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I. INTRODUCTION

For bombarding energies of only a few MeV, many
nuclear reactions proceed via a compound-nucleus in-
termediate state of width ~1 MeV. In other cases,
particularly at higher energies, a direct interaction
may occur with level width ~10 MeV. For compound
nuclei, the cluster model' predicts one or more pairs
of product nuclei, according to the purity of the cluster
state, as does likewise the direct-interaction model for
direct-interaction states.

If one of the product nuclei is a virtual particle, it
will decay on the cluster model into two nuclei, the
energy —angular distribution of the three fragments
being strongly inQuenced by the strong "final-state
interaction" between the two second-emitted particles.
For compound nuclei, one can get "sequential decay, "
which in some cases can reoccur a number of times.

Experimental evidence for sequential decay falls into
two classes. The less sophisticated group includes
measurements of total yield distributions of particles
and energy distributions of the first-emitted particle.
These include the p(d, e)2p experiment, ' in which the
neutron energy distribution points to a probable
singlet n preson—ance, and the p+d reaction, where
the proton spectra are more peaked than a phase-
space argument alone would predict. ' In the latter
case, the 6nal-state interaction theory of Watson4 (see

. below) gives qualitative agreement with the experi-
mental results for d'o/dE„dQ„.Measurements of total
m—D cross sections and deuteron recoil spectra' yield
inconclusive results regarding the existence of the di-
neutron, due to the two alternative sets of doublet—
quartet scattering lengths. However, other data6 on the
proton energy spectra for e—d collisions shows a strong
6nal-state interaction peak at the upper end, indicatin
the presence of the di-neutron. Another very nic
experiment on the electrodisintegration of the deutero
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by 146.9-MeV electrons~ measured the distribution
d'o/dE dQ of scattered electrons. It showed, besides a
broad quasi-elastic peak centered at 112 MeV and a
narrow elastic peak at 128 MeV, a small, narrow, final-
state interaction peak above 2 MeV below the elastic
peak, attributed to the e-p singlet state.

Finally, in the erst group, there is a large number
of measurements of the 8"(P, n) Bes reaction, usually
directed towards measurement of the C"*intermediate-
state level parameters, ' with little attempt to interpret
the distributions in more detail.

Interpretation of the above experiments is often
made ambiguous in that the measurements do not
distinguish between first- and second-emitted particles,
if both are charged. This can only be resolved by triple-
coincidence data, in which the energy and angle of
both erst- and second-emitted particles are measured
simultaneously (one of the energies is actually re-
dundant). Energy —momentum conservation relations
reduce the number of measured variables needed from
the nine involved in three vector momenta variables to
five, supplied by the solid-angle elements of the first-
and second-emitted particles and the energy of the first.

The second group of experiments thus measures the
triple correlationdistribution d o/dErdQ&dQs for the
first- and seconc1-emitted particles. Recent data' " on
the 8"(p, 3n) reaction have shown it to be an almost
entirely sequential decay process for proton energies
of a few MeV. Plots of coincidence yields versus lab
energies Er and Es show strong peaks at RCM (recoil
center of mass) energies checking in position and width
with the 0+ and. 2+ levels of Be . There is also strong
evidence for '5 deuteron and di-proton final-state in-
teractions in the d+p and p+d triple-coincidence

7 M. R.Yearian and E.B.Hughes, Phys. Letters 10, 234 (1964).' 0. Beckrnan, T. Huus, and C. Zupanicic, Phys. Rev. 91, 606
(1953);P. B.Treacy, Proc. Phys. Soc. (London) 68, 204 (1955);
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Rev. 99, 92 (1955);E. H. Geer, E. B.Nelson, and E. A. Wolicki,
ibid'. 100, 215 (1955); G. Dearnaley, G. A. Dissanaike, A. P.
French, and G. L. Jones, ibid. 108, 743 (1957); D. Kamke, Z.
Physik 156, 603 (1959);156, 621 (1959);R. Bouchez, H. Beaume-
vielle, J. Fluery, P. Perrin, R. de Swiniarski, and M. Chabre, J.
Phys. Radium 21, 819 (1960);R. K. Segal and M. J. Bina, Phys.
Rev. 124, 814 (1961);D. Dehnhard, D. Kamke, and P. Kramer,
Z. Naturforsch. 16A, 1245 (1961); Phys. Letters 3, 52 (1962);
G. D. Symons and P. B. Treacy, Nucl. Phys. 46, 93 (1963).
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Phys. Soc.8, 124 (1963),and work to be published; J.D. Bronson
Ph. D. thesis, William Marsh Rice University, 1964 (unpublished) .
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For arbitrary /~, this is modified to

do'i ee (slil rii/ky )de. (2)

These results are approximate, holding only with
the explicit neglect of the hard-sphere scattering phase

(pp=ka), or spatial localization. , valid for ka—+0.
A more general exact treatment has been given by

Phillips, GriGy, and Biedenharn, '4 via the generalized
density-of-states function in the continuum. The
reaction

(3)

for sharp states 8 can be treated by perturbation theory
to yield the differential cross section for particles b,

d'o/d Epd pep = (p.iepk p/4~%'k, )

where H' is the interaction Hamiltonian for (3) and
a+2, E, ) represents the initial-state vector,
B+k, Ep& the final-state vector. The initial and final

wave numbers are k, and kp, and p(EIi) is a generalized
density-of-states function for sharp states 8 with

"W. D. Simpson, J. D. Bronson, W. R. Jackson, and G. C.
Phillips, William Marsh Rice University, 1964 (to be published)."J.P. Aldrich, B. H. Wildenthal, and D. H. Youngblood,
Physics Department, William Marsh Rice University, 1964 (to
be published) ."P.F. Donovan, J. V. Kane, 6. Zupancic, C. P. Baker, and J.
F. Mellenauer, Phys. Rev. 135B, 61 (1964).

'4 G. C. Phillips, T. A. GriGy, and L. C. Biedenharn, Nucl. Phys.
21, 327 (1960).

measurements at Rice."Similar measurements" on the
He'(He', er) 2p reaction show the predominant se-
quential decay mode to be via the intermediate state
p+Li'. Finally, an experiment using 40-Mev u's in
0"(n, 2a) C"a,. gave triple-correlation spectra, " inter-
preted as a mixture of sequential decay via intermedi-
ate-state Oip*+n, and direct knock-out scattering.
The latter eGect might be expected at the compara-
tively high energy employed.

