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Invariance principles are used, in physics, in two distinct manners. First, they are used as superlaws of nature in that,
once their validity has been suggested by their consistency with the known laws of nature, they serve as guides in our
search for as yet unknown laws of nature. Second, they can serve as tools for obtaining properties of the solutions of the
equations provided by the laws of nature. It is desirable for the 6rst use to give a formulation of invariances directly in
terms of the primitive concepts of physical theory, i.e., in terms of observations, or measurements, and their results.
Invariances which can be so formulated are called geometric invariances. The present paper contains an attempt at such
a formulation of geometric invariances. This formulation is then applied, in detail, to the classical mechanics of point
particles, to a relativistic mechanics of interacting point particles, and to quantum theory. With the exception of the
relativistic mechanics of point particles, these applications form a review, from a single point of view, of earlier work on
this subject. The last part of the paper contains a review of the second use of invariances.
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5.4.
5.5.

INTRODUCTION

Invariance principles played an important role in
Galileo's and Newton's thinking and writings, but their
importance for physics was not fully appreciated until
the events which led to the formulation of Einstein's
theories of relativity. Even then, most physicists
thought of invariance principles as something learned
that does not enter the everyday thinking or the day-
to-day work. The ease with which invariance principles
led to concrete results in quantum mechanics changed
this situation. The change did not come suddenly-
in the early days of quantum mechanics there was much
resistance to the adoption of invariance principles as
everyday working tools. This resistance disappeared
in the course of the years and is not even understood
by the new generation of physicists. This is so much
more remarkable since, evidently, the use of invariance

«The investigations of the properties of crystals provide a
notable exception to this statement. See, for instance, W. Voigt's
I.ehrbnch der Kristallphysik (B. G. Teubner, Leipzig, 1910).
Chapter 6 of M. von Laue's History of Physics (Academic Press
Inc. , New York, 1950) contains a short, but vivid, history of the
t»~king on the equivalence of coordinate systems. Cf. also
Charles Scribner, Jr., Am. J. Phys. 32, 672 (1964).
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principles as guides to 6nd the laws of mature becomes
obviated once the laws are found —a situation which
is considered to be imminent by many.

I. THREE REMARKS ON INVARIANCE
PRINCIPLES

The present section deals with invariance principles
in a preliminary and somewhat unsystematic fashion
to set the stage for the Inore detailed, and systematic,
and we hope deeper study starting in Sec. 2.

1.1. First Remark: Curie's Observation

The 6rst of our remarks which precedes our discus-
sion goes back in its essentials to P. Curie. If the
physical world were really invariant with respect to a
coordinate transformation, such as a displacement
through a distance L, this fact could never be dis-
covered because there would be no way to distinguish
between two points which are truly equivalent in the
sense that the situation at one is exactly the same as
at the other. If the world were in all its details invariant
with respect to a displacement by I., we ourselves
would be (to use the language of quantum mechanics)
with equal probabilities at points which differ by this
displacement. It is indeed possible to assume that there
is a 6fth coordinate along which all wave functions are
constant, but this assumption would have no observable
consequences. It follows that the invariance principles,
since we want them to have observable consequences
(and they have), postulate the equivalence of co-
ordinate systems only in a certain sense. They are
possible only because our knowledge of the physical
world has been divided into two categories: initial
conditions and laws of nature. ' The state of the world
is described by the initial conditions. These are com-
plicated and no accurate regularity has been dis-
covered in them. ' In a sense, the physicist is not inter-
ested in the initial conditions, but leaves their study
to the astronomer, geologist, geographer, etc. Cir-
cumstances, which are equivalent in the sense of the
invariance principles, may be, and usually are, very
different from the point of view of initial conditions,
that is, actual physical situations. This is what makes
"equivalent" points distinguishable. The invariance
principles apply only to the second category of our
knowledge of nature; to the so-called laws of nature.
Only these are the same i~ equivalent coordinate
systems. The laws of nature describe the further fate
of a system, once the initial conditions are given. Hence,
an invariance principle holds if two systems with the

2 P. Curie, Oeuvres (Gauthier-Villars, Paris, 1908), p. 127
3 These two concepts will be replaced, in Sec. 2, by more primi-

tive ones.
4 It has indeed been argued (Les Prix Nobel, Stockholm, 1964)

that they have —or have had —some inherently random char-
acter. Similarly, it has been argued at this place that a sharp
separation between initial conditions and laws of nature is pos-
sible.

same initial conditions in two equivalent coordinate
systems develop, from the point of view of the respec-
tive coordinate systems, in the same way. We see that
invariance principles can be formulated only if one
admits the existence of two types of information which
correspond in present-day physics to initial conditions
and laws of nature. It would be very difBcult to find a
meaning for invariance principles if the two categories
of our knowledge of the physical world could no longer
be sharply separated.

1.2. Second Remark: The Mathematical Form of the
Laws of Nature

The simplest way to verify an invariance principle
would be to create the same initial conditions in two
equivalent coordinate systems and to observe whether
the further fate of the two systems, from the point of
view of the coordinate systems in question, is the same.
This cannot be done precisely but it can be done with a
sufhcient approximation because there are systems of
limited extension which are not inAuenced to any
noticeable extent by the state of the world outside
them. ' The state of the world outside these limited
systems suKces to distinguish them but leaves their
behavior unchanged.

The observation of the behavior of limited systems
which are identical from the point of view of two
different coordinate systems is the most obvious way
to verify the equivalence of two coordinate systems.
It will be called the 6rst method since it is not the only
one. The reason is that the "laws of nature" appear in
mathematical language of great generality. As a result,
the laws of nature obtained in one coordinate system
purport to give not only the behavior of systems which
are actually in existence from the point of view of that
coordinate system but of an in6nity of other systems.
Hence the invariance principles can be verified by
ascertaining whether actual systems in the second co-
ordinate system behave in accordance with the laws
established on the basis of experiments in the first co-
ordinate system. This will be called the second method
of the verihcation of invariance principles. To mention a
rather insigni6cant example: we measure, in our labo-
ratories, the electric field only around a very few
charged bodies which are at rest. We infer, nevertheless,
that Coulomb's law is valid for all charges at rest,
even those which do not exist in our own coordinate
system. If we observed that, in a moving coordinate
system, the field around a charge at rest in that co-
ordinate system is not given by Coulomb's law, we

~ This point is further elaborated in the article "Invariance in
Physical Theory, " Proc. Am. Phil. Soc. 93, 52 (1949). In its
fundamentals, the observation goes back to C. S. Pierce. See, for
instance Essays in the Philosophy of Science (Liberal Arts Press,
New York, 1957), p. 237.

The reader will note that the equivalence of two coordinate
systems is considered to be synonymous with the invariance
with respect to the transformation which connects them. See
Sec. 2.4a for a more detailed discussion.
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would declare the two coordinate systems not to be
equivalent. We would do this even if there were no
charge at rest of the magnitude in question in our own
coordinate system: our belief in the possibility of
formulating the laws of nature in simple mathematical
language is so strong that we unhesitatingly rely on it
when judging the equivalence of coordinate systems. ~

The second method of the verification of principles
of invariance is much more common than the first one.
It is, obviously, very inconvenient, and often impos-
sible, to create identical conditions in diferent co-
ordinate systems and the accurate repetition of an
experiment is the closest the experimenter ever comes
in practice to a verification of an invariance principle
by the first method. The repetition of an experiment,
if the outcome is the same, verifies the equivalence of
two coordinate systems obtained from each other by
time displacement.

1.3. Third Remark: The Empirical Origin of the
Invariance Principle

The third remark is of a much less subtle nature
than the other ones, and it is barely necessary to make
it now. The discovery of Lee, Yang, and Ku, showing,
among other facts, that the laws of nature are not in-
variant with respect to charge conjugation, reminded
us of the empirical origin of the laws of invariance in a
forcible manner. Before the discoveries of Lee, Yang,
and Wu, one could quote Fourier's principle as an
earlier example of an invariance principle which had
to be abandoned because of empirical evidence. Ac-
cording to Fourier s principle, the properties of matter
should not change no matter how far it is subdivided.
With the discovery of the atomic structure this prin-
ciple had to be discarded.

2. LAWS OF NATURE AND INVARIANCE
TRAN SFORMATIONS

2.1. Extended Role of the Laws of Nature

In the preceding section our knowledge about the
physical world is divided into two categories: the initial
conditions and the laws of nature. The initi. al conditions
interest the physicist principally because the laws of

~ See also, "The Unreasonable Effectiveness of Mathematics in
the Natural Sciences, "Commun. Pure Appl. Math. 13, 1 (1960).' T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956);C. S.
Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P.
Hudson, ibid. 105, 1413 (1957). A fuller realization of the em-
pirical nature of the invariance principles would have saved some
embarrassment to the community of physicists in connection with
the articles of R. T. Cox, C. G. McIlwraith, and B. Kurrelmeyer.
See Proc. Natl. Acad. Sci. (U.S.) 14, 544 (1928).

J.B.Fourier, Theoric Analytique de la Chaleur (Fermin Didot,
(Paris, 1822; English translation: Cambridge University Press,
Cambridge, 1878), articles 85—86. It must be admitted, however,
that Fourier is less explicit in stating his invariance principle than
is often assumed. For an earlier discussion and rejection of
"Fourier's principle" see Galileo's Dialogues Concerning Tlo Rem
Sciences (The Macmillan Company, New York, 1914),p. 130.

nature do not lead to observable consequences unless
the initial conditions are given. In order to test a law
of nature, the physicist usually first prepares a system
with known initial conditions to which the proposed
law of nature is applicable. He then proceeds to ascer-
tain whether the properties of his system change in
the way postulated by the law of nature to be tested.
Thus the picture of sharply separated acquisition of
initial conditions, and subsequent conclusions about
the resulting behavior of a system is particularly ap-
propriate for describing physical experimentation which
is indeed so designed that this picture be appropriate.

One may want to be able to use one's knowledge
about the laws of nature in a more ambitious way, as a
help to understand currently what is going on around
him. If such a use is attempted, one is forced to abandon
the stereotyped picture of first ascertaining the "initial
conditions, " then drawing consequences from them on
the basis of the laws of nature. This picture can be
used only for carefully selected, relatively simple
systems; in general it is not possible to ascertain all
the relevant initial conditions. As a matter of fact, it
is part of the skill and ingenuity of the experimenter
to prepare systems for which the relevant initial condi-
tions are known. If we do not focus attention on such
special carefully selected systems, but consider all our
surroundings, the situation is that information which
we could not have anticipated reaches us constantly,
and such information is essentially added knowledge
to what physics calls initial conditions. Similarly, the
conclusions which we derive from the laws of nature
concerning the behavior of the world around us are
tested only partially, but on a continuing basis. Acquisi-
tion of unforeseeable information and the drawing of
inferences on the basis of the laws of nature are only
rarely clearly separated; usually the two processes go
on hand in hand.

We wish to avoid using the concept of initial condi-
tions as a primitive concept in our discussion. We are
motivated partly by the fact that the acquisition of
knowledge about the state of the world on a space-like
surface appears artificial from the point of view of the
special theory of relativity but, even more strongly, by
the conviction that the concepts of physics should in-
creasingly approach the realities ef our acquisition of
information and knowledge. A concept, "state of a
system, " will be introduced later which corresponds
largely to the "initial conditions" of present day
physics. However, we prefer to treat this as a derived
concept and use as a primitive concept that of observa-
tion or apperception. We are well aware of the fact
that the process of observation (in conceptual discus-
sions of quantum mechanics often called measurement)
is probably most complex if considered from the point
of view of the psychologist. However, we hope that the
complexities of the process of observation and apper-
ception (we use these two words as synonyms) can be
disregarded when the properties of the inanimate
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world around us are considered. At any rate, the
process of observation is clearly a more primitive one
than that of initial conditions. In terms of the concept
of observations, the laws of nature become correlations
between these —and this is indeed what they are.

The fact that the acquisition of knowledge concerning
initial conditions, and the testing of the laws of nature,
go on hand in hand is not in conQict with the assertion,
made already in 1.1, that the two are diGerent in char-
acter. The laws of nature are regularities, that is cor-
relations between events, whereas the initial conditions
are the unforeseeable events. At ariy rate, they are
events (or the results of observations) and not corre-
lations between results of observations.

If we adopt the attitude just described towards the
laws of nature, they provide, in general, not all the
information about the behavior of some carefully
prepared system but some little information about the
whole body of our observations. Connections between
our observations obtain, for instance, if we observe the
subsequent positions of a stone that is being thrown,
or the subsequent positions of a celestial body. The
number and effectiveness of the connections bet@seen
observations on a body increases, in general, as the
number of observations increases. In the usual language
of physics one says that one ascertains the initial con-
ditions more and more completely.

The preceding delnition of the laws of nature applies
to more situations than usually implied. However,
unless we can attribute some role to the laws of nature
similar to the one described, they will serve, effectively,
only as subjects for their own verification and as means
to enable us to design machines. What we wish is that,
in addition, they should constantly support our under-
standing of what goes on around us and what we
experience.

Not all connections between observations are con-
sequences of the laws of nature; there are connections
which follow from crude regularities in the initial con-
ditions. Thus, if we see the right side of a lamb, we can
pretty well guess what the other side looks like. How-
ever, we do believe that the two types of regularities
can be sharply separated.

We next turn to a somewhat more detailed specifica-
tion of the concept of observations.

2.2. Observations

The concept of observation plays a basic role in
physics. It is a process which consists of bringing the
system to be observed in contact or interaction with
something such as an instrument, or light, about the
state of which we have some direct krIomledge. This is,
probably, a conceptually very dificult notion but we
shall nevertheless take it for granted. The process of
observation would be described in modern quantum
mechanics as a collision between a measuring instru-
ment and the object, a characteristic of which is to be

measured. The result of the observation is some in-
formation about this characteristic, such as position
at a given time, or quantum state at another time, or
the weight of the object. As was mentioned before,
the result of some observations may be foreseeable on
the basis of earlier observations and some knowledge of
the laws of nature; the results of other observations
may be unpredictable but they may help then to foresee
the results of further observations. Every observation
involves some speciac action on the part of the observer—one clearly acts di6eren. tly depending on whether
one wishes to observe the velocity or the color of an
object. This action together with the time at which it
is performed will be characterized by a label a, the
outcome or result of the observation will be represented
by r(n) or r . This will stand for a set of numbers. In
ordinary language an "observation" yields a qualita-
tive, a "measurement, " a numerical result; following
quantum-mechanical practice we use these words as
synonyms. When we spoke, in the last section, about
correlations between observations, we meant the act
of observation, together with its results. Naturally, the
correlations are correlations of results, but they depend
on the action of the observation which determines "the
quantity" which we observe. Let us mention a few
examples of "observables. " In the classical theory of
point particles the observables are the positions and
velocities of the particles at given times. Classical
electrodynamics adds to these the electric and magnetic
Geld strengths at all space —time points. The observables
in elementary quantum mechanics are represented by
self-adjoint operators. It should be noted, though, that
self-adjoint operators can not be considered ipso facto
to correspond to observables, It seems likely that only a
small fraction of all self-adjoint operators can be
"measured. "This fact will have important bearings on
our later considerations. The point is that in order to
call something an observable, we must know the acts
necessary for the observation. These are surely not
known for an arbitrary self-adjoint operator. In fact,
it is one of the conceptual weaknesses of quantum
mechanics that the prescriptions for the acts which
lead to the measurement of any operator are not inte-
grated into the theory. This applies, in our opinion,
also to the concepts of quantum 6eld theory. However,
this weakness of the conceptual structure of quantum
mechanics will have, interestingly enough, little e8ect
on our later considerations.

2.3. The Laws of Nature

The general question which one may pose, and the
answer to which should be given by the laws of nature,
is as follows: consider a set of measurements n, P, ~ ~, e

together with their results r, rp, ~ ~ ., r,. We recall that
the symbols n, P, ~ ~ ~ specify not only the quantity
which was measured, i.e., the action which constitutes
the measurement, but also the time thereof. One then
asks for the probability that another set of measure-
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ments g, g, ~ ~, v give the results rr, r„, ~ ~, r„T.his
probability will be denoted by

II(n, r; P, rp', ~ ~ ~, e, r,
~ f, rr, g, r„; ~ .'; v, r„). (2.1)

I.et us observe that the expression (2.1) is clearly
symmetric with respect to interchange of the variable
pairs before the bar, and with respect to a similar inter-
change of the variable pairs after the ba,r. As a rule,
one arranges the observations a, P, ~ ~ ~, e and f', g, ~ ~,
v in a time-ordered series so that the action necessary
for carrying out the measurement 0. precedes all other
measurements before the bar, and v succeeds all other
measurements after the bar. Also, the most interesting
and most important assertions given by the function II
are those in which all the measurements before the
bar precede the measurements after the bar. For values
of the arguments of this character the function II
gives the probabilities of the outcomes of measure-
ments which succeed the measurements the results of
which it presupposes. However, as has been emphasized
by Watanabe, "the theories are used not only for such
"predictions" but also for "retrodictions" in which one
asks what the properties of a system were before any
observation was undertaken thereon. It is most con-
venient for us not to make any assumption on the time
ordering of the measurements n, ~ ~, e, f, , v,

' those
after the bar may even be interspersed between those
before the "premiss" measurements, i.e., those before
the bar.

The II are expressions for the correlations between
results of observations. They constitute the content of
the laws of nature, or of a theory. However, as a rule,
the laws of nature are not formulated directly by means
of the functions II. In fact it usually requires much
mathematical skill to obtain the value of II even for a
relatively simple set of its variables. II is surely a very
complicated function of its variables and we have the
belief and conviction that the laws of nature can be
given in a simple and aesthetically appealing form. This
form is then, also, cryptic and gives II very indirectly.
In fact, one regards as simple and aesthetically ap-
pealing those forms of the laws of nature in which the
validity of the invariances is established most easily.
Surely, the II function does not satisfy this requirement.
The essential assertions of the laws of nature are, how-
ever, expressions for the probabilities (which may
amount to certainties) denoted by the II of (2.1). By
using the II function we can give a formulation of in-
variances, directly in terms of observations. Such a
formulation is attractive since we 4o not yet fully
understand all laws of nature and also because those
laws of nature that we do understand are formulated,
most simply, in terms of notions which are often radi-
cally different for different laws.

The probabilities of observations for which a theory

'0 S. Watanabe, Rev. Mod. Phys. 2V, 179 (1955}.

can give a de6nite value depend, naturally, on the
theory. Thus gravitational theory will not permit the
calculation of the value of II if the observations i,
p, ~ ~ ~, v relate to electrically charged bodies. In other
words, the definition domain of II is, as far as the
"variables" n, P, ~ ~ ~, e, f, rj, ~ ~ ~, v are concerned,
different for different theories. The discussion of the
conceptual foundations of quantum mechanics taught
us also that observations, which are possible by them-
selves, may be incompatible —this is not surprising if
we recall that they represent actions undertaken at
definite times. This gives a fundamental restriction on
the definition domain of II as far as the "variables" u,
~ ~, v are concerned. If these variables are indeed
dined as actions, these restrictions should follow
from their defining description. There may be, how-
ever, other restrictions on the definition domain of II
in any theory. A very common such restriction is ex-
pressed by the statement that without additional sta-
tistical information the results of the observations
a, P, ~ ~, e may not suffice to characterize the physical
situation su%ciently to give probabilities for the out-
comes of i', g, ~ ~, p. A familiar example of this obtains
in classical mechanics if n, P, ~ ~, e are position measure-
ments, the i, g, ~ ~, r simultaneous velocity measure-
ments. This example shows particularly clearly how
dependent even the definition domain of II is on the
theory the results of which it expresses. The action
which classical theory describes as a position or a
velocity measurement is surely very different from the
action which quantum mechanics would regard as such
a measurement.

It may be useful to give an example of a II function.
In the classical theory of point particles the observables
n, P, ~ ~ ~ are the coordinates and velocity components
of the particles at definite times. The II function is
dehned in the case of an isolated system of e point
particles if there are, before the bar, 6e independent
observations. The value of the II function will be 1 if
r~ is indeed the value of the coordinate or velocity
component i' which it assumes for the orbit deffned by
the data before the bar, and if the same is true for r,
with respect to g, etc. Otherwise, II will be zero.

There is a set of identities which the probability
function II satisfies which must be valid in any theory
because they follow from its definition. Thus, if g is
performed later than i, the probability that the out-
come of.g be r~ aed the outcome of g be rr is equal to
the product of the probability that the outcome of f
be r~ and of the conditional probability that, given the
outcome rr of l', the outcome of g be r„:

II(n, r; ~ ~ ~; e, r,
~

l', rr, g, r„) = II(n, r; . ; e, r,
~ i, rr)

XII(n, r; ~ ~ ~; e, r, ; f, rr ) g, r,). (2.2)

In a similar way, all II can be expressed in terms of II
which ask only for the probability of the outcome of a
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single observation. We also have, naturally

+II(c«, r; ~ ~ ~; «, r,
~ t, r) = 1, (2.3)

where the summation over r has to be extended over
all possible results of the measurement of t'. This ex-
presses the fact that the measurement of f will surely
give some result. A similar equation can be postulated
for the more general II of (2.1)—it also follows from
(2.2) and (2.3). Naturally, all II are positive or zero.

Classical theory presupposes, in addition to (2.2)
and (2.3), that

II( c,«r; ~ ~ ~; e, r,
~ g, r )«

=211(~" " ' "I& rr ~ ").
0'3'

This expresses the assumption that the measurement

f does not affect the system and that, hence, g will give
any result r, with the same probability no matter
whether the measurement f was undertaken or not.
Equation (2.4) is not generally valid in quantum
theory and presupposes, at any rate, an idealized type
of noninterfering measurement.

The term "measurement" needs some further elucida-
tion. Clearly, it is an integral part of the theory, and
different theories conceive different observations as
possible. The theory should provide a prescription in
common language how its measurements are to be
carried out. This however, is not done, as a rule, and the
actions needed to carry out the measurements are given
only tacitly and, at least in quantum mechanics, are not
very definite. Usually, the same measurement can be
carried out in several different ways (e.g., with meas-
uring rods or interferometrically) and the implication
is that it is somehow known which of these ways are
valid and equivalent. The symbols a, P, ~ ~ ~ stand,
therefore, for equivalence classes of measurements.

2.4. Invariance Transformations

The invariance properties of the laws of nature have
played a role in the thinking of the earliest physicists
even though their signi6cance became fully apparent
only early in the present century. It is surprising,
therefore, that there is no generally accepted definition
of an invariance principle and one can, in fact, dis-
tinguish two schools of thought. According to the first
opinion, only those principles are generally valid which
postulate the equivalence of reference frames which
can physically be changed into each other. (A coordi-
nate system can be rotated or set into motion. ) The
second view does not de6ne the concept of physical
invariance so rigidly but accepts all transformations
which leave the known laws of nature invariant and
the simplicity of which suggests their universal validity.
Th difference between the two points of view is partly
semantic but not entirely so because the adherents of
the first point of view believe that only equivalences
of reference frames are generally valid principles.

