accurate measurements
would be required near the forward direction. Even if
such an extrapolation were made, it would not be
clear that the reduced widths so obtained would be
meaningful.

One can attempt to gain some insight into the
severity of these difIiculties by performing computer

III. PHENOMENOLOGY (POLOLOGY)

In the preceding section we reviewed the assumptions
used in obtaining the analytic properties of reaction

AI s 29

FIG. 13. A cluster contribu-
tion to Si'8 (d, p) Si".

(A-y)

A+y-b)
FIG. 11. A simple cluster

contribution to the reaction
a(fJ, b)a.

» P. Stechel, Nuovo Cimento 31, 250 (1964).

"To our knowledge, this was 6rst suggested as applicable to
nuclear physics by R. D. Amado, Ref. 1.

2' G. Chew and F. Low, Phys. Rev. 113, 1640 (1959).
I'22P. CziGra, M. H. MacGregor, M. J. Moravscik, and H. P.
Stapp, Phys. Rev. 114, 880 (1959).

~ This is also the conclusion of ¹ R. Gibbs and W. Tobocman,
Phys. Rev. 124, 1496 (1961),based on DWBA calculations.
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experiments in which the input parameters can be
controlled and the expected reduced width is known.
An exploratory calculation of this type was carried
out by Dullemond and Schnitzers on Si"(d, P) Si',
where the data treated was generated by the DWBA
calculation of Bassel et al.-""Since computer experi-
ments may be of some importance, it might be useful
to consider the extrapolation procedure in some detail.
Suppose the reaction amplitude can be written, for
fixed energy, as

Ll
Ll
'Se
10B

eLi
eHe

eLi
'Be

0.86
0.58
0.73
0.75

TABLE II.~ Examples where the cluster singularity is the
nearest singularity of the nucleus vertex function (A+I)-+
(A —y)+(y+1) —+(A)+1. The range of the equivalent Yukawa
potential for a potential singularity at the same position is (P/p)
in units of the pion mass.

T(E, cos 8) = T&v, &,& (E, cos 8)+ , p(E, *')
ds

iaos s&0 (x cos 8) ~ P. Stechel, Nuovo Cimento 31, 250 (1964).

and suppose that
(III.i)

TABLE I.' Examples where the cluster singularity is the nearest
singularity of the nucleus vertex function (A+n) —+(A —p)+
(np) —+(A)+(n). The equivalent Yukawa potential for a vertex
with a potential singularity at the same position as the cluster
singularity is e S'/r. The range (P/p) is given in units of the pion
mass. Case 1 indicates that nucleus (A —p) has a doubly closed
shell or subshell. Case 2 indicates that nucleus (A —p) has a
closed proton shell (or subshell) and one hole in the same shell
(or subshell) for the neutrons.

(A+a) nucleus (A —p) nucleus Case

13+
14N
18F

11C
)2C
160

0.78
0.89
0.54

s P. Stechel, Nuovo Cimento 31, 250 (1964).

that
lim (A icos 8) '(do/—dQ) =g'Gs. (1113)

cos 8-+A/B

Dehne an extrapolation function

F(E, cos 8) = (g'G'/i T&,.&,& i') (do./dQ). „„(III.4)

where (do/dQ), „v is the experimental angular distri-
bution. For our particular example,

F(E, cos 8) = (A Bcos 8)'(do/dQ—), , (III.5)

For values of cos 8& cos 80 it is possible to expand
(III.1) in the form

F(E, cos 8) =gb„(A —8 cos 8)". (III.6)

T&„i,&(E, cos 8) =gG/(A icos 8—), (III.2)

where g and G are constants, 2 and 8 are functions of
energy, (cos 8)s) A/8, and do/dQ=

~

T ~'. It is clear

is valid, where one chooses the best value of Ã by
statistical methods. '" In doing the extrapolation one
fits F(E, cos 8), as given by (III.5), by a least-squares
polynomial for a fixed value of N, and then computes
the weighted least-squares error &f&v' ——g;w, e;s for this
value of N, choosing the best value of N as the mini-
mum of x~' vs. N. One should find that x~' decreases
rapidly with increasing N, reaches a minimum No,
and then increases slowly for larger values of Ã.

