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Experimental data bearing on the precision determination of the numerical values of the fundamental physical constants
are reviewed, with particular emphasis being placed on the identification and isolation of discrepancies and inconsistencies.
The purpose of the analysis is to present a consistent set of values of the fundamental constants and to present a careful
and complete description of the steps taken to reach this end. The Introduction discusses the significance of such an
analysis and indicates the general method of approach. The indispensability of local unit systems and conversion factors
connecting them, in order to avoid a sacrifice of precision peculiar to different metrological techniques, is emphasized. The
point is stressed that conversion constants introduce the danger of ignoring error-statistical correlations between physically
measured quantities, and the effects of such correlations on the assignment of errors is discussed. All available sources of
experimental information relative to the necessary input data are presented, and changes in definitions of units since our
last review are discussed. After the available stochastic input data have been reviewed and the less reliable items elim-
inated, the third section examines the remainder for mutual compatibility by means of an analysis of variance in which
special criteria for recognizing the incompatibility of a datum are developed, using the analogy of the energy of internal
strain introduced in overdetermined mechanical structures. Tables of least-squares adjusted values of fundamental
constants and conversion factors of physics and chemistry based on the 1963 adjustment are given. Research pertinent
to the constants which has been completed or published subsequent to the 1963 “recommended” adjustment is discussed,
and the effect of these on our knowledge of the numerical values of the fundamental constants is presented.
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1. INTRODUCTION

In 1960 the authors of this review were requested to
prepare a complete new least-squares adjustment of
the fundamental constants of physics and chemistry.
The request came from the joint committee of the
Divisions of Chemistry and Physics of the U. S. Na-
tional Research Council, and was to a large extent
prompted at that particular time by the fact that a
new scale of atomic weights, the ‘“Unified Scale” on
which the nuclide, *C, is defined as having exactly
weight 12, had been adopted by IUPAP and IUPAC
at the general assembly of these two Unions at Ottawa,
Canada, in 1960. Although the demand was triggered,
as it were, by the adoption of the unified scale, this
was far from being the only or the most urgently im-
portant reason for making a complete new review of
the constants. A revision of our old values (our last
previous review of the constants was made in 1955%)
merely in the light of the change of the scale of atomic
weights, could have been accomplished in a few mo-
ments on a desk calculator. Since 1955 however a
wealth of new and improved experimental data bearing
on the constants had become available, errors in some
of the old data used as input information in our 1955
adjustment had been discovered by both the theore-
ticians and the experimentalists, and other arbitrary
changes or adoptions in defined quantities and units
have occurred. It would have been most misleading
therefore to have corrected and republished the 1955
constants after merely modifying them to agree with
the new unified scale of atomic weights.

1.1. When Should Re-evaluations of the Constants
Be Made?

A wise choice of the correct time to make a fresh
evaluation of the fundamental constants is indeed
difficult and can only be made by those who have fol-
lowed the subject with detailed attention over a con-
siderable period of years. At every epoch there is almost
always a number of unsatisfactory situations, unre-
solved discrepancies between various measurements,
theoretical uncertainties regarding questionable cor-
rections, and ill-defined conventions which render the

1E. R. Cohen, J. W. M. DuMond, T. W. Layton, and J. S.
Rollett, Rev. Mod. Phys. 27, 363 (1955). A more complete ac-
count of this adjustment will also be found in Handbuch der

Physik, edited by S. Fliigge (Springer-Verlag, Berlin, 1957),
Vol. XXXV, pp. 1-87.

comparability of measurements made by different
workers open to question. One is always tempted to
wait a little longer until the questions hanging fire
are cleared up. The trouble with exaggeration in this
temptation is that the very process of improvement
in accuracy and reliability (which the specialists in
reviewing the constants themselves stimulate by calling
attention to the discrepancies and troubles) whets the
appetite for increasing precision, so that the discrep-
ancies, which would have been of negligible magnitude
a few years before, become of increasing importance.
Thus, too long a delay, too much exercise of caution,
can lead to our never having any consistent set of
values of the constants with which to work! All one
can do is pick a time just after the resolution of some
major discrepancies, or the invention of some important
new metrological technique, when one feels that the
situation is likely to be stabilized for a few years to
come on the newly established improved level of pre-
cision.

It is difficult sometimes to make one’s colleagues,
who may be impatiently clamoring for a new set of
adjusted values of the fundamental constants, under-
stand that the time is not yet quite ripe, that one is
waiting for this, that, or the other question to be more
satisfactorily settled. Failure to understand in these
situations comes from the fact that few physicists or
chemists fully realize in what a complicated, intricate
way the fundamental constants, together with the
measurements from which they are derived, are inter-
connected and interrelated. Everything depends upon
everything else (as will be clear from the present article),
and one flaw in the picture propagates its defect, to a
greater or lesser extent, throughout all the numerical
values of the fundamental constants and conversion
factors we seek.

1.2, Discrepancies in X-Ray Data

The above remarks were particularly true in the
process of preparing a new least-squares adjustment
requested in 1960, but which we were only able to sub-
mit to our satisfaction to the NRC Committee on
28 February 1963. We had indeed completed a ten-
tative adjustment in late 1961, but we did not feel
too well satisfied (nor did some of our fellow committee
members) with some of the discrepancies which that
least-squares adjustment had revealed, particularly in
the domain of x-ray measurements which were relevant
to the Avogadro number, NV, and the conversion con-
stant, A, between the nominal (Siegbahn) scale of
x-ray wavelengths (expressed in so-called x-units) and
the scale of absolute wavelengths (in centimeters or
Angstrom units). These discrepancies actually became
more glaring when further precision x-ray measurements
were later included in the adjustment, and we finally
felt obliged, since increasing pressure was being brought
by our colleagues of the committee (and others) for a
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new set of values without further delay, to exclude
completely from our adjustment all data from the
x-ray measurements. Only by so doing was it possible
for us to produce the above-mentioned adjustment
which we submitted in February 1963, and which we
shall, throughout this review, refer to as the “1963
Adjustment.”

Although the trouble with the x-ray data is of long
standing, dating back as it does to the early days of
M. Siegbahn and other famous workers in this field, it
is only becoming evident and troublesome at the
present time because the general level of precision in
other fields of physics has overtaken the precision of
the early x-ray workers and brought to light weakness
of definition and convention as well as metrological
errors.

1.3. Importance of Overdetermination

Unfortunately, since on the quantum energy scale
the field of x-ray emission-line spectroscopy is sand-
wiched in-between that of optics (in which our cgs
units are defined and maintained) and that of nuclear
gamma-ray spectroscopy, in which there is now an
ever-increasing demand for better absolute precision
expressed in terms of quantum energies (electron volts),
the defects and weakness of definition and convention
in the field of x-ray spectroscopy are now imperatively
demanding rectification. There are a few alternative
ways of bridging the x-ray gap and relating the measure-
ments in nuclear spectroscopy to our absolute unit
system without calling upon x-ray measurements, but
it is an axiom in this field that we must never be satis-
fied with only one or two methods of linking together
the various fields of measurement. No stone must be
left unturned, no method promising better precision
or a different route for arriving at a conversion constant
left untried, in efforts to eliminate systematic error.
Only by such diligent thoroughness can we locate the
sources of trouble and eliminate them. For in the last
analysis the only test we have of the correctness of
our theories and our measurements is the test of
consistency of the system as a whole, and the test
of consistency becomes the more searching the greater
the overdetermination of the measurements.

No one knows that the quantities we call “constants”
are indeed absolutely changeless with time. At present
we merely have no clear experimental evidence to the
contrary, although variations in the values of the con-
stants on a cosmological time scale have certain
appealing theoretical features. But even if we knew the
constants were immutable in value, there is every
reason to expect our knowledge of them to be subject
to change.

All we can hope to do at any given epoch can be the
following. First we examine the entire body of ex-
perimental measurements which bear on the constants
and which are available at that time. These usually
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consist of measurements of rather complicated functions
of conceptually simple “fundamental” quantities whose
values we wish to obtain, such as the electronic charge,
e, the electronic rest-mass, m, Planck’s action quantum,
k, etc. In the light of accepted theory as of that date we
then form a system of equations equating the func-
tions of the “unknowns” (fundamental constants) to
the measured experimental values. We then examine
this overdetermined set for compatibility.

If one particular subset, consisting of a large majority
of the original data, turns out to be both highly over-
determined and markedly more consistent (compatible)
than the other subsets, one may be encouraged to hope
that this is “the good set” and that the data which
were rejected in order to form it were ‘“‘systematically
erroneous’” for some reason. But all this is merely a
clue; it is not proof. Also, more likely, it will turn out
that no single, highly preferable, subset will be clearly
distinguishable.

As experimental physicists it is our duty in any case,
to examine all of the input data very critically, in an
effort to find possible sources of systematic error. This
may frequently involve corresponding at considerable
length with the authors of the data and in many cases
visiting their laboratories, recomputing their original
data of observation, discussing their methods of error
estimation and trying to re-express all error"estimates
on as comparable a footing as possible. This latter
task, probably the most difficult and trying of all,
deserves and will receive more careful discussion in
its proper place in this article. ‘

Now it should be clear from the above rough descrip-
tion of the process, that those who are making a crit-
ical review of the constants, are obliged to use judgment
and to make decisions which unavoidably must in-
volve, to some degree, the subjective element. It is,
of course, our duty to try to eliminate the subjective
element by every means at our command, but since
choices and decisions must be made (no one wants
two alternative sets of constants!) it becomes some-
times necessary to base a choice, between two or more
nearly equally likely alternatives, on statistical odds
of weak significance. When one has exhausted every
other recourse in an effort to be objective, there may
be nothing better to be done. There is one way of
avoiding such situations of which we strongly dis-
approve. This is to take all of the available data at a
given epoch, cast it uncritically into the least-squares
melting pot, and closing ones eyes to the incompati-
bilities of the various equations in the adjustment,
simply expand all of the output errors, relative to their
values by the criterion of internal consistency, applying
a factor dictated by the chi-squared (measure of in-
compatibility) of the adjustment. It should be per-
fectly clear to any reasonable physicist that the input
data, to which must be given assigned a priori weights,
cannot be safely weighted in inverse ratio to the squares
of the input error estimates if these data are mutually
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incompatible by three, four, or perhaps even more
times the standard deviations of the discrepancies
between the different items. Under such circumstances
the suspicion becomes close to a certainty that the
disagreement is not a statistical fluctuation but a sys-
tematic error in one or more of the data. In such a
case the appropriate weighting is probably quite un-
related to the supposed standard deviations. We are
thus obliged to make a choice of some data for rejection.

No one can guarantee that an evaluation of the
fundamental constants at a given epoch yields the
“true” values. Absolute truth, if these words have
meaning, is beyond the realm of physics. All we can
do at each time of re-evaluation is to try to determine
a set of values which, in the sense of least squares,
and in the light of accepted theory at that time, does
least violence to a chosen budget of observational
data then believed to be the “best” and most accurate.
From this statement it should be clear that minor
disagreements between the results of different evalu-
ations at any given time are sure to arise and that
changes and revisions from time to time are unavoid-
able.

Thus the greatest merit in a re-evaluation of the
constants resides not in the numerical output values,
useful as these may be, but in the fact that the re-
evaluation constitutes a new test of the validity of
all our theoretical preconceptions and their experi-
mental verification over the widest possible domain.
The only test of such validity we have is the consistency
of the data, and this indeed is all we ask for.

For this reason, it should be clear that the prime
object of these re-evaluations of the constants must
always be to look for discrepancies and to resolve them
by finding the errors in either theory or experiment
which account for them.

1.4. Error Estimation, Weighting of Data, and
Related Problems

This extremely important task of weeding out sys-
tematic errors and discrepancies from the input data
of a least-squares adjustment of the constants requires
a somewhat different and more careful treatment of
the error estimates to be assigned to the measured
data than is current practice among most experiment-
alists. H. A. Kramers once said, “The statistical theory
of errors is like love; one cross word can spoil it all!”
Yet we must face this morass of semantic disagreement
and misunderstanding-as-to-purpose. We must try to
express all the error assignments for a large mass of
precise observational data, coming from many different
people, on a comparable basis.

Perhaps the most difficult obstacle one faces in doing
this stems from the fact that there seem to be two
completely incompatible ways in which experiment-
alists regard the problem. Some regard the number
following the sign of ambiguity as expressing “limits of

error” with the unstated implication that the true
value lies anywhere within the gap and that there is
something rather virtuous in overestimating the mag-
nitude of this gap “for safety” or ‘“to take care of
possible but unknown sources of systematic error.”
Clearly such an error estimate is of little value to one
who must compare and weigh data from different
sources because it is not a quantitative estimate, but
a statement of inequality: the error is less than or equal
to so-and-so much.

The other and far more useful way is of course to
regard the number following the plus-or-minus sign as
an estimate of the width parameter of some statistical
distribution of observed values which would be ob-
tained if the measurement were replicated a number of
times. The final error estimate of a complicated physical
measurement usually is compounded out of many
different sources of error, some of which are of such a
nature that replication is not a feasible or practical
way of estimating the uncertainty of every contrib-
uting source. Nevertheless, we deem it preferable, even
in such cases, to make the estimate as impartially as
can be without biasing it either in the direction of the
too large or the too small.

The Gaussian error distribution is frequently assumed
to be the type-form applicable to all physical measure-
ments. This is of course not at all true. The nature of
the measuring process largely determines the error
distribution, without doubt. For example, measure-
ments of the diameters of cylindrical shafts with
“go-no-go” gauges may be expected to result in a
more-or-less flat-topped distribution of shaft diameters.
Fortunately the theories of error statistics and least
squares, as developed by the mathematicians Gauss,
Laplace, and Markoff, though frequently presented
to students, for simplicity, as though they were re-
stricted to the Gaussian error distribution alone, are
actually far more general in their applicability, In
fact they are applicable to any error distribution
curve with the sole restriction that the minimum
second moment of the curve must exist (i.e., must
have a finite value).? However, in order that this much
broader interpretation may be given to the theory,
it is necessary to modify the nature of our goal slightly.
We must no longer ask for ‘“the most probable value”
of a stochastic variable. Instead we must ask for that
value to which the maximum weight can be assigned.
Clearly it would be physically meaningless to ask for
the most probable value of a variable having a flat-
topped or a bimodal distribution.

Because of this more general applicability of the
theory to a very wide variety of distribution, we
prefer, in accord with modern error-statistical practice,
to express all of our error measures in terms of ‘‘standard

2 This restriction requires us to exclude such distribution curves
as the “witch,” “Cauchy distribution,” “Lorentzian,” or “Breit—
Wigner curve,” as it is variously called, the curve y=A4/(1+42).
For this curve, even the first moment diverges logarithmically.
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deviations,” that is to say, root-mean-square deviations
from the mean, rather than in terms of “probable
errors.” It is a grave mistake, in the light of this more
general applicability, to regard the error expressed
in standard deviations as simply differing by a multi-
plying factor (1.48) from the probable error. The
probable error is defined as that measure of dispersion
such that the odds are even that the observation may
lie either inside or outside the given limits. Only for
the Gaussian distribution are the standard deviation
and the probable error related to each other by the
numerical factor just cited. They are two entirely
different kinds of dispersion measures, and the standard
deviation is far more general in its applicability under
the theory of least squares. Throughout this article,
unless otherwise stated, all of our error measures are
given in standard deviations. In reducing the data of
other experimentalists who quote their errors as “prob-
able errors” we have usually assumed the above numer-
ical factor for the Gaussian to convert the quoted error
to a standard deviation, but wherever a critically im-
portant error measure was involved we have corre-
sponded with the worker and requested him to clarify
to the best of his ability his meaning or intention.
We fully realize that error estimates are difficult and
uncertain things but they are nevertheless worthy of
one’s best effort.

The idea that an overestimate of error “for safety”
is somehow more laudable or virtuous than an effort
to be as accurate as one can with as little bias as
possible in either magnifying or minimizing the standard
deviation estimate, is somehow deplorably prevalent.
We ask, for whom is such an overestimate “safe’?
Certainly not for the general scientific community who
wish to use the result. For them it is a concealment
of the true facts regarding the results of the measure-
ments. For the author of the result it may appear to
be “safe” in the sense that at some later date his
measurement might be less likely to be contradicted
by later work; but even for him this unworthy timidity
may be an illusory safety for, because of the un-
warranted exaggeration of his error estimate, a crucial
discrepancy, which might otherwise reveal some basic-
ally important new fundamental fact, may have been
buried and lost forever as far as his reputation is con-
cerned. For courageous men of science there is only
one “safe” refuge, the plain, unvarnished truth as to
their methods and results.

1.5. Local Unit Systems and Conversion Factors

The tendency of the physical sciences to split up
into smaller and smaller domains of specialization and
the demand for ever increasing precision in many of
these domains has forced upon us the adoption of local
unit systems, each chosen for use in a given domain,
so as to afford the highest degree of relative precision
which metrological techniques permit for comparing
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magnitudes in that domain. But since the physical
sciences constitute an indissoluble unit, over-all con-
sistency including all domains is also a mandatory
requirement (in fact, it is the only way of verifying
the success of our efforts both in theory and in ex-
periment) so that we are obliged, with whatever pre-
cision can be attained, to link the entire system to a
set of fundamental units which we usually refer to
as “absolute units” and we do this by determining
numerical “conversion factors.”

Nobody likes this situation because of its complexity
and one continually encounters proposals to simplify
it from specialists who, seeing only a part of the picture,
propose solutions which if adopted would only make
confusion worse. We have to live with almost all the
presently existing local units and conversion factors
because (1) their abolition would lead to concealment
of the metrological-operational truth as to how meas-
ured values were obtained, and (2) their abolition
would frequently entail a sacrifice of real observational
precision of great value in the localized domains.
Note that these are in both cases requirements imposed
by practical reasons related to metrological techniques
having little or nothing to do with physical theory or
conceptual simplicity.? Thus, the requirements are cap-
able of changing with time as new techniques of pre-
cision measurement are developed and old ones im-
proved. When such advances permit elimination of a
conversion factor and a simplification or unification
of two or more unit systems, the distaste for un-
necessary complexity will almost surely and immedi -
ately result in a reform. At any given time, therefore,
the existence of a conversion factor is almost a sure
guarantee of its indispensability.

It is worthwhile to call attention to a few specific
cases of presently indepensable local units and con-
version factors so as to illustrate this necessity.

(1) Conversion Factor from Linear to Volumetric Measure

Length measurements of the order of 1 m in mag-
nitude can be maintained, reproduced, and intercom-
pared with relative precision of order perhaps 107 or
better. Volumes can be intercompared by weighing
with a relative precision of the same order or better.
Here then we have two metrological domains each
admitting of high precision for comparisons of mag-
witudes within the same domain. The determination of
a conversion factor linking the two domains so as to
permit volume measure to be expressed in cubic length
units is a much more difficult metrological problem.
The liter is defined as the volume of a kilogram of water
at standard atmospheric pressure and at its temperature
of maximum density, approximately 4°C. (On a level
of sufficient precision this is an ambiguous definition

3 It is for this reason that theoreticians are particularly unaware
of the need for local units and conversion factors. For them the

difference between lengths and volumes is merely the writing of a
superscript 3!
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since it does not specify the isotopic constitution of
the water, but let us ignore this for the present dis-
cussion.) The meter is the fundamental cgs unit of
length. The linkage between length measure (in cm)
and volume measure (in cm?) was established by very
long, difficult, and painstaking determinations of ‘“‘the
maximum density of water” (or the volume of a liter
of water as the latter is defined above) chiefly by meas-
uring to very high precision the linear dimensions of
solid bodies and then hydrostatic weighing of these.
de Lepinay, Buisson, and Benoit* in 1910 at the Bureau
Internationale des Poids et Mesures (hereinafter ab-
breviated as BIPM) at Sevres obtained a result which
was later corrected upward by Guillaume, also at the
BIPM, by 1 part per million:

1 liter=1000.028+-0.004 cm? (1)

which is still generally accepted.

Note that here, after the greatest precautions, the
conversion factor between the domains of length
measure and volume measure could only be determined
to an uncertainty of 4 parts per million (parts per
million will be hereinafter abbreviated as ppm), a pre-
cision perhaps 50 to 100 times poorer than that with
which either lengths can be intercompared with lengths
or volumes intercompared with volumes! There is thus
no escape from the situation that if we wish to retain
the higher precision technically possible within each
of the two domains and still be in a position to express
measurements made in each of them in the same funda-
mental units (length), we are obliged to resort to the
use of the above conversion factor. This means that
precision in terms of the local unit (liters), must be
degraded in precision to a level of =4 ppm if they are
to be expressed in cubic centimeters or cubic decimeters.
There is no help for this; it is the best we can do and
stick to the metrological truth.

The following are a few other very commonplace
(though frequently ignored) examples of the same sort
of situation requiring introduction of a conversion con-
stant less accurately determined or determinable than
are the local unit magnitudes it connects.

(2) Relative and Absolute Nuclidic Mass Scales

The scale of “atomic weights” (more precisely the
scale of relative nuclidic masses) is an outstanding
case. Thanks to the high precision of mass-spectro-
scopic and nuclear-reaction data, we can compare on
this relative scale the mass ratios of nuclides (now
expressed in terms of the base unit, 2C=12, if the
newly adopted ‘“‘unified scale” is used) with relative
accuracies in some cases better than two parts in 108,
but the ‘“absolute” mass in terms of our primary
standard, the prototype kilogram at the BIPM is much
less well known. In this case, the reciprocal of the

4 J. M. de Lepinay, H. Buisson, and J. R. Benoit, Trav. Mem.
BIPM 14 (1910).

Avogadro number is the conversion factor between
the two scales. It is known only to about 16 ppm.
We would make an enormous sacrifice of relative pre-
cision if we were to express the masses of all the nuclides
in grams.

(3) The X-Unit-to-Milliangstrom Conversion Factor, A

The wavelengths of x-ray emission lines, which are
chiefly measured (intercompared) using the atomic
lattices of crystals as diffraction gratings, could prob-
ably be related to each other, on a properly defined
nominal scale, to a precision of one part in 108 To
express these same wavelengths in absolute units, that
is to say, in centimeters or Angstrom units, is a far
more difficult matter, and at the present time our
knowledge of a conversion factor for doing this is
perhaps no more accurate than #+=20 ppm. One trouble
here will be discussed in much more detail later in
this article. The accepted definitions and conventions
in precision x-ray spectroscopy are at the present
moment themselves not sufficiently well defined to
avoid a deplorable degree of semantic confusion.

(4) The Acceleration of Terrestrial Gravity

A similar example of the sort of difficulty we are
discussing comes from the important metrological prob-
lem of measuring at any given point on the globe
the quantity g, the acceleration of terrestrial gravity
in absolute cgs units. The value of g is not a constant.
It varies from point to point on the earth’s surface
because of (a) the oblateness of the earth’s figure,
(b) variations in centrifugal force with latitude, (c)
variations in altitude, (d) local fluctuations in the den-
sity of the earth’s crust, and (e) other causes such as
the gravitational effects of extraterrestrial bodies and
the like. Save for the latter effects which are quite
small and predictable, g at a given location is very
constant in time. But it is much easier to measure
the small differences in g from point to point on the
globe, even to a microgal (1 gal=1 cm/sec?), than it
is to measure its absolute value at any one point.
The absolute value is known scarcely better than
several milligal. Measuring the differences merely re-
quires carrying a pendulum from one point to another
and comparing its natural period of oscillation at the
different stations. By such methods, geophysicists have
determined the ‘“‘gravity net” for many points on the
earth’s surface and these measurements form a highly
overdetermined system. The work has been performed
by many different observers using different types of
apparatus and the results yield a high and rather
satisfactory degree of consistancy as regards the differ-
ences from point to point. The normalization of the
entire system in terms of absolute gals is a far more
difficult problem and it turns out from recent measure-
ments that the world has been using a value of g which
was everywhere about 14 ppm too high, based on
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measurements made at Potsdam by Kiihnen and
Fiirtwangler® in 1906.

The absolute value of g at a given point on the
earth’s surface where measurements of force or energy
are to be standardized with high accuracy in terms
of our fundamental cgs units is crucial. It is not feasible
at present to maintain a separate standard of force
which can be “put on the shelf” and reproduced when
required with accuracy comparable to that with which
our primary units of length, mass, and time are capable
of reproduction. Those three magnitudes still remain
our fundamental ones because they are still the most
accurately (as well as conveniently) definable, main-
tainable, and reproducible choices. As soon as this
ceases to be the case, but not before, an alternative
set should undoubtedly be adopted, for it is this
practical consideration which must dominate. But there
is still no immediate prospect of such a revision.
If then we are to relate force and energy to mass,
length, and time, the process must involve the meas-
urement of an acceleration. The reason for the choice
of terrestrial gravity as the acceleration to measure
is again a practical one: first, it is sufficiently constant
in time at any given place so that, once the difficult
and time-consuming task of an absolute determination
to =1 ppm (preferably better if possible) has been
accomplished, one is not likely to have to repeat it
soon again, and second, it is convenient because it
lends itself so readily to the standardization of forces
in absolute units by weighing, one of the most accurate
metrological operations. Thus we are to think of the
local absolute value of g at any given locality as the
conversion factor there between mass-by-weighting and
force. Here then we are again confronted with the same
situation which we have been discussing above in
which two different physical magnitudes can each be
measured on its own local scale (i.e., local to its own
domain of measurements) more accurately than the
two can be related to each other through a conversion
factor.

(5) “As Maintained” and Unqualified Absolute
Electrical Units

Many more instances like the four preceding could
be cited, but we shall only mention one other because
of its great importance and also because it involves
the one we have just described. For many years two
sets of electrical units, the “International” and the
“Absolute” units, were in use. Here, as in most other
cases, the reason was related to practical metrological
considerations. The units of voltage and resistance
were the two best choices to define, reproduce, and
maintain experimentally with high accuracy (by means
of frequent intercomparisons using banks of standard
cells and standard resistors). On the other hand, the

5 F. Kiihnen and P. Fiirtwangler, Verofientl. Preuss. Geodat.
Inst. N.F. No. 27 (1906).
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metrological problem of relating these units with com-
parable accuracy to our fundamental units of length,
mass, and time was, and still is, a very difficult one.
If we are to have a consistent physical system it is
indispensable to have such a relationship established
so that mechanical energy and force shall be comparable
to their electrical counterparts. The method of estab-
lishing this relationship which has now been under
study and in use for about thirty years is to determine
the absolute ampere by weighing the magnetic force
which two helical current-carrying solenoids of wire
exert upon each other. The geometry of the two so-
lenoids must be determined with extremely high ac-
curacy. A knowledge of the absolute value of g at
the site of the experiment is also clearly required.
The absolute ohm, on the other hand, is determined
by means of a similar current-carrying solenoid whose
inductance is accurately calculable from its measured
geometry. If an alternating current of accurately known
frequency is used, the reactance of this solenoid in
ohms can be compared by bridge methods with the
resistance of a standard resistor. These two descrip-
tions are greatly oversimplified statements of the pro-
cedures for normalizing the absolute electrical units
in principle, with no claim to accuracy in detail.

Much more recently a third procedure, that of the
Lampard condenser, has been under study. This con-
sists of a way of building capacitors from whose ac-
curately measured geometrical dimensions their elec-
trical capacities in absolute cgs electrostatic units can
be calculated. Since only two electrical quantities need
be standardized in absolute units to normalize the
entire system, the addition of this third approach will,
it is hoped, introduce the much-to-be-desired over-
determination which will furnish a check on previous
results. The velocity of light will of course be involved
in such a check.

In 1946 it was decided to abolish the international
electrical units and to quote the calibrations of all
electrical standards (cells and resistors) in absolute
amperes and ohms starting 1 January 1948. The stated
reason for this step® was that the techniques of estab-
lishing the absolute units had advanced to a point.
where they compared favorably in precision with the
reproducibility and constancy of the International
Units (based on intercomparisons of standard cells
and resistors, thanks chiefly to work at the US-NBS
and at the British NPL).

Unfortunately this step has tended to conceal some
of the operational facts about the metrology of stand-
ardization and maintenance of the “absolute” electrical
units. The actual process comsists of two distinct op-
erational procedures: (1) the difficult, painstaking pro-

6 The history of this development and the eventual establish-
ment of the electrical units on the absolute cgs system is well
described in a circular of the National Bureau of Standards
(U.S.); F. B. Silsbee, “Establishment and Maintenance of the
Electrical Units,” Natl. Bur. Std. (U.S.) Circ. 475, 1-30 (1949).
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cedure (with precision solenoids) of establishing the
absolute ampere and ohm, which can scarcely be done
to much better precision than about 3 or 4 ppm, and
which has been repeated in the U. S. approximately
once in a decade, and (2) the maintenance of these
units (in terms of the mean values of banks of fre-
quently intercompared standard cells and resistors).
Cells or resistors which exhibit sudden or marked
changes in value from the average of a large bank
are rejected and replaced. In this way only a very
slow slippage in the mean value of a bank can be
expected to occur. However, if the results of two
absolute standardizations effected ten years apart (even
using the same solenoids) are compared in this manner,
it is quite impossible to say how much of the observed
discrepancy should be assigned to random and sys-
tematic errors in the standardization procedure itself
and how much to slippage in the maintenance pro-
cedure during the ten-year interval. Little or nothing
can be done about this save to try to improve and make
more frequent the absolute standardizations. But what
we aim to point out here is that there are really two
distinct steps in the process of arriving at certification
in absolute electrical units of a cell or resistor: (1) ab-
solute standardization once per decade, (2) maintenance
of the standard over a period of years.

All national standardizing laboratories pay homage
to this fact in the language used in their electrical
certifications. The voltage of a standard cell is certified
by the US-NBS as so-and-so many absolute volts
“as maintained at the U. S. National Bureau of Stand-
ards.” But it is important to realize that a similar
certification in absolute volts “as maintained at the
British NPL” or “as maintained at the Mendeleef
Institute of Metrology” are not necessarily exactly
the same. Each of the national standardizing labora-
tories makes its own separate independent periodic
absolute standardizations and maintains its own stand-
ardized units over the intervening periods of time.
Every three years the “as maintained” absolute units
of the different laboratories are intercompared at the
BIPM in Sevres under the auspices of the ‘“Consul-
tative Committee on Electricity,” and, as one would
expect, there are found to be minor disagreements.
For standard cells these were as large as 5 or 6 ppm
in 1963.

(6) The Absolute Gravity Net and Absolute
Electrical Units

It must be recalled that these dissonances are
probably somewhat enhanced by the fact that each
national laboratory uses its own absolute determination
of the local value of g in reducing its current-balance
data in its periodic restandardizations of the absolute
ampere. To our knowledge no effort has yet been made
to combine all such data on the world gravity net
by means of a least-squares adjustment which would

seek to eliminate systematic errors, and try to estab-
lish a “best” mean value for the normalization of the
net in absolute units. Clearly the intercomparisons of
the electrical units would perhaps furnish valuable
contributory information to such a normalization. We
think that such least-squares studies should be made
in an effort to pull the physical standards of the world
together into better agreement and we have suggested
to the director of the BIPM that it be proposed.

At the time of this writing there is no international
officially agreed-upon current “best” value of a con-
version factor between the absolute electrical units
“as maintained at the International Bureau of Weights
and Measures” and the absolute units without quali-
fication, i.e., as nearly as the latter can be ascertained
by adjustment of a/l the national standardizations at
the present time. Without such world-wide agreement,
comparison of research results from different parts of
the world is greatly hampered.

At this stage it is worth pointing out that while
agreement is desirable, the really important and in-
teresting things are the disagreements the causes of
which we would like to find in order to eliminate them.
Mere verbal and conventional agreement is not a solu-
tion. A danger threatens all organized institutional
work that such an exaggerated value may become
attached to mere stability and agreement as to offer
a temptation to substitute agreement for accuracy.

In summary then, it becomes necessary to recognize
that at any national standardizing laboratory there
are still in actual fact two systems of so-called “ab-
solute” electrical units: the ‘“as maintained” absolute
units and the absolute units without qualifying ad-
jective. These last, ideally defined as they must be
relative to our fundamental units of length, mass,
and time, are operationally only approximately ac-
cessible at present, and comparative agreement about
them in different world laboratories still exhibits dis-
crepancies of several ppm. For this reason a conversion
factor between ‘“as maintained absolute units” and
unqualified absolute units (as nearly as they are known)
is, for purposes of highest precision, a factor which
must be quoted by each laboratory at a given epoch.
For example, the US-NBS has supplied us with the
information that, to the best of their knowledge in
1962,

1 US-NBS ampere (“as maintained” at US-NBS) =
1.000012--0.000004 absolute ampere.

We have been at some length to illustrate the reasons
for the inevitability of units of measurement local
to limited domains of the physical sciences and the
consequent necessity for conversion constants linking
such local units to our fundamental units of length,
mass, and time. In every case the reason and the in-
evitability reside in facts about the current state of
available precision in different metrological techniques.
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Unless we retain the local units and the associated
conversion coefficients, we would be obliged to sacrifice
the very valuable level of higher precision available
in comparing magnitudes within each local domain.

