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A conservative system composed of a collection of interacting ions plus externally applied forces
is considered. The mechanical problem of motion is defined for such a system, and the equilibrium
and the translational and rotational invariance conditions discussed. It is shown that the second
equilibrium condition of Born and Huang, namely that the stresses must vanish in the equilibrium
configuration for the infinite lattice model, is not a requirement of the theory. The dynamical matrices,
whose eigenvalues are simply related to the phonon frequencies, are shown to be of the same form
for a homogeneously strained crystal as for an ideal unstrained crystal. The elastic constants of a
homogeneously strained crystal are calculated by the method of homogeneous deformation, and also
by the method of long waves. The quantities which are observed in the measurement of sound
velocities in strained crystals are the effective elastic constants, which differ from the elastic constants
by terms involving the stress components. These effective elastic constants are also calculated in
the lattice theory, and their properties are discussed.

I. INTRODUCTION

The theory of lattice dynamics has not been devel-
oped for a crystal which has applied stresses. The
difficulties which have prevented this development are
intimately associated with the problem of calculating
the elastic constants of a stressed crystal.l'? Leibfried
and Ludwig?* have derived the elastic constants for a
primitive lattice in the presence of isotropic pressure.
They used the method of homogeneous deformation,
and showed how surface effects are to be eliminated.®
Here, the method of homogeneous deformation and
lattice dynamics are extended to the case of a crystal
in a homogeneously strained initial configuration, by
explicitly including externally applied forces in the
formulation of the problem.

In order to define the stresses and elastic constants
for a crystal, the lattice treatment is compared with
thermoelastic theory. This theory has been developed
for homogeneously strained elastic media,5® and the
appropriate results are reviewed in Sec. II. In Sec.
III, the mechanical problem of motion of a collection
of ions in the presence of externally applied forces is
defined, and equilibrium and invariance conditions are
obtained. In Sec. IV the method of homogeneous de-
formation is applied to a finite crystal with externally
applied forces, and the stresses and elastic constants
are derived. Section V outlines the extension of well-
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known results of lattice dynamics to the case of a
stressed crystal, and applies the method of long waves
to the calculation of the elastic constants. In Sec. VI,
the effective elastic constants, which are directly ob-
served in ultrasonic experiments, are derived in the
lattice theory, and their symmetry properties are dis-
cussed.

II. THERMOELASTICITY

Elastic Medium with Zero Initial Strain

This brief outline is based primarily on the work of
Thurston® and Thurston and Brugger.® Their notation
has been changed so as to mesh smoothly with that
used in lattice theory. Throughout Sec. II, the Ein-
stein summation convention is used.

Let the position of a material particle in the ideal
unstrained configuration (zero stress) be a, and the
position in a strained configuration be X, where the
Cartesian components are indicated by a;, x;, respec-
tively, ¢=1, 2, 3. The displacement vector is u and
the symmetric finite strain parameters are s;;:

dxy, O Ou;  Ouj; Ouy du
s i (B2 g )G Sy ST, (2
da; 0a; da; da; da;da;
Now the following definitions are made:
OFE oF
Lii=pll —) = 2.3
o) (5. (23)
Qi 0*E
S o= —2) = 24
Crim (6Skz)s p0<askl65ij>s’ (24)
I a*F
To=(—2) = 2.5
Crik <askz>'r pu(asklasiJ)T, (25)

10 F, D. Murnaghan, Finite Deformation of an Elastic Solid
(John Wiley & Sons, Inc., New York, 1951).
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where E and F are, respectively, the internal energy
and Helmholtz free energy per unit mass, .S and T are
entropy and temperature, and po=p(a) is the density
of the medium in the unstrained configuration. The
t;; are thermodynamic tensions conjugate to the vari-
ables (s;j/po), and the ¢S;jx1, ¢Tijn1 are, respectively,
the adiabatic and isothermal elastic constants. As a
result of their definitions, the tensions and elastic con-
stants must have the complete “Voigt symmetry.”1!

bii=1j; (2.6)
Siinr=Simi=cSiju=cSpuj; similarly for 7. (2.7)
The stresses are then given by

Tii=%)§—2:§j:—zu, (2.8)
where J is the Jacobian of the strain
Jo= | 0x:/da; | =po/p(%). (2.9)

The equation of motion for adiabatic propagation, in
the presence of body forces f;, is

potii— Jo fi= Sin1(0%ur/da0a1),
and the expansions for £ and F are
poE(sij, S) =pE(0, S)+tijsij+5c5imsissuit -,
(2.11)
poF (35, T) = poF (0, T) +tijs:5+5CTsmasissuit= =+,
(2.12)

where the coefficients (Z;;, ¢S:jx1, etc.) are evaluated at
zero strain (s;;=0).

(2.10)

Homogeneously Strained Elastic Medium

Let the medium undergo a homogeneous strain from
the positions a to new initial positions r. If the defini-
tions (2.1)—(2.5) are retained, the equation of motion
for adiabatic propagation through the strained medium
becomes??

poz‘ii—Jofi=21'si,-kl(62uj/aak6a;), (2.13)
where

A8, i1 =1165 7+ dimd 28 tm - (2.14)

Here the tilde means to evaluate at the initial state r,
and
dijz (37’,‘/30,‘). (215)

Change of Reference Configuration

Up to now the motion of the material points in the
elastic medium has been defined with respect to the
positions of these points in the unstrained medium.

11 Tt is understood that all derivatives are taken symmetrically,
after the manner of Green (Ref. 7), so as not to violate the con-
dition s;5==sj;.

In the lattice theory (Secs. IIT-V), the crystal is con-
sidered to be in an initial state of strain, and the
motion of the material points with respect to their
initial positions is studied. This circumstance, whose
necessity is discussed further in Sec. VII, requires
that the above results of thermoelasticity be expressed
in terms of motion with respect to the initial strained
configuration r.

Therefore, make the following definitions, where
p1=p(r) is the density of the strained medium.

