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Lattice Harmonics II. Hexagonal Close.Packed Lattice
S. L. ALTMANN, C. J. BRADLEY
DePartraerst of Metallurgy, Oxford Uueoers@y, Oxford, Lruglaud

A general discussion of the treatment of the asymmorphic space groups is given, with special
reference to the hexagonal close-packed lattice (P6s/mac), for which the irreducible representations
are given in full and the lattice harmonics listed for all l. The expansions possess the same properties
as those given for the cubic groups in the preceding paper.

I. INTRODUCTION the group to be reduced as the factor group G"/I'"
and in order to find its irreducible representations all
the operations of F" can be assimilated with the iden-

tity. It was pointed out by Altmann4 that the factor
group G~/I'~ can now be considered in a different way.
Rather than taking I " to be the identity of this group,
we can consider each element of F~ to be the identity.
In this way G~/I'~ can be taken —when we want to
6nd its irreducible representations —to be the "group"
C" of the coset representatives that appear in it. We
give the word group here in quotation marks since C"
is only a group in what we shall call the Herring sense,
that is when we use his extended de6nition of the
identity. It should be noticed that whenever we have
to deal with a factor group with I"we shall take it to
be the group, in Herring's sense, of its coset repre-
sentatives.

The group that we must reduce, C", is not in general
a point group. In Sec. 4 we shall give a prescription for
its derivation and in Sec. 5 we shall obtain it for all
values of k in the hexagonal close-packed lattice.

As regards the use of the projection operators, their
application to the hexagonal close-packed lattice will

serve as an example of the general theory, which is an
extension of the method given by Altmann. 4 We shall
first require a particular property of the hexagonal
close-packed lattice, which will be discussed in Sec. 3:
it will be seen there that every point in this lattice is
linked to its near neighbors either by a lattice trans-
lation I E ~

tj or by an inversion through the midpoint
of a vector ~ which is not a vector of the lattice. This
inversion operation can be written as Ii

~
sj. There-

fore, in order to write the transform of the harmonics
I'i under the operators [n

~ vj, it is enough to define
the two following operations:

We refer the reader to Secs. 1 and 2 of the preceding
paper' (hereafter referred to as I) for a general intro-
duction. We discuss in Sec. 2 below the derivation of
lattice harmonics for asymmorphic groups. We also
discuss the derivation of the irreducible representations
of these groups. In particular, we give in Sec. 4 a
prescription to obtain the group of the k vector, which
is applied in Sec. 5 to the hexagonal close-packed
lattice. The reduction of this group has already been
carried out by Herring' (see also Antoncik and Trlifaje)
but we offer here a systematic treatment that can be
used in general for asymmorphic groups, whereas Her-
ring employed an ad hoc procedure. Our treatment is
also more complete, since we give full matrix repre-
sentations, which are, of course, essential for the speci-
Gcation of the lattice harmonics. The latter are given
in Sec. 6 for all orders of l.

2. ASYMMORPHIC SPACE GROUPS AND LATTICE
HARMONICS

In dealing with asymmorphic space groups, that is
groups that contain screw axes or glide planes, the
general theory reviewed in I, Sec. 2 becomes more
involved on two counts: both the structure of the
irreducible representations and the use of the projec-
tion operators (I.7) are more complex.

We shall first consider the irreducible representa-
tions. As mentioned in Part I, Sec. 2 these are obtained
by reducing the group G~ of the k vector. G" contains
the translation group F as a subgroup, but in the sym-
morphic groups F can be separated out and it is enough
to reduce G", the cogroup of k, which is a point group.
G" is in fact the group of the coset representatives of
the factor group G"/I'. However, for asymmorphic
groups these coset representatives, which are opera-
tions ja

~ vj, do not necessarily form a group, since
the product of two of them may be an operation in F.

The way out of this difhculty was found by Herring. '
Let us define I'~ as the subgroup of operations IE

~
tj

of F for which k t= 2m', where m is an integer: their
representatives are unit matrices (see I.3). We write

(~)

(2)

™=—t

fz
~

cjIrm —&Irma

As in part I, 'I'p is a spherical harmonic centered
about the point t, whereas Y~ is a harmonic about
the point ~ and is such that the axes at ~ are inverted
with respect to those at the origin. The bar above the
symbol I'~ denotes this inversion. '

4 S. L. Altmann, Proc. Roy. Soc. (London) A244, 141 (1958).
The purpose of this choice of axes is to avoid a factor (—1) '

which would otherwise appear on account of the transformation
properties of the spherical harmonics under inversion.