It is strange how often we encounter proposals on
the part of physicists and chemists to solve such situ-
ations by framing verbal conventions or by defining
the numerical values of conversion coefficients by
decree! A difficult problem of experimental precision
metrology cannot be solved by verbal definition or
decree any more than a state legislature was able to
decree the legal value of the ratio of the circumference
of a circle to its diameter!” The structure of physics,
as far as we know it, admits of only a small number
of arbitrarily defined units, and once these are fixed the
system becomes overdetermined and loses its con-
sistency if others are arbitrarily injected without the
introduction of conversion factors, factors which must
be experimentally determined.

Since we must live with conversion coefficients (dis-
tasteful though this may be, especially to theoreticians)
if the experimental verifiability of the physical sciences
is to be retained, it is important to be alert to the
danger of overlooking hidden error-statistical cor-
relations which may be present between two or more
items of experimental data because one and the same
conversion coefficient has been used in reducing them.
(Needless to say, it is of course even more important
to avoid outright inconsistencies which may be in-
troduced into a general least-squares adjustment be-
cause different values for the same conversion coefficient
have been used by different experimenters in calculating
the values of different items of input data. This mis-
take, less likely to be made by a reviewer because
more obvious than the hidden correlation, comes from
the fact that experimenters scarcely ever measure what
they say they measured and frequently forget to report
the values of the conversion factors they have used.)

1.6. Correlated Errors

The error-statistical correlation between the error
distributions of experimentally measured data and the
effect of such correlation in calculating the propagation
of such errors into further data dependent upon them
is often forgotten. In setting up the equations of ob-
servation of a least-squares adjustment to obtain rec-
ommendable “best” output values of the constants,
careful attention must be paid to possible correlations
which may exist between the numerical data of ob-
servation appearing in two or more of the equations
because a common stochastic conversion factor may
have been used whose error contributed substantially
to the errors of the two or more equations. If this has

7 Action on House Bill 246, Indiana State Legislature (1897),
was postponed indefinitely on 11 Feb. 1897, after preliminary
acceptance by a unanimous vote of 67-0 nine days earlier. This
bill would have defined = exactly, and granted to the citizens of
the state the royalty-free use of this value.
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been permitted to happen, the numerics of the two
or more equations will have correlated error distri-
butions. As a result, simple numerical weights to be
assigned to each observational equation, are no longer
appropriate to the situation. Instead a weight matrix
is required which must take into account not only
the variances associated with the numerics of each
equation but also the covariances between pairs of
equations. Such a complication is however usually
easily avoided by recasting the observational equations
to contain explicitly an adjustable unknown, the con-
version coefficient in question, which in this way is
no longer “buried” in the numerical data. No over-
determination need be sacrificed by this device because
an additional observational equation is also to be added
which expresses the source of information from which
the value of the conversion constant had previously
been secured.

One other very important caveat related to error
correlation is needed at this point. The output values
of a least-squares adjustment are in gemeral correlated.
As a result, if these output values are to be used in
combination in formulas to compute further physical
magnitudes, the generalized formula of error propa-
gation, taking into account not only the variances of
the stochastics in the formula but also the covariances
between all possible pairs of them, must be used.
If this is not done, the error assigned to the result
may be either too small or too large depending on the
algebraic signs of the contributions from the co-
variances. There is no help at all for this difficulty.®
It is the price we pay for using least-squares adjusted
best values. It reflects the actual complexity of the
relationship of the output values to the input data
from which they were derived. There is no other way
known to us of obtaining a completely consistent set
of values based on our experimental knowledge at a
given epoch and consistent with the accepted theo-
retical relationships of that epoch.

Let the 7 error-statistically correlated data be the
stochastic variables, %1, #s, *+ +, x,. We wish to calculate
the oy, of a quantity, y, which is given by a function of
the «’s.

y=f(x1) Yo, *°°, xﬂ) . (2)

Then the variance, ¢,% of y is given by

2 of L of
2= V.
Oy 1;::1 axiV” o; ) (3)

where V;; is the variance matrix. Formula (3) may also

8 It would be possible to eliminate the correlations between the
error distributions of the adjusted output values of the unknowns
of a least-squares adjustment by a transformation to a new set of
unknowns chosen so as to diagonalize the output variance matrix.
However this, in general, leads to a set of output quantities
which have no clearly defined physical interpretation. It must be
recognized that the structure of the output variance matrix is a
more-or-less accidental result of the state of precision of our
knowledge of the different input data in any given adjustment.
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be written in terms of the correlation coefficients, 7,

3 (X ,)2 o
oy ——-;1 (6 7 +2i<zjr,,axia'laxjo,. (4)

In Eq. (4) the first summation gives the ordinary
propagated error when the variables x; are error-
statistically independent (all #;;=0). The second sum-
mation may be either positive or negative and repre-
sents the modification in the ordinary formula for
statistically independent errors because of the presence
of correlation.®

£2

1.7. The Single-Route Method

Since the generalized formula of error propagation
described in the last paragraph is the price which
must be paid for using values of the constants re-
sulting from a least-squares adjustment of overdeter-
mined experimental data, one hears occasionally the
suggestion that this complication be circumvented by
resort to the single-route method. This method implies
that we select from the entirety of available data at
the given epoch a preferred set just sufficient to de-
termine the constants and that we ignore all other
data of that epoch. One would naturally presume that
the preferred set should be carefully chosen so as to
be that set which yields the most reliable and accurate
value of each desired constant, and that it be sufficient
to determine all the “unknowns” required for calcu-
lating all the desired fundamental constants and con-
version factors.

In the first place, the question immediately arises
whether these two requirements are necessarily com-
patible. The selection of a set of measured input data
just sufficient to yield without overdetermination the
most accurate value of one unknown may not neces-
sarily lead to the same set as one would select to get
the most accurate value of another unknown. Thus,
although there may be (in fact, is) a best set of data
for determining any ozne physical constant, there may
not be a unique best set from which to determine
all of the fundamental physical constants.

It was pointed out in an earlier article!® that the
available data in 1954 (7 equations of observation in
4 unknowns) afforded as many as 14 distinct single
routes for arriving at a value of the Avogadro number,
N, for example. Each route gave a slightly different
value of N with a different standard deviation. No
one of these 14 results is, @ priori, to be considered
better than another. These different results are, how-
ever, clearly not error-statistically independent. One
cannot get 14 independent results, given only 7 in-

9 A more detailed discussion of error correlation in general and
of the values of a least-squares adjustment is given by E. R.
Cohen, K. M. Crowe, and J. W. M. DuMond, in Fundamental
Constants of Physics (Interscience Publishers, Inc., New York,
1957), Chap. 7.

107 W. M. DuMond and E. R. Cohen, Phys. Rev. 94, 1790
(1954).

dependent equations. In this overdetermined situation
the only logical solution is one by least-squares ad-
justment. A statistically correct weighted averaging
of the 14 statistical correlated results on N is a much
more laborious method of solution than the straight-
forward method of least squares, applied directly to
the 7 independent observational equations in 4 un-
knowns. One of us, in a survey of the sources of in-
formation available in 1959 on the x-unit-to-milli-
angstrom-unit conversion factor, A,"! has listed 10
different just-determinate single routes for calculating
that constant, routes which can be formed out of
appropriate combinations of the 7 equations of ob-
servation in 4 unknowns representing the 7 inde-
pendently observed items of experimental data. Here,
again, precisely the same remarks apply as we have
made for the earlier 14 routes for getting N. The same
sort of embarrassment of choice would exist for almost
any constant one might care to select as his objective.
The arbitrariness and inconsistency inherent in the
single-route method is too heavy a price to pay for
avoidance of the slight additional trouble involved
in the generalized formula of error propagation entailed
by the use of a least-squares solution.

2. REVIEW OF THE EXPERIMENTAL DATA

2.1. Selection of the “Unknowns’’ to be Adjusted

With passage of time and accumulation of experi-
mental and theoretical data, the words ‘“fundamental
constants’ have come to include an ever wider domain
until now the scope covers nearly all of classical physics
and that much of atomic and nuclear physics as is
concerned with the interaction between matter and
radiation through the agency of electrons. Unfortu-
nately, nuclear forces, and constants relative thereto,
must still be excluded from our least-squares adjust-
ments since our knowledge of them is at a so much
lower level of precision and the theory is still inade-
quate and uncertain. Gravitational forces also remain
disconnected theoretically from the domain we deal
with, and experimentally the general Newtonian con-
stant of gravitation which has been measured only to
four significant figures, stands in lonely isolation from
all the rest of physics.

The constants space required for the description of
the analysis in 1960 is defined by: «, the fine-structure
constant of Sommerfeld; e, the fundamental electronic
unit of charge; IV, the Avogadro number; and A, the
conversion factor from x-ray wavelengths expressed on
the Seighahn (nominal) scale in x-units and the same
wavelengths expressed in milliangstrom units. The se-
lection of these particular unknowns is largely based
on mathematical and computational convenience in the
structure of the observational equations of the ad-
justment, and any other set of physical constants

11 Jesse W. M. DuMond, Proc. Natl. Acad. Sci. 45, 1052 (1959).
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developed from these which spans the space may be
used equally well.

In the course of our studies of the input data, and
after making a reasonably complete “analysis of vari-
ance” thereof”? it became evident to us that we could
no longer safely include any of the x-ray data in the
1963 adjustment; it was not that the x-ray data were
notably more imprecise than in the past, but that the
data from other sources had reached a level of pre-
cision such that we preferred not to run the risk of
vitiating them with possible systematic errors which
the inconsistencies in the x-ray data indicated the
latter must contain. The probable sources of these
inconsistencies will be discussed below at the proper
place [Sec. 2.5(2) ef seq.].

2.2. Classification of Experimental Input Data

Ever since the first studies'® of R. T. Birge in 1929,
it has been found convenient to classify the experi-
mentally obtained input data of such least-squares
adjustments into two groups: (a) “auxiliary constants”
(the more precisely known numbers), and (b) the less
accurate remainder of the data, considered never-
theless sufficiently precise for inclusion as input data.
The “auxiliary constants,” a term we owe to R. T.
Birge, are those measured quantities whose precision
is so much superior to the rest that they can, in com-
parison to the remainder of the data, be treated as
though they were known without error. Since errors
combine quadratically, a quantity known with a pre-
cision an order of magnitude better than the rest of
the input data does not contribute appreciably to the
output uncertainties. It can be treated as a fixed star,
an exactly known quantity. The so-called imprecise
or stochastic input data, on the other hand, are those
data whose estimated error measures are large enough
to affect the weighting of the observational equations.
As already pointed out, there should be one, and only
one, such stochastic quantity associated with each
observational equation to avoid error-statistical cor-
relations between them.

2.3. Changes in Definitions of Units Since 1955
(1) The Unified Scale of Atomic Weights

After several years of consideration by the IUPAP
and ITUPAC, the new unified scale of atomic weights
was adopted by them in a joint action taken at Ottawa,
Canada in 1960. This scale is based on the arbitrary
assignment of the mass of exactly 12 units to the iso-
tope 2C. As such, this definition was selected to re-
place both the so-called physical scale of atomic weights
based on the assignment of mass 16 to the isotope
180 and the so-called chemical scale of atomic weights

2 Qver 150 least-squares adjustments of subsets of the data
were examined for consistency. This “analysis of variance” is

described in its proper place.
1B R. T. Birge, Rev. Mod. Phys. 1, 1 (1929).
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which assigns the mass 16 to the “natural” isotopic
mixture of oxygen isotopes. The qualification “unified”
was given this new scale because it was chosen to
replace the two slightly different earlier ones. The
urgent need for a revision, however, came not from
the confusion resulting from the existence of two scales,
but rather from the fact that the greatly improved
level of precision reached by using physical methods
of comparing nuclidic masses had so far outstripped
the precision of atomic mass determinations (by the
older stoichiometric methods) that the old definition
of the chemical scale in terms of ‘“a natural mixture
of the oxygen isotopes” had become unsatisfactorily
ambiguous. The transition to this new scale has been
greatly facilitated by the excellent and exhaustive com-
putations of Everling, Koenig, Mattauch, and Wapstra,
first reported at the First International Conference on
Nuclidic Masses held at McMaster University in 1960.14
Revisions and additional data have been added to
their work since then.!5*® The work consists of a com-
prehensive least-squares adjustment of an enormous
budget of highly overdetermined experimental data on
the masses of all nuclides both as obtained by mass
spectroscopy and as obtained by nuclear reaction meas-
urements. The standard deviations of the masses are
in all cases less than a few parts per million.

In the unified scale of nuclidic masses the mass
of %0 is given 5 as 15.99491494-+-0.00000028, so that
we have the following conversion factor from the
unified scale to the old physical scale, ¥0=16:

Mass on physical scale (*0=16)
Mass on unified scale (2C=12)

=1.0003179174-0.000000017.

The definition of the old chemical scale (0=16) is
confused by the uncertainty of the definition in terms
of “natural isotopic abundances” for oxygen in the
face of known variations in these abundances de-
pending on the origin of the oxygen sample. These
differences are possibly the result of biological pro-
cesses since the 180/%0 ratio for oxygen from inorganic
sources (FeO or water) is as much as 49, less than that
from air or limestone. The nominal conversion factor
often used for converting masses on the old chemical
scale to masses on the old physical scale,

7=1.000275=0.000005,

whose assigned uncertainty reflects the above vari-
ability in abundance of the oxygen isotopes, has been
used in the past by the IUPAC as an exact value.
At one time it was proposed to define the chemical

“F. Everling, L. A. Konig, J. H. E. Mattauch, and A. H.
Wapstra, Nucl. Phys 15 342 (1960), 18, 529 (1960)
BL. A. Konig, J. H. E. Mattauch, and A. Wapstra, Nucl.
Phys 31, 1 (1962); 31, 18 (1962).
67, E. H. Mattauch W. Thiele, and A. H. Wapstra, Nucl.
Phys. (to be published, 1965)
17 A. O. Nier, Phys. Rev. 77, 792 (1950).
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scale in terms of the old physical scale by adopting
the above conversion factor as an exact value.

One argument advanced in favor of the present
“unified” (2C=12) scale was that it coincides numer-
ically with the old chemical scale to within 43 ppm, a
difference which the chemists regard as negligible for
many purposes. For somewhat more precise purposes
we have the conversion factor

Masses on the old chemical scale (0=16)
Masses on the unified scale (2C=12)

=1.0000434-0.000005,

in which the large uncertainty of 5 ppm is due to the
indefiniteness of meaning of the definition of the old
chemical scale in terms of “natural” oxygen.

A valuable study by Cameron and Wichers'® has
been made in which the results of the above-mentioned
nuclidic mass tables' combined with the best selected
nuclidic abundance ratios are used to compute mean
atomic weights for comparison with the chemically
determined atomic weights.

(2) The Redefinition of the Thermodynamic
Temperature Scale

The thermodynamic temperature scale in the past,
as exemplified by the centigrade scale, was based on
the arbitrary assignment of 0° and 100° to the melting
point and boiling point, respectively, of water under
a pressure of one atmosphere. This definition leads
experimentally to a thermodynamic temperature scale
in which the absolute-zero temperature point is
—273.164-0.01°C. This scale has now been abandoned
officially by action of the Tenth General Conference
on Weights and Measures in October 1954, at which
it was decided”® “to define the thermodynamic scale
of temperature by means of a triple-point of water
as fixed fundamental point, by assigning to it the
temperature 273.16° Kelvin exactly.” Thus the two
defining fixed points are officially now the triple-point
of water and the absolute zero.?’ The melting point of
water under one atmosphere pressure is then an ex-
perimental quantity determined by measurement to
be 273.15004=0.0001°K. On this thermodynamic scale
the ice-point of water is 0.00003-0.0001°C and the

18 A. E. Cameron and E. Wichers, Report of the International
Commission on Atomic Weights, 1961 (unpublished); J. Am.
Chem. Soc. 84, 4175 (1962) ; Analyt. Chem. 35, 23A (1963).

B E, C. Crittenden, “Report on the Tenth General Conference
on Weights and Measures,” Science 120, 1007 (1954).

20 In the official recommendation, natural water is specified for
the triple-point determination, recognizing that the isotopic com-
position of the water will in principle affect the precise value of
this equilibrium point although in describing the procedure no
representative isotopic abundances for “natural” water are de-
fined or discussed. However the present error limits for such
measurements are such that the natural isotopic variation in
water (that has not been purposely fractionated) is of little
importance. When experimental techniques make a more precise
definition necessary a selected isotopic composition will have to
be specified.

steam point is 99.99644-0.0036°C. Thus we can no
longer say that we have a centigrade scale in the sense
that there exists a 100° temperature difference between
two fixed points, and the name “centigrade” should
be abandoned, although the designation °C is to be
retained, with the new scale referred to as the “Celsius”
scale. The Kelvin scale of temperature is defined by
adding 273.15 to the Celsius scale as here defined.

2.4. Revisions of Auxiliary Constants

(1) The Acceleration of Terrestrial Gravity

Although the value of gravity in absolute cgs units
is admittedly not a fundamental natural constant (nor,
for that matter, strictly a constant at all) its importance
as a ‘‘transfer constant” in precision metrology is
enormous, since operationally it serves as a link of
high precision between our fundamental, arbitrarily
defined, but highly reproducible standard of mass
(the prototype kilogram at Sevres) and all of our force
and energy units. Gravity differences between two
stations on the world gravity net [see Sec. 1.5(4)]
can be determined in many cases to better than
0.1 ppm.2 Wherever high-precision determinations or
standardizations of forces or quantities related to force
in absolute units are to be made, by far the most
accurate way of doing this is by “weighing the force”
with a precision balance. The mass whose gravita-
tional pull equilibrates the force to be determined
must then be multiplied by the absolute local value
of g where the weighing is done to ascertain the force
in dynes.

Since the differences in g between stations on the
gravity net are known to better than a part in 107
of g itself, it would suffice, at least in principle, to
normalize the entire net on an absolute basis by a
single absolute determination at one point. So great
at the present time, however, is the interest in as-
certaining better absolute values of g that some eleven
of the world’s largest national standardizing labora-
tories have been working recently (or are preparing
for work very soon) with great diligence and care on
this problem.?

The experimental difficulties of defining the ab-
solute base for gravity measurements to a precision
of &1 ppm are considerable. For many years the ab-
solute determination made with the Kater reversible
pendulum method in 1906 by Kiihnen and Fiirtwangler®
at Potsdam (981.274 cm sec™?) was regarded as the
international standard and was used to normalize the
entire world gravity net. The system of absolute

2 C. Morelli, “Absolute and First Order World Gravity Net,”
Special Study Group No. 5, Report to the International Union of
Geodesy and Geophysics (IUGG), Aug. 1959 (unpublished).

2 A. H. Cook, “Report on Absolute Measurements of Gravity,”
read at a meeting of the Standards Division, International Gravity
Bureau, Paris, Sept. 1962 (unpublished). See also, A. H. Cook
“Recent Developments in the Absolute Measurement of Gravity,”
Bull. Geodesique No. 44, 34-59 (1957).
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gravity values derived in this way for all net points
went by the name of the “Potsdam Gravity System.”
Since then, however, evidence has been accumulating
that this Potsdam value is too high by something in
the neighborhood of 15 ppm. The U. S. National
Bureau of Standards has for twenty years or more
used a gravity standard for gy at Washington of 980.082
cm sec?, which is 17 ppm lower than the value on
the Potsdam normalized network. The first suspicion
of this systematic error was due to the work of P. R.
Heyl at the US-NBS. The original data of the Potsdam
determinations were then carefully re-examined by
Hugh L. Dryden and the probable cause of the trouble
was located chiefly in certain unjustified corrections
made in the Potsdam determination. The downward
correction of 17 ppm just mentioned is called “the
Dryden reduction.”?

The pendulum method of measuring g was em-
ployed to circumvent the difficulties which with earlier
more primitive techniques accompanied the measure-
ments of small time intervals to high accuracy. With
recent improvements in time standards and the ability
to measure nanosecond intervals, increasing attention
has been given to gravity measurements utilizing the
straightforward timing of bodies either in free fall or
by what may be called the “upsy-daisy” method (the
body catapulted straight upward in vacuum, then re-
turning in free fall to its starting point). In the latter
method the time differences for the transit of the
body past two points differing in height by a precisely
measured distance constitute the observed quantities.
A surprising difficulty with the method of the free
body (either falling or upsy-daisy) in vacuum has
been reported by A. H. Cook in his work at the British
NPL. As the body is disconnected electrically from
ground (as it must be to fall freely) it appears difficult
to avoid its becoming charged electrically. By per-
mitting the freely falling body to pass without contact
through a metal ring or tube in the vacuum (the
ring being connected to an oscilloscope), Cook reports
having observed signals indicating potentials on freely
falling glass balls as large as 5000 volts. Electrically
conducting coatings on the ball, Cook reports, appar-
ently eliminate the trouble. One cannot help wondering
whether this effect of electrical charging in vacuum
may not also have vitiated the work done with the
uncoated quartz reversible pendulums frequently used?
which could only be electrically connected to ground
through their supporting knife edges and on which
accidental electrical charges would only leak away
very slowly because of the very low electrical con-
ductivity of quartz. Clearly the problem of determining
the absolute acceleration of terrestrial gravity to the

2 P, R¥Heyl and G. S. Cook, J. Res. Natl. Bur. Std. 17, 805
(1936); H. Jeffreys, Monthly Notices Roy. Astron. Soc.. (Geo-
phys. Suppl.) 5, 219 (1948); 5, 398 (1949).

% For example by P. N. Agaletski and K. N. Egorov, Izmeritel.
Tekhn, 1956, No. 6, 29.
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F1c. 1. Values of the velocity of light obtained between 1949
and 1958.

level of precision consistent with many present day
physical measurements is a difficult one, not even yet
solved as satisfactorily as could be wished.

For the 1963 adjustment we have assumed, what
now seems reasonably well established, that the tra-
ditional “Potsdam value” of gravity should be cor-
rected downward by 13.0240.4 milligals. This correc-
tion is important for theYadjustment because of its
effect on the absolute determination of the ampere.
The change of 4 ppm from the Dryden reduction im-
plies a change of 2 ppm in the value of the ampere
as maintained by the U. S. National Bureau of Stand-
ards during the past decade.

(2) The Velocity of Light

In the past 15 years there have been some 11 no-
table measurements of the velocity of light, probably
the most important of all constants. These are listed
with the references in Table I. The four, Aslakson;
Hansen and Bol; Plyler, Blaine, and Conner; and
Florman, claim so much lower precision than the rest
as to carry little weight in any judgment as to the
consistency or inconsistency of the entire group. The
remaining seven show quite good consistency. Weight-
ing them as the inverse squares of their error assign-
ments one obtains ¢=299792.664-0.09 km/sec. Figure 1
exhibits this situation graphically. All of the data are
shown on the left. The more precise data, with omis-
sion of the four above-mentioned measurements of lower
precision, appear on the right. We shall not, however,
adopt precisely the foregoing weighted average value.
We have evaluated it for purposes of illustration of
certain fairly important points applicable in many in-
stances to our efforts to arrive at recommendable
values of oft-measured fundamental constants.

The striking difference of about 17 km sec™ between
the present general region of values obtained for ¢
and the older result, ¢c=299776, adopted in 1941 by
R. T. Birge? as a ‘“best” weighted average, based

% R. T. Birge, Rept. Progr. Phys. 8, 90 (1941).
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TaBLE I. Some measurements of the velocity of electromagnetic waves and of light published between 1949 and 1958.

Author

Date Method ¢ in km sec™ Remarks
Aslakson® 1949 Shoran 299 7924:3.5
Hansen and Bol® 1950 FLCR 299 789.3+1.2 FLCR =fixed-length cavity resonance
Essen® 1950 VLCR 299 792.5£1.0 VLCR =variable-length cavity resonance
Bergstrandd 1951 Geodimeterk 299 793.1£0.32
Froomee 1952 FSMWI 299 792.6+0.7 FSMWI={ree-space microwave inter-
ferometer
Mackenzief 1953 Geodimeterk 299 792.440.5
Froomee 1954 FSMWI 299 793.0+0.3
Plyler ef al.® 1955 Inf. Spectr. 299 79246.0 Infra-red spectrometer
Flormank 1955 FSMWI 299 795.1+1.9
Bergstrandi 1957 Geodimeterk 299 792.7540.34 Earlier instrument
299 792.8540.16 Later instrument
Froomei 1958 FSMWI 299 792.5040.10

8 C, I. Aslakson, Nature 164, 711 (1949).

b K. Bol, Phys. Rev. 80, 298 (1950).

¢ L. Essen, Proc. Roy. Soc. (London) A204, 260 (1950); Nature 167, 758 (1951)

d E. Bergstrand, Arkiv Fysik 2, 119 (1950); 3, 479 (1951).

¢ K. D. Froome, Proc. Roy. Soc. (London) A213, 123 (1952); A223, 195 (1954).

f 1. C. C. Mackenzie, Ord: ¢ Survey Professional Paper, No. 19 (Her Maj-
esty’s Stationery Office, London, 1954).

chiefly on work of A. A. Michelson and co-workers,?%
using the rotating polygonal mirror, and of W. C.
Anderson,?® using Kerr-cell modulation, has caused
wide-spread surprise and discussion and has gone a
long way to discourage the practice of trying to arrive
at “best” weighted average values of the constants.
In particular, R. Dupeyrat® in an interesting review
of recent work on ¢, in which the several results are
carefully classified according to the nature of the
velocity measured and the method employed, arrives
at the conclusion that “there is no point in taking a
weighted mean” of the different results. A similar
conclusion has been reached by A. G. McNish, Chief
Metrologist of the US-NBS. The present authors are
also convinced that blind weighted averaging of a
mass of data without critical examination of how the
items were determined is to be deplored. In fact, by
far the most arduous part of the work of the reviewer
who prepares a critical study such as the present one
is precisely this careful examination of the sources of
data. As R. T. Birge® has very aptly pointed out,
“one must go far behind the scenes,” correspond with
the experimenters, if possible in crucial cases visit

% A. A. Michelson, Astrophys. J. 65, 1 (1927). Although this
work on a light path between Mt. Baldy and Mt. Wilson, Cali-
fornia, came much closer to the presently accepted value, Birge
gave it lower weight, chiefly because of the great replication of
the 1935 measurements.

2 A. A. Michelson, F. G. Pease, and F. Pearson, Astrophys. J.
82, 26 (1935). :

28 W. C. Anderson, Rev. Sci. Instr. 8, 239 (1937); J. Opt. Soc.
Am. 31, 187 (1941).

2 R. Dupeyrat, J. Phys. Radium 19, 557 (1958).

€ E. K. Plyler, L. R. Blaine, and W. S. Connor, J. Opt. Soc. Am. 45, 102
(1955).

h g, F. Florman, U. S. Natl. Bur. Std. Tech. Bull. 39, 1 (1955).

ig, Bergstrand, Ann. Franc. Chronom. II, 97 (1957).

i K. D. Froome, Proc. Roy. Soc. (London) A247, 109 (1958).

k Bergstrand’s Geodimeter is a Kerr-cell modulated device for measuring
the group velocity of visible light over paths of the order of 10 km.

their laboratories, to form an opinion of the reliability
of the work. The case of the 17 km sec™! discrepancy
between the old Birge-recommended value of ¢ and the
newer values obtained by more modern methods of
measurement has been described by Birge as one of
the most astonishing systematic errors in the history
of physics. In point of actual fact the chief source of
error in the older estimate came from a systematic
error in the experimental result of Michelson, Pease,
and Pearson, performed in a mile-long evacuated tube
laid on unstable soil near Santa Ana, California. Al-
though some 2885 replicated observations of the time
of flight were made, there were only a few (2 or 3)
determinations of the distance. All the time measure-
ments were made at night and the distances in the
daylight. The site was near the ocean and variations
in the results which seems correlated with the tides
were observed. No one knows now what caused the
systematic error in this work, but it is valuable to
look at a frequency curve of the replicated time-of-
flight data, reproduced here in Fig. 2. This frequency
plot gives the number of observations of time of flight
which yielded a value of ¢ in each velocity interval of
5 km sec. Above the peak of this curve we have
plotted the mean value and probable error adopted
by R. T. Birge in 1941 as indicative of the results of
the Michelson, Pease, and Pearson experiment. The
heavy vertical line on the right represents, by its
position and roughly by its thickness, the value

¢=299792,540.4 km sec.
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This last is the .value adopted by the International
Scientific Radio Union at their Twelfth General As-
sembly in 1957 and also accepted by the International
Union of Geodesy and Geophysics. It is in close agree-
ment with Froome’s most recent and most accurate
measurement of microwave velocity made in 1958 with
his free-space microwave interferometer. Froome, how-
ever, claims an even smaller error, £=0.1 km sec™.
Note also that this officially adopted value is not in
significant disagreement with our above mentioned
mean of the seven most accurate determinations of
Table I. The adopted value quoted above is that which
we have adopted for ¢ in our 1963 adjustment.

It is perhaps significant to note (see Fig. 2) that the
standard deviation of Michelson, Pease, and Pearson’s
time-of-flight observations is 13.3 km sec™, more than
three times the probable error assigned by Birge to
the mean value. Thus the systematic error of 17 km
sec™! is in fact only 1.3 standard deviations and, looked
at in this light, is not particularly shocking. Birge
explains in his 1941 review, referring to the frequency
curve (here shown in Fig. 4) “—the distribution of
the residuals deviates appreciably from a normal error
curve. But I find that a very good fit can be obtained
if one takes the sum of two such curves, one with a
standard deviation of 5 km sec™ (for a single ob-
servation) and the other of 15 km sec™.” If there
could be said to be any error of judgment on Birge’s
part, then, it is perhaps that he was a little too op-
timistic in assuming that the narrower of the two
component normal error curves into which he was
able to decompose the observed frequency distribution,
was representative of the “good” observations. It is
all too easy in the light of hind-sight, however, to be
unduly critical of this subjective choice. As a reviewer
he was obliged to make some choice or to abdicate
his extremely useful function.

What is the lesson to be learned from Fig. 2 and
from this history of a rather drastic revision which
was found to be required in a constant thought to
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be well established up to 1949, but later, with improved
methods of measurement, found to have been erroneous
by more than four times the probable error assigned
to the earlier value? We believe the following four
points are worth mentioning.

(a) It would be quite unjust to stigmatize adoption
and recommendation of the value 29977644 km sec™!
in 1941, because later and more accurate methods of
measurement proved that value to be 17 km sec™!
too low. Birge’s choice in 1941 was made after a very
careful study and consideration of all the data available
to him at that time. Two things contributed strongly
to mislead him and would have mislead anyone else
in the same circumstances. These were the great pres-
tige of Michelson’s name as an expert in this field,3
and the fact that W. C. Anderson’s two measurements
using Kerr-cell modulation in 1937 and 1941, agreed
quite well with the Michelson-Pease~Pearson result.

Birge® makes the following important (and for any
reviewer, disturbing) remark, whose origin he credits
to E. O. Lawrence. “In any highly precise experi-
mental arrangement there are initially many instru-
mental difficulties that lead to numerical results far
from the accepted value of the quantity being mea-
sured... Accordingly, the investigator searches for
the source or sources of such errors, and continues
searching until he gets a result close to the accepted
value. Then he stops!... In this way one can account
for the close agreement of several different results
and also for the possibility that all of them are in error
by an unexpectedly large amount.” This dangerous
tendency for numerical results done at about the same
time to agree somewhat better than should be expected,
has been remarked by others. P. A. Franken has de-
scribed it as “intellectual phase locking.” Our first
point then is that, having done one’s best with the
available data, we must all learn not to be too surprised
or disappointed if more highly developed methods sub-
sequently reveal the presence of systematic errors un-
suspected at the earlier date and of considerably larger
magnitude than the earlier estimate of random error.

(b) It would also be a grave mistake to condemn all
efforts to arrive at ‘“best” values because of the dis-
covery of occasional surprising systematic errors such
as the present example. That science, in spite of its
blunders and mistakes, does make progress in the long
run is indisputable. It does so precisely because we
keep trying to do a better job in spite of such reverses.
If we as reviewers refuse to take the risk of being
found wrong at a later date, we are not being very
helpful toward the goal of achieving at least a tem-
porary consensus for those of our colleagues who have
not the time to devote to such detailed review studies.

(c) It would be an equally grave mistake to rec-

% Michelson’s influence during the performance of this experi-
ment was unfortunately almost nil on account of his poor health.
He died before the experiment was completed.

3 R. T. Birge, Nuovo Cimento, Suppl. 6, 39 (1957).
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ommend that the reviewer enlarge his error estimates
“to take care of possible but unknown systematic
errors.” Systematic errors in physical measurements do
not obey any known statistics. There are, of course,
limitations to the applicability of the experimental
method. We simply have to learn the hard fact that,
having arrived at a determination of a physical quantity
and its estimated uncertainty in the light of all the
best information available at a given epoch, this may
prove at a later epoch, when we have more and better
information, to have been wrong.