For the best value of N,

g'G'=as ——F(E, A/8), (III.8)

which gives the value of the residue at the pole.
Extrapolations were made for the Si"(d, p) Si" re-

action for deuteron laboratory energies between 5 and
15 MeV, and for the Si" in its ground state and first
excited state. ' Three cases were examined: (a) Coulomb
interactions of nuclei due to a uniformly charged sphere
and optical potentials chosen to fit angular distributions
to known experimental results; (b) same as case (a)
but with no Coulomb interaction; and (c) same as
case (a) but with the optical potentials considerably
reduced in strength. The theoretical value of the re-
duced width was given a priori by the known asymp-
totic neutron wave functions used in the computer-
generated cross sections. The results of the extrap-
olation were somewhat disappointing, with typical
values of G' being too small by roughly a factor of 4.
In addition, the extrapolated values of G2 were found
to have considerable energy dependence for the cases
(b) and (c). This result, together with the fact that
high degree polynomials (typical best value of X~6)
were required, indicated that nearby singularities were
not sufFiciently accounted for by the extrapolation
procedure.

F(E, cos 8)—ga„(A —8 cos 8)" (III./)

To perform an extrapolation one generally assumes that
Fxo. 14. A one-photon contribu-

tion to the anal-state Coulomb
interaction in the reaction
A(a, b)B.

'&x

b

I

IY
I

8
2'R, H. Bassel, R. M. Drisko, and G. R. Satchler, Oak Ridge

National Laboratory report ORNL-3240 (unpublished).
~ G. R. Satchler (private communication).

'e P. Cziffra and M. Moravscik, Lawrence Radiation Labora-
tory report UCRL-8323 (rev. ) (unpublished).
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t
0

A*

FIG. 15. A one-pion exchange
contribution to inelastic scattering
A(a, a')A'.

Although the computer experiment of Dullemond
and Schnitzer was not as successful as one would have
hoped, more work is indicated before a final state-
rnent is made about the usefulness of extrapolating
angular distributions to find absolute reduced widths.
More effort along these lines appears to be justified,
particularly since a workable extrapolation procedure
would give a model-independent value for the width.
Some modifications of the outlined extrapolation pro-
cedure should be attempted before this question can
be answered. In particular, one may replace the plane
waves by Coulomb waves' " to account for these ad-
ditional nearby singularities. Moringo'~ claims that
the Coulomb-wave Born approximation predicts smaller
absolute cross sections than the PWBA (using the
same widths). This correction would be in a direction
to improve the extrapolation. On the other hand,
Dullemond and Schnitzer extrapolated theoretical
cross sections without Coulomb interactions which did
not dier significantly from the other cases examined.
In order to include the possibility of other forms for
the modified pole term, we should now write

kl

Pi Pg

kp

FIG. 16. A single-particle
exchange diagram for
A+u-+b+c+d.

where we have divided out the theoretical reduced
widths E~ and Xo to ensure the correct normalization
at the pole. Presumably the extrapolations are more
successful if the experimental data used is confined
to the first peak. Even if a procedure is satisfactory
for extrapolating computer-generated data, the problem
still remains of obtaining suKciently accurate experi-
mental data in the forward direction before these
methods can be meaningfully applied.

In a similar context, RobsorPS has suggested that
one may be able to extrapolate angular correlation
coeKcients to the pole in direct interactions of the
form A(u, b)Be(y)B. He has a computer experiment
in progress to test whether this is feasible, but no
results are known. He also suggests that it may be

possible to extrapolate to a pole in the amplitude for
inelastic scattering, A(u, a')A*. Such a pole would
correspond to the exchange of a pion, as shown in
Fig. 15. We think that in practice this would be much
more dificult to carry out than for particle-transfer
reactions, since this represents the exponential fall-oG
of a potential whose equivalent range is much larger
than 1/tc (see Sec. V).

Another simple, but useful, result which one finds
on examining the location of exchange stripping poles
is that in general they are quite far from the physical
region. ""This implies that for these cases backward
peaks in angular distributions cannot be attributed
to a mechanism analogous to that which gives the
forward peaks.

