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INTRODUCTION

Proton groups are often observed from deuteron-
induced reactions leading to three-body final states by
the two-stage process A+dip+8* —+P+tt+A and
these closelyresemble the proton groups seen in the usual
stripping reaction which produces J3 in a bound state.
Our problem is to adapt the familiar distorted-wave
Born approximation (DWBA) to this case of stripping
to virtual levels. A procedure for evaluating the strip-
ping amplitude is found and a numerical application is
mentioned.

THE SCATTERING AMPLITUDE

The distorted-wave theory for the ordinary stripping
reaction' A+I +P+8 lea—ds to the following exact
expressions for the scattering amplitude, or more
strictly, the T-matrix element (Spin coordinates are
omitted for simplicity):
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function. The DWBA consists of replacing the exact
wave functions 4 in (1) and (2) by the corresponding
distorted waves yielding the approximate formulas
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These approximate prior and post formulas are identi-
cally equal. The well-known zero-range D%BA, cal-
culations are performed by taking the post expression,
neglecting (V„z—V»), and replacing V„„fe by a 5

function. There does not appear to be any practical
method of evaluating the prior expression.

Gerjuoy' has studied the scattering problem where
there are three bodies in the final state and has shown
how an exact prior expression may be obtained, anal-
ogous to (1). He actually used plane waves in place
of the x's, but the result is simply extended to dis-
torted waves. %hen we make the DWBA, by analogy
of going from (1) to (4), we obtain

These are the so-called prior and post expressions.
Here 0';&+~ and 0'f( ) are exact solutions of the full
Hamiltonian

The only modification from the two-body case, Eq.
(4), is that the bound state wave function P~ has
been replaced by a positive energy wave function

(k, r z, $), an exact eigenfunction for the system
(A+rt) in a scattering state. Unfortunately, as in the
two-body case, there appears to be no practical way
of evaluating this matrix element. One might suppose
that the post matrix element for the three-body case

a=a~+ T..+Te~+V..+V. +V.~
=&~+T ~+2'va+V ~+V v+Vv~

satisfying the appropriate boundary conditions.
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are distorted deuteron and proton wave functions
generated using the optical model potentials V~~
and V». Pz($) and P&(P, r„z) are, respectively, the
wave functions of the target and residual nuclei
and Pe(l r„~—r„~ I) is the deuteron internal wave

* A brief account of this work was published in the Proceedings
of the Padla Conference (Gordon and Breach, Science Publishers,
New York, 1963), p. 530.

' W. Tobocman, Theory of Direct Emclear Reactions (Oxford
University Press, London, 1961).
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' E. Gerjuoy, Ann. Phys. (N. Y.) 5, 58 (1958).
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obtained by similarly replacing the bound-state wave
function in (5) by P~' ' should also be valid, and iden-
tically equal to (6) . However, (7)"is not even a con-
vergent integral, as we can see by making the zero-
range approximation. Then after integrating over r„~
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and $, (7) becomes

const dr„dLexp( —ik„r„d)+scattered waves j
X I exp( —ik„r„d)+scattered waves j

X )exp(ikd r~~) +scattered waves)

and gives a 6 function together with terms which
oscillate as a function of the upper limit. Hence the
matrix element (7) cannot represent the required
scattering amplitude. The source of this difficulty is

the fact that the V„~ interaction is not localized in
the vicinity of the target nucleus. On the other hand,
the prior expression (6) certainly does converge as
the interaction V„A vanishes outside the nucleus. In
order to obtain a satisfactory post expression for the
three-body problem it is necessary either to retreat
to the basic formalism or more simply to transform
the valid prior expression (6), using Green's theorem
and the equations defining the distorted waves. The
latter course yields, if we take the r„& integral out to
a radius R„:
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where we have written x~&+' for
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and similarly for xp( )*. The above relation is valid
for both the two-body and three-body final state
problems. Indeed if we take R„ to be the radius of 2
then the second term on the right-hand side is Butler' s
%ronskian expression for the scattering amplitude for
bound or unbound neutrons with distorted waves. If
R„is taken to be large then in the bound state case this
surface integral vanishes and we have derived the usual
equality of prior and post distorted wave expressions.
In the three-body case the left-hand side converges
to the prior expression (6) but while the sum of the
two terms on the right-hand side also converges to
the required scattering amplitude, the separate volume
and surface integrals have equal and opposite Quctua-
tions as R„ increases.

EVALUATION OF THE SCATTERING AMPLITUDE

Ke have found that for suKciently large R„both
sides of Eq. (8) give the required scattering amplitude
but that the left-hand side is not suitable for evalua-
tion. On the right-hand side the volume integral may
be found for a particular R„using the well-known
computing methods of the zero-range DWBA for the
bound-state problem but the surface term is plainly
far too difficult to evaluate. Hence we are forced to
consider various mathematical devices in order to ex-
tract the scattering amplitude. In the following para-
graphs we present two such methods.

Our approach to such devices is that the volume
integral in the post matrix element (7) which, though

it "formally" represents the scattering amplitude,
fails to converge to the correct result, may be com-
pared to a formal series (e.g. , a perturbation expan-
sion) which fails to converge. Such series are often
summable to the proper result by such devices as the
rearrangement of terms, and we shall see that the same
applies here. We present two applicable devices.