(d) It is not only unwise to average blindly and in-
discriminately a mass of data without careful study
of how each item was obtained, it is unwise, even
after careful study of the items, to average together
data whose estimated error measures differ too widely.
The reason for this is that, in practice, experimental
physicists rarely worry about eliminating or correcting
causes of systematic error likely to perturb their re-
sults by amounts of much smaller order of magnitude
than the random errors to which their chosen mea-
suring technique is subject. Scarcely any experimenter
will worry about a possible source of systematic error
likely to cause a shift of one tenth of a standard de-
viation of the random error of his measurements and
many will be far less meticulous than this. Thus if
we mix into our weighted average a large proportion
of items of low accuracy, in spite of the fact that these
will receive low weight, we may be doing more harm
than good to our mean value because of the systematic
errors these imprecise data may bring with them.

Two further review articles concerned with the ve-
locity of light are worth mention here, one by K. D.
Froome,® the other by E. Bergstrand.®

In the 1955 Adjustment, the velocity of light was
treated as a variable; now, however, we are considering
it as an auxiliary constant. There are two reasons for
this. Firstly, even if we take the value with its larger
error conventionally adopted in 1957 by ISRU and
IUGG, that relative error corresponds to only slightly
more than 1 ppm, and this is about one-quarter the
relative error estimated for the most accurate of the
unknowns which we treat as subject to adjustment.
Froome’s estimated error in ¢, for the same numerical
value, is only one-quarter of this. Secondly, because of
this, the velocity of light, if treated as an adjustable
variable, enters into the structure of the equations
of observation in such a manner as to have its output
value insensitive to the rest of the input data. Thus,
there is little information to be gained by making ¢
an adjustable unknown.

(3) The Electron Magnetic Moment Anomaly

The anomalous magnetic moment of the electron
was first calculated to second order in a by Karplus
32 K. D. Froome, J. British Inst. Radio Engrs. 16, 497 (1956).

3 Eric Bergstrand, Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. XXIV, p. 1.

and Kroll.® The calculation has been shown to be in
error by the more recent work of Sommerfield,?s
Peterman,® Kroll (who repeated the earlier calculation
and verified the correct formula), and Smrz and
Ulehla,* all of whom are in agreement with regard to
the value of the coefficient of the second-order term.
The corrected result is

pe/mo=1+a/2r—0.328 (a/m) 2+~ -. (5)

Using a value of o 1=137.039, the above formula
gives

e/ 1t0=1.00115961. (5a)

Since a relative change in « in Eq. (5) results in a
relative change in p./uo only 1.16XX103 times as large,
and since this value o'=137.039 is consistent with
both our input and output values for our 1963 adjust-
ment, we feel that the numerical value of u,/uq is cer-
tainly trustworthy to a few parts in 108, provided the
unknown terms of order higher than the second in
a/m do not exceed 1X10~8. Such would be the case if
their numerical coefficients were of order unity or less,
and since the first two such coefficients are 0.5 and
—0.328 such an assumption is not implausible. No
calculation of the higher order coefficients has been
made. The calculation is long and arduous but there is
no reason to expect that the magnitude of the third-
order term would be found to be an order of magnitude
larger than unity. At the time of completing our 1963
adjustment, we assumed that the above value of
ve/po, Eq. (5a), was reliable to at least 1 ppm and
adopted it therefore, as one of our auxiliary constants.
Fortunately, the direct experimental evidence obtained
by Crane and Wilkinson® supports our adopted value
of pe/uo. Their experimentally measured value of u,/u,
1.00115962, differs from our adopted value by only one
part in 108 with an uncertainty of 3 parts in 108, This
close agreement may be fortuitous. Further critical
discussion of this work appears in a later section

[2.5(10)].
(4) Magnetic Moment of the Proton in Bohr M agnetons

Eight sources of information obtained between 1949
and 1959 on this important datum are listed in Table
II. The accuracy with which this constant is known
permits us to treat it as an auxiliary constant. It is
possible to measure the proton moment directly in
Bohr magnetons by measuring the ratio of the cyclotron
frequency of the free electron to the proton resonance
frequency in the same magnetic field. Items 1 to 4 of
Table IT are examples of this method. Items 5 to 8 in
that table represent experiments where the ratio of the

3¢ R. Karplus and N. M. Kroll, Phys. Rev. 81, 73 (1951).

% C. M. Sommerfield, Phys. Rev. 107, 328 (1957).

3 A, Peterman, Nucl. Phys. 5, 677 (1958).

37 P, Smrz and I. Ulehla, Czech. J. Phys. 10, 966 (1960).
( 3 D). T. Wilkinson and H. R. Crane, Phys. Rev. 130, 852
1963).
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TasLE II. Proton moment in Bohr magnetons (corrected to the bare proton). Diamagnetic corrections: —29.7 ppm,
mineral oil, spherical sample; —26.0, HzO spherical sample.

We/wp o/ p
1. Gardner, Purcell 657.4754:0.008 (oil, H;0) 657.4565  Phys. Rev. 76, 1262 (1949)
Phys. Rev. 83, 996 (1951)
2. Liebes, Franken 657.46240.004 (oil) 657.442 Phys. Rev. 104, 1197 (1956)
Phys. Rev. 116, 633 (1959)
3. Hardy, Purcell 657.4676:0.0005 (gas) 657.4501  Bull. Am. Phys. Soc. 114, 37 (1959)
4. Sanders, Tittel, Ward 657.4620=0.0024 (oil) 657.4436  Proc. Roy. Soc. (London) A272, 103 (1963)
8i/%’ 8/8»
5. Konig, Prodell, Kusch 658.217140.0004 (oil) 658.2096  Phys. Rev. 88, 191 (1952)
6. Beringer, Heald 658.218140.0003 (oil) 658.2106  Phys. Rev. 95, 1474 (1954)
7. Geiger, Hughes, Radford 658.216940.0004 (oil) 658.2094  Phys. Rev. 105, 183 (1957)
8. Lambe, Dicke 658.2159140.00002 (H,0) 658.2105  Thesis, Princeton University, 1959

(unpublished)

gi/gs—1=%02=17.75 ppm
uo/tp= (gs/8p) Lambe/ (te/t0) =657.4481
1p/mo=0.0015210325

g factors for the electron and proton were measured
and the results then corrected by the ratio, p/uo.

The earlier measurement of uo/p, by Gardner and
Purcell® was repeated with increased accuracy by
Hardy and Purcell.# This measurement, which claims
an accuracy (standard deviation) of 0.0005, disagrees
with the measurement by Liebes and Franken# by
0.007140.0030. On the other hand, the measurement
by Sanders, Tittel, and Ward* is in excellent agreement
with the Liebes and Franken result. The most accurate
determination of ue/u,, however, comes from the meas-
urement of the electron and proton g factors. The
measurement by E. B. D. Lambe® gives g;/g,/=
658.215914-0.00002 with the proton g factor uncor-
rected for diamagnetism of the spherical H,O proton
sample. This measurement represents an accuracy of
one part in 30 million. The bound-electron correction
(see Table II) is +17.75 ppm and the proton diamag-
netic correction is —26.0 ppm. Although this latter
correction may be inaccurate by several parts in 107, if
we use it as an adopted correction factor, Lambe’s
measurement yields g,/g,=658.2105. Using the theo-
retical value for u,/uo, we then calculate

ko/pp=657.4481.

This value is smaller than the Hardy and Purcell meas-

3 J. H. Gardner and E. M. Purcell, Phys. Rev. 76, 1262 (1949);
83, 996 (1951).

4 W. A. Hardy and E. M. Purcell, Bull. Am. Phys. Soc. 114,
37 (1959).

45, Liebes and P. Franken, Phys. Rev. 104, 1197 (1956);
116, 633 (1959).

4 J, H. Sanders, K. F. Tittel, and J. F. Ward, Proc. Roy. Soc.
(London) A272, 103 (1963).

;13]5,) B. D. Lambe, thesis, Princeton University, 1959 (unpub-
lished).

urement by 0.0030 and larger than the Sanders, Tittel,
and Ward measurement by 0.0045. We shall therefore
adopt it as our best estimate of the auxiliary constant
Ho/ k-

(5) Rydberg Constant for Infinite Mass, R,

This constant, known to a precision of 1 part in 107,
clearly belongs among our auxiliary constants. It has
been recalculated** from the original observational data
taking into account the “Lamb shift” discovered by
W. Lamb, Jr. and R. C. Retherford* in 1947 and other
relevant developments connected with the fine-struc-
ture splitting in the spectra of hydrogen* and ionized
helium.#-5 In the recalculation* of R, the work of
W. V. Houston, of Drinkwater, Richardson, and
Williams, and of D. Y. Chu were reviewed. Houston’s
and Chu’s data were spectroscopic measurements in
both cases, based on the value 5015.675 A for a refer-
ence line in the He spectrum measured by P. W.
Merrill®* at Mt. Wilson Observatory. To normalize the
Houston and Chu results to the higher accuracy for

4“4 E, R. Cohen, Phys. Rev. 88, 353 (1952).

4% W. E. Lamb, Jr., and R. C. Retherford, Phys. Rev. 72, 241
(1947); 75, 1325 (1949); 79, 549 (1950); 86, 1014 (1952).

4% H. Kuhn and G. W. Series, Nature 162, 373 (1948); Proc.
Roy. Soc. (London) 202, 127 (1950).

47 W. E. Lamb, Jr., and M. Skinner, Phys. Rev. 78, 539 (1950).

4 J, E. Mack and N. Austern, Phys. Rev. 72, 972 (1947); 73,
1233 (1948); 74, 1262 (1948).

4 G. R. Fowles, Phys. Rev. 73, 639 (1948); 74, 219 (1948).

5 H. Kopfermann and W. Paul, Nature 162, 33 (1948).

51 K. Murakawa, S. Suwa, and T. Kamei, Phys. Rev. 76, 1721
(1949).
; &2 H, Kopfermann, H. Kriiger, and H. Ohlmann, Z. Physik 126,
60 (1949).

8 J. G. Hirshberger and J. E. Mack, Phys. Rev. 77, 745 (1950).

% P. W. Merrill, Astrophys, J. 46, 357 (1917).
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appropriate comparison with the work of Drinkwater
et al., careful measurements were made by W. C.
Martin® at the U. S. National Bureau of Standards,
who reports the value 5015.6782--0.0003 A, by G. W.
Series and J. C. Field® at the National Physical
Laboratory, Teddington, who report 5015.677524-0.0004
A, and by J. Terrien™ at the BIPM, Sevres, who gives
5015.67784-0.0001 A, all subsequent to the 1952 study.
With these improvements, the consistency of the three
sources of data turned out to be satisfactory and the
result

R,=109737.31 cm™!
has been adopted.

(6) Mass Ratios, Hydrogen-to-Proton, H/M ,, and
Deuterium-to-Deuteron, D/M 4

These ratios are readily calculated with extremely
high precision using the atomic mass of the electron,
of H and of D on the unified scale. We adopt

H=1.00782522 (2C=12)
H/M ,=1.000544607
D=201410219  (2C=12)

D/M 4=1.000272448.

(7) Conversion Factor: 1 NBS “As Maintained”
Coulomb to Absolute emu

The conversion factor between NBS electrical units
and absolute cgs units is discussed in Sec. 1.5. The
difficulties associated with the determination of this
factor were there described and the best value, as
determined by the U. S. National Bureau of Standards
as of 1962, was given as

1 NBS coulomb =0.10000124-0.0000004 cgs emu.

We list in Table III the auxiliary constants discussed
in this section and adopted for use in the 1963
adjustment.

2.5. Input Data Subject to Least-Squares Adjustment

We are presented with seven different types of ex-
perimentally determined physical magnitudes which
can be functionally related, either directly or through
the use of the accurately known auxiliary constants of
Table III, to the unknowns, , ¢, N, and A, the quan-
tities which we have selected as our objectives for least-
squares solution. For brevity we shall call each of these
experimentally measured input data a stochastic. It is
a datum the estimated imprecision of which is sufficient

5 William C. Martin, Phys. Rev. 116, 654 (1959).

5% G. W. Series and J. C. Field, Proceedings of the Symposium on
Interferometry, 1959 (National Physical Laboratory, Teddington,
1960), Suppl. No. 11, p. 93.

57 J. Terrien, Proceedings of the Symposium on Interferomeiry,
1959 (National Physical Laboratory, Teddington, 1960), Suppl.
No. 11, p. 103.

to warrant its inclusion as an item subject to adjust-
ment through the least-squares process.

In many cases one of the seven types of physical
magnitudes may have been determined by several
different teams of research workers, sometimes in dif-
ferent ways, and whenever the different determinations
seemed to have comparable or nearly comparable
claims to precision we have retained them as separate
items in our equations of observation. We have done
this in some cases when two or more determinations
of the same physical magnitude exhibited suspiciously
large discrepancies in value, relative to their estimated
errors, expressly for the purpose of seeing, from their
residues (and other tests) in a trial least-squares ad-
justment, which ones fitted into the entire adjustment
better. Each observational equation involves one and
only one stochastic, the experimental input datum the
imprecision of which determines the error and weight
associated with that equation.

The different equations of the overdetermined set
are connected in such a way that no single experiment
(stochastic) can be said, in general, to define any one
of the fundamental constants, «, e, N, and A, uniquely.
It is for this reason that statistical analyses, such as
the method of least-squares, must be used not only
to extract the maximum information from the entire
set of experimental data, but also to give an indication
of those experiments which, because of their incon-
sistency with the consensus of the remaining experi-
ments, are likely to be afflicted with various systematic
errors. We shall first list and describe the experiments
and their numerical results and then discuss more
fully the relationships which exist among them and
the formation of the adjustment,

The stochastic data about to be discussed, as far

TaBiE I1I. Fixed auxiliary constants used in the 1963 adjustment.

1. Velocity of light, ¢ 299 792.5 km sec™?

2. Electron moment in Bohr magnetons, 1.001159615

e/ 10

3. Proton moment in Bohr magnetons,
Hp/l‘u

0.0015210325
4. Rydberg constant for infinite mass, 109 737.31 cm™!

5. Atomic masses and ratios (unified
scale, 2C=12)

H 1.00782522

H/M, 1.000544607

D 2.01410219

D/Ma 1.000272448
6. 1 US-NBS Coulomb=0.1000012

abs. emu®

2 The standard deviation of 4 ppm assigned to this conversion factor by the
US-NBS metrologists is by far the largest uncertainty attributable to any of
our auxiliary constants.
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as we know, comprised all of the available precision
measurements bearing on the fundamental constants
of sufficient accuracy to qualify for inclusion in our
1963 adjustment. As we shall see, after a trial adjust-
ment and an “analysis of variance” of the input data,
the data from the field of x rays exhibited internal
inconsistencies of sufficient magnitude that we decided
to reject all of it from our input data for the final
1963 least-squares adjustment.

(1) X-Ray Data Bearing on the Avogadro Number

Crystals may be idealized as three-dimensional peri-
odic lattice structures built up of unit cells the geom-
etry of which can be precisely determined by the
methods of x-ray crystallography, so that the volume of
the unit cell can be known very accurately on the
relative scale of x-ray wavelengths, i.e., in cubic x-units,
though unfortunately much less accurately in terms
of our macroscopic cgs units (e.g., Angstroms or centi-
meters), because of the imprecision in our knowledge
of the conversion factor, A, between the two scales.
The z-unit (a quantity proposed by M. Siegbahn
circa 1928) was originally intended to be 1 milliangstrom
or 10 c¢m; however, through ruled-grating diffraction
measurements it has been shown to be larger than the
milliangstrom by about 0.29,.5% Unfortunately, not
only is the conversion factor not sufficiently accur-
ately determined at present; worse still the definition
of the wx-unit is such that a deplorable degree of am-
biguity has existed with respect to the whole table
of x-ray emission-line wavelengths, and hence the very
meaning of the conversion constant A is (on the pre-
sently desired level of precision for our least-squares
adjustment) too ill-defined. We shall discuss the reasons
and remedies for this below.

Each unit cell of a crystal, depending on the crystal
symmetry system, consists of a whole number, or
simple rational fraction, of molecules of its chemical
formula. In any case this number, which we shall
call f, is exactly known (f may equal for example
%, or 8). Thus the product of f and the molecular mass,
M, gives the molecular mass of the unit cell. The
product of the density, p, of the crystal by the absolute
volume, v, of its unit cell should ideally give the ab-
solute mass of the unit cell, and the quotient of Mf
by pv should thus give the Avogadro number N. How-
ever, since we do not in fact measure the absolute
volume of the unit cell in cm3, but do measure the
density in g cm™3, it is necessary to recognize that
XRCD (x-ray crystal density) data alone do not, in
fact, yield a value of N but rather a value of the pro-
duct NA% The following equation is a statement of
this for the case of an ideally perfect crystal lattice

NA*= (MF/pdi¢)-10% (6)

8 This error is primarily due to the use by Siegbahn of an
incorrect (but at that time accepted) value of the electron charge
(4.774X10 0 esu).
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wherein d, is the grating spacing of some set of the
crystal’s atomic planes, measured in x-units by x-ray
diffraction methods, and ¢ is a dimensionless numerical
shape factor depending on the shape of the unit cell in
cubic x-units. Since ¢ can be determined by x-ray
measurements of grating spacing rafios or by mea-
surements of angles between atomic planes, it is in-
dependent of the wavelength scale employed in making
the measurements. In Eq. (6), A is the conversion
factor (roughly 1.0020) to convert wavelengths mea-
sured in x-units to wavelengths measured in milli-
angstrom units. Clearly, though A is ill-defined and
uncertain, the product NA? is not, since all the factors
in numerator and denominator of the fraction in Eq.
(6) are measurable to high accuracy, if sufficient pains
are taken.

Numerous direct determinations of A have been
made®% which depend on difficult precision mea-
surements of x-ray emission lines reflected in grazing
incidence on artificial ruled diffraction gratings. Several
review papers summarizing such work on A have also
been published.®*% Its true value by such means is
doubtful to several tens of parts per million. Different
precise determinations have fluctuated over a range
much in excess of 100 ppm. Part of this spread is un-
doubtedly caused by the indefiniteness of definition
of the x-unit itself.

The question immediately arises as to why we treat
the XRCD determination of the conceptually awkward
composite quantity, NA® of Eq. (6), and the deter-
mination of the conversion constant A as two separate
data rather than combining them so as to determine
the conceptually far more interesting Avogadro number
directly. The reasons are twofold: (1) because, as we
shall see, the present XRCD data yield a mean value
of NA? with an uncertainty of order substantially less
than 420 ppm (though various sources of such data
using different x-ray emission-line wavelengths disagree
with each other, as we shall see, by much more than
this) whereas the value of A by direct determinations
of x-ray wavelengths with ruled gratings is only es-
tablished with considerably poorer accuracy and con-
sistency than this, and (2) because the present state
of our knowledge is such that, in any general least-
squares adjustment of fundamental constants involving
x-ray data, A must enter, explicitly or implicitly, as
one of the unknowns subject to adjustment, and will
do so in more than one of the fundamental obser-

59] A. Bearden, Phys. Rev. 37, 1210 (1931).
6 J. A. Bearden, Phys. Rev. 48, 385 (1935).

61 M. deerman, Nature 135, 67 (1935); dlssertation, Uppsala,
1934 (unpublished).

&2 . Backlin, Z. Physik 93, 450 (1935).

6 I, Tyren, Z. Physik 109, 722 (1938); dissertation, Uppsala,
1940 ()unpublished) ; Nova Acta Reg. Soc. Sci., Uppsala 12, No. 1
(1940

6 B, Edlen and L. A. Svensson, Arkiv Fysik 28, 36 (1965).

8 R, T. Birge, Am. J. Phys. 13, 69 (1945).

8 J, A. Bearden, J. Appl. Phys 12, 395 (1941).

67 J. W. M. DuMond Proc. Natl. Acad Sci. 45, 1052 (1959).
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vational equations, thus resulting in objectionable cor-
relations between equations.

There were at least 17 high-precision XRCD mea-
surements bearing on NA® which we deemed worthy
of consideration in connection with the 1963 adjust-
ment. Since some of these measurements were made
as much as 30 years ago, often with a purpose other
than our primary one of the high-precision deter-
mination of the atomic constants, it has been necessary
in all cases to go back to the original observational
data in order to extract the maximum amount of
information in a consistent manner from all of the
measurements. In all cases the molecular weights of
the crystals used were recomputed on the basis of
current best values of nuclidic masses and measured
isotopic abundances. Except for crystals of anisotopic
composition, such as Al the limiting factor in the
molecular weight determination is the abundance of
the isotopes rather than the nuclidic masses. In all
cases those physical molecular weights so computed
are more precise than the adopted chemically deter-
mined weights, but generally not inconsistent with
the latter. The only exception to this statement is in
the case of germanium, for which the physically com-
puted atomic weight is 72.630+0.006, whereas the
chemical atomic weight, as determined by gravimetric
methods is 72.60.%8 It has also been necessary in many
cases to recompute lattice spacings from the measured
x-ray diffraction angles, including, where appropriate,
a correction for the crystal index of refraction.

A vital source of uncertainty in these data is the
wavelength of the characteristic x-ray line used to
measure the crystal lattice spacing. X-ray measure-
ments can determine only diffraction angles. Thus the
measurement gives dimensions in x-units and does so
only relative to an adopted wavelength (in x-units)
for the line used. For many years the original conven-
tional definition arising from the early work of M.
Siegbahn has been in use. This definition is implicit
in the assumption that the “effective”® grating space

68 Both of these numbers are on the unified (2C=12) scale; by
“physical” and “chemical” we here imply only the basis of the
methods of determination, i.e., isotopic abundances and nuclidic
masses in the one case and gravimetric determination of chemical
equivalent weights in the other.

8 W. Stenstrom [dissertation, Lund University, 1919 (unpub-
lished) ] demonstrated the existence of a deviation from Bragg’s
law (#A=2d sin 6) for the case of Bragg reflection from crystal-
line atomic planes parallel to the x-ray beam’s entry—exit boundary
surface. This he correctly attributed to the fact that x-rays have
an index of refraction in the crystal slightly lower than unity. To
satisfy Bragg’s law connecting A and 6, ‘“‘effective” values of the
grating constant, depending on the order number, %, of the re-
flection must replace the true d. For higher orders, d-effective
approaches the true d. In the case of Bragg reflection in the nth

order from the calcite cleavage planes, the following empirical
formula for the effective grating constant d, has been often used:

dn= (1—135-10/n?)d,

where d is the true grating constant for those planes. This cor-
rection only applies in the case of Bragg reflection when the
planes are parallel to the entry-exit boundary surface of the
crystal; for imternal reflection in a slab of crystal from planes
normal to the two parallel exit and entry surfaces, the correction
vanishes.

of the calcite cleavage planes at 18°C for first-order
Bragg reflection and for a crystal of purest calcite is
given by

d1(18°) =3029.040 x-units.

The trouble with this definition, on the level of
precision of interest for us, is that it gives us no pre-
scription how to know when we have in hand a sample
of “purest calcite,” nor is it certain that all samples
of calcite, which show no detectable impurities will
necessarily have exactly the same grating constants.
The wide variation from sample to sample of natural
crystals is well known and calcite is no exception.
Different samples have been shown by Ievins and
Straumanis™ to exhibit wide fluctuations over a range
exceeding 100 ppm. J. A. Bearden™ has also observed
similar variations and using gamma-ray emission lines
(spectrally much narrower in width than x-ray lines)
has lately reported clearly observable fluctuations from
point to point in a single calcite sample.” In short,
the adoption of the grating constant of @ species of
crystal, as a definition for a unit in terms of which to
measure wavelengths is no longer sufficiently unam-
biguous in view of the level of precision required today
for many purposes.

Itisimportant to realize that, since the x-ray emission
line wavelengths (perhaps some 3000 in all) were mea-
sured by many different people using different calcite
crystals from sample to sample, there is no guarantee,
to the precision desirable at present, that our tables
of x-ray wavelengths in so-called x-units are really
all expressed in terms of one and the same length
standard.

A test of the chemical purity of one’s calcite crystal
is today no guarantee that one is using the same x-unit
as that used by even so famous an authority as
M. Siegbahn. One of us has been informed by M.
Straumanis that in an answer to his (Straumanis’)
written inquiry whether a famous well-known sample
of calcite, much used by M. Siegbahn in his precision
wavelength determinations had ever been tested for
impurity content, Siegbahn replied by letter that it
had not been analyzed, adding “but how could so clear
and beautiful a sample contain impurities!” This is
not cited to ridicule great pioneers such as Siegbahn,
who worked in ignorance of many facts now better
known, but to illustrate the danger in assuming that
the old wavelength determinations can be accepted
as being expressed in terms of a common well-defined
unit, the very existence of whose name creates the
illusion that it stands for something reproducible and
better defined than in fact it really is.

Another grave source of uncertainty concerning the
presently accepted tabular x-ray wavelength values
stems from the fact that there has never been any
universally established and accepted convention as to

70 A. Tevins and M. Straumanis, Z. Physik 116, 194 (1940).
1 J. A. Bearden, Phys. Rev. 38, 2089 (1931).
2 J. A. Bearden, Bull. Am. Phys. Soc. 9, 387 (1964).
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just what feature of the natural spectral profile of an
x-ray emission line is referred to when tke wavelength
is quoted. Possible features which the tabular values
could refer to are (1) the peak or point of maximum
intensity (more operationally defined below), (2) the
centroid (a term which also requires more discussion),
(3) the center of the area of the natural profile, and
(4) the wavelength which bisects the horizontal chord
taken at half-maximum height. (Many others could
no doubt be imagined.) Since many x-ray emission
lines have markedly asymmetric natural profiles (Cu
Ko, for example) and since AN/, the relative half-
width at half-maximum height of most x-ray lines,
is quite broad (of the order of 3X10~* for K lines and
5X10~* for L lines), different features of the line
profiles can differ in wavelength by many tens of ppm.
Of course no one ever really observes the true natural
spectral profile of a line, but one can come close to
doing so with perfect crystals and instrumentation
such as the two-crystal spectrometer. Further correc-
tions are also possible, to “unfold” the instrumental
effects from the line profile which perhaps renders its
shape even a little closer to the natural shape. No
such precautions have been taken, however, until
fairly recently in the case of a very few lines. Many
tabulated wavelengths have been estimated by setting
a cross-hair on the “center” of the streak of blackened
silver grains in a photographic spectrogram (e.g., the
“tube spectrometer’” method of Siegbahn). There is
no telling which of the above listed four line features
this might refer to depending on how underexposed
or overexposed the photographic image might happen
to be.

We strongly favor choice of feature (1) above, the
peak-of-profile, as that feature probably capable of
highest wavelength reproducibility with use of the
following method (often attributed to Rayleigh) for
determining it. One draws chords across the profile
(parallel to any background upon which the line profile
may be superposed) locates their midpoints, and ex-
trapolates the locus of these to the peak of the curve.
For substantially symmetric lines such as Mo Ke,
or W Ka, the locus will be sensibly a vertical straight
line and the root-mean-square deviations of the various
chordal midpoints from such a vertical can be made
as small as 0.001 of the half-width with sufficient
care and good statistics.

We believe that the centroid is, from the point of
view of definiteness and reproducibility, an undesirable
choice for defining to high precision a fiducial wave-
length. This is because x-ray line profiles tend to the
Lorentzian line shape which falls off in the wings
only as the inverse square of the distance from the
line center. If this line shape is strictly obeyed in the
wings, the centroid does not exist except as the prin-
cipal value of a divergent integral. The position of
the actual centroid point therefore becomes very sen-
sitive to deviations, either of random or characteristic
nature, in the remote wings of the profile.
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Those who use the data of x-ray spectroscopy today
are chiefly interested in crystal structure determination.
For such work a relative precision much better than
1072 is rarely needed. This no doubt explains the un-
fortunate state of affairs in this field when precision
several orders of magnitude better becomes imperative.
There is a certain insularity about present users of
x-ray spectroscopic data and techniques. They see only
the immediate needs of their field and overlook the
fact that the spectroscopic domain of x-ray wavelengths
is sandwiched in between that of nuclear gamma rays
on one side and that of ultraviolet and optical wave-
lengths on the other. All of our primary reference
units of length, mass, and time are defined, maintained,
and reproduced by means of standards and techniques
on the optical side of this gamut. This is not by ar-
bitrary choice, but for excellent practical operational
reasons. To link our primary standards and definitions
with measurements in the domain of nuclear spec-
troscopy and nuclear physics so as to express every-
thing on a common basis with all possible precision,
important reforms of semantics and conventional de-
finitions, together with a considerable program of high
precision x-ray metrological work is needed.

In the absence of such conventions, definitions, and
terminology, in order to make our work as unambiguous
as possible, we have used the values 707.831 x-units
for the peak of the Mo Kay line and 1537.396 x-units
for the peak of the Cu Koy line. Let it be understood,
however, that each of these adopted values we take
as an independent definition of the term ‘“‘one x-unit.”
These two definitions may or may not, upon trial,
turn out to be consistent with each other. These nu-
merical values are those listed in oft-consulted wave-
length tables such as those of Cauchois and Hulubei,”
or the more recent tabulation of Sandstrém.™ J. A.
Bearden has, on the other hand, recently measured
the Mo Ky line relative to Cu Koy, with a resulting
ratio different by 17 ppm from the ratio of the tabular
values. Because of this, Dr. Walter Bond and A. S.
Cooper™ of the Bell Telephone Laboratories have, at
our request, kindly measured this wavelength ratio
independently and have verified the Bearden result.
In this work, the single-crystal spectrometer method of
Walter Bond was used with artificially grown single
crystals of germanium. The purpose was, not only
to check the new Mo-to-Cu wavelength ratio of Bearden
et al., but also to check if possible the Bragg angle
measurements of A. Smakula ef al., in his determination
of NA? for germanium. Reflections were obtained by
Cooper up to high orders to verify the correction for
refractive index from the data itself. In the Bond
instrument a Hilger and Watts goniometer measured
the angle through which the crystal was turned from

71Y. Cauchois and H. Hulubei, Longuers d’onde des emissions
x 6{7 des discontinuities d’absorption x (Hermann et Cie., Paris,
1947).

7 A. E. Sandstrom, Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1957), Vol. XXX, p. 164.

% A, S. Cooper (to be published).
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TasLe IV. Comparison of wavelength ratios of A(Mo Kou)
and A(Cu Kay).

Bearden, Cooper,
Johns Hopkins Bell Labs.
From tables (Two-crystal  (Single-crystal
(%-units) spectr.) spectr.)
Mo Koy 707.831 707.845 707.840
Cu Ky 1537.396 1537.400 1537.395
Ratio Mo/Cu 0.460409 0.460417 0.460415

Ratio of ratios 0.460417/0.460409=1.000017;

0.460415/0.460409=1.000013

its position for the nth-order reflection on one side to
that for nth-order reflection on the other side of the
incident beam (rather than, as in Smakula’s case, the
angle through which a detecting slit for the reflected
beam, relative to the direct beam, was turned).

The measurements of Mo Ka; and Cu Ke; wave-
length are compared in Table IV. The wavelength
values of both columns 2 and 3 are peak-of-profile
values.

On the basis of the ratio from Bearden’s laboratory
if we retain our quoted value for the Mo Ka; wave-
length (as defining the term ‘“x-unit’), we would infer
the value 1537.370 for Cu Ka;. Because of this disa-
greement in calibration it has seemed to us best to
maintain a separation between data measured on the
one hand with Mo radiation, and on the other with
Cu radiation. Table V thus lists 16 independent deter-
minations of NA? by the XRCD method grouped into
two sets of 8 measurements each, one made using
Mo Kay, the other using Cu Ko;. Henins’® has recently
reported a value of VA3, using silicon crystal samples
with Cu Kea; radiation. If renormalized to a Cu Kaq
wavelength of 1537.400 z-units, this gives NA®=
(6059.764-0.24) X 10%, which is in excellent agreement
with the Mo data of Table V, but possibly in disa-
greement with the Cu data. Later work by Henins and
Bearden” in which 17 silicon crystal samples were
studied gives, when normalized to 1537.400 x-units
for Cu Kay, NA*=(6059.7740.15) X 10%.

The major uncertainty in this determination is the
calculation of the atomic weight of silicon. Silicon has
three stable isotopes with mass numbers 28, 29, 30
and approximate abundances, respectively, of 0.922,
0.047, 0.031. Seven different measurements of the
isotopic abundances’ show a mean variation of atomic
weight of #0.001 but the quoted accuracy of the
abundances is insufficient to indicate whether this
variation is due to errors in measurement or to a real
variability in isotopic composition. A real variation

76 I, Henins, Bull. Am. Phys. Soc. 7, 339 (1962).

771, Henins and J. A. Bearden, Bull. Am. Phys. Soc. 9, 388
(1964) ; Phys. Rev. 135, A890 (1964).

78 G. H. Fuller, Nuclear Data Tables, edited by K. Way ef al.

(U.S. Atomic Energy Commission, Washington, D.C., 1959),
p. 66.

in composition has been found by Allenby” in mass-
spectroscopic analyses of Si.