An early approximate treatment of Anal-state inter-
actions was given by Watson, 4 the total interaction
being split into primary and final-state components.
The primary reaction occurs within a certain inter-
action volume and the 6nal-state interaction over a
somewhat larger volume of configuration space.
Watson considered the reverse reaction proceeding
backwards to produce the initial virtual state particle
irIside the con1pound-nucleus interaction volume a'.
The probability of this occurring is proportional to the
final-state particles' scattering cross section (sin'rip)/kr',
and to the momentum component d'ky=k~'dk~dQ~ of
phase space (kr ——final-state wave number, and lan=0),
By detailed balancing, the final-state contribution to
the cross section for emission of the first product
particle is the extra factor sin'/peaky, so that

do.o~ sin2 qodk~.

eigenenergies E„:

If the incident energy E is near a narrow level of D*
well separated from other levels, we may replace (4)
by single-level dispersion scattering to give the energy—
angle distribution for particle b as

d' /dE d = ( /k. ')g II'.I',/I (E.—E.)'+-' ix'$}

where I'q. and Fq, are the ingoing and outgoing partial
channel widths, respectively, Ez. is the resonance
energy, and I'q= g I'i, summed over all channels er.

Also we have

gg= (27+1)/(2I~+1) (2i,+1), (7)

where D* has total spin quantum numbers J, M, and
I~ and i are the intrinsic spins of particles "A" and
"a," respectively.

If 8 is not a sharp state, but is in a virtual or reso-
nant state which decays further into two particles:

B~c+C,

then the generalized density of states (5) for sharp
states must be replaced by that for a semistable particle
J3 (note the transition probability involves the density
o:f final states).

A calculation of the number of eigenstates of 8
allowed between two spheres, the one of the small inter-
action radius "u" and the other of an arbitrary large
radius E, gives the density of states approximately'4
(the radii "a" and "E"are not strictly multiples of
the one de Broglie wavelength):

Pi. (Eii) =& (d/dpi) I l~. (k )+~4(k ~) 3 (9)

where rii. (k,) is the elastic-scattering phase of the final-
state particles with relative orbital angular momentum

l„@(ik„a)is the hard-sphere scattering phase of the
Anal-state particles, Ei3= (5'/2pii)k, ', and pii is the
reduced mass of c+C.

An exact treatment, "based on the renormalization
o:f the final-state wave function between spheres of
radius "u" and "E," respectively, gives the result

pg t9

pi, (Eii) =— (&i, costi, +Gi, sinr74)'
4wPk, ' ' ' ' '

Bk,Br,

~ pin (Fi. cos sit. +Gi. sin rii. )] I"=

pg+~

2 BAi,
~ k,—'— '

sin 2(gi. +-gi. )
A), Bk.

—k, ' A)
' ——

' ' sin'q)
'BrBk, Br Bk,
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IIere, Fl (k. r) and Gl (k, r) are the regular and irregular
wave functions for zero short-range potential (Coulomb
wave functions in the Coulomb-field case), and

A 1
——(FI'+Gl"') ''.

In the single-level dispersion scattering approxirna-
tion, both expressions (9) and (10) for Pl, (EB) reduce
to the forms

sin (gl, +$1:,) I 1/2a
Pl (EB = 12

L(E.—E)'+ll' 'j '

where I'q=21 ~,yq, ' and yq' is the reduced width of 8
for decay into channel P, ,

p, .=(a'/2pBu)-:LF, .cosg, .+G,, sing, .]"=.

= (fl'/2PBa)')AI, sin (g4+Q4) $ —, (13)

and P4 ——ka/Al. ' is the penetrability.
The approximate expression (12) has been derived

by a number of authors" "and commonly assumes the
semistable state 8 decays exponentially, an assump-
tion most nearly valid for narrow levels. Trammell'~
has in fact shown that broad levels lead to correction
factors of order t &"+3) to exponential decay, deriving"
from the energy dependence of the numerator of Eq.
(12)

Note the generalized density-of-states function
Pl(EB) enables the scattering to be described in terms
of the experimental phase shifts for scattering of the
final-state particles, no knowledge of the interparticle
interaction being required.

From Eq. (6), the scattering amplitude for "b" be-
comes (cf. Appendix II)

, I'b. ll'bb-* expL2i(gl, +0 1,) ]
f4,0(Ebj fb) 4) g&

t, &x.—&a—g&I z)

'Plo'(EB) ~4,0(ebi 4%) y (14)

where o.l, is the Coulomb phase (75) and gl, the in-
elastic phase for channel b. The corresponding triple-
correlation amplitude for the distribution of both
particles "b" and "c"is then

1
mrs

fit„0;l, ,m, (Ebj eby 0'b j gc) lac) gJ'
a

xb exP L ~(g +4lb)o] x(E ),l
L ( ~ )]

I 1,0(gb 4b) Fl. . .(~ 4' ) exp (&Pl, ) (15)

» C. %'. Cook, W. A. Fowler. C. C. Lauritsen, and T. Lauritsen,
Phys. Rev. 111,567 (1958); T. A. GriGy and L. C. Biedenharn,
Nucl. Phys. 15, 636 (1960);E.%.Hamburger and J.R. Cameron,
Phys. Rev. 117', 781 (1960).

'6 M. L. Goldberger and K. M. Watson, Collision Theory (John
%iley R Sons, Inc. , New York, 1964), p. 450.

' Q. T. Trammel, Qak Ridge National Laboratory, Physics
Division Report, September 1956, p. 7 (unpublished).

where p, , is a phase constant, p4 g——l, +pl„which in
the single-level dispersion scattering approximation is
equal to the resonant phase. Thus if (12) holds for
pl, (EB), then

Pl. =gl, +Pl. , tan pl, ———,'I'B/(EB, I, —E,). (16)

In the latter case, we identify

Pl, '(EB) exp &44 (IB,l,/27l) '!(EB,l, E '10 1 B) ~

In the resonant-scattering approximation, the gen-
eralized density-of-states method gives the same ampli-
tude as obtained via the resonant-pole, intermediate-
state method (c.f. intermediate-state transition 0—&I—+

m, modified to allow fox. exponential decay of l, and
parameterized assuming exact wave functions. This
gives

Jul +10

"G. Bonnevay, Nnovo Citnento 30, 1325 (1963)."J.Letessier, Phys. Letters 10, 102 (1964).
'0 V. L. Telegdi, Phys. Rev. 84, 600 (1952).

as the matrix element), provided we sum over possible
alternative sernistable states of B.