Usi=wi—rs, (2.16)
Oy, 0 oU; oU; aU, U,
Sijzé(ﬁﬁc—%):%( e —*f>,
074 07 ai’j ar; 074 81‘j
(2.17)
oE oF
Ti=pl — ) =pol — ) , 2.18)
! p1<65ij>s p1<aSi]‘)T (218)
a7 O’E
s :<__“> - (m_> 219
NSkl s o 3511954/ (219)
a7 a’F
cr. =< zf) - <_W) 2.20
e dSki/r o 98511085/ r (220

According to these definitions, the coefficients T,
C5;ir1, etc., must again have the complete Voigt sym-
metry, (2.6) and (2.7), and the expansions for E and
I are

p1E(Sij, S) =pE(0, S)+T:;Si+5C% 1S Seit -,
(2.21)

p1F (Sij, T) =piF (0, T)+ TS+ 5C 58185kt + +,
(2.22)

where the coefficients (75, CS;j, etc.) are evaluated
at zero strain from the initial configuration (.5;;=0).

It is possible to relate #;; etc., to T etc., and also
to convert the equation of motion (2.13) to an equa-
tion of motion with respect to the initial strained con-
figuration. In order to do this, it is helpful to use the
relations

92U ;/ 07 j0r,= 0%u;/ Or j0rs, (2.23)
S/ 9sk1="bribuj, (2.24)
bij=(9a;/0r;) = (1/d}). (2.25)
It then follows
tii= (po/p1) bird 1T 1, (2.26)
Siie1= (po/ 1) DimD jnbicpb 19C mnpg, (2.27)
and (2.13) becomes
oiUi— Ty fi= [T jibat Cijui (02U or;0ry),  (2.28)
where Jy is the Jacobian
Ji= | 6xi/or; | =p/p(), (2.29)



and in (2.28) the coefficients T'j;, CS;j; are evaluated
at S;;=0. When body forces are neglected, (2.28) is
of the same form as that given by Toupin and Bern-
stein,® and also by Green,” for a homogeneously strained
elastic medium. Finally the stresses (2.8) may be
written

L% (2.30)
i ]1 o7k 67’1 kb Y
rij=Ti; when Si;=0 (2.31)

Alternative Definition of Elastic Constants

It is physically reasonable to consider the problem
of the motion, with respect to the initial configuration,
of a homogeneously strained elastic medium as com-
pletely analagous to the motion of an unstrained elastic
medium. An equation of motion for adiabatic propaga-
tion may then be written down by analogy with (2.10)7:

prUi— T fi= F553.1(32Uw/ 97 1977) . (2.32)

By comparison with (2.28), it is seen that these “effec-
tive” elastic constants are related to those defined by
(2.19) according to

ESiji=T jidar+ CSijur.
It is the effective elastic constants which are observed
in the measurements of sound velocities in strained
crystals 2~ while the constants CS;;; are derivatives
of the internal energy. For general nonisotropic initial
strains, the constants ES;;; do not have the complete
Voigt symmetry (2.7); this point is discussed further
in Sec. VL.

(2.33)

III. BASIS FOR LATTICE THEORY WITH
EXTERNALLY APPLIED FORCES

Definition of the Problem

The system to be considered is a collection of inter-
acting atoms or ions plus that part of the external
world which exerts forces on these ions. Let the ions
be labeled by the index ». In the presence of the inter-
actions among the ions, and also the externally applied
forces f, (each f, is applied to the ion »), the ions
assume an equilibrium configuration, with positions r,,
in which the net force on each ion vanishes. The prob-
lem to be studied is the motion of the system about
this initial equilibrium configuration; this motion is
conveniently described in terms of the displacements
U, of the ions from the positions r,. Throughout this
paper, the £, are considered to be independent of time,

12D, Lazarus, Phys. Rev. 76, 545 (1949).

BR. E. Schmunk and C. S. Smxth Phys. Chem. Solids 9, 100
(1959); W. B. Daniels and C. S. Smxth Phys. Rev. 111, 713
(1958) ; W. B. Daniels, ¢bid. 119, 1246 (1960)

14 H. J. McSkimin, J. Acoust. Soc. Am. 30, 314 (1958); H.
McSkimin and P. Andreatch Jr., J. Appl. Phys 34, 651 (1963)
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and the U, are always considered to be small, but not
infinitesimal.

In order to define the energy of the system as a
function of the U,, two assumptions are made.

(a) The potential energy of the collection of ions,
due only to interaction among the ions, is a continuous
function of the variables U, (and only these variables)
in the region of small U,. Thus the potential due only
to interactions among the ions may be expanded as

P(1,40,)=P(1,)+ 2 XU

+% Z Avi,y'ilinUyli;+ XN

vyl i3l

(3.1)

where 7 represents a Cartesian coordinate.!® This ex-
pansion defines the potential energy coefficients X,;,
Ay, etc., as functions of the imitial configuration.
The coefficients A,;,i» are symmetric in the index
pairs (v, ¥'7').

(b) All forces, including those applied by external
sources, are derivable from potential functions. If
W (r,) is the work done on the ions by external forces,
the total potential of the system in the equilibrium
configuration is

Q(IV) =P(l',,> “W(l‘» . (32)

Then Q(r,) is conserved in any real variation of the
r, which is brought about by a change in the f,.

Now if the ions undergo a virtual displacement U,,
i.e., a displacement in which the f, remain fixed, the
work done by external forces is “"Zvi f»iUys; and the
potential of the system is given by

Q(r"+UV) = Q(rv) +E(sz_fw) Uw‘

v,%

+% Z Avi,ﬂ’i’Upinlil—*— oo,

vyl ii!

(3.3)

The Hamiltonian for the initial system (ions plus ini-
tial external forces) is

se=T(U,) +Q(r,+U,), (3.4)
T(U.) =3 2.M,(U.)?%, (3.5)

where M, is the mass of ion », and U, is the time
derivative of U,;.

The Equilibrium Condition

The equilibrium condition for the static configura-
tion is that the net force on each ion vanishes. The
total force on ion » in direction 4, when all U,=0, is

— (aQ/an') (at all U,;=0) = Xyitfoi

15 In the remainder of the paper, the Einstein summation con-
vention is not used, and Cartesian indices are always denoted by

2,0, o0,

U Equations (3.1) and (3.3) imply that the potential energy
does not depend explicitly on other coordinates of the ions, such
as spin direction; Ref. 4, footnote 26a.