We begin with a few definitions and observations
which will introduce the discussion of both points of
view. Since there is a definite, though probably infinite,
set of observations, it is natural to consider the one-to-
one mappings (n+-+n, P~P, ~ ~ ) of this set upon itself.
As all one-to-one mappings, these mappings form a
group, the unit element of the group being the mapping
of every observation on itself. This group, which may
be called the group of all transformations, has little
interest in itself. However, it does contain a subgroup,
the subgroup of all invariance transformations, which
is the main subject of the present article. Before pro-

, ceeding to the de6nition of this subgroup, we will
have to de6ne another subgroup which will serve us as
a stepping stone for dining the subgroup of invariance
transformations. The subgroup G in question contains
all those mappings n~u, P~P, ~ ~ ~ which leave the
probability function invariant:

Ii(c«, r~; P, rs, ~ ~ ~
& e, r, ) f, rr, g, r» ~ .,' v, r„)

=II(~, r; p, rp, ~ ', c, r, I f~ rr i «l r«i ' ' ' ' r " )

(2.5)

for all sets of observations o., P, ~ ~, «, f, g, ~ ~ ~, v.

The knowledge of the full group G would be almost
tantamount to the knowledge of the law of nature em-
bodied in II. Thus, in a causal theory, " every trans-
formation which changes a consistent set of observa-
tions into a consistent set of observations would be a
member of the group. Hence, the elements of G would
permit the determination of all sets of consistent data
from one such set. The situation is similar in noncausal
theories. Hence, if we want the invariance postulates
to have greater generality than the law of nature em-
bodied in H and thus to provide us with a structure of
physical theories, they can not contain all the trans-
formations of G. The choice then can be made on the
basis of one of the principles given at the beginning of
this section.

If our knowledge of the laws of nature were complete,
the group of invariance transformations might well
coincide with the group G. At the same time, however,
the group G would have lost the importance which we
now attach to invariance transformations. At present,
we regard invariance transformations as superlaws
which we expect to hold not only for those laws of
nature which we have come to understand but also
for all others. Our knowledge of the laws of nature
and hence of the II function is limited.

Z.4a. Inmriance Transformations which Correspond to

Transformations bet«ceen Equil'tent Reference Frames

The transformations of (2.5) are "active" in that
the system on which the measurements n, P, ~ ~, p are
made is in general diGerent from the system on which

"We use causal in the sense of completely deterministic.
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the measurements n, p, ~ ~, r are undertaken. On the
other hand, all the observations which appear in (2.5)
are observations of the same observer, using one definite
language to characterize his observations; the symbols
a, P, ~ ~, n, P, ~ ~ ~ are all symbols in this language.
Passive transformations, on the other hand, describe
the same object as it appears to different observers;
they characterize the same observation by diferent
symbols. Hence, a passive transformation is, essentially,
the translation of the language of one observer into
that of another observer.

We shall be interested only in the translation of the
languages of "equivalent observers" into each other;
the relation of such observers can be derived by means
of active transformations which satisfy (2.5) . For some
of the transformations o.~n, p~p, ~ ~ ~ it is possible
to imagine a second observer who is in the same rela-
tion to the measurements K, P, ~ ~ ~ as is the original
observer to the measurements u, P, ~ ~ . This is possible,
for instance, if a, P, ~ ~ ~ represent the same actions as

a, p, ~ ~, except that they are carried out a period
later. In this case the second observer will differ from
the first one only by his clock being late (showing an
earlier time) with respect to that of the 6rst observer.
However, the relation of the two observers does not
have to be quite as simple. It is necessary only that the
transformation n~n, p~p, ~ ~ ~ satisfy (2.5) and that
one should feel satisfied that there couM be a second
observer for whom the measurements n, P, ~ ~ ~ (or
measurements which are equivalent to these in the
sense described at the end of the Sec. 2.5) play the
sa.me role as do n, p, ~ ~ ~ for the first observer. It is
this last condition which singles out invariance trans-
formations from all transformations which satisfy (2.5) .

If the second observer uses the same symbols n,
p, ~ ~ ~ to specify measurements which are in the same
relation to him as the first observer uses for similar
measurements, the II function which he will establish
will be identical with the II function of the first ob-
server. This is simply a restatement of (2.5) . However,
the object for which his measurements n, P, ~ ~ ~ yield
the results r, rp,

~ ~ ~ will not be the same as the object
for which the erst observer's measurements a, p, ~ ~ ~

gave these results; it will only be in the same relation
to him. One says that the two objects are subjectively
the same for the two observers. On the contrary, the
object which yields the results r, rp, ~ ~ ~ for the meas-
urements which the second observer calls n, p,
would yield these results for the measurements a,
P, ~ ~ ~ of the first observer: for objectively the same
system, subjectively different observations of the two
observers yield the same result. Note that unless +~0.,
p~p, ~ ~ ~ satisfies (2.5) a relation between the two
observers as described is not possible. The correspond-
ence between n and a, p and p is then the translation
we spoke of: the quantity to which the first observer
attributes the symbol a is called 0. by the second ob-
server. The translation may be easy to establish, as is

for instance the translation of the observables of the
classical mechanics of point particles, i.e., of the co-
ordinates and velocity components of the particles at
definite times. It may be quite dificult to find, even
if one has an abstract proof of its existence, as it often
is in quantum mechanics.

The usual description of a passive transformation
starts with different "reference frames. " A reference
frame, in this context, is an observer equipped with

some apparatus or measuring devices. It is assumed
that the apparatus enables the observer to carry out
all possible measurements. He can therefore perform
also the measurements which another observer can
carry out, if not precisely in the same, then at least in
an equivalent way. Such equivalent measurements
were discussed already at the end of Sec. 2,3. These
measurements yield, on the same object, the same
results with the same probabilities as those of the first
observer, but the second observer attributes another
name to them. This again leads us to the problem of
translating the measurements of the two observers
into each other.

Actually, most reference frames which one calls
equivalent do not exist in the sense of having an ob-
server and some apparatus associated with it. The
equivalence of these "frames of reference" expresses
only the conviction that if such apparatus were made,
it could be associated with an observer and brought
into a condition in which they would form a reference
frame of the nature postulated.

We believe, at present, that all equivalent reference
frames can be obtained by proper inhomogeneous
Lorentz transformations from one of them. CI' con-

jugation can hardly be applied to macroscopic objects,
not to mention the observer. The same applies to time
inversion (reversal of the direction of motion). The
time inverse of the state of a simple system, such as a
stable elementary particle, can be obtained relatively
easily. In fact in most cases it is equally easy to prepare
the state and its time inverse. For macroscopic objects,
or more generally objects that we cannot prepare in
microscopically de6nite states, this is practically im-

possible. The reasons for this are discussed in the sta-
tistical theory of thermodynamics and we do not wish

to consider them here. Time inversion cannot be inter-
preted as generated by the equivalence of two reference
frames since it is even "more impossible" to change
physically a reference frame into its time inverse.

2Ab. More General Inoariance Transforrnations

As was mentioned before, our knowledge of the laws
of nature and of the II function is limited. It is for this
reason that we require of an invariance transformation
not only that it leave the known laws of nature in-

variant, but also that it be simple so as to give us the
conviction of its general validity. We do not believe
in the universality of complicated invariance trans-
formations just as we do not believe in the validity of
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complicated laws of nature. Let us take as an example
an isolated system which consists of n point particles
that attract each other according to Newton's law of
gravitation. Ke can easily find mappings of one solu-
tion to Newton's equations into other solutions such
that (2.5) is satisfied. These mappings are however,
in general, complicated and not universally valid in-
variance transformations. Somehow we must define
the subgroup of invariance transformations, which is
contained in the group G by applying simplicity re-
quirements. A very logical such requirement is the one
which was introduced in Sec. 2.4a. The limitation that
it must be possible to interpret an invariance trans-
formation as generated by the equivalence of two refer-
ence frames is, however, very severe and seems to
restrict the group of invariance transformations to the
proper inhomogeneous Lorentz transformations.

The supporters of the second point of view men-
tioned in the introduction to this section argue that
the restrictions imposed in Sec. 2.4a are too severe and
must be replaced by more general requirements of
simplicity. They point out that one has transformations,
such as CI'T, CP conjugation, and time inversion
which satisfy (2.5) and which furthermore have a
convincing simplicity. "Such transformations ought to
be considered to be invariance transformations although
they do not satisfy the:limitations discussed in Sec.
2.4a. The group of more general invariance transforma-
tions, in the validity of which tb.e supporters of the
second school of thought believe, is not sharply defined.
This group is contained in the group of all transforma-
tions that satisfy (2.5), and it contains as a subgroup
the group of invariances de6ned in Sec. 2.4a. How
large this more general group of invariance transforma-
tions is depends, however, on our judgment as-to which
transformations that satisfy (2.5) can be expected to
have general validity.

We wish to add several remarks which apply to all
invariance transformations discussed in Sec. 2.4. Our
first remark is that invariance principles, as a rule,
cannot be tested by the experimental veri6cation of
(2.5) . It is quite unlikely that the apparatus necessary
for carrying out the measurements a, p, ~ ~ actually
exists either as apparatus of the second observer (who
would call these measurements n, P, ~ ~ ~ ) or as ap-
paratus of the Grst observer. Even if this were the
case, there may be no system in existence for which
the measurements u, P, ~ ~ ~ would give the results
r, rp, ~ ~ . Hence, as a rule, our belief in the validity
of an invariance transformation is derived by its con-
sistency with the correlations between observations
provided by theories or laws of nature. Laws of nature
give us the conviction that certain correlations between
observations would exist if these observations were

"It should be mentioned, though, that recent experiments of
Christenson et al. (Ref. 34) have at least cast serious doubt on
the validity of CI' invariance.

made. Hence, the validity of a, relation such as (2.5)
can be derived on the basis of a law of nature even if it
cannot be, or has not been, derived by direct observa-
tion. Such a derivation is what is meant by the "con-
sistency" between invariance principle and law of
nature. Just as the laws of nature, their invariance
principles do not express only actual facts, but also
convictions concerning events which actually could be
brought about. Because of their greater generality,
and for some other not entirely clear reasons, we have
stronger conddence in the validity of invariance prin-
ciples than in that of the laws of nature the consistency
with which is their basis. They do seem to have greater
permanence than the latter. This together with the
fact that invariance transformations must be valid for
all laws of nature is the reason for our formulating
these principles directly in terms of observations rather
than in terms of the derived concepts of any theory.

Our second remark, which has actually been made
before, is that we think of measurement, s which are
concrete and operationally given. Hence, for instance,
the replacement of all quantum-mechanical observables

Q by U 'QU (where U is unitary) is acceptable only
as a member of the group G if the measurement of
U 'QU is operationally given, at least in terms of the
measurement of Q.

We observe next that the possibility of testing the
validity of a theory, i.e., the II function furnished by
it, already implies some minimum of invariance.
Otherwise, if every set of observations could be carried
out only once, it wouM not be possible to infer that a
particular result of an observation is a necessary con-
sequence of having obtained certain definite results for
other observations. The necessity of the existence of
invariance transformations, at least for certain isolated
systems, is even more evident if a probabilistic theory
has to be tested because the mere establishment of a
probability law requires repeated observations.

The preceding remark amounts to a restatement of
the intimate connections between invariances and laws
of nature. If there were no invariances, it would not be
possible to formulate and verify laws of nature. One
Gnds this remark often in prefaces to elementary text-
books; our only addition to these remarks is that they
must be taken seriously.

Our last observation is somewhat less common. We
Qnd it remarkable that even though we have no catalog
of the possible measurements and of the laws of nature
and even though, at the present state of the theory,
we cannot decide whether a quantum-mechanical
quantity represented by a self-adjoint operator is
truly an observable, we have reason to believe that we
know the abstract group of invariances. This statement
amounts to the claim that we know something about
the structure of the laws of nature, and of the set of
possible observations, even though we do not know
the laws of nature themselves, nor the set of possible
observations.
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2.5. Dynamic Invariances

There exist invariances which seem to play an im-
portant role in physics" but which are not invariances
in the sense of Sec. 2.4. An example of such an in-
variance is the gauge invariance of electrodynamics.
Gauge transformations do not a6ect the observations
and correspond to the unit element of the group G.
Nevertheless one can derive the interaction between a
charge-carrying field aiid the electromagnetic Geld
from gauge invariance and simplicity requirements. A
similar remark applies to the invariance for general
coordinate transformations and Einstein's equations for
the gravitational field interacting, for instance, with a
scalar field. '4 Ke call invariances of the character of
the gauge invariance dynamic, those conforming to the
principles of Sec. 2.4, geometric. The last name is
derived from their analogy to the invariances of the
classical geometries as discussed by F. Klein in the
Erlartger Erogramm. "Incidentally, as was pointed out
by E. Cartan, "the manifolds of Riemannian geometry
do not, in general, allow any invariances in the sense
of Klein. The situation in the theory of general rela-
tivity is very similar: the invariance of the theory with
respect to general coordinate transformations can not
be interpreted as an invariance in the sense of Sec. 2.4.
This has been pointed out before by E. Cartan, ' and
even more emphatically by V. A. Fock.'~ It seems to
us that the invariance with respect to general coordi-
nate transformations must be interpreted as a dynamic
invariance. The present article is restricted to a dis-
cussion of geometric invariances.

3. THE ROLE OF THE CONCEPTS OF SECTION 2
IN CAUSAL THEORIES'8

The preceding section discusses the laws of nature
and their invariance transformations in general and
rather abstract terms. The present section inquires
how, and to what extent, classical (Newtonian) and
relativistic mechanics of point particles together with
their invariances conform with the principles which
we postulate. These princip1es characterized laws of

'3The writers are unaware of any comprehensive and up-to-
date review of the dynamic symmetry principles. Their relation
to the "geometric" principles, with which the present review
deals, is considered by E. P. Wigner, Proc, Natl. Acad. Sci. (U.S.)
51, 956 (1964); also Rend. Sclola Intern. Fis. Enrico Ferne',
Course Zg (Academic Press Inc. , New York, 1964); attd Les"Prix
Nobel, Stockholm, 1964.

'4 For another example of an interaction which is characterized
by a dynamic invariance see C. N. Yang and R. L. Mills, Phys.
Rev. 96, 191 (1954); see also, R. Utiyama, ibid 101, 1597 (195.6)

l~ F. Kleiny Math. Ann. 43, 63 (1893).
'6 E. Cartan, l'Enseignement Math. 20, 200 (1927).
'7V. Fock, The Theory of Space Time and Gravitation (Per-

gamon Press, Inc. , New York, 1959).The Introduction, pp. 206-
211, pp. 350-352, and pp. 367—376 are of special interest in con-
nection with the present article. See also, F.. Kretschmann, Ann.
Physik 53, 575 {1917);and W. Pauli, L&nsyk1opadie der Mathe-
matishen gissenschaften (B. G. Teubner, Berlin, 1921), Vol. 2,
No. 52.

'8 We use causal in the sense of completely deterministic.

nature as correlations between observations and in-
variance principles as correlations between these corre-
lations. The invariance principles are formulated,
however, directly in terms of observations independ-
ently of the terminology of any specific theory. A
formulation of invariance principles directly in terms
of the primitive concepts is desirable because their
main function, which starts only after their validity
has been suggested by their consistence with the known
laws of nature, is to serve as guides in our search
for as yet unknown laws of nature.

Our procedure is erst to find an expression for the
probability function II of (2.1) and then to show how
this conforms with the form (2.5) of the various in-
variance principles. Section 4 contains a discussion of
invariances in quantum theory.

3.1. Invariance Transformations in the Classical
Mechanics of Point Particles

3.1a. The II Fume&'oe and the CLassical Orbit

The observables of the classical mechanics of point
particles are the positions and velocity components of
the particles. If we consider the usual limiting case
of infinitely accurate observations, the II function of
(2.1) is easily determined. It will be defined if the input
observations, i.e., those before the bar, give 6e inde-
pendent data where e is the number of particles. The
values of all the positional and velocity components at a
given time are the most usual input variables; they
determine in classical mechanics an "orbit." By this
we mean the values of the positional and velocity co-
ordinates at all times. This can be represented by a
line in the 6n + 1 dimensional space which is spanned
by the aforementioned 6e quantities and the time co-
ordinate. Through every point of this space there is
one and only one "orbit, " i.e., line which obeys the
equations of motion.

As a function of the output variables, II is not a
function in the mathematical sense but a distribution
because it has 8-function character. The probability II
is 1 if integrated over regions of the output variables
which all contain the value given by the orbit; the inte-
gral is zero otherwise. The II function wou1d not have
8-function character if one used observations of finite
accuracy; its consideration for such observations would
raise interesting problems of principle. However, we
shall not be concerned with them.

It is easy to verify the relevant Eqs. (2.2), (2.3),
and (2.4) for the II function. In fact these equations,
together with the postulate of the possibility to ob-
serve the values of continuous variables, su%ce to
establish the most important properties of II as they
are discussed above. The situation which we encount-
ered, such as that II is a distribution with 8-function
character, is, therefore, common to all causal theories
in which the observables can assume a continuum of
values.
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3.1b. States SusPae

The II function defined in 3.1a is valid for an isolated
system, and is valid if the observations referred to
therein occur during its period of isolation. It is often
useful to imagine that a system remains isolated for-
ever, and has always been isolated. This assumes that
the system, with properties as given by the input
observations, could have been produced prior to any
time and can be kept from interacting with other
systems for any desired length of time. For such a
system, the II function obtained in Sec. 3.1a is valid
for any output variable; its value for an output variable
q, (t) or m;(t) is a 8 function of this variable which
vanishes for every q, v except the one obtained by pro-
longing the orbit in 6n + 1 dimensional space, given
by the input observations, to the time t. If t is unlimited
the II with the appropriate input variables is said to
describe a state sub specie aeternitatis or, more brieRy,
a state suspae. Such a state can be specified by the
properties of the system considered (the masses of its
constituents and the forces acting between these) and
the results of 6e independent input observations.

3.1c. Innariance Transformations

An invariance transformation will be, according to
the postulates of Sec. 2, a one-to-one mapping a&—&n,

P~P, ~ ~ ~ of the set of observations onto itself which
satisfies

(a) Eq (25)

and

(b) either the conditions of Sec. 2.4a or those of 2.4b.

Equation (2.5) means in our case that if there is an
orbit which is consistent with the results r for observa-
tion a, the result rp for observation P, and so on (in
which case the II is different from zero), then there is
also an orbit which is consistent with the result r for
n, the result rp for P, and so on. Hence, the mappings
which satisfy (2.5) induce a mapping of the set of
orbits onto itself and it is not dificult to see that every
one-to-one mapping of this set onto itself can be in-
duced by a transformation o.&-+a, P~P, ~ ~ ~ satisfying
(2 5)

Even though the last statement may be pretty evi-
dent, it may be useful to spell out its proof in detail
because the proof illustrates the necessity of the restric-
tion (b) on invariance transformations. Let us denote
a point in coordinate-velocity space (or in the equiva-
lent phase space) by x. This is then a vector with 6n
components; for an orbit x=x(t) will be a function of
time. Every orbit can be characterized by the vector
x=x(0), i.e., the positions and velocities of the par-
ticles at time 0. Let T be an arbitrary one-to-one
mapping of the 6e dimensional space onto itself. As a
rule, this will not be linear. T will also induce a one-to-

one mapping of orbits into orbits: it maps the orbit,
the coordinates and velocities of which at time 0 are
characterized by x (which "goes through the point x
at time 0) into the orbit which goes through the point
x'= Tx at time 0. Let us denote the coordinate-velocity
vector of the latter orbit at time t by x'(t). There is a
one-to-one mapping now from x(t) into x(0) =x, from
this to x'(0) =x'= Tx, and from this to x'(t). Hence,
there is also a one-to-one mapping T, which maps x(t)
into x'(t). It follows that if x(t) is an orbit, x'(t) =
T,x(t) is also an orbit; it will be called the transform
of the orbit x(t). The mappings just deRned will permit
the explicit definition of a mapping n&—&u, P+-&P, ~ ~ ~ of
the set of classical observables on itself which satisfies
(2.5).

Let us consider first an observable o, which is a func-
tion of the coordinates and velocities measured at
time t . Such an n can be the measurement of one of
the coordinates at time t, or of the total kinetic energy
at t, etc. It can be characterized by a function A (x)
of the coordinate-velocity vector x and the time t at
which it is measured. This o. will be mapped into an-
other measurement u which is also a measurement of
a function of the coordinates and velocities at time t;
it is the measurement of that function A' which as-
sumes for the transformed orbits the same values
which A assumes for the original orbits

A'(T,x) =A(x). (3.1)

Similarly, 8'(T,.x) =B(x) if p is a measurement at
time t', etc. Since T, is a one-to-one mapping, (3.1)
defines the function A' uniquely, and the other func-
tions B', ~ ~ ~ are defined in the same way. It is clear,
furthermore, that (2.5) will be satisRed for this mapping
n&+c7., P&-+P, ~ ~ ~: The-orbit x'(t) defined by the equa-
tions A'(x'(t ) )=r, 8'(x'(tp) )=rp, ~ ~ ~, is the trans-
form of the orbit x(t) defined by

A(x(t.))=r, 8( (tpx))=rp, ~ ~ ~ .

If x(t) is in conflict with one of the output equations
of (2.5), such as Z(x(tr) )= rr, the orbit x'(t) = T,(x(t) )
will be in conQict with the corresponding equation
Z'(x'(tr) )=rr. In this case both sides of (2.5) vanish.
If the two sides of Eq. (2.5) are integrated over rr,
r„, ~ ~, r„ the result will be 1 in both cases if the region
of integration includes the point rr ——Z(x(tr)),
r„=lV(x(t„)) because this is the same point for which

rr Z'(x'(tr) ),——~ ~, r, = l(P(xt„) ) is also valid.
We yet have to define the maps a of observables

which involve measurements at more than one time
t~, t2, ~ ~ ~ . An observation of this nature can be cha, r-
acterized by a function A(xi, x&, ~ ~ ) of several co-
ordinate-velocity vectors and the times t&, t&, ~ ~ ~ to
which these refer. An observable of this nature is, for
instance, the product of the kinetic energies at times
t& and t2. Actually, it is neither customary nor neces-
sary to consider observables of this nature. However,
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the map a of such an observable ought to be given
for the sake of completeness: it is characterized by a
function A'(xi, x» ~ ~ ) and the same times ti, t»
which characterize o,. The function A' is defined by

A'(T&,xi, T„x» ~ ~ ) =A(xi, x» ~ ~ ). (3.1a)

It is evident that (2.5) is valid also if its variables
a, P, ~ are of the more general nature now considered.
It follows that the mapping +~ex, P+-+P, ~" described
leaves the probability function II invariant and is an
element of the group G, and this is true for every one-
to-one mapping T of the 6n dimensional space of the
vectors x upon itself.