The simplest case of sequential decay is the reaction

p+B "~C""'~nI+Be' Be'—+n +n (18)

at proton energies of a few MeV. The odd parity of B"
and low proton energy shows that only l=i protons
contribute, since known level diagrams and reaction
data indicate that only the 0+ and 2+ states of both C"
and Be are appreciably involved. This and the zero
intrinsic spin of n particles greatly reduces the number
of channels normally expected in reactions, making
both theory and data interpretation much simpler.

A pilot treatment of the problem was made by
Bonnevay, ' applying field-theoretic methods to the
BI+A~&I+&0+20 process for spinless particles in
only one partial wave channel. All two-body interac-
tions are described by resonances, with the first two
rescatterings allowed for, the latter giving correcting
terms to the scattering obtained using Watson's final-
state interaction method. ' The model has in fact
been applied to the C"(y, 3n) photodisintegration
process, giving good agreement with experiment, while
Watson's method gives fair results. '9 The reaction
actually appears to have been recognized as sequential
much earlier. '0

The generalized density-of-states method takes ac-
count of rescattering of the two final-state particles.
If the decay is truly sequential, with the first particle
emitted well before the second two, then rescattering
between first and second, and between first and third
particles should be negligible. It is also probably par-
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II. REACTION KINEMATICS FOR THREE
FINAL PARTICLES

Both the energy-spectrum function d'0/dEdQ for
one final particle, and the triple-correlation distribution
d'o/dEidQidQi for two final-state particles, are propor-
tional to the corresponding transition probabilities.
The transition probability for a reaction has the form

ie = (2ir/5) i
H j'p~(E), (19)

where H is a compound matrix element, " involving
summation over any intermediate states, and pi (E) is
the density of final states. Cross sections are obtained
from Eq. (19) merely by changing the normalization
of the incident particle "a" in Eq. (3) from one par-
ticle in volume 1.' to one particle incident on unit
normal area per second.

Two diGerent-reaction mechanisms are possible for
three-body decay: (1) direct break-up into three
particles and (2) sequential two-body decay. For direct
break-up, H in Eq. (19) is commonly assumed to be a
constant, so that the decay probability is uniform over

"I.Duck, Nucl. Phys. 5'7, 643 (1964)."R.J. N. Phillips, Nucl. Phys. 53, 650 (1964)."F. Ferroni and V. Wataghin, Nuovo Cimento 28, 1342 (1963).
'4 D. R. Koehler and R. A. Mann, Phys. 1358, 91 (1964).
~ J. McConnell, Quantum Particle Dynamics (North-Holland

Publishing Company, Amsterdam, 1958), p. 157.

tially allowed for by adjustment of the somewhat
arbitrary interaction radius "a"of D* in (3).

Duck" has given a field theoretic treatment of the
8"(p, 3n) reaction, allowing for all partial-wave
channels important at low energies, and treating all
two-particle interactions by resonances. In the next
section, we employ the generalized density-of-states
method along the lines laid down above.

Other calculations which have been reported include
estimates of p—p and n —ie final —state interaction effects,
in particular the energy spectrum of particle X in the
reaction 2+B~x+2E. A sharp peak at the upper
end is found, with a Coulomb field damping the peak.
V/atson's method was employed"

Alternative approaches which have been used are a
field-theoretic, impulse-type approximation calculation
of d'a/dE„dQ„for e+d~2n+p, giving fair agreement
with experiment except at the upper end, " and a
direct-interaction, Born-approximation treatment al-
lowing for '5 deuteron and continuum di-neutron'4
The spectra in the latter case were in fairly good agree-
ment with experiment, although only /=0 encounters
were considered. In contrast, the Garnmel —Thaler po-
tential was employed. Neither of these two calculations
attempted the triple-correlation cross section, which is
much more sensitively dependent on the final-state
interaction.

the available phase space. For particles of spin zero,
there is one final state in each phase volume h' for each
particle (replaced by 2s+1 for particles of spin s),
which we assume hereafter. %e then obtain the cross
section

do = Cpp (E),
where for total energy E=E,+E&+E&,

(2,0)

8 (E—QP;2/2m;) 8 (Pi+P2+Pe)

~ dP (h') 'dP (h') 'dP

(h') —' dP2(h') -' dP, ,dE p2 p3
(21)

on allowing for conservation of energy and momentum. '
C is a constant in (20).

Several authors'~ "have treated the purely statistical
decay (direct break-up) of many-body systems. The
first two+'8 deal with decays into three or more par-
ticles, measuring the energy spectrum of one final
particle only, while Chuan" does likewise for the three
final particle case alone. Relativistic formulas for the
momentum distribution dpi'(E)/dI'i have been given

by Block'0 for systems of 3—5 particles.
Equation (21) for p» (E) has been integrated to give

the results" (note errors in reference)

d'a./d EidQ i

= C'E,'fE ((mi+m2+me)—/(m2+me) )Ei]&, (22)

d'~/&Ei&QiclQ2= C&i&2'/I &&2++1 cos ~12 +0 cos B2 ty

(23)
where

t'mi+m2+m31* *me EeC= 7r'
me i mi (Ei'+E2'+Ee') '

E0 being the lab energy of particle "a" and E
(i = 1, 2, 3) the c.m. energy of particle "i." Here 2=
1+me/m2, C' and. C are constants, and Aii is the angle
between the directions of emission of particles 1 and 2
in the laboratory system (lab). Writing Bi, C» and Bm,

C» as spherical polar angles of 1 and 2, respectively,
with respect to the target, we have

cos Di2= cos Bi cos B2+ slil B sin 82 cos (O' —C' ).
(24)

Here E; and I'; are in the lab system.

"S. DeBenedetti, Nuclear Interactions (John Wiley R Sons,
Inc. , New York, 1964), p. 314.

27 T. A. Welton, private set of notes distributed by C. B.Moak
(unpublished) .

» G. E. Uhlenbeck and S. Goudsmidt, Verhandelingen man Dr.
P. Zeeman (Martimus NijhoG, The Hague, Netherlands, 1935),
pp. 201-211.