60 REVIEWS OF MODERN PHYSICS *« JANUARY 1965

Thus
X,,i—f,,i':o, all (V, ’L), (36)

As a result of this condition, Q(r,~+U,) is a stationary
function (and presumably a relative minimum) with
respect to arbitrary virtual displacements of the ions
from equilibrium. Neither P(r,+U,) nor W(r,+U,)
is stationary in general.

The translational and rotational equilibrium of the
collection of ions as a whole requires the conditions?

D=0, all4; (3.7)

equilibrium condition.

> fritvir is symmetric in (4, 4'), all (i, ). (3.8)

v
These conditions are contained in (3.6), since for phys-
ical reasons a collection of ions should not experience
a net force or torque as a result of the interactions
among the ions, i.e.,

>°X,=0, alli; (3.7a)
v

> X, is symmetric in (4,4'), all (4,4). (3.8a)
In view of (3.6), these equations are identical with
(3.7) and (3.8).

When application is to be made to a crystalline
lattice, it is convenient to eliminate surface effects.
This may be done by considering the interior of a
finite crystal, as in the present paper (Secs. IV and V),
or with the aid of the idealization of the infinite lattice.
Born and Huang! have stated that in addition to the
requirement that the net force on each ion vanishes, a
second equilibrium condition is required for the infinite
lattice model, namely that the equilibrium configura-
tion corresponds to vanishing stresses. This second con-
dition is equivalent to requiring that P(r,+U,) per
unit volume be stationary with respect to a homogene-
ous deformation of the lattice. To show this, P(r,~+U,)
per unit volume can be written as a series in the strains
S, when the displacements U, are taken to be a ho-
mogeneous deformation [see (4.4) below].

VP (1,4U,) =VP(6) + 2 CivSite v, (3.9)

where V is the volume of the crystal. In (3.9), the Cy;
are components of the stress tensor in the equilibrium
configuration, and the requirement that C; vanish is
equivalent to the requirement that P(r,+U,) be sta-
tionary with respect to a homogeneous deformation
from the equilibrium configuration. As an example, it
is easily shown that for the central force model of Born
and Huang (Ref. 1, article 29), the condition that
P(r,+U,) per unit volume is stationary with respect
to arbitrary .Sy is identical with their condition (29.17)
for vanishing stresses.

An essential point of the present paper is that the
second equilibrium condition of Born and Huang is

not a requirement of the theory. The Hamiltonian
(3.4) is valid in the presence of externally applied
forces, and the elimination of surface effects is carried
out below. The only equilibrium condition is (3.6),
and this guarantees that Q is stationary at equilibrium,
while in general P is not required to be stationary.

Translational and Rotational Invariance Conditions

The potential energy of the system (ions plus ex-
ternally applied forces) is invariant with respect to
translation or rotation of the system or the coordinate
system. It is possible to carry out a simple extension
of the derivations of Leibfried and Ludwig,®* whose
treatment is valid for a collection of ions without
externally applied forces, or with an isotropic pressure.
If the ions undergo displacements Y,, the potential
energy coefficients vary according to®*

Xvi(rv+Yv) = Xvi(rv) _I_ ZAvi,v'i' Yv’i’+ ey

vl il

(3.10)

etc. for higher order coefficients. These are the coeffi-
cients which appear in the expansions for P(r,4Y,+U,)
or Q(r,+Y,+U,), where the displacements U, are still
given in the same coordinates as before.

Now let the system undergo a translation & (V,;=e¢;,
all », with arbitrary €;). In this case each f,; remains
the same. Now each coefficient in the expansion for
Q(r,+Y,+U,) must equal the corresponding coefficient
in the expansion (3.3) for Q(r,+U,), since the U, are
arbitrary. This gives rise to the relations

> Aviprir= 2 Asier=0, all (vi, 1), (3.11)
etc. for higher order coefficients.

To obtain the rotational invariance conditions, carry
out the following two operations on the initial con-

figuration.
(a) Rotate the coordinate system through the in-
finitesimal angle w(wir=—wii), and express (3.3) in

terms of the displacements U,;, where the components
U,; are given in the rotated coordinate system.

Q(tA4U,) =Q(0) + 22 (Xoi~F) Uik-+ -+, (3.12)

Xvi:2(6i£'+wi’i) Xy, (3.13)
Joi= Z(Bii'—i—wi'i)fyw, etc. (3.14)

(b) Rotate the initial system of ions plus externally
applied forces through the infinitesimal angle —w, and
express (3.3) in terms of the displacements U,; in the
original coordinate system. In this operation each force
component f,; is rotated through —w, but is still ap-
plied to the ion ». The rotation of the collection of ions
is accomplished by the displacements*

V= —Zwim’yi'. (315)
il



Then with the aid of (3.10), there follows

Q(rr"l"Uv) = Q(rv) +Z(Xvi'_]vi> Uvz+ ttty (3'16)
Xi=X,i— Z Ayiyripwirintyrgnt-o=, (3.17)
fvizz(aiil—wii')fﬁ', etc. (3.18)

Since the U, are arbitrary, the corresponding coeffi-
cients in (3.12) and (3.16) must be the same. In
particular

Xi—Fi=Xi—fo. (3.19)

Equation (3.19) is to be satisfied to first order in w;;
in view of the antisymmetry of w, this leads to the
condition

D Avigrityrir—tfrirdizs is symmetric in (4, 3").  (3.20)
)

Since f,; can be replaced by X,; according to (3.6),
then (3.20) is the same as (2.9b) of Leibfried and
Ludwig.* The higher order equations of Leibfried and
Ludwig are obtained exactly as in their treatment,
since the f,; do not enter in these conditions. Their
zero-order equation (2.9a) is the same as (3.8a)
above. These conditions apply to the initial equilib-
rium configuration.