Henins and Bearden have recomputed NA? (Mo), i.e.,
that part of the XRCD data from which we derived
a mean value of VA3 based on measurements of crystal
grating constants using the Mo Ka; line (corresponding
to the first eight items in Table V). Henins and Bearden,
however, reject Brogen’s measurements on quartz and
calcite because Brogen’s densities were not from meas-
urements on the identical samples whose grating
constants he had measured. They also reject Tu’s
density measurements of diamond and replace these
by earlier measurements of diamond density by
Bearden. They further reject the measurements of Tu
on NaCl and KCl, to which we also gave low weight,
because of their low accuracy. With these revisions,
and using 707.831 x-units for A(Mo Kea;) in order to
provide a direct comparison with Table V, they obtain
NA3=6059.64+0.55. With this much larger standard
deviation assigned to the Mo data, Henins and Bearden
are able to say that the Cu and Mo data ‘“‘appear quite
consistent.”

Nevertheless we feel that since the errors we assigned
to the items in both our sets of data of Table V yielded
a good ratio of external to internal consistency for

TaBLE V. Data on NA3 (1962).

Value Weight
Crystal of NA3 wi Author
(Mo Koy, 707.831 x-units)

KCl 6058.23 4 Yuching Tus
Calcite 6059.60 20 G. BrogenP
Diamond 6059.60 21 Yuching Tu®
Calcite 6059.60 20 J. A. Bearden®
Diamond 6059.81 23 Yuching Tu®
Calcite 6059.98 35 Yuching Tu®
Quartz 6060.06 3 G. Brogen®
Rocksalt 6060.11 5 Yuching Tu®

Weighted average value NA*=6059.7240.10

(Cu Koy, 1537.396 x-units)

Silicon 6059.90 23 Smakula ef al.d
CaF, 6060.05 10 Smakula, ef al.d
CsI 6060.08 2 Smakula et al.d
TICI 6060.14 5 Smakula ef al.d
Aluminum 6060.17 28 Smakula ef al.d
TIBr 6060.28 5 Smakula ef al.d
Germanium 6060.42 3 Smakula ef al.4
LiF 6060. 81 12 Straumanis et al.°

Weighted average value NA3=6060.1840.11

2 Y. Tu, Phys. Rev. 40, 662 (1932).

b G. Brogen, Arkiv Fysik 7, 47 (1953).

© J. A. Bearden, Phys. Rev. 38, 2089 (1931).

d A, Smakula and J. Kalnajs, Nuovo Cimento Suppl. 6, 214 (1957); Phys.
Rev. 99, 1737 (1955); A. Smakula and V. Sils, 1b:d. 99, 1744 (1955); A. Smakula,
J. Kalnajs and V. Sils, bid. 99, 1747 (1955).

© M. Straumanis, A. Ievins, and K. Karlsons, Z. Phys. Chem. B42, 143 (1939).

R, J. Allenby, Geochim. Cosmochim. Acta 5, 40 (1954).
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the weighted means in both cases and yet exhibited a
discrepancy between means for Mo and for Cu of
126 ppm with a standard deviation for this discrepancy
of 25 ppm, that it is dangerous to wash away this
evidence of a systematic error somewhere, merely by
assigning an enlarged uncertainty.

In a recent paper, Bearden et al.® have redetermined
the wavelengths of Cr Kas, Cu Kay, Mo Kay, Ag Kay,
and W Ko, chiefly using a two-crystal spectrometer in
reflection. Assuming a definition of the x-unit such
that the peak of the line profile of Mo Ka; is assigned
the wavelength 707.831 x-unit, their resulting values
for the other four wavelengths are given as:

Cr Kas, 2288.8544-0.003 x-unit;
Cu Koy, 1537.37040.002 x-unit;
Ag Key,  558.2486+0.0006 x-unit;
W Kai,  208.57704-0.0003 x-unit.

More recently Bearden® has published an extensive
survey and re-evaluation of all existing x-ray data,
in which the wavelengths have all been corrected as
far as possible to these five standard lines. This is
the first table of x-ray wavelengths, all of which pur-
port explicitly to be related to a single standard ref-
erence x-ray emission line the peak-intensity value
of which is taken as the reference for defining the
meaning of the arbitrary unit (the “x-unit”) in terms
of which the relative scale of wavelengths is established.
This is a much-needed reform which has been urged
by one of us ever since 1957. These tables thus abandon
for the first time the older ill-defined definition of the
x-unit in terms of the grating spacing of the cleavage
planes of “purest calcite.”

For these tables Bearden and his group have used
the K a; line of tungsten as the fundamental standard.
Their “x-unit” is defined as such that the wavelength
of the W Ko, line at the peak intensity value of its
profile is 208.5770 ‘“x-units.” Bearden also defines
another unit which is neither the traditional x-unit
nor an angstrom, but which contains aspects of both
these standard quantities. This new unit, which is
denoted by A*, is defined by the relationship

wavelength of peak of W Ka;=0.2090100 A*.

The unit A* is thus numerically close to 1 angstrom, but
it is operationally an x-ray, not an optical, unit. Its
relation to the x-unit is a precisely defined numerical
factor, :

1000 z-units

*: o 1 —_—
A*=997.92833 x-units 100207597 "

8 J. A. Bearden, A. Henins, J. G. Marzolf, C. Sauder, and J. S.
Thomsen, Phys. Rev. 135, A899 (1964).

817, A. Bearden ef al., X-Ray Wavelengths (USAEC Div. of
Technical Information Extension, Oak Ridge, Tennessee, 1964),
NYO-10586. Available from the Clearinghouse for Federal Scien-
tific and Technical Information, National Bureau of Standards,
U. S. Department of Commerce, Springfield, Va.
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The problem of expressing the unit A* in centimeters
however is no different than the problem of relating
x-units to centimeters, although the numerical factor is
close to 1078 and the distinction between A* and
10~% cm may be neglected if one is interested only in
accuracies which are poorer than 50 ppm. The diffi-
culty with the use of this unit however is that one is
prone to forget the distinction even when one does
require accuracies where the difference is important.

(2) Conversion Factor, A, from Siegbahn x-Units to
Milliangstroms

The wavelengths of x-ray spectral lines measured
relative to each other by the high precision methods
of crystal diffraction are known with a precision which
often exceeds one part in 105 Unfortunately, as we
have indicated in the previous paragraphs, the ac-
curacy with which these wavelengths can be expressed
in centimeters or Angstrom units is poorer by approxi-
mately a factor of 10. It is for this reason that for many
years we have had two scales of x-ray wavelengths—on
the one hand a relative scale of x-units on which (if
only an operationally better method of defining it had
been universally adopted and observed) x-ray emission-
line wavelengths could be compared with all the ac-
curacy permitted by the best crystal diffraction tech-
niques, and on the other hand a less accurately known
conversion factor A established for converting from
x-units to centimeters or Angstroms.

In 1945 R. T. Birge® obtained a weighted average
value®? of 1.002030-0.000030, based on ruled grating
determinations of Bearden, Béicklin, Séderman, and
Tyren. In 1946 the X-Ray Analysis Group of the
(British) Institute of Physics, after consultation with
the American Society for X-Ray and Electron Diffrac-
tion, recommended® for general adoption the somewhat
smaller value® 1.002020=4-0.000045. The chief argument
for this downward revision was based on measurements
of F. Tyren.® In this work Tyren had used a concave
grating vacuum spectrograph to compare the wave-
lengths of x-ray lines with the wavelengths of hydro-
genic Lyman series spark lines from highly ionized
atoms. The absolute wavelengths of these calibration -
lines were calculated from the Sommerfeld—Dirac
theory. In 1947, however, the discovery of the Lamb
shift*s invalidated this entire scheme. The corrections
to the Lyman series lines resulting from this are shown
in Fig. 3. Tyren’s computed calibration line wave-
lengths required corrections varying from 25 to 100

82 Birge states this value as 1.0020304-0.000020, but his quoted
error is expressed as a probable error, computed from the stan-
dard deviation assuming a Gaussian distribution, as PE=0.675¢.
For consistency with all of the other errors given in this paper we
will quote the standard deviation or root-mean-square error.

8 W. L. Bragg, Acta Cryst. 1, 46 (1948); J. Sci. Instr. 24, 27
(1947); E. A. Wood, Phys. Rev. 72, 437 (1947). In view of the
corrected results of Edlen and Svensson this Bragg edict must
henceforth be ignored.

8 Cf. footnote 82.
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Fic. 3. Lamb-shift corrections to Lyman series lines for hydro-
genic spark spectra.

ppm. Without the details of his data (not given in his
thesis) it was impossible to make an after-the-fact cor-
rection of Tyren’s result. The x-ray lines were recorded
in several orders and his data did not permit one to tell
whether the calibration for example of an 8-A x-ray line
was based on comparison in second order with the
Lyman line of OV in third order with NVI in
fourth order with CV, in fifth or sixth order with BY
or in eighth order with BelV. Tyren’s work had there-
fore to be rejected for our 1963 adjustment.

After a careful study made by us in 1961 and 1962
of all available data on A, we decided to retain tenta-
tively for consideration as possible input data to our
adjustment the following items:

1. A=1.002020=:0.000035, J. A. Bearden 19315¢;
2. A=1.00211024-0.000075, J. A. Bearden 1935%;
3. A=1.002011+0.000033, E. Bécklin 1935.%

Items 1 and 2 are determinations by measuring the
diffraction angles on artificial ruled gratings of the Cu
Ko lines while item 3 is a similar ruled grating deter-
mination of the absolute wavelength of the Al Kajas
lines.

However, some 18 months after completion of our
1963 Adjustment, a preview copy of a paper by B.
Edlen and L. A. Svensson® has been received by us.
At the time of our first realization® that Tyren’s
numerical results on A were invalidated by the dis-
covery of the Lamb shift, we had apprised both F.
Tyren and B. Edlen (who had been Tyren’s super-
visor on this subject) of this point by letter. Professor
Edlen in subsequent correspondence with us promised
to see what could be done to recover Tyren’s original
data and his spectrographic plates. The paper of
Edlen and Svensson is the result of a very painstaking

“J.) W. M. DuMond and E. R. Cohen, Phys. Rev. 103, 1583
(1956).

remeasurement of the Tyren spectrograms to rede-
termine the wavelengths of the aluminum K lines and
a complete recalculation of the resulting data taking
the Lamb shift corrections into account. Their result
A=1.002060=+0.000023 shows a change upward of 70
ppm from that of Tyren in 1940 in part due to the
Lamb shift corrections and in part to more recent work
by Nordford® to establish the aluminum line wave-
lengths more accurately on the x-unit scale.

It becomes immediately important to consider to
what precise definition of the x-unit this value of A
refers, in order, if possible, to normalize the above
numerical value, so as to make it comparable to the
values involved in the foregoing discussion of VA3,
That is to say, we must seek to relate Nordfors’ meas-
urement of the aluminum K x-ray lines in “x-units”
to the peak values of either, or preferably both, the
Mo Koy line and the Cu Koy line. This is an instructive
exercise since it reveals how many steps by different
workers in different laboratories with different dif-
fracting crystal lattices and different techniques are
involved. It serves as a good illustration of the feeling
of insecurity one receives regarding the establishment
of a consistent scale of x-ray wavelengths in terms of a
single unit of measurement to an accuracy comparable
with the level of precision attainable from other sources
of information on the fundamental constants. Until such
a scale is established it is meaningless to quote a value
of A to 410 ppm.

Nordfors used the bent quartz crystal spectrometer
(1010 planes) of Sandstrom to compare his Al Kajas
wavelengths, reflected in first order, with Ag Loy and
B1 wavelengths reflected in second order. Several other
Al lines, the satellites Al Koz and a4 and the Al K
line were also measured and wavelengths for both pure
aluminum and oxidized targets were studied.

Thus, our next step is to relate Nordfors’ reference
wavelengths, the Ag La; and By line wavelengths, to
the Mo and Cu K wavelengths. Unfortunately, as so
frequently happens to frustrate the reviewer, Nordfors
does not say explicitly what wavelength values he as-
sumed for his Ag reference lines nor how they were
obtained or to what they were referred.

The literature apparently reveals only two authors
of work on these Ag L lines, L. G. Parratt®” and
P. Haglund.®®% Parratt’s work, however, used wave-
length values taken from Haglund’s work for precisely
these same two lines to normalize all his other L-series
wavelengths, so we must fall back on Haglund’s de-
terminations alone. These were accomplished®® by
means of photographic registration with a vacuum-
tube spectrometer utilizing a flat calcite crystal. Hag-
lund’s paper shows the Ag La; line strongly overexposed
so that it seems doubtful whether either the sub-

8 B. Nordfors, Arkiv Fysik 10, 279 (1955).

87 L. G. Parratt, Phys. Rev. 54, 99 (1938).

8 P, Haglund, Z. Physik 84, 248 (1933).

8 P, Haglund, Arkiv Mat., Astron., Fysik 28A, No. 8 (1941).
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TasrLE VI. Wavelengths of Al Ke lines in x-units and the conversion factor A.
(The conversion factor A is computed using Edlén and Svensson’s measurement, AKa;,2=8.33992-£0.00020 A.)
Haglund Sieghahn Shearer Cauchois Nordfors Bearden
(Ref. 89) (Ref. 89) (Ref. 90) (Ref. 91) (Ref. 86) (Ref. 81)
a2 8324.62 8324.59 8322.35 8323.82 8324.30 8324.45
o 8322.18 8322.19 8319.88 8321.37 8321.96 8322.06
A 2.44 2.40 2.49 2.47 2.34 2.39
0,2 8322.99 8322.99 8320.71 8322.19 8322.74 8322.86
A 1.002034 1.002034 1.002308 1.002130 1.002064 1.002050

jectively judged center of the line or the peak of the
microphotometer curve traced from the same photo-
graph, gives the peak value of the true spectral profile
with sufficient accuracy.

Nordfors cites four earlier results (by Haglund,
Siegbahn,® Shearer,” and Cauchois??) of measure-
ments of the aluminum lines. In the most recent and
probably the most critically careful of these four, that
of Cauchois, a bent mica crystal spectrometer was
used to compare the Al Ko doublet lines with Cr K3,
and Ni Ka; as reference lines. These latter were taken
as 2080.597 x-units, and 1654.505 x-units, respectively,
based on the two-crystal spectrometer work of Bearden
and Shaw.%® Relative to these lines, Cauchois reports
for the two aluminum Ko lines from a pure aluminum
target: Al a; 8321.3740.20; Al @, 8323.824-0.20. In
this case again two steps are required to connect the
Cauchois values of Al Kajas with the Cu Kayas lines
by way of the Cr KB; and Ni Ka; lines. The mean
results on the Cu Kajas line wavelengths of Bearden
and Shaw quoted by them on the assumption of the
nominal (Siegbahn) value for the calcite crystals they
used, are 1537.400 x-units and 1541.219 x-units. Thus
one may safely assume that the unit in terms of which
these reference lines are quoted is essentially that which
we have been using above in the NA3 determinations
with the Cu Koy line and therefore that the Cr Kpg;
and Ni Ka; wavelengths which Cauchois used as
calibration lines to determine the Al Kaja, lines are
also expressed in these units. Cauchois’ results on the
Al Ka lines are slightly lower than those of Nordfors,
however, and if Cauchois’ values for the a3, a3 lines
had been used by Edlen and Svensson instead of
Nordfors’ values, they would have obtained A=
1.002126-0.000023.

There is even wider variation in A if we use the Al
Ko wavelengths determined by other observers. This
is indicated in Table VI. As a matter of consistency
therefore, and because it represents a unified tabula-
tion based on a clearly defined specification of the
operational realization of the x-unit scale, we shall use

9 P, Haglund, Z. Physik 94, 369 (1935).

9 7, Shearer, Phil. Mag. 21, 501 (1936).

92Y. Cauchois, Compt. Rend. 221, 25 (1945).

9 J. A. Bearden and C. H. Shaw, Phys. Rev. 48, 18 (1935).

the wavelengths in x-units as given in Bearden’s tables
of x-ray wavelengths.® Bearden gives for Al Kaj,s,
A=8322.8640.14 x-units where the error has been
converted to a standard error. For this line Edlen and
Svensson measure 8.339924-0.00020 A, and hence
A=1.002050=+0.000029. For the Kas line they measure
A=8.28582:0.00030 A while Nordfors obtained A=
8268.740.4 x-units. We infer from Bearden’s tables
that this should be corrected to 8268.88 in order to
express this wavelength relative to Bearden’s W Koy
standard. Hence from the Al Ko; measurement we
infer A=1.002049--0.000050.

Work such as that of Tyren and Edlen and Svensson,
in which Lyman-series spark lines from highly ionized
hydrogen-like atoms are used as reference lines, is
afflicted - with still another uncertainty coming from
the fact that these calibration lines are themselves
doublets which, to date, no concave ruled-grating
technique has been able to resolve. The spectroscopic
formulae give the wavelengths of the two members of
these doublets and the-ratio of their intensities is
ordinarily assumed to be 2:1. The recorded calibration
line position on the plate is assumed to correspond to
the centroid of the two lines (i.e., the “center of grav-
ity” with 2:1 weighting). Unfortunately there is no
way at present of being certain that this intensity ratio
isindeed the correct oneor even that the actual intensity
ratio is fixed and reproducible. Theory in this respect is
of no avail since not sufficient information is known
about conditions in the ‘“hot spark” to predict how the
levels in the highly ionized atoms may be expected to
be populated. The intensity ratio in question may de-
pend upon which technique is employed, the Millikan
hot spark, the Vodar “sliding spark,” or the Vodar
“triggered spark,” and upon the details of the voltage
transient generated in the discharge, the vacuum pres-
sure maintained, and on other factors.

(3) Measurements of the Voltage-W avelength Conversion
Product

The determination of the short-wavelength limit of
the continuous x-ray spectrum, generated when elec-
trons of an accurately measured kinetic energy (meas-
ured in volts) impinge on a material target, has been
the subject of many studies ever since the effect was
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first observed by D. L. Webster in William Duane’s
laboratory at Harvard circa 1915. The experiment
amounts to a precision measurement of the wave-
length, A\, at the short-wave limit of the continuous
x-ray spectrum emitted by an x-ray target bombarded
by electrons accelerated by a voltage V. This leads to
a determination of the voltage-wavelength conversion
product, N,V =hc?/eA, and is frequently referred to
simply as a measurement of %/e. Determinations made
prior to 1956 have been discussed in many review
papers and will not be listed here. Since then, publi-
cations bearing on this subject by Fujimoto,* Ulmer
et al.,*98 Sandstrom,®® Hagstrom ef al.,'°0 and Spijker-
man!® have appeared.

Hagstrom ef al.}% describe an interesting new way
of determining the voltage-wavelength conversion
product. Photoelectrons from the same atomic shell in
a convertor material are photoelectrically ejected by
the characteristic x-radiation (Ka;) from two different
elements. The electron lines are brought to a common
focus in a high-precision iron-free magnetic beta-
spectrometer by accelerating or retarding the photo-
electrons. Equating Ve, the total applied voltage times
the electronic charge, to the energy difference between
the two x-ray lines, A(vi—vs) or hc(\t—N\:71), gives
hc?/eA. These authors used the Cu Kea; and Mo Koy
lines to eject electrons from the K shell of a manganese
convertor. The numerical wavelength values in x-units
they used for Ay and A\, were the tabular values (Table
IV) rather than the new values from Bearden’s labora-
tory. Since the two wavelength ratios differ by 17 ppm
in these two cases, a corresponding uncertainty enters
as to precisely how to define the “x-units” in terms of
which the result is given. Hagstrém et al. give as the
voltage-wavelength product

(ENs) =12372.741.5 kilovolt x-units.

The stated error includes a provision for systematic
error. The purely random (statistical) error of the
voltage measurements is only =40.50 kV x-units. If
however we use Bearden’s table® with Mo Ka;=
707.831 and Cu Ka;=1537.370 we find, using Hag-
strém’s error estimate

(ENs)=12373.141.5 kV x-units.

There are other reasons also why we have felt wary
of using this and similar work. The spectral width and
asymmetry of the Cu Ke, line raises doubts regarding
the interpretation of the electron line spectra, which

( 9941‘;1)ir0fumi Fujimoto, Sci. Rept. Tohoku Univ. Ser. 1, 41, 15
1957).

% K. Ulmer and H. Vernickel, Z. Physik 153, 149 (1958).

9% K. Ulmer, Phys. Rev. Letters 3, 514 (1959).

97 J, Kessler and J. Ulmer, Z. Physik 159, 443 (1960).

9% K. Ulmer, Z. Physik 162, 254 (1961).

9 R. Sandstrém, Arkiv Fysik 18, 305 (1960).

100 S, Hagstréom, O. Hornfeldt, C. Nordling, and K. Seigbahn,
Arkiv Fysik 23, 145 (1962).
(1;" ]). J. Spijkerman and J. A. Bearden, Phys. Rev. 134, A871

64).

appear superposed on a sloping background. Does the
apparent peak of the electron line, photoelectrically
ejected from a manganese convertor by the Cu Ka;
radiation truly correspond to electrons ejected by the
peak wavelength of that x-ray emission line? One
would feel happier about this matter, for purposes of
highest precision, if both x-ray lines were symmetric
in profile, and if a more complete theory of photo-
emission were available.

The novel and ingenious method just described was
undoubtedly conceived in an effort to circumvent an
analogous difficulty of interpretation encountered in
all of the efforts to measure /%/e or the voltage-wave-
length conversion product by means of the short-
wavelength limit of the continuous x-ray spectrum.
This is the difficulty of identifying precisely what
feature of the “isochromat” or of the curve of con-
tinuous-spectrum intensity vs wavelength, should be
taken as the fiducial limit point. Such curves in the
case of solid targets exhibit a well-known structure in
the vicinity of the limit, first detected by Ohlin!®? and
later carefully studied by others,%:1%:1¢ which is
intimately related to the band structure of the elec-
tron energy levels in the target material and to the
discrete energy-losses sustained by the bombarding
electrons as they enter the target. Furthermore, the
extreme limit of the continuous spectrum is always
more or less concealed by a transition or ‘“fillet” con-
necting the foot of the last maximum of this Ohlin
structure with the background as a result of the finite
resolving power of the x-ray monochromator or spec-
trometer employed. The uncertainty concerns how best
to choose a fiducial point in the region of this fillet
corresponding to a coincidence of the peak intensity
of the monochromator window curve with the short-
wavelength limit of the continuous spectrum. We do
not even know whether the true shape of the con-
tinuous spectrum exhibits a first- or a second-order
discontinuity at the limit.

Because of this uncertainty there have been several
suggestions by different authors to measure the differ-
ence in wave-number at the short-wave limit for fwo
different applied voltages in the hope that, for each of
these two cases, the spectral structure near the limit
would be sufficiently similar so that the shift in spectral
position could be measured by matching the shapes of
the two identical structures without the need for speci-
fying any fiducial point in them. Perhaps the most
promising of such proposals has been that of Sand-
strom,®® to match the first peak of Ohlin in this way
for two different voltages, rather than seeking the true
short-wave limit, because it seems more promising to
match line peaks than to match one-sided edges, limits
or discontinuities. At the present time, however, no
definitive results have been obtained by this method.

102 P, Ohlin, Arkiv Mat. Astron., Fysik 29A, No. 3 (1943).
18 B, R. A. Nijboer, Physica 12, 461 (1946).
1047, Albert, Z. Physik 143, 513 (1956).
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The work of Spijkerman and Bearden'® is worthy of
mention here. A mercury vapor jet rather than a solid
served as a target material, the purpose being to avoid
the difficulties of interpretation arising from the elec-
tronic energy band structure of a solid target. This
difficult and beautiful piece of work yielded an iso-
chromat in which there were no Ohlin fluctuations but
only the expected monotonic transition to zero. To
interpret the results, an assumed one-parameter pro-
file (with assumption of a first-order discontinuity at
the limit) for the true spectrum in the absence of
instrumental blurring was folded into a profile taken
to represent the spectral window of the monochrom-
ator, the latter a profile also with one adjustable
parameter corresponding to the spectral position of the
center of the window. The two parameters were varied
until the folded curve was found which seemed best to
fit the experimental data and indeed a quite convincing
fit was obtained.

This experiment yielded the value of the voltage-
wavelength conversion product, VA,=12373.264-0.40
V x-units. The value of VA;=12398.1040.13 eV cm
was obtained in our 1963 adjustment of the constants
without any use of x-ray data; the mercury target
determination therefore implies a value of A=
1.002008+34 ppm, a value clearly much lower than
inferred by Henins and Bearden’s work?” on VA3 with
silicon, namely A=1.00207924=7 ppm, where both these
values have been corrected from Cu Ka;=1537.400 as
used in their papers to Cu Kea;=1537.370 of Bearden’s
more recent tables. No explanation has been found for
this discrepancy by these authors.

(4) Anmihilation-Radiation W avelength M easurements

The annihilation-radiation wavelength, Aa=%/(mc),
which results when positrons and electrons annihilate
each other and two photons of equal energy and op-
posite momenta are formed, was first directly measured
by means of the bent crystal spectrometer,!?5:1¢ but
probably with greatest accuracy by J. W. Knowles®®’
with his two-crystal spectrometer, an instrument
specifically designed for the spectroscopy of nuclear
gamma rays. The relationship, Aa=7%/(mc) may also
be written in terms of @ and R, as

Na=0a?/2R,,. O]

For these equations to be exact, the annihilating pairs
must have zero kinetic energy (zero velocity for their
center of mass). This condition is nearly fulfilled when
positrons annihilate in matter with structure electrons
because the cross section for annihilation becomes ap-
preciable only when the relative velocity of the mem-
bers of the pair is small. J. W. Knowles, using the large

105 J, W. M. DuMond, D. A. Lind, and B. B. Watson, Phys.
Rev. 75, 1226 (1949). )

106 D, E. Muller, H. C. Hoyt, D. J. Klein, and J. W. M. Du-
Mond, Phys. Rev. 88, 790 (1952).

107 T, W. Knowles, Can. J. Phys. 40, 237 (1962) ; 40, 257 (1962).
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positron flux from the NRU reactor measured 64, the
Bragg angle for wavelength A4 reflected in Laue (i.e.,
internal) reflection from the (211) planes of calcite at
18°C, and obtained 8, =3996.2052-0.15 microradians,108
The lattice spacing of a sample of the calcite crystal
used by Knowles was measured in Bearden’s labora-
tory®? to be 3029.402 x-units relative to the tungsten
Ka; standard. From the equation A\a=2d sin 64 one
computes then the result

Me=a?/(2R_A) =24.21216-0.00075 %-units.

Using the accurately known value* of R, and the
value of & [see Sec. 2.5(7) below], probably good to
about 5 ppm, obtained from the measurement by
W. Lamb, Jr. ef al. of the fine-structure splitting in
deuterium, this gives a value for the x-unit-to-milli-
angstrom-unit conversion constant A of

A=1.002063=-0.000033 (Knowles, 1962).

More recently with his two-crystal method, J. W.
Knowles has been able to establish through a series of
intermediate steps by crystal diffraction in different
orders the wavelength ratio of the annihilation radia-
tion, A4, to the W Ko, x-ray emission line'® with the
following result:

ONa/N(W Kay) =1.044811-+0.000014 (+13.5 ppm)
(Knowles, 1963).

This is the first time that it has been possible to
establish the wavelength and quantum energy of a
well-known x-ray emission line in cgs units without
appeal to uncertain data from the field of x rays and
with a precision (414 ppm) of this high order. Our
1963 least-squares adjusted value is Ay=24.26216=+
0.00022 milliangstroms; hence, combining this with
Knowles’ result given above yields

MW Ka;)=0.20899424-0.0000035 Angstrom units
(217 ppm). '

We may now compare this value directly with the
definition of the x-unit in terms of the W Ka; wave-
length as defined by Bearden,® \N(W Kea;)=208.5770
x-units. This gives the surprisingly low value:

A =1.002000=-0.000017.

The importance of Knowles’ two-crystal method of
measuring the annihilation-radiation wavelength is
very great indeed, especially for the purpose of normal- -
izing his crystal grating spacings and, with these, all
of his measured gamma-ray emission-line wavelengths
and energies, independently of x-ray data, directly in

108 This is the angle after a small correction to allow for the
mean kinetic energy of motion of the positron-electron pair.

100 T S, Thomsen (private communication, 2 April 1965).

10 T, W. Knowles, Proceedings of the Second International Con-

ference on Nuclidic Masses, 1963, edited by W. Johnson (Springer-

Verlag, Vienna, 1964), p. 113.
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TasLE VII. Determinations of u,/ps, the ratio of proton magnetic
moment to the nuclear magneton (with diamagnetic correction).

Date o/ bn

1. Sommer, Thomas, 1951 2.79275740.000025
and Hipple

2. Bloch, Jeffries, and 1950-1956 2.792754-0.00010
Trigger

3. Boyne and Franken 1961 2.792906-0.000056

4. Sanders, Dellis, 1962 2.7927740.00007
Turberfield, et al.

5. Mamyrin and 1964 2.792874-0.00002

Frantsuzov

milliangstrom units. More people with high-flux re-
actors at their disposal should be doing it. Here we
have one of the few methods of bridging the gap in the
spectrum between our primary standards of wavelength
and energy and our measurements in nuclear spec-
troscopy, both by crystal diffraction and by magnetic
spectroscopy, without introducing the present uncer-
tainties of the x-ray data and of the conversion factor,
A. For this reason we are happy to learn that Knowles
plans to redetermine the grating constant of his crystals
in absolute units by a still more accurate measurement
of the diffraction angle for A4, this time using annihila-
tion radiation from the decay of positronium in ice.
In 1958 de Zafra and Joyner!!! were the first to observe
that the annihilation radiation line from the decay of
positronium in ice exhibits a spectral component of
much narrower structure superposed upon the peak of
the familiar Doppler-broadened annihilation line.
Graham and Geiger''? have confirmed this observation
with their 1-meter optic circle radius magnetic spec-
trometer. It is conjectured to be the result of trapping
of some of the positronium in ‘“holes” in the ice struc-
ture so that much of the Doppler broadening is sup-
pressed.

(5) Ratio of the Proton Magnetic Moment to the
Nuclear Magneton

The value of the proton magnetic moment measured
in nuclear magnetons has been independently deter-
mined with high precision by five different groups.!*-1%
Table VII lists the results of these groups in chrono-
logical order.

1 R, L. deZafra and W. T. Joyner, Phys. Rev. 112, 19 (1958).

12 R, L. Graham and J. S. Geiger, Nucl. Phys. 45, 177 (1963).

usH. Sommer, H. A. Thomas, and J. A. Hipple, Phys. Rev.
82, 697 (1951).

114 F, Bloch and C. D. Jefiries, Phys. Rev. 80, 305 (1950); C. D.
Jefiries, 4bid. 81, 1040 (1951); K. R. Trigger, Bull. Am. Phys.
Soc. 1, 220 (1956).

15 H, S. Boyne and P. A. Franken, Phys. Rev. 123, 242 (1961).

16D, J. Collington, A. N. Dellis, J. H. Sanders, and K. C.
Turberfield, Phys. Rev. 99, 1622 (1955); J. H. Sanders, K. C.
Turberfield, Proc. Roy. Soc. (London) A272, 79 (1962).

17 B, A. Mamyrin and A. A. Frantsuzov, Dokl. Akad. Nauk
SSSR 159, 777 (1964) [English transl.: Soviet Phys.—Doklady
9, 1082 (1965) ].

The method consists in determining the proton-spin
resonance frequency and the proton cyclotron frequency
in the same magnetic field, H. The cyclotron frequency
w, is given by

w.=He/(myc). (8)

The NMR frequency, w,, of the proton in the field H is
given by

wp=2upH /. )

Therefore,

Yo Mo _H
we eh/(damyc) un’

where u,=eh/(4wm,c) is the nuclear magneton.

Since our 1963 adjustment had initially as unknowns
the quantities, «, ¢, N, and A, it is of importance to
clarify how these are to be related to the measured
quantity under discussion, p./u,. The following equa-
tion gives this relationship which constitutes one of
our primitive observational equations for forming the

adjustment:
@_(@>@_(@)M:"i
pn \mo/ m  \po/4wrR, Ne*'

The first equality follows from the relationship which
defines the fundamental moment associated with a
particle of mass m, u=efi/2mc; the second equality
results from the substitutions m,=M,/N and the
Rydberg formula R =2n%met/ (h3c)=ad(mc*/e?) /4.
Note that we have expressed the proton moment (in
nuclear magnetons) in terms of mathematical con-
stants (such as 4, =), auxiliary constants, whose
numerical values are accurate enough so that for the
present purposes at least, they may be considered as
exact (My, ¢, R, up/m) and the variables, «, e, N of
the least-squares adjustment. The total error contrib-
uted by all of the auxiliary constants in Eq. (11)
is completely negligible by comparison to the error of
n/ s, which is thus the single error-determining factor
in this observational equation. It is our aim in every
case to formulate each observational equation thus,
with the experimentally measured quantity expressed
as the product of two terms—one, an “exact numeric”
which is made up of numerical constants or of physical
quantities so accurately known that its total uncer-
tainty makes a negligible contribution to the error of
the equation as compared to the error-determining
quantity and the other, a function of the variables to
be adjusted by least squares. As already pointed out,
all of the different observational equations must be
error-statistically independent, so as to avoid correla-
tions in the weighting of the equations.