A rather interesting suggestion of Bleiden'0 involves
the application of the Treiman —Yang test" to nuclear-
reaction physics. The Treiman —Yang test,"which is a
necessary condition for the validity of the one-pion
exchange model, could be used to test for the domi-
nance of pole graphs involving the exchange of spin-zero

FIG. 17. A single-particle ex-
change diagram for A+u —+

b+c+d+e+" .

clusters (He4, Bes, C's, etc.) in nuclear reactions. To
treat an example, consider a nuclear reaction of the
type

A+ a~b+ c+d. (III.10)

Suppose we want to test the hypothesis that the pole
diagram (Fig. 16) dominates the reaction, where g
has spin zero. In the coordinate system where c is at
rest (with rnomenta as in Fig. 16),

tl= pg
—ps

——ks+ks —kg ——ks+ks. (III.11)

Then if particle u is unpolarized and x has spin zero,
the differential cross section in this coordinate system
is invariant under simN/tuneols rotation of the mo-
mentum vectors k2 and k3 about the axis defined by q.
An equivalent statement is that in the c rest frame
there is no correlation between the planes defined by
ne ——ksxks/( ks xks )

and n~=p~ xps/( p~ xps (. There-
fore, for the above-stated conditions, the distribution
of events as a function of cos p, where

cos p=n~ ne,

must be isotropic. Blieden lists several suitable re-

"F.B. Moringo, Phys. Rev. 134, B1243 (1964). .'. dets,'l„d
discussion of these matters is to be found in C. F. Clement, Nucl„
Phys. 66, 241 (2965).~ D. Robson, BulL Am. Phys. Soc. 9, 467 (1964).

~9 For additional remarks on this subject see J. B. French,
Proceedhrcgs of the Rsctherford Conferemce (Heywood and Com-
pany, Ltd. , London, 1962), p. 429; and N. Austern, Ref. 3, p. 75.

~ H. R. Blieden, Phys. Letters 9, 176 (2964)."S.B. Trieman and C. N. Yang, Phys. Rev. Letters 8, 140
(1962).
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actions for this test. One may extend the discussion to
the general case of single-particle, spin-zero exchange
for graphs of the type of Fig. 17. The reader is referred
to the original papers'~32 for the appropriate details
in this case. For some situations the single-particle,
spin-zero exchange might only be expected to dominate
near the forward direction, so that one might restrict
the measurement of the cos p distribution to that
region. It is interesting to note that these results are
valid for arbitrary modilcations of the vertex functions
connected to the ends of the propagator in Fig. 17.

A subtle and (we think) important suggestion comes
to us by way of analogy with elementary particle
physics. " Kacser and Aitchison discuss reactions
typiled by Hes+Li' —+cr&+Li' —&a&+P+crs. They notice
that for certain energies n2 can move in the same di-
rection as a~ and fast enough to interact with it. This
will happen even though the relative 2n energy does
not correspond to an excited state of Be'. Such an
interaction results in an apparent Be resonance, as

L., s*
P:

FIG. 19. A graph for a Breit-signer contribution to

Hel+Li'~0. 1+Li'*~ag+rig+p.

is the square of the invariant mass of the (p+as)
pair. One also easily 6nds that

S$+Ss+Ss= LM (He') +M (Li') g'

+2 TM (Li') +2M '+2M„', (III.14)

where T is the kinetic energy of the He' in the laboratory
system. For fixed T, one can construct a phase-space
(Dalitz) plot for each event when (Sr, S,, S,) is known
for the event in question. A large number of events
are expected to collect in the bands Sr ——LM(Li'*))'
corresponding to the mechanism

HesyLis~~&+ Lis*~~&+P+ns, (III.15)

and in the bands Ss——fM(Bes*))s corresponding to

He'+Li —+p+Be *—+P+nt+us (III.16)

5
Ll

FIG. 18. A triangle graph for He +Li ~uq'+Lis*~aq+O. q+P.

Sr= (P+~s)', Ss= (P+~r)', Ss= (nr+~s) ',

(III.12)

where p, err, and ns are the four-momenta of the par-
ticles. It is clear that

Sr= (M~+M, )'+M~, (v~—v, )' (III.13)

detected by the 2a spectrum, whose energy depends
on the beam energy, in distinction from true resonances.
Although such rescattering can be expected from all
analogous processes, the magnitude of the effect de-
pends crucially on the intermediate resonance width.
This pseudoresonance is predicted from a detailed
study of the triangle graph' (Fig. 18). In order to
exhibit the features of this process most clearly, E.acser
and Aitchison discuss the analysis of the relevant
experiment in terms of the invariant quantities

(Figs. 19 and 20, respectively). However, these en-
hancements are independent of the beam energy T,
while the effect we wish to emphasize depends on T.
Of course there can be other variations in the density
of events in the Dalitz plot due to nonresonant inter-
actions, e.g, , an attractive zero-energy scattering length
for a pair of particles.