Method of Eliminating Surface Effects

In the case that the collection of ions is supposed to
represent a crystal, the ion index » is written as the
pair (#, ), where » labels a unit cell and 7 labels an
ion in the unit cell (j=1, 2, -+, J). The equilibrium
position of ion (#, 7) is Inj=r,+r; In the present
work, the crystal is presumed to depart from perfect
periodicity (with constant lattice parameters) only
near the surface. This implies that the externally ap-
plied forces f,; are the same for each equivalent ion
in the interior. The “‘interior” of the crystal is defined
as those cells # for which sums such as

Z Anji,n’j'i'; E Anji,n'j'i'(Tu'j'i”—?nﬁ")2
n/,j/ n!, 3!
converge in the region of perfect periodicity, i.e., the
sum need not be carried out over cells #’ which are
near the surface. The calculations of this paper are
restricted to cases in which these sums do converge in
the interior for an arbitrarily large (but finite) crystal.

It is convenient to take the origin of coordinates at
a cell in the interior, so that r,=0 for »=0. The lattice
symmetry in the interior gives rise to the following
relations with respect to this origin of coordinates.?

For every r, there is a —I,=r_,; (3.21)
Aoimir=Aoi’ ni, primitive lattice; (3.22)
Aojinjrer=Aojrir —nji, nonprimitive lattice. (3.23)

The method of eliminating surface effects from a
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quantity is to write the quantity so that it is the same
for each cell # in the interior, and evaluate at n=0.
For example, (3.11) can be written

ZAOi,nw=0, all (¢, ¢), primitive lattice;
n!
> Agjimrjr=0, all ( 41, i"), nonprimitive lattice.
n/'jl
(3.24)
In addition, with the aid of (3.11), it is obvious that

> Aujigrivir (Furjrin—raji) =0. (3.25)

nn/, 55/

This expression is the same for all cells # in the interior,
and evaluating at #=0 with r,=0 gives

ZAOJ',,:,”IJ'I,"I (rnljl,ill ——7’]-7;1:) = O,

n!, 35!

(3.26)

IV. THE STATIC LATTICE AND ELASTIC
CONSTANTS

The Method of Homogeneous Deformation

The system is now specialized to a collection of ions
representing a finite crystal of initial volume V| plus
initial externally applied forces. Thus the crystal is in
a state of strain. From the initial equilibrium con-
figuration, let the lattice points (ions) undergo a ho-
mogeneous deformation given by the displacements

Unji=Y ji+ D Vietrnsir. (4.1)
o

This deformation is explicitly assumed to be brought
about by additional forces g,; applied to the ions only
in the surface region, while all initial forces f,; are
held constant.’” The ¥ are independent elastic strain
parameters; the Y represent displacements of the
sublattices, and must be considered as dependent pa-
rameters. After the ¥j;; are eliminated, the elastic en-
ergy per unit volume can be expressed as

VAP(tnjA4Unj) = VP (10;) + > D Visr
!

+% E Di’i'i"i"' Y,l'il Yi"i"l+ e,

sl it it

(4.2)

This equation defines the D coefficients in terms of the
coefficients in the expansion (3.1). Henceforth, the
present work is restricted to terms no higher than
quadratic in strain parameters.
Now transform to the symmetric finite strain pa-
rameters (2.17).
Seir=3ViirtVirit D Vi Virrir].

t

(4.3)

The elastic energy can be expressed in terms of the

17 The possibility of obtaining the deformation (4.1) with
forces applied only near the surface rests on the assumed perfect
periodicity of the crystal in the interior.
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Sii' as
VAP (1,51 Uyj) = VIP(ta;) + Zcii'sz‘i'

a3/

4L D" Cusrirrrr SiarSirrinnn.

silit ittt .

(4.4)

This equation defines the C coefficients, and accord-
ingly these coefficients must have the complete Voigt
symmetry [analogous to (2.6) and (2.7)]. By com-
paring (4.2) and (4.4), and using the symmetry of the
C coefficients, Leibfried and Ludwig?® have shown

C,'ir = Diil, (45)
Ciilillt‘/ll:D,il‘lillilll'—‘Cil.illlaiill. (4—.6)

A fundamental approximation in the interpretation
of (4.4) is to equate the elastic energy with either the
Helmholtz free energy or the internal energy. Thus,
when the U, ; are a homogeneous deformation,

V_IP(rnj—f-Unj)NplF(Sw, T)NplE( Sty S) (47)

Since the temperature does not enter into P, there is
no difference between differentiation of P at constant
T or constant .S. According to this interpretation,

Cir=2Taur, (4.8)
(4.9)

where the quantities in (4.8) and (4.9) are all evalu-
ated in the initial configuration (.S;;=0).

N . . N asp s N
Ciirirrirr D CSiiririrnClizrinrions,

Primitive Lattice

In view of the equilibrium and invariance conditions
(3.6), (3.8a), and (3.20), the treatment of the primi-
tive lattice for the present case of arbitrary initial
stress follows exactly that of Leibfried and Ludwig?
for the case of isotropic pressure. The more general
derivation is outlined here to serve as a foundation
for the complicated nonprimitive lattice problem.

The homogeneous deformation is

Uni= Z Yiotni, (4.10)

and the D coefficients are
Di‘i’: V_IZX:,”’Tnil, (4.11)
D,L',,;/,,;l rgrrr= V*IZAni,n"i"rni’rn’i”’» (4 12)

an/

It may appear that the D coefficients depend on the
origin of coordinates, but this is not the case, since in
view of (3.7a),

ZXm.‘rm" = ZXni(rni’ - Ri'),

where R is an arbitrary vector. Similarly, with the aid
of (3.11), it is seen that Dysi0r is independent of R.

With the aid of (3.8a), and noting that Anin=
Anrirr miy it follows that

Diir= D1, (4.13)

(4.14)

Dii”i"i"' = D'i"‘i"’ii’-

In the following, D is replaced by Cys.

