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I discuss the theoretical interpretation of the (p, 2p)
reaction as the direct knockout of a proton from a
nucleus by a single-particle interaction with an in-
cident proton. The analysis up to date shows that there
is very interesting information about the details of a
nuclear reaction available from (p, 2p) reactions at
various incident energies, as well as information about
the structure of the initial nucleus. It also leaves some
interesting questions that have yet to be answered.

The analysis is carried out in the distorted-wave
Born approximation. I propose to outline the deriva-
tion as completely as I can. However, in order to orient
the discussion I would like 6rst to discuss the simplest
possible model, the plane-wave Born approximation.
In this approximation, the matrix element Tl. is
written in the following way:

d'rt d'r2 exp (—ikl. r,)

&& exp (—iktt r2)v(~ rl r2 ~) exp (ikv ri)4L, (r2).

We are assuming that the knocked-out proton was
initially in a single-particle state fr~. The two-body
interaction is approximated by a local, central inter-
action v(~ rt —r2 ~). The kinematic situation is defined
in Fig. 1. The k's are the wave numbers corresponding
to the 8's.

Making the transformation

ly —I'2=1

we may factorize the matrix element in the following
way

d'r exp [i(kv kr,—) r$v(r)

X d'r'exp[i(kv —kl.—kt2) r'jul, ~(r') . (3)

The erst factor is the Fourier transform of the two-
body interaction with respect to the momentum transfer
suffered by the incident particle. Since we are making
the Born approximation, the best choice for v(r) is a

~ This work was supported in part by a grant from the U. S.
Atomic Energy Commission and by the University of California
Opportunity Fund.

pseudopotential that fits free (p, p) scattering, that
is a function whose squared Fourier transform is the
differential cross section for (p, p) scattering. This is
a momentum space approach. We are using a model for
the interaction that reproduces the right momentum
components on the two-body energy shell. It is also
a model for the interaction off the energy shell. Now,
when Tr~ is squared, the first factor is the free (p, p)
cross section.

The second factor is the Fourier transform of the
bound-state wave function with respect to the mo-
mentum transfer suffered by the residual nucleus or
the supposedly inert core. It is the momentum —space
wave function of the struck. particle.

It is obvious, even though the plane-wave approxi-
mation may have only a rudimentary resemblance to
the facts, that there are two types of information in the
reaction, one about the two-body force, one about the
wave function of the struck particle. How do these
things affect the angular correlation?

First, the bound-state factor is familiar in plane-wave
direct interaction theory. For a surface interaction it
is a spherical Bessel function which is zero at zero
momentum transfer if L&1, maximum at zero mo-
mentum. transfer if L=o. Specializing to the case
Er, Est, Q=O, 0r, =8t——2 ——0 for simplification of the dis-
cussion, zero momentum transfer occurs when the
struck particle was stationary at the moment of im-
pact, that is when 0=45'.

If 8 is varied, we have two spherical Bessel functions
in the angular correlation, one for 8(45' representing
a collision with a particle moving away and one for
0)45' representing a collision with a particle moving
towards the incident particle. For L&1 there are two
peaks. Conservation of momentum says they must be
of equal height and mirror images about E=o if
plotted against E rather than 8. The width of the
spherical Bessel function depends on L and on the
rms radius of the wave function.

The erst factor influences the angular correlation
in the following way. The (p, p) cross section is greater
for a collision with a particle moving away, that is for
lower energy in the two-body center-of-mass system.
Therefore the left peak is higher than the right.

This approximation thus gives us the idea that the
width of the angular correlation distribution is related
to the spectroscopic information, the peak-height
ratio (for I.&1) is related to the information about
the reaction mechanism.

I et us now consider the derivation of as exact an
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approximation as possible for the reaction. The tran-
sition amplitude for a reaction due to two potentials
Uand Vis

2' —(@(—)
[ y

~

@(+))y (g&(
—)

[ ff [
@(+))

Fzo. 1 Definition of the symbols used in

(4) the description of the (p, 2p) reaction.

where +&+& are wave functions calculated in the "dis-
torting" potential U. C& ~ is the noninteracting wave
function for the anal state. If the Hamiltonian of the
system is the same before the interaction as afterwards,
the second term is zero. This is approximately true for

(p, 2p), so there is some a priori justification for the
neglect of the second term. (This is not the case for
rearrangement collisions. )

What do we use for +(+~ and 4( &P 0'&+& represents
an ingoing particle interacting with a nucleus. The
distorted wave approximation for this is familiar. It is

+(+)—x(+)/~M (6)

nL(4n'+4n+2) cos' 0—1
X &- (g)(1+n)'(1+2n cos'8)

The distorted-wave matrix element is now

d'», d'r, *(—) *(kr„r,)x(—)*(kR, r&)

&(v(~ ri —r& ~)x(+)(ko, rr)xr, (rs). (9)

I describe a calculation by Lim and myself' starting
from this matrix element. Unless I specifically say
otherwise, I refer to the coplanar symmetric case. We
attempted to use models for every factor in the matrix
element which were as realistic as possible and which

where x(+) is an optical model wave function, Pr,M is
the bound-state wave function discussed before.