Let us consider the process of Eq. (III.15), with
intermediate state Li'* but including rescattering cor-
rections. After a time related to the Li'* level width,
there will be a breakup into p+ns'. Under certain.
kinematical conditions 0.2' can catch n~' and interact
with it, namely if o,2' moves in the same directions as
n&' and with a speed greater than that of a~'. One can
give a prescription for these conditions in terms of the
allowed region in the Sr, Ss plane (for Axed 2') . Follow-
ing Kacser and Aitchison, " we plot the band corre-
sponding to the Lis* intermediate state Sr= LM(Lie*) j
in Fig. 21(a—c) corresponding to different He' energies
T. These intersect the Dalitz boundary at SB+ and S3,
with S3+& S& . It can be shown that if and only if S3

3' Some generalizations have been stated by A. S. Goldhaber,
Phys. Rev. 135, 8508 (1964).Additional tests of the one-particle
exchange model involving the angular correlations of the decays
of unstable states are discussed by K. Gottfried and J. D. Jack-
son, Nuovo Cimento 33, 309 (1964). The connection of these
decay distributions arith other angular correlations and generali-
zations to exchanges of spins other than zero are discussed by K.
Gottfried and J. D. Jackson (to be published).

~ C. Kacser and I. J. R. Aitchison, Rev. Mod. Phys. 3'I, 350
(1963); Phys. Rev. (to be published); and Nucl. Phys. (to be
published).

FIG. 20. A graph for a Breit-Wigner contribution. to

He3+Li6—+Be8*+p~ng+ag+p.
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25% enhancement in the region of T=S—6 MeV as
compared to the Breit-Wigner term, I

II I', taken
alone. It is to be emphasized that this enhancement in
the (o.ms) spectrum occurs at different relative (nrcrs)

energies E, depending on the beam energy. For this
reason, the excitation function for producing (aras)
pairs at 6xed 8 versus T shows a peak which varies
with T. The eGects should be striking experimentally.
In addition, it is of considerable theoretical importance
to find experimental examples of these (as yet un-

observed) effects since they are very necessary conse-
quences of our present understanding of 6nal-state
interactions.

IV. PHENOMENOLOGY (UNITARITY)

Sq+

Sp
2

4Mg I

i 0
I

( Mp+ Mg) (Li )
Sl

Fro. 21. (a) (After Kacser and Aitchison, Ref. 33.) The
Dalitz region in the SI-S3 plane for the reaction He3+Li' —+
aI+a&+p at a deuteron energy T below the energy for pseudo-
resonances. (b) Same as (a), but at an energy 2' where pseudo-
resonances are possible. (c) Same as (a), but at an energy T
above the energy for pseudoresonances.

8 See also C. Kacser, Phys. Letters 12, 269 (1964); and I.J. R.
Aitchison, "Final State Interactions Among Three Particles, "
Nuovo Cimento (to be published).

is on the lower right-hand arc ab (Fig. 21b), these
kinematic conditions can be satisfied. If these condi-
tions are met, there will be an enhancement at S3= S3
(shown as a shaded band in Fig. 21b) independent of
whether these is a Be'* level at this value of S3 and
dependent on only some attractive n—n interaction at
this energy. The pseudoresonance is then an enhance-
ment whose position S3 is a rapidly varying function
of T.

Kacser and Aitchisone' have performed numerical
calculations for various reactions, and 6nd that the
largest effects are of the order of 25%. In particular,
they have studied

Hes+Lis~crt+Li'*(16. 81)—&P+crt+ns,

with rescattering between n& and a2. Since S3 is fairly
near the Be'* level at 2.90 MeV, they have used this
to estimate the O.~+2 interaction in this region. The
contribution (in the Breit—Wigner form) of

Hes+Li~P+ 8es*(2.90)~P+crr+ ns

(Fig. 20) is added coherently as a background to the
amplitude computed from the triangle graph. " The
square of the matrix element (I+II)' shows about a

&&aI SIf &&i'I S"Ic)=Z&aI S'If)&bI SIc)=3-,

which in terms of operators means that

S+S=SS+= j..
If we write

S=1+2iT,

(IV.1)

(IV.2)

(IV.3)

then one can write for the transition operator T,

T+T= si (T+—T). (IV.4)

Time-reversal invariance implies that T is symmetric.
Therefore, one obtains the result that

T+T= ImT. (IV.5)

Although the PWBA reproduces some of the gross
features of direct interactions, since the amplitude is
real it is clear that it cannot satisfy unitarity. On the
other hand, the DWBA obtained from formal scattering
theory, takes into account the rescattering of the in-
cident and outgoing waves, and thus includes some
eGects of unitarity. Since in many cases the DWBA
gives excellent agreement with experiment, it is of
considerable interest to be able to derive the results
of DWBA from the S matrix (and unitarity) without
reference to potentials. Such a derivation has been