The fact that the knowledge of all the transformations
which satisfy (2.5), together with the knowledge of a
single orbit, permits the full determination of all the
orbits, clearly indicates that the condition (a) by itself
would define too broad a class of transformations 0.+-+a,

P~P, ~ ~ as invariance transformations. As the pre-
ceding discussion shows, these transformations also
depend on the interaction between the particles and
since we do not believe we know the exact nature of
these interactions, we can not truly specify them. The
real principles of invariance will concern transforma-
tions of such a nature that they preserve (2.5) for all
forms of the interaction which we consider conceivable.

3.1d. The I'assize View of Invariance Transformations
in Classical 3fechanics

We adopt in this section the point of view of 2.4a,
according to which a transformation n++o7., P+-+P, ~ ~ ~ is-
an invariance transformation only if the observations
a, tt, ~ ~ ~ can be in the same relation to an observer as
are &z, P, ~ to a second one.

Let us consider first position measurements. If 0. is
such a measurement, u is also a position measurement
from the point of view of the second observer. Since
"position at a time" for one observer has a similar
meaning for all observers, it follows that a is a position
measurement if a is such a measurement.

Let us now consider two states, P and $, the first of
which is in the same relation to the first observer as @
is to the second. In classical theory we assume that the
relative configuration of the particles, i.e., their distances
from each other at a given time, are measurable and do
not depend on the observer If a configuratio. n is assumed
only once in the course of the history of p, this must be
true also for @ with respect to the same relative con-
figuration. The times at which this happens shall be
denoted by the first observer by to and t&. If the con-
figuration of g were different at times t+tp from that
of p at t+tp, . this again would constitute a difference
independent of the observer because the time intervals
between observations as between any two events, are in-
dependent of the observer in classical theory It follows.
then that the configurations given by P and by $, at
times t+tp and t+tp, respectively, are identical.

If two configurations are identical, they can be
transformed into each other by an Euclidean trans-
formation, that is a rotation followed by a displace-
ment, and possibly by an inversion. This is a geometrical
theorem. However, if we postulate the existence of at
least four particles, the inversion must be excluded
because the right or -left han-ded character of a configura
tion is also the same for all observers. Hence, if n is the
measurement of a position coordinate at time t, a is
also a measurement of a position coordinate, but at
time t—tp+t'p and in a coordinate system which is
obtained from the first one by a Euclidean transforma-
tion. This transformation could depend on time but if
the first coordinate system is an inertial one, i.e., if
Newton's equations are valid therein with the forces
~anishing at very large distances, the transformation
u~n, P~P, ~ ~ ~ will satisfy (2.5) only if the displace-
ment of the two coordinate systems is a linear function
of time. Such a transformation can indeed be considered
an invariance even in the more restricted sense of
2.4a because one can well imagine an observer to have
been put into uniform motion, even into a uniform
motion at very high velocity.

The preceding argument gives only the transforma-
tion 0.+-+a if 0. is a position measurement and if one of
the observers uses an inertial frame for measuring
positions. For these measurements 0.+-+a is a Galilei
transformation. Since, however, the velocities can be ob-

tuined from the positions by differentiation, the restric-
tion to position measurements can be dropped. Thus
the postulates given in 2.4a reduce the multitude of
transformations which satisfy (2.5) to the relatively
small set of the proper Galilei transformations. The
concrete assumptions which were made in the spirit of
2.4a were set in italics.

The preceding discussion has yet to be completed
in an important way. The conditions which we obtained
for a transformation to be an invariance transformation
are only necessary ones inasmuch as they were shown
only to follow from the additional conditions of 2.4a.
In order to achieve invariance for Galilei transforma-
tions we must add the condition that the mapping of
observations into observations, as defined by a Galilei
transformation, belongs to the group G, i.e, satisfies
(2.5). It is necessary, therefore, to admit within the
framework mjI, =F& of Newtonian theory only such
forces Fp which lead to II satisfying (2.5) for Galilei
transformations.

It follows from the discussion in 3.1a that II will be
invariant under Galilei transformations if the set of
orbits in 6n+1 dimensional space is invariant under
these transformations and this will be true if it is true
for the equations of motion. Since the whole orbit is
determined by the positions and velocities of all the
particles at one instant of time, the expression for the
force FI,=ml, qI, can be considered to be a function of
these quantities. The postulate of invariance therefore
becomes the postulate that the FI, be Galilei covariant
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vector functions of the instantaneous positions and
velocities.

This still leaves a great freedom in the fundamental
equations of motion so that the Galilei invariance, as
here formulated, is not very restrictive. The general
expression for the force becomes

F,= Q(qn, fI'+4 gs )+Qt (qs; &q~') fsh

of the corners coincides

' g('), g( ) . , g(') .l,yk' pl'

36& 'jkl&ij 'k' l' + kj ' ~ kk' ~ k l'

g(s) l P g(b) lk J g(2) l l/

(3.6)

where
+(qs, &qh) g~t;+(q~'&qi') 4i'j, (3 2)

q,ki= q,I q, '& q,ki= q.k
—Q', (3.2a)

and the f, g, etc., are Galilei-invariant functions of the
coordinates and velocities. These are discussed some-
what more in detail below.

Two remarks may well be made at this point. First,
as a rule the forces are assumed to be quite simple
functions of the instantaneous positions and velocities.
In fact, in classical mechanics, the forces are usually
assumed to be derivable from a potential V

Fk= —gradk V, (3.3)

where V is a Galilei-invariant function of the position
coordinates only. V then can be expressed as a function
of some primitive invariants: the distances

~ qq
—q

rl between the particles and the oriented volumes of
the tetrahedra spanned by them

6s'B~= (q —q') ((qs —q') & (q~—q') ) (34)
Since the distances and oriented volumes are apso facto
invariant under a transition to a moving coordinate
system, the Galilei-invariant V becomes a time-inde-
pendent invariant under the Euclidean group, and the
Galilei invariance becomes, under the assumption (3.3),
a consequence of time displacement and Euclidean
invariance.

Naturally, the invariants rl and e;jkl are not inde-
pendent of each other. As to the rl, there are, naturally,
only 3m —6 independent distances between e particles.
The essential identities between the rl can be ex-
pressed' as the vanishing of the determinants of four-
by-four matrices u(')kl

det a(')kl=o,

al'&&& ——((qI,—q, ) ~ (q&
—q, ) )=-', (r, P+r,&'—rkl ),

(3.5)

' The identities in question have been discussed, for instance,
by G. Young and A, S. Householder, Psychometrika 3, 19 (1938).

i being an arbitrary one of the points and the indices k
and l assuming any four values for the four rows and
columns of the determinant. Similarly, the product of
any two oriented volumes can be expressed in terms of
scalar products and hence of distances between par-
ticles. The expression for the product is simplest if one

In particular, the squares of the volumes are all given
by (3.6) as functions of the distances, but (3.6) yields
indirectly also the product of any two oriented volumes.
Hence, V can be considered to be a linear function of
the oriented volumes (in fact, V is a linear function of
one oriented volume for those con6gurations for which
this volume does not vanish) . In order to avoid having
to deal with this exceptional case, and for reasons of
symmetry, we write

&=&t(t'rs, ~, r -t, )

+(Q I's"""(t12 ''' r —t, )ssi ) (3 7)

In this V~ and the V2k'"" depend on the distances
between the particles only. This is, of course, only an
analytic expression for the fact that the distances
between the particles determine the conlguration
except that they do not distinguish it from its mirror
image.

Let us observe that the conservation laws of linear
momentum, energy, and angular momentum follow
from (3.7) Land (3.3) $ by direct calculation. So does
also the uniform motion of the center of mass. They do
not follow from Eq. (3.2), and therefore they do not
follow from the invariance with respect to Galilei
transformations. The connection between invariances
and conservation laws is a property of Lagrange's
equations rather than of classical mechanics. "A further
illustration of this fact is provided, for instance, by

'0 In classical mechanics, the conservation laws do not follow
from the invariance principles and Newton's equations of motion,
but from the invariance principles and Lagrange's equations.
This has been emphasized repeatedly, for instance by the last one
of the present authors PProgr. Theoret. Phys. (Kyoto) 11, 437
(1954)J. Dr. E. Guth kindly acquainted us with his study of the
history of the connection between conservation laws and the
invariance of the Lagrangian. Apparently, the first one to notice
the connection (in 1842) was C. G. J. Jacobi (Vorleslngen uber
Dyeamik, Werke, Supplementband, Berlin, 1884) who derived
the conservation laws for linear and angular momentum from the
Euclidean invariance of the Lagrangian. i. R. Schutz LGott.
Nachr. (1897), p. 110$ who, incidentally, did not seem to know
Jacobi's considerations, derived the energy principle in a similar
fashion, The next important paper is that of G. Hamel, Z. Math.
Physik 50, 1 (1904), who, again, was unaware of his predecessors.
The 6rst complete discussion of- the derivation of the ten inte-
grals of motion (corresponding to the ten infinitesimal elements of
the inhomogeneous Lorentz group) was given by G. Herglotz
LAnn. Physik 36, 493 (1911)g. F. Klein called attention to
Herglotz' work and encouraged F. Engel )Gott. Nachr. (1916),
p. 270 and (1917), p. 189]; E. Noether )ibid (1918), p. 235].;
and E. Bessel-Hagen /Math. Ann. 84, 258 (1921)g to further
explit these ideas. A more modern treatment of. the subject was
given by E, L. Hill, Rev. Mod. Phys. 23, 253 (1951).
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the equation of motion of a particle in a viscous medium.
The energy of such a particle is not conserved although
the equation of motion is invariant for time displace-
ments. In quantum theory the connection between in-
variances and conservation laws is much closer as we
shall see in Secs. 4 and S.

and
q;(t) ~—q, (t), q, (t)~—q;(t), (3.8)

It is well known, from experiments in other fields, that
at least the erst transformation is not a true invariance
transformation. " The two transformations (3.8) and
(3.8a), if they were valid, would significantly simplify
(3.2) .

It may be observed that (3.8a) is automatically valid,
if the forces can be derived from the velocity-inde-
pendent potential V of (3.3) and (3.7) . If, in addition,
(3.8) is a valid invariance transformation, then only
the first term on the right-hand side of (3.7) can be
nonzero and V becomes a function of the distances
alone. The same is true if one postulates that V has to
be invariant under permutations of the particles. The
more general equation (3.2) is also drastically simplified
if (3.8) and (3.8a) are valid invariance transformations.

One cannot but be impressed how assumptions
which have, apparently, little to do with invariance
principles, nevertheless have the validity of such prin-
ciples as a consequence. Thus the validity of the
Galilei invariance follows from the assumption that
the forces can be derived from a velocity-independent
potential, which is invariant under time displacements
and the Euclidean group. The same assumption
guaranteed the time-inversion invariance. Space-in-
version invariance (3.7) follows from the assumption
that the force exerted by particles on a particle k is
the sum of forces, each of which depends in a Galilei
invariant way on the position of only one particle, in
addition to the position of the particle k. The TCP

"We refer here, of course, to the considerations and experi-
ments of Ref. 8 which prove parity violation. A description of the
experiments which shows directly the violation of the reQection
invariance implied by (3.8) is given in Fig. 3 of the last author s
article in Rev. Mod. Phys. 29, 255 (1957).

3 le . The More Flexible Point of View of Ineariance
Transforrnations in Classical Mechanics

The more Qexible viewpoint of Sec. 2.4b can not be
reduced to basic principles as was that of 2.4a in the
preceding Sec. 3.1d. It is usually assumed that, in
addition to the proper Galilei transformations of 3.ld,
there are improper transformations which are also
invariances. Whether or not these are precise rules,
i.e., whether they satisfy (2.5) is a question of fact
which can not be decided by reasoning. The two
transformations in question are

theorem of quantum 6eld theories" is a well-known
example for the phenomenon discussed; the situation
is even more striking in classical theory.

The Lagrangian equations of motion are often con-
sidered to form the basis of classical mechanics. The
validity of the conservation laws is then a most re-
markable consequence of the Euclidean and time-dis-
placement invariance of the Lagrangian. We have not
based our considerations on the Lagrangian theory
since we wanted to avoid speci6c assumptions as much
as possible. The fundamental assumption of the clas-
sical mechanics of point particles is that the observables
are the positions and velocities of the particles, and the
causal nature of the theory. These are the properties
of the theory which underlie our analysis. It follows
from these assumptions that the second time deriva-
tives of the coordinates at any time t can be expressed
as functions of 6e independent variables. One can
choose for these the values and first time derivatives
of the coordinates, assumed at the same time t. Equa-
tion (3.2) then follows from Galilei invariance. Some
postulate of simplicity is necessary, however, to arrive
at (3.3) whence the remaining discussion and the con-
servation laws follow.

3.2. Relativistic Mechanics of Point Particles

3.Za. ObserM, bles

The input data of the relativistic mechanics of point
particles is the same as that of the nonrelativistic
theory: if e particles are present, 6e independent posi-
tion coordinates and velocity components are neces-
sary to obtain inferences for the values of these quan-
tities at other times. Furthermore, the theory is again
causal: its results can be given more concisely by char-
acterizing the orbits than by giving the II function
which has again 8-function character. However, whereas
in nonrelativistic theory a universal time could be used
to specify the position and velocity variables, this
would not be an appropriate characterization in rela-
tivistic theory. It is customary, rather, to introduce a
proper time r; for each of the points and give the orbits
parametrically, in terms of these proper times:

(3.9)

the component 0.=0, that is x;0, being the time. The
parametric description of the orbits (3.9) takes ac-
count of the fact that time and space play a much more
similar role in relativity theory than in classical me-
chanics. The proper time parameter 7 is so chosen that
it measures the Minkowski distance along the path of

O'The PCT theorem was 6rst recognized by G. Liiders, Kgl.
Danske Videnskab. Selskab, Mat. Fys. Medd. 28, 5 (1954). Its
signi6cance was further emphasized in W. Pauli s article in Eiels
Bohr and the Development of Physics (Pergamon Press, Inc. , New
York, 1955), p. 30. See also, J. Schwinger, Phys. Rev. 82, 914
{1951),and, for more modern treatments, R. Jost, Helv. Phys.
Acta 30, 409 (1957) and R. F. Streater and A. S. Wightman,
PCT, Spin and Statistics, and A/l That (W. A. Benjamin, Inc. ,
New York, 1964).
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the particle, i.e., we have

i (dx, /dr, )'=1, (3.10)

where lo ———l~ ———l2= —l3 ——1, and we assume that the
summation over the greek indices need not be indicated.

Naturally, the observables in the II function are the
same as in classical theory: the positions and velocities
at given times. In order to obtain these from the orbits
(3.9) it is necessary erst to solve the equation x;p(T ) = t

and substitute the v; obtained in this way into the
other x; (r;) and the dx,,/dr;. This is, of course, for a
particular observer more cumbersome than if the co-
ordinates were given directly in terms of the time co-
ordinate of the observer in question. However, the
translation of the orbits as observed in one coordinate
system into the language of another observer is much
facilitated by using the invariant description (3.9) of
the orbits. We shall need such translations since we
wish to trace the consequences of Lorentz invariance
on the possible equations of motion.

3.2b. Eqgations of Motion

The equations of motion which determine the orbits
can be given, just as in classical mechanics, by giving
the accelerations. It is in keeping with the parametric
description (3.9) of the orbits to give equations for the
second derivatives with respect to proper time, i.e.,
for d'x; (r;)/drys. These must then satisfy the condition
resulting from (3.10) .

l.(dx; /dr;) (d'x; /dr, s) =0. (3.11)

It must be possible to express the accelerations
d'x; (r;)/dr as functions of any quantities which
determine the orbit, i.e., as functions of any 6e inde-
pendent position and velocity components. In classical
theory, it was natural to choose the simultaneous posi-
tion and velocity components as these quantities. This
choice made it also easy to translate the equation of
motion from one coordinate system to another one, ob-
tained from it by a Galilei transformation. Incidentally,
the same "natural" choice had a great infiuence on the
type of equation, (3.3) or (3.7), which we considered
"simple. "

If the equations of motion of relativistic mechanics
were again given in the form in which the accelerations
are expressed in terms of positions and velocities of the
same time in some coordinate system, the verification
of the Lorentz invariance of these equations would now
be very dificult. Since "simultaneous" positions and
velocities are not simultaneous any more from the point
of view of a moving coordinate system, the verification
that the equations are valid in a moving coordinate
system would have to include the determination of the
positions and velocities which are simultaneous from
the point of view of another coordinate system, i.e.,
essentially the determination of the orbits. There are
only two ways out of this difhculty.

The first method is to use as characteristics of the
orbit when setting up the equations for d'x; (r;)/dr;s,

in addition to x; and dx; (rr)/dr;, the positions and
velocities which the other particles had when they
passed through the negative light cone of the point x, .
Since the light cone is a relativistically invariant con-
cept, these data can be transformed from one co-
ordinate system to another without solving the equa-
tions of motion. Equations for d'x; (r;)/drrs in terms
of the positions and velocities which the other particles
had when they passed through the negative light cone
of x, (r;) are said to use retarded potentials. "Instead,
one can also use advanced potentials, i.e., the positions
and velocities on the positive light cone of x;, or both. "'
The disadvantage of equations of this nature is that
they do not seem to permit the establishment of con-
servation laws. The only exception under this rule is a
variant of the theory in which the particles have to be
in contact to interact, but given the fact of a three-
dimensional space, such equations lead to no interac-
tion between point particles (as contrasted with fields),
because a crossing of the one-dimensional world lines
is inlnitely improbable in the four-dimensional space—
time.

The second type of easily translatable equations ex-
presses the second derivative d'x; (r,)/dr, s in terms of
integrals over the paths of the other particles. It uses
more quantities than necessary to characterize the
orbit quantities which are not independent of each
other. In this regard, they are similar to equations
which use both retarded and advanced potentials and,
similarly to them, they do not give a Cauchy problem
for the determination of the orbits but give only im-
plicit equations for them. If we assume that the force
due to several particles is the sum of the forces due to
these particles individually

d'x. rnt;, =QF,I, (r;). (3.12)

Fg. will be expressed in terms of x~e(r, ), dx,e(r,) /dr, ,
and x;tp(rz), dxttt(r&)/drs for essentially all rz, or at
least those rs for which xsp(rs) has a space-like relation
to x;e(r;). Equations of this nature are also easily
translatable, and we shall postulate that the Lorentz
invariance be immediately evident from the translation.
Before proceeding to examples for such equations, it is

"By eliminating the electromagnetic 6eld from the equations,
Sommerfeld obtained equations of motion of this type for a pair
of charged particles. These equations are manifestly invariant for
inhomogeneous Lorentz transformation but the conservation laws
are not satis6ed. The last statement is not surprising; one expects
the particles to radiate. See J.L. Synge, Proc. Roy. Soc. (London)
177, 11 (1941); also, "Classical Dynamics, " in Hamdbuch der
Physek, edited by S. Fliigge (Springer-Verlag, Berlin, 1960), Vol.
III/1, p. 11; and W. Pauli, "Relativistatstheorie, " in L&neyklo'
padhe der Mathematsshen Wessensehaften (B. G. Teubner, Berlin,
1921), Vol. 2, p. 645 (p. 92 of the English translation, Pergamon
Press, Inc., New York, 1959); A. Sommerfeld, Ann. Physik
Leipzig 33, 665 (1910);A. D. I'okker, Z. Physik 58, 386 (1929).

~"The interaction of charged particles was formulated in terms
of retarded and advanced potentials by J. A. Wheeler and R. P.
Feynman, Rev. Mod. Phys. 21, 425 (1949). The equations of
these authors correspond to (3.20) with p;;(p) =e;e;(d/dp')S(p').
See also J. W. Dettman and A. Schild, Phys. Rev. 95, 1059
(1954).
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well to restate that they are not unique in the sense
that equivalent equations, i.e., equations character-
izing the same orbits, can have different forms. This is
the consequence of the use of redundant quantities,
However, the Rexibility inherent in the many different
forms of equivalent equations permits the use of one,
the invariance of which can be easily demonstrated.

P~k~(rr) = drkFqk(g(X;P(rr) q Xer( Cr) i Xke(rk) p XkP( rk) ). '

(3.13)

It is a functional of the path xkp(rk); the dot denotes
differentiation with respect to the proper time. The
requirement that the Lorentz invariance of the equa-
tion of motion be immediately evident will be inter-
preted as the condition that not only the value of the
integral (3.13) give the same acceleration in different
I,orentz frames of reference but that this be true already
for the integrand. This means that the integrand of
(3.13) transforms as a vector under Lorentz trans-
formations.

If we adopt the narrower interpretation of Sec.
2.4a for invariance transformations, Fg, has to have
the properties of a vector only under proper Lorentz
transformations; its behavior under reRections and
time inversion becomes immaterial. The invariants
which can be formed from x;p(r, ), x;p(r;), xkp(rk),
Xkp(rk) beCOme

p'k= I
—t-(x'-(r*) —xk-(rk) )'I' (3 14a)

o,k ——t x, (r~) (x; (r,) xk (rk)), —(3.14b)

f';k=l.x; (r,)xk. (rk) (3.14c)

Note that p, k
——pk;, t,k f k;, but——a,k and ok, are different.

We shall henceforth omit the variables r, and rl, in ex-

pressions x, (r;) and xkp(rk). The "length" of the
vectors x; and xk is 1 according to (3.10) so that these
are not relevant invariants and no "oriented volume"
can be formed of the three displacement invariant
vectors x,—xj„i;, and x~. Hence, the general expression
for Fg, becomes

~deka (Xra Xka)f+Xrag+Xk JS+eapye (Xip Xkp) XiyXke Jq

(3.15)

where e is the antisymmetric tensor and f, g, ts, and j
are functions of the invariants p,k, f; ;k aankd ak;. Pre-
sumably, they vanish unless p;I, is real, i.e., the points
x; and xI, have a space-like relation. '4

"There exists a widely spread opinion that the interaction
between particles must be via "signals, " the velocity of which
does not exceed that of light if the theory is to be Lorentz in-
variant. That this opinion must be revised has also been argued
by P. Havas and J. Plebansky, Bull. Am. Phys. Soc, 5, 433
(1960l.