+~ & represents a three-body state where two of the
bodies have mass 1 and one has mass A. The wave
function for this state may be separated into one repre-
senting the motion of the center of mass and a two-body
wave function which is the solution of the following
Schrodinger equation

L
—(2tt) 'gr, '+ p'z, —(2tt)

—'~r'H'+ p'R —g—i~ ~ ~R$@( )

=~(—) (7)

The interaction term A 'VI, Vz may be treated as
a perturbation. In the 6rst order the equation separates
into two one-body equations which may be thought of
as optical model equations.

L
—(2tt) ' P+ Vjx( ) =- E'x( '.

The effective energy is, putting n= A ',

1 t' 1+n R.b+0)2 &1+2n

were directly related to simpler experiments so that
there are no free parameters in the theory.

The optical model potentials were found by inter-
polation in the available optical model literature.
Spin —orbit coupling was omitted, since we are not
describing polarizations. This approximation is good
for momentum transfers which are not too large. The
reactions we are describing have in fact quite small
momentum transfer. (I discuss this later. ) The pa-
rameters for the entrance and exit channels, respec-
tively, were Vo, 8'0, and V&, 8 & with an Kckart form
factor described by ro and b.

The bound-state wave function description is most
important. The information we have, assuming a single-
particle model, is the binding energy from the (p, 2p)
experiment itself, and the rms radius of the charge
distribution. This gives us a strong set of constraints
since for light nuclei we have both the s and p--state
angular correlations so that we must 6t the electron-
scattering radii.

In fact calculations with potential wells of different
shapes have shown that with a given binding energy
and rms radius the matrix element is essentially in-
dependent of the well shape, provided it has a fairly
Oat bottom. We used a square well for simplicity with
parameters V~ and a.

For the two-body pseudopotential we used

t'exp (—0.73r) exp (—1 Sr)..(r) = —83~ —S
0.73r 1.5r

+20
i
MeV. (10)

3r j
The squared Fourier transform of this t)(r) gives the
fit to the 90' differential cross section for (p, P) scatter-
ing shown in Fig. 2.

Figure 3 shows the result of the calculation for 155-
MeV incident protons on C" compared with experi-
ment. '

There are two things to be noticed about the result.
First, the magnitude of the left peak is fairly well
reproduced. Less exact single-particle direct inter-

' K. L. Lim and I. E. McCarthy, Phys. Rev. Letters 13, 446
(1964).' J. P. Garron, J. C. Jacmart, M. Riou, C. Ruhla, J. Teillac,
and K. Strauch, Nucl. Phys. 3'7, 126 (1962).
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I' IG. 2. The differential
cross section for (p, p)
scattering at 90' calcu-
lated from the 3-Yukawa
pseudopotential' plotted
against experimental data.
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Fro. 3. 155 MeV (p, 2p)
angular correlation for the p
state of C" compared with
theory.
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' K. L. LinI and L E. McCarthy, Phys. 133, 81006 (1964).

action theories have not previously reproduced mag-
nitudes anywhere near correctly and this is a very
hopeful indication that we are on the right track.
Second, the size of the right peak is underestimated
bv a factor of about 2. Our intuition from the plane-
wave model would tell us that we have not enough high
momentum transfer components in the two-body
interaction.

We have varied the factors in the integrand of the
matrix element to see if the correct angular correla-
tion can be produced without using hopelessly un-
realistic values of the parameters. Our experience with
zero-range calculations' has shown that, although dis-
tortion does reduce the right peak relative to the left
peak, the large observed effect certainly cannot be
reproduced with any believable optical model pa-
rameters.

The binding energy and rms radius of the bound-
state wave function are 6xed, but we have arti6cally
added a 20% admixture of a 2p wave function in an
in6nite square well of the same radius in order to see if
additional high momentum components in the bound
state will help. This admixture changed the differential
cross section by about 1%.

However, as expected, the ratio of peak heights
turned out to be very sensitive to the amount of one
pion component in the interaction. Reducing the ratio
of one pion component by a little less than a factor of
2 produces a reasonable 6t to the experiment. The 6t
for a factor of 2 is shown in Fig. 4.

