Spectroscopic Studies with the $B^{10}(He^3, paaa)$ Reaction

J. E. ETTER, M. A. WAGGONER, C. MOAZED, H. D. HOLMGREN, C. HAN University of Maryland, College Park, Maryland

The four-body final state $p\alpha\alpha\alpha$ resulting from the bombardment of B¹⁰ with low-energy He³ is produced by various sequential two-body decays or by processes in which resonances in the interactions among the various combinations of particles strongly modulate the momentum distribution of the particles in the final state. The basis for and meaning of this statement, and the problem of whether the concept of state or resonance in the interaction of the components is appropriate for the description of intermediate systems involved in the decay of the B^{10} +He³ system to the $p\alpha\alpha\alpha$ final state, have been discussed in an earlier paper on the B¹⁰(He³, $p\alpha\alpha\alpha$) reaction.¹ For simplicity in the presentation of the information relevant to the present paper we use the notation of states in referring to the various intermediate systems.

The sequential processes by which the B¹⁰(He³, $p\alpha\alpha\alpha$) reaction can proceed are the following:

$$\rightarrow p + C^{12} + 19.69$$

$$\downarrow \rightarrow \alpha_1 + Be^8 - 7.37$$

$$\downarrow \rightarrow \alpha_2 + \alpha_3 + 0.094 \qquad (I)$$

 $\rightarrow \alpha_1 + B^9 + 12.14$

where the Q values shown are for the ground states of the systems involved.

* Research supported in part by U. S. Atomic Energy Commission.

Studies of the $p\alpha$, $\alpha\alpha$, and pC^{12} two-dimensional energy spectra at many sets of angles and with various criteria imposed upon the observed particles have vielded information about a number of states of the intermediate systems involved in the processes leading to the final state $p\alpha\alpha\alpha$.

STATES OF Li⁵ AND Be⁸

No new spectroscopic information concerning the two lowest states of Li⁵ and of Be⁸ has been obtained in the present experiment. The previously assigned spins and parities of these states were taken to be known quantities² in this study. However, evidence for the existence of these states of Li⁵ and Be⁸ is strikingly exhibited through their effect on the $p\alpha\alpha\alpha$ final state. For example, referring to the two-dimensional energy spectrum of Figure 1 the existence of the ground state of Be⁸ is indicated by the large number of events along the ground-state kinematic curve, and the first excited state of Li⁵ by the intensity in the well-defined, although broad, kinematic region corresponding to the B¹⁰(He³, Li⁵) Be⁸ reaction.

An interesting point concerning the states of Li⁵ was noted. The effective mass of Li⁵ appear to be less than that given in the tables of consistent set of Qvalues³ by about 200 keV.

STATES OF B9

Excited states of B⁹ were observed in the present study at 2.34 and 2.8 MeV of excitation. The 2.34-MeV state has been previously classified² as having $J^{\pi} > \frac{1}{2}$; the latter state has not been classified. The 2.34-MeV state has been seen in the $B^{10}(p, d)$ reaction,⁴ for example, and the deuteron angular distribution indicated that $l_n = 1$ and thus restricted the J^{π} assignment to $\frac{3}{2} \leq J \leq \frac{9}{2}$, negative parity. The 2.8-MeV state has been more elusive for reasons which perhaps can now be better understood.

Our results indicate that the relatively narrow 2.34-MeV state decays predominately by alpha-particle emission to the ground state of Li⁵ whereas the 2.8-MeV

¹ M. A. Waggoner, J. E. Etter, H. D. Holmgren, and C. Moazed, Rev. Mod. Phys. 37, 358 (1965), this conference.

² T. Lauritsen and F. Ajzenberg-Selove, "Energy Levels of Light Nuclei," NAS-NRC, **61**, -5, 6 (May 1962). ⁸ F. Everling, L. A. Koenig, J. H. E. Mattauch, and A. H. Wapstra, "Consistent Set of Energies Liberated in Nuclear Re-actions," Part I. NAS-NRC (February 1961).

⁴ J. B. Reynolds and K. G. Standing, Phys. Rev. 101, 158 (1956).

state, with $\Gamma_{\rm em} = 1 \pm 0.3$ MeV, decays primarily by proton emission to the ground state of Be⁸. The Q values for the decay of the 2.34-MeV state of B⁹ to $p + {\rm Be}^8$ and to $\alpha + {\rm Li}^5$ are 2.53 and 0.65 MeV, respectively. The corresponding Q values for the 2.8-MeV state are 3.00 and 1.12 MeV. Table I summarizes the angular momenta that could be involved in these two modes of decay for various J^{π} assignments to the states of B⁹.