' S. L. Altmann and A. P. Cracknell, Rev. Mod. Phys. 3'7,
19 (1965).

& C. Herring, J. Franklin Inst. 233, 525 (1942).' E. Antoncik and M. Trlifaj, Czechoslov. J.Phys. 1, 97 (1952) .
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In order to apply the operators {n I v} on the spheri-
cal harmonics, as required when using the projection
operators (I.7), we write

where t and v are a lattice and a nonlattice vector,
respectiv'ely, and P=in. Then:

gtIr m&D l(&)
fn/

(7)

We use in (6) the definition of the representations
of the rotation group: the D'(n) ~ are the matrix
elements of the corresponding representatives, but if
the expressions of Altmann' or Altmann and Bradley'
are used it is necessary to interchange a and a ', since
we now consider a as an active operator.

In the same manner:

(10)

Expressions (7) and (10) are the basic ones required
in order to use the projection operators: the result of
their application will be symmetry-adapted expansions
over the unit cell, from which, as in (I.10), the expan-
sions over the whole lattice, that is the lattice har-
monics, are obtained by the Bloch condition.

Considering again the representations of asymmorphic
groups, it is important to recognize that the basic idea
is that two translations are now considered identical
if they have the same representative and that this
introduces some important consequences. For instance,
whereas, as is well-known in the general theory of
space groups, translations commute only exceptionally.
with other operations, this is no longer the case in the
new interpretation as shown by the following.

Theorem (Johnston, I p. 144). All translations com-
mute (in the new sense) with the operations fo. I v}
of G~, the group of the k vector. Proof:

f E I t}fee I v}= {a I v+t}, (11)

f cs
I v} f Z I t}= {cx I cxt+v}. (12)

In the new interpretation at and t are identical. In
fact: D(nt) =exp (—ik est) =exp (—in 'k t). Since
{cx I v}6 G, the operation that corresponds to Ix ' must
also belong to G~, and a ' must also leave k invariant.
Therefore D(ot) =exp (—ik t) =D(t) .

6 S. L. Altmann and C. J. Bradley, Phil. Trans. Roy. Soc.
London A255, 199 (1963).

~ D. F. Johnston, Rept. Progr. Phys. 23, 66 (1960).

3. THE HEXAGONAL CLOSE-PACKED LATTICE

The hexagonal close-packed lattice is represented in
Fig. 1, where the symmetry operations are identi6ed
in the standard notation for point groups: this has
been chosen to agree with the nomenclature of Altmann
and Bradley. ' The black circles represent atoms in the
plane of the drawing and the open circles those at a
distance c/2 above and below this plane, where c is
the length of the vertical translation vector. There
are two atoms per unit cell: we go from one to the
other by a translation ~ that does not belong to the
translation lattice. As mentioned in Sec. 2, it is clear
that every atom is linked to each of its twelve near
neighbors either by a ~ translation or a translation t
of the lattice.

The space group of this lattice is Dg,' and its point
group is Dy, =D3~XC;. The operations a of D3~ appear
as space-group operations fn I 0},whereas i has to be
transformed into j= fi I

~}. If we write J= {EI 0}+
fi I ~} the nontranslational part of the space group is
given by the product of Dss and J. The space group
itself is a product of this set with the translation
group F.

We show in Fig. 2 the first Brillouin zone of the
lattice, which can be properly oriented with respect to
the lattice vectors by comparison with Fig. 1(a). We
identify in Fig. 2 all the points of symmetry as well as
representative points on lines of symmetry. We do
this for a region of volume equal to z'z of the zone,
although one should strictly consider the whole of the
zone. As an example, although the groups C" for E
and E* Lsee Fig. 1(b)], for instance, are isomorphic,
their representations are not identical. Nevertheless
they are very simply related (see point E in Sec. 4),
so that the description of the representations for the
points in the basic domain of Fig. 2 is sufficient to deal
with all the remaining cases. It is enough to remember
that the representations of the group of the k vector
spanned by the diferent vectors of a star are not
identical. If characters of the representations and their
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Fio. 1. The hexagonal close-packed lattice. (a) The direct
lattice. to is perpendicular to the plane of the drawing. (b) The
reciprocal lattice in the correct orientation and arbitrary scale.
T1 and Tl are the reciprocal lattice unit vectors, To is perpen-
dicular to the plane of the drawing. We use the definition t; T;=
2mb;;. p, E, M, and X* are important points of symmetry in k
space.



energies only are required it is enough to deal with
the basic domain of the Brillouin zone, but if the
matrix representations are required, as is the case in
this paper, attention must be paid to possible simi-
larity transformations introduced for vectors outside
the basic domain, as well as changes in the representa-
tives of certain translations.