29 C. X. Chuan, J. Phys. Radium 23, 78 (1962).
3' M. M. Block, Phys. Rev. 101, 796 (1956)."T. H. Berlin and G. E. Owen, Nucl. Phys. 5, 669 (1958).
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The RCM (recoil center of mass) spherical polar angles
of 2 (in an xys frame with s axis parallel to the Z axis
of the lab frame) are (82, &2), with SCM and lab angles
as (82', C2') and (82, C2), respectively.

I.ab velocities, momenta, and energies are labeled
U;, 8; and E; (i =0, 1, 2, 3), where i=0 denotes the
incident particle; SCM quantities are V, I', and E,
and relative quantities between i and j in RCM are
v;;, p;;, and e;,. Solid-angle elements are correspondingly
dQ;, dQ, and d~, in the three systems.

In Fig. 1, we take components of velocity of particle
2 along the Z, X, and I' axes to obtain the relations
between lab, RCM and SCM coordinates

s ~

FIG. 1. Coordinate systems for p+B"—+C' *—&n1+Bes Be ~
2+0. 3 reaction. In SCM (system center of mass) coordinate sys-
temX' I"Z', particle n1 has spherical polar angles (91', 4 1') and its
vector distance from Be (particle 5) is R. In RCM (recoil center
of mass) coordinate system ryan, the Be' breakup particles have
spherical polar angles (02, @2), with vector distance apart r.

V2 Cos 82= (@22/m2) I 22 COS 82

—
t mI/(mI+m2+ms) (VI 22' COSBI'+vD,

V2 sin 82 cos c&2= (p22!m2) 'v22 sill 82 cos $2

I mI/(mI+m2+ms) jVI 22 Sill 81 COS 4I

V2 Sill 82 Sill 42 = (@22/m2) 'V22 Sill 82 COS $2

The distributions (22) and (23) are in fact subject
to modifications due to angular momentum and Cou-
lomb effects, as discussed by Delves. " However this
does not change the characteristic cross-section shape,
which shows broad smooth variations with El.

The sequential decay process also involves the same
c.m. density-of-states factors pI (E) as in Eqs. (22)
and (23), as has been found by Duck" via the phase-
space method. However, the compound matrix element
H in Eq. (19) is no longer a constant, and must be
evaluated. One 6nds strong enhancement of the coin-
cidence yield vs E& where the internal cluster energy
e» equals the energy of a metastable state in the inter-
mediate nucleus 8, the sharpness of the peaking de-
pendent on the intermediate state width. If two or
more of the three particles are nonidentical, they may
alternatively enter different counters, this being de-
tected either directly or via the different loci obtained
when particle yields are plotted against El and E2.
Different cross sections are thus obtained for the several
possibilities in a complete experiment. The wave func-
tion and hence amplitude should be either symmetrized
(if bosons) or antisymmetrized (if fermions) with
respect to identical particles, where of course the yield
vs Ej and E2 loci are degenerate.

Figure 1 illustrates the sequential decay for a beam
"p" (particle 0) along the Z axis, incident on a target
at 4. The first emitted particle 1 has spherical polar
angles (8,', C»') in SCM (system center-of-mass co-
ordinates) and (8,, CI) in lab coordinates. The recoil
particle at 5 is vector distance R from 1, and decays
to final-state particles 2 and 3, vector distance r apart.

"L.M. Delves, Nucl. Phys. 20, 275 (1960).

—Lml/(mI+ms+m, ) jV, »' Sill Bl Sill CI (25)

where V&»' is the relative velocity in SCM of 1 and
the recoil system (23) (labeled 5 in Fig. 1), vD is the
SCM velocity of D" in Eq. (3), and II22 is the reduced
mass of 2 and 3. Note Vl'= (pl —22/mI) VI—22 where pI 2„.
is the reduced mass of 1 and the recoil system 23.

Rewritten in terms of momenta, Eqs. (25) become

P22 cos 82 P2 cos 82

+ (1/A) PI' cos 81'—(1/8) I'2,

p22 sin 82 cos $2= P2 sin 82 cosC'2

+ (1/A) PI' sin Bl' cos Cl',

p» sin 82 sin $2 ——Ps sin 82 sin C 2

where
+ (1/A) I'I' sin 8,' sin CI', (26'l

A = 1+(ms/m2),

8= 1+(ml+m, )/m2,

C=1+(ms+ms)/ml, (27)

V cos 8,= U ' cos 8 '+ V„
V~ sin e~ cos cl = V~ sin el. Cos cl,

Vl sin 61 sin 4l = Vl sin Oy sin 4y & (28)

and'Ep= PD by momentum conservation.
Additional relations are obtained between lab and

SCM velocity components:
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leading to momentum equations

Pl' cos 81'=Pl cos 81—( 1/C) Pp,

I sin ey cos 4'y = Iy sin e] cos 4'y

I'~' sin e~' sin 4'~'= E~ sin 8~ sin 4 . (29)

Substitution of Eqs. (29) in (26) leads to

P22 cos 82= P2 cos 82

+ (1/A) Pl cos 81—( 1/A) Pp,

p22 Sill 82 COS $2 P2 Sill 82 Cos 42

+ (1/A) Pl sin 81 cos Cl,

P22 sin 82 sin $2= P2 sin 82 sin C2

+ (1/A) Pl sin 81 sin C l. (30)

The sum of squares of Eqs. (30) gives the internal
momentum of the cluster 23 as Ldefining 6» in Eq.
(24) 3

p» =
L (1/A') Pl'+ P2'+ (2/A) PIP2 cos L4~+ (1/A') Pp'

—(2/A) Po(P cos 82+ (1/A) Pl cos 8, )7l, (31)

the internal cluster energy being p»= p22'/2p». Sequen-
tial decay will lead to a peaking of coincidence counts
of 1 and 2 for energies &23 near the resonance level
energies of the recoil cluster 8= (23).