Since the 2.34-MeV state of B⁹ decays primarily by alpha-particle emission to the ground state of Li⁵ rather than by proton emission to the ground state of Be⁸, angular momentum considerations indicate that $J \geq \frac{3}{2}$, regardless of the parity of this state. The similarity of the decay of this state to the decay observed for the 2.430-MeV state of Be9, which has been observed to decay preferentially to He⁵+ α rather than Be⁸+n,⁵ strongly suggests that the 2.34-MeV state of B⁹ is the isospin analog state of the 2.430-MeV, $J^{\pi} = \frac{5}{2}$ state of Be⁹. Arguments similar to those given by Henley and Kunz⁶ for the Be⁹ state could then be applied to the 2.34-MeV state of B9 to explain the α decay of this state in preference to proton decay. It thus seems reasonable to assign $J^{\pi} = (\frac{5}{2})^{-}$ to this state.

On the other hand, the decay of the 2.8-MeV state of B⁹ by proton emission to the ground state of Be⁸ rather than by alpha-particle emission to the ground state of Li⁵, favors an assignment of $J=\frac{1}{2}$ for this state but places no restriction on its parity. Hence it

FIG. 1. The experimental two-dimensional energy spectrum of coincident proton and α particle from the reaction B¹⁰(He³, $p\alpha$) 2He⁴ at $\theta_p = +60^{\circ}$, $\theta_{\alpha} = -100^{\circ}$ for a bombarding energy of 2.45 MeV.

D. Bodansky, S. F. Eccles, and I. Halpern, Phys. Rev. 108, 1019 (1957).
⁶ E. M. Henley and P. D. Kunz, Phys. Rev. 118, 249 (1960).

TABLE I. Information relevant to the J^{π} assignments to states of B⁹ formed by B¹⁰(He³, α) B⁹ which decay by proton emission to states of Be⁸ or α -particle emission to the $\frac{3}{2}^{-}$ state of Li⁵.

$J_{\mathrm{B}^{9^{\pi}}}$	^{<i>l</i>} <i>P</i> Be ₀ ⁺⁸	^l aLi ₁₋ 5
	1 1 3 5 0 2 2 4 4	2 0, 2 2, 4 2, 4 4, 6 1 1, 3 1, 3 3, 5 3, 5

is not clear whether or not this state is the analog of the 3.04-MeV state of Be⁹.

If the $J=\frac{1}{2}$ assignment to the 2.8-MeV state is correct, then this state cannot be reached by the pickup of a $p_{\frac{3}{2}}$ neutron from B¹⁰(3+) in (p, d), (d, t), and (He³, α) reactions. Such a level could, however, be formed by an exchange interaction in the B¹⁰(He³, α) reaction at the low bombarding energy used in this study. The fact that Fisher and Whaling⁷ did not observe the 2.8-MeV level may not be inconsistent with the $J=\frac{1}{2}$ assignment, since exchange interactions are expected to become less important at higher bombarding energies.

STATES OF C12

16.11 MeV. This state has been classified² as $J^{\pi}=2+$; T=1. We find that it is produced by the reaction I and that it decays by alpha-particle emission weakly to the ground state of Be⁸ and strongly to the 2+ state of Be⁸, with the decay to the 4+ undetermined. It is known⁸ that Γ_{γ}/Γ is about 0.03.

Since the angular correlations between the initial proton from the $B^{10}(He^3, p)C^{12}$ reaction and the alpha particles resulting from the decay of C¹² to different states of Be⁸ may be different, an accurate measurement of the branching ratio for the α decay of the state of C¹² to any particular level of Be⁸ requires the measurement of the angular correlations for the decays to all levels. Such measurements would be very difficult. An estimate of the order of magnitude of the branching ratio for the α decay to the ground state of Be⁸ can be obtained by measuring this ratio at several angles by the following procedure. A diagonal window is set on the Be⁸ ground-state band in the two-dimensional, $p\alpha$ energy spectrum. An analysis of the projections of this band and the remainder of the spectrum upon the E_p axis yields the relative amount of the alpha-particle decay of the 16.11-MeV state of C¹² to the Be⁸ ground state and to the Be^{8} 2+ and 4+ states combined. (The

⁷ T. R. Fisher and W. Whaling, Bull. Am. Phys. Soc. **8**, 598 (1963).

⁸ F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 27, 77 (1955).

TABLE II. Information relevant to the J^{π} assignments for states of C¹² formed by B¹⁰(He³, p)C¹² which decay by α -particle emission to the 0⁺ and/or 2⁺ states of Be⁸.