Firstly, we expand all the scattering wave functions
in partial waves. The valid prior matrix element (6)
then becomes,

Q (xf,(,( )))tQ, $„( )
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where, for instance, P~, („( ) is an exact eigenfunction
for (3+v), the component of f))( )(k„,r„g, p) which
survives if the incident neutron plane wave in the latter
is replaced by its 3th component only. Now the trans-
formation (8) from prior to post matrix elements ap-
plies equally well if each directed wave function, e.g. ,
p)3( )(k„, r„d, () is replaced by a single partial-wave
component, e.g. , P~, („( ). There is the vital difference,
however, that when R„ is taken to infinity, the volume
matrix element on the right-hand side of (8) actually
converges in the case of partial waves, and the surface
integral vanishes: the integrand of the r A integral is
of the form (oscillatory function of r„d)/r„d. This
means that we have validly, in place of (8), the post—
prior equality for partial waves:

(xf, l QB,(„ I VnA+VyA VdA. I Pdx(, (g fA)
= (Xr, (,( )f)),(„( '

I
V „+V„x V,J) I PdX;, (,(+)))t'd). —

(10)
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One can easily see that the sum over l values in (9)
is strongly convergent and the same must apply if we
use (10) to replace each prior matrix element in (9)
by its post counterpart. Therefore we have proved that
a valid expression for the scattering amplitude is the
partial-wave, post sum:

Z (Xr,~.' 'S., l.' '
I ~ +~ A

—~, I edX'. I,'+'~A)
lyt~lg

where, for instance,

c(r„A, cr) =exp( —err„A). (14)

When a narrow virtual state 8*is present, one needs
take account of only one value of l, or very few values.
Our Anal prescription, then, is to evaluate the V„„
matrix element on the right of (13) for some finite
values of 0., extrapolate numerically to 0.=0, and
lastly sum over /„, as in (12), if necessary. Since one
will, in practice, expand xr& & and x;&+& in (13) in
partial waves, this is actually only equivalent to eval-
uating (11) with convergence factors C (r A, n) instead
in the partiaL-wave integrals, where they are not re-
quired in principle because the integrals converge
anyhow; but the factors C will help numerically to
expedite the convergence of the procedure.

The only difference between this valid, convergent ex-
pression for the scattering amplitude, and the invalid,
divergent on.e (7) resides in a reversal of the order of
spatial integration and summation over / values.

A straightforward evaluation of (11) would mean
following precisely the conventional procedure used
for bound final states, except for replacing a bound-
state wave function lt B by a positive-energy one

However, the radial partial-wave integrals
would converge excessively slowly.

Our second method consists in expanding only the
wave function pB& & of the prior matrix element in
partial waves, i.e., we take

Q (xr' '(k„ r,B)llB,l
~
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4

Xpdx;&+&(kd, rdA) 4A). (12)

On transforming these matrix elements to the post form
by Green's theorem as in (8), we find that again the
post volume integrals do not converge when E„—& ~,
nor do the surface integrals vanish. However, one can
prove that a correct post —pri.or correspondence is ob-
tained by introducing a weak convergence factor into
the post matrix element, i.e.,
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The square modulus of the resulting T-matrix ele-
ment yields the differential cross section, or correlation
function, for production of neutrons and protons of
definite energies and directions k„and k„. We need
for this a good approximation to the wave function
/Bi & describing neutron scattering on A, preferably
at the peak of the resonance level 8*. If the neutron
is unobserved (as in usual stripping experiments), or
only the energy integral over the resonance is measured,
one can perform the appropriate integration over k„
ol Ey.

APPLICATION

Calculations are being made for the 0" (d, prl) re-
action proceeding via the d; resonance in 0'~. In these
we use measured deuteron and proton optical model
parameters and a neutron wave function derived from
a real potentiaP which reproduces the observed 0"
(n, rl) phase shifts.
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Discussion

ZAMlcz: Do you obtain the same result if you use a slightly
bound wave function rather than a scattering wave function for
the neutron?

Mnxs: There is no theoretical justification for the calculation
you suggest. It might give a similar numerical result but this
would not be of interest.

McCARTHY: Could I ask you the question that Jerry Phillips
asked me? It seems that you are more qualiQed to answer it. This
theory seems to have some chance of. describing something like
(p, 2p) where the anal particles would stick together for a while.

MrNEs: This may be possible. I am not very familiar with the
(P, 2p) reaction.

Parr, LTPs: It seems to me that in the very nature of your model
you have just built in that assumption of the time delay, haven' t
you?

MzNEs: Yes.
PHn, Lips: I would just like to remark that it seems to me this

is the power of this approach, because in so many stripping re-
actions, and in the interpretation of stripping measurements, one
tries to deduce essentially how much single-particle state there is;
so that this work of Mines is important, because from another
experiment, namely, from neutron —oxygen scattering you know
how much there is, so now you can check up on the theory. Not
just your theory, but direct interaction theory.

MOINES: This is our intention.
PUGH: The point being that you have one extra particle to

study. You have more experimental information and more ways to
check your theory.

MxNEs: We used the potential arrived at in the proceedings in
the Kingston Conference.

FowxER: That's a good one, toot

' J.L. Fowler, E. G. Corman, and E. C. Campbell in Proceedings
o~ the Kingston Conference, Kingston, 1960, edited by D. A. Bromley
and E. W. Vogt (University of Toronto Press, Toronto, 1960),
p. 474.