In dividing pairs of equations in (26), we get rela-
tions between R.CM and lab angles of 1 and 2: where

d'o./d EldQI = Jlzd2o. /d E,'dQ, ',

d o/dEldQldQ2 +12 d &/dEI dQ1 dp12)

(36)

(37)

2 are normally obtained with particle 1 in SCM and
particle 2 in RCM coordinates, viz. , (81', Cl') and
('82, g2), respectively. Relations (34) and (32), (33)
enable the appropriate SCM and RCM quantities to
be found from lab values. Note that if the incident
beam is unpolarized, then the &st-emitted particle 1
has orbital magnetic quantum number m~=0, so that
the distribution of 1 is independent of C~, and we may
put Cl ——0 in Eqs. (31)—(34). The result does not hold
for a polarized incident beam, or for a spin —orbit force
leading to coupling between channels (e.g. , tensor
force), but is valid for central and spin —orbit coupling
(L S) forces."The amplitudes (14} and (15) assume
these conditions hold. Actually spin —orbit forces give
C-independent distributions for unpolarized beams, due
to averaging over all directions of polarization (values
of ml).

The lab energy spectrum and triple-correlation cross
section for direct breakup were obtained earlier via the
phase-space method, the results being summarized in
Eqs. (22) and (23). Sequential decay is found to lead
to the same density-of-states factor pI (E) as in (22)
and (23) . It now appears as a conversion factor between
the SCM and lab energy spectra for the emission of the
first particle, and between the SCM, RCM triple
correlation, and the corresponding lab cross section,
c.f. Eqs. (40) and (41).

An alternative method which has been used9 3' is to
transform directly from one reference system to the
other using the appropriate Jacobian. We get

Pl sin 81 sin C I+AP2 sin 82 sin C
tan 82 sin $2 ——

, (32)
Pl cos 81+A P2 cos 82—Pp

8(EI,' COS 81, 4&I )J L

8(E„'os8„C,) ' (38)

Pl sin 81 sin C 1+A P2 sin 82 sin C2
tan @2—— (33)

Pl sin 81 cos Cl+AP2cos 82cos C2

8 (El', cos 81', C 1', cos 82, q4)
J12L—

8(E,; cos 81, Cl., cos 8, C )
(39)

Similarly, Eqs. (29) give relations between SCM
and lab angles of 1:

'tall 81 =Pl Sill OI/p 1 Cos 81—( 1/C) Ppf

Evaluation of these Jacobians by Bronsonp and by
Simpson" leads to the results

JI Cl El pE ((ml+m2+m3)/(m2+mp) )El&*, (40)

C )'——Cg, (34) ~»' ——E1+(ml+m, )/mph(1/PI'p»)

The sums of squares of Eqs. (29) gives also the relative
momentum of particle 1 and the recoil cluster 8= (23):

Pl' (EI2+ ( 1/C') Pp' —(2/C) ——PIPp cos OI]'= Pl 22',

(35)
the relative energy being El 22'=PI'/2Icl 22.

Theoretical energy-spectrum distributions for one
particle 1 and triple correlations for two particles 1 and

~
~
PIP22/(AP2+PI cos 5»—Pp cos 82) ~, (41)

where Pl' and P» are given by Eqs. (35) and (31),
respectively, and C' is a constant. The extra variables

33 J. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258
(1952).

'4W. D. Simpson, Physics Department, William Marsh Rice
University (private communication) .
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Pi'pss in (41), as compared to Eq. (23) for direct
breakup, are due to particle 2 being in RCM instead
of SCM coordinates as in the latter case.

Bronson' discusses also the Jacobian transformations
for the case where the erst-emitted particle enters
detector 2 (instead of detector 1), and alternatively
the particles actually detected at detectors 1 and 2 are
both breakup particles from the cluster B= (23). This
order of detection effect need only be taken account of
specifically when two or more of the final particles are
nonidentical, in which case the cross sections for per-
mutations of the nonidentical particles between de-
tectors 1 and 2 must be considered separately, each
with its appropriate Jacobian transformation. If triple
coincidence counts are plotted against E~ and E2, three
nonidentical particles would give six loci and two non-
identical particles three loci. The case of three identical
particles gives one degenerate locus, and is taken ac-
count of by symmetrization or antisymmetrization of
the wave function for bosons and fermions, respectively.
This leads to interference effects between the compo-
nents of the resulting amplitude, as in the B"(p, a) 2n
correlation.

III. REACTION AMPLITUDE FOR 8 '(p a)2cs
TRIPLE/CORRELATIONS

We take the relative wave functions of the o.I—Be'
and as—as systems as Ci( ji, mi, R) and Cs( js, ms, r),
respectively, so that summing over j&,j2 and m&, m2, the
total wave function of the intermediate'C" system in
state JM $c.f. Eq. (18)] is

VJ ss ——Q Q (j ij smims
~
JM) C i( jimi, R) C s( jsm, ;r) .

Plml J2m2

(42)

We note also that as the n particles have zero intrinsic
spin, then j&=l& and j2=l2, with the corresponding
magnetic quantum numbers identical. If the particles
had intrinsic spin, (42) would have to include summa-
tions over intrinsic spins also.

From Eq. (42), the single-channel amplitude becomes

fJM (Ei j ei 1 C'1 j ~s) 4s)

J+22

(lilsOM i JM)
22 2 I=)J—22t

fg~(lim„ lsms, 'Ei', 8,', C,', 8s, ys) ], (43)

where for Eo~ few MeV, J =0+, 2+ for C" and
ls ——0+, 2+ for Be'. Also

~
J ls

~
&ji& J+—ls and

m~=0 gives m2 ——3f, assuming an unpolarized incident
proton beam and central or L 8 type forces (no cou-
pling between diferent l~m~ or /2m2 channels as with
spin-orbit-type forces) .

The amplitude on the right of Eq. (43) is given from

Eq. (15) as

AM(liml j lsms) Ei j 81 1 C'1 j tl2) 42)

exp sL2 (9& +p 4) +P4Js ' exp sL 7is++i +Pl25

XA, '(Eo) I'.,~,
'* I'i, ,p(ei', C'i') pi, '*(ps:) I'i, ,(es, q4),

(44)i

where the phase pi, is defined by Eq. (71) in Appendix
II, and

Ai, (Ep) =I -', 7r(2 /+1)]-'*(Ep')-'

~y, 20

[(E„—Ep')'+-', (I'g, ip )']'
where only p-state protons (lp

——1) contribute, and
J=O, 2. iVote that Ep =Pp'/5 is the proton wave
number in SCM, and Eo' the corresponding energy.