Figure 4 gives a highly simplified representation of
the three types of measuring apparatus employed for
the proton cyclotron determinations. Sommer, Thomas,
and Hipple!® (at the US-NBS) used the Omegatron—
an apparatus which is essentially a small cyclotron in

(10)

(11)
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which protons are accelerated to a maximum orbital
radius of about one centimeter. The condition of
cyclotron resonance was determined by detecting the
ions when they spiraled out to sufficient radius to be
caught by a probe. It was necessary to correct for space-
charge forces and for the radial components of the weak
dc trapping field (superimposed in order to prevent
axial ion drift) since these forces acting on the protons
in addition to the v xH force would modify the cyclo-
tron frequency from that for an ideal cyclotron. How-
ever, by measuring the observed resonance frequency
for ions of different masses, it was possible to extrapo-
late these perturbations to zero. The error estimate for
the STH determination given in Table VII is not that
assigned by the authors. Their original assignment was
made following the school of thought under which a
certain virtue was attached to overestimating an error.
In order to put their error, as nearly as we could, on a
basis comparable with the other items of Table VII,
we have recomputed the error from the information
given in their paper. The errors here assigned to items
2, 3, and 4 have also been similarly recomputed as
required, from the authors’ information in their papers.

The proton-spin resonance frequency measured in
the same field H as that used for the cyclotron fre-
quency, must be corrected for the fact that the field
at the proton is slightly less than the field externally
applied to the proton-containing sample (usually
water or mineral oil). This diamagnetic correction con-
sists of two parts, the larger due to the effect of the
electrons in the Hydrogen molecule!® and a smaller
correction!® for the bulk diamagnetism of the sample
depending on its composition and shape. (See Table
11.)

In the work of Boyne and Franken,'® the small
cyclotron differed from that used by Sommer, Thomas,

= 0
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Fi1c. 4. Three methods of
determining the proton mag-
netic moment. The applied dc
magnetic field is normal to the
plane of the figure.
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18 N, F. Ramsey, Phys. Rev. 78, 699 (1950).
19 C, F. Newell, Phys. Rev. 80, 476 (1950).
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Fi6. 5. Boyne and Franken’s method of correcting their meas-
urements of the cyclotron frequency of the proton for the effects
of space charge by extrapolating ».’/vp to its value for infinite
field. The numerical results of Sommer, Thomas, and Hipple and
of Sanders and Turberfield are also shown for comparison.

and Hipple. Less precautions were taken to insure a
homogeneous radio-frequency electric field. No dc elec-
tric trapping field was applied to keep the spiraling
protons from axial drift. Boyne and Franken used
deuteron resonance to normalize their magnetic field
intensity instead of proton resonance because it gave a
frequency comparable to the cyclotron resonance fre-
quency for Hgt. The ratio ws/w, was separately meas-
ured by interchanging proton and deuterium resonance
probes in the same magnetic field. The proton magnetic
moment is then calculated from the relation

Bp_ _@p _ wa M,
Bn wo(HY)  w(Hs") wa2Mptm’

where M, is the mass of the proton and m is the mass
of the electron. The ratio w,/ws was found to be
6.5144114-0.000003, including the effect of the para-
magnetic Cut+ ions in their deuterium sample. The
condition of the cyclotron resonance was detected by
the change of the impedance of the load on the oscillator
supplying the high-frequency electric field, indicative
of the increase in power supplied to accelerate the Hy
ions. A correction was required for the effect of radial
forces due to space charge on the Hgs* cyclotron fre-
quency. The apparent cyclotron frequency, v, was
observed as a function of magnetic field H, and the
ratio »//vp was plotted as a function of 1/¥p? (i.e.,
essentially 1/H?), and extrapolated to infinite field,
1/vp?*=0. The effect of space charge in changing the
cyclotron frequency can be shown to be

22
CEC T 2\ ™ oz /)

where p is the space charge density, dE./dz the elec-
trical (space charge) field gradient parallel to the direc-
tion of H, e/m, the charge-to-mass ratio of the ions,
wy the ideal cyclotron frequency for zero perturbing
force and w observed frequency. Figure 5 copied from

(12)

(13)



566 ReviEws oF MODERN PHysICS + OCTOBER 1965

their article shows the straight lines extrapolated to
1/vp>—0 for 24 of Boyne and Franken’s runs. The range
of field intensities over which the positions and slopes
of these lines were determined is indicated with the
dashed vertical lines. There is a fairly clear correlation
between the slopes of the straight lines and their inter-
cepts on the axis of H2=0 (corresponding to in-
definitely small ionic orbital radii). There is also a
suggestion that these lines, instead of tending to pass
theough a common point on the axis (save for purely
random fluctuations) tend rather to lie tangent to a
common envelope or locus extending over the entire
range of extrapolation.

Figure 5 shows for comparison with Boyne and
Franken’s result, the results of Sommer, Thomas, and
Hipple, and of Sanders ef al. The last two named items
are in good mutual agreement but disagree with the
Boyne and Franken result by 2.5 times the expected
standard deviation of the difference. (We shall ignore
the Bloch et al. result because of the low weight it must
receive in view of its estimated error.) Thus the large
disagreement of the Boyne and Franken result with
the two others, coupled with the questionable nature
of the space-charge correction lead us to regard it as
open to suspicion of being systematically erroneous.
We shall, nevertheless, retain all three items, 1, 3, and
4 of Table VII as separate items for examination in our
analysis of variance to test their compatibility with
the other input data of the adjustment.

In private correspondence, we have learned from
P. A. Franken that he and Boyne are not too well
satisfied with the results of their present measurements
(for much the same reasons as we have presented here)
and they plan to continue the work by the same method
but employing more intense magnetic fields so as to
permit observing points on the straight lines of Fig. 5
which come closer to the axis.

The method of Turberfield, Sanders, and Dellis™ is
a modification of the inverse cyclotron of Bloch and
Jeffries, in which protons injected at high energy were
decelerated by a high-frequency electric field in the
gap between a pair of “dees” of the familiar cyclotron
design. The modified design of TSD used three elec-
trodes; a grounded dee on either side of a central section
to which the high-frequency voltage was connected.
Protons were injected tangentially near the outside of
these electrodes as indicated in Fig. 4. The alternating
potential applied to the center electrode was at a fre-
quency close to an even harmonic of the cyclotron
frequency. Those injected protons which crossed the
central conductor in the appropriate phase received a
net deceleration at each pair of gaps, but as they
spiralled inward they approached a radius at which
the time taken to cross the central conductor was just
one cycle of the alternating voltage, which is the con-
dition for no net change of energy. Thereafter the
protons, having reached a stable orbital radius, de-
scribed a large number of revolutions at constant

radius under conditions approaching dynamic equi-
librium. The attainment of many orbital revolutions is
an obvious necessity if the measurements are to possess
high accuracy.

The original experiments in 1955 have been aug-
mented by an extensive set of measurements using H+
and Hy* ions, and only the results based on these final
measurements are given here.

The measurement by Mamyrin and Frantsuzov''?
has only recently been reported and the details of the
work are not available to us. This is however a sig-
nificant result because it lends strong support to the
Boyne and Franken result in preference to the very
consistent results of Sommer, Thomas, and Hipple,
and of Sanders and Turberfield. In this experiment the
cyclotron frequencies of He and Ne atoms were meas-
ured in a magnetic resonance mass spectrometer and
the proton precession frequency in water was measured
at the same time in the same magnetic field.

(6) Gyromagnetic Ratio of the Proton

In a magnetic field of intensity H, a proton has two
quantum states separated in energy by 2u,H, where pu,
is the magnetic moment of the proton. Protons con-
tained in a sample of hydrogenous liquid, such as water
or mineral oil, are placed in a steady, homogeneous,
magnetic field, and a coil about the sample supplies a
small alternating magnetic field of radio frequency, »,
at right angles to the steady field. When » is close or
equal to the value v,= (2u,/%) H it will cause transitions
between the two energy states. The constant propor-
tionality v,

Y= Vn/H= (Z,U.p/h), (14)

between the resonance frequency for protons and the
field H at which that resonance occurs is called the
gyromagnetic ratio of the proton. The phenomenon
affords an extremely accurate and reproducible way
of measuring (i.e,, comparing) magnetic field
intensities.

Several different techniques have been developed
for measuring v, These may be classified into strong-
field and weak-field methods, the first for fields of
several kilogauss developed in gaps between iron pole
pieces, the second for fields of the order of 1 to 20 G
developed by single-turn solenoids of great dimensional
accuracy. The methods of measuring the proton reso-
nance frequency v, for these two cases deserve brief
explanation.

When the proton sample is in thermal equilibrium,
the population of protons in the lower of the two energy
states slightly exceeds that in the higher state, the
population ratio of the two being given by the Boltz-
man factor exp [2u,H/(kT)7], where 2u,H/(kT) is of
order 10~% The observation of a net energy absorption
at resonance as a means of detecting the resonant fre-
quency relies on this small population difference. The
resonance may also be detected by signals induced in a
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second coil at right angles to the exciting coil (so as
to be decoupled from the latter).

In the “method of free precession,” first used by
Bender and Driscoll'® for their case of weak magnetic
fields, the proton sample is first strongly polarized in
an intense magnetic field and then quickly transferred
to the weak field to be measured. The larger Boltzman
factor resulting from the strong field insures a suffi-
ciently large population ratio so that the sample re-
tains its polarization several seconds while the transfer
to the weak field is being effected. This is done by
shooting the sample pneumatically down a tube several
meters long from one field region to the other. During
transfer the polarized protons keep themselves aligned
in a continuous way with whatever instantaneous field
they experience from point to point. Once in the weak
field to be measured, the field of the precision solenoid,
the exciting radiofrequency signal is applied to the
sample very briefly, after which the protons are left to
precess freely about the applied weak field, gradually
losing energy to the liquid. While doing so they induce
a signal in the pick-up coil whose frequency, essentially
the free-precession frequency for that field strength,
can thus be measured.

We incorporate the measurement of +, into our least-
squares adjustment in the following way. We express
vp as a function of three of the unknowns of our ad-
justment, @, ¢, and N, and our accurately known
auxiliary constants, ¢, R, pe/po, and p/up, by starting
with the obvious identity

2up  2po pp e
'yp=——=—- _——

(15)

If we substitute the relationships
R =2n*me/ (h3c) =%2a?mc?/ (kc),
po= he/ (4mwmc),
a=2me*/(hc),

it is easy to verify that

8TR., tetio € (16)

The experimentally measured quantity, v,, is then
expressed as a function of numerical constants, ac-
curately known auxiliary constants, and the variables
a and e of the least-squares adjustment.

The difficult metrological problem in determining
v»=vn/H is not the measurement of », but the estab-
lishment of the steady homogeneous field H, and the
measurement of its intensity in absolute units (gauss).
In strong magnetic fields the field intensity is measured
by suspending a flat coil, usually of rectangular shape
with one end of the rectangle in the strong field and

«

(1‘2" P. L. Bender and R. L. Driscoll, IRE Trans. Instr. I.7, 176
958).
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the other end in a region within which the field has
been nullified. An accurately measured current passes
through the coil and the force with which it is pulled
downward by the field is accurately determined by
weighing with an analytical balance. The geometrical
dimensions of the rectangular coil and its positioning
in the field between the magnet pole pieces must be
extremely accurately determined (this method is some-
times known as that of the Cotton Balance). The
acceleration of gravity at the position where the i xH
force on the coil is measured by weighing must of course
be accurately determined.!#

In the strong-field determinations.the absolute value
of gravity actually enters in fwo ways in the establish-
ment of v,, once as g} because of its use in the deter-
mination of the absolute ampere (for standardizing the
current in the coil of the Cotton Balance) and once as
g~ !in weighing the i xH force. The net effect is there-
fore as g~%. In the precision-solenoid method of estab-
lishing v,, however, g enters only once, as g in the
standardization of the ampere. It follows therefore,
that in these two different methods an error in g affects
the results in opposite senses.

Weak magnetic fields are set up by means of a single
layer helical winding of current-carrying copper wire.
The precise geometry, especially the pitch of the wind-
ing must be very accurately determined. The wire of
circular cross section, drawn directly from a new die, is
wound under tension into a helical V-groove, precision
ground, and lapped on the cylindrical surface of a
ceramic form. It is relatively easy to correct the uni-
formity of such a helical groove (screw-thread) by
lapping it with a similar thread cut on the interior
surface of a cylindrical lapping nut, since a true helix
is the only curve exactly superposable upon itself in all
positions. After winding and aging to reach dimen-
sional stability, the dimensions of such a helical coil
must be measured with micron accuracy at a carefully
measured and stabilized temperature. Optical inter-
ference methods are used to determine the pitch
(linear density of turns) of the coil. The technique of
making such standardizing solenoids has been exten-
sively developed for the purpose of standardizing the
ampere and ohm in absolute units. From the measured
current in absolute amperes passing through the helix,
and its accurately measured geometrical parameters,
the absolute value of the field in gauss in the region
near its center can be calculated.

At the time of preparation of the 1963 adjustment
there were six independent determinations of the gyro-
magnetic ratio of the proton.

The six measurements of Table VIII are not all of
the same accuracy and at least one, the earliest, that
of Thomas, Driscoll, and Hipple,”** is afflicted with

121 R, D. Huntoon and A. G. McNish, Nuovo Cimento Suppl.
6, 146 (1957).

122 H, A, Thomas, R. L. Driscoll, and J. A. Hipple, J. Res. Natl.
Bur. Std. (U.S.) 44, 569 (1950); Phys. Rev. 78, 787 (1950).
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TaBLE VIII. Gyromagnetic ratio of the proton, y,=cp/H =2up/h= (up/ue) (ue/wo) (¢/mc).

0 ’yp . .
After diamagnetic correction, cgs units
’

Yo
(Corrected to

Field v (Cohen, DuMond, (Yagola et al.,

Source (G) (sec1 G1)e BIPM units)® Vienna, 1963)° 1964)4
Thomas, Driscoll, Hipple 4800 26 752.7+0.6 26 753.4+0.6 26 753.4
Capptuller 2800 26 752.241.0 26 752.1 26 752.541.0 26 753.2
Yagola, Zingerman, Sepetyi 2400-4700 26 750.5240.2 26 750.8 26 751.240.2 26 751.9¢
Bender, Driscoll 12 26 751.51£0.08 26 751.5 26 751.9240.08 26 751.92
Vigoureux 10-20 26 751.71+0.08 26 751.5 26 751.88+0.08 26 751.88
Yanovskii, Studentsov 0.6-1.2 26 750.620.3 26 750.4 26 750.8240.3 26 750.8

& Values given here are not yet corrected for diamagnetism and are based on
electrical standards ““as maintained’’ by each national laboratory.

b Consultative Committee on Electricity, International Committee of
Weights and Measures, Paris, May 1963.

considerable suspicion of the existence of systematic
error. The results given in the last column of Table
VIII have been corrected to the gyromagnetic ratio for
the bare proton. The measurements represent work
done in the United States, Germany, the Soviet Union,
and England. There is, therefore, some uncertainty in
these data with regard to the calibration of the standard
ampere as maintained in the various national labora-
tories in terms of the absolute definition of the ampere.
Vigoureux’s measurement, performed at the National
Physical Laboratory, Teddington, England® was,
however, based on electrical standards directly inter-
compared with the standard ampere maintained at the
U.S. National Bureau of Standards. It is therefore
reassuring that these two measurements are in such
excellent agreement.

Thomas, Driscoll, and Hipple measured v, at a fre-
quency of 20 Mc/sec in a field approximately 4800 G.
The field was produced by an electromagnet with a
2-in. gap between 8-in.)X12.5-in. pole faces. Although
care was taken to insure that the faces were accurately
parallel and vertical, no precautions were taken to
insure that the two pole pieces were accurately coaxial.
Thus the extent to which a vertical displacement of
one of the pole faces relative to the other produced a
tilting of the magnetic flux lines in the gap was not de-
termined. Any departure of the flux lines in the gap
from horizontal would introduce a cosine error in
measuring the field by means of the vertical force
exerted on the balance. It must be recalled, however,
that this was the first attempt by precision metrologists
to measure <y, accurately. Much has been learned by
experience since 1950.

The field intensity near the center of the gap was
measured by weighing the force exerted on a rec-
tangular current-carrying coil, wound on the edges of a

128 P, Vigoureux, Proc. Roy. Soc. (London) A270, 72 (1962).

¢ E, R. Cohen and J. W. M. DuMond, Second International Conference on
Nuclidic Masses (Vienna, 1963), edited by W. H. Johnson (Springer-Verlag,
Vienna, 1964), p. 152.

d Private communication, 24 March 1964.

€ Includes the results of additional measurements.

rectangular coil form 10X 70 cm in size which hung from
one arm of an analytical balance. The glass coil form
was 7 mm thick with 9 turns of copper wire lying in
grooves cut in its edges. A small proton resonance probe
explored the field distribution horizontally in the gap
across the pole face to correct for small variations from
uniformity and for the difference in mean magnetic
field between the position of the coil and the position
of the proton resonance sample. Such a probe explora-
tion of the field was made in the midplane between the
pole faces and also in planes 5 mm either side of gap
center. Measurement showed that there existed local
fluctuations from uniformity i opposite directions of
the order of 0.5 G on opposite sides of the mid-plane
indicating a faper in the field intensity in the horizontal
direction, normal to the pole faces of about 1 G per
cm; therefore a taper of field intensity of 200 ppm per
cm. Clearly this implies that the centering of the
measuring coil and the exact position of its turn on the
edge of the 7-mm-thick glass plate would be a very
critical consideration. Nickel shims were used to min-
imize the spatial variations in the field, but the above-
mentioned variations were those present after these
precautions. In the light of the studies made later by
the Soviet physicists at Kharkov it seems quite possible
that these field inhomogeneities in this early work are
sufficient to account for the 50 ppm discrepancy be-
tween its results and the later work done in iron-free
solenoids at weak-field intensities. Also since the proton
resonance frequency measures the total field intensity,
while the weighing procedure measured only the hori-
zontal component of this field, an obliquity of the
magnetic field of 35 minutes of arc from the horizontal
would be sufficient to account for the 50-ppm dis-
crepancy. The magnet used has not been preserved,
and because of these uncertainties we decided to reject
this measurement in the final 1963 adjustment. How-
ever, it was retained along with items 4 and 5 to form
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three separate equations of observation for the purpose
of the preliminary analysis of variance.

Because of its low estimated precision we eliminate
the strong-field result of Capptuller,'** done with a coil
of variable width. It could only be given 1/300 as much
weight as the work of Bender and Driscoll and the work
of Vigoureux taken together.

The Soviet work, particularly the strong-field deter-
minations made at Kharkov, deserve description. One
of us (JWMD) has visited the Leningrad and Kharkov
laboratories especially to discuss the work with the
physicists who did it and to inspect the equipment.

The Leningrad work of Yanovskii and Studentsov,25
done at the All Union Mendeleev Institute of Metrol-
ogy (the national standards laboratory for the Soviet
Union) was performed in weak fields of from 0.6 to
1.2 G. The reason for this, we are told, was that at
the time the determination was made no precision
solenoid suitable for setting up a field of intensity 10
or 20 G was available. Solenoids of this type existed in
the Soviet Union but were in use for other purposes
(presumably for absolute standardization of electrical
units), and since the beautifully consistent work of
Bender and Driscoll in the United States and of
Vigoureux in Britain made a third check of immediate
and pressing interest, the Mendeleev Institute used
immediately available equipment capable only of giv-
ing the weaker fields. The actual measurements were
made at a site quite remote from Leningrad on a
promontory in a lake chosen especially to minimize
stray local magnetic fields from ground currents and
other sources. Nevertheless, since a whole order of
magnitude precision could be obtained by working at
the stronger fields with a more suitable precision
solenoid, the Leningrad Laboratory plans to repeat
the work under these improved conditions. The method
of the Leningrad work resembles closely that of the
weak field work at the U.S. National Bureau of Stand-
ards and at the British National Physical Laboratory.

The work of Yagola, Zingerman, and Sepetyi?®® at
the Kharkov Institute of Measures and Measuring
Instruments is of great interest because (1) it was done
in strong fields with an iron pole piece magnet at in-
tensities of the same order as the early U.S. work of
Thomas, Driscoll, and Hipple, and (2) great care and
elaborate precautions were taken to study the mag-
netic field distribution, the effects of the design and
positioning in the magnet gap of the suspended field-
measuring coil, and many other possible sources of
systematic error in an effort to account for the dis-
crepancy between the strong field results of Thomas
et al. (item 1 in Table VIII), and the weak field results
of Bender and Driscoll (item 4). Most interesting of

124 H, Capptuller, Z. Instrumentenk. 69, 191 (1960).

126 B, M. Yanovskii, N. V. Studentsov, and T. N. Tikhomirova,
Izmeritel. Tekhn. 1959, No. 2, p. 39; B. M. Yanovskii and N. V.
Studentsov, Izmeritel. Tekhn. 1962, No. 6, p. 28.

126 G, K. Yagola, V. I. Zingerman, and V. N. Sepetyi, Izmeritel.
Tekhn. 1962, No. 5, p. 24.
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all, however, is the fact that measurements obtained
at Kharkov in 1963, subsequent to those in their pub-
lished paper of 1962, indicate even better consistency
with the weak-field results (items 4 and 5 in Table
VIII) and also show fairly clearly the kind of precau-
tions which must be taken in a strong-field experiment
of this sort if highest accuracy is to be attained. This
information was only available after completion of our
1963 adjustment, but it completely justifies our earlier
decision to reject from that adjustment, the Thomas,
Driscoll, and Hipple result.

In the Kharkov experiment greatest care was taken
to insure (a) accurate plane parallel surfaces for the
iron magnet poles, (b) strict coaxiality of these poles,
which were cylindrical in shape, and (c) accurate
verticality of the pole faces. By means of slides and
screws the electromagnet could be adjusted in six de-
grees of freedom relative to the suspended Cotton
Balance coil. In addition, the pole piece faces could be
independently aligned for parallelism and coaxiality.
The Kharkov physicists mapped the magnetic field in
the gap in order to explore the effects of departures
from parallelism and coaxility. As might be expected, a
maximum field intensity was found at the center of
each circular pole face when the poles were coaxial
and their faces parallel, with approximately concentric
circular contours of diminishing intensity as one ap-
proached the periphery of a face. With slight de-
partures from parallelism or coaxiality, however, the
positions of the two maxima and the shapes of the
contours varied to a surprising degree. By careful ex-
ploration of the entire gap it was found possible to
obtain a field distribution which showed good mirror
symmetry relative to a vertical midplane. Of still
greater importance than this, however, was the finding
that the i x H force on the Cotton Balance coil was very
sensitive to the exact centering of the plane of the coil
in the symmetry mid-plane of the magnetic field.

The Kharkov group constructed three Cotton
Balance coils of different designs and with different
numbers of turns of wire around the edges of the glass
rectangle. In coil No. 1, all the turns were connected
permanently in series. Numbers 2 and 3 consisted of
only two complete turns each, which were subdivided
into two halves so that either turn could be energized
with current, or both connected in series. In coils 2
and 3 the single turns were each carefully made to lie
in a true plane. They found that the most reproducible
results were obtained with these two coils, probably
because the simple geometrical shape of the turns per-
mitted definition of a true mid-plane for the current
flow in a sharper way than for the coil No. 1. They
also discovered a sensitive test for the correct position-
ing of the coil in the gap. When the plane of symmetry
of current flow in the coil coincided correctly with the
plane of symmetry of the field in the gap, the coil
would hang freely from its one-point suspension with-
out twisting at the time its current was turned on. A
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light-lever of several meters was used to ensure high
sensitivity in this test.

Great care was exercised with the balance and force-
weighing procedure. Because of the weight of the
Cotton Balance with its heavy glass frame the balance
must necessarily carry a heavy dead load relative to
the actual force to be measured. This implies a long-
period system. The weighing was done by adding or
subtracting weights on the same arm as that which
supported the coil. Because of the long period and
consequent long interval required for each weighing it
was important to ensure that the length ratio of the
two balance arms did not change because of unequal
thermal expansion during the weighing, and great care
was therefore taken to provide accurate automatic
maintenance of equal temperature on the two sides by
means of thermocouple-controlled electrical heaters.

By rejecting the earlier data taken with Coil No. 1
and using only data from the last two coils of superior
construction, a mean result was obtained whose stand-
ard deviation, based on mean-square deviations of the
individual runs from the mean, was much smaller than
when measurements with Coil No. 1 were included,
and whose value furthermore agreed even more satis-
factorily with that obtained by Bender and Driscoll
and by Vigoureux by the weak-field method.

The primary motivation for the precision measure-
ments of the gyromagnetic ratio of the proton in the
various national standards laboratories is the oppor-
tunity such measurements offer as fundamental, re-
producible standards by which the ‘“maintained”
standards (in terms of which all secondary standards
in each country are calibrated) can be compared and
related to absolute units in terms of force and energy.
Since the determination of v, by Bender and Driscoll,
R. L. Driscoll at the U.S. National Bureau of Standards
has, as a tentative procedure, been maintaining the
restandardized NBS absolute ampere not only by the
customary method involving banks of standard cells
and standard resistors, but also by means of the pre-
cision solenoid. The results give reason to believe that
this latter method may be the more reliable of the
two for maintenance of constancy. It of course implies
that the solenoid and its environment, both magnetic
and thermal, must be maintained unchanged with
greatest care.

This, however, in no way removes the difficulties
involved in the problem of stendardization of the
absolute ampere. Driscoll and Cutkosky have made
an absolute calibration of the NBS standards by two
methods: with the current balance and with the Pellat
dynamometer. The results of these two methods differ
slightly; this difference is an example of the sort of
difficulty encountered at present in comparing the
various determinations of ¥, made in different parts of
the world. Yagola, Zingerman, and Sepetyi®?” have

127 G, K. Yagola, V. I. Zingerman, and V. N. Sepetyi (private
communication).

pointed out that if one uses the absolute ampere ex-
pressed in terms of mean results of the current balance
and the Pellat dynamometer one obtains for v,:

Bender and Driscoll, 26 751.18;
Vigoureux, 26 751.15;
Yagola, Zingerman, Sepetyi, 26 751.31.

On the other hand, if we use the absolute ampere de-
termined by Driscoll by means of the ampere balance
only, i.e., dropping the determination with the Pellat
dynamometer, we obtain (but with a significantly in-
creased error assignment)

Bender and Driscoll, 26 751.23;
Vigoureux, 26 751.20;
Yagola, Zingerman, Sepetyi, 26 751.26.

Although the uncertainty which exists with regard
to the intercalibration of electrical units between East
and West makes it difficult to introduce the Russian
results into our least-squares adjustment in a com-
pletely unambiguous manner, the work of Kharkov is
of great value since it establishes the following two
points quite clearly: (a) A suspicion that there might
be some fundamental reason for the apparent disagree-
ment between the results of the strong- and weak-field
methods (aroused by the discrepancy between items 1
and 4 of Table VIIT) now seems well put to rest. (b)
The careful study of potential sources of error from field
distribution and other causes in the strong-field method
have demonstrated how and why the pioneer work of
Thomas et al. could have been subject to sufficient
systematic error to explain its discrepancy relative to
Bender and Driscoll.

(7) Sommerfeld’s Fine-Structure Constant, a

Triebwasser, Dayhoff, and Lamb!?® have measured
the frequency separation of the 2P; and 2P; levels in
deuterium. This famous measurement is still the best
source of information available for determining the
Sommerfeld fine-structure constant, «.. The most recent
theoretical formula for this frequency shift has been
given by Layzer,?%1 accurate to terms of order
a'me? in the energy.

a? M P
E=YR 21—
16 °°C[M+m]

3
x[z‘fm—l‘i‘%az_ziln 137+"']1 (17)
m M T

where M is the mass of the nucleus and # the mass of

128 S, Triebwasser, E. S. Dayhoff, and W. E. Lamb, Jr., Phys.
Rev. 89, 98 (1953).

129 A, J. Layzer, Phys. Rev. Letters 4, 580 (1960).

130 R, P. Feynman, ‘“The Present Situation in Quantum Electro-
dynamics,” Solvay Conference Jubilee, 1961 (unpublished).
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the electron. Taking the frequency separation as
10971.5940.10 Mc sec™* and the Rydberg constant as
109737.31 cm™! we obtain for o! the value

a~1=137.0388--0.0006.

In order to achieve the full accuracy available in this
experiment it was necessary to develop a complete
theory of line shape of the transition so that the energy
difference between the two levels could be determined
in the presence of natural width and Doppler broaden-
ing. The measurements were made on deuterium rather
than on hydrogen in order to reduce Doppler broaden-
ing by using the heavier nucleus. Because of these
precautions, it was possible to measure the transition
to an error which corresponds to less than 115 of the
linewidth. Some questions have, however, been raised
as to the possibility of systematic errors which might
have been present in the experiment at this level of
precision. These doubts, although not fully justified,
have been inspired by the disagreement between the
value of the fine-structure constant determined from
these measurements and the values of that constant as
deduced from the hyperfine structure splitting in
hydrogen.

Instead of measuring the frequency of the fine-
structure splitting in hydrogen at low magnetic field
strengths, Robiscoe!® at the University of Chicago
(now at Yale) has measured the Lamb Shift of the
n=2 level in hydrogen by measuring the magnetic
field at which the levels 2Sy(ms=—3%, mr=—%) and
2Py(my=%, mr=—%) cross each other. Robiscoe’s
measurement of the Lamb Shift is 0.3 Mc/sec larger
than the value measured by Triebwasser, Dayhoff,
and Lamb. If we combine this with Lamb’s measure-
ment of the S3P; interval we would then infer an in-
crease of 27 ppm in the total fine-structure interval.
This would imply a decrease in o' of 13.5 ppm or
0.0018 and would lead to a value

a~1=137.0370.

Robiscoe is now engaged in rebuilding his apparatus
in order to increase the ultimate accuracy of the
measurements, and plans also to extend the investiga-
tion to deuterium as well as hydrogen in order to make
a more direct comparison with Lamb’s results.

(8) Hyperfine Splitting in Hydrogen

The hydrogen hfs splitting is expressed by the
formulal®

Bppe M

M0#0M+m
X[1+3a2— (5— In 2)a2— Xa(m/M)], (18)

wherein X represents a correction factor for the finite

Av=18a2R ¢

131 R, T. Robiscoe, Phys. Rev. 138, A22 (1965).
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TaBLE IX. Measurements of the hyperﬁne—sphttmg frequency
in hydrogen from 1947 to 1962

Authors Ay in ke sec™ Date
1. Nafe and Nelson® 1420410. 6. 1947
2. Prodell and Kusch? 1420405.730.05 1955
3. Wittke and Dickee 1420405.720.04 1956
4. Kleppner, Goldenberg, 1420405.75140.004# 1962

and Ramseyd

5. Pipkin and Lamberte 1420405.738320.0060¢= 1962
6. Crampton, Kleppner, 1420405.7518004-0.000028 1963

and Ramseyf

2 J, E. Nafe and E. B. Nelson, Phys. Rev. 73, 718 (1948).

b A, G. Prodell and P. Kusch, Phys. Rev. 79, 1009 (1950); 88, 184 (1952);
100, 1188 (1955).

¢ J, P. Wittke and R. H. Dicke, Phys. Rev. 96, 530 (1954); 103, 620 (1956).

d D. Kleppner, H.M. Goldenberg, and N.F. Ramsey, Appl. Opt. 1, 55 (1962).

e F. M. Pipkin and R. H. Lambert, Phys. Rev. 127, 787 (1962).

f S, B. Crampton, D. Kleppner, and N. Ramsey, Phys. Rev. Letters 11, 338
(1963).

€ Corrected to Cs Standard (see Table XVI).

extension of the electromagnetic field “inside” the
proton.

The experimental measurements of the hyperfine
splitting in H are perhaps the most precise physical
measurements ever made. Their results are listed in
Table IX. In spite of accuracies approaching 2 parts
in 10 the applicability of the data for our purpose is
vitiated by the uncertainty in the theoretical formula.
A calculation of the proton field structure factor X, by
Iddings and Platzman,'® based on a rather literal inter-
pretation of the Hofstadter form factor for the proton
structure plus additional correction terms representing
the effects of virtual-photon production calculated by
Zwanziger®® and by Layzer,”® yields a value of «
some 26 ppm higher than that obtained from the meas-
urements of the deuterium fine-structure separation.
No way is known of assigning a numerical uncertainty
to the value a'=137.0352, which is computed from
the hfs data in this way, because of our ignorance of
the structure of the internal proton field.!%

(9) Hyperfine Splitting in Muonium

In order to avoid the present uncertainties from this
ill-known nucleon-structure correction, and as a check
on the value of & deduced from fine-structure splitting,
the hyperfine splitting in muonium has been measured

132 C, K. Iddings and P. M. Platzmann, Phys. Rev. 113, 192
(1959).

13 D, E. Zwanziger, Bull. Am. Phys. Soc. 6, 514 (1961).

134 A, J. Layzer, Bull. Am. Phys. Soc. 6, s14 (1961).

135 Hope is now held forth that the proton field structure cor-
rection factor'may be] computed from empirically observed data
on elastic and inelastic scattering of high-energy electrons by
protons.
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by V. W. Hughes et ol.313 No uncertainties as to
field-form corrections, such as those for the hf splitting
in hydrogen are believed to be present for muonium
since there is strong evidence that the muon, like the
electron, is a Dirac particle with the conventional elec-
trodynamic coupling.