3.Zc. Irsvariarsce Trarssforrwatiorss, Corsservatiors Laws

The expression suggested in the preceding section
for the force exerted by particle k on particle i is of the
form

If we adopt the more Qexible point of view of Sec.
2.4b, we have to investigate the behavior of the quan-
tities x(r), x(r), x(r) under space and time reQections.
As to space reAections, we can con6ne our attention to
the change of the direction of all three space-like co-
ordinate axes because the other reQection operations
can be obtained from this by a succeeding proper
I.orentz transformation. We have, hence,

x; (r,)~t x; (r;), (3.16)

and can obtain by differentiation with respect to r;

x, (r;)~l x, (r,), x, (r;) +t i;—(r;). (3.16a)

Since l '=1, all invariants of (3.14) are unchanged
under space reQection.

In the case of time reliection, we have to change the
signs of all w because we wish to measure r along the
positive time axes. Hence, we have in this case

x; (r;)~ t x, ( —r,), — (3.17)

and by differentiation

x, (r;) +l.i; ( —r;), —x; (r;) + t x;-(—r;) —(3.17.a)

25 It has been pointed out recently that such a theory is not
possible within the framework of the canonical representation of
the Lorentz group. See D. G. Currie, T. F. Jordan, and E. C.
G. Sudershan, Rev. Mod. Phys. 35, 350 (1963); also D. G.
Currie, J. Math. Phys. 4, 1470 (1963); and J. T. Cannon and
T. F. Jordan, ibid 5, 299 (1964.); also H. Ekstsin, Cesssistemcy
of Relativistic Particle Theories (University d Aix-Marseille,
1964). These "no interaction" theorems apply to a Ha-
miltonian framework for relativistic mechanics which is due
to P. A. M. Dirac; see Rev. Mod. Phys. 21, 392 (1949). In this
framework Lorentz transformations are represented by canonical
transformations. The "no interaction" theorems can be cir-
cumvented if one is willing to give up the condition of the
existence of world lines; see L. H. Thomas, Rev. Mod. Phys. 17,
182 (1945); B. Bakamjian and L. H. Thomas, Phys. Rev. 92,
1300 (1953); L. L. Foldy, ibid. 122, 275 (1961).They can also
be circumvented by dropping the condition that position be a
canonical variable; see E. H, Kerner, J. Math. Phys. 6, 1218
(1965). See also, P. Havas, Rev. Mod. Phys. 36, 938 (1964).

For a more detailed discussion of the equation proposed in
Sec. 3.2C, see H. Van Dam and E. P. signer, Phys. Rev. 138,
B1576 (1965).

Naturally, the i,o must remain positive. In this case,
p,k(r) and t,k(r) go over into p,k( —r) and f';k( —r),
whereas the o.,k(r) go over into —a,k( —r).

The expression for the force (3.13) between two
particles is invariant under space reflections (Lorentz
transformations with determinant —1 which do not
reverse the direction of motion) provided j=0. This
follows from the fact that p k, i,k, a,k, and ok, do not
change under these transformations.

Under time inversion, the coeKcient of f in (3.15)
has the right sign. Since the og, change sign under time
inversion, fmust be an even function of the oak, whereas

g, h, and j must be odd functions of these invariants.
Since our purpose is merely to establish the possibility

of a relativistically invariant mechanics of point par-
ticles, "we shall not continue the discussion of (3.15)
in its full generality. Rather, we assume that only the
first term of (3.15) is present, i.e., that g= h=j=0. In
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order to assure the validity of the law of over-all con-
servation of linear momentum and energy for collision
processes, we further assume

Pg,.(r;, r)) = —P); (r)„r,), (3.18)

i.e., that the contributions to the force exerted by i on
k and by k on i, contributed during unit proper times,
are oppositely equal. "The law of over-all conservation
of linear momentum and energy is easily established
by noting that

dTs —m'

+CO +cc)

dr;Q dr), F,), (r,, r), ) =0
—CO —co

provided (3.18) is valid and provided the integrals
converge. The angular momentum law follows by a
similar direct calculation provided g = h =j=0. If one
further wishes to satisfy (3.11) so that the physical
signi6cance of the proper time, as given by (3.10), re-
mains unchanged, one obtains under rather general
assumptions

f=2f'uq (p a)+(&a&~~/'p a) p (pa) '(3 19)

in which q(p) is an arbitrary function of the space—
time distance p of (3.14a) and the prime denotes
differentiation with respect to p. Just as in classical
theory, under similar assumptions, the interaction con-
tains an arbitrary function of a single variable. Evi-
dently (3.19) is an even function of the o,), so tha, t the
equation of motion is time-inversion invariant.

The equation of motion becomes, with (3.19) and
dropping the last three terms of (3.15),

+(r')(r) e'(pa)/p I,) dr), . (3.20)

The invariants t';&, 0,&, p, ), are given by (3.14) as func-
tions of ~; and 7&. Equation (3.11) can be veri6ed by
transforming the expression x; x; by partial integration.

4. THE ROLE OF THE CONCEPTS OF SECTION 2
IN QUANTUM THEORY

4.1. Introduction

The observables of quantum theory correspond to
self-adjoint operators in Hilbert space. This gives the
set of observables a much more complicated structure
than they have in macroscopic theories, two examples
of which were considered in the preceding sections. The
theories considered in Sec. 3 are causal and if the results
of a certain number (6n in the examples considered) of

'6 Let us remark that many of the interesting considerations of
J. A. Qlheeler and R. P. Feynman apply also to the present equa-
tions of motion; see Rev. Mod. Phys. 1"I, 157 (1945).

observations is known, the results of all other observa-
tions are determined in principle. This is not so in
quantum theory; no matter how many observations
have been carried out on a system, the results of most
subsequent observations remain uncertain and subject
to probability laws. It follows that the manifold of
states suspae is much larger in quantum than in non-
quantum theories: quantum theory which started by
reducing the manifold of "allowed" states now has
multiplied them in6nite fold. However, it has also
introduced a structure into this manifold (the super-
position principle and the existence of a transition
probability between different states), which will play
a decisive role in our considerations.

It may be worthwhile to illustrate these points on a
somewhat schematic example. I.et us consider an NH3
molecule, the H atoms of which are somehow fixed in
space. These create a certain potential for the N atom
which has two minima, one on each side of the plane
through the three H atoms. In classical theory, there
are two states with the lowest possible energy; the N
atom may be at rest at either position of minimum.

Quantum mechanics postulates that the N atom
have a certain amount of "zero-point energy" and per-
form small vibrations around the equilibrium positions
in either state. However, this is far from the full story.
If the N atom is, originally at one side, it will slowly
"leak over" to the opposite side. At time t, it will
be with the probability cos2 t/2T on the original side,
with the probability sin'))/2T on the opposite side;
2~7 is the period of motion. Hence, starting with the
N atom on one side, one can obtain a continuum of
states in which it is with varying probabilities on both
sides. Furthermore, given an ensemble of identically
prepared NH3 molecules, each of the intermediate
states can be distinguished from the others, by an in-
stantaneous measurement in the Inost orthodox theory,
but even actually, by waiting 2m '—t and then ascer-
taining that the N atom is again with probability 1 on
the original side.

The states of the NH3 molecule obtained by the pas-
sage of time from the state in which the N atom was
originally on one side with its zero-point energy are not
the only states which correspond to the two classical
equilibrium states. There are also two stationary states,
in both of which the N atom is, and —since the states
are stationary —permanently remains, with equal prob-
abilities on both sides. The states considered before are
superpositions of the two stationary states, the ratio
of the coeKcients of superposition being exp i f/T.
Actually, the ratio of the coe%cients can be any com-
plex number, giving a manifold that can be character-
ized by two real parameters. Furthermore, as our ex-
ample shows, the complex phase of the superposition
parameter has in this case an important physical
signilcance. The states considered are not statistical
ensembles of different states; if so they would not all
show a definite property (being at one side of the plane
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of the H atoms) at certain times. In quantum me-
chanics, they are called pure states.

The preceding picture somewhat exaggerates the
increase in the number of the states from classical to
quantum theory by considering only the states of
lowest energy in both. Actually 6n real parameters are
needed to characterize the state of a classical system
of n particles whereas an infinity of such parameters
is needed to characterize the state of a quantum-
mechanical system, no matter what the number of
particles is. Furthermore, whereas there is no structure
in the space of the states of a classical system, one can
coordinate an infinity of states to any two states of a
quantum system: the superpositions of the two states
with varying coefhcients. Unfortunately from the point
of view of the phenomenological nature of the theory,
there is no general operational method to obtain the
superpositions in question, even if the methods to
prepare the individual states are knovrn.

It was mentioned before that the complex nature of
the quantum mechanical states is a consequence of the
complicated nature of the observations postulated by
quantum theory. In Sec. 2, we have described observa-
tions as actions. Since the observations are character-
ized by self-adjoint operators in Ekilbert space, it
follows that quantum mechanics attributes certain
actions, usually called measurements, at least to certain
self-adjoint operators. It must again be admitted that,
unfortunately from the point of view of the phenome-
nological nature of the theory, the correspondence
betvreen the actions necessary to carry out the measure-
ment, and the operator to which the measurement cor-
responds, is not spelled out. This is, in our opinion, a
serious conceptual weakness of the theory. It is not
even known to which operators actions can be at-
tributed, i.e., which operators are actually "meas-
urable. "There is a body of opinion according to which

only the components of the linear momentum and the
energy of individual particles is measurable and this
only for particles which are spatially separated from
all others. According to this view, the concept of a
precise position must also be derived from such mo-
mentum and energy measurements. Interestingly
enough, it is not necessary to specify, for our purposes,
the set of measurable operators. We shall postulate,
however, in most of the discussion, that the set of
measurable operators have the follovring properties.

(a) It permits the selection, usually called prepara-
tion of a reasonably large set of pure states. The
desired set vrill be specified later; vre shall define here
only the concept of a pure state.

Let us consider a set of measurements rr, p, ~ ~ ~ . If
these give the results r, rp,

~ ~,
II(rr, r; P, rp, ~ ~ ~

~ f, rr, g, r„; ~ ~ .) (4.1)

gives the probability for the results r~, r„~ ~ ~ of the
measurements t', q, ~ ~ ~ . For given rr, r, p, rs, ~ ~ ~ (4.1)
can be considered as a function of the output measure-

ments f, &t,
~ ~ ~ and their results rr, r„, ~ ~ . Let us as-

sume that the output measurements are all later than
the input measurements. Evidently then the selection
of the samples which gave the results r, rp, - ~ ~ for
the measurem. ents n, p, ~ ~ ~ creates an ensemble the
properties of which for later times are given by the II,
considered as a function of the output variables f, rr,

g, r„, ~ ~ .. This ensemble will be called a pure state if
(4.1), as a function of the output variables is identical
with

II(&«, r„; &r, r; P, rp., ~ ~ -
i t, rr, g, r„, ~ ~ .) (4.1a)

for all p and r„pr ovided p precedes in time all n, p, ~ ~ ~ .
In less technical language this means tha, t the selec-

tion rr, r; P, rs, ~ ~ ~ is so far reaching that it does not
matter with which state one started. Notice that a
similar relation exists also in macroscopic theories:
n, r; P, rs, ~ ~ ~ would be, in this case, 6e independent
observations. If these are given, any prior observation
on the system is redundant and does not yield additional
information concerning the future behavior.

Postulate (a) is not at all obvious. It is quite con-
ceivable that, no matter hovr many observations one
used for the selection of an ensemble, further observa-
tions, preceding the ones used for the selection, vrould
have produced an ensemble with even more closely
defined properties. Hence, (a) demands the possibility
of defining a state vrith a final accuracy on which no
further improvement is possible.

Postulate (a) has been questioned recently. 'r It has
been pointed out, for instance, that, as the wavelength
of a light quantum increases, its detection becomes in-

creasingly dificult. It may not be possible, therefore,
to ascertain that there is no light quantum present in
the system even though it may be possible to ascertain
that there is no quantum present with a wavelength
above X, where A is an arbitrary length. If this were the
case, no pure state could be prepared because the prop-
erties of a system could be specified increasingly pre-
cisely by making statements about light quanta of
increasing wavelengths.

It is not yet clear to what extent the reservations
concerning the possibility of preparing pure states are
valid, and at any rate, the theory of invariance in
quantum mechanics has not yet been worked out
without the use of the concept of pure states. We shall,
therefore, continue to use postulate (a). It is clear
that similar objections can be raised also against the
concept of isolated systems. There is, in fact, some con-
nection between the two types of objections because in
order to guarantee the absence of light of very long
wavelength, one must extend the control over very
large spatial regions.

In addition to demanding the existence of pure states,
vre postulate that a sufhcient variety of them can be
considered states suspae. This means that the ensemble

2& R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1964).
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which has been selected by the use of the experiments
n, P, ~ ~ ~ could have been selected by other experiments,
carried out prior to any given time.

(b) If a measurement can be carried out by an ob-
server, the same or an equivalent measurement can be
carried out by any other observer. This is the transla-
tion of the measurements and of their results between
different observers which was discussed already in
Sec. 2.

(c) If a measurement can be carried out by one ob-
server, subjectively identical measurements can be
carried out by all equivalent observers. This postulate
was also discussed in Sec. 2.

4.2. Observations and Decision Observations

It was mentioned before that quantum theory as-
sociates measurements with certain self-adjoint opera-
tors. We shall say, somewhat loosely, that one can
measure A and mean that there is a measurement as-
sociated with the operator A. One can think of the
measurement as bringing the system on which A is to
be measured into interaction with a suitable apparatus
which will somehow produce a measurement result;
the interaction will also aGect the system on which the
measurement is carried out. The operator A associated
with a measurement is so de6ned that its characteristic
values are the measurement results which the apparatus
may produce.

The apparatus used for measuring A and for meas-
uring a function of A, say A', is the same but if A' is
measured, the measurement result is called X' in those
events in which the result is called X is A is measured.
This makes it possible to replace any measurement by
a set of simple measurements. If the characteristic
values of A are X~, X2, ~ ~, one can form the functions
Pi(A), P2(A) . where p, (X) = 1 for 'A= X„it vanishes
if X is equal to one of the other characteristic values.
Hence the two statements: the measurement of p, (A)
gave the result 1, and the other, the measurement of A
gave the value A„are essentially synonymous. The
measurement of p, (A) decides whether the measure-
ment of A would have given the value ), )and that of
f(A) the value f(X,)j. One can, in the way indicated,
replace every measurement by a set of decision meas-
urements. Naturally, the results of these decision
measurements may not be independent of each other:
in the preceding case the measurement of one p, (A)
will give the value 1, the rest of them will give the
result 0.

The advantage of restricting ourselves to decision
observations is partly that we avoid unrealistic meas-
urements such as measurements with in6nite accuracy
in a continuous spectrum. These would lead us to states
outside Hilbert space. More importantly, the use of
decision observations frees us from the arbitrariness in-
herent in the labeling of outcomes of measurements. As
was mentioned before, the same action could have been

called a measurement of A or of f(A); if the same out-
come is labeled, respectively, X, or f(X ), where f may
be any real function. The operators p&(A), p2(A), ~ ~ ~

are, on the other hand, the same no matter whether we
started with A or f(A); they depend only on the es-
sential properties of the apparatus. Similarly, the out-
comes —4 for all but one of the p(A), and 1 for the
this one—do not reflect the arbitrariness of the original
labeling of the results.

The operators P, (A) are called projection operators
and are usually denoted by P with a suitable index.
They are real functions of self-adjoint operators—
hence themselves self-adjoint —their characteristic val-
ues are 0 and 1. Hence, they satisfy the equation P'=-
P and more generally P"=I'. Furthermore, 1—P is
also a projection operator, (1—P) 2=1 2P+P—'=1-
2P+P=1—P. If P= p, (A) decides whether the value
P, would have been the result of the measurement of
A, the operator 1—P decides whether the result would
have been diferent from ),. The projection operators
P&(A), p2(A), ~ ~ ~ commute because they are all func-
tions of the same operator A; in general, projection
operators need not commute.

4.3. The Heisenberg Picture

The time at which a measurement is carried out will
be added to the symbol of the measurement. Hence
(P, 3) is a decision observation carried out at time 3

Thus (P, t) is an actioN, whereas P is the operator
attributed to it. Let us consider measurements on iso-
lated systems. If (P, to) is a decision observation, then
it may be possible to devise another action, carried
out at time t, which gives the result 1 with the same
probability as (P, to) if carried out on the same sys-
tem. This should be valid for all isolated systems. The
second observation is then denoted by (P, t): it is
characterized by the same operator P which was used
to characterize the original measurement (P, to). A
drawback of this notation is that the same action as
associated with (P, to), but performed at time / is not
the action (P, t) . If this notation, the Heisenberg
picture, is used, practically the whole content of the
theory is contained in the correlation between the ob-
servations and the self-adjoint operators. The general
II functions will be given in the next section in terms
of the operators I' and the problem is, therefore, to
correlate these operators with observations. One ques-
tion of such a correlation concerns the operator which
represents the same measurement carried out at time t
which is represented by a given operator at time to.

The projection operators of trace 1 will play an im-
portant role in our discussion. Such operators project
onto a single direction in Hilbert space and may be
characterized uniquely by any vector pointing in that
direction. They may be characterized also by the set of
all vectors in that direction. Such a set of parallel
vectors np, where p is a unit vector and u an arbitrary
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complex number (WO) is called a roy and is denoted
by C. There is, therefore, a one-to-one correspondence
between rays and trace 1 projection operators, and we
shall label the trace 1 projection operators P+ by the
symbol 4 of the ray to which they correspond. We have

P.x=(e, x)~, (4.2)

where x is an arbitrary vector and p can be any unit
vector from the ray C because the right-hand side of
(4.2) remains unaltered if one substitutes ~P for p
with

I
~

I
=1. Equation (4.2), which may also be ex-

pressed as P+ p&&p*, ——shows that Pc, projects every
vector in the direction of the vectors in C. We shall
often use an abbreviated notation and write P for
the trace 1 operator associated with the ray which con-
tains P and P +„ for the operator associated with the
ray which contains g +g„.

Observations represented by (P@, t), in which P@ is
a trace 1 projection operator, will be called comPlete
decision obserl, tioes. The trace 1 operator P~ which
forms part of the representation of such a complete-
decision observation will be called a c-d operator. The
terms observable trace 1 projection operator and c-d
operator will be used as synonyms.

4.4. The II Function of Quantum Theory

The II function of quantum theory can be derived
from the usual postulate that if the state vector is P,
the probability of a positive result (i.e., the result +1)
for the measurement of the projection operator P~ is

(P, P~@) = (@, PPp) = (P~p, P~g) and that, if the
result is positive, the state of the system, after the
measurement, becomes the normalized P~p, i.e., it
becomes P,@(P~P, P&P) &. Similarly, if the result of
the measurement is negative (i.e., the result of the
measurement of P& is 0), the probability for which is

(Q, (1—P)g), the state vector becomes parallel to
(1—P)g. If, in the case of a positive result, a second
decision measurement is carried out subsequently, the
probability that it gives a positive result is

f Pg4 PgQ l (PIP&$, P2P&$)
P2 , , Pm

(Pig, Pig)' (Pig, »4) i (P~4, PA)

(4.3)

Hence, the probability that bo/h of them give a positive
result is the product of (4.3) and of the probability
that the first measurement gave a positive result, i.e.,
equal to (P2P&P, P2P,&) . For several successive decision
measurements P~, P2, ~ ~, P„, carried out in this order,
the probability of a positive result throughout is

(P„~ P2Pgh, P„~ PgP,@). (4 4)

Let us assume, 6rst, that the input measurements all
precede the output measurements, the former being
denoted by (P„ t ), ~ ~ ~, (P„ t,), the latter by (Pf, tr),
~ ~ ~, (P„, t„). Furthermore, these should be already

tsme-ordered, i.e., the labeling a, ~ ~ ., e, f, ~ ~, e should
correspond also to the time order. If some of the meas-
urements are carried out simultaneously, the corre-
sponding projection operators confute and their
order in (4.4) is immaterial. Then, the conditional
probability that if (P„ t ), ~ ~ ~, (P„ t,) gave a positive
result, (Pt, tr), ~ ~ ~, (P„, t„) will do likewise, becomes

(P ~ ~ ~ PtP ~ ~ .I' p P ~ ~ .PfP ~ ~ P p)

(P,".P.y, P, "P.y)

(P, P, ~ ~ P.Pt P„P„PrP, ~ P,P)

(g, P, P,P, P,p)

The right-hand side follows since the P are all self-

adj oint.
Let us assume that the positive outcome of the set

of measurements (P„ t ), ~ ~ ~, (P„ t,,) leads to a pure
state. Then, the input measurements completely deter-
mine the state and (4.5) will be independent of p.
Hence, both numerator and denominator can be re-
placed by a sum of similar expressions in which @ is
replaced by the members of a complete orthonormal
set. Then, both numerator and denominator become
the trace of the operator which appears therein and
we have (t &te &t,&tr&, ~ ~ ~ &t„),

IZ ((P., t.), . ~ ~, (P., t, ) I (P„ t,), ~ ~, (P„, «„) )
Tr (P ~ ~ ~ P,Pf ~ ~ P„P„~~ PfP, . ~ ~ P,)

Tr(P ~ ~ ~ PP ~ ~ ~ P)
T (O' 'Q-'Q-Q. ) T Q O'O'-'Q" '

~ - (o;.'e;.) T e'-e'-'

in which

Q; = P, ~ P, and Q,„g=P„Pf. (4.6a)

The last line of (4.6) is obtained by a cyclical inter-
change of the factors in the trace. The notation in
(4.6) differs from that of (2.1) inasmuch as the result
of the measurement is not speci6ed. For a decision
measurement, this shall be always 1 in the II function;
if the probability for the result 0 is desired, P will be
replaced by 1—P.

Formula (4.6) for one input measurement (P„ t )
and one output measurement (Pq, te) is

If (P„ t ) is not a complete decision this formula in-
cludes the assumption of equal a priori probabilities
for the eigenstates with eigenvalues 1 of P, ; the appro-
priate statistical matrix is P, (Tr P,) . Formula (4.6)
can also be derived under the condition of equal
a priori probability for the eigenstates with eigenvalue
1 of P„or, equivalently under the condition of equal
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a priori probability for all states With the latter condi-
tion (4.6) is also valid if the time order of the measure-
ments is opposite to that mentioned in (4.6). This
condition of equal a priori probability is also assumed
in the following, more general, expression for the II
function.

If the input measurements do not all precede the
output measurements, the expression for the II function
is somewhat more complicated. The numerator as
given by the second member of (4.6) remains the same,
except that the order of the erst set of factors is such
that earlier measurements, whether input or output,
precede later ones. The opposite is true for the second
set of factors. This gives the un-normalized probability
that all decision measurements —both input and out-
put —give a positive result. Denoting the denominator
by E, we have, therefore, for an arbitrary order of the
measurement times

II((P.,~-) " (P. ~.) I (P~~r) " (P-4))
=E 'Tr QtQ,

Q= T(P„~ PgP ~ ~ P ) (4.7a)

T being the time-ordering operator which arranges the
succeeding factors according to the times the corre-
sponding measurement has been carried out.