IV. SYMMETRIZATION OF THE WAVE FUNCTION

We must symmetrize the wave function with respect
to exchange of the three identical bosons 1, 2, 3. The
resulting wave function is

4( JM) =%assr(1, 23)+%g~(1, 32)+4'gM(2) 31)

+VJss(2) 13)+NgM(3) 21)+Nasl(3, 12). (46)

This leads to the symmetrized reaction amplitude

p„,(E,', 8,', c,';e„y,) =f, (E,'; e,', c»';~„y,)
+ fest (Ei; ei', C'i; sr —6, sr+4)

+fJ3E(Es j As y Bs j pss) Ps)

+fr~(Es'; As', Bs'; sr —ass, 7r+Ps)

+fr~(Es'; Ms', &s', wi, ~i)

+fps'(Es', Ms', 1Vs', sr —pi, sr+pi), (47)

where (As', Bs') and (ns, Ps) are the SCM and„RCM
spherical polar angles for particles 2 and 3 entering
counters 1 and 2, resPectively, and (Ms', 1lrs') and

(pi, s i) correspond to particles 3 and 1 entering counters
1 and 2, respectively.

Using the relation for integral ns2,

I is, ms(7I' esy 7r+$2) ( 1) Fls,ms(~2) 4'2) y

we see Eq. (47) simplifies to

F,~(E,', e,', c»'; e„y,) = L1+ (—1) t )
Xt'fgsr(E, ', 8 ', C ', 0,, y,)+f (E,'; A, ', B '; n„P,)

+fzsr(Ei'; Ms', &s', vi, ~i) j, (4&)

so that Be must have even spin.
The exchange of particle positions is illustrated in

Fig. 2, which we use to relate the exchange angles to
(ei', Ci') and (es, @s), and hence, via Eqs. (29) and
(30), to the lab angles (ei, Ci) and (es, C s) . In terms
of 0.~—Bes and n2—0.3 relative distances R and r, respec-
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tively, vector analysis gives the relations

3r sin 82 sin P2—2R. sin Ol' sin C,'
tan A2' sin 82' ——

3r cos 82—2R cos 6~'

3r sin 82 sin $2 2R—sin Ol' sin C I'
tan 82'=

3r sin 82 cos $2—2R sill BI cos Cxl

r sin 82 sin g2+2R sin Bl' sin C I'
'tall cl3 sill I83=

r cos 82+2R cos Bl'

r sin 82 sin g2+2R sin Bl' sin Cl'
tan J3&

——

r sin 82 cos $2+ 2R sin Bl' cos C I'

3r sin 82 sin p2+2R sin Ol' sin C,'
tan M3' sin g3' ——

3r cos 8,+2R cos 0,' P1l x

3r sin 82 sin p2+2R sin Ol' sin Cl'
tan g3' ——

3r sin 82 cos C 2+ 2R sin Ol' cos C I'

—r sin 82 sin g2+2R sin Bl' sin C I'
tan p, l sin vy= )—r cos 82+2R cos Ol'

Now

rsin 8—2 sin &2+2R sin Ol' sin C,'
tan v1=

rsin 82 cos p2—+2R sin Ol' cos C I'

(50)

Vg 23' Eg'

r 'v23 py

7

@23 Ky
7

@23 Pl—23 ~23

2PI sin Ol cos C'I+ P2 sin 02 cos C 2
tan a3 sin P3 ——

2PI COS Ol+ P2 COS 02—Pe

so that R/r=3K /41k i2ncour case. Substituting for
R/r in Eqs. (49) and (50) and also using Eqs. (30)
and (29) for sin 82 sin p2, sin 82 cos p2, cos 82 and sin Bl'X
sinC»', sin 8~' cos C1', cos 6~', we obtain the required
expressions for the exchange angles in lab coordinates:

3P2 sin 82 sin 42
tan A2' sin 82' ——

3P cos 8 —Po

Given lab angles (Ol, Cl), (02, C2) and momenta
Pl, Pm for final particles 1 and 2, Eqs. (32)—(34), (52),
and (53) enable the exchange amplitude (48) to be
evaluated.

V. FRACTIONAL PARENTAGE COEFFICIENTS
AND POLARIZATION OF C'2

If C" is produced in several excited states of spin J,
parity m. , and we define fractional, two-body parentage
coefficients aJ for each state, then the total wave
function becomes

xf = Y ag'%( J, 3f) . (54)

xx

v
4

x
~ ~
x x
~ ~
~ ~
~ ~
a

I'"n. 2. SCM and RCM coordinate systerTis as in I'ig. 1, but
allowing for exchange between identical particles 1, 2, and 3. Tak-
ing the 6rst particle in brackets as the first emitted particle, and
the second as the second emitted particle, the corresponding SCM
and RCM spherical polar coordinate angles are:

(1, 23): (8,', 4,') alld (ex, @x).
(2, 31): (A2', Bg') and (0.3, pg).
(3, 12): (Mx', Ex') and (Ixx, vl).

Not all angles angles are shown in the diagram.

2PI sin Bl sin C I+P~ sin 02 sin C 2
tan P3 ——

2PI sin 0 cos Cl+P2 sin 02 cos C2

Pl sin Ol sin C,+P2 sin B~ sin C'~
tan g3' ——

Pl Sill Bl COS CI+ P2 Sill 02 COS C2

tan py Sin vt=
Py sin 6, sin C'y —P2 sin 82 si11 4'2

Py cos Oy —P2 cos 62

P~ sin 6~ sin 4'~ —P2 sin 62 sin C2
tan v&

——

P~ sin 61 cos C~—P2 sin 62 cos 42

Pl sin Ol sin Cl+P2 sin 0~ sin C2
tan M3' sin A3' ———

Pl cos Ol+ P2 cos 02—-', Pe

(52)

(53)

%hile the states are not strictly orthogonal, they
may be considered so if the clusters are well separated.
Thus the asymptotic beam of C" produced via p+8"
reaction has orthogonal components, in the sense that
the sum of probabilities of producing the various J, x
states must be unity:

2 I
a~I'=i (55)

The uJ fractional parentage coeKcients must be found
empirically by fitting theory to experiment, remember-
ing that for a proton energy near a well-separated C"
resonance level Jp, the Ci2 state produced should be
relatively pure, with other aJ coefficients quite small
in comparison, uJ, 1. Hereafter we omit the parity
sign Ir from aJ. An approximate relation for I a~ I' has
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been noted by Phillips and Tombrello, ' in terms of the
reduced width and two-body interaction radius az of
the level, viz.