In the most recent work, the Nevis synchrotron of
Columbia University provided a longitudinally polar-
ized beam of pt which was stopped in argon gas the
pressure of which was varied in different runs from 10
up to 68 atm. The stopped particles formed polarized
muonium by electron capture. A microwave-induced
transition between the two high-field states, (m;, m,) =

% 1) and (%, —%) (where m; and m, are the magnetic
quantum numbers of the electron and the muon, re-
spectively) changed the angular distribution of the
decay positrons emitted by the muonium, notably
near 0° (forward) and 180° (backward) directions.
The positrons were observed at fixed microwave fre-
quency by plotting the ratio of decay positrons to
stopped mesons as a function of applied magnetic field.

The argon stopping gas perturbs the experiment,
producing a fractional change in the measured value of
Avyr proportional, to first order, to the argon gas
density. By working over a range of pressures this
effect could be extrapolated to zero. The most recent
experimental result, after the pressure-shift correction is

Avzr=4463.154-0.06 Mc sec(=4=13 ppm).

The theoretical formula for the splitting, Avy, in
muonium,

Av="26Rerc(iu/ 1t9) (1o/ 1e) (tte/ 10) *(14-1m00/ 1) =8

X(1+ate)(1-35,), (19)

where

a=—(1—1n2)a?

e=—(8¢%/37) In a(In a— In 4-+281),
and

8u=(3a/m) (me/my) In (m,/m.),

along with numerical values previously given for R,
¢, Me/mo, and pp/p, can be reduced to the numerical
expression:

Avyr=2.632936.10%02(p,/1p) Mc sec™L

We can calculate @ from this using the value u,/u,=
3.18338+0.00004 for the ratio of the muon magnetic

186 K. Ziock, V. W. Hughes, R. Prepost, J. Bailey, and W.
Cleland, Phys. Rev. Letters 8, 103 (1962).

137y, W. Hughes, Bull. Am. Phys. Soc. 118, 33 (1963); Pro-
ceedings of the International Conference on Nucleon Structure
(Stanford University, 1963), edited by R.}Hofstadter and L. I.
Schiff (Stanford University Press, Stanford, 1964).

138 R. Prepost, J. Bailey, W. Cleland, M. Eckhause, and V. W.
Hughes, Bull. Am. Phys. Soc. 9, 81 (1964).

139 W, E. Clelland, J. M. Bailey, M. E. Eckhause, V. W. Hughes,
R. M. Mobley, R. Propost, and J. E. Rothberg, Phys. Rev. Letters
13, 202 (1964).

moment to the proton magnetic moment which has
been measured by Hutchinson ef ¢/.'*° In this way we
obtain the value

a~1=137.03882-0.0013.

This value coincides with the value of « resulting
from the fine-structure measurements of Lamb ef al. on
deuterium and gives assurance, provided Eq. (19) is
valid, that this value of the fine-structure constant is to
be preferred to the uncertain value a'=137.0352
calculated from the hydrogen hyperfine-structure
splitting with its somewhat questionable proton struc-
ture factor corrections. Alternatively, the agreement
here with the deuterium fine-structure measurement
may be taken instead as a verification, to within the
accuracy of the experiment, of the validity of the
identification of the muon as a Dirac particle whose
only essential distinction from the electron is its mass.

Although some degree of uncertainty may be associ-
ated with the procedure of extrapolation in the reduc-
tion of the experimental data, the results furnish us
with comforting reassurance that our decision for the
1963 adjustment to retain the Lamb « and reject the
hydrogen hfs data has not been contradicted by this
later work.

(10) The Electron Magnetic Moment
Anomaly, po/pe—1

The work of Wilkinson and Crane®® who have meas-
ured the g factor of the free electron by measuring
directly the frequency difference between the electron
cyclotron frequency and the electron spin-precession
frequency, has already been mentioned [Sec. 2.4(3)].
In this admirably beautiful experiment, 100-keV elec-
trons in 0.2-usec bunches move parallel to a magnetic
field and strike a gold foil. Electrons scattered at right
angles by the foil are partially polarized. The scattered
electrons are trapped in the magnetic field and held
spiralling in it for a measured time, up to 1.9 msec.
The bunch is then released from the trap and allowed
to strike another gold foil. The cross section for 90°
scattering by this second foil is dependent upon the
final direction of polarization of the electrons. This
cycle is repeated 500 times per second. A plot of the
intensity vs trapping time is a cosine curve whose
frequency is the difference between the orbital fre-
quency and the spin-precession frequency:

w=3<% _ _"_>=%['Le _1]_
i me/]  mcl wo

Thus, the small anomaly, e=p./pue—1, is measured
directly. The final result is

a=(a/2r) —0.328(a?/x?) ++ - -
=0.001159622-£0.000000027, (21)

40 D, P. Hutchinson, J. Menes, G. Shapiro, and A. M. Patlach,
Phys. Rev. 131, 1351, 1362 (1963).

(20)
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with a relative precision for ¢ of 23 ppm and for
pe/mo of =27 parts in 10°. If we equate this observed
value to the theoretical expression, neglecting terms of
order (a/w)? and higher, we obtain

o 1=137.03811-0.0032,

in good accord with the value obtained from the Lamb
et al. measurement of the deuterium fine-structure
separation. Since we do not know the numerical co-
efficient of the a?/x® term in the theoretical expansion
for a of Eq. (21), this test is unfortunately inconclusive.
If one postulates o '=137.0388 exactly, Eq. (21) would
imply a coefficient of (a/7)? equal to 0.442.1; on the
other hand, using the value or1=137.0352 from the hfs
data in hydrogen, this coefficient would be —1.942.1.
Equation (21) is therefore not precise enough to dis-
tinguish between the two values of « or to provide any
information on the third-order term in the theoretical
formula for the magnetic moment anomaly.

The various experimental information on the nu-
merical value of @ are shown in Fig. 6.

(11) The Faraday Constant

For more than 30 years it has been realized that the
work on the Faraday—'# done early in this century
using the silver coulometer might be in error. In 1929,
R. T. Birge® had arrived at significantly different
values of e¢/m depending on whether he computed that
constant from electron-beam deflection experiments or
by so-called ‘“spectroscopic methods.” The more ac-
curate of the two spectroscopic methods was based on
the difference between the Rydberg constants, Rpe
and Ry, which yields the atomic mass of the electron.
The value of e/m is then determined by dividing the

137.0388
fs,D; Lamb et al.

137.0361
hfs, u; Hughes et al. ::‘:j BAPS -Jan 1964

PRL-Aug 10,1964
137.0388

137.0352
hfs,H;Ramsey etal. ~=-= == -] e ——.

137.0381
te/po; Wilkinson and Crane

i
137.035 137.040

Reciprocal Fine Structure Constant.-1965

i
137.030

F1c. 6. Measurements of the fine-structure constant. Bars
represent one standard deviation experimental uncertainty.
Dashed lines are intended to indicate the existence of theoretical
uncertainties to which no clearly defined limits can be set.

11 E, B. Rosa and G. W. Vinal, U.S. Bur. Std. Sci. Papers
285, 479 (1916).

142 E, W. Washburn and S. J. Bates, J. Am. Chem. Soc. 34,
1341, 1515 (1912).

13 G, W. Vinal and S. J. Bates, U.S. Bur. Std. Sci. Papers 218,
425 (1914); J. Am. Chem. Soc. 36, 916 (1914).

144G, W. Vinal, “Le Voltametre & Argent,” Compt. Rend.,
Congr. Intern. d’Electr., Paris 3, 95 (1932).
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Faraday constant (from electrochemical measurements)
by the “spectroscopic” atomic mass of the electron.
The direct measurement of ¢/m from the deflection of
electrons in electric and magnetic fields (which does
not depend on the value of the Faraday constant) gave
a value of ¢/m which was 0.454-0.12 percent higher.
This aroused the first suspicion®® of a possible syste-
matic error in the early measurements of F. Another
reason for suspecting errors in the early work was that
the results by the two methods, that of the silver vol-
tameter and that of the iodine coulometer, disagreed
by about 220 ppm. In the cited paper it was suggested
that the trouble with the earlier electrochemical de-
terminations of F might perhaps be due to a change in
average atomic weight of the electrodeposited silver
through selective deposition of the two, nearly equally
abundant, isotopes 1*7Ag and 99Ag. This doubt seems
to have been completely removed in the course of the
recent, 1960, redetermination.

The early work on the Faraday was directed more
toward obtaining reproducibility of the weighed de-
posit of silver than toward obtaining values of ab-
solute significance because the objective was primarily
one of establishing and reproducing an arbitrary
fiducial standard of electrical current.!

The absolute value of the Faraday, F, is important
for our knowledge of the fundamental constants of
physics and chemistry because of its relationship to
the Avogadro number and the fundamental unit of
charge. It is therefore significant that the 1963 adjust-
ment includes as one of its input data the completely
new redetermination of the Faraday made by the Na-
tional Bureau of Standards!® with most careful atten-
tion to avoid systematic error. In the 1963 Adjustment
the results of the older, less accurate work have been
discarded.

The measurement of the Faraday by electrolysis of
silver requires (1) the determination of the electro-
chemical equivalent of silver, and (2) determination of
the mean atomic weight of the silver actually used. In
order that the determination shall be meaningful in an
absolute sense the following questions regarding the
determination of the electrochemical equivalent must
be successfully met.

(a) Is all the measured charge carried by simple
Agt ions? Or are there complexes? Is there electronic
conduction?

(b) Does the electfolysis modify the isotopic abun-
dance ratio, 07Ag/10%Ag?

(c) Is there an error from “inclusions” in the silver
deposited on the cathode?

(d) Has any of the silver from the cathode dissolved
in the electrolyte?

45 7. W. M. DuMond and E. R. Cohen, Rev. Mod. Phys. 20,
82 (1948).

14 D, N. Craig, J. I. Hoffman, C. A. Law, and W. J. Hamer,
J. Res. Natl. Bur. Std. (U.S.) 64A, 381 (1960).
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(e) Has any silver been detached from the anode by
erosion rather than by electrolysis?

(f) Are there errors from impurities in the silver,
especially O and H?

In most of the older work with the silver coulometer
it was the silver plated onto the cathode which was
weighed. One serious criticism of such work was that
the deposited silver might contain “occlusions” of
electrolyte (silver nitrate), nitric acid, or water, alone
or in combination. Such corrections had been found to
affect the Faraday determination anywhere from 40
to 160 ppm. The error from occlusions is avoided in the
new work because the measurement was done by
weighing the silver lost by electrolytic dissolution from
the anode rather than the silver plated onto the
cathode. This was important also in connection with
question (b) above. Occlusions could play no part in
electrolytic dissolution of pure silver. Furthermore,
isotopic separation would presumably be eliminated,
a priori, since silver would be uniformly dissolved
electrolytically and would pass into the electrolyte in
such a manner as to maintain the original isotopic
composition. The possible objection that one silver
isotope might go into the solution electrolytically more
readily than the other so that the latter might have a
selective tendency to become detached mechanically as
neutral silver and fall as part of the anode “sludge” has
been answered by the mass-spectroscopic abundance
determinations.'7:*8 Measurements of the ratio °7Ag/
109Ag made on the electrolytically deposited silver,
produced in the process of purifying the silver to be
used for the anodes, showed agreement with the ratio
obtained for the silver in certified reagent-grade silver
nitrate and, within the experimental uncertainty, with
the ratio obtained for native silver from various sources.
This is cited® as “conclusive evidence that no meas-
urable isotopic separation had occurred in the electro-
lytic process used to purify the silver for the anodes.”

An aqueous solution of perchloric acid was chosen
as the electrolyte (instead of silver nitrate) because
tests showed that silver is highly stable therein and
that the formation of silver oxide as well as oxygen
would thus be precluded. This was a precaution of
value in connection with question (d) above. It was
also found to be the most suitable of all electrolytes
tested to insure that the simple reaction

Ag(metal)—Ag*-e

would proceed quantitatively without any side reac-
tions. An auxiliary silver reference electrode for meas-
uring the potential of the silver anode during the
electrolysis provided an important means of checking

47 W, R. Shields, D. N. Craig, and V. H. Dibeler, Proceedings
of the International Conference on Nuclidic Masses (Hamilton),
edited by H. E. Duckworth (University of Toronto Press, Tor-
onto, 1960), p. 519; J. Am. Chem. Soc. 82, 5033 (1960).

148 W, R, Shields, E. L. Garner, and V. H. Dibeler, J. Res, Natl.
Bur. Std. (U.S.) 662, 1 (1962),

that no reaction could be taking place other than the
desired one.

Independent measurements were intentionally made
with a considerable variation of the following five
different parameters: (i) current density per unit area
of anode surface, (ii) resulting anode potential, (iii)
duration of run and amount of silver electrolyzed, (iv)
different samples of silver for the anode, (v) different
preparatory treatment of the silver samples.

The variation of current density from 0.025 to 0.150 A
cm™? of anode surface showed no trend in the resulting
value of the electrochemical equivalent, and one re-
assuring conclusion from this is that if any of the
coulombs measured in any of the runs were transported
by any mechanism other than the presumed one, say
by electronic conduction either through the solution or
any other path, the effect was below the level of pre-
cision of the measurements.

It was found that the best and most reproducible
results with the least amount of anode sludge were ob-
tained with monocrystalline anodes of silver, which
has been highly purified by repeated electrolysis and
then prepared by vacuum metallurgy. With these pre-
cautions the electrolytic erosion of the anode occurred
uniformly from all parts of the immersed surface. It is
to be expected that a monocrystalline sample would be
less subject to irregular erosion. In polycrystalline
samples it is conceivable that some microcrystals
might become detached from the anode mechanically
and fall as sludge before their electrolytic dissolution
was complete. After the full technique was developed,
extremely little sludge was obtained.

Of the 31 silver coulometer runs, 17 were made on
unpurified silver and 14 on purified silver. Many runs,
especially those made with unpurified or deliberately
contaminated samples, were for informative purpose
and were not used as precision determinations of the
electrochemical equivalent. Of the 14 runs on purified
silver, 9 were made on silver that had been melted in
vacuum and 5 on silver melted in hydrogen. Correc-
tions for impurities on the 9 amounted to only 0.000001
or 0.000002 mg/C, so uncertainties in the corrections
may be neglected. On the five with hydrogen treatment,
corrections for retained hydrogen were necessary,
amounting to 0.000027 in two cases and to 0.000010 in
three cases.!*®

The mean of the nine vacuum values yielded the
following value for the electrochemical equivalent of
silver:

1.11797224-0.0000070 mg CL,

where the error is a statistical standard deviation. No
systematic error as great as 1 ppm is believed to afflict
the above value.

Since the Faraday is given by the ratio of the atomic
mass to the electrochemical equivalent of silver, a pre-

9 A. G. McNish (private communication, 31 August 1961).
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cise knowledge of the mean atomic mass of silver [on
the scale (2C=12)] is needed. On this scale the nu-
clidic masses of the two stable silver isotopes are given
by the Everling, Koénig, Mattauch, and Wapstra
least-squares adjustment from mass-spectroscopic and
nuclear-reaction data to standard deviations of =110
micro mass units, i.e., fractional standard deviations
of about 41 ppm. To compute the mean atomic mass
it is necessary to determine precisely the abundance
ratio!® 107Ag/199Ag. Three precise determinations of
this ratio by Crouch and Turnbull,'s* Shields, Craig,
and Dibeler,*” and Shields, Garner, and Dibeler*® were
considered. These three measurements were:

(a) V7Ag/199Ag=1.0733=:0.0043,
(b) 07Ag/199Ag=1.07547-£0.00206,
(c) ©TAg/109Ag=1.07597£0.00135.

The error quoted by the respective authors in all three
cases are 959, confidence limits as to statistical un-
certainty added to an estimate of systematic error for
the same confidence limit, that is:

Total quoted error=e(statistical) +e(systematic).

Crouch and Turnbull found an unexplained mass-
discrimination effect and have corrected their data for
it although W. R. Shields adduces experimental evi-
dence against such an effect. If one assumes absence of
such an effect, experiment (a) results in a ratio 1.0759
in agreement with (b) and (c); because of this syste-
matic uncertainty we have decided to reject measure-
ment (a). A weighted average of (b) and (c), weighted
inversely as the squares of their statistical errors, since
both are subject to the same systematic errors, yields
for r=107Ag/109Ag

7=1.07594-0.0006.
The atomic mass of the isotopic mixture of silver is
Mae= Mg+ (Mi9— Mo7) /(1+47),

and using the Everling, Ko6nig, Mattauch, and Wap-
stral* values
M107=106.904974-0.00011,

M 9= 108.90470-£0.00011,
Mmg— M107= 199973,

150 This requirement might have been avoided if isotopically
separated samples of one or the other of the two silver isotopes
had been used as material for the anode. This however was deemed
impractical. It must be recalled that it was necessary to start
with a relatively large quantity of silver because of the elaborate
precautions for chemical purification, repeated -electrolysis,
vacuum metallurgy, and finally, growing of monocrystalline
anodes. Instead of this, small samples of the separated isotopes
were used to prepare artificial mixtures of silver of accurately
known isotopic composition and these were employed in the
mass-spectroscopic abundance ratio determinations to calibrate
the “bias” of the mass spectrometer.

B1E. A. C. Crouch and A. H. Turnbull, J. Chem. Soc. 1962,
161.

one obtains for the mean atomic mass of silver on the
unified (2C=12) scale

M 4 ,=107.868274-0.00030.

This result is in agreement with, but is significantly
more accurate than the value, (based primarily on
gravimetric methods) 107.870220.003 adopted by the
TUPAC in 1961.

Using the values for the electrochemical equivalent
of silver and its mean atomic weight, the value of the
Faraday becomes

F=96485.663-0.66 NBS C mole™.

To this must be applied a conversion factor [Sec.
2.4(7)] to express the result in absolute coulombs:
1 NBS coulomb =1.000012 absolute coulombs. Thus
the final value of the Faraday on the unified scale of
atomic masses is

F=96486.8240.66 C mole™2.

The great care with which this remarkable redeter-
mination of the Faraday has been carried out by the
U. S. National Bureau of Standards requires detailed
study of the original paper!#s for proper appreciation.
Nevertheless, we feel that so much fundamental im-
portance is attached to an accurate knowledge of the
absolute value of this quantity that it is a great pity
that equally careful electrochemical redeterminations,
if possible by alternative methods, have not been made
by other laboratories and other workers. Only by such
means can the possibility of systematic errors be mini-
mized. The Faraday constant is the only quantity
entering our 1963 adjustment on which only one up-to-
date measurement was available. The structure of the
input data is such that all of our output values would
be radically affected if, for some (presently unsus-
pected) reason the input value of F were found to be
significantly systematically erroneous.

(12) The Gas Constant, Ry

The gas constant occupies a unique position, differ-
ing from all the others in that, too imprecisely known
to qualify as an auxiliary constant, it still does not
appear among the stochastic input data of our least-
squares adjustment. This is because Ry has no bearing
in determining our ‘“‘unknowns,” o, ¢, N, A. Ry is in
fact only of importance because it contains the in-
formation from which we obtain the Boltzman constant,
k, which is the conversion constant between our
nominal Kelvin temperature scale and the corre-
sponding energy per particle 2= Ro/N. For this reason
Ry is only of use in computing some of the derived
constants, those associated with thermal energy, in
our final tables of output values.

The gas constant is defined by the perfect gas law,
pV=RoT and is determined experimentally from the
ratio of the normal molar volume V, of an ideal gas
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to the absolute temperature 7T of the ice point. Pre-
cision determinations of the normal molar volume
have been made by Baxter and Starkweather,?
Batuecas,'® Moles, Toral and Escribano,’® and
Cragoe.’®® Birge and Jenkins in a review paper'®® have
given the theory connected with the determinations.
The latest review of work in this field, by Batuecas'¥’
describes work done by him as late as 1952.

We adopted for the 1963 Adjustment a value derived
from V, given by R. T. Birge? in 1941 after a study of
rall available information; this value is in substantial
agreement with the more recent result of Batuecas:

Vo=22414.6-£0.9 cm?®atm mole~! (Old Chemical Scale).

After conversion to the unified scale of atomic weights
(12C=12) and to the new Kelvin temperature scale on
which Ty=273.15°K this gives

Ro="Vo/ To=8.31434--0.00035 J mole~! deg.

Further work by precision metrologists to obtain better
values of the ideal gas constant would be very much in
order; plans of this sort are under consideration at the
National Bureau of Standards.!58

(13) Fluxoid Quantization

The original idea of magnetic flux quantization is
generally attributed to F. London'®® who concluded
that the magnetic flux encircled by a superconducting
current loop should be quantized in integer multiples
of a unit gy="hc/e.

Simultaneously in 1961, Doll and Nébauer'®® and
Deaver and Fairbank,'® reported clear evidence of the
observation of such quantization in small ring or tube-
shaped samples. Earlier in the same year Mercereau
and Vant-Hull'® had reported an unsuccessful attempt
to reveal such an effect in a 1-mm-diam indium ring.
The size of the flux quanta, however, turned out to be
just half as large as the value, %c/e, predicted by Lon-
don, a fact which is explained as a necessary conse-
quence of the requirement that superconducting elec-

152 G. P. Baxter and H. W. Starkweather, Proc. Natl. Acad.
Sci. U.S. 10, 479 (1924); 12, 699 (1926); 14, 57 (1928).

183 T, Batuecas and F. L. Casado, J. Chim. Phys. 33, 41 (1936) ;
F. L. Casado and T. Batuecas, Anales Real Soc. Espan. Fis.
Quim. (Madrid) 48B, 5 (1952); T. Batuecas, ibid. 49B, 517
(1950) ; 49B, 405 (1953).

15¢ F. Moles, T. Toral, and A. Escribano, Trans. Faraday Soc.
35, 1439 (1939).

185 C, S. Cragoe, J. Res. Natl. Bur. Std. (U.S.) 26, 495 (1941).
(1’95; 1% T. Birge and F. A. Jenkins, J. Chem. Phys. 2, 167

4).

157 T. Batuecas, Proceedings of the Second International Con-
ference on Nuclidic Masses (Vienna, 1963), edited by W. H.
Johnson (Springer-Verlag, Vienna-New York, 1964), p. 139.

158 A, G. McNish (private communication).

1 F. London, Swuperfluids (John Wiley & Sons, Inc., New
York, 1950), Vol. 1, p. 152.

160 R. Doll and M. N#bauer, Phys. Rev. Letters 7, 51 (1961).

11 B, S. Deaver, Jr., and W. M. Fairbank, Phys. Rev. Letters
7, 43 (1961); see also, thesis, B. S. Deaver, Stanford University
1962 (unpublished).

162 T, E. Mercereau and L. L. Vant-Hull, Bull. Am. Phys. Soc.
6, 121 (1961).

trons circulating in the ring are paired in a collective
motion of two electrons with opposite spins and op-
posite momenta. These entities, which obey Bose
rather than Fermi statistics, have an effective charge
of 2¢ and hence the true quantum of magnetic flux
turns out to be

wo="hc/(2¢)=2.0678X10"7 G cm?. (22)

The possibility of making practical application of
this phenomenon to superconducting rings of suffi-
ciently large dimensions to permit high precision
measurement of the magnitude of the magnetic flux
quantum by actually counting the number of them
successively embraced by a superconducting ring of
accurately measured cross sectional area for a field
increment of accurately measured absolute intensity
took shape in 1964.1%-168 One of the remarkable results
of some of these experiments seems to be that we are
forced to ascribe much more concrete physical reality
to a vector potential (even in regions of space where the
magnetic field is zero) than we have heretofore been
accustomed to do.16?

It now appears to be feasible!™ to consider counting
the successive accretion of flux quanta within a super-
conducting ring of cross sectional area of order 1 cm?.
If the area of such a ring could be determined to a pre-
cision of 20 ppm or better, it should be possible to make
an absolute determination of the important constant
h/e to the same relative precision. This does not seem
to be beyond the bounds of possibility. Techniques are
known for producing polished glass or quartz cylinders
of extreme precision in roundness and in straightness of
the generators. The diameters of two such cylinders
can be measured, if they do not differ too greatly, by
using them as spacers between optically flat glass
plates. The separation of the two inner surfaces of the
glass plates can be determined by means similar to
those used in measuring a Fabry—Perot etalon. If this
could be done to a precision of 0.1 x for glass rods
1 cm in diameter there is hope of attaining the desired
general order of precision in our knowledge of the cross
sectional area of the rods. These rods then would be
coated with evaporated metal bands (of tin, for ex-
ample) in which the oxide or other types of junctions
for observing the flux quantization are provided. The
external magnetic field would be supplied by one of
the well-known precision solenoids such as are avail-

163 T, M. Rowell, Phys. Rev. Letters 11, 200 (1963).

164 T, Lambe, A. H. Silver, J. E. Mercereau, and R. C. Jaklevic,
Phys. Letters 11, 16 (1964).

1 R, C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau,
Phys. Rev. Letters 12, 159 (1964); 12, 274 (1964).

16 T, E. Zimmerman and J. E. Mercereau, Phys. Rev. Letters
13, 125 (1964); 14, 887 (1965).

167 A, L. Kwiram and B. S. Deaver, Jr., Phys. Rev. Letters 13,
189 (1964).

168 J). E. Mercereau, Bull. Am. Phys. Soc. 9, 499 (1964); 9, 721
(1964).

19Y, Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

170 J, E. Mercereau (private communication).
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able in many national standardizing laboratories (used
for standardizing the ampere and the ohm in absolute
units). Precautions would have to be taken to insure
sufficiently accurate parallelism of the axis of the
cylinder with the externally applied field.

Such an independent new and precise source of in-
formation on the quantity %/e would be of great value
for our present state of knowledge of the fundamental
constants of physics. Because of the present unsatis-
factory level of reliability of data on such quantities as
h/e obtained from the field of x rays, we have felt
obliged to reject them from our input data for the
1963 adjustment. The result of this rejection, however,
as will be further discussed in Sec. 3.2, has been that
the remaining stochastic data fall apart into two dis-
connected groups, (a) a group determining e, and (b)
a group determining essentially the Faraday constant
F. A great deal of highly desirable overdetermination
is thus sacrificed which would be regained if we could
obtain the information on %/e from cryogenics with a
relative precision of order 10 or 20 ppm.

The potential value for precision metrology of these
newly revealed phenomena of flux quantization will
surely, we hope, not escape attention for here we have
another way, independent of nuclear magnetic reso-
nance, of defining and maintaining an electrical unit
of current by means of a fundamental constant of
nature.

3. DESCRIPTION OF THE 1963 ADJUSTMENT

3.1, Selection of Input Data

The experimental data which has been listed and
discussed in the preceding sections are recapitulated
in Table X. Here we list all of the data previously men-
tioned whose precision justifies them for consideration
in a least-squares adjustment. This does not mean that
all of this data was included in the 1963 least-squares
adjustment since not all of the data was available at
that time. Table X however is our basic collection of
input data which must be considered if one is to at-
tempt to determine the present “best” values of the
fundamental constants.

In Table X the data are listed in 10 groups. These
will be rapidly reviewed in succession, with comments
on the significance of the data and its inclusion or
omission from the 1962 analysis of variance. In the
right-hand column those items which were retained
for the analysis of variance are identified by their serial
number in that survey.

1. Of the fine-structure data we have provisionally
retained, in order to test its consistency with the re-
mainder of the data, the hyperfine-structure splitting
in hydrogen and the fine-structure splitting in deu-
terium. The error to be attached to the hfs measure-
ment cannot{reflect the accuracy of the experiment,
otherwise this measurement would rank as an auxiliary
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constant (the most accurate one we know!). Instead,
an arbitrary assignment of 235 kc/sec is intended to
reflect the uncertainty of the theory of the effects of
the finite proton structure.

2. Of the five measurements of the proton moment
listed in Table VII we have rejected the second be-
cause of its low weight but kept the third item in
order to test its consistency. The recent measurement
of Mamyrin and Frantsuzov is listed here primarily for
comparison at the moment.

3. The determination of the value of the Faraday
by the cooperative efforts of a group of electrochemists
and a group of mass spectroscopists at the U.S. Na-
tional Bureau of Standards is the only measurement
of comparable precision available to us.

4. Of the measurements of the gyromagnetic ratio
of the proton listed in Table VIII only the first, fourth,
and fifth were retained for the analysis of variance. The
others were omitted primarily because of a lack of
detailed information concerning the basis for calibra-
tion of the electrical units in absolute terms at the time
of the analysis. The first item was retained with the
hope that one might clearly distinguish between the
inconsistent strong field and weak field measurements.
In the past year the additional data from Yagola and
his co-workers have plausibly explained the source of
this discrepancy.

5. Only the first three results were available in 1962.
All of the earlier measurements are of poorer reliability.

6. Because of the uncertainty in the wavelengths of
Mo Ka; and Cu Ka; the available data on NA3? was
grouped into two classes depending upon which x-ray
line was used as the ultimate calibration line. Each of
these then actually refers to a different definition of
the x-unit.

7. The annihilation-radiation measurement by
Knowles was not included in the least-squares analy-
sis of variance because it was apparent that the x-ray
data as a whole was suspect. Knowles’ measurement
could then stand alone as the only valid determination
of the conversion factor A.

8. None of these data were available for the analysis
of variance.

9. The gas constant is uncoupled from the remainder
of the data and does not contribute to the analysis of
variance.

10. The magnetic moment of the muon (or the muon
mass) contributes a new dimension to the constants
space of our analysis. It appears only in connection
with the muonium hfs.

(1) Rejection of Data

Whether a given item of data should be rejected from
a least-squares adjustment simply and solely because
the item is an “outlying” one is a question which
merits a little discussion. By an “outlying” item we
mean, in the case of an ordinary weighted average of
observations on a single stochastic quantity, an item
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TaBLe X. Recapitulation of experimental data on fundamental constants.

Group

Description Numerical value

Comments

Item number
in analysis
of variance

1.

3. Faraday constant

Fine-structure data

la. Hyperfine-structure separation 1 420 405 751.800-£0.028 sec™?

in hydrogen

4 463.1540.06 Mc sec™?
137.0381+0.0032
10 971.59-£0.10 Mc sec™?

1b. Hyperfine splitting in muonium

1c. a7, anomalous moment of electron

1d. Fine-structure splitting in
deuterium

le. Lamb shift in hydrogen 1 058.07+0.10 Mc sec™?

. Proton magnetic moment (free proton)

2a.- 2.792906--0.000056
2b. 2.792874-0.00002
2c. 2.79275740.000025
2d. 2.7927740.00007

9648.6820.066 emu

4. Gyromagnetic ratio of proton (corrected for diamagnetism)

S.

10.

4a. 26 751.92+0.08
4b. 26 751.900.20
4c. 26 751.88+0.08
4d. 26 750.800.30
de. 26 753.42-0.6
Conversion factor, x-units to milliangstroms

Sa. 1.002020=0.000035
Sb. 1.002110=+0.000075
Sc. 1.002011=£0.000033
5d. 1.002050-+0.000045
Se. 1.002050=0.000029

. Siegbahn-Avogadro number

6a. 6060.18+0.32X10%
6b. 6059.72+0.33
6c. 6060.08-0.24
6d. 6060.13-0.15

. Annihilation radiation

24.2121620.00075 x-units
24.2137340.00033 x-units

7a.
7b.

. Short-wavelength limit, VA,

12 373.09+0.40
12 373.1£1.5

8a.
8b.

. Gas constant Ry

8.3144--0.00035
8.3144--0.0003

9a.
9b.

Magnetic moment of muon, u,/u
& wer 3.18338-£0.00004

Ramsey et al., error increased to 35
ke sec™? to allow for theoretical
uncertainty

Hughes et al.

Wilkinson and Crane

Lamb et al., error increased to 0.50
Mc sec™? for preliminary analysis

Robiscoe, preliminary

Boyne, Franken
Mamyrin, Frantsuzov
Sommer, Thomas, Hipple
Sanders et al.

US-NBS

Bender, Driscoll (weak field)

Yagola et al. (strong field)

Vigoureux (weak field)

Yanovskii e al. (weak field)

Thomas, Driscoll, Hipple (strong field)
(earlier value, 26752.84-0.25 used
for analysis of variance)

Bearden (1931, Cu 1537.396)

Bearden (1935, Cu 1537.396)

Bicklin (1935, Al 8322.18)

Bearden (1964, Cu 1537.370
recomputation of Sa.)