The denominator X is so determined that the sum
of II for all possible outcomes of the output measure-
ments be 1

I
cf. (2.3)j.The formal expression is

~= Z T Q(. ~ ~ ~ -)Q(. ~ ~ ~ -)t (47b)
0'gy ~ ~ ~ yo' y

All 0- assume the values &1 and if a 0. is —1 the corre-
sponding P in (4.7a) has to be replaced by 1—P. Thus

Q(~r, ",~.) = 2'(L2(& —~.)+~.P-j".
'(& &r)+ rP-f)P—." P.) (4 7c)

The quantum-mechanical equations for II are quite
on a par with the expressions for II discussed for the
classical theory of point particles. In that case, the ex-
pression for II could be given in terms of the orbits, in
the present case it is given in terms of the operators
(of the Heisenberg picture) which correspond to the
various possible observations. Concrete results can be
obtained in the classical theory of point particles only
if one determines the orbits by solving the equations of
motion: in the present case Heisenberg's equations for
the time dependence of the operators play a similar
role. However, detailed solutions of these equations
will not be needed for our discussion of the invariance
principles.

We wish to stress the importance of the time ordering
in (4.7a) and (4.7c). In quantum theory, every meas-
urement on a system the result of which can not be
foretold with certainty, perturbs the system. The order
in which measurements are performed is essential.
Hence in relativistic quantum theory certain conditions

must be satisfied for any two possible observations
(P„ t ) and (P&, ts) . We must require that P, and P&
can each be decomposed in projection operators I', =
gzP, z, P&=Q„P&„ in such a way that any (P,z, t )
is in the absolute past or absolute future of any (P», t&)
with which it does not commute. If (P,q, [ ) is in the
absolute past of (Pqq, is) then the actions (P,&„ t ) and
(Pq„, fp) must be restricted to a region of finite extension
in space.

Newton and Wigner" have constructed, in the theory
of a free relativistic particle with positive energy, self-
adjoint operators for the measurement whether the
position of the particle is, at a given time, within a
certain region. These are projection operators which
can be obtained from the operators of their localized
states by integrating the expression (4.2) over a finite
spatial domain with the p being the wave vector of a
state-localized at one point. However, the projection
operators obtained in this way do not commute if they
refer to diferent times even if the two regions have an
entirely space-like relation to each other. This leads us
to conclude that these operators can not represent ob-
servations which can be carried out instantaneously
within the regions considered. One can infer this also
from the nonrelativistic nature of these localized states.
In macroscopic theory all observations are compatible
and restrictions such as we discussed for quantum
theory do not exist.

Formula (4.7) has the remarkable property that the
right-hand side does not change if one changes the
times t, ~ ~ ., t„ t~, ~ ~, t„ in such a way that their order
remains the same. The observation (P„t ) is in this
sense equivalent to (P„t '), in which we must remem-
ber, however, that the action (P„t ') is, in general,
not the action (P„ t ) performed at t ' (Heisenberg
representation) .

4.5. Pure States and Trace 1 Projection Operators

I.et us consider again output measurements which
are all performed later than any of the input measure-
ments. The expression for the II function is then given
by (4.6). When deriving this formula, it was assumed
that the succession of input measurements (P„t ), ~ ~ ~,

(P„ t,), if they all give a positive result, renders the
results of later experiments independent of the original
state of the system. This means, phenomenologically,
that when considering the future behavior, outcomes
of observations made prior to $ are immaterial: the II
as a function of the output variables is independent of
these results. According to the definition of pure states
given in Sec. 4.1, this means that the succession of
positive results for (P„t„), ~ ~ ~, (P„ t, ) defines a
pure state.

We wish to show now that the positive result of the
succession of (P„t ), ~ ~ ~, (P„(,) is equivalent, as

's T. D. Nevrton and E. P. signer, Rev. Mod. Phys. 21, 400
(1949).
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far as later measurements are concerned, with the posi-
tive outcome of a single trace 1 decision measurement
(complete-decision measurement) . This means that the
state obtained by choosing the samples for which the
aforementioned observations gave a positive result,
could be chosen also on the basis of a single complete-
decision measurement. In ordinary parlance, the state
can be described by a wave function.

Clearly, a complete-decision measurement (P+, t)
does select a pure state: the probability for the positive
outcomes of the measurements (Pt, tt), ~ ~ ~, (P„, t„)
after a positive outcome for (Pq, t) is, according to
(4 6)

= (4, Q-t'Q. A) (4 8)
Tr Pg'

If the measurement (Po, t) is preceded by the measure-
ment (Po, t ) with a positive result, the probability for
a positive result of the same succession of output meas-
urements becomes

Tr (PoP~Q-t'Q tP~Po) (4, Q-t'Q t4)(@, Pod)

Tr PoPyPyPO (~tt, Pi!P)

(4.8a)

This is the same as the probability (4.8) obtained for
the case that only (Po, t) was observed to give a posi-
tive result. In order to obtain the right-hand side of
(4.8a), use was made of the invariance of the trace
under a cyclic interchange of the factors, of the equa-
tion Po'= Po, and of the general formula

performed prior to the measurements (P„ t ), ~ ~ ~,

(P„ t, ) does not alter the probability of a positive
outcome for (P@, t+) becomes, using (4.6),

Tr Q; )PyP~Q; Tr PyQ; tP~Pr, Q; Pe,
(4.10)

Tr Qin Qin Tr PeOin QinPe

or, by cyclically interchanging the factors in the traces,

Tr P@Q; Q; t Tr P@Q; P@Q; t
(4.10a)

Tr QinQin Tr PeQin QinP@

Since this is valid for all c-d operators P~ Lrepresenting
a complete decision (P~, t+) j, it follows from our as-
sumption that the Pg are operator complete

in in in C in
(4.11)» O'-Q'-' (~, O'-'Q'-~)

because the two sides of (4.10a) are the traces of P@
times the operators in (4.11).

The preceding calculation assumed that Q; &0, and
that C was so chosen that Tr POQ; tQ; WO. Since
Tr P~Q; tQ; =(p, Q; tQ; it) =(Q;„it!, Q; itI), it follows
that Q;„@NO. Applying the right-hand side of (4.11)
to any vector f, one finds, using (4.2) to calculate
Pc,Q; tf, that the result will be proportional to Q;„itt. It
follows that the Hermitean operator (4.11) can have
only one characteristic vector with a nonzero character-
istic value and that this vector, to be denoted by x, is a
multiple of Q; it!. Hence, the operator (4.11) is the
multiple of a trace 1 projection operator P~ and since
the left hand s!de of (4.11) shows that its trace is 1,
it. is equal to P„

Tr PeAPeBPx' ' 'PnE= (Q, A!P) (tP, By) ~ ~ ~ (to, EQ) Q;,Q;.t/Tr Q;.Q;.=P„. (4.12)

(4 9)
which follows from (4.2) directly.

In order to show the converse, that there is a com-
plete decision observation which selects an arbitrary
pure state, it is necessary to make an assumption about
the set of complete decisions (decisions represented
by trace 1 projection operators). We shall assume that
for every 6nite time interval there exist two sets of corn

piete decisions {(P~, t~) } and {(Pq, t ) } so that the

decision (P~, t+) can be performed later than the time
interval under consideration whereas the (P~, t ) can be

performed earHer We shall furthe. r assume that the set
of c-d operators (measurable trace 1 operators) {P~}
contains a sufhcient set of operators so that if Tr P@3I=
(tt, Mtt) =0 for all c-d operators P~ then M=O; a set
of operators which satisfies this condition will be called
operator complete. The same assumption is made for
the set of c doperators {P~}. -

Let us assume that the measurements (P„ t ),
(Pq, te), ~ ~ ~, (P„ t, ) prepare a pure state; these meas-
urements will be assumed to be performed during a
finite time interval. We shall now use a (P~, t+) as out-

put observation, i.e., let us substitute P~ for P„~ Py
Q,„t. The fact that the measurement of Pq, (P~, t ),

11((P., t-), ~ ~, (P., t.) I (Ps, tr), ~ ~ ~, (P., t.) )
= Tr (Qout QoutQinQin )/Tr (QinQin )

= Tr (Q. t'Q..tPx). (4.6c)

Thus, under our assumptions which are italicized, it
is indeed true that the pure states, as defined in the
Introduction to this chapter, have the same properties
with respect to future measurements as those which are
characterized by the positive outcome of a complete
decision (P„,t), i.e., which can be characterized by a
state vector x.

The preceding argument does not show, of course,
that the projection operator Q; Q; tLTr Qi Q; tj ' =Pz
is a c-d operator, that is, corresponds to a complete-

Incidentally, as has been shown by von Neumann, if
QQt@= (y, it!))t for all p, then Qtg= (x, tt) Qtx for all

hatt and Qq= (Qtx, t)) y for all it. These equations explain
why it was immaterial which it was used in the pre-
ceding proof as long as Q;„it!WO.

Let us return now to (4.6) . Assuming that the input
prepares a pure state, it follows that this can be given
the form
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decision (Px, t), which can be performed instantane-
ously. In fact, it is not clear at what time it might be
measurable since we recall that the measurement of an
operator involves different actions depending on the
time at which the measurement is carried out (Heisen-
berg picture). We will assume, however, that the state
y can be considered a state suspae, i.e., that it could
have been prepared prior to any given time.

4.6. Superselection Rules"

It was assumed in the preceding section that the
manifold of measurable trace 1 (or rank 1) projection
operators Pq is so great that if Tr I'sM= (g, Mp) =0
for all of them, M=O. There are situations known in
which this condition is not satis6ed; the limitations on
the C for which P~ can be measurable are called super-
selection rules. The superselection rule for electric
charge postulates that every observable self-adjoint
operator commute with the charge operator. This con-
clusion was arrived at by analyzing the measurement
process. A similar rule holds for the baryon number and,
probably, also for the lepton number. One can define
an operator V which leaves every state vector repre-
senting a state with integer spin unchanged and multi-
plies the state vectors for half-integer spin by —1. In a,

sense, this is the operator of rotation by 2'. It can be
deduced from the postulate of the Lorentz invariance
of the theory that all measurable operators must com-
mute with this "singlevaluedness" operator. There are
similar rules for the so-called type operators. 3' All these
limitations restrict the set of operators which are
measurable and it is well to discuss the consequences
of these limitations on the conclusions of the preceding
and following sections.

Let us denote the superselection operators by S&, S2,
~ ~ ~ . All measurable operators commute with them. We
assume that they all have discrete spectra, that they
are all measurable at any time, and that such a meas-
urement does not conQict with the measurement of
any other quantity. They must then all commute with
each other. If the time-displacement operator is meas-
urable, it commutes with them also so that they are
independent of time; at any rate we assume that they
are. These assumptions are all valid for the superselec-
tion operators which we have enumerated. Because of
these conditions one can define subspaces of the Hilbert
space which will be called coherent subspaces. All the
vectors v of the subspace (st, ss, ~ ~ ) are characteristic
vectors of all S, the characteristic value of S; is s, so

~' G. C. Wick. , A. S. Wightman, and E. P. Wigner, Phys. Rev.
88, 101 (1952), A. S. Wightman, Nuovo Cimento Suppl. 14, 81
(1959);J.M. Jauch, Helv. Phys. Acta 33, 711 (1960);A. Galindo,
A. Morales, and R. Nuttez-Lsgos, J. Math Phys. 3, 32.4 (1961).
See also Ref. 27.

»This is discussed further in Sec. 4.10. See also "Unitary
Representations of the Inhomogeneous I.orentz Group Including
Ref}ections, " by E. P. Wigner, Summer Conference on Theoretical
Physics, Istanbul, 1962 (Gordon and Breach, Inc., New Vora',
1965), p. 37.

that S;e=s;v. There is a coherent subspace for every
combination s~, s2, ~ ~ «of all superselection operators.
A vector p, and the corresponding projection operator
I'e, are said to belong to a coherent subspace if p is a
vector in that subspace.

If S is a superselection operator, such as the afore-
mentioned charge operator, SPq= P~S must hold for
any measurable J'c, . Applying this to p, one finds
Sf=Ps, S&, i.e., Sp is a characteristic vector of I'q
with characteristic value 1. It must be, therefore,
parallel to p so that P is also a characteristic vector of
S. Since this holds for each S, we conclude that the
rays of observable projection operators lie in a single co-
herent slbspace. The same applies to states which can
be selected by a succession of measurements, such as
the (I'„ t ), ~ ~ ~, (P„ t,) considered in the preceding
section. For an arbitrary measurable operator m it
follows from m S;= S,m that they transform every
vector of a coherent slbspace into a vector of the same
subspace

As far as the preceding section is concerned, the
principal point that needs elaboration is the one where
it was postulated that if Tr I'~M= (P, iVQ) =0 for all
measurable projection operators P~, then 3f=0.
Actually, because of the limitation on P+, 3I need not
be zero but could be any operator which transforms
each vector of a coherent subspace into a vector of a
diGerent subspace. However, the postulate was applied
to an M which was the product of measurable operators,
i.e., operators which leave all coherent subspaces in-
variant. For such M the postulate does not conQict
with the limitations set by the superselection rules.

The preceding discussion reQects our knowledge on
the limitations on the measurability of operators. This
is an incomplete knowledge, and it is generally believed
that the measurability of most operators is open to
question. It is, in fact, not very likely that the limita, -

tions on measurability can be all formulated in terms
of superselection operators with which all measurable
operators commute. However, it is also believed that
no incorrect conclusion will be arrived at by assuming
the measurability of all self-adjoint operators which
commute with all superselection operators.

4.7. The Mappings of the Set of Observations on Itself
Which Leave the II Function Invariant

In Sec. 2.4 we have defined the group 6 of mappings
of observations upon observations which leave the II
function invariant. The group 6 maps all observations
upon observations, but since all observations can be
represented as sets of decision observations, it will
suKce to consider the mappings of these observations.
Decision observations can have only two results: 1 or
0 and this must hold also for their image if the mapping
is to leave 0 invariant. Since the condition of having
only 1 and 0 as possible results is both a necessary and
a sufhcient condition for the measurement to be repre-
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sented by a projection operator, all elements of G will

map projection operators on projection operators.
A decision observation can be characterized by two

quantities: the self-adj oint projection operator P
which corresponds thereto, and the time at which it is
carried out. Hence, the mapping will be described by
two functions: the first of these is "projection valued"
and gives the operator P- of the measurement which is
the image of (P, t ), the second the time t of the
image measurement. The two functions will be noted
by a(a, t ) and t (a, t ) Bo.th a and a will refer to
projections.

We shall carry out the determination of the functions
a and t in four steps. First we show that a(a, t ) does
not actually depend on t . This means that every
transformation which belongs to the group G maps not
only decision measurements into decision measure-
ments, but also gives a unique map of the set of ob-
servable projection operators upon itself. Second, we
show that all complete decisions (P~, t), the operators
Py of which belong to one coherent subspace, will be
mapped into complete decisions the operators of which
belong to a single coherent subspace. Third, we con-
clude that the one-to-one mapping of the set of ob-
servable projection operators upon itself, obtained in
the first step, can be expressed by P;=OP, O ' for all

P,. The operator 0 does not depend on a, is essentially
unique and either unitary or antiunitary. Fourth, and
last, we show that the time ordering of any three
mutually noncommuting measurements is either the
same or the opposite of that of their images.

In order to arrive at these conclusions it is necessary
to make certain assumptions concerning the set of
decision observations. One sufhcient assumption is
that the set of c doperators con-tains, in each coherent

subspace, a vector comp/etc set -of mutgatty orthogonat
trace 1 projectionoperators I, P '}, i.e., a set the rays
C ' of the members of which contain a complete ortho-
normal set of vectors @

' in the coherent subspace s. It
should, furthermore, contain four further sets [Pi+ '},
IPi~„~'}, IPi+~+„'}, [Pi+„~„'}.Hence, the trace 1

projection operators, the rays of which contain the
vectors

4 ', qh'+4m', qh'+~/ ', 4i'+4m'+4~', 4i'+~4m'+4m'

(4.13)

(in which co is a fixed complex number, co&&1, which
can depend on s), are assumed to be measurable for
all m, n where the @

' form a complete orthonormal set.

in the coherent subspace s. Let us note that these sets
are, together, operator complete in the sense that M =0
if Tr PM=0 for all P, at least if M leaves the coherent
subspaces invariant. Finally, we must assume that the
measurements of the c doperators represe-nted by (4.13)
can be performed at diferent times so that expressions
such as Tr P P~+ are observable. This innocent
looking assumption is quite severe in the Heisenberg

representation which we use. Suppose that (P, t) is a
decision whether the particle is at x at time t, then the
actions which one has to perform in order to carry out
the measurement (P, t') will be different and even
unknown in general. The last assumption is satisfied
in an approximate sense if we perform the observations
in rapid succession.

(i) The firs step. The operator of the image a(a, t )
is independent of the time t of the original observation.

Let us first establish the very plausible fact that the
image of a complete-decision observation is again a
complete-decision observation. We have already seen
that the image of a decision observation is a decision
observation (because the outcome can be only 1 or 0)
and that the operator of a c-d observation is a trace 1
projection operator (Sec. 4.5). Let us denote by P,
the operator the image of which is the c-d operator P~
and let us denote the image of the c-d operator P+ by
P~. Then, using P as input, P'~ as output, the invari-
ance of II gives, because of (4.6b),

Tr P P~ Tr P~Pq = Tr PgPg.
Tr P, Tr Py

(4.14)

On the other hand, using P~ as input, P, as output,
one obtains

Tr PgPg
Tr P@P,=

Tr Pg
(4.15)

Since the traces are independent of the orders of the
factors, if none of the traces vanishes one obtains

Tr P Tr Pq=1. (4.16)

However, the traces of projection operators are positive
integers so that (4.16) can be valid only if

Tr P', = Tr Pg ——1, (4.17)

Tr P~P = Tr PgP„-. (4.18)

The left-hand side is independent of t and this applies
therefore also to the right-hand side. The P@ include

i.e., if P, and P& are trace 1 projection operators. Hence,
the images of c-d measurements are again c-d measure-
ments. Since only two measurements entered the pre-
ceding argument, it was not necessary to consider their
time ordering; the 0 function is independent therefrom.
Since a complete decision (P~, t), as input, specifies a
ray of state vectors 0 we have in the usual language of
quantum mechanics that the elements of G map state
vectors into state vectors rather than into "mixtures. "
Let the map of (P@, t) be (P~, t), then P@=P~ for a
suitable %.

In order to establish the independence of the operator
of the image a(a, t ) of the time t, it is only necessary
to use a complete-decision observation (P~, t) as input
and an arbitrary decision observation (P„ t ) as
output. The time of this may be later or earlier than t.
The invariance of 0 gives



658 REVIEWS OP MODERN PHYSICS OCTOBER 1965

all the projection operators with the rays (4.13), be-
cause these are observable and therefore occur as
images of observable c-d observations. Hence, the
traces of P+M completely determine an observable M,
and the conclusion follows. Equation (4.18) also shows
that P~ is independent of t. It follows that we can re-
place u(a, t ) by a(a).

(ii) The second step. The images of the complete
decisions in one coherent subspace are complete deci-
sions in a single coherent subspace.

The erst step established that if (P~, t) can be per-
formed for several values of t, the image 0 of the ray
+ does not depend on the time t of the measurement
(P&, t). Since P~ is, by the definition of the group G,
observable, the observable 0 lies entirely in one co-
herent subspace, say s'.

If P'~ is in the coherent subspace of +, then it is
always possible to Qnd an observable Px such that both
Tr P&Px ——

I (4 x) I'&O, Tr P+Px ——
I (@, x) I'&O. H

the expansion of P and p in terms of the p„of (4.13)
both contain at least one p„with nonvanishing coeK-
cient, this @„can play the role of X. If this is not the
case, any@i+&„+P will do if g„occurs in the expansion
ofipand p in the expansion of p. If, on the other hand,
ip and g are in different coherent subspaces, there can
be no observable Px such that both Tr P~Px and
Tr P~Px be diferent from zero since X can not be in
two diGerent coherent subspaces. Actually the word
"coherent" was intended to express just this fact: that
if two vectors f and g are in the same coherent subspace
then there is a c-d operator Px, a "realizable sta, te" x,
such that both Q, x) and (@, x) are nonzero. The x
then in a sense ties iP and P together.

In order to prove that the images P~ a,nd P~ of the
c-d operators P~ and P~ are in the same coherent sub-
space, we have to And only a c-d operator Pz such that
the traces of P~Pz and of P~Pz be both nonzero. The
image Px of Px can serve as this Pz because then

Tr P@Px= Tr P@Px, Tr PC,Px Tr P@Px. (4.1——9)

Equation (4.19) follows if one calculates the prob-
ability II((Px, t')

I (P+, t) ) that the measurement
(P~, t) give 1 if the measurement (Px, t') gave 1. Ac-
cording to (4.6a) this probability is

The two important elements of the preceding argu-
ment were the phenomenological criterion for the co-
herence of two rays, in the form of a c-d operator into
the ray of which both rays have a 6nite transition
probability, and the invariance of this transition prob-
ability under the elements of G.

(iii) The third step. The mappings of G define a
unitary or antiunitary transformation.

The main part of this theorem is of purely mathe-
ma, tical nature. It presupposes the suspae nature of the
states which are described by the rays (4.13) or, equiva, —

lently, that the ineasurements (P„, t), (P +„, t), etc.
can be carried out at different times. Under this assump-
tion, the transition probabilities between these states,
and more generally, all transition probabilities into
these states, become observable. As a result, if P and
p' are vectors of any two rays of the set (4.13), and

@ and $' vectors with the same normalization contained
in the rays of the image operators of the rays C, C', then

I(4, 4') I'= I(+, 4') I'. (4.21)

were smaller than 1, the same would hold for

The left-hand side is 11((Pq., t')
I (Py, t) ), the right-

hand side II((PO, t')
I (P, g t) ).

Let us consider, first, the rays in the coherent sub-
space s; these will be mapped into a single coherent
subspace s' which may or may not be identical with s.
If P+ is a c-d operator and P+ its image, we shall say
also that the ray C is mapped into the ray of P+=P+
or that the ray C of P'+ is the image of C. In this way,
we obtain also a mapping of the observable rays of s
into the observable rays of s'. However, for the time
being, we shall omit the superscripts s and s', it being
understood that the C are in s, the C in s'. Let us choose
an arbitrary vector p„of norm 1 from the ray C„(more
precisely, from the ray 4„') and a similar vector &$„

from the ray C„of the image P„of P„. The p„ then
will form a complete orthonormal set, and, because of
(4.21) and their normalization, the tt„will be also
orthonormal. They also will be a complete set because
if, for instance,

Tr P~Px=
I (Ax) I'. (4.20) Q Tr P„"P„,

It is usually called transition probability between 4'
and X. Since 0 remains unchanged if one replaces
(P@, t) and (Px, t') by their images (P~, t) and

(Px, t'), the first of Eqs. (4.19) follows, the second is
derived in a similar way. One also sees that if + and C

are in diferent subspaces, the same holds for their
images. In this case there is no c-d opera, tor P~ so
that both Tr PxP~ and Tr PxP~ be nonzero. Hence
since all c-d operators Pz are images of some Px,
there can be no Pz such that both Tr PzP~&0, and
Tr PzPe&0.

where P " is the projection operator the image of
which is P ".Hence the g "can be expanded in terms
of the g„, and since these form a complete set, the same
will apply for any vector of the coherent subspace s'.