$J_{\mathrm{C}^{12^{\pi}}}$	$^{l}\alpha\mathrm{Be_{0}^{+8}}$	$^{l}\alpha\mathrm{Be}_{2}^{+8}$	
 0-	x	x	
1-	1	1, 3	
2-	x	1, 3	
3-	3	1, 3, 5	
4-	x	3, 5	
0+	0	2	
1+	x	2	
2+	2	0, 2, 4	
3+	x	2, 4	

latter projection of course includes not only the alpha particles leading directly to the Be⁸ 2+ and 4+ states the α_1 's in reaction I—but also the breakup alpha particles $-\alpha_2$ and α_3 in reaction I—associated with the formation of the ground state as well as the 2+ and 4+ states of Be⁸.) The two projections can be corrected for background due to other processes producing events in the relevant portion of the $E_p E_\alpha$ spectrum when the angles are chosen so that other processes do not produce peaks in that region of the E_p projections corresponding to the 16.11-MeV state of C¹².

With the above qualifications understood, we obtain a value for the ratio of the probability of the alphaparticle decay of the 16.11-MeV state of C¹² to the Be⁸ ground state to the probability of its decay to the excited states of Be⁸ of 0.051 at $\theta_p = +60^\circ$, $\theta_{\alpha} = +-60^\circ$ and 0.12 at $\theta_p = +90^\circ$, $\theta_{\alpha} = -120^\circ$.

The previous assignment of T=1 to the 16.11-MeV state² is not inconsistent with the observed α -particle decay since only a small isospin impurity could account for the large α -decay width of this level.

Information relevant to the assignment of J^{π} to states of C¹² which decay by alpha-particle emission to the Be⁸ ground state and/or 2+ state is summarized in Table II. Since the 16.11-MeV state of C¹² decays to the ground state of Be⁸ it must have natural parity. J^{π} of 0+ or 1- are improbable on the basis of the branching ratio for the alpha-particle decay of the state. $J \geq 2$, natural parity, remain as assignments consistent with the present data.

15.11 MeV. This state has been classified² as $J^{\pi} = 1^+$, T = 1. The state is known to decay primarily by gamma emission.

Although it would have been difficult to have observed a small peak in that region of the $p\alpha$ spectrum corresponding to the formation of the 15.11-MeV state of C¹² because of the large number of accidental events which frequently appeared in that region as a result of the prolific proton group from the C¹²(He³, p_0)N¹⁴ reaction, several observations were performed under conditions which minimized this effect. Even in these cases, however, a peak resulting from an α -particle width of less than 10% for this state would have been difficult to observe because of the large contributions from other competing reactions generally found in this region of the $p\alpha$ spectrum.

An independent measurement of $\Gamma_{\alpha}/\Gamma_{\gamma}$ was made by detecting protons leading to the 15.11-MeV level of C¹² in one counter and observing the corresponding recoil C¹² nuclei in a second counter. The ratio of the number of protons leading to the 15.11-MeV state of C¹² observed without coincident C¹² recoils to the number of pC¹² coincidences is $\Gamma_{\alpha}/\Gamma_{\gamma}$. The measurements yield a ratio of about 10%. Corrections for multiple scattering and recoil from the γ decay would tend to lower the observed ratio.

14.08 MeV. The 14.08-MeV state is excited rather strongly in the $B^{10}(He^3, p)$ reaction and decays by alpha-particle emission to the ground state and to the 2+ (and 4+?) states of Be⁸. A value for the branching ratio for the alpha-particle decay to the ground state ranging from 14 to 38% for θ_{α} ranging from -40 to $-120 \text{ deg and } \theta_p = +60^{\circ} \text{ was obtained in the manner}$ summarized in the discussion of the 16.11-MeV state and also by studying the projections on the E_{α} axis of a proton window set on the 14.08-MeV peak in the $E_p E_\alpha$ spectrum as well as the E_α projections for similar proton windows set on each side of this peak. The total width of the state, the alpha-decay width, as determined in this experiment is 320 ± 50 keV, a value to be compared with the previously measured value of 252 ± 15 keV.⁹ The branching ratio for the alpha decay of this state makes the 0+ and 1- assignments unlikely, although these arguments are relatively weak. Proton-alpha angular correlation studies were made for this state as a function of θ_{α} for fixed θ_p at $\theta_p = 30^{\circ}$ and 60° . These correlations are shown in Figs. 2 and 3

FIG. 2. $p\alpha$ angular correlation for the 14.08-MeV state of C¹² at $\theta_p = 30^{\circ}$. The curve represents the fit obtained with

$$W(\theta) = \sum_{n=0}^{\infty} A_n \cos n (\theta - \theta_n).$$

⁹ C. P. Browne, W. E. Dorenbusch, and J. R. Erskine, Phys. Rev. **125**, 992 (1962).

with the fits which have been obtained using a

$$\sum_{n=0}^{4} A_n \cos n(\theta - \theta_n)$$

series, where θ is the angle of emission of the α particle in the rest frame of the C¹² (14.08) nucleus. The values of the A_n 's for which the fits were obtained are given in Table III. The results clearly indicate that $J\pm 2$. Thus the J^{π} assignment for the 14.08-MeV level of C¹² is $J\pm 2$, natural parity.