Edlen, Svensson (recomputed for Cu
1537.370)

Smakula, Straumanis, Table V
(Cu Koy 1537.396, error increased)
Various authors, Table V (Mo Koy
707.831, error increased)
Bearden, Ref. 81 (W Koy 208.5770)

Henins and Bearden, Ref. 77
(W Koy 208.5770)

J. W. Knowles, positrons in HO
J. W. Knowles, positrons in Ta (both
values corrected to W Kay 208.5770)

Spijkerman, Ref. 101
Hagstrom, Ref. 100 (both values
corrected to W Key 208.5770)

Adopted value, based on Birge, Ref. 25,
Batuecas, Ref. 157

Ref. 140

10.
11.
12.

13.

14.
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whose value lies so remotely from the densest part of
the cluster of observed values as to arouse our suspicion
that it may be systematically erroneous. The slightly
more complicated case of a least-squares adjustment
of overdetermined data bearing on the determination
of “best” values for several stochastic variables (the
“unknowns’) is the exact analog of the simpler case,
merely generalized from one-dimensional to multi-
dimensional space. In order to represent an over-
determined set of # equations in m unknowns, #n>m,
we may think of a cartesian reference frame in the
m space with one axis for each unknown. Then each
input datum and its equation determines a surface in
this space and one expects all # of these surfaces to
intersect nearly in a single point of the space. Variation
of the numerical input datum moves the surface in a
direction normal to itself. Since the numerical input
has an assigned error estimate attached to it corre-
sponding to each observational equation, there is
actually not just one mathematical surface but a
region of space centered on the surface, a fuzzy domain
of uncertainty having a thickness and density distribu-
tion determined by the assigned standard deviation.
The different surfaces may be oriented in a great
variety of ways in this m-dimensional space. It is these
fuzzy surfaces then which intersect nearly in a common
point of the m space. If the fuzzy surfaces intersect in
such a way that there exists a region of the space which
is common to all of the (ill-defined) surfaces, then the
experimental data are all mutually consistent, but if
one of the surfaces is “outlying,” then the point which
represents the consensus of a majority of the input
data equations fails to lie inside regions of the struc-
ture of that surface well enough to avoid the suspicion
that the corresponding input datum is perhaps af-
flicted with systematic error. In such a case, with most
of the data acceptably mutually consistent and only a
small minority outlying in character, we still have a
satisfactorily clear-cut situation. Much less satis-
factory situations in which outlying data are less self-
evident can easily be imagined. So far all we wish to
emphasize is that, whether we are concerned with
weighted averaging in one variable or in many, the
same principles apply and the same common-sense
idea of an outlying datum is also applicable.

The question we wish to discuss now regards the
validity of rejecting data at all, just because they are
outlying. We come to the point immediately. The
validity of rejection depends on how outlying the
datum is relative (a) to the precision attached to it
individually and (b) to the precision attached to the
weighted average of the remainder of the group from
which it is proposed for rejection. Thus it is clear that
in order to answer meaningfully the question as to
whether it is valid to reject a datum, we must have
a priori information concerning the estimated precision
of all the data in the group. We practically never make
a measurement without having some a priori precon-

579

ception (it may be vague or it may be more precise) as
to what precision to expect of our methods, our ap-
paratus, and our skill as observers. Looked at from one
viewpoint, life may be said to be nothing else but a
succession of these @ prior: judgments followed and
checked by a posteriori conclusions.

In the discussion to follow, we shall refer to two
measured values (of purportedly the same quantity)
as being “mutually significantly discrepant” if the
difference between the two values is large in com-
parison to the estimated standard deviation of that
difference. To apply the criterion we must clearly have
a priori information, i.e., estimates of the standard
errors, oy and o3, of each of the two discrepant measure-
ments. Assuming the two measurements to be the
results of error-statistically independent observations,
then the standard deviation of their difference is
op= (012t} We take the stand in the error analysis
of this article that it is incorrect, and in fact mis-
leading, to include in a weighted average (with weights
proportioned inversely as the squares of the standard-
deviation estimates of the items being averaged)
quantities that exhibit significant discrepancy by the
above criterion. Clearly if two measurements of the
same quantity differ by several times as much as the
assigned estimates of precision lead us to expect they
should, one or both of the precision estimates must be
unreliable and it is meaningless in calculating the
average to attach weights to the measurements based
on these estimates. If the precision estimates, on the
other hand, are correct then at least one of the meas-
urements must contain a systematic error (or at least
a rare statistical fluctuation) and again it would be
inappropriate to form a weighted average. In such
cases, one or both of the items ought to be rejected.
We must, in such circumstances, do our best to try to
locate the physical cause of the unreliability. Elimina-
tion on the mere grounds that an item appears to be
outlying relative to a remaining group is in our opinion
far less satisfactory than finding a valid reason in the
methods of measurement or in the interpretation of
the result. The outlying position of the value may,
however, be a valuable clue calling our attention to the
need for further, still more critical examination of the
work.

There are of course also ways (for example the chi-
squared test) of measuring the over-all compatibility
or consistency of a group of measurements either of a
single stochastic variable or of an overdetermined set
of observational equations bearing on several such
variables. R. T. Birge'™ was the first to emphasize the
importance of such methods to physics in his early
analytical reviews of the fundamental constants by
pointing out that there are in fact fwo independent
criteria for estimating the error to be attached to the
weighted average value of a quantity for which a

w1 R, T, Birge, Phys. Rev. 40, 207 (1932).



580  REviEws oF MODERN PHYysICS « OCTOBER 1965

number of independently measured values are avail-
able, the “criterion of internal consistency” and the
“criterion of external consistency.” Suppose that we
have » independent determinations of a single sto-
chastic quantity x;. Each result has an estimated stand-
ard deviation ¢;. We attach weights w; in inverse pro-
portion to the squares of the errors, so that w,=k/a?
and form the weighted average value (x) by the usual

rule
()= 2 wie/ D wi.

By the criterion of internal consistency we calculate
the standard deviation to attach to the weighted mean
using the rule that the weight of the mean is the sum
of the weights of the individual items from which it
was derived. The error o7 of the weighted mean value
by internal consistency is therefore given by

or=Fk/D w; (24)

The error of the weighted mean by external consistency
is calculated from the residues, A;=x;— (x), by which
each of the individual items differs from the mean.
The error by external consistency, oz, is given by

ogt= ZwiAf/ (n—1) sz'- (25)

Thus, the error of the mean by internal consistency is
the expected error the mean value ought to have if the dis-
tribution of the values of the items around the mean
were a purely random one consistent with the errors o;
assigned to the items, whereas the error by external
consistency is a measure based upon how much the
individual items really did deviate from the mean value.
For this reason oy is often referred to as the a prior:
error and oz, as the a posteriori error. Birge pointed out
that the ratio R=0g/07 is a useful measure of the over-
all consistency or compatibility of the set of values
[« ]. If 7 is of the order of unity, then we can conclude
that the test reveals no strong evidence of systematic
errors being present. In other words, the values of the
» items (which purport to be observations of the same
quantity) cluster together as closely as one would
expect in view of the magnitudes of their a priori as-
signed errors, o;. If 7 is notably greater than unity,
then strong suspicion is aroused that one or more of
the items is systematically erroneous or that the
a priori error estimates were too small.

The ratio R is closely related to the statistic ‘““chi
squared” introduced by R. A. Fisher."? If we divide
each residue, A;=x,— (x), by the a priori error, a;, of
the item, we obtain the “normalized residue.” The sum
of the squares of the normalized residues is x?

(23)

x2=z:;[<x,-— @) /o, (26)
Re=x3/(n—1). (7)

72 R. A. Fisher, Statistical Methods for Research Workers
(Oliver and Boyd, Ltd., Edinburgh, Scotland, 1932).

In the more general case of a least-squares adjust-
ment to determine m stochastic unknowns given #
input equations of observation (#>m), Eq. (27) is
only slightly changed to read

Re=2*/(n—m). (28)

The meaning of the number 1 in the denominator of
Eq. (27) can be understood as follows: It is there
because the formula applies to the case of a single
stochastic variable. In mathematical statistics, this
quantity, #—1 or n—m, is called “the degrees of
freedom” and the rule is given that “‘the expectation
value of x? is equal to the number of degrees of free-
dom,” which is the same as saying that if no systematic
errors are present, we expect Birge’s R to be equal to
unity. Fisher has computed tables of the x? distribu-
tion'® from which, given the number of degrees of
freedom of the least-squares adjustment, one can ob-
tain the probability that x? shall have a value equal to
or greater than a tabulated value x¢® (always, of course,
assuming that systematic errors are absent).

Birge’s ratio test or the x2 test are designed to answer
the question whether or not a set of stochastic data is
consistent, i.e., compatible. Now suppose that the
answer is, with high probability, negative. We then are
confronted with the problem of what to do about it;
how to identify if possible, the items of data likely to
be responsible for the trouble. We admit that statistics
is powerless to do this with indubitable certainty, but we
feel, nevertheless, that it may sometime be capable of
furnishing valuable clues as to where to look for
trouble. The only sure way of locating a source of
systematic error is of course to find its cause either in
the physical methods of measurement employed, in
the methods of reducing the data, or in the correctness
of the theoretical interpretation. The problem of
seeking for what is likely to be wrong with a least-
squares adjustment, which input items are likely to
be those whose elimination would restore compatibility
with the smallest sacrifice of data, leads us to the prob-
lem of ““analysis of variance.”

The present situation regarding the available data
on the constants, fraught as it is with many incom-
patibilities, requires rejection of some of the more
suspect data. A blind least-squares averaging of obvi-
ously incompatible data is an incorrect and unjusti-
fiable misuse of the method of least-squares since if
the data are incompatible it is clear that the a priori
assigned errors of at least some of our input data are
too small and we know therefore that our data must
be incorrectly weighted.

The moment one starts rejecting discrepant data,
however, one runs the risk of introducing personal

13 R. A. Fisher, loc. cit., Table III. More extensive tables exist;
M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (U.S. Government Printing Office, Washington, D. C.,
1964), Applied Mathematics Series, AMS-55, pp. 978-985.
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bias. Under such circumstances the best we can do is
to analyze as thoroughly as the circumstances warrant
the results of utilizing all the items of available data and
also various judiciously chosen subsets of these items,
and to present the results of these analyses. We then
indicate our own preferred selection and give a com-
plete table of output values based upon this. Those
who prefer other selections are thus left free to arrive
at their own conclusions.

Such a program, in which a considerable list of more
or less discrepant data is broken down into subgroups
for least-squares analyses is often referred to as ‘“‘an
analysis of variance.” Suppose one has # independent
observational data leading to # equations in # un-
knowns (m<#). From these data, one adjustment with
n equations in # unknowns can be made. Then #»
different adjustments can be formed consisting of
subsets with »—1 equations, subsets in each of which
a different one of the original # equations has been
omitted. Next, we can omit, from the original set,
pairs of equations and thus form n(n—1)/2 subsets,
each consisting of #—2 equations. This process may be
continued down to the point where each subset com-
prises only one more equation than the number of
unknowns. Beyond this point, overdetermined least-
squares solutions cannot be formed.

The 14 equations with which we must deal, formed
from the data of Table X, are however far from being
of the most general form. They are only of six different
kinds, that is to say, the experimentally measured
quantities are to be equated to only six different func-
tions of the four unknowns; several of these kinds of
equations have two or three representatives corre-
sponding to measurements of the same physical
quantity by different people, different methods, or both.
They also exhibit a further degeneracy in that the
proton moment, the gyromagnetic ratio, and the Fara-
day form a subset in which any pair taken together
determines the third. We shall call this the ‘“cozonal
set.”'™ In spite of these degeneracies there are still,
however, several thousand overdetermined sets which
could be formed from our 14 equations if we wished to
explore all possible combinations. We have instead
used an approach in which we successively eliminate
those input data which exhibit the largest departures
from fit with the general consensus, and after each
such rejection re-examine all of the remaining data as
regards its measure of compatibility. In this way we
have carried out some 160 least-squares analyses of
various possible subsets of the input data. This cannot,
therefore, be said to constitute a complete analysis of
variance, but we believe it to be probably complete
enough to furnish the reader with a fair picture of the
state of knowledge of the constants at the close of

174 Three or more differently oriented planes which are parallel
to a common axis are said to be “cozonal.” Such a set of three
planes does not determine a point in 3-space; instead, the planes,
intersecting in pairs, give three parallel lines.
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1962 and thus to furnish the basis from which we
made the choices of selections and rejections for the
1963 adjustment.

(2) Readjustments of A Priori Input Error Assignments

Certain of our groups of data in Table X exhibit
marked inconsistencies local to the group. In the simple
case where all the items in a group are merely different
measurements of the same quantity, we have a one-
dimensional problem in which it is fairly easy by
simple inspection to spot the outstandingly discrepant
item or items. Consider, for example, the three meas-
urements of u,/u, which yielded the following results
(corrected for diamagnetism):

Boyne and Franken (1961), 2.7929064-0.000056;

Sommer, Thomas, and Hipple 2.7927574-0.000025;
(1951),

Sanders, Dellis, and Turber-
field (1961),

2.792770-:0.000070.

The last two of these results are in satisfactory
agreement, well within the standard deviation of their
difference, but the first differs from the second by
53.24-20.5 ppm, a discrepancy of more than twice its
own standard deviation. Eventually, we shall reject
Boyne and Franken’s result for reasons explained in
Sec. 2.5(5), reasons related to the experiment itself,
but for the purpose of the present analysis of variance
we wish to retain all such discrepant data to test their
consistency and so we are forced to proceed on the
hypothesis that the apparent discrepancies are in fact
compatible, and hence that the assigned a priori errors
of the input quantities were too small. This calls for
readjustment of the a priori error assignments of some
or all of such items of discrepant data. In the absence
of any other guiding information, we have decided to
adopt the policy, in such a case, of expanding the error
measures of the subset of moderately discrepant data
in proportion to their original magnitudes by multiply-
ing their errors by a common factor of such size as to
yield a x? for the subset reasonably close to its ex-
pectation value. We have seen above that the expecta-
tion value of x?® is #—m, the number of degrees of
freedom, which we shall designate by f. Since the
standard deviation of x? is (2f)}, we should try to pick
an expansion factor which will make x? fall reasonably
inside the range, f— (2/)}<x2<f+(2/)%.

We wish to emphasize that this minor local “doctor-
ing” of the @ priori error assignments within small
subgroups where a discrepant datum is obvious because
all items are of the same kind is purely a provisional
device for the purpose of the analysis of variance. In
the final least-squares adjustment, the ‘“undoctored”
a priori errors of all the items to be retained are those
which will be used. In justification of this provisional
doctoring procedure, consider for the moment what the
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result would be if we did not expand the error assign-
ments in the small subset just described. The contribu-
tions to the x? of the entire adjustment, or of any large
subset of the entirety, of which this small set of three
input items happened to be a part, would be notably
increased by the larger squared residuals 72 coming
from this internally inconsistent subset alone. This
would increase the measure of incompatibility of the
entire adjustment as ¢ whole and necessitate an expan-
sion of the error measures by the criterion of external
consistency of all of the output values. When it is ap-
parent from the start, however, that the cause of the
incompatibility lies in one small subset of the input
data, it makes little sense to pretend to ignore this
fact and spread the effects of such incompatibility over
the entire adjustment. What we are doing by such
“doctoring” is in reality to make the picture appear
more compatible than in fact it really is by relieving
the small local strains in the structure where we already
know these exist. If even after this, the analysis of
variance shows that certain of the data still remain dis-
crepant, we shall feel that the finger of suspicion of
systematic error points even more strongly at such
data. At this stage we are merely seeking clues as to
the whereabouts of error, not proof.

(3) Measures of Incompatibility

The problem of spotting likely trouble-makers among
items of input data of a least-squares adjustment when
the overdetermined system is multivariate is slightly
more difficult. The methods we use here have proven
convenient. No rigor can be claimed for these methods
since they do not prove that the items selected as
suspect are afflicted with systematic error. There is a
real value, however, in seeking tests which may reveal
that the elimination of a relatively small minority of
input data leaves the remainder of the overdetermined
system far more consistent, especially if subsequent
examination of the physical methods of measurement
used in obtaining that suspected minority of input
data strongly support our suspicion that they are likely
to be systematically erroneous.

We have explained in Sec. 3.1(2) the meaning of the
terms “residue” and ‘“normalized residue.” In what
follows we shall designate the normalized residue of
the sth input datum by 7;. In the absence of systematic
errors, the expectation value of 72 for each datum is
unity.

The analogy between a least-squares adjustment
and an overdetermined mechanical structure consisting
of elastic members is a valuable one to consider; the
more rigid elastic members correspond to the deter-
minations of high accuracy to which greater statistical
weight must be attached. Because the individual input
data suffer from errors, the overdetermined set of
equations is, however, more or less incompatible, and
the analogous situation in the case of the mechanical

structure results in different amounts of elastic energy
stored in the various members. The squared normalized
residual, 72, then may be thought of as the contribu-
tion to the total elastic energy of strain, x2, contributed
by the sth datum when the system has found equi-
librium at its minimum energy state, i.e., when the
condition of least-squares has been satisfied. Large
contributions, those for which »#3>1, lead us to suspect
that a systematic error was present in that datum or
that too small an a priori or “internal” error (i.e., from
information “internal” to that particular datum) had
been assigned to it. This test is valuable as a rough
indication. However, we must recall that the removal
of a suspect item in the adjustment may well result in
a new and completely different redistribution of the
strain energy among the remaining items, a redistribu-
tion indicative of a quite different interpretation re-
garding which items are responsible for the strain.

Another criterion of strain is 72 This is the analog
of the elastic energy required to stretch the rejected
ith datum back into forced accord with the value of
that datum implied by the remainder of the adjustment
as the latter stands after rejection of the 4th datum.
Still a third useful measure is the difference between
the experimental value and the least-squares-adjusted
value relative to the standard error of this difference.
These criteria require closer examination.

In order better to clarify the discussion and its
symbols we recall that our tests will consist in ex-
amining the results of removing one item of the input
data, the ith, either from the adjustment as a whole or
from some subset thereof. Since we have four un-
knowns, %1, +-+, a4 the observational input equation
associated with the ith datum will, in general, in its
final linearized form look like this:

(29)

wherein the a’s are the exactly known numerical coeffi-
cients of the unknowns, the #’s. The sum of the first
four terms in the left-hand member is the function of
the unknowns to which this particular equation refers
and we shall speak of it for brevity simply as “the
function,” or the 7th function. The last term in the
left-hand member, ¢, is the small residue (to be deter-
mined by the least-squares procedure) required to
balance this equation when the least-squares adjusted
values, resulting from the adjustment of the entire
initial set or subset of observational data under con-
sideration, have been substituted for the &’s. We define
Yi=¢€;/0;.

The least-squares adjustment is a procedure for
selecting a set of values for the #’s such as to minimize
the sum of squares of all the #; and it is this minimum
value which we call x2 y; in Eq. (29) is the ith datum.
It is the numerical value resulting from the experi-
mental measurement after appropriate reduction with
the use of exactly known auxiliary constants and ¢, is
the a priori standard deviation assigned to y; on the

@ax1F Qi+t aix3+ a0 — e,~=' Vi,
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basis of information internal
experiment.

It is our object to compare the results available from
two least-squares analyses, one which includes the sth
datum, the other which deletes it. Since in what follows
the sth item is the only one the effect of whose insertion
or removal is to be discussed, we shall, for simplicity,
drop the subscript ¢ from here on. Let us designate by
yo the experimental value of the ¢th datum y; and by
oo the @ priori assigned standard-deviation error of yo.
Let us designate by y; the numerical value of the func-
tion @ixi+aixs+asrs+aars when the least-squares
adjusted values of the x’s from the solution of the
entire initial set or subset have been substituted
therein. Let us designate by ¥, the value of this func-
tion when the least-squares adjusted values of the #’s
from the solution of the remainder of the initial set or
subset after rejection of the ith item have been substituted
into the function. Let ¢y? and o? be the variances of y;
and 9. Since ¥, is the value of an experimental quantity
calculated from a set of data from which that specific
experiment has been deleted, we might call this the
“indirect” value (i.e., the value implicit in the re-
mainder of the equations), although the appropriate-
ness of the term can be questioned if the set contains
other direct determinations of the same quantity.

We define then the normalized residues, » and #/, for
the original set and for the deleted set as follows:

to the particular

r=(y0—y1) /00, (30)
7'= (yo—32) /0. (31)

Now we can compute a relationship between the quan-
tities 91 and 4% on the one hand, and the quantities
Yo, Y2, 007, and o2? on the other hand, by the application
of simple statistical rules for uncorrelated quantities
because ¥, and y. have independent error distributions.

Since ¥, is the weighted average of y, and v,, that is
to say, the weighted average of the directly observed
value ¥, and the so-called “indirect” value implicit in
all the rest of the data (after deletion of the item y,),
we can write

o 2=0¢2+052; or of=o0¢?0e%/(ce®+ta2?)

(32)
and
yn=0ol(y/0c*+ys/0s). (33)

From the last four equations it is easy to show that

7' [r=(o*+0?) [o®= /012 (34a)

and that
o2/ald= (r'—7r) /7, (34b)
o2/at= (v'—7r) /r. (34c)

We must remember that y, and y, are error-statis-
tically independent quantities while y¢ and y; are not,
since the least-squares solution ; is computed from
data that includes y,. The variance of the difference
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Yo— ¥2 can be written immediately as o?+a2= (7'/7) o2,
but the variance of the difference yo— ¥, must be com-
puted by first expressing y— ¥ in terms of y,— y.. When
this is done we then find that this variance is
(o2 40) (/7')2 or a?—ail= (7/7")a®. We thus have:

(35a)
(35b)

A result which may be at first somewhat surprising,
but which is actually obviously necessary, is that the
difference, yo— 4, divided by its standard deviation is
equal to yo— . divided by its standard deviation. This
is readily verified using Egs. (30) and (31). Hence,
either expression can be used as a measure of the con-
sistency of the experimental measurement y, with the
remainder of the data.

(variance of yo— y2) = ges*= (¢'/r) ¢,

(variance of yo— 1) =ou?= (7/7") o

(yo—1) /o= (yo—2) /o= (rr)*. (36)

It is clear that 7+’ is the squared normalized residual
associated with the addition of one experimental datum
to the least-squares adjustment. Let x? be the sum of
the squared normalized residuals of the least-squares
adjustment without this datum. It follows that

x2=x¥+rr'. (37)

In keeping with our analogy of an elastic structure
we can make a direct physical interpretation of 7'
Firstly, we recognize that the normalization of the
residuals renders them equally valid analogues of
either the stress (force) or strain (elongation) in a
member of the structure (the reciprocity theorem of
elasticity). Thus 7 can be regarded as a measure of the
initial stress in the member before it is removed from
the structure, and 7’ as a measure of the change in
length upon removal. Then 77’ is twice the additional
elastic energy of strain. A part of this energy was
stored in the member and a part in the rest of the
structure.

Figure 7 is intended to illustrate this situation with
a concrete physical analog.

In the upper two sketches we represent, on the left, a
complete least-squares adjustment by a system of six
coupled springs, all under tension, and on the right the
same system after one of the springs has been un-
coupled. The five springs which remain coupled are still
under some tension, i.e., still have some remaining
stored elastic energy, though Jess than before. To sim-
plify the discussion and its illustration, in the lower
sketch we next replace the five coupled springs by a
single equivalent spring having the same elastic force-
constant per unit deflection. The unstressed length v
of the helical spring on the left represents the sth datum,
the datum the effect of whose rejection from the total
system (or addition to the remaining system) is what
we are interested in studying. The helical spring on"the
right is the equivalent ‘of the remainder of ‘the system
and stands therefore for the remaining #—1 input data
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Fic. 7. Mechanical analog to illustrate the effect of removing
an item of data from a least-squares adjustment. The total
adjustment is represented by the system of six coupled springs in
the upper left-hand figure, all of which are under tension. The
left-hand spring is uncoupled and the system relaxes to the con-
figuration shown in the upper right-hand figure. There still re-
mains stored elastic energy in the five coupled springs, but less
than before. In the lower figure the system of five coupled springs
has been replaced, for simplicity of explanation, by a single
elastically equivalent spring.

equations. The distance y, represents the value of the
quantity y, implied by the solution of the remainder
of the system of equations so that ys— 9, represents the
residual (unnormalized) by which the sth datum dis-
agrees with the value implicit in the remainder of the
system. Each spring has a stiffness constant, which
measures its force per unit deflection; k¢ being this con-
stant for the left-hand spring, %k, for the right-hand
spring. If the square of the normalized residue is to be
equated to the energy stored in the spring then it is
clear that we must identify &; with 2/02. As they stand
in the figure, uncoupled, both springs are in their
lowest state of stored elastic energy. (The system rep-
resented by the right-hand spring is in fact of course
more complicated than shown and consists of n—1
elastic elements in equilibrium.) It therefore already
contains stored elastic energy which we shall not dis-
turb. Now let us deflect the springs so as to couple the
ends A and C together. Let B represent the position
which the two coupled ends assume when equilibrium
is reached. In this new state the total gain in stored
elastic energy is

AE= %ko (y1— yc) 2+%k2(y2—‘ yl) 2,

The establishment of equilibrium (with the spring
ends joined at B) means that, at that position, £ is a
minimum (the analog of the condition of least squares),
and, holding y, and y, constant, if we set dE/dy;=0
we see that this is of course exactly the same condition
as equating the forces of the two deflected springs,

(38)

namely,

Fko(y1—30) =%ka(y2— 1) . (39)

Eliminating %, between these last two expressions one
readily obtains

AE=Zko(y1—y0) (y2—0). (40)

AE is the additional energy stored in both springs
when they are in their mutually equilibrated state with
their ends coupled. It is the analog of the increase in
x2 caused by adding the ith datum to the system. Ex-
pressing ko in terms of its equivalent, 2/¢¢ clearly
reduces Eq. (40) to

AE=Ax*= (31—y0) (y2—y0) [a*=rr',  (40a)

which is identical in significance to Eq. (37).

We see thus that 7, #/, and their product 7#' all con-
tain valuable information pertinent to the compat-
ibility or incompatibility of a given item of data with
the remainder of an adjustment. We shall base our
arguments regarding consistency of the data therefore
on a discussion of the magnitudes 7, #/, and 7.

(4) Discussion of the Analysis of Variance

The 14 input items which together form the basis of
our analysis are those which are so indicated in Table
X. With the help of our auxiliary constants, each datum
can be used to form an equation involving four un-
knowns, which we shall take to be «, ¢, N, and A. It
should be borne in mind that these variables merely
form the coordinate system for our description of the
four-dimensional function-space of our problem and
other variables functionally related to these could
serve equally well; the specific choice of variables is
immaterial. In some of our calculations, in fact, we
have used as alternative variables o, a3/e, F, and A.

The 14 equations in 4 unknowns are nonlinear, each
being reducible to the form of a product of powers
ae’N7A®, equated to a stochastic number 4, the result
of a physical measurement. The familiar theory of
least-squares with its implied invariance to linear trans-
formations applies only to linear systems. The method
of perturbations employed in order to linearize our
equations and the justification for terminating the
Taylor expansion of the equations at the linear terms
has been explained along with the complete least-
squares procedure in many previous papers,!:9:145.17%5~177
and need not therefore be re-explained in detail here.
We call the new set of equations the “linearized” set
of observational equations, thus distinguishing them
from the “primitive” set.

The least-squares adjustment of the full set of 14

175 J. W. M. DuMond and E. R. Cohen, Rev. Mod. Phys. 25,
691 (1953).

176 [, R. Cohen, Nuovo Cimento Suppl. 6, 110 (1957).

177 J. W. M. DuMond, IRE Trans. Instr. I-7, 136 (1958).
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TasLE XI. Least-squares analysis, 14 equations, 4 variables (degrees of freedom=10; x2=27.02, R=1.644). Fourteen different
least-squares adjustments are represented here. Each line gives 7;, x¥, (x2—x*) /r:2, #i’, and 7¢7;’ for a different adjustment in each of
which all items of data are present except the one named in the column labelled “Item deleted.” Each of these 14 adjustments has
13-4=9 degrees of freedom and the expectation value of its x%, in the absence of any but random incompatibilities, should be 9. At
the top is given the x2 for the 10-degrees-of-freedom least-squares adjustment in which all 14 items are used.

Item deleted i x GE—x2)/r 7 rirs’
1. Hyperfine structure 1.24 22.47 2.95 3.66 4.54
2. Fine structure —0.48 26.73 1.23 —0.59 0.28
3. p (Boyne, Franken) 2.31 21.29 1.07 2.48 5.73
4. p (Sommer, Thomas, Hipple) —0.79 26.07 1.52 —1.20 0.95
5. u (Sanders et al.) —0.10 27.01 1.00 —0.10 0.01
6. Faraday —0.02 27.01 2.50 —0.50 0.001
7. v (Bender, Driscoll) —0.37 26.77 1.84 —0.68 0.25
8. v (Vigoureux) —0.87 25.62 1.84 —1.60 1.39
9. v (Thomas, Driscoll, Hipple) 3.40 14.88 1.05 3.57 12.13
10. A (Bearden, 1931) —1.31 25.01 1.17 —1.53 2.01
11. A (Bearden, 1935) 0.59 26.65 1.03 0.61 0.36
12. A (Bicklin, 1935) —1.66 23.71 1.20 —1.99 3.31
13. NA3 (Cu Ka) 1.42 23.61 1.69 2.40 3.4
14. NA® (Mo Ka) —0.01 27.02 2.00 —0.02 0.0002

equations with their errors modified as indicated in
Table X leads to the following solution:

1/a=137.0373=:0.0014,
e= (4.8031320.00014) X 10~ esu,
N=(6022.332:0.18) X 10% mole~,
= (6.62592--0.00033) X 10~ erg sec,
m=(0.910934--0.000027) X 102 g,
A=1.002066=-0.000014,

where the errors are computed on the basis of internal
(@ priori) consistency. The value of x? for this solution,
however, is 27.02, to be compared with an a prior:
expectation value of 10, so that the ratio R is 1.644.
Purely on a statistical basis the probability is only
0.002 that a value of x? as large as this could occur by
chance, and hence we are justified in examining the
data further to see if we can discover any discrepancies,
and if we can identify the source of this large value of x2.

In order to explore this matter, we carry out 14 least-
squares adjustments, each one deleting one specific
item from the set of 14 equations to give all possible
combinations of 13 equations. The results of these
calculations are presented in Table XI. In this table
the first column lists the one item which has been
deleted to give a system of 13 equations in 4 variables.
The second column gives the normalized residual of
that datum in the full least-squares analysis. The sum
of the squares of the residuals of this column is just x2.
When a specific datum is deleted, the value of x2
for this 13-item system will, of course, be reduced;
these values are listed as x* in column 3. By the dele-
tion of an item y;, from our set we certainly reduce x? by
r#, but we do even more than that because the re-
mainder of the system is also allowed to relax to a

state of lower strain. Hence we will always have x?>—
x¥>7%. The amount by which this relationship is an

‘inequality rather than an equality represents also a

measure of consistency of the data, and this measure is
listed in column 4. The normalized residual of the
deleted variable from the least-squares solution of the
censored set 7’ is given in each case in column 5. The
square of the difference between the experimental
datum and the value implied by all of the remainder of
the data, divided by the variance of this difference, is
denoted by 77'=x2—x? in column 6.

It is immediately apparent that item 9, the gyro-
magnetic ratio measurement of Thomas, Driscoll,
and Hipple, is the single most discrepant item, followed
by the proton moment measurement of Boyne and
Franken, and the hyperfine-structure calculations of
Iddings and Platzmann. We also see in this table that
the value of NA3 for Mo Ka;=707.831 x-units is ap-
parently the most consistent of all items. Such a con-
clusion should be made cautiously, however, for as we
shall see, this agreement is an accidental result of the
fact that this item (14) lies in between the value of
item 13 (the Cu K« data) and the indirect value of VA3
computed from the other twelve. We have:

Indirect (1—12),  6058.796-:0.461;
Cu Ka(13), 6060.1844-0.321;
Weighted mean, 6059.7314-0.264;
Mo Ka(14), 6059.72540.327.

If we use smaller errors for the two NA? values (i.e.,
if we do not arbitrarily expand the errors by the factor
of 3 which we had introduced to compensate for the
obvious inconsistency of these data), we obtain a value
for x? of 36.13, with the Mo data contributing 3.46 and
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TaBLE XII-a. Least-squares analysis, 13 equations, 4 variables. Cu Ko data for NA3 deleted,
Mo Ko data retained; degrees of freedom=9; x2=24.76, R=1.659. (See Table XI for general explanation.)

Item deleted 7% x (x2—x2) [ri? % rirs’
1. Hyperfine structure 1.20 20.76 2.77 3.33 4.00
2. Fine structure —0.50 24.45 1.24 —0.62 0.31
3. u (Boyne, Franken) 2.31 19.04 1.07 2.48 5.72
4. p (Sommer, Thomas, Hipple) —0.79 23.80 1.53 —1.21 0.95
5. u (Sanders et al.) —0.10 24.75 1.00 —0.10 0.01
6. Faraday (NBS) —0.02 24.76 2.00 —0.04 0.0008
7. v (Bender, Driscoll) —0.37 24.51 1.81 —0.67 0.25
8. v (Vigoureux) —0.87 23.38 1.82 —1.59 1.38
9. v (Thomas, Driscoll, Hipple) 3.40 12.61 1.05 3.57 12.15
10. A (Bearden, 1931) —1.24 23.05 1.11 —1.37 1.70
11. A (Bearden, 1935) 0.64 24.36 1.00 0.64 0.41
12. A (Bicklin, 1931) —1.59 21.92 1.13 —-1.79 2.84
14. NA? (Mo Ka) 0.45 20.91 18.95 8.52 3.84

the Cu data contributing 5.76 to this sum. The cor-
responding values of 77" are 6.61 and 11.37.