Let us now consider an observable ray in the sub-
space s, and let one of its vectors be p=ga„p„. We
shall expand a vector $ belonging to the map of the
ray of p, in terms of the $„and denote this by g8„$„.

Assuming that the norm of this latter vector is the
same as that of p, we can set p'=p in (4.21) and ob-
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tain
I

u„ I
=

I a„ I. Hence we have, in general,

ray of ga„Q„~ ray of ga„f„Q„, where
I f„ I

= 1&

(4.22)

and the t can yet depend on the coefficients a„.
In particular, the ray of @&+p„ is mapped into the

ray of t&P&+f'„P„W.e now define the operator 0 by
stipulating that it map

q4+@n
g4+4n
@1+Cdfm

@I+~$n+Qm

TABLE II.

41+~Qn
41+~Qm+Pn
41+~@m+q4
41+Pm+4n

Conclusion

Vn=CO'n; Sn= ~1
Pmn= &

TABLE I.

Ray of Image contains

41+@n
41+4n
4»+~@m+@n

41+4
41+~n4
Pi+0 0 +p

04 & 4'li 04 (f lk&) 4+'

If we change the notation and denote (i„/f'q) @„by P„,
all preceding equations will be valid and the last one
will assume the form

(4.23)

whereas the map of the ray of @&+g„will contain
p~+p„. There is some arbitrariness in the definition of
0@q but this corresponds to the arbitrariness in 0: it
can be multiplied by a factor of norm 1 and OP 0 '= P,
will remain valid. It is this factor which is Axed by
postulating 0&~——p~. Apart from this, 0 is completely
determined and if our assertion is correct it must
follow from (4.21) that if ga„P„ is in an observable
ray, either ga„$ or ga„@„is in the ray of the image
of ga„p„. Even more generally, OP, O '=P, must
follow.

We shall prove these assertions for the ga„@„which
are members of the set (4.13). It follows from (4.22)
that the image of the ray of the first column of Table I
contains a vector of the second column where the a-, p, v

are all of absolute value 1. In addition, as a result of
the altered meaning of p„, the image of the ray of
g~+p„contains p~+g„. Table II shows the conclusions
one arrives at by using for g and P' in (4.21) the ex-
pressions given in the erst two columns thereof. It
follows that indeed all u and hence all s„are equal. If
the latter are 1 the images of the rays of (4.13) contain
a vector which is obtained from (4.23) assuming that
this is linear, if the s are equal to —1, the images of
the rays of (4.13) contain the vectors obtained from
(4.23) assuming that 0 is antiunitary. In either case,
0 as applied to these vectors will be defined accordingly
and we can indeed extend the de6.nition domain of 0
to all vectors and write in the former case (v„=~)

Oga„y„=ga„y„, (4.24)

whereas in the latter case (v =~ '=a&~) we define

Oga„y„= Qu„*@„. (4.24a)

OP&0 'x= 0(y,-0-'x) 4 (4.25a)

so that indeed for all C of (4.13)

Pg ——OPg0 '. (4.25b)

Ke yet have to show that P = OP, O ' holds for an
arbitrary observable operator. Using P~ with one of
the C of (4.13) as input and P, as output, (4.6b) be-
comes for the original and image measurements

Tr P~P,'= Tr P~P . (4.26)

Introduction of (4.25b) gives

Tr P'~P = Tr OP~0 'P, = Tr P~O 'P, O,

and since the P~ are operator-complete,

P =0—'PO or P =OPO —' (4.27)

The preceding argument applies only to projection
operators P which transform only vectors of the co-
herent subspace s into other vectors in s but give zero
if applied to vectors of other coherent subspaces. These
P are mapped by the elements of G into the OP, O '
which transform the vectors of the coherent subspace
s' (containing the @) into similar vectors: 0 ' brings
the vectors of s' into s, P, leaves them there and 0
returns them to s'. A general projection operator will
not be zero in all but one coherent subspace. However,
it can be decomposed into such operators and (4.27)
will hold for each part. There is no apparent relation
between the parts, except that the mapping of coherent
subspaces into coherent subspaces must be one-to-one
for every element of G. There seems to be no reason
even that all parts of a mapping be unitary or all anti-
unitary but, so far, mixed mappings have played no
role in the theory. There is also a factor arbitrary in
each part, i.e., the operator 0 which corresponds to

The unitary and antiunitary nature of the operators
(4.24) and (4.24a) is easily verified.

For the projection operators P& of (4.13),

P x= P x= (4, x) 4 = (04, x) 04 = 0(4, o 'x) 4 (4 25)

follows for an arbitrary X. The last step needs a word
of explanation: if 0 is unitary (0&, y) = (g, 0 'x) and
the other 0 can be brought in front of the factor
(p, 0 'x). If 0 is antiunitary, (0&, x) = (P, 0 'x) *,
the interchange of 0 and this factor changes the factor
to its conjugate complex. On the other hand,
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an element of G contains an arbitrary factor for each
coherent subspace.

This completes the third step of our discussion which
is, of course, only a slight modification of similar dis-
cussions given before. " The unsatisfactory nature of
the proof is the arbitrariness of the set (4.13). Except:
for its nature to be operator-complete, there is no real
reason to choose this set rather than any other. The
arbitrariness could be avoided if one knew a suKciently
large set of operators which was, in fact, observable.
The lack of our knowledge in this regard was already
emphasized as a weakness of the conceptual structure
of quantum mechanics. It is interesting to note, how-
ever, the similarity between the set (4.13) and the set
of quantum-mechanical states described in Sec. 4.1;
both show the greater wealth, and the more intricate
structure, of the set of states of quantum theory as
compared with the classical theories.

It may be useful to remark, Gnally, that the preceding
theorem applies not only to the transformations of the
group G but also to every redescription such as accom-
panying the use of a diGerent language or the use of a
different Hilbert space to describe the observables.

(ziiz) The foztrth step. Actions with noncommuting
opera, tors and images are either in the same, or in op-
posite time order.

We have, so far, considered the II function almost
exclusively with a single-input and a single-output ob-
servation. In this case the time order of the observa-
tions is immaterial: the symmetry of (4.6b) shows
that the probability connection is the same even if the
time order of input and output is interchanged. This
is not so if the II function refers to several observations.

Let us observe first that the condition (ziii), together
with the conditions derived ea,rlier, are not only neces-
sary but also sufficient conditions for the mapping to
leave II invariant. Indeed, the expression (4.7) is
clearly invariant if every P therein is replaced by OPO '
as long as 0 is unitary because the intermediate 0 drop
out and the first 0 can be shifted to the end in a trace
if it is linear. If 0 is antiunitary it can be decomposed
into the product of a unitary operator and complex
conjugation. One easily convinces oneself that the
unitary operators cancel as before, and the operation
of complex conjugation converts the operators the
traces of which appear in (4.7) into their complex con-
jugates. However, operators QQt are Hermitian and
their diagonal elements therefore real. If 0 is unitary
when applied to some of the coherent subspaces,
antiunitary when applied to others, its unitary part
can be applied 6rst, and this followed by complex con-

"E.P. signer, Group Theory aid Ifs Appbcafion fo the Qnal-
tnnt Mechanics of Atomic Spectra (Academic Press Inc. , New
York, 1959), p. 251; R. M. F. Houtappel's notes of the lectures
of E. P. Wigner, Leiden, 1959 (unpublished); V. Bargmann, J.
Math. Phys. 5, 862 (1964); L. O'Raifeartaigh and G. Rasche,
Ann. Phys. (N. Y.) 25, 155 (1963). See Bargmann's article for
additional references.

jugation in some of the coherent subspaces. The former
operation was considered already and leaves II in-
variant but the same applies to the latter because the
diagonal elements are all real. Similarly interchanging
the time ordering means, for all Q in (4.7), transition
to the Hermitian adjoint and this remains without
effect as far as the trace is concerned. Naturally, this
does mean that all mappings (P„ t )~(P, t ) of the
type considered are e1ements of G.

Condition (ziii) is natural physically. Mathe-
matically, also, it would be verv surprising if an order
of the P, different from the initial or the opposite,
would have the expression (4.7) unchanged, consider-
ing the large number of possible P that have been
postulated. Hence, the proof of (ziiz) will not be given
in full detail. It should be possible, nevertheless, to
reproduce it from the description which follows.

One 6rst considers an input measurement which is
one of the complete measurements P'q postulated in
(4.13), and as output measurements an arbitrary P,
followed by a complete measurement Po (postulated
in (4.13)]. The time order is that given. Choosing
suitable P„ for the complete measurements, one can
show that the time order of the maps P~, P„I'~. must
be either this, or the opposite, unless P, commutes
with all P„. If this is the case, one replaces the input
measurement with a suitable P'„+ and inds that
(unless P,=O or 1) the order must be P~, P„Pa. in
that case also. It is essential for this part of the proof
that the Pe of (4.13) can be observed both before and
after any P,.

One next considers three complete measurements of
the (4.13) type and proves that if the time ordering
among any pair is preserved by the mapping, the same
will be true for any other pair. This is, perhaps, the
most lengthy part of the proof. It then follows, by
means of the result of the preceding paragraph, that
the same is true for any pair P, P one of which is still
of the nature postulated in (4.13). As a result, if all

(Pe, to) of (4.13) precede a set of measurements

(P, t ), (Ps, ttt), ~ ~, the images (Pe, te) will either
all precede or will all succeed all the images (P„t ),
(Ps, te), ~ ~ ~ . If one is willing to postulate this, the dis-
cussions of the last two paragraphs are unnecessary.

Finally, one considers (P&,ts) as input, two arbitrary
(P„ t ), (Ps, ttt) as output, ts&t &ts. It follows from
(4.7) for the case in which the time ordering of Pe, P,
and of P~, Pq is preserved that

Tr P~P,PqP, P~= Tr P~I',P~P,P~ or Tr P~I'yp~pype

(4.28)

depending whether or not the time ordering between
P and P'q is also preserved, i.e., whether t (tp or
t ) ttt The last P@ in. all expressions (4.28) can be
made the Grst factor and disappears thereupon. Be-
cause the P are transforms I'= OP0 ' of the P, they
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can be replaced by the latter in a trace. This then gives

Tr P~P,PbP = Tr P~P,PbP for t (tp
= Tr P@PiP,Pi, for tp(t . (4.28a)

Since there is an operator-complete set of P~ available,
it is possible to conclude, in the case of the second
alternative, that

P,PbP, = PbP, Pb. (4.29)

This can be true, however, only if P and Pb commute,
in which case I' and Pb also commute and their time
order is irrelevant in the case considered. Had we as-
sumed that the time ordering between P~ and P, or
P& is reversed by the mapping, (4.29) would have
followed if the time ordering between Pb and P, were
not reversed.

That P,Pi,=Pi,P, follows from (4.29) can be seen
most easily by noting

(PGPB—P&P )
=P,Pi,P,Pi, P,Pi,P. P—i,P,Pi,+P—i P.Pi,P,
= P (Pi,P Pi, PPi,P,) —Pg—(P)P,Pi, P,Pi,P )—.

Hence, the square of P Pb —PbP = C vanishes if
(4.29) is fulllled. . It follows for any vector f that
(P, O'P) =0 and since C is skew Hermitian that
—(CP, Cf) =0 or that CQ=O.

This does not quite complete the proof of (iiii) not.

only because the case of commuting (P„ t ), (Pi„ tp)
should be further considered but also because the exist-
ence of superselection rules has not been adequately
discussed. However, we leave the completion of the
discussion to the reader.

Ke conclude the section by restating the result. A

mapping of decision measurements (P„t ) on decision
measurements (P„ t ) will leave the II function in-

variant if and only if the two conditions apply: (a,) The
operator which represents (P„t ) is P,= OP,O, i.e., is
a transform of the operator of the original measurement.
0 is a unitary or antiunitary mapping of every coher-
ent subspace on a coherent subspace suthat every such
subspace is a map of some subspace. (b) The time
order of the measurements is either preserved by a
mapping, or inverted. Let us repeat here that the
assumptions necessary to arrive at this result were

quite far reaching. It was, in particular, necessary to
postulate that the c-d operators of the rays (4.13) can
be measured prior to any, and after any, definite time.

4.8. Invariance for Proyer Inhomogeneous Lorentz
Transformations

It is postulated, just as in classical theory, that the
mappings of observations onto observations as defined

by the proper inhomogeneous Lorentz transformation. s

are invariance transformations, that is, satisfy (2.5).
So far this postulate is in agreement with the experi-

mental facts. These Lorentz transformations certainly
satisfy the conditions of Sec. 2.4b and they even satisfy
those of Sec. 2.4a if one admits the reasonable idealiza-
tion of observers with arbitrarily high velocities.
Therefore they can be considered to be invariance
transformations in the sense of either section.

The proper inhomogeneous Lorentz transformations
form a group which is called the Poincare group. If we
postulate that every element of the Poincare group
satisfy (2.5), the results of the previous section apply
to each transformation of this group. This means that, if
certain conditions (as specified in Sec. 4.7) are satisfied,
an operator 0 will correspond to every inhomogeneous
proper Lorentz transformation I such that

PI,= OI,POI. ' (4.30)

3' V. Bargmann, Ann. Math. 59, 1 (1954).
3' For a detailed proof of this theorem see E. P. Wigner, Ann.

Math. 40, 149 (1939); Ref. 30," A. S. Wightman, "L'invariance
dans la mecanique quantique relativiste, " in Dispersion Relations
and Elementary Particles (Les Houches, 1960 Paris, and John
Wiley R Sons, Inc. , New York, 1960).

for all observable P. The Pz, in (4.30) is the first ob-
server's operator for that measurement v hich, if
carried out at time t on his time scale, appears to the
observer removed from the original one by the Lorentz
transformation I., as the same measurement as P
appears to the original observer if the measurement is
carried out at his time t. That this can be valid for all
t is already a consequence of the proper Lorentz in-

variance of the theory.
Since every element of the Poincare group can be

deformed into the unit element in a continuous fashion,
it follows, assuming only that one can denumerate the
coherent subspaces, that the mapping 0& maps every
coherent subspace onto itself. 01. is within each co-
herent subspace either unitary or antiunitary and
unique apart from multiplication by a phase factor.
The succession of two Lorentz transformations L and
L' can be replaced by their product L'L. 01. I, must
mediate the same mapping as Ol, Ol.. Hence, within
each coherent subspace, OI. L, and 01. 01.can diGer only
in a numerical factor of modulus one which, however,
can yet depend on L and L'.

Ol. 01.= a) (L', L) 01, I,. (4.31)

Incidentally, as has been remarked by Bargmann, " it
follows from (4.31) at once that the operators Or, must
all be unitary since a mapping which is mediated by the
square of either a unitary or an antiunitary operator is

necessarily unitary and all 0& can be written as such
squares.

The discussion of the Poincare group is simplified

by a theorem which applies specifically to this group":
The operators O~ can be replaced, within each coherent
subspace, by new operators ~r,Or, (with ) &ul. ) =1, i.e.,
Or, and a&i, Or, mediate exactly the same redescription)
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so that, for the new operators (writing Oi. for ~I,Or, ),

Ol, OJ.=- &Ol. I, (4.32)

holds. This relation is by no means obvious; it amounts
to the statement that the functions &o(L', L) which
depend on two Lorentz transformations can be
expressed in terms of functions of one Lorentz
transformation

~(L ) L) = ~~i'r/&I"~I ~ (4.33)

Within each coherent subspace either all states have
integer angular momentum or all states have half-
integer angular momentum (superselection rule of
singlevaluedness). In the first case the minus sign in
(4.32) can be eliminated. In the second case the minus
sign in (4.32) cannot be eliminated and only the
operators 01. together with the operators —Ol. form a
group. The latter group is isomorphic not to the Poin-
care group, but to a union (called semidirect product)
of the group of parallel displacements in space and time
and of the group of two-dimensional complex matrices
of determinant 1. The union is quite similar to the
union of the group of parallel displacements and of the
group of rotations, which forms the Euclidean group.
It is homomorphic to the Poincare group, Ol, and —Oi.
corresponding to the same element L of the latter.
Even more compact is the description of this group as a
group the elements of which are characterized by two
two-dimensional matrices, h and A, the 6rst Hermitian,
the second of determinant 1, with the multiplication law

(~1) ~1) (h2) ~2) (hi+41~2+1 y +1~2) ~ (4 34)

The "spinor transformation" A corresponds to a
homogeneous Lorentz transformation and h corre-
sponds to a parallel displacement by x, y, s, t in space
and time where

(t sxyiy)—
h =

i
i. (4.34a)

(x—ty t+s j
The group of the X= (h, A) will be called quantum-

mechanical Poincare group. There is a unique unitary
operator Uq a,ssociated with each element ) of this
group and the invariance of the quantum-mechanical
equations with respect to the Lorentz group is expressed
by the analogue of (4.30),

(4.30a)

in which Pl. is de6ned as before, I. being the Lorentz
(or rather Poincare) transformation to which the
element ) of the quantum-mechanical Poincare group
is associated.

In (4.30a), Pr, is completely de6ned conceptually
by the knowledge of P'. Hence, the two elements of the
quantum-mechanical Poincare group, which correspond
to the same element L of the ordinary Poincare group,
must give the same PI,. If one of these elements is X, the
other is SX with S= (0, —I) and it follows from this

'k J.= 01,%'= Uq'0 (4.30b)

The probability for the positive outcome of PL, ——

OI.POI. ' for this state is (Or/, Or, POr. 'Or/) =
(f, PP). Hence the state suspae of the ray %r,——Oi+
gives, for the observer removed by the Poincare trans-
formation I., the same result as does 0 for the original
observer: 01%' is the state 4' subjected to the trans-
formation I.. This is the active interpretation of Ol. or
of the equivalent Uq.

4.9. Equations of Motion, Conservation Laws

The invariance operations of the previous section
contain also the "equations of motion. "The time and
space displacement operators are members of the
Poincarb group and the corresponding operators are,
therefore, among the Uz. It is an important consequence
of the analysis which led to the elimination of the
phase factors ~(L, L') from (4.31) that the operators
of displacement all commute. Let us denote by U& the
operator which corresponds to a time displacement so
that it maps every self-adjoint operator P which rep-
resents a certain measurement at time to into the opera-
tor P which represents the same action of measure-
ment, carried out at time to+t:

P= U]PU,—'. (4.35)

This divers from (P, to+t) which does not represent
the same action as (P, to) but gives the same result on
an isolated system and has, in the Heisenberg picture
which we use, the same operator. As a rule, (P, to+t)
remains operationally unknown even if (P, to) is known.
On the other hand, the calculation of the P of (4.35)
may be dificult, but it represents, operationally, the
same action as P', only carried out later. Since the time
displacements form a commutative one parameter
group we may write

Ug ——exp (iHt/fi) (4.36)

with H self-adjoint. Similarly, the operator of the dis-

that the UB which corresponds to (0, —1) commutes
with all P. It is, therefore, a superselection operator.
Since the square Uq'= U~, where E is the unit element,
and since U~ must be the unit opera, tor, as follows from
(U&)'= UE'= Uz for a unitary operator, the character-
istic values of Ug are 1 and —1. The coherent subspaces
for which U8=1 have integer spin, those with Ug ———1
half-integer spin.

The operators Or, have, in addition to (4.30) another
interpretation. Let us consider a pure state to which,
according to Sec. 4.5, a vector or ray%' in Hilbert space
corresponds such that the probability for the positive
outcome of the measurement (P„ t) is, for the state
suspae in question, Tr P,P~= g, P,f), where f is a
normalized vector of the ray O'. Let us consider then
a normalized vector Or, g in the ray
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placement in the x direction is

Ui ——exp ( iP—,x/fi) . (4.36a)

In6nitesimal generators 3EI,~ for the homogeneous
Lorentz transformations are defined in a similar way.
The operators B and P„P„,P, are identi6ed as the
operators for energy and linear momentum. The
M;;(i= 1, 2, 3, j= 1, 2, 3) are identified as the angular-
momentum operators because they commute with the
time-displacement operators (and hence with H) .
Hence, the operator which corresponds to the measure-
ment of these quantities is independent of time and
the probability to 6nd a particular value as a result of
this measurement is also independent of time as long
as the system is isolated and no measurement thereon
takes place in the time interval in question. The con-
servation laws for energy, linear momentum, and angu-
lar momentum are therefore a direct consequence of
the relations of the in6nitesimal generators of the
Poincare group to the time-displacement operator. The
explicitly time-dependent operators exp (iHt/Fc)MO, X
exp ( —iHt/5) correspond to the infinitesimal genera-
tors for Lorentz transforrnations which leave the point
(t, 0, 0, 0) invariant. It can easily be shown that the
exp (iHt/5)MO;exp (—iHt/5) are linear functions of
time. As a result of the dual role of the in6nitesimal
operators of the Poincare group, the relation between
invariance and conservation laws is much more direct
in quantum than in classical theory.

4.10. The More General Invariances of Section 2.41

A transformation of the group G will be called an
invariance transformation in the sense of Sec. 2.4b if
the mapping of observation onto observation is
"simple. " The simplicity of the mapping must be
judged in terms of the mapping of experiment onto
experiment and not on the basis of the mathematical
framework of the (P„ t) and formula (4.7). As we
have discussed before, the framework does not even
distinguish between observable operations (P, t) and
nonobservable ones; similarly it gives little information
on how to measure an observable (P„ t). Hence, we
must rely 6rst on the experimental determination
whether a transformation belongs to the group G, and
then decide on the basis of conceptual simplicity
whether or not the mapping involved is likely to have
universal validity. In the mathematical framework all

mappings such as (P, t)~(UP, U ', t), for any U,
are equally simple.

Let us nevertheless investigate two particularly

simple invariances of the mathematical framework.
The 6rst of these is

the sense that (P„ t) and (P„—t) may be the same
measurement, carried out at diferent times, at least if
P, refers to a quantity, such as position in a region, or
energy within an interval, which are (in contrast to
velocities), invariant under the "inversion of the direc-
tion of motion. " This, however, cannot be the case
because a similar statement would apply, because of
time-displacement invariance, also to (P„ to+t) and
(P„ to—t). Since to and t are arbitrary, all (P„ t) would
represent the same measurement for the quantities in
question. This is possible as far as the energy is con-
cerned but manifestly impossible in the Heisenberg
representation for the measurement of the position.
We must conclude that the mapping (4.37) has no
simple physical interpretation. A similar consideration
applies to (P„ t)~(P,*, t) (—the star denoting the
conjugate complex) .