It is not possible to eliminate surface effects from
Cii; the sum (4.11) must be carried out over the
entire crystal. Physically this is because for a given
state of initial strain, the Cj are fixed regardless of
the volume of the crystal. This point gives no diffi-
culty, however, since by (4.8) the C;;» are components
of the observable initial stresses. Surface effects can
be eliminated from the Dy by taking the com-
bination symmetric in (¢, 3'") .34

%(Dii'i”i"'—l_ Di'i”’i”i')
= %V_IZAni,n"i"x (rni’rn'i"’+7ni”’7'n’i’)

nn/

= — %V‘IZAni.’n’i” (fn/,ir-—}’nir) (r"/inl ——‘1’7“:111)

nn/

= —-% c_l E AOi,n’i”rn’z"rn'i”’
n

(4.15)

The second equality follows by (3.11), the third equal-
ity represents the elimination of surface effects, with
V.=volume of one unit cell in the interior, and r,=0
for =0, and the fourth equality defines the D coeffi-
cients. The D coefficients satisfy the following symme-
try properties.

= Di'i”i"i”’-

Dii”i’i"":Di'i”i"'i’, (416)
DiillilillI:D,ifli,i'il//’ (4.17)
DigresrgrmtCainirinn=DgpirrigrtCurirnibnr.  (4.18)

The first symmetry is obvious from the definition
(4.15), and (4.17) follows with the aid of (3.22).
The third symmetry is proved as follows.3* Multiply
(3.20) by a component of r,, sum over %, and relabel
Cartesian indices to obtain the condition

ZAni,n'i"Tniff’n'i"'"f‘ ZXni"7ni'5ii”’

nn/ n

is symmetric in (3", 7'”). (4.19)
This may be written
Dii’i"f”"*_ Ci:,‘:uB“/n = Di,‘:lillli”_}_ Cil{’/laqjg’”- (4:.20)

From (4.20), (4.14), (4.13), and the definition (4.15)

of the D coefficients, (4.18) may be proved directly.
Finally, from (4.6), (4.13), and (4.15), the elastic

constants are given by .

L(CiprirristCigrrrinnis) = Digrririrrr— Carisnrdiinr. (4.21)



With the aid of symmetries of all these quantities,
(4.21) may be solved for the elastic constants.?

Ciilill,illl = D,iillil,illl-l_Dil,ill,"illl '_Dii’i’ rgrer— Ci/inlaiill
—Cyirrbirin CirirnSir. (4.22)

The right-hand side of (4.22) must have the complete
Voigt symmetry of the left-hand side, and the relations
(4.16)—(4.18) are just the necessary and sufficient con-
ditions to insure this symmetry.

Nonprimitive Lattice

The crystal undergoes a homogeneous deformation
from the initial state, with displacements (4.1), as a
result of additional forces g.; applied to the ions in
the surface region. A complication arises if the initial
externally applied forces f,; are allowed to penetrate
throughout the crystal, as would be the case for an
applied electric field. For such a case, the energy den-
sity associated with the additional displacement (4.1)
includes polarization effects (e.g., piezoelectric and
magnetostrictive effects), as well as elastic stress—
strain effects, due to the motion of the ions in the
presence of the initial field.®® This paper does not con-
sider polarization effects'; therefore let

£,;=X,;=0, (4.23)

The initial state of the crystal is thus one of arbitrary
elastic strain, due to the initial forces f,; which are
applied to ions in the surface region.

When (4.1) is used in (3.1), the elastic energy per
unit volume becomes

VAP(tnj+Unj) = VIP(1s))
+r= Z Xnii[ in+ Z Yii’rnji']

n,5,%

all (n, 7) in the interior.

1 g
+3V1 E Anjinjrir

nn/,jj! iif

X[Y]’LY]”I,'-l_Z Y“E Yi’i”rn'j’i"
il

+ Z Yﬁn Yi'i”’rnji”rn’j’i"’]; (424)

il

where two cross terms linear in ¥j;; have been com-
bined by interchanging indices to yield the middle
term in the last square bracket. Surface effects can be
eliminated at once from three of the terms in (4.24).
Thus

VY XaiVii= Vi y XouV =0, (4.25)

7,5, Ji

18 See, for example, W. P. Mason, Physical Acoustics and the
Properties of Solids (D. Van Nostrand Company, Inc., Princeton,
New Jersey, 1958).

19 The present treatment, with nonvanishing X,; in the interior,
serves as a starting point for the study of the polarization effects
in crystals from the atomic point of view. However, with a non-
vanishing contribution to the energy density of the form of
(4.25), it is necessary to solve (4.27) for the Y;; to second order
in the Y.
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where the expression vanishes by (4.23). By using
the methods which were used in writing (3.25), and
transforming to (3.26), the first two terms in the sum
involving A4 coefficients in (4.24) may be written
3V Z Avjip o[V iV joir

n/,jil il

+2 inz yi'iu (7’,,/]'/,"' —1’,'.,'11) ], (426)
i

where the origin of coordinates is at #=0 as usual.
The parameters ¥ j; are eliminated by requiring that
the net force on each ion vanish in the final configura-
tion, i.e., that Q is again stationary with respect to
arbitrary virtual displacements of the ions from their
final configuration (as in Sec. III above). With the
aid of (3.10), and (4.1) and noting that f,; remain
constant while g,; are applied, this condition is written

Sniitgnii=Xnjit
+ Z Anji.n’j’i’[yj"i'—{_z Y;"i”rn’j’i"]_l" LALLM

»/, 51,3 !