If we delete the Cu Ko« data for NA3 (and use the
smaller error for the Mo Ka data) we obtain a set
of 13 equations, which, treated in the same manner as
the 14 equations for Table X1, give us the results shown
in Table XII-a. In comparison are the data of Table
XII-b, which is similar to Table XII-a except that
here we retain the Cu Ka data (with its original error)
and delete the Mo Ko« data. The residuals of Table
XTI-a are, in general, comparable to the corresponding
residuals of Table XII-b. This is particularly true for
the ratio #;//7;. The tables clearly demonstrate that the
NA® data which is introduced into our analysis does
not have a large influence on the consistency patterns
for the rest of the data, but on the other hand, 959 of
the strain “energy” introduced into the structure by
including either VA3 result is due to the distortion
away from the equilibrium position determined by the
remainder of the data, and only 59, of this strain is
ascribable to the displacement of the VA3 value from

the consensus. Furthermore, the Cu Ke data introduces
approximately twice as much strain as the Mo Ka
data (Cu data: Ax?=8.61, r/=168.1; Mo data:
Ax*=3.84, r/2=72.6).

Because of the large values of 72, we are probably
justified in deleting all of the NA3 data from our
analysis. If we do so, however, the direct (ruled-
grating) measurements of A are no longer connected
in any way with the other variables. Furthermore,
items 3 to 9 can all be expressed in terms of the two
variables Ne and o®/e. The value of x? for this system
can be decomposed into a sum of three terms: x%=
xi*+x22+xs®. The first term represents the two equa-
tions determining « and gives x2=1.03, R=1.01; the
second term represents a system of seven equations in
the two unknowns, Ne and a3/e, and gives x?=18.40,
R=1.92. The mutual consistency of the seven equations
in two unknowns is independent of the va'ue of & de-
termined from the remainder of the data. The adjusted
value of the electronic charge e is affected, however,
in direct proportion to the change in o?. The adjusted

TABLE XII-b. Least-squares analysis, 13 equations, 4 variables. Mo Ka data for NA3 deleted, Cu Ke data retained; degrees of
freedom=9; x?=29.52, R=1.811. (See Table XI for general explanation.)

Item deleted 75 x¥ GE—x2) /r? 14 rers'

1. Hyperfine structure 1.56 22.79 2.77 4.32 6.74
2. Fine structure —-0.31 29.40 1.23 —0.38 0.12
3. p (Boyne, Franken) 2.32 23.73 1.07 2.49 5.78
4. p (Sommer, Thomas, Hipple) —0.76 28.64 1.53 —1.16 0.88
5. u (Sanders et al.) —0.09 29.51 1.00 —0.09 0.008
6. Faraday (NBS) —0.07 29.50 2.18 —0.16 0.012
7. v (Bender, Driscoll) —0.39 29.24 1.85 —0.72 0.28
8. v (Vigoureux) —0.89 28.05 1.84 —1.64 1.46
9. v (Thomas, Driscoll, Hipple) 3.39 17.43 1.05 3.56 12.09
10. A (Bearden, 1931) —1.80 25.93 1.11 —1.99 3.59
11. A (Bearden, 1935) 0.36 29.38 1.03 0.37 0.13
12. A (Backlin, 1931) —2.18 24.18 1.12 —2.45 5.34
13. NA3 (Cu Ka) 0.66 20.91 19.55 12.97 8.61
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TasLe XIII. Least-squares analysis, 7 equations, 2 variables; degrees of freedom=35; x?=18.40, R=1.918.
(See Table XTI for general explanation.)

Item deleted i X (E—x) [ri ri s’
3. p (Boyne, Franken) 2.28 12.82 1.07 2.45 5.58
4. p (Sommer, Thomas, Hipple) —0.86 17.28 1.52 —1.31 1.12
5. p (Sanders et al.) —0.12 18.38 1.00 —0.12 0.014
6. Faraday (NBS) 0.09 18.38 2.44 0.22 0.02
7. v (Bender, Driscoll) —0.32 18.21 1.82 —0.58 0.19
8. v (Vigoureux) —0.82 17.17 1.84 —1.51 1.23
9. v (Thomas, Driscoll, Hipple) 3.42 6.14 1.05 3.59 12.26

output values for the least-squares analysis with the
NA? data omitted are:

1/a=137.0360=£0.0014,
e=(4.803264-0.00016) X 10~ esu,
N=(6022.164-0.20) X 10? mole™,
A=1.002024--0.000023,
h=(6.62623240.00036) X 10~% erg sec,
m=(0.9109600.000030) X 1027 g.

The large value of x? for the subset of seven equations
in two unknowns justifies us in looking further for a
cause of this discrepancy, since a value as large as
x%=18.40 should occur by chance with a probability
of less than 355. We therefore carried out an additional
set of seven least-squares adjustments which, similar
to the adjustments of Table XI, result from deleting
one of the input data. (See Table XIII.) The results of
this analysis are quite similar to the results of that
table indicating that the deletion of the x-ray data has
not greatly affected the over-all structure of the re-
maining inconsistencies. Particularly striking is the in-
sensitivity of the ratio ./ /r;= (5@—x?') /7 to the dele-
tion of the x-ray data. A comparison of the weights of
the output values of N with and without the x-ray
data on VA3 indicates that this latter datum, although
it represents the ‘“‘traditional” approach to the deter-
mination of the Avogadro constant, has only one-fifth
the weight of the nuclear magnetic resonance data.
Thus we lose very little in rejecting the x-ray data.
The largest incompatibility which still remains after
the x-ray data are deleted is exhibited by item 9

(Thomas, Driscoll, and Hipple’s determination of the
gyromagnetic ratio v). This item by itself contributes
approximately two-thirds of the total strain of the
system. The second largest contribution to the strain
is item 3 (Boyne and Franken’s measurement of u),
which is responsible for more than one-fourth of the
total.

If we now delete item 9 from our system we can
generate the results shown in Table XIV. The total
x2 of 6.14 is based on six equations in two variables
and hence yields a consistency measure R=1.24. From
the final column of Table XIV we see that the largest
discrepancy is associated with item 3, the measurement
by Boyne and Franken of the proton magnetic mo-
ment. This item by itself contributes 5.80 to the total
x% of 6.14 for the subset of items 3 to 8. If Boyne and
Franken’s measurement is deleted, the value of x? for
five equations in two unknowns is reduced to x*=0.34
(R=0.336) and we obtain:

1/a=137.03600.0014,
e=(4.8032740.00015) X 10710 esu,
N =(6022.16220.20) X 102 mole~,
h=(6.626262-0.00036) X 10~27 erg sec,
m=(0.910964--0.000030) X 1027 g,
F=9648.7020.05 emu,/mole,
A=1.002024--0.000023.

The data are now highly consistent; for a normal dis-
tribution of data, a value of x* as small as 0.34 would be
expected by chance with only 59, probability. Of

TaBrE XIV. Least-squares analysis, 6 equations, 2 variables; degrees of freedom=4; x>=6.14, R=1.239.
(See Table XI for general explanation.)

Items deleted 7i x* GE—x) /1 ' riri’
3. u (Boyne, Franken) 2.32 0.34 1.08 2.50 5.80
4. p (Sommer, Thomas, Hipple) —0.76 5.26 1.53 —1.16 0.88
S. u (Sanders et al.) —0.08 6.13 1.12 —0.09 0.007
6. Faraday (NBS) 0.19 6.05 2.42 0.46 0.09
7. v (Bender, Driscoll) 0.21 6.06 1.91 0.40 0.08
8. v (Vigoureux) —0.29 5.97 1.93 —0.56 0.16
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course, this is a misleading statement, our data having
been strongly censored to remove all of those items
which would contribute to a large value of x?, and hence
we should expect the x? of our censored system to be
considerably smaller than the value which would be
expected for an uncensored set.

We have carried out a relatively violent censoring of
our initial input data in order to achieve the set of
fundamental constants just listed. We have, however,
obtained this censored set as the logical result of suc-
cessive tests of consistency of the data.

We see throughout these tests clear-cut evidence of
strong incompatibility with the remaining consensus
of information on the constants exhibited by the
following items:

3. Boyne and Franken’s determination of uy/ua;

9. Thomas, Driscoll, and Hipple’s determination
of v;

13, 14. The weighted mean value of NA? derived from
the crystal lattice spacings measured with the
Mo Kaj line or the Cu Koy line.

We summarize the numerical results of our least-
squares adjustments in Table XV. In this table we can
see the effect of the various deletions on the adjusted
values of several physical constants. All of these results
which contain data on NA3 (items 13 and 14), as well
as the fine-structure items, 1 and 2, are computed with
the expanded scale of errors required for consistency
among individual items. It should be borne in mind
that the value of the Avogadro number given here
comes entirely from items 2, 4, 5, 6, 7, and 8 of Table X
and does not involve the ‘“direct’” measurement of
NA3 from XRCD data, which has been deleted from
this final adjustment. The above value of A=1.002024-+
0.000023 rests entirely on the three direct determina-
tions of the wavelength of Cu Ka radiation with flat-
ruled gratings, items 10, 11, and 12 in Table X, and
involves a definition of the x-unit in terms of the as-
sumed value 1537.396 #x-units for Cu Kaj. Two of
these three direct determinations of A (item 10, by
Bearden, and item 12, by Bécklin) were made by re-
cording on a photographic plate the direct beam, the
specularly reflected beam, and the diffracted beams of
the Cu Ka; emission line in different orders. We have
already discussed [Sec. 2.5(1)7] the problems inherent
in the precise characterization of x-ray line shapes from
a photographic image, and it is perhaps significant that
the third experimental determination of A (item 11),
which achieved collimation by means of a two-crystal
spectrometer rather than a slit system, yields a con-
siderably larger value. The grating reflection occurs
between the two-crystal reflections; the first crystal
reflection determined the direction of the beam inci-
dent on the grating, the second the directions of the
direct, reflected, and diffracted beams. In this case one
might be more ready to suppose that the observed

TasrE XV. Summary of results. Least-squares output values from various choices of input data.

1/

XZ

1.002075-:0.000011
1.002083=0.000011
1.002063=-0.000011

6022.3740.18
6022.404-0.19

0.9109294-0.000027
0.0109234-0.000027
0.0109362-0.000027

6.625854-0.00032
6.625794-0.00032
6.625943-0.00032

4.80310-0.00014
4.803074-0.00014
4.803144-0.00014

137.037524-0.0014

36.13

Full set (14 equations)

Delete item 14

137.03782-0.0014

29.52

6022.324-0.19

137.03724-0.0014
137.0360=-0.0015

24.76
20.92
17.43
12.61
11.42

Delete item 13

1.002024-0.000023
1.002083+-0.000011
1.0020644-0.000011
1.0020834-0.000011

6022.164-0.20
6022.39+4-0.24
6022.3140.23

0.9109602-0.000030
0.9109262-0.000027

6.626232-0.00036
6.62581+0.00032
6.625954-0.00032
6.625824-0.00032

4.803262-0.00015

Delete items 13 and 14

4.803082-0.00014
4.80314-£0.00014
4.803084-0.00014

137.03784-0.0014
137.037224-0.0014
137.037840.0014

137.03604-0.0015

Delete items 9 and 14

0.910938-0.000027
0.9109274-0.000027

Delete items 9 and 13
Delete items 3, 9, 14

6022.414-0.24
6022.144-0.20

1.0020244-0.000023
1.0020634-0.070011
1.002024--0.000023
1.002024--0.000023

0.910963-0.000030
0.9109394-0.000027
0.910964-0.000030
0.910908--0.000062

6.62626--0.00036
6.62596-:0.00032
6.626260.00036
6.62559-+40.00076

4.80327+0.00015

66
67
2.86
0.34

8.

Delete items 9, 13, 14
Delete items 3, 9, 13

6022.324-0.24
6022.1620.20
6022.524-0.41

4.803154-0.00014
4.8032740.00015
4.802984-0.00033

137.03724-0.0014

137.03604-0.0015

6.

Delete items 3, 9, 13, 14

137.03884-0.0031

Delete items 1, 3, 9, 13, 14
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diffracted line profile approximated the natural profile
and that the peak of this observed profile could, with
some degree of assurance, be identified with the same
wavelength as that observed in the measurements of
lattice spacings for determining VA3,

Because of these considerations and the uncertainties
they involved, we decided to reject the three direct de-
terminations of A (items 10, 11, 12) from the input
data of our final 1963 least-squares adjustment. When
uncertainties concerning the crystal determinations of
NA3? have been clearly resolved, the best means of ob-
taining information on A is a computation of the
quotient of NA3 by the least-squares adjusted best
value of N, i.e., the value of N based on items 2, 4, 5,
6, 7, and 8. Let us call this value N. It is well to recall
here, as explained in an earlier section, that a definite
meaning can only be attached to A=\,/), if we define
X less ambiguously than in terms ‘“of the standard
grating constant of purest calcite.” If we compute A

TaBLE XVI. Defined values and equivalents.

Meter (m) 1650763.73 wavelengths of the
unperturbed transition 20—

5ds in 8Kr

Mass of the international kilo-
gram

Kilogram (kg)

Astronomical

1/31 556925.9747 of the tropical
year at 12BET, 0 January, 1900
(yr=36545b48m 458, 9747)

Physical

9192631770 cycles of the hyper-
fine transition (4, 0—3, 0) of
the ground state of 1%Cs un-
perturbed by external fields

Second (s)

Degree Kelvin (°K) In the thermodynamic scale,
273.16°K = triple-point of
water T (°C)=T (°K)—
273.15 (freezing-point of water,
0.0000--0.0002°C)

Unified atomic mass 1/12 the mass of an atom of the

unit (u) 12C puclide
Standard acceleration of 9.80665 m s™2

free fall (ga) 980.665 cm s™2
Normal atmosphere (atm) 101325 N m—2

1013250 dyn cm™2

Thermochemical calorie 4.184 7]

(calin) 4.184X107 erg
Int. Steam Table 4.1868

calorie (calyr) 4.1868X 107 erg

Liter (1) 0.001000028 m3 (recommended
by CIPM 1950)
1000.028 cm?
Inch (in.) 0.0254 m
2.54 cm

Pound (avdp.)
(b)

0.45359237 kg
453.59237 kg
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from [NA3/NJ}, then we obtain a numerical value
for A such that wavelengths A, are by definition meas-
ured in terms of an “x-unit” which has been defined
by the numerical value assigned to the x-ray wave-
length used to determine the lattice spacing of the
crystal.

Until such time as an international agreement is
reached by defining unambiguously, in the operational
sense, a unit in terms of which to intercompare all the
x-ray emission-line wavelengths, we shall be un-
ceasingly plagued with this difficulty. But improve-
ment in the definitions and conventions is only a start.
These must be followed by a careful and extensive pro-
gram of remeasurements of most x-ray wavelengths in
order to be sure that they have been properly defined
in terms of these conventions (see Table XVT).

Specifications of the lattice spacing of a species of
crystal is a poor way of defining a unit for measuring
x-ray wavelengths, but this does not invalidate the use
of the lattice spacing of a given crystal as a transfer
unit for the accurate measurement of wavelength
ratios. A careful study of all the experimental param-
eters which may affect the wavelength values so deter-
mined must also be made. We must not ignore the fact
that x-rays have applications in nuclear spectroscopy
and meson physics; precision in this field ought as far
as possible to keep pace with the increasing level of
precision in the whole of physics.

3.2. The Least-Squares Adjustment of 1963

The rejections of data discussed in the preceding
sections leave us with six input items involving three
unknowns, «, e, and N. These are as follows:

Stochastic input data used in 1963 Adjustment.

10971.594-0.10 Mc sec™!
2.7927574-0.000025

fs separation in D (Lamb et al.)

Magnetic moment of proton in
nuclear magnetons (Sommer
et al.)

Magnetic moment of proton in 2.792770=£0.000070

nuclear magnetons (Sanders
et al.)

Faraday constant-silver (NBS) 9648.6824-0.066 C mole™!

Gyromagnetic ratio of the 26751.9240.08 sec™t G

proton (Bender et al.)

Gyromagnetic ratio of the 26751.8824-0.08 sec™ G!

proton (Vigoureux)

For the fine structure separation in deuterilum we
have now returned to the original (unexpanded) stand-
ard error which is based on the evaluation of the ac-
curacy of the experimental data. Having demonstrated
that the fine-structure data is more consistent than
the hydrogen hfs value, we no longer need to retain
the expanded error assignment.

These data combined as explained earlier with the
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TaBLE XVII. General physical constants. Least-squares adjusted output values of 1963. The digits in parentheses following each
quoted value represent the standard deviation error in the final digits of the quoted value as computed on the criterion of internal
consistency. The unified scale of atomic weights is used throughout (2C=12). C=coulomb; G=gauss; Hz=hertz; J=joule; N=
newton; T =tesla; u=unified nuclidic mass unit; W=watt; Wb=weber.

Unit
Constant Symbol Value mksA cgs
Speed of light in vacuum ¢ 2.997925(1) X108 ms™ X10%° cm 71
Gravitational constant G 6.670(5)® 10711 N m? kg2 1078 dyn cm? g2
Elementary charge e 1.60210(2) 10710 C 10~ emu
4.80298(7) 10719 esu
Avogadro constant Ny 6.02252(9) 10% kmole™? 10% mole™?
Mass unit u 1.66043(2) 1072 kg 102 g
Electron rest mass Me 9.10908(13) 10731 kg 10728 g
5.48597(3) 10~ u 10~4u
Proton rest mass wp 1.67252(3) 1072 kg 102 ¢g
1.00727663 (8) u u
Neutron rest mass Mn 1.67482(3) 10727 kg 1072 g
1.0086654 (4) u u
Faraday constant F 9.64870(5) 10¢ C mole™! 103 emu
2.89261(2) 10 esu
Planck constant h 6.62559 (16) 1073 Js 107% ergs
h/2w 1.054494(25) 103 Js 102 erg s
Fine-structure constant 2we?/hc @ 7.29720(3) 103 103
1/a 137.0388(6)
Charge-to-mass ratio for electron e/m. 1.758796(6) 101 C kg™? 107 emu
5.27274(2) 107 esu
Quantum of magnetic flux hele 4.13556(4) 101t Wh 1077 G cm?
hie 1.379474(13) 10717 esu
Rydberg constant Ro 1.0973731(1) 107 m™ 105 cm™
Bohr radius @ 5.29167(2) 101 m 109 cm
Compton wavelength of electron h/mec 2.42621(2) 1072 m 10710 cm
Ae/27 3.86144(3) 1078 m 1071 cm
Electron radius e/ mect=r, 2.81777(4) 10~ m 10718 cm
Thomsen cross section 8wrd/3 6.6516(2) 1022 m?2 1072 cm?
Compton wavelength of proton Aew 1.321398(13) 107 m 108 cm
Ao/ 27 2.10307(2) 107 m 107 cm
Gyromagnetic ratio of proton ¥ 2.675192(7) 108 rad s71 T! 10*rad s G1
v/2% 4.25770(1) 107 Hz T 10371 Gt
(Uncorrected for diamagnetism v 2.675123(7) 108 1T 10t rad s71 G!
H.0) v' /2w 4.25759(1) 107" HzT! 10371 G
Bohr magneton uB 9.2732(2) 1072 JT1 1072t erg G?
Nuclear magneton UN 5.05050(13) 1072 JT-1 107215 G?
Proton moment Wy 1.41049(4) 10~ JT-1 10728 erg G1
1o/ N 2.79276(2)
(Uncorrected for diamagnetism in 2.79268(2)
H,0 sample)
Gas constant Ry 8.31434(35) J deg™ mole! 107 erg deg™ mole!
Boltzmann constant k 1.38054(6) 1072 J deg™ 10716 erg deg™
First radiation constant (27hc?) a 3.74150(9) 10716 W m? 108 erg cm2 st
Second radiation constant (kc/k) [ 1.43879(6) 1072 m deg cm deg
Stefan~Boltzmann constant o 5.6697(10) 1078 W m2deg™ 1075 erg cm™2s71 deg™

2 The universal gravitational constant is not, and cannot in our present state of knowledge, be expressed in terms of other fundamental constants. The value
given here is a direct determination by P. R. Heyl and P. Chrzanowski, J. Res. Natl. Bur. Std. (U.S.) 29, 1 (1942).



E. R. Coren AND J. W. M. DuMonp Fundamental Constants in 1965

auxiliary constants (Table III) permit us to form an
overdetermined set of equations in «, ¢, and N having
three degrees of freedom. The set in fact, as we have
already pointed out, breaks up into two independent
sets, since the last five items contain only two un-
knowns and provide no implicit additional information
on the value of «, which is defined entirely from the
first item. The adjustment of these equations by least
squares leads to the following set of recommended best
values of the physical constants as of 1963:

1/a=137.0388+0.0006,
e=(4.80298-0.00006) X 1071 esu,
k= (6.625594-0.00015) X 10~%7 erg sec,
m=(9.10908-20.00013) X 102 g,
N=(6022.524-0.09) X 10720 mole~! (2C=12).

The x? for this adjustment in three degrees of free-
dom has the very low value of 0.34. This corresponds
to a Birge ratio of errors-by-external to errors-by-
internal consistency of only 0.33.

It must be remembered however that this results
from a nonrandom set of input equations, a set indeed
which has been radically censored (purged of “outlying”
items). The variance in x? is 2f=6. Thus, although the
expectation value of R? is 1, the standard deviation of
this ratio is #0.82, so that the smallness of the ob-

TasLE XVIII. Energy conversion factors.

1 electron volt =1.60210(2) X107 J
=1.60210(2) X102 erg
=8065.73(8) cm™

=2.41804(2) X10% s
|23 =12398.10(13) X108 eV cm

=11604.9(5)°K
=23061(1) caly, mole™?
=23045(1) calyr mole™?

=931.478(5) MeV
=938.256(5) MeV
=939.550(5) MeV
=511006(2) eV

=2.17971(5) X101 erg
=13.60535(13) eV

=8.31434X 107 erg mole™* deg™
=0.082053 liter atm mole™ deg™!
=82.055 cm? atm mole™ deg™
=1.9872 caly, mole™ deg™!
=1.9858 calyr mole™* deg™!

=22413.6 cm?® mole™

1 eV per particle

1 amu

Proton mass
Neutron mass
Electron mass

Rydberg

Gas constant, R,

Standard volume of
ideal gas Vg
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TasrLe XIX. Variance matrix and correlation coefficient matrix
of 1963 adjustment. Variances are given, in units of (ppm)?2, on
and below the major diagonal. Correlation coefficients are given
in italics above the diagonal. Since there are in fact only three
variables in the adjustment these matrices are degenerate and
are only of rank 3.

a e N h m F
oc 21 0.96 —0.88 0.95 0.88 0
e 62 199  —0.93 0.99 0.97 —0.06
N —62 —204 240 —0.93 -—0.93 0.41
h 104 336 —346 569 0.98 —0.08
m 62 212 —222 362 231 —0.12
F 0 -5 35 —10 —10 30

served value, 0.10, is of little significance!?® except to
say that the indicated compatibility of this overdeter-
mined set of equations is reassuring. We have used the
criterion of nternal consistency for computing the
errors in all of our output values, this being the one
which in this case yields the larger errors.

In the preceding sections we have made clear just
what rejections of available data we have made before
forming the final set of input equations for the 1963
adjustment. We have also given for each rejected item
our reasons for these rejections which were of two
kinds, (a) those based on doubts as to the reliability of
the experimental method or the method of reducing
and interpreting the data, and (b) those based on the
outlying character of the item, i.e., its inconsistency
relative to the general consensus of the total data
available for adjustment. This leaves others who may
wish to use our work free to judge whether or not we
have chosen wisely, and to modify our results or form
other least-squares adjustments which they may deem
preferable.

In Tables XVII and XVIII we list a number of the
more frequently useful constants and conversion
factors which we have computed with the use of the
least-squares adjusted output values of our 1963 ad-
justment. Wherever necessary, of course, these values
are combined with the auxiliary constants of Table
III. The uncertainties attached to all the numerics in
Tables XVII and XVIII are the standard deviations
computed from the variance matrix of Table XIX.
As we have already explained, the output values of a
least-squares adjustment, in general, have correlated
error distributions. Therefore, when further numerical
values are to be computed, using formulae (functions)
which involve two or more of these output values,
care must be taken to use the generalized formula of
error propagation in computing the error of the func-
tion in question. Table XIX gives the variance matrix

18 The expectation value of R may also be computed. Its value
is 0.92 and the standard deviation is 0.39.
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1929 to 1955.

and the correlation coefficient matrix appropriate to
our 1963 least-squares adjustment. This table is the
direct result of the least-squares adjustment based on
its errors by the criterion of internal consistency, the
criterion which in the present case yields the larger
errors. The final adjustment had only three unknowns
and a 3 by 3 matrix would therefore suffice but for
greater convenience in use, in addition to the original
three unknowns, «, e, N, we have augmented the
matrix to include also %, m, F. Because, however, there
are in fact only three statistically independent variables
involved in the problem these matrices are degenerate
and are only of rank 3.

3.3. Comparison of the 1963 Results with Previous
Evaluations

We show in Figs. 8 and 9, a complete history of
fluctuations in our knowledge of five of the funda-
mental constants over an interval of 34 years. The
magnitudes of these fluctuations have changed in scale
so enormously since the early work of R. T. Birge in
1929, when systematic errors of the order of one per-
cent or larger were being found and eliminated, down
to the present level of fluctuations of several parts per
million, that it is necessary to depict the history of
these fluctuations with two separate graphs with a
scale change of 10 between them.

The principal changes in the input data for 1963
relative to 1955 which are responsible for the changes
of approximately two standard deviations in mest of
the constants between these two dates, are (1) the
much more accurate value of the Faraday published in
1960, (2) the much more accurate value of the gyro-
magnetic ratio of the proton (Bender and Driscoll) and
the elimination of the systematically erroneous Thomas,
Driscoll, and Hipple value of that constant, (3) the
elimination of all of the x-ray data giving NA3, and

h/e data from the short-wavelength limit of the con-
tinuous x-ray spectrum.

3.4. Present Status of the Constants (1965)

With the publication of Bearden’s “Table of X-Ray
Wavelengths”® it is now possible to re-evaluate the
x-ray data on the basis of a consistent definition of the
x-unit. The available data of Table X has therefore
been reconsidered in light of this and a series of addi-
tional least-squares adjustments were carried out in
1965. For this analysis we retained the deuterium fine-
structure measurement and the muonium hyperfine-
structure measurement (items 1b and 1d) from group 1.
Item (1a) was rejected because of the theoretical un-
certainties and because of its previously demonstrated
inconsistency (admittedly a somewhat circular argu-
ment); item (1c), Wilkinson and Crane’s measurement,
was omitted because of its low weight and (1e) Robis-
coe, because of its preliminary character and because,
as a measurement of the fine-structure splitting, it
must rely on the Py—S; separation which is already
included in the data in (la). The inclusion of the
muonium data (1b) requires that the magnetic moment
of the muon or equivalently the relative mass of the
muon be also considered. Thus, our calculation must
now include five variables (e, e, N, A, and m,,).

The purpose of the calculation was to try to dis-
tinguish between certain discrepancies in the data.
Thus, the data on the magnetic moment of the proton
fall into two groups. The important question to be
answered is whether the high value, characterized by
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either Boyne and Franken or by Mamyrin and Frantsu-
zov or the low value characterized by either Sommer
et al. or by Sanders et al. is the more nearly correct. We
therefore introduced these four items into the least-
squares adjustment as two separate equations, one
representing the ‘“high” data (2.7928804-0.00003), the
other representing the “low” data (2.7927632-0.00003).

Similarly, because of the good agreement between
items 4a, b, ¢ on the gyromagnetic ratio of the proton
only a single equation was written to represent the
average value of all three measurements. The less pre-
cise data (4d and 4e) were omitted.

The measurement of the Faraday (group 3) was
introduced without further modification.

From group 5 (the conversion factor from x-units to
milliangstroms) we kept only Edlen and Svensson’s
re-evaluation of Tyren’s 1940 measurements and
Bearden’s re-evaluation of his own 1931 data.

Of the various measurements of the Siegbahn
Avogadro constant (NA®) we include 6¢c (Bearden’s
very thorough and careful measurements on CaCOs)
and 6d (Bearden and Henin’s measurements on Si).
We have also Smakula’s measurements of several
crystals as reported in Table V but with Straumanis’
high LiF data omitted. Smakula’s data only yields
NA3=6060.08240.11X10% on the basis of A Cu Ka;=
1537.396; when this is reduced to the W Kea; standard
(\ Cu Ka;=1537.370) we obtain

NA3=6060.384-0.11X 102
(Smakula, Cu Koy =1537.370).

Bearden’s measurement is worth special notice here.
A careful study was made of the impurity content of
the calcite crystals and correlated density measure-
ments of the crystals with chemical determinations of
various metallic impurities. Bearden was able to demon-
strate with reasonable accuracy that metallic impurities
are predominantly interstitial in the calcite crystal.
All of the crystal samples could then be extrapolated
to the density of pure calcite (one could equivalently
also use the measured density of the crystal, but correct
the molecular weight for the measured impurity
content).

From this data we then constructed 16 equations in
5 unknowns. The value of chi squared for this system
was x2=24.18. For 11 degrees of freedom this gives
R=148, and the statistical tables tell us that the
probability of a value as large or larger than this is
only slightly larger than 19,. If we successively delete
items we find that no deletion except the “high’ proton
moment (Boyne and Franken, and Mamyrin and
Frantsuzov) decreases chi squared below 18.8. With
the “high” moment equation deleted, however, we ob-
tain a chi-squared value of 12.71 so that, for 10 degrees
of freedom, we have R=1.075. The values of the con-
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stants computed for this case are in excellent agree-
ment with the 1963 adjustment. The differences are in
all cases less than one-third of a standard deviation.
This is not at all surprising; the main effect of this
adjustment is the determination of the value of the
conversion factor A since as we pointed out earlier the
“traditional” determination of Avogadro’s number is
less precise than the value determined from nuclear
resonance data. The inclusion of the x-ray data then
gives

A=1.002080=-0.000006 (W Ka;=208.5770 x-units).

One of the primary reasons for the current interest
in a least-squares analysis only two years after a
similar study is to attempt to clarify the uncertainties
surrounding the value of the fine-structure constant.
If therefore we perform a least-squares adjustment
which deletes from consideration the three so-called
“direct” measurements of the fine structure constant,

- that is, the fine-structure separation in deuterium, the

hyperfine structure in hydrogen and the hyperfine
structure in muonium, we can achieve a least-squares
adjustment of the constants which yields

a1=137.036740.0022,
A=1.0020934-0.000015.

This value of « falls between the deuterium fine-
structure and the hydrogen hyperfine-structure values
and agrees well with the earlier value reported by
Hughes ¢t al. from muonium hfs®? shown in Fig. 6, al-
though of course Hughes’ later value presumably
supercedes the earlier one. It should not be inferred
that this calculation implies that the muonium fine-
structure measurement is the more nearly correct,
since the experimental uncertainties are such that the
standard deviation interval overlaps the values of all
these determinations.

The over-all picture of the values of the fundamental
constants over the past eighteen years is shown in Fig.
9. This figure is an extension of Fig. 8, but, because of
the increased precision which has been achieved in the
last two decades as compared to the previous two, the
scale of Fig. 9 has had to be enlarged by a factor of 10.
The variations are expressed in terms of relative devi-
ations from the ‘“recommended” values of the 1963
adjustment'’® which are given here in Table XVII.
The values for 1965 shown here include all of the data
discussed in the preceding paragraphs. If the direct
fine-structure data is omitted, the value of o is de-
creased by 15 ppm, but the standard deviation in-
creases from 5 ppm to 16 ppm. Similarly, e and m are
increased 44450 ppm relative to the 1963 values and

179 A, G. McNish, Natl. Bur. Std. Tech. News Bull. (October
1963), p. 175; J. Opt. Soc. Am. 54, 281 (1964); Phys. Today
17, 48 (1964).
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N is decreased by almost exactly the same amount.
Planck’s constant % is increased 71 ppm above the
“recommended” value, but here also the standard
deviation increases from 25 to 84 ppm so that all the
variations still lie within the assigned error range.

We may therefore conclude that the 1963 “recom-
mendation” need not be altered by the newer data
which have become available in the last two years and
that the uncertainties in our knowledge of the funda-
mental constants are smaller than they have been in
the past. Errors and discrepancies indeed still exist,
but these are inevitable and will serve as the basis on
which to improve experimental techniques and theo-
retical descriptions.
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