Our discussion of direct nuclear reactions has centered
on questions of analyticity, with an emphasis on the
phenomenological considerations of nearest singularities.
Although the location of singularities alone is not sufB-
cient to provide an understanding of the reaction
mechanism, since detailed questions of dynamics ulti-
mately cannot be avoided, these methods can give useful
insights into the gross features of the reaction. Another
question frequently discussed in the S-matrix approach
is the eGects of unitarity. These are of great importance
in particle physics, and they are expected to be of no
less importance for our problem.

The requirement of unitarity can be stated in terms
of the S matrix as
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If one chooses for
~

a& time-reversal-invariant states,
and requires S to be time-reversal invariant, then U
will be real, i.e.,

QU, =1. (IV.8)

Then from Eqs. (IV.6) and (IV.7) the elastic scattering
amplitude can be written

&a ) S ) u)= QU..' exp (2i3.). (IV.9)

The empirical evidence is that the scattering amplitude
is almost pure imaginary for nuclear reactions at
moderate energies, which means the matrix elements
(IV.9) are almost real. As a function of the orbital
angular momentum l, it is very small for small l,
and tends to 1 for large E. From (IV.8) and (IV.9)
we see that &a

~
S

~
u) is obtained by adding complex

numbers of phase exp (2ib ), whose moduli add up
to 1. Omnes makes the assumption, which fits these
experimental facts, that most of the eigenphases 8

are near either 0 or e./2 (modulo s). This is a crucial
step in the argument, but unfortunately it still has
the status of an arbitrary assumption. In some sense
this divides the eigenchannels into two groups at a
given energy, those near resonance and those far from
resonance. The ansatz then states that in some sta-
tistical way one can take the eigenphases to be grouped
about 0 and e/2. To go on with the argument we will

accept this guess about the behavior of the eigenphases
and hope that it can be eventually put on a firmer
footing.

3' J. S. Ball and %. R. I"razer, Phys. Rev. Letters 14, 746
(1965);E. J. Squires, Nuovo Cime~nto 34, 1328 (1964).

attempted by several authors. 2" This connection
between dispersion theory and conventional methods
would allow us to avoid the ambiguous procedure of
constructing optical potentials to produce distorted
wave functions. Instead one deals directly with meas-
ureable quantities such as the phase shifts. This change
in emphasis is useful since there is no guarantee that
these wave functions are reliable even though it is
always possible to fit elastic scattering experiments
with an energy-dependent optical potential.

As one example of this approach let us sketch Omnes'
derivation of the DKBA from dispersion theory. '
Consider a complete set of states, specified by energy,
total angular momentum, quantum numbers of nuclei,
and incident particles, and denote them by

~ a),
) b ), ~ ~ ~ . These are the states usually used in specifying
an experiment. The unitarity of Spermits us to consider
the set of eigenstates of S,

~
a),

~ P &,
~ ~ ~ which satisfy

S ) cr)=exp (2ib ) ~ n), (IV.6)

where 5 is a real number. The two bases are related by
an (energy-dependent) unitary transformation

I
~)= ZU- I ~). (IV.7)

To proceed consider the reaction process u—+b and
split the reaction matrix into two parts:

T= Tie+Ps, (IV.10)

S "-S2. (IV.11)

This separation is similar to the usual distorted wave
approach, but it is not the range of T» that is smaller
that that of T2, but for large l, T»0& T2.

We are now interested in the modifications of the
final and initial state interactions on the real amplitude
&b

~

Tie
) a), when there is absorption in ) g) and

~ b). It is convenient to first change to the eigenphase
basis,

The relation of &P ~
Ti j n) (which includes final state

interactions) to &P )
Tie

~ n) is a standard dispersion
relations problem. s 's When 8 (8) and 8p(E) vary
slowly with energy in the range 0 or a./2, and Tie(E)
varies slowly with energy, the solution simplifies to

&P I rt ln) =exp Pi(3~—6-)j(P I
2't' In) (IV.13)

This result is probably more general than the stated
deviation. ' Since T»0 only has matrix elements between

~
a) and

~ b), then from (IV.12) and (IV.13),

&f I
2't

I ~)=LZ~»'exp (i~~)j

Xf+V..s exp (—i~.)j&f ) r,e
( u). (IV.14)

We can evaluate the quantities in the brackets, which
contain the eGects of final state interactions, for large l.
We write

For large l, ~, and e~ are small and real. With the above
simplifying assumptions about the eigenphases, we Gnd

&a ~
S ( u) = L1—(e,/2) j+exp (2s i/2) (e,/2), (IV.16)

gU, ' exp (i8 ) =L1—(e,/2) j+exp (ia/2) (e,/2),

(IV.17)

I Q~-'exp(i3-) i=11—("/2) )=I &~l Sl~) )'.