(4.27)

This is to be satisfied for all (#, 7, 7). Since the energy
density is required only to second order in the strain
parameters Vi, and in view of (4.25), (4.27) need
only be solved to first order in the Y. From (3.6),
it is seen that the f,;; and X,;; may be canceled from
(4.27). It is advantageous to eliminate surface effects
from (4.27) ; since gn;=0 in the interior the result is

> AviwyeYpr=— 2, Ajimie

R R R
X (1’”/:‘1"/: —1’]'.,:;/) Y"Iill,

This is a set of inhomogeneous equations for the ¥ j;,
and the solution has been discussed previously.!® Since
the homogeneous equations have solutions ¥ [with
arbitrary Y ; the proof follows from (3.24) ], the sub-
lattice motion is arbitrary to within a vector Y. Thus
(4.28) determines only the relative motion of the sublat-
latices; this is a direct consequence of eliminating the
surface effects from (4.27). The solubility condition for
(4.28) is just the equation (3.26), and thus is satisfied
with the neglect of surface effects. The matrix of coeffi-
cients on the left-hand side of (4.28), D urAojiu i, is
symmetric in the index pairs (ji, 7'¢’), by virtue of
(3.21) and (3.23). The solution is therefore given in
terms of a (real) symmetric matrix R, jrer %

(4.28)

inz —_— Rji'jll'lejl,il’nlljllill
alt 11,38
X (1’,‘11]'1/..'”/—7’]-:;//1) Y,;u,vu, (4-.29)
Rjs,jrr=Ryrir,gir (4.30)

In (4.29) the particular solution Y; has been dropped;
this part of the solution always gives a vanishing con-
tribution in the subsequent calculations. The Rj;, jus
do not contain surface effects, and also these coeffi-
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cients do not form a matrix inverse to Y s Aoji.nrjrir-
For abbreviation, make the definition

in: Z Nji,i"i"l Y."II,“I/I,

i1l

(4.31)

It is now possible to eliminate the Vj; from (4.24).
First if (4.28) is used directly in (4.26), the term
quadratic in Y'j; exactly cancels half of the term linear
in Yj;. Then, with the aid of (4.31), (4.25), and
(4.26), Eq. (4.24) is transformed to the form (4.2),
with

D’ii’: V-_IZanz"’nji’, (4.32)
n,J
Diwirin=Vt D5 Aojiv i jri(tarjrsr—7467)
!, §il v
X]Vjiiv,iuiul—*—v—l Z Anji’nljliur”jilf’”lJ'r,"lil_ (4.33)
nn/,jj!

Again it is not possible to eliminate surface effects
from Djy, but this causes no difficulty. By (3.8a),
D;i»=Dy;; in the following D is replaced by Ciy,
according to (4.5). As in the case of the primitive
lattice, surface effects are eliminated from the last
term in Dy i by taking the combination symmetric
in (¢, 4").

%(Dﬁ,,-n,;u,—*—Dii,ui/ r,,;/) =D‘ii"’i’i"’;
Dii"i'i”’z%VONI Z A[)jiiv,n’j'i

!, ji! ,iiv
X I:(rn’j"i’_rji’)Njiiv,i”‘i"’—I_ (rnlj!,b‘lll'—rjilll)Njiiv"'ll,"I]

—%—Vc'—l Z AOji,n’j’i” (rnljli/—rjil) (Ynljri/n—fjilu) .
n/, 53’

(4.34)

(4.35)

It is now possible to show that the D coefficients of
(4.35) satisfy the relations (4.16)—(4.18). This involves
a lot of algebra, and the procedure will only be sketched.
Equation (4.16) again follows from the definition
(4.35). To prove (4.17), write out the N jiv jrezrrr,
etc., according to their definition [(4.31) and (4.29)]
and use (4.30) along with the symmetry of the 4
coefficients in their index sets. To prove (4.17) for the
last term in D, use (3.21) and (3.23). In proving
(4.18), it is convenient to eliminate surface effects
directly from (3.20) to get the condition, with the aid
of (4.23),

Z Aojinrjrir(arjrir—7ji0) 1s symmetric in (¢, ).
n/,3/

(4.36)
This condition can be used to show that

Nji,i’i”:Nji,i"vi'- (437)

Equation (4.18) may be proved for the last term in D
by a procedure analogous to the proof for the primitive
lattice.

From (4.6), (4.13), and (4.34), the elastic constants

are given by the same expressions as for the primitive
lattice, namely (4.21) and (4.22), and are again shown
to have the Voigt symmetry as a result of (4.16)-
(4.18).

V. LATTICE DYNAMICS AND
LONG-WAVELENGTH ACOUSTIC MODES

The Dynamical Matrix

The problem of lattice dynamics is to find the nor-
mal coordinates of the Hamiltonian (3.4). The usual
harmonic approximation is made by dropping terms
in (3.3) which are of higher order than quadratic in
the displacements. Higher order terms have been ex-
tensively discussed in perturbation treatments.4?-% In
view of (3.6), the harmonic Hamiltonian is written

3r=0Q(t;) +3 > Mi(Unji)?

n,5,%

+3 > AwsiwiriUnjiUnyrer,  (5.1)
nnl il il
where the A coefficients are evaluated at the initial
configuration. The virtual displacements and their
time derivatives satisfy the commutation relations

[M Unis, Unrjrir = —ih8nnsd 528507, (5.2)
[Unﬁ} Un’j'i’jzl:Unji, Un’j’i':lzo. (5.3)

This problem has been treated in detail for the case
f.;=0, all (n, 7).1% 2 These treatments have, quite
naturally, carried the restriction X,;=0, all (#, j).
The elimination of surface effects is essentially simpler
in lattice dynamics than in the method of homogene-
ous deformation. This is because in the small vibration
problem (lattice dynamics), the equilibrium positions
remain fixed. Thus the normal coordinates of the har-
monic Hamiltonian are found by applying the cyclic
boundary condition to macrocrystals in the interior of
a large finite crystal, or in an infinite lattice.!»?

The Hamiltonian (5.1) is a homogeneous quadratic
form in Unji, Unji, and the standard procedures!.2+-2
can be applied directly to the present case. With the
cyclic boundary condition applied to macrocrystals con-

20 M. Born and E. Brody, Z. Physik 6, 132 (1921).

2 W, Ludwig, Phys. Chem. Solids 4, 283 (1958).

2 A, A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall,
Ann. Phys. (N. Y.) 15, 337, 360 (1961); A. A. Maradudin, A. E.
Fein, and G. H. Vineyard, Phys. Stat. Solidi 2, 1479 (1962);
A. A. Maradudin, ibid. 2, 1493 (1962); P. A. Flinn and A. A.
Maradudin, Ann. Phys. (N. Y.) 22, 223 (1963).

% J. M. Keller and D. C. Wallace, Phys. Rev. 126, 1275 (1962);
D. C. Wallace, Phys. Rev. 131, 2046 (1963); 133, A153 (1964).