In order to find the mapping which may represent
the time-inversion invariance, let us consider the opera-
tor Q which corresponds to a measurement carried out
at time t=o which is not aGected by the reversal of
the direction of motion. The operators of the same
measurement, if this is carried out at times t and —t

respectively, are

and
exp. (iHt/5) Q exp ( iHt/fi, )—
exp ( iHt/5) Q

—exp (iHt/5).

In particular for t=o it follows

Q=OQ0 '. (4.38a)

Applying this to Q=H, the energy operator, we find
that 8 and Bcommute. If 8 were unitary, it would com-
mute also with any function of B and one would have
to infer from (4.38) and (4.38a) that Q and
exp (2iHt/It) commute, i.e., that Q is a conserved
quantity. Since this cannot be true for all operators Q
in question, it follows that 8 is antiunitary. In this
case, it follows from 8B=B8 that

8 exp ( iHt/5) 8-'=—exp (iHt/5), (4.39)

and (4.38) has no other consequence but (4.38a).
Let us observe, before proceeding, that time inver-

sion, as a physical operation, is involutory, i.e., its
square must leave all measurable operators invariant.
Hence, 8' is a superselection operator. It follows that

These must be mapped on each other by the mapping
of time inversion. If this mapping is obtained by
transforming all operators by 0=8, we have
exp(iHt/5) Q exp (—iHt/5)

=8 exp (—iHt/fi)Q exp (iHt/5)8 '. (4.38)—

(P., t)+-&(P„t) for all—(P., t) . (4.37) 8 = esls (4.40)
The invariance of (4.7) for the mapping has been
established in Sec. 4.7, (iiii). At first glance, (4.37)
seems to be a candidate for time-inversion invariance in

in which stands for the direct sum over the coherent
- subspaces, j., is the unit operator in the coherent sub-
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space s, and the or, are complex numbers of modulus 1.
It follows from (4.40) that if 8 changes the coherent
subspace s into s', it must also change s' into s: 8 can
only interchange such subspaces. Furthermore, mul-
tiplying (4.40) from the right and from the left with
8 and comparing the results one 6nds +,=co,.*. Pro-
vided s'/s we can make 8'=1 in the subspaces s and
s' by replacing 8 by the physically equivalent antilinear
transformation which consists of first applying 8 and
then multiplying all vectors in s by the phase factor
(Q&o,) ' and those in s' by (+co,.)—'= (Qo&,*}-'.When
s'=s, we have co,=&1. Concluding we have

Q)g =~1=
Ging (4.40a)

"That CI' conjugation is not a true invariance is suggested
hy recent experimental data. See J.H. Christenson, J. W. Cronin,
V. L. Fitch, and R. Turlay, Phys. Rev. Letters 13, 138 (1964}.
See also T. T. Wu and C. N. Yang, ibid. 13, 380 (1964); R, G.
Paths, P~d. I3, 28' {j964),

in which e,g
——1 whenever s'&s.

Equation (4.39) has a particularly simple inter-
pretation if the operators are interpreted actively, as
acting on state vectors. 8 ', just as 8, reverses the direc-
tion of motion of the system, exp (—i'/5) lets it
then progress in time by t, the last 8 again reverses the
direction of motion. The resulting state of the system
is the same as it was at time —t. This is natural since
the time displacement by t took place after a reversal
of the direction of motion. Relations similar to (4.39)
can be obtained also for the other elements of the
Poincare group. Thus 8 must commute with spatial
displacements

8 exp (iPx/S)8 '= exp (~Px/5) (4.39a)

froIIl which lt follows slrlce 8 ls antlunltal'y that lt
anticommutes with P. This is again natural since the
direction of the momentum vector is reversed by the
reversal of the direction of motion. It is a mathematical
theorem that the compatibility relations, such as
(4,39) and (4.39a), between the proper Poincare
transformations and the time-inversion operator 8, can
be satisfied, in fact in more than one way. This gives
rise to the theory of types. Naturally, the existence of
an operator 8 which leaves II invariant and satisfies
the proper relations, such as (4.39) and (4.39a), with
the operators of the Poincare group is only a necessary
condition for time-inversion invariance. The validity
of this invariance implies also that 8 transforms other
xneasurable operators in the proper way. In particular,
if I'.=Q decides whether a particle is at time 0 in a
certain region of space, (4.38) must hold for this Q.
This, of course, can not be established mathematically. '4

There remains a certain arbitrariness in what meas-
urement we expect to be the time inverse of a I', even
if this refers to the measurement of a simple quantity.
We were forcibly reminded of this when it was found'
that the operator Z of space reQection transforms the
measurement of a particle into that of an antiparticle

/co ) =1, (4 44.)

etc. Just as in the case of the Poincarh group, one tries
to eliminate the phase factors by making use of the
arbitrariness in the operators g, 8, I, so that they form

(CI') or that, at any rate, the assumption that it
transforms the decision that the particle is at r at time
t into the decision that it is at —r at time t leads to a
contradiction with experiment: the operator with that
property does not commute with time displacement.

Let us establish relations for the operator Z of space
reQection similar to those obtained for 8. The operator
Z must again connnute with H because we want the
energy to remain unchanged by space inversion. As a
physical operation, Z also commutes with time dis-
placement which gives an equation

Z exp (ilrt/f'i) =co, (t) exp (zest/5) Z (4.41)

similar to (4.31). It follows from (4.41) and ZH=HZ
that Z is unitary, just as it follows from (4.38) that 8
is antiunitary, at least as long as P has more than one
eigenvalue. The transformation Z is also involutory so
that within each coherent subspace

Z'= co„ f
co, f

= 1 (4.42)

holds. In contrast to 8, which is antiunitary, Z can be
modified, by replacing it with Z/a, &, so that

(4.42a)

It is again a mathematical theorem that there is a
unitary operator Z which satisfies (4.42a), (4.41) and
all similar relations with the operators of the proper
Poincare group and also with 8. Whether this is an
invariance operator again hinges on the question
whether it transforms the other observables, such as
position, in the expected way. We now know that unless
"expected way" means the transformation of a particle
into an antiparticle, and conversely, Z is not an in-
variance. Hence, if Z is an invariance it has the e6'ect
of what is usually denoted by CI'. Note that, provided
the superselection rule of charge holds, CI' does not
give rise to a concept analogous to parity, except for
neutral particles.

The succession of a time inversion and a space in-
version is again a symmetry operation if the two
factors are such operations. The operator I which cor-
responds to the product can di6'er from Z8 by a factor
which is different for diR'erent coherent subspaces.
However, since a similar factor is indeterminate in I,
we can write

(4.43)

The physical operations space inversion, time in-
version, and space —time inversion form a commutative
group which is isomorphic to the four group. Their
images Z, 8, I form, together with the unit element a
"projective" representation of that group
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a true representation of a group. N Equation (4.43) is
already a step in this direction. The square of I, since
it represents, physically, the unit operation, must com-
mute with every observable and is, therefore, a super-
selection operator. It has a definite value in each co-
herent subspace and since I is antiunitary, this value
can be only &1. It will be denoted by e,z, the index s
characterizing the subspace. %henever s is different
from its image s' under the mapping /, we can see to it
that e,z=1. In case I represents CI'T, s' will certainly
be different from s for a coherent subspace s the states
of which have a nonzero charge; and one can see to it
that e,z ——1. The rest of the r'elations follows from the
associative law which applies to both unitary and anti-
unitary operators and one obtains the following group
table for the operators 1, Z, 8, I which correspond
physically to no change, space inversion, time inversion,
and space —time inversion

1 1 Z 0 l
1 I 0

8 0 ezesgI ~sg1 eaz2

(4.45)

3'See E. P. signer, Ref. 30. This paper contains a detailed
discussion of the material covered in the present section.

I I ~,z~,.g8 ~,g~ ~,z1 .

Unless ~,z
——e,g= 1, two operators, diBering in sign, cor-

respond to each physical operation, just as in the case
of the Poincare group.

Both 0' and I2 commute with every observable; they
generate superselection rules —called rules of "type. "
There are four different "types" corresponding to the
combinations (+1, +1), (+1, —1), (—1, +1),
(—1, —1) for 8' and 12. State vectors which are super-
positions of vectors of different types are not realizable.
For e,g= e,r = 1, the group of (4.45) is the four group,
for e,g= —e,z= 1 and for —e,y= e,z ——1, it is a dihedral

group whereas for e,g=e,z= —1, it is the group C~)& C4.
The extended Poincare group is the semidirect

product of the Poincare group and the four-group of 1,
Z=CP, T, I=CPT. The proper Poincare group {LI
is a normal subgroup of the extended Poincare group
(this is true for the connected subgroup of every mixed
continuous group; see p. 92 of Ref. 31), and the cosets
are {LI, CP{LI, T{LI, CPT{LI. The operators 0
which represent the transformations of the extended
Poincare group form a projective representation of the
group Lsimilar to (4.31)j. Corresponding to the four
different types (1, 1), (1, —1), ( —1, 1), (—1, —1)
one finds, however, that there are four different ex-
tended quantum-mechanical Poincare groups. Each of
these is a semidirect product of the quantum-mechanical
Poincare group and. one of the groups of (4.45). For a

charge-carrying subspace s, only two types (1, 1), and

(—1, 1) occur.
It is evident that the elements of the broader class

of invariance transformations, in the sense of Sec. 2.4b,
are by no means as sharply defined as those of Sec.
2.4a. Nevertheless, they may represent valid invari-
ances and are, therefore, of interest. In this regard the
I=CI'T transformation may play a special role be-
cause its character as an invariance transformation
follows from the postulates of local 6eld theory. "The
situation is analogous to that encountered in Sec. 3.1
on classical mechanics: Galilei invariance and time-
inversion invariance were there found to follow from
the assumption that the forces can be derived from a
velocity-independent potential.

4.11. The Problem of Measurement in ReIativistic
Quantum Theory

Let us return to the discussion of the II function of
Secs. 2.3, 4.1, and 4.4 to note that the observations
which enter into 1I are supposed to be carried out at
definite times. In fact, as (4.7) shows, the probabilities
for the possible outcomes of measurements depend on
their ordering in time. This is true even though we use
the Heisenberg picture in which the time of measure-
ment of an operator is inunaterial because the measuring
procedure which corresponds to an operator changes
in time in such a way as to compensate for the change
of the system. As a result, as long as the system on
which the measurement is carried out remains isolated
the result of the measurement which corresponds to
an operator will remain independent of time. However,
an intervening measurement affects the system and
renders the probabilities for the possible outcomes of a
measurement different from what it would have been
had the system remained isolated and developed
naturally.

The picture which is consistent with the instantane-
ous nature of the measuring process would be an in-
finitely short, but very strong, interaction between
apparatus and the system on which the measurement
is to be undertaken. Only in this way would a measure-
ment at one definite time be possible. The instantaneous
very strong interaction is an unrealistic idealization
even in nonrelativistic theory. In relativistic theory, if
taken seriously, it would contradict the translatability
postulate Lpostulate (b) of Sec. 4.1j because instan-
taneous from the point of view of one observer is not
instantaneous from the point of view of another. This
might appear, 6rst, as a superficial difhculty but all

ways to avoid it imply signi6cant changes in the con-
cept of measurement which may affect the whole
theory. As far as we can see, there are five alternatives.

The 6rst alternative is, naturally, to give up the
postulate (b) that all measurements which can be
performed by one observer can be performed by all.
This is possible, logically, but would reduce the signifi-
cance of relativistic invariance, in our opinion, to an
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0

Fro. l. O~ and 02 are points of output measurements; the 45'
lines are null-lines, i.e., form the light-cones of O~ and O~. The
broken line is inside the past light-cone of 02 and passes through
points vrhich influence the measurement at 02. It&has a space-like
relation to 0&. Similarly, the dotted line is inside the past light-
cone of Oj and has a space-like relation to O2.

undesirable extent. There would be two types of equiv-
alences between observers: the measurements of those
who are at rest with respect to each other have a com-
mon meaning and are translatable. This would not be
the situation for observers moving with respect to each
other.

The other modiGcations of the measurement concept
preserve the postulate of translatability. The Grst pos-
sibility is to restrict the concept of measurements in
such a way that the results depend only on the condi-
tions at one space —time point. Since space —time points
have translatable meanings for all observers, the

difhculty which we are considering disappears. This is
the philosophy of local quantum Geld theories if these
are followed to their ultimate logical consequences. "
Naturally, the Geld can be measured at many points—
perhaps even at a continuum of points —and these
measurements should not interfere with each other as
long as the points of measurement are in space-like
relation to each other. Inputs are usually considered to
be measurements of this nature; the outputs are later
similar measurements, again at space-like points with
respect to each other. It is usually assumed that the
space —time points at which the latter measurements
are undertaken are in a time-like relation to the points
of the input measurements; otherwise the input meas-
urements interfere with the output ones. If this postu-
late—the necessity of which is not clear—is valid,
there would be no two output measurements involving
more than one point in space —time for which the II
function can be calculated without statistical assump-
tions (see Fig. 1) and, at any rate, no pure states. The
reason is that a space —time point, where an output
measurement is possible, would have to lie in the posi-
tive light cone of all input measurements. It then lies,
however, also in the positive light cone of other points
where the initial Geld was not ascertained by the input

~' See, for instance, G. Kills, "Quantenelektrodynamik, " in
Bandbuch der Physik (Springer-Verlag, Berlin, 1958), Vol. 1, p.
169.

measurements and influences the Geld at the output
points. It is not clear that this impossibility to have a
full set of input measurements is a serious defect of
the theory —we constantly rely on not receiving a,

heavy dose of radiation from the parts of the universe
from which are so distant that no radiation could have
reached us so far and about which we can know nothing
positive —but it does make precise experiments im-
possible even in principle.

The second possibility which is consistent with the
translatability postulate is that alluded to in the pre-
ceding discussion; it assumes that measurements are
possible also at points which have a space-like relation
to points where measurements have taken place. Under
this assumption, the input measurements can all pre-
cede the output measurements in some frames of refer-
ence, in other frames of reference they are later in
time. However, as a result of the space-like relation
of these input and output measurements, the corre-
sponding operators commute so that (4.7) gives the
same result in both coordinate systems. Under the
present assumption —which we much prefer to the
preceding one the—simple situation to which (4.6)
refers remains preserved as long as the input observa-
tions are on an entirely space-like surface, and the same
holds for the output observations, and the two sur-
faces do not intersect.

The two alternatives just discussed do not give an
equal wealth of observables as one Qnds in ordinary
quantum mechanics because the Gelds do not enter
into the observable operators in arbitrary combinations
as do the basic operators p and q of ordinary quantum
mechanics. These do permit the measurement of quan-
tities such as

because the measurement of this quantity can be
carried out by measuring rp(x) over all space, and then
calculating the integral. This is possible because q (x)
and y(y) commute if the relation of x and y is space-
like and the integral involves only x and y of such
nature. The two alternatives just considered do not,
however, permit the measurement of a quantity such as

where p and m. are conjugate Geld quantities because in
this case q (x) and m (y) do not commute even if x and
y have space-like relation. As a result, the measure-
ment of the last integral can not be reduced to the
measurement of simultaneously measurable quantities.
Most composite expressions in the Geld quantities are
of this nature and are not measurable if only Gelds are
measurable. In ordinary quantum mechanics, composite
expressions, such as p'+q' are supposed to be meas-
urable even though their measurement cannot be
reduced to the simultaneous measurement of p and q
and subsequent calculation of p'+q'.
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It is very likely, on the other hand, that the in-
stantaneous measurement of such more general opera-
tors is impossible, and we believe that even the meas-
urement of simple 6eld quantities takes an irreducible
minimum of time. This suggests that the measurability
on a space-like surface, which implies an instantaneous
measurability, is a dangerous idealization. Hence, the
third alternative which is consistent with the trans-
latability postulate assumes that all measurements
extend over a finite portion of space —time. Such por-
tions again have a meaning which can be translated
from one coordinate system to another. However, it
is not clear what the actual limitations on the meas-
urability of fields may be, and the consequences of the
limitations of the instantaneous character of measure-
ments have not been explored.

The last possibility concerning measurability gives
this process a much more modest scope than any of
the preceding alternatives. It is an outgrowth of Heisen-
berg's observations which led him to propose an S-
matrix theory. According to this point of view, only
momenta and position coordinates can be measured,
the latter only crudely, and even these quantities can
be measured only on well-separated particles which do
not interact with others. '~ If this point of view is

adopted, it is immaterial whether or not the measure-
ment is instantaneous: the momenta are, for noninter-
acting particles, constants of motion and the absolute
squares of the 5 matrix elements are determined as
cross sections no matter whether the measurement of
the momenta requires a finite time interval or can be
done instantaneously (which it probably can not).
The measurement of the average position (to obtain
the time delay and hence information beyond the
absolute value of the S-matrix elements) is possible
also because the time variation of the average posi-
tion coordinates of free particles is a simple function
of their momenta. One must admit, in spite of some
objections, that this last alternative appears to be the
most realistic one and we must admit that our own
considerations do not do justice to this point of view.
It is, of course, in convict with the extended role of the
laws of nature which we advocated in our Sec. 2. It
permits, in essence, only the calculation of the outcomes
of individual experiments, namely, of collision
processes. 38

5. INVARIANCE AS A TOOL FOR OBTAINING
PROPERTIES OF THE SOLUTIONS OF

EQUATIONS

Invariance principles as de6ned in Sec. 2.4 and also
dynamic invariances are used in physics in two, rather
distinct, manners. They can serve as a guide to obtain

'~ W. Heisenberg, Z. Physik 120, 513 (1943).I'or a comprehen-
sive review, see M. I . Goldberger and K. M. Watson, Collision
Theory (John Wiley 8z Sons, Inc. , New York, 1964).

I' See also G. Kills's remarks to the Discussion gdn6rale at the
1961 Soivay Congress /La Theoree Qaarsttgle des Champs (Inter-
science Publishers, Inc. ,New]York, 1962).

the "law of nature" or the "equation of motion. "
Second, they can be used to solve these equations at
least partially, or to obtain properties of the solutions.

Both uses were already possible in classical, that is
nonquantum, theory. As is well known, the equations
of the general theory of relativity are the simplest, or
at least the most natural, equations compatible with
Einstein's principle of general covariance. "As to the
help which the invariance principles give for solving
the equations of motion, this is provided in classical
mechanics, through the medium of the conservation
laws. The connection between conservation laws and
invariance principles was discussed already in Sec. 3.1.
Actually, the original discovery of the conservation
laws was independent of the invariance principles and
the connection between the two was recognized only
later. "Originally, the conservation laws were used to
provide "integrals of motion, " i.e., as help toward the
solution of the equations of mechanics. One has a com-
plete solution of these equations if one has eliminated.
both the second and the Grst time derivatives of the
coordinates from the equations of motion. Hence, the
complete solution of a problem involving e point-
masses requires 3e second integrals. The conservation
laws for momentum, energy, and angular momentum
give seven 6rst integrals, i.e., permit the elimination
of seven second derivatives. The law of the center of
mass, which is related to the invariance with respect
to Galilei or I.orentz transformations, gives the motion
of the center of mass completely, i.e., gives three second
integrals. Thus, the invariance principles of mechanics
give, through the conservation laws, a considerable
simpliication of the problem, particularly if the num-
ber of constituents is not too large. In recent times this
has received less emphasis than one might expect,
perhaps because the difhculty of solving the ordinary
(nonpartial) differential equations of the mechanics
of point masses is not overwhelmingly great anyway.

The invariance principles proved even more effective
in quantum theory. As far as obtaining the basic equa-
tions is concerned, two cases are particularly note-
worthy: (a) All possible equations for elementary
particles could be obtained from the theory of the
representations of the inhomogeneous I,orentz group. '
This theory does not, however, explain why particles
which are described by some of these equations exist
whereas most of the equations do not describe existing
particles. In particular, the ratio of the masses of the
elementary particles remains unaccounted for. (b) The
proper form of the weak interaction was obtained by

@ See, for instance, W. Pauli, "Relativistatstheorie, "in Enzyklo-
pddee der 3fathemateshea Wesseasohaftel (B. G. Teubner, Berlin,
1921),Vol. 2, p. 722 (p. 159 of the English translation, Pergamon
Press, Inc. , New York, 1958); M. von Laue, Die Relatieistats-
theorie (Friedrick Vieweg, Braunschweig, 1953), Vol. 2, p. 100;
V. Fock, The Theory of SPace Time and Gravitation (Pergamon
Press, Inc. , New York, 1959), p. 171.

4' See E. P. Wigner, Ann. Math. 40, 149 (1939);V. Bargmann
and E. P. Wigner, Proc. Natl. Acad. Sci. (U.S.) 34, 211 (1948);
a].so R, Shaw, Nuovo Cimento 33, 1074 (1964).
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Marshak and Sudarshan, and by Feynman and Gell-
Mann, on the basis of invariance principles. "

The applications of the invariance principles for
obtaining properties of the solutions of the quantum-
mechanical equations fall, broadly speaking, into two
classes. The problems of spectroscopy are concerned
with the discrete part of the energy spectrum. It is
hardly an exaggeration to say that all qualitative rules
of spectroscopy, including the intensity ratios of mul-

tiplet spectra, can be derived from invariance prin-
ciples —some of them exact, others approxima, te.
Similarly, most of the theory of angular distributions
and of angular correlations of the products of collisions
and of disintegrations, can be based most naturally on
the analysis of the invariance properties. A recent
example of the use of inva, riances in spectroscopy is
given by the work. of Ne'eman and Gell-Mann on the
spectroscopy of strongly interacting elementary
particles. 4'

The applications concerning the partial solution of
the equations can be best summarized by the state-
ment that an e-parametric group permits in the general
case the elimination of m variables; e discrete group
elements reduce the variability domain of the variables
by a factor e. These statements4' are not complete,
however, because, depending on the state, the number
of unknown functions is increased. The increase in the
number of unknown functions (which is equal to the
dimension of the representation encountered) is usually
quite small and is particularly small for the low-lying
states. Again, the simpli6cation introduced by sym-
metry principles is much greater than in classical theory
in which, for instance, the discrete group elements can
be used only in a somewhat esoteric fashion. Naturally,
the partial solution of the quantum-mechanical equa, -

tions by means of invariance principles, and the deter-
mination of the properties of these solutions discussed
in the preceding paragraph, are not independent of
each other.