It might be asked whether the spin dependence of

the two-body force might not change the result ap-
preciably. We have carried out an explicitly spin-
dependent formulation of the problem. In the cross
section there are terms which contain space —symmetric
and space —antisymmetric matrix elements.

In the zero-range DWBA, the space —antisymmetric
terms vanish for the case of symmetric coplanar scat-
tering. With our pseudopotential the antisymmetric
cross section calculated without spin —orbit coupling
is 1% of the symmetric cross section at 155 MeV and
20% at 50 MeV. We can neglect it at 155 MeV. The
size of the antisymmetric cross section is a measure of
how far off the energy shell we are. Spin —orbit coupling
is small at 155 MeV.

A preliminary formulation of the problem has been
made with a velocity-dependent two-body potential.
In this case, the separation approximation is not equiv-
alent to the impulse approximation and it is possible
for the angular correlation to be different at 155 MeV
from the impulse approximation value. It is shown later
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Fro. 4. The angular cor-
relation for 155 MeV (p, 2p)
on the p-state of C" with the
core terms in the interaction
increased by a factor of 2.
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that the impulse approximation is quite close for the
local pseudopotential at this energy. A calculation
using simpli6ed optical model wave functions will be
performed with spin —orbit coupling and velocity de-
pendence. Of course it must be realized that the local
pseudopotential is chosen in such a way as to simulate
the velocity dependence in free (p, p) scattering.

The questions we are left with are: Is it necessary
to use a better approximation then the distorted-wave
Born approximation to describe the reaction? If a
better approximation does not give a significantly
different result, can the difference between the two-
body interactions inside and outside nuclear matter
be explained by a theory of nuclear matters These ques-
tions are left for the future, but it is possible to make
one qualitative observation.

Momentum transfers under discussion here are not
much greater than 1 F '. This is the reciprocal of the
healing distance at which, at least for infinite nuclear
matter, the two-body wave function becomes like the
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wave function with strong short-range correlations.
This at least indicates that the strong correlations are
not likely to upset a simple two-body theory like the
distorted-wave Born approximation for the momentum
transfers we are concerned with.

The present theory is sufficiently complete to answer
some more questions of principle. It may be asked
why it is useful to use a pseudopotential which is a
model for the two-body interaction both on and oG
the energy shell, when we only know the two-body
interaction on the energy shell. Is not the impulse
approximation adequate' We can answer this question
by comparing our result with the impulse approxima-
tion for the same situation.

We first make the separation approximation. That'
is we use Eq. (3) with the second factor replaced by
the zero-range distorted-wave matrix element. The
first factor is replaced by the appropriate expression
on the two-body energy shell. Figure 5 shows how the
impulse approximation compares with the more exact
theory at 155-MeV and 50-MeV incident energy.

Although the impulse approximation is not bad at
155 MeV, it is very far off at 50 MeV. This leads to the
useful conclusion that (p, 2P) experiments at 50 MeV
contain a large amount of information about the eGec-
tive two-body force in nuclear matter off the energy
shell. (p, 2p) experiments are a very good way of
getting this information because they are particularly
simple experiments with a three-body final state. The
fact that one of the bodies is heavy enables us to use
the separable perturbation expansion of Eq. (6).

So far I have not said much about the information
that can be obtained about bound states. Our early
zero-range calculation' showed that the rms radii of
the s and p states in light nuclei can be well enough
determined to show that, if the square-well parametri-
zation of the wave functions is used, the s state well is
narrower and deeper than the p state well. This state
dependence of the single-particle potential also arises
from the finite nucleus calculations of Brueckner,
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FIG. 6. Comparison of the
angular correlation for 155-
MeV protons on the p state
of C" for EI,=Eg=69.5 MeV
(full line) with that for Er,=
74.5 MeV, Eg =64.5 MeV
(broken line), showing how
poor energy resolution can 611
in the minimum.
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Lockett, and Rotenberg. 4 The finite range calculation
bears this out. The s-state rms radius appears to be
a little larger than that of the n particle.

The calculation also contains information about the
adequacy of simpler methods of analysis. The 155-MeV
results show that at higher energies the impulse approx-
imation should be quite good enough for obtaining
spectroscopic information. Jackson and Berggrens have
compared a simple zero-range distorted wave calcula-
tion at 170 MeV for a very light nucleus, Li, with a
plane wave calculation which is modified by introduc-
ing space weighting factors related to the WEB ap-
proximation. The agreement is good enough to show
that at very high energies, say greater than 200 MeV,
a modified plane wave approximation in conjunction
with the impulse approximation is su%.cient to tell us
about the bound-state properties.