We write

2

p2 Q b2, (3E[+2;M) (60)

Z lb~, ~l'=1, (56)

I 11~
I Y& I

3fie/2&&111 ]
For unpolarized C" and a particular J value, all

allowed magnetic substates have equal weighting. As-
suming partial polarization of the C", we take bJ, )~)
as the fractional weighting (population parameter) of
the magnetic substate JIII, subject to

where b2, (ia ) satisfies Eq. (56) for J= 2.
Equations (59) and (56) then give

I b2, 0 I'= 4/(5+7"),
I'= (1+3e')/(5+7e')

I b2 0 I'= 4e'/(5+ 70') (61)

where from time reversal invariance,

bJ, ~= bJ,~= bJ, )~). (57)

e, ,1r——Le, Q (1, 1, mi, 0
I 2, M) x, ,je

+00 Q (2, 1, mi, 0
I 2, M) X0 ~]Vi 0

= ei(1, 1, M, 0
I 2, M) Xi,~ T1,0

+e2(» 1. Mi 0
I » M) X0,1r I'1,0 (58)

The B" target has spin ~3- and the lower C" levels
spin 0+, 2+, so that parity conservation requires the
incident proton to have Odd parity; thus only /=1
protons contribute appreciably at proton energies of a
few MeV. The proton beam is along the Z direction,
with respect to which magnetic quantum numbers are
measu. red throughout the experiment.

The procedure followed is: (a) We combine proton
spin —,

' and B"spin ~ to get intrinsic channel spin 1 and
2, respectively; (b) The intrinsic channel spin is com-
bined with the proton orbital angular momentum and
orbital magnetic quantum number 0 (the latter as the
proton has its orbital angular momentum vector
L= r x p perpendicular to the Z direction). The lowest
resultant state is the singlet 0+ state of C" and J=
3f=0, so that bo, o

——1 for a pure state. The 7=2+ level
of C" may be constructed from a mixture of J= 1 and
J=2 intrinsic channel spins, leading to polarization
of C" in this state.

(a) Denote the intrinsic channel spin function for
C" in state J, M by X~,1r, with J=1(M= &1, 0) and
J=2 (M=&2, ~1, 0), respectively.

(b) Employing orbital angular momentum function
Vy, p& the total spin function for C" becomes, in terms
of mixture parameters e~ and e2,

where e=ei/e2 is a parameter solely determining the
population parameters b2, I~~. It must be found em-
pirically to 6t the experimental data.

Finally we have from Eq. (54) that the total reaction
amplitude is

F(E,'; e,', C,'; e„y,)
J

= gag Q bg, (m)Fg, 0r(E,'; e,', C,'; 0, $,), (62)

where the amplitude on the right is defined by Eqs.
(48), (43), and (44).

The triple correlation cross section for particle 1 in
SCM and 2 in RCM is

d'/dE'dQ'd =
I
F(E';e', c'1', 8, $,) I', (63)

with the lab distribution defined by Eqs. (37), (41),
and (63), together with the relations (32), (33), (52),
and (53) between coordinate systems.

Actual amplitude components (43) needed in the
calculation for 8"(p, n)2n are given in Appendix I
below.

APPENDIX I: DETAILS OF AMPLITUDE
COMPONENTS FOR B"(p n)2n

We assume only J=0+, 2+ levels of C" are involved,
which may decay into the 0+ and into the 0+, 2+ levels
of Be', respectively. We hereafter omit the angles in
the amplitudes of Eq. (43), for the sake of brevity.

(1) J =0+, so M=O and b00 ——1. From Eq. (43),

f0 0= (0, 0, 0, 0
I 0, 0)f(0, 0; 0, 0)

+ (2, 2, o, o
I o, o)f(2, o; 2, o)

In particular, we obtain f0,0 ——f(0, 0; 0, 0) +5 *f(2, 0; 2, 0) . (64)

%2,2 = ( 0) '02X1 2 Vl 0) p2, 2= (0) '02X1 2 F1 0) (2) J=2+, so M=O, &1, &2.

p2, 1 2 e1X1,1 1 1,0+6 02X2,1F1,0)

=2 ~pry& XI'C O
—6 st-'2X2, —~Pi, p

p0, 0 (0) 'e1X1,0F1.0. (59)

(a) M=O, so

2+jQ

f2, 0 2 2 {ji, j0;O, OI 2, 0)f{ji,0'je o)
j2=0,2 ji=l2—j2l
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ol

fsp=f(2, 0' 0, 0) +f(0, 0; 2, C

—(v)'f(2, o; 2, o)+(7)'f(4 o 2 o) (65)

(b) M= —1, so

j2=0,2 jl=l2—j2I

Pt= Larctan Ft/Gt)'= . The phase factor

exp L2i()it, +oi, ) j,
where o.i= Coulomb phase (75), derives from the
theory of rearrangement collisions. '5

If 8 is a resonant or virtual state particle, it may
then be treated as a semistable bound-state particle,
wave function

fs, i=f(0, 0; 2) —1)+6 'f(1, 0; 2) —1)
—(14) f(2, 0; 2, —1) —(7) lf(3, 0; 2, —1)

~(r) = (1/r) 4 (r) 1't,-(&., e.) (r& e)

(r& a) (72)

(c) M=1:
—(~)'f(4, o; 2, —1) (66) where "u" is the interaction radius of D* for decay

into 8+b. The bound-state normalization condition

fsi= Z
2+j2

Z (j ij s' 0 1
I

2 1)f( ji 0' j» 1) '

a

I C(r) lsdr=1 (73)

f"= Z
2+j2

( ji js'0 2
I

2 2)f( ji 0' js 2)
j2=0,2 jl=I2-2.'I

fs, s=f(0, 0; 2, 2) —(-,') 'f(1, 0; 2, 2)+ (—,') )f(2, 0; 2, 2)

—(14) 'f(3, 0; 2, 2)+ (126) ~f(4, 0; 2, 2). (69)

j2=0,2 jl=I2—j2I

fs, i ——f(0, 0; 2, 1)—6 'f(1, 0; 2, 1)—(14) 'f(2, 0; 2, 1)

+(7)'f(3) o) 2, 1) —(s's)'f(4, o; 2, 1) (67)

(d) M= —2:
i+j 2

f&, s
—— g ( ji, js, 0, —2

I 2, —2)f( ji, 0;js, —2);
21=I2—j2I

fs, s f(0) 0; 2——, —2)+(-,')'f(1, 0; 2, —2)

+(7)'f(2, 0; 2, —2)+(14) f(3, 0;2, —2)

+(126) '*f(4, 0; 2, —2). (68)
(e) M=2:

is then satisfied, and g (r) is a real function of r, befitting
a bound state.