13.34 MeV. The 13.34-MeV state is formed in the B¹⁰(He³, p) reaction and decays by alpha-particle emission to the 2+ (and 4+?) state of Be⁸, but not to the ground state. The observed width of this state is 390 ± 70 keV which is consistent with the previous measurement of 430 ± 100 keV.⁹ The J^{π} assignment is $J\geq1$, unnatural parity, with a preference for 2⁻ on the basis of the large width.

12.71 MeV. This state has been classified² as $(1\pm)$. Gamma decay of the state has been reported.¹⁰ The 12.71-MeV state is excited rather strongly in the B¹⁰(He³, p) reaction and is observed to be rather narrow. We have observed its α -particle decay to the 2+ (and 4+?) states of Be⁸, but not to the ground state of Be⁸. The J^{π} value is therefore restricted to $J\geq 1$, unnatural parity. The previous assignment of (1+) is consistent with the observed alpha decay and narrow width of this level, as well as its observed gamma decay.

FIG. 3. $p\alpha$ angular correlation for the 14.08-MeV state of C¹² at $\theta_p = 60^\circ$. The curve represents the fit obtained with

$$W(\theta) = \sum_{n=0}^{4} A_n \cos n (\theta - \theta_n).$$

¹⁰ E. Almqvist, D. A. Bromley, A. J. Ferguson, H. E. Gove, and A. E. L. Therland, Phys. Rev. **114**, 1040 (1959).

TABLE III. Coefficients of the $p\alpha$ angular correlation function

$$W(\theta) = \sum_{n=0}^{4} A_n \cos n (\theta - \theta_n)$$

\mathbf{for}	the	14.08-MeV	state	\mathbf{of}	C ¹² .
----------------	-----	-----------	-------	---------------	-------------------

θ_p	n	A_n	θ_n
30°	$\begin{array}{c} 0\\ 2\\ 4\end{array}$	5.66 ± 0.16 0.33 ± 0.19 1.52 ± 0.21	$-47.3^{\circ}\pm21.8^{\circ}$ $6.8^{\circ}\pm2.1^{\circ}$
60°	0 2 4	0.201 ± 0.006 0.082 ± 0.009 0.029 ± 0.008	12.3°± 2.9° 21.4°± 4.9°

11.83 MeV. It has been suggested² that the 11.83-MeV state has $J^{\pi}=1^{-}$. The state is excited rather strongly in the B¹⁰(He³, p) reaction. It decays by alphaparticle emission to the Be⁸ 2+ (and 4+?) states, but not to the Be⁸ ground state, although our uncertainty in the determination of the absence of the decay to the ground state is larger than for the preceding two states. The $J^{\pi}=1^{-}$ assignment thus seems unlikely. A value of $J \ge 1$, unnatural parity, seems indicated with the 2⁻ value possibly more probable. The 2⁻ assignment is consistent with the B¹¹(He³, d) results.¹¹

10.84 MeV. It has also been suggested² that the 10.84-MeV state has $J^{\pi} = 1^{-}$. This state is also excited relatively strongly in the B¹⁰(He³, p) reaction. It decays by alpha-particle emission primarily to the ground state of Be⁸ and not to the 2+ state. The Q value for the latter decay is, of course, very small. The assignment of natural parity thus appears to be indicated with $J^{\pi} = 0^+$ or 1^- more probable. The 1⁻ assignment is consistent with the B¹¹(He³, d) results.¹¹

9.64 MeV. The 9.64-MeV state has been classified² as $J^{\pi}=3^{-}$. We find it produced very strongly in the B¹⁰(He³, p) reaction and observe its decay by alphaparticle emission to the ground state of Be⁸. We cannot determine whether it decays to the 2+ state since the energy of the alpha particles associated with this is too low to be observed in the present experiment. (See Fig. 1.) The state must have natural parity.

Discussion

WEGNER: Would not the errors on your data points allow a straight line fit as well as the curve that you used?

HOLMGREN: The calculated errors of coefficients in the angular correlation expression clearly show that the coefficients up to those of fourth order are significant and that the data cannot be fitted with a straight line.

¹¹ S. Hinds and R. Middleton, Proc. Phys. Soc. (London) 78, 81 (1961).

FIG. 1. The experimental two-dimensional energy spectrum of coincident proton and α particle from the reaction B¹⁰(He³, $p\alpha$) 2He⁴ at $\theta_p = +60^{\circ}$, $\theta_{\alpha} = -100^{\circ}$ for a bombarding energy of 2.45 MeV.