Finally, I would like to mention one experimental
point. It is noticeable that the low momentum transfer
minimum in the angular correlation is much deeper in
theory than in experiment at 155 MeV (although at
50 MeV the distortion turns the minimum into a maxi-
mum just as it does for 2+ excitations by proton in-
elastic scattering at low energies) . Good angular resolu-
tion does not change this. However, if only the sum of
the final energies is well resolved, there is an explana-
tion. Unequal final energies with the same sum can
shift the minimum considerably as is shown in Fig. 6.
Here the curve for EI,= Eg in the zero-range approxi-
mation is compared with that for Er, N.5 MeV, ——
Eg ——64.5 MeV. We conclude from this that individual
resolutions of at least 1 MeV are needed.
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Discussion

ZAMTcK: I can't see from your expression for your distorted-
wave scattering amplitude that it would involve, at all, a two-body
scattering amplitude. Can you show how you do thatP

Mt:CARTHv: Yes. lt involved a two-body scattering pseudo-

FIG. 5. Comparison of the impulse approximation (broken
line) with the Inor|; gxgct theory at 155 Me+ (lqft) gag 5Q ]geV
(right).

'K. A. Srueckner, A. M. Lockett, and M. Rotenberg, Phys.
Rev. 121, 255 (1961).

& D. F. Jackson and T. Berggren (preprint),
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potential which, if you believe it, gives you a two-body scattering
amplitude.

ZAMIGK: In what way?
McCARTHY: This pseudopotential is not taken outside the

integral, as you do in the impulse approximation. Therefore, there
are virtual momentum components of the T matrix which you
have to integrate over, which do not conserve energy. The third

body can take away some energy.
ZAMIcK: Can you show in an operational way how one can get

off the energy shell?
McCARTHY: Yes; the operational way I suggest is to make a

pseudopotential and put it into the calculation. It has to be done

through a pseudopotential, the way I am talking about it. This
may not be the best way. You start with a good pseudopotential
on the energy shell and get into a situation where you know you
are off the energy shell. Now the calculation done this way has
shown that you can get oG the energy shell given a certain not
thoroughly correct pseudopotential. This shows you where you
have to look to be off the energy shell. Then the only operational

way I can suggest is that you find a phenomenological pseudo-
potential that fits. It may be that there is no pseudopotential
which fits both (p, p) and (p, 2p) data. Then we have a many-body
force.

ZAMIcK: Is the difference between the impulse approximation
and your approximation that it simply replaces the potential by
two-body scattering amplitude? Is that correct?

McCARTHY: No. What you have to do to our approximation to
get the impulse approximation is first of all make the separation
approximation. This is exact for plane waves. You separate the
double integral into two single integrals. The term on your right
is the zero-range plane wave calculation. You change this to a zero-

range distorted-wave calculation. The term on your left, which is
the Fourier transform of the two-body wave function, is still o6 the

energy shell slightly because of kinematics. You get to the nearest
place on the energy shell and use the corresponding two-body
scattering cross section, after squaring.

ZAMICK: Is there any way one can investigate ofF the energy
shell p-p scattering without going into such complications?

PUGH: There is one way to study oB-energy-shell p—p scattering;
I believe it was suggested by Marshak a number of years ago. One
can look at free p-p scattering accompanied by bremsstrahlung.
The y-ray spectrum is expected to have a peak at the high-energy
end, where both protons are emitted in the same direction at a
rather small angle to the beam.

ZAMIcK: Since your expression for the T matrix is no longer
factorable how do you know that you are still extracting the mo-
mentum distribution of nucleons in the nucleus?

McCARTHY: This is a point of contention which I have had a few
pointed arguments about. You don't know this. In fact you are
not even allowed to use the word! The momentum distribution of
particles in the nucleus is a plane wave Born-approximation con-
cept. It doesn't bear any relationship to an experiment. You have
to talk about the momentum transfer distribution. They are
inextricably mixed up, as you say.

Let me say one more thing: It turns out, from curve fitting, you
can uniquely extract a wave function which, if you like, gives you
a momentum distribution, but this is a kind of roundabout way of
saying things.

PHILLIrs: Would you care to comment any about what would
have to be done to such a theory in interpretations of the data,
such as Dr. Riou showed us, if there were some time delay in the
emission of the two protons? If there were a significant nonzero
time interval between the emission of the two protons?

McCARTHY: No; I'm sorry. I wouldn't care to comment about
that; Ihave been thinking about this, and Ihaven't thought about
it enough to comment.