2 G, H. Begbie and M. Born, Proc. Roy. Soc. (London) A188,
179 (1947).

% R. E. Peierls, Quantum Theory of Solids (Clarendon Press,
Oxford, England, 1955).

2% A, A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc., New York, 1963), Suppl. 3.



taining IV unit cells, the results are as follows:

Qi 350 = Zn;AOﬁ.n'jw explik: (twrjr—1;)], (5.4)
;—;‘Ik'ii’f’i'”km'i': M i(wxs) *Vxs, s, (5.5)
Zﬁ:M Vks, ji0—ks", ji= M oBss, (5.6)
M jZ;vks,ﬁv-ka.w =M 8;;:8;x, (5.7)
M. = ZM,-, (5.8)

7

where V_i,= Vi,™ is taken.

The dynamical matrix ai, defined by (5.4), is Her-
mitian and of order 3J (J is the number of ions per
unit cell). The eigenvectors of ay are Vis, s=1, 2, «--,
3J, and the eigenvalues are M (wis)? where wy is the
circular frequency of the normal mode with wave vector
k and polarization s. There are N values of k distrib-
uted in the first Brillouin zone. Equations (5.6) and
(5.7) are orthonormality and completeness relations,
respectively, for the eigenvectors.””

The solution is identical in form to that for the case
Jfnii=Xn;=0. However, the dynamical matrices now
depend explicitly on the initial configuration through
the r,; vectors, and implicitly through the dependence
of the A coefficients on the initial configuration.

Long Waves and Elastic Constants

Born’s method of long waves!'* can be applied to
the dynamical matrices to give the secular equation
for long-wavelength acoustic modes. In the present
notation, this is
(Mc/Vc)ws2vsi= Z G_ii”'i'i"’ki’ki’"vsi”,

T

s=1,23.

(5.9)

Here the polarization index s is restricted to acoustic
modes only, and the (orthonormal and complete) eigen-
vectors v, give the directions of the displacements dur-
ing the propogation of the wave. This equation is
valid in the limit of small | k|, and for a given direc-
tion of k (i.e., ws, Vs depend on the direction of k). For
a primitive lattice,

Girrirgrre=Dggrrgryrn;

for a nonprimitive lattice,

Giirrgrirn=V 1 Z Aojiiv,n,j,i(rn;j,i,-—rﬁr)_

n/’jjl'iiv

(5.10)

XN jiiv rrgrrn—2V e D Agjime jrirt (Far jrir — T ir)

n/,jj!
(5.11)

2 Begbie and Born (Ref. 24) refer to the ax of (5.4) as the
Fourier transform of the dynamical matrix. Also, Refs: 1, 24, and
26 include M; in the definition of the ay matrices.

X (rnljlill’_‘rji)/l) .
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Equation (5.9) is an equation of motion with re-
spect to the initial strained configuration, and is there-
for to be compared with the thermoelastic equation
of motion (2.28). But (5.9) is a solution to the me-
chanical problem of motion; statistics have not yet
been taken into account. In comparing (5.9) with
(2.28), the same approximation is made as in the
interpretation of the elastic energy density due to a
homogeneous deformation (Sec. IV above), namely
that the difference between adiabatic and isothermal
propagation is neglected. An equation similar to (2.28)
can be written for isothermal propagation, and con-
tains isothermal elastic constants.

Consider solutions to (2.28) of the form of plane
elastic waves:

Usi=1vs; expli(K-r—wed) ], s=1,2,3. (5.12)

The body forces in (2.28) are presumed to be time-
independent, and do not enter explicitly into the wave
solution. Dropping the distinction between adiabatic
and isothermal propagation, replacing T by Cy» ac-
cording to (4.8), and writing Cartesian indices as
1,1/, +++, (5.12) and (2.28) give
p1sssi= D, [CirirniBssrrt Civsrrirn Jewrkirvgirn.
elriltgrtr
Since (M./V.) is just pi, the density in the initial
configuration, (5.9) and (5.13) are identical for each
s and for arbitrary k&; if

3(CiirirrgrrrtCigrorgrrgr) + CorgrorBies
=3 Gisrirr+CQigmipnrr). (5.14)
From the definitions (5.10), (5.11), (4.35), and
with the aid of (4.16), it follows that
L GiirindGiiminir) =Dggrrgriom. (5.15)

Thus (5.14) is the same as (4.21), and again leads to
the expression (4.22) for the elastic constants. The
method of long waves leads to identical results for the
elastic constants as does the method of homogeneous
deformation, when the same approximations are made
in each treatment.

(5.13)

V1. EFFECTIVE ELASTIC CONSTANTS

From Homogeneous Deformation

The present section gives some of the physical sig-
nificance of the effective elastic constants, which were
defined in (2.33) above.

Consider the initial system of a collection of inter-
acting ions, representing a finite crystal, plus exter-
nally applied forces. If now an elastic deformation is
carried out, represented by the displacements (4.1),
by the application of additional surface forces gn;,
while the initial forces f,; are held constant, then the
directly observable energy is the increase in elastic
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energy of the system as a whole. In other words, the
directly observable additional stress and additional
strain are properties of the initial system as a whole.
From (3.1), (3.3), (3.6), and (4.2), the elastic energy
per unit volume of the system is

Vo0 +Un) = V0 (50))
+% Z Dii'iu":u Yiil Yi"i"'+ ceey,

silitt i

(6.1)

when the U, ;; are given by (4.1).

The last term in (6.1) cannot, in general, be written
as a quadratic form in the symmetric strain parameters
S of (4.3). This can be done only if the Dy
have the complete Voigt symmetry, and this is gener-
ally not the case. Nevertheless, the D coefficients might
be considered as elastic constants, since they enter a
generalized stress—strain relation in the appropriate
way':

LVIQ(Y i) /0= D, Digrirggn ¥ oo, (6.2)
g
where the higher order terms have been dropped. The
generalized stresses, i.e., the left-hand side of (6.2),
are not symmetric.