When decay of 8 into C+c occurs, the wave function
of 8 must be renormalized'4 inside a large spherical
box of radius E.. The wave function of 8 becomes4

4&+&(r) =1V(Ett)i' exp i()it, +a i, )I (r), (74)

being the 6nal-state scattering wave function of 8=
C+c, renormalization factor fthm(EIt). The complex
amplitude factor i'exp i(rtt, +)rt,) comes from the
Faxen —Holtsmark partial-wave scattering expansion,
with q~, the nuclear elastic scattering phase in the
final-state interaction of C+c, and oi. the Coulomb
phase, given by

oi= arg r(in+i+1), n=ZoZ, e'/f'tv (75).

The amplitude for the decay process 8 +C+c-
becomes

(76)The amplitude for emission of a particle b in the
reaction (3) for stable final particles 8+5 is given by
Eqs. (14) and (5), where the amplitude factor
(Ei„—E,—isiri, ) ' in (14) may be written in the form

on using Eq. (74).
This gives the usual generalized density-of-states

function p(Eii) as in Eq. (10), with p(EIi) =E'(Ei)),
and leads to Eq. (15) for the triple-correlation
amplitude.

(E,.—E.—-', ir, )
- = L(E,.—E.) +-',r„3—:exp iP„.

(70)

+&—
& r 4 r =X Eii i'exp i )tt.+at,

APPENDIX II: NOTE ON COMPLEX AMPLITUDE
PHASE FACTORS &«c( )IC( ))

= E(Eii)it' exp i (ttt, +o i,)

Here
tan Pt, ———,'ri/(Eg, —E,) (71)

and Pi, ——)it, +Pi, is the resonant phase for the inelastic
process (3), equal to the sum of nuclear reaction. phase

and hard sphere scattering phase pt, . Coulomb
e sects enter via Fq ——2P~yq2, I' g= penetrability=
ka/AP AP=FP+GP I"=' (Fi and Gi are regular and
irregular coulomb wave functions, respectively), yi, '=
reduced width of D* levels and hard-sphere phase

ACKNOWLEDGMENTS

The writer's thanks are due to Professor G. C.
Phillips for his advice and interest in the problem, and
to Dr. J.D. Bronson for providing data and kinematical
details on the p(B", et) 2et reaction. I am also grateful
to Professor G. T. Trammell and to the members of

a' N. F. Mott and H. S. W. Massey, The Theory of Atomic Col
lisions (Oxford University Press, Oxford, England, 1948), second
ed. , p. jI6j..



346 REYIEws oz MUDERN PHYsrcs ' JULY 1965

the nuclear physics group of the Rice Tandem Labo-
ratory for their courtesy in answering many of the
questions raised by the author.

Discussion

MEvzRHoz: From a theoretical point of view, is it worth while

to deal with three distinguishable particles rather than three alpha
particles' Here you have to take into account the antisymmetriza-
tion; and so you never know which particle comes first. Whereas,
if you have three distinguishable particles, you can see on the basis
of a model whether a particular particle comes first.

SwAN: The ideal model will involve three diRerent particles. On
the other hand, known interference effects between identical

particles can be very useful. If you have nonidentical particles,
you may have different sorts of diagrams, and these have to be
arbitrarily added together in the reaction amplitude to give inter-
ference eRects. Although you can now distinguish the particles,
you may have diRerent processes giving diRerent orders of emis-
sion.

Dowovm: Identity. or nonidentity of the particles, of course,
has nothing to do with the difhculty of telling which one comes out
first. That involves a conceptual time delay measurement, whether
the particles are identical or not. In onr (n, 2o.) paper a few years
ago we showed, and more recently Phillips has shown, that by
measuring the angle of one a particle as a function of the energy of
the other, you can ascertain which particle came out first.

SwaN: Symmetrization really allows for this in the (C", 3n)
reaction.
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In the breakup of a compound nucleus C* into k
clusters fII ~ .bI„ the asymptotic wave function f for
short-range forces is a product of k functions g, which
depend on internal vectors, spins, and isospins and of a
function x which depends on k —1. relative vectors. y
contains the correlations in energy and angle of the
clusters emitted. If the reaction proceeds in several
steps, x will separate into functions x~, X2, ~ ~ ~ of the
corresponding relative vectors.

Due to the Pauli principle, f should be replaced by
a sum over all nucleon permutations,

4"=Z( —&)'(&4).

Permutations I" within one cluster b; will only aGect
p;. Permutations P" of nucleons between clusters can
usually be neglected since, due to the nonoverlap of
the cluster wave functions, in a term P(I'"f)* one
factor will vanish. If, however, two clusters b; and b~

are in the same internal state Q, the exchange of all
particles will result in the replacement of the relative
vector $,I by —(;I in x and therefore will require sym-
Inetry properties of X. In general, if k-like clusters are

emitted at one step of the reaction, it will be neces-
sary to classify the functions according to the group
SA, of cluster permutations.

The function x results from nucleon —nucleon forces
in a complicated way. For three clusters, it depends on
the relative vector p of clusters bI, bs and on the rela-
tive vector P of cluster bs. x may be compared with
experiments by means of a Dalitz plot. ' The Hamil-
tonian for large distances between the clusters may be
Written H= (2p) IL(z') '+ (vr') sj. FOr many-bOdy
breakup, Smith' has shown that it is reasonable to
classify x in terms of generalized angular momentum.
This arises from the generators of the symmetry group
R6 of II. A three-body breakup is then characterized
by low eigenvalues of the Casimir operator A' of E6,
ps=&'h(), +4), &=0, 1, 2, ~ ~ ~ . The function y may be
further characterized by the relative angular momenta
P, P corresponding to p, p. If bI and bs are in the same

~ Present address: Instituto de Fisica U.N.A.M. Mexico 20,
D.F.

' D. Dehnhard, D. Kamke, and P. Kramer, Phys. Letters 3, 52
(1962).
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