5.1. Reasons for the Increased Importance of
Invariance Principles in Quantum Theory

It is natural to ask for the reasons of the greater
effectiveness of the invariance principles in quantum
theory than in classical theory. The principal invari-
ances are the same in both theories and are those which
were mentioned before: invariance with respect to
rotations and Galilei or Lorentz transformations de-
pending on whether one uses nonrelativistic or rela-
tivistic theory. The reason for the greater effectiveness

4'R. E. Marshak and E. C. G. Sudarshan, Phys. Rev. 109,
1860 (1958);R. P. Feynman and M. Gell-Mann, Phys. Rev. 109,
193 (1958);G. S. Gehrstein and A. B. Zeldovitch, Zh. Eksperim.
i Teor. Fiz. 29, 698 (1955); J. J. Sakurai, Nuovo Cimento 7,
649 (1958).

'2Y. Ne'eman, Nucl. Phys. 26, 222 (1961); M. Gell-Mann,
Phys. Rev. 125, 1067 (1962}.

3 See E.P. Wigner, Gruppentheorie und ihre Ann endung auf die
Quantenmechanik der Atomspektren (Friedrich Vieweg, Braun-
schweig, 1931), Chap. 19. (English transl. : Academic Press Inc. ,
New York, 1959.)

of these principles in quantum theory seems to be that
the set of possible states in this theory has a linear
structure. 44 The set of general states is a linear manifold,
that is, one can obtain a state by superposing any
number of other states, with arbitrary coeScients.
This superposition principle can be combined with the
invariance principles and renders the latter much more
fruitful than they were in nonquantum theory. The
superposition principle is lost in that limiting case of
quantum theory which corresponds to classical theory
because, in the transition from quantum to classical
theory, one employs not only a limiting process but
also discards all states in which coordinates and veloc-
ities do not have, in the limit, sharply defined values.
In quantum theory, the invariance principles a,re most
effective for states, such as the low-lying states of atoms,
in which rather wide ranges of both velocities and posi-
tions have appreciable probabilities.

The preceding discussion indicates that the role of a,

symmetry principle should become the same in quantum
mechanics as in classical theory if a superposition of
the initial state and that obtained by the symmetry
operation is not meaningful. This is the situation if the
two states are separated by a superselection rule. This
situation occurs indeed; the only consequence of the
symmetry is then, just as in classical theory, that the
states connected by the symmetry operation behave in
the same way.

It may be of interest to spell out in detail how the
linear str'ucture of the underlying Hilbert space renders
the use of invariance principles more effective. Con-
sider, for instance, a rotation by 7t- and denote the cor-
responding operator by 0„. It follows from develop-
ments sketched in Sec. 4.8 that, for integer spin, 0 '= 1.
Consider now an arbitrary state P; there exists then
another state 0 P the properties of which are related
to those of P in a rather obvious manner. This is in
itself an interesting piece of information; it is valid
both in classical and in quantum theory. However, in
quantum theory one can infer also the existence of the
state &=/+0 P for which 0 P=P is valid. This
means that there is a state p which is invariant under
the rotation considered. In fact the other state P'=
p—0 1t is also invariant because 0 p'= —@' represents
the same state as P'. Since P= ', (p+g'), this-state-
and in fact every state —can be written as a superposi-
tion of invariant states. These statements, and their
generalizations for more, and for more complicated,
symmetry operations go much beyond the statement
of the existence of a "rotated state" 0 P and illustrate
the power which the linearity of the Hilbert space gives
to invariance principles.

5.2. Matrix Form of Invariance Operators

Ke have introduced, in Sec. 4.8, the operators OI,
and Uq which could be given two interpretations: the

44 This point was emphasized already in the article of Ref. 5
and in the lecture of C. N. Yang at the 75th Anniversary of Bryn
Mawr College, 1959.
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Uig~= QD(&),A; (5.2)

It is easy to verify, by applying U„ to both sides that

D(p)D(X) =D(pX). (5.3)

If U„were anti-unitary and D(p);I, is defined as in

(5.1), one would have, instead of (5.3)

D(p) D(X) *=D(pX). (5.4)

The unitary nature of the matrices D(X) and D(ii)
follows from (5.2), and the fact that the P;, U&,P; and

U„f; are unit vectors, no matter whether the operators
Uz and U„are unitary or antiunitary. The set of
matrices which satisfy Eqs. (5.3) and (5.4) are said to
form a corepresentation4' of the group of operators
U)„U„.

The purpose of the preceding calculation in the pres-
ent context was to give a matrix form to the invariance
operators. This renders the following consideration of
the use of these operators for the partial solution of
definite problems more visualizable.

5.3. States vrith Zero Spatial Momentum and
De6nite Energy

The problems toward the solution of which invari-
ance principles contribute most can be formulated in
terms of invariance transformations. The most im-

portant case is that in which one asks for the states for
which:

(a) the spatial components of the momentum are
zero (i.e., the states are invariant under spatial
displacements);

(b) the energy has a definite value E (states, the
state vectors of which are multiplied by a factor
exp (iEt/A, ) under a time displacement by t) .

We shall use the example of this set of states to discuss
the use of invariance principles for a partial solution
of problems. It may be noted, Grst, that it follows from
the linearity of the displacement operators that the set
just defined forms a linear manifold. This linear mani-
foM is clearly invariant under the group of all displace-
ments. It is, however, also invariant under the group
of purely spatial rotations, proper or improper (if the
latter are contained in the symmetry group), and
under the combination of these elements with time

~ See the English translation of the Book of Ref. 43, Chap. 26.

passive one of (4.30) or (4.30a), giving the transforma-
tion of observables to a Lorentz-transformed coordinate
system, and the active one (4.30b), which defines their
effect on state vectors. Let us introduce a complete
orthonormal set fi, P2, ~ ~ ~ in one of the coherent sub-
spaces and consider the matrix elements

(O', U~A) =D(&)'~ (5.1)

One infers from (5.1) and the complete orthonormal
nature of the P; that

inversion. In order to find the linear manifold in ques-
tion, one can consider those matrices of the repre-
sentation D(X) which correspond to the subgroup of
displacements. These form a representation of the dis-
placement group which is, of course, not irreducible.
We may imagine that D(X), as representation of the
subgroup, is reduced out and select the states which
belong to the representation in which to a displacement
by the four-vector t, x the (one-dimensional) matrix

/[exp (i Et/fi) )] (5 5)

corresponds. LNote that (5.5) is independent of x;
i.e., the states in question are invariant under displace-
ments by spatial vectors x.]

It should be noted that, strictly speaking, in the
original Hilbert space of the system, there can be no
state vectors which satisfy condition (a). The reason
from the point of view of physical concepts is that there
are no states in which the linear momentum would
have a sharply defined value. This can already be
inferred from the uncertainty relations. The mathe-
matical counterpart of this fact is that the permissible
representations of the Poincare group, if considered
as representations of the subgroup of spatial transla-
tions, are integrals rather than sums of the irreducible
representations of this subgroup. Similar to the situa-
tion encountered in continuous spectra, it is possible
to approximate states which belong to an irreducible
representation of the subgroup of spatial displacements,
but it is not possible to obtain them. Condition (a,)
requires states which are invariant under the spatial
displacement operators. The aforementioned approxi-
mation means, in this case, that given a finite set of
displacements, it is possible to 6nd a set of state
vectors each of which diGers arbitrarily little from the
state vector obtained by applying a member of any
finite set of displacement operators to it. Furthermore,
a limiting process can be defined" leading to a new
Hilbert space, the vectors of which are strictly in-
variant under all spatial displacements and are ideal
elements (limiting cases) of the vectors of the original
Hilbert space. This means that states with zero mo-
mentum can be defined, that they form a Hilbert
space, and that their properties are limits of the prop-
erties of true physical states. We shall be concerned,
henceforth, with vectors of this new Hilbert space.

As far as condition (b) is concerned, there are now
three cases to be distinguished.

(I) The representation (5.5) is not, contained in
D(X) if this is considered as representation of the sub-

group of displacements. In this case there are no states
with zero momentum and energy E.

(II) The representation (5.5) is contained as a
discrete representation in D(X). If it is contained l

~ For the mathematical development of this concept, see J. v.
Neumann, Ann. Math. 50, 401 (1949);F. I. Mautner, ibid. 51, 1
(1950);52, 528 (1950); G. W. Mackey, ibid. 55, 101 (1952);58,
193 (1953); also J. Dixmier, Les Alghbres d'Operateurs dens
I,'Espace Hilbertieg (Gauthier-Villars, Paris, 1957).
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times, there are / linearly independent states which
satisfy our criteria. In principle, L could be infinite.
At any rate, these states belong to the discrete spec-
trum of the time-displacement operator in the new
Hilbert space, or, as is said more commonly but some-
vrhat less completely, they belong to the discrete spec-
trum of the energy. The study of this case is of principal
concern to spectroscopy.

(III) The representation (5.5) is contained as repre-
sentation of the subgroup of time displacements in
that part of D(X) which is an integral, rather than a
sum, of irreducible representations of the subgroup of
such displacements, even in the new Hilbert space.
The corresponding "states" then belong to the continu-
ous spectrum and their consideration involves the
problems which are associated vrith the "states" of the
continuous spectrum. It is generally assumed that the
absence of true states in the continuous spectrum leads
only to formal complications and this can be adequately
motivated. The problems of this case belong to collision
theory.

It could occur that the representation (5.5) forms
part of both the discrete and the continuous spec-
trum. 47 In this case, the true states associated with the
discrete representations could be considered separately
from the "states" associated vrith the continuous spec-
trum. The former are the subjects of the study of
spectroscopy, the latter the subjects of collision theory.

The important point is that, in any case, the linear
manifold obtained is invariant under rotations, re-
Rections and time inversion. This is clear intuitively
because a state with linear momentum zero maintains
this property under all these operations and the energy
is also invariant under them. Arguing more formally,
one can note that, as far as rotations are concerned,
the corresponding operators are, in the isomorphism to
the group given in (4.34), images of (0, I), where u
is unitary. The spatial displacements are (l4, 1), where
the trace of I4 is zero. Finally the operators of displace-
ment by t along the time axis are images of (ti, 1).
Hence, the linear manifold in question is de6ned by
the equations

U(a. .i)4'=4' (5.6)

U(,i,i)P= exp (sEt/h)P (5.7)

It follows, furthermore, from (4.34) that

(h„1)(0, I) = (h„g) = (0, I) (I 'h, N, 1), (5.8)

since xI~=1. Furthermore, the trace of I 'h, N is also
zero. Hence, since the group relation (4.34) applies
also to the operators

U( l)st U( u)pt'$ (U()s, ,1)U(pu)4U(p, ac,) U'(u 's, u, l)4'

=U(o, )LU( 'p. ,i)))t'3=U(o, )4'i (59)
since the I4 in (5.6) is arbitrary except that its trace is
zero. It follows that U(p, „)f satisfies the equation

4i L. Fonda, Ann. Phys. f(N. Y.}22, 123 (1963).

(5.6). Similarly, it follows from (4.34) that

()'1, 1) (0, I) = (t1, I) = (0, I) (t1, 1) (5.10)

since Nt1N '=tNN '=t1. Since the same equation ap-
plies to the operators vre have

U(n, i)LU(p )P]= U(p )U(n i)4'= U(p „) exp (sEt/5)P

= exp (sE1/6) U(p „)P, (5.11)

so that the second equation (5.7) is also satisfied by
U(p, „)f. Hence, the linear manifold defined by (5.6)
and (5.7) is invariant under the U(p, „)—which is
what was to be proved. The discussion of the effect of
the reQection operators will be omitted.

It is to be noted that the invariance of the manifold
defined by (5.6) and (5.7) under rotations is not a
group-theoretical result. The spatial displacements do
not commute with the rotations, only, as (5.10) shows,
displacements along the time axis. One could say,
rather, that it is a representation theoretical result
because it applies to the particular representations of
the displacement group in vrhich the spatial displace-
ments are represented by the unit matrix. Hence, if
one uses another representation of the displacement
group, the corresponding vectors will not be invariant
any more under rotations (though they will be in-
variant under another subgroup of the homogeneous
Lorentz group, the one which leaves the corresponding
momentum vector unchanged). Similarly, the con-
sideration cannot be carried over to groups, such as
the deSitter group, in which the invariance with respect
to spatial displacements cannot be equally simply
speci6ed.

5.4. The Discrete Spectrum

Ke shall follow the argument of the preceding sec-
tion somevrhat further because it shovrs more con-
cretely the reason for the increased usefulness of in-
variance arguments in quantum theory than the some-
what abstract considerations of Sec. 5.1.

In the preceding section vre obtained a linear mani-
fold of states which is invariant under displacements
Lin a trivial way, see (5.6) and (5.7)), and also in-
variant under rotations and rejections. The states of
this manifold therefore belong to a representation of the
group formed by these transformations, just as all the
states belong to a representation of the Poincare
group. However, whereas the latter representation is
not irreducible, the former one almost invariably is.
This means that the reduction of the total Hilbert
space to those functions which transform under dis-
placements according to (5.6) and (5.7) reduces the
whole linear manifold of the Hilbert space to such a
degree that this reduced. linear manifold belongs to a
single irreducible representation of the very much
smaller subgroup which contains only displacements,
rotations, and their products, but no true Lorentz
transformations. Furthermore, since, according to
(5.6) and (5.7), the matrices corresponding to dis-
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placements are all definite multiples of the unit matrix,
the representation is essentially determined by the
matrices which correspond to rotations

D'(o..)lt's = ZD(N) e4" (5.12)

These matrices, as indicated in (5.12), form a repre-
sentation of the two-dimensional unimodular unitary
group (we disregard the refiections for the present).
The eGect of all operators of the subgroup is contained
in Eqs. (5.6), (5.7), and (5.12).

The irreducible representations of the two-dimen-
sional unimodular unitary group can be characterized
by an index j which can assume the values 0, —'„1, ~,
~ ~ ~, the corresponding representation has 2j+1 dimen-
sions. Hence, the D in (5.12) should have an upper
index D&»; the linear manifold of the states is 2j+1
dimensional, both k and i can assume 2j+1 values
only. It follows that we have, in (5.12), an infinity of
equations (corresponding to the infinite number of
matrices I) for a finite number of functions, namely
2j+1 functions f&. On account of the continuity of the
group and its representations D&&~ and on account of
the finite number (three) of group parameters, these
infinitely many equations come to the same thing as a
finite number of differential equations. It is natural
that these differential equations determine many of
the properties of the ifs.

It is interesting to compare this situation with the
one prevailing in classical theory. In classical theory it
is true, also, that a state of zero linear momentum and
energy E remains such a state even if subjected to a
rotation. However, the number of such states in clas-
sical theory is infinite and every rotation of a given
state leads to a new state, and there is no further rela-
tion between these states. Hence, rotational invariance
of the states does not permit one to determine any of
the properties of any state, at least not in a simple
fashion. In quantum theory, there are also infinitely
many states and it is also true, as a rule, that every
rotation leads to a diferent state. However, these
states form a linear manifold and, as (5.12) shows, all
of them can be expressed linearly in terms of a few

(2j+1) of them. It is this finite basis for all the states
which have zero spatial momentum and a definite
energy which makes the rotational invariance in quan-
tum theory so meaningful.

One may wonder whether we have not lost a great
deal of information by having restricted ourselves to
the operators which correspond to a subgroup, rather
than having considered all the operations of the Poin-
care group. Since every transformation of the Poincare
group can be obtained as the product of a transforma-
tion of the subgroup and of a true Lorentz transforma-
tion, ' and since we do consider all transformations of
the subgroup, only the true Lorentz transformations

We mean by a "true Lorentz transformation" the transition
to a moving coordinate system, without rotation. The corre-
sponding matrices in four-dimensional space are symmetric, the
A of (4.34) which correspond to them are Hermitian.

need be further considered. However, every true
Lorentz transformation transforms a state with zero
spatial momentum into a new and linearly independent
state so that these transformations yield as little in-
formation on the properties of the original functions as
any of the transformations yield in nonquantum theory.
The consideration of the true Lorentz transformations
only shows that the original states can be given any
velocity. As a matter of fact, the states obtained by a
true Lorentz transformation from the states of the
linear manifold defined by (5.6), (5.7) give an irre-
ducible representation of the Poincare group which is
characterized by mass E/cs and spin j.This representa-
tion is one of the irreducible representations contained
in the representation of the Poincare group which is
induced by all the possible states of the system. Other
irreducible parts are generated by the states which
correspond to other discrete energy values and by
states which correspond to the continuous spectrum.

5.5. The Continuous Spectrum

The situation in the case of the continuous spectrum
differs from that of the discrete spectrum, from the
invariance-theoretic point of view, principally by the
fact that the representation induced by rotations on
the functions satisfying (5.6) and (5.'I) (again with a
single definite Z) is not irreducible. This corresponds
to the fact that a continuous spectrum can be present
only if one has at least two free particles, that is two
particles not bound to each other. The angular mo-
mentum of two such particles due to their motion about
their center of mass can assume, for any value of the
energy, any value 0, fi,, 2A, ~ ~ . This manifests itself in
the presence of either all the representations of the
unimodular two-dimensional unitary group with integer
spin j or all those with half-integer spin j, which are
present in the whole representation of the Poincare
group, if this is considered as a representation of this
subgroup.

The fact that the angular momentum of two par-
ticles can assume any value which is a multiple of h is
not the only reason for the appearance of infinitely

many irreducible parts in the representation (5.12)
of the unitary subgroup. In many if not most cases, the
existence of several pairs of particles, or even of three
or more particles, is possible at energy E. All this
multiplies the number of irreducible parts of the
representation which appears in (5.12) so that not
only an infinity of irreducible representations are
present in the D(U) of (5.12), but every one occurs
several times —infinitely many times if three free par-
ticles are possible at the energy E. All this complicates
the application of invariance principles in the continu-
ous spectrum, that is, for collision problems. The corn-
plications are most severe if three or more free particles
can be present at the total energy E, of the system, and
have been attacked only recently with success."

4s A. J. Macfarlane, Rev. Mod. Phys. 34, 41 (1962); G. C.
Wick, Ann. Phys. (N. Y.) 18, 65 (1962).
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+(h, ,llfm Pm p (5.13)

and that f & is a member of a set of state vectors f„&
with e= —j, —j+1, ~ ~, j—1,j for which

U'&o, &0 '=gD' (u) f ' (5 14)

holds. These conditions do not completely specify P &,

something like the energy condition (5.5) would yet
be necessary. Instead of this, it is postulated that a
very large time displacement bring f ' asymptotically
into a form in which it can be well de=cribed in the
product space of two irreducible represen, "ations, i.e.,
in which two particles are present. The sta, te vectors
in that space can be labeled, most conveniently, by
the spatial components p&, p2 of these particles„and by

~ See, for instance, J. M. Blatt, and L. C. Biedenharn, Rev.
Mod. Phys. 24, 258 (1952); L. C. Biedenharn and M. L. Rose,
ibid 25, 729 (195.3).

There are two principal sets of phenomena relating
to the continuous spectrum to which invariance prin-
ciples can be applied most advantageously. The erst
of these concerns the angular distribution of disinte-
gration products, and even more importantly, the cor-
relations between the directions of motion of succes-
sively emitted particles of disintegration. The second
area in which invariance principles proved very useful
concerns the angular distribution of products resulting
from collisions, that is the angular distributions in
scattering and reaction processes.

There are good review articles on both these applica-
tions" and we shall restrict ourselves to a few remarks
concerning a disintegration process of the most simple
character. It must be admitted that, even then, the
initial state is difficult to de6ne in the framework of
orthodox quantum mechanics. One should somehow
express the fact that the system —usually a radioactive
nucleus —has not yet disintegrated and there is no
"physical quantity" with a definite operator attached
to it, which would measure the degree of disintegration.
However, we shall use only some simple invariant-
theoretic properties of the initial state which are well
defined: that the spatial components of the momentum
are zero, that it has a de6nite angular momentum j,
and that we are dealing with a polarized nucleus, i.e.,
the component of the angular momentum in a de6nite
direction, usually taken as the direction of the Z axis
of the coordinate system, has a definite value ns. The
mathematical expressions for these conditions are very
similar to those considered for the discrete case. The
principal difference is that no explicit assumption con-
cerning displacements along the time axis are made,
i.e., that the energy is not specified. In fact, the speci6-
cation of a definite value for the energy would render
the properties of the system independent of time
whereas those of a disintegrating particle clearly de-
pend on time.

The expressions for the specified properties of the
state vector f ' are

their polarization variables m~, m2. If we assume that
the product particles have zero spin, the spin variables
become unnecessary. The state vector will then assume,
for a very large time displacement, the form

where Q is the direction of p&
—p2. The delta-function

dependence of P follows from (5.13) because of
(4.36a) in which the components of pl+ps have to be
substituted for those of P, The function x has, in
typical disintegration processes, a sharp maximum as
function of

I pl —ps I, but this is not relevant for our
purposes. However, the dependence on Q, i.e., the
angular distribution of the relative momentum y~ —p~
can be deduced from the fact that the operation of
(5.14), i.e., the rotations, commute with time displace-
ment. Hence, (5.14) must be valid also for the P of
(5.15) and its partners, obtained from the P„& by time
displacement.

It follows from the physical meaning of the momenta

p~, p2 of the two particles that these transform under
rotations as vectors. In particular, if Uy, „~ is applied
to a f, as in (5.14), the variables pl, ps are replaced
therein by the vectors which are obtained from them
by the rotation which corresponds to N. This is accom-
plished most easily by introducing matrices h& and h2

as variables instead of p~ and p2. These matrices are
formed according to (4.34a) with the components of

pq and p2 for x, y, and s, and 0 for t. We then have

U(e,„)g (h» hs) =$(uthlu, uthsu) . (5.16)

Setting erst 0 parallel to the Z axis, and using a
diagonal I, one concludes that only xo is different from
zero if Q is parallel to Z. Applying then (5.14) to a u
which diagonalizes the matrix h=hl+hs one sees that
x, as function of Q, is proportional to D~" (u)s,
where I is a unitary matrix which diagonalizes the
matrix h. The angular distribution is then proportional
to

I
DU&(u)s

The preceding calculation, leading to a concrete
result, was carried out to show how such results can be
obtained for one problem, involving the continuous
spectrum as dehned before, from the very general
premises from which we started. It is not a particularly
useful result, not only because we assumed that the
particles produced by the disintegration have zero
spin —this assumption can be easily avoided without
encountering serious difhculties. Its principal weakness
is that it refers to a state which is "polarized, " i.e., in
which a component of the angular momentum has a
definite value. This is, of course, dificult to achieve
experimentally. More useful are angular correlations
between successive disintegrations, that is, directions
of three or more disintegration products. The reason
we chose the present example is that the formulas for
such cases, though in practice well established, require
for their derivation from our basic assumptions more
lengthy considerations than were necessary in the case
considered.