Within the framework of the method of homogene-
ous deformations, where the specification of the motion
as being either adiabatic or isothermal does not appear,
the D coefficients are just the effective elastic con-
stants. Thus, make the identification

(6.3)

Surface effects are now eliminated as in Sec. IV. In
view of the definitions (4.15) and (4.34), (6.3) gives

(6.4)

Diirinrirrr= Esirrriror.

%(Eii’i"i"'+ E’ii"’i"i’) :D’ii"i'i"'-

By comparing (6.4) with (4.21), the explicit relation
between the elastic constants and the effective elastic
constants is seen to be

L(Eisrgrrgrr Egirrrgny) =5(CoirgrrirnrtCogrorgrrgr)
+Cirinidigr. (6.5)

Equation (6.5) agrees with the definition (2.33) of
the effective elastic constants; this justifies (6.3).

From Long Waves

The physical reason for interpreting elastic waves
on the basis of the equation of motion (2.32) is exactly
the same as for interpreting stress—strain relations on
the basis of the energy density (6.1). When elastic
waves are propagated through a medium (with or
without initial stress), the directly observable property
is the set of E coefficients of (2.32). Certain combina-
tions of these coefficients are observed in ultrasonic
experiments. In these experiments, the ultrasonic waves
are presumed to be adiabatic, and are thus to be identi-

fied with adiabatic E coefficients. In the interpretation
of the results of ultrasonic experiments, the distinction
between E coefficients and C coefficients, according to
(2.33), has not been recognized.}*~14
If the plane wave (5.12) is used in (2.32), again
with time-independent body forces and neglecting the
distinction between adiabatic and isothermal propa-
gation, there results
p12vei= D, Eipirirrkiki e,

e

(6.6)

Identification of (6.6) with (5.9), with the aid of
(5.15), yields again the relation (6.4) for the effective
elastic constants.

Departure from Voigt Symmetry

The symmetry properties of the effective elastic con-
stants Egryrrgrr follow from (2.33), together with the
symmetries of T'ys, Civevio analogous to (2.6) and
(2.7) .2 The fact that these constants do not have the
complete Voigt symmetry when 7';;»0 has been recog-
nized by Toupin and Bernstein® and by Thurston.” In
discussing the symmetries of the effective elastic con-
stants, it is convenient to divide them into two groups,
since the stress components may be of arbitrary magni-
tude.

(a) ’L‘Sﬁi” Eiili/lil'lz Cii’i”i”’:
54 constants; 18 distinct
constants.
(b) i=id" Espriirn=Ciprggrrrt+ Tz

27 constants; 18 distinct in
general.

In general, then, there are 36 distinct effective elastic
constants. If the initial stress is a homogeneous pres-
sure p, Ti»=— pd;ir, and there are 24 distinct effective
elastic constants. A general symmetry property which
follows directly from (2.33) is

Eirirrgrrn=Eriongg. (6.7)
Finally, the results of Sec. IV show that the effective
elastic constants calculated from lattice theory, after
surface effects are eliminated with (6.4), have the
correct symmetry.

The number of independent E coefficients is reduced
from the number of distinct coefficients by equations
which couple different coefficients and the stress com-
ponents. For the most general lattice symmetry, there
are 27 independent E coefficients for arbitrary stress
and 22 for homogeneous pressure.

28 Here the notation for constant S or constant 7" is dropped for
abbreviation.

2% R. N. Thurston, J. Acoust. Soc. Am. 36, 1041 (1964), ab-
stract T11.



VII. DISCUSSION

The lattice theory of Secs. ITI-V represents the defi-
nition and solution of a mechanical problem. In formu-
lating this problem, the initial positions r, of the ions,
the potentials of interaction between the ions, and the
externally applied forces f, might all be considered as
arbitrary within the restriction that the equilibrium
condition (3.6) and the invariance conditions (3.11)
and (3.20), and similar higher order invariance condi-
tions, must be satisfied. There is no way to put thermo-
dynamic conditions, such as requiring that the pressure
p is zero, into the mechanical problem, although this
has been attempted by previous authors.!*® This is
because it is not possible to evaluate thermodynamic
functions on the basis of the solution of the mechanical
problem alone. In particular, the externally applied
forces f, are not thermodynamic forces (although their
averages are approximations to observable forces). Fur-
thermore, since the mechanical problem does not con-
tain the temperature 7' as a parameter, it cannot
specify elastic constants as being either adiabatic or
isothermal. Finally, the problem of motion may be
set up without the previously used requirement that
the initial stresses vanish,! or the equivalent require-
ment that the energy of interaction among ions, per
unit cell, is a minimum.3-*

Once the mechanical problem is solved, and the en-
ergy levels are found with the aid of boundary condi-
tions, the partition function Z can be evaluated for
the initial configuration. Certain thermodynamic prop-
erties which are obtained by differentiating Z with

respect to 7' (e.g. the caloric quantities S and E), .

can be calculated for this configuration. To obtain
thermodynamic forces, which depend on the variation
of Z with respect to the configuration (e.g., p), it is
necessary in principle to find Z for a new configuration
which is infinitesimally removed from the old one. In

3 H. Kaplan, Phys. Rev. 125, 1905 (1962).
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this manner the thermodynamic properties of the sys-
tem are described as explicit functions of the configura-
tion and the temperature.® Such calculations would be
impossible in principle if an equilibrium condition were
applied which fixed the configuration.

Now the necessity of the change of reference con-
figuration in Sec. II becomes obvious. The theory of
statistical mechanics of a solid is based on the motion
of the ions about the initial configuration, and the
stresses which give rise to this configuration are not
known until the partition function has been calculated.
Likewise, the observed thermodynamic properties of a
solid are functions of the initial configuration.

Observed ultrasonic waves are true thermoelastic
waves, and, under the assumption of adiabatic propa-
gation, can be used to obtain the thermoelastic con-
stants (2.19). If these wave velocities are used to
obtain the potential energy coefficients for a lattice
model, for example by comparing (5.9) with (2.28),
it should be recognized that the resulting potential
energy coefficients are in error because the mechanical
problem has not taken statistics into account.®?
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