(IV.18)

3'R. Omnes, Nuovo Cimento 8, 316 (j.958); M. Jacob, G.
Mahoux, and R. Omnes, Nuovo Cimento 23, 838 (1962); J. D.
Jackson and G. L. Kane, Nuovo Cimento 23, ".'." (1962).

where T» gives the Born approximation for a—4 and T2
is everything else. When l is large, the cross section
due to T»' is smaller than that due to T2, so one may
approximately write the unitary operator

Ss——1+2iTs
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Hence, in this approximation,

(b I TiI a)=L (bI sI b)j
X (b I Ti I a)I (a I

S
I
a)*j'*. (IV.19)

This gives the results of the DWBA.
Omnes' analysis cannot be applied to cases where the

absorption is large. In that case e and ~~ are no longer
small compared to 1, and (b I Ti I a) is of the order
or larger than (a I T2

I a). It is clear from most analyses
that unitarity' considerably reduces the contribution
of the PWBA to small partial waves. However, the
preceding discussion shows that the detailed predictions
of a single-channel DWBA calculation are not expected
to be accurate for low partial waves. Thus many-
channel calculations appear to be called for if there is
to be improved understanding of the reaction mecha-
nism for low l.' '

In an effort to avoid some of the difficulties with
Omnes' approach Ball and Frazer" have given an
alternative discussion of the DWBA. An essential part
of their treatment is to truncate the unitarity series
LEq. (IV.1)j to include only initial or final states in
the intermediate sum. By using a set of plausible
assumptions and the requirements of unitarity they
are again led to Eq. (IV.19), but for applications to
particle physics this seems to work only for the ex-
change of spin zero particles. However, it appears likely
that in application to nuclear physics the difhculties
found for the exchange of particles with spin do not
occur, since these Born terms are damped at large
momentum transfers by the nuclear form factors at
the vertices. Once again the arguments are easier to
justify for the high partial waves, where the rescatter-
ings are weak. In still another approach to the same
problem Squires'5 gives a derivation based on a random-
phase multichannel N/D model, where again (IV.19)
is obtained.

One can also discuss the strong absorption model of
Blair" in terms of the unitarity relation. The assump-
tions of the strong-absorption model is

(a I Si I a)=1, l&kR

=0
7 l(kR, (IV.20)

where k is the three-momentum in the center of mass,
and R is a radius parameter. This means

(a I TiI a)=(b I T~ Ib)=l~,
=0, l& kR. (IV.21)

If one substitutes (IV.20) into (IV.19) one predicts
that the reaction cross section is identically zero for
i&OR. But we have just stated that the derivation of
(IV.19) is not valid when e„eq 1. In fact, it is trivial
to see that if one sets e =&~=i, and. evaluates Eq.

» A. Dar and W. Tobocman, Phys. Rev. Letters 12, 511 (1964);
J. S. Blair, Phys. Rev. 108, 827 (1957).

(IV.11) one finds (IV.19)g,

(b I Ti I a)=~~(b
I

Tio
I a)WO and real. (IV.22)

But even the derivation of (IV.14) and hence (IV.22)
fails for small /, so that nothing reliable can be stated
about (b I Ti

I a) for low l, except that the PWBA is
considerably reduced.

V. DYNAMICAL CALCULATIONS

The objectives of applying dispersion theory to
nuclear reactions are at least twofold: first, to present
a calculational scheme, and secondly, to help clarify
the derivation of known results and approximations.
Sections II—IV of this review were devoted to some
of the latter aspects of dispersion theory, while in this
section we wish to survey some dynamical calculations.
One class of dynamical calculations attempts to form-
ulate an approximation which will include the effects
of unitarity and yet go beyond the limitations of the
DWBA. Such a stripping calculation was attempted
by Amado. '8 The methods applied were analogous to
those used by Amado" in his dispersion relation
solution of V—8 scattering in the Lee model. However,
V—8 scattering occurs only in the S wave, while a
stripping reaction has contributions from all partial
waves; hence it is difficult to assess the validity of the
procedure. In work of this type, the reduced widths
must be specified from outside the calculation, since
they must be obtained either from experiment or a
nuclear structural calculation. The advantage of a
dispersion formulation of dynamics would be that
only on-the-energy-shell quantities enter, but one
would have to deal with nonlinear integral equations.

To our knowledge, Amado's attempt is the only dis-
persion relation calculation of a direct interaction
amplitude. However, calculations for somewhat simpler
reactions have been performed, principally for the
photodisintegration of the deuteron and deuteron elec-
tromagnetic form factor. Many of the same features
as in direct interactions appear, but comparison with
potential theory is simpler and there are many fewer
complications. We summarize some results for the
case y=D +N+P, since i—t bears some resemblance
to direct-reaction theory. It has been shown by Martin
and Vinh Mau that the nonrelativistic matrix ele-
ment for deuteron photodisintegration satisfies the
Mandelstam representation. One can also make a
relativistic calculation, and hence include the eGects
of such things as exchange currents, meson production,
and relativistic corrections. This is a rather compli-
cated theory; hence it is necessary to show that the
relativistic theory is similar to the nonrelativistic theory
in the low- and medium-energy region. Several rela-

3 R. D. Amado, Phys. Rev. 127, 261 (1962).
» R. D. Amado, Phys. Rev. 122, 696 (1961).' A. Martin and R. Vinh Mau, Nuovo Cimento 20, 246 (1961);

see also F.Troyon, University of Rochester, thesis, 1962 (unpub-
lished).
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tivistic calculations have been made " ~ which attempt
to get agreement with experiment below the meson
production threshold. The earliest papers"" retain
only the asymptotic part of the deuteron wave func-
tion, while subsequent calculations" ~ attempt to take
into account the deuteron structure. The results are
encouraging, with improved agreement as additional
effects are included in the theory. 4' This work indicates
that dispersion methods might have some hope of
successfully describing nuclear-reaction processes. There
have also been attempts to study the three-body prob-
lem by various authors. These have dealt with formal
questions such as integral equations for the connected
part of three-body potential scattering's and the Bethe-
Salpeter amplitude for the three-body problem. '
Exactly soluble models for N—D potential scattering
have also been studied. 47 These papers are somewhat
outside the scope of our paper so we will not go into
further details.

Another interesting dynamical formulation which
should be mentioned is due to Villars. He adapts a
definition of asymptotic states similar to the one used
in field theory. One can then express the reaction ampli-
tudes as matrix elements of a "current operator, " J,
similar to that occurring in dispersion theory, which
can be shown to satisfy a Low equation. These non-
linear coupled integral equations, typical of dispersion
relations, can be used as the starting point for an ap-
proximation scheme for nuclear reactions, although
Villars makes no attempt in this direction. Rather, he
derives a set of linear integral equations for the transi-
tion amplitudes, whose structure is similar to equations
obtained by Feshbach. '

A different and important sort of dynamical question
concerns the distinction between nuclear size and range
of nuclear interactions. For the purpose of discussion,
consider the nuclear size (or radius) associated with
in interaction to be the distance for which the inter-
action between two nuclear clusters is substantially
different from zero. On the other hand, the range of an
interaction will mean the distance associated with the
exponential fall-oG of the interaction in the asymptotic
region, i.e., in the region outside the nuclear radius. "

"B.Sakita and C. J. Goebel, Phys. Rev. 12'F, 1787 (1962).' A. Donnachie, Nucl. Phys. 37, 595 (1962).
"M. H. Skoinick, Phys. Rev. 136, B1493 (1964).
44 M. LeBellac, F. M. Renard, and J. Tran Than Van, Nuovo

Cimento 33, 594 (1964);34, 450 (1964).
45 C. Lovelace, Phys. Rev. 135, B1225 (1964); and C. Lovelace

in Strong Interactzons and High Energy Physics, edited by R. G.
Moorhouse (Oliver and Boyd, London, 1964), and references
cited therein.

4' P. Stechel, Nucl, Phys. 52, 189 (1964)."R. D. Amado, Phys. Rev. 132, 485 (1963); R. Aaron, R.
Amado, and Y. Yam, ibid. 136, 3650 (1964); Phys. Rev. Letters
13, 574 (1964); 13, 701(E) (1964), and references cited therein.

'8 F. pillars, MIT preprint (to be published).
4' H. Feshbach, Ann. Phys. (¹Y.) 19, 287 (1964).
»This distinction has been emphasized by R. J. Eden and

J, Goldstone, Nucl. Phys. 49, 33 (1963).

It is clear from our definition of the nuclear vertex
function and its relation to the wave function that the
longest range part of the interaction comes from the
nearest singularities in the cos 0 plane. Only for the
deuteron does the range agree closely with the size.
Even for relatively low-A nuclei, the range, determined
from the potential singularities, is considerably smaller
than the size. This apparent paradox can be resolved
if one notices that a superposition of shorter range
terms with an oscillating weight function can give a
size which is larger than the range. ""Loosely speaking,
one has the picture of a nucleus, with the conventional
idea of nuclear size, and with the range due to the ex-
change of a pion between the surfaces of the two nuclear
clusters involved. (I'or the few exceptional cases"
where cluster singularities are nearer, this heuristic
picture is easily modified. ) Since the understanding of
nuclear size is not simply related to the location of
singularities, one must appeal to dynamics to obtain
an estimate of the nuclear size. It would be surprising
if such dynamics did not involve some features of the
nuclear many-body problem. The nuclear radius enters
in direct interactions in a variety of ways, but in con-
ventional calculations it is described phenomeno-
logically. For example, in the Butler model a cut-off
is arbitrarily introduced in a radial overlap integral.
In more elaborate calculations such as the DYVBA
one assumes a size empirically for each potential used
in the calculation. Even in dispersion calculations such
as Amado's the bound-state wave functions are speci-
fied. However, an optimist would hope to be able to
calculate reaction-matrix elements from two-body,
nucleon —nucleon interactions, where a size would occur
naturally. A more modest aim would be to find a subset
of graphs, which might exhibit the size features.

The simplest element which enters reaction theory
in which the size occurs is in the vertex part for nucleon
absorption by a nucleus. Eden and Goltstone" discussed
the application of dispersion theory to the nuclear
many-body problem; in particular, the vertex part.
Dispersion theory can be used for the many-body
problem because there is detailed knowledge of the
analytic properties of the nucleon —nucleon scattering
amplitude. They formulate a self-consistency require-
ment for the nucleon —nucleon vertex part, using dis-
persion techniques, which can be thought of as an
analogue to Hartree or Brueckner equations. There
are additional developments in a sequel by Froggatt, "
but we will not enter into the technical details here.
However, we feel that this is one of the more promising
areas for the application of dispersion relations to
nuclear physics.

"I.S. Shapiro, Ref. 18, suggests the alternate possibility that
the nuclear radius is characterized by an essential singularity at
in6nity."C.D. Froggatt, Nucl. Phys. 61, 303 (1965).
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VL CONCLUDING REMARKS

In the preceding we have discussed a selection of
topics involving the use of dispersion methods for
problems in direct nuclear reactions. It should be clear
to the reader that the concrete successes of this ap-
proach are not overwhelming; however, it must be
further admitted that the work in these areas has been
limited. We do not wish to be too pessimistic about the
usefulness of these techniques, so we give emphasis to
those areas which clearly deserve further eBort.

The derivation of the DWBA from unitarity and
some reasonable statistical assumptions based on
empirical information is quite interesting. It remains
to be seen whether this approach can be extended to
low partial waves. There remain many formal questions
concerning the analytic structure of the many-body
amplitudes. Even the simplest example, the three-body
problem, has not been completely understood from this
point of view. On the whole, the practical implications
of polology techniques are disappointing. An exception
may be the application of the Treiman —Yang test to
multiparticle exchange reactions. This sort of correla-
tion measurement may give some insight into the re-
action mechanism for cases where spin-zero exchange
is possible. The extrapolation to particle exchange poles
has proved more dificult than originally anticipated.
In addition, the nearest (anomalous) singularities con-

siderably underestimate nuclear size, so that one cannot
relate the nearby branch points in the cos 8 plane
directly to the phenomenological radii associated with
nuclear reactions. This feature of reactions, which is
not exhibited by potential scattering, reRects the many-
body character of a nuclear reaction. In dynamical
calculations of reaction amplitudes, this problem is
usually avoided by introducing average potentials or
interactions from empirical data and bound-state wave
functions from nuclear structure theory. A formulation
which may give a more fundamental description of the
nucleon —nucleon vertex has been given by Eden and
Goldstone" in their work on the nuclear many-body
problem. They concentrate on a self-consistent dis-
persion theoretical description of nuclear vertex func-
tions, an essential component of reaction amplitudes.
We must wait to see how far this program can be
pursued.
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