4. GENERAL METHOD FOR THE DERIVATION
OF THE GROUP Ck

We recall that Ck is the group, in Herring's sense, of
coset representatives of G"/F". We shall give a pre-
scription to obtain this group, which will allow us at
the same time to classify the various cases that appear
in the hexagonal close-packed lattice. We shall use the
following notation in this work: a space-group opera-
tion will be given, as before, by {n

~
v}, where v can

be 0, ~ or a lattice vector t, or any combination of
these. On the other hand, {n j w} stands for an opera-
tion in which the translational part w can only be
0 or ~. The latter, unless restrictions to the contrary
exist, can be any of the six vectors, ~~, ~2, g3 and their
re8ections in the plane of Fig. 1(a) .

The prescription to obtain C" is as follows:

(i) Find F".
(ii) Find y~=—I /I'". With our interpretation of the

factor group, y~ is given by {E
~
0} plus all the differ-

ent (in Herring's sense) operations of F not in F".
(iii) Find the subgroup P~ of all the operations n;

of the point group that leave k invariant. Write P"=
Z;{n;10}.

(iv) Form the set of operations (vol in general a
group) (P

—=g{n;
~
w;}. {n,

~
w;} is a space-group op-

eration, but not a general one, since w; cannot be a
translation vector of j. except the null one. It is useful
to notice that only one vr; needs be associated with
any one n;. This is so because

w;} {Z I t} (13)

for. some lattice translation t: if {8
~
t}C I'" we take

it to be the identity; if {E
~
t}g y~ see (v) below.

(v) Form

Ck +k.gk

where the dot stands for a set product. It is now clear
that if, in (13), {E

~
t}Q y", {n;

~
w;} appears in the

k

4,'

FIG. 2. The first
3rillouin zone for
hexagonal space
groups.
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product (14) and should not be listed independently
in (Pk.

(vi) Choose the w s in p~ so that, if possible, the
product of two operations of 5'", except possibly the
identity, is never in y . (In doing this, of course, only
the operations for which w, =~ need be considered. )
The structure of C~, as described in (vii), will be
found during this process: when such a choice of w's
is possible cases (A) or (B) in (vii) arise; when it is
not, case (C) holds.

(vii) The structure of C~ is described by the follow-

ing three cases:
(A) It is possible to choose the w s so that not

only the product of two operations of (Pk is never in
yk but also (Pk is a group. Then:

where the validity of the direct product is a conse-
quence of the theorem of Sec. 2. Since (Pk is isomorphic
to P", which is a point group, the representations of
Ck follow immediately.

(B) It is possible to choose the w s so that the
product of two operations of 5'k is never in yk but it
is inevitable that some products of operations of 6'k are
of the form

{n;]w;}{n;)w;}={n,]w+t}, (16)

where {E ~
t}C y~. In this case closure can be obtained

for P~ by replacing some of the operations {n
~
w} by

{n
~
w+t} as required by products of the form (16),

The group thereby formed will be called (9&k. Then:

(17)Ck ~kg p k.

(9&k is isomorphic to P" so that the representations of
Ck follow immediately.

(C) For every choice of the w s there is always a
pair of operations of (Pk such that their product belongs
to yk. It is not possible in this case to express Ck in a
form simpler than (14).

(viii) In case (A) the class structure of C~ is essen-

tially that of P". It is important to observe that this
is no longer so in cases (B) and (C): the class structure
of the groups obtained must be carefully examined.

(ix) When the representations of C~ are obtained,
by some standard method, it should be noticed that
not all of them are allowed. Only those for which
the operations of yk are correctly represented by
exp ( —ik t) should be retained.

5. THE GROUPS C" FOR ALL THE POINTS IN
THE BRILLOUIN ZONE

We shall not go in detail through the prescription
of Sec. 4 for all points in the Brillouin zone. Instead,
we shall consider a sufhcient number of cases so that
the details of the prescription become clear. Complete
details about every point can in any case be obtained
with the help of the tables of characters in Sec. 6.
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(mnp) g r~ if p= 2vl (18)

(mnp) C y~ if p= 2v+1. (19)

The translations of y~ are therefore:

f Z
I mtp+nti+ (2v+1) t, }

=
f E I

mtp+nti+2vts} f 8 I
tsj. (20)

The first factor in the right-hand side of (20) be-
longs to j. ~ and can be considered to be the identity.
Hence:

v =filo}+felt, j. (21)

The corresponding representatives are 1 and e ' =

We find P~=—D2~ ——C2„&C;.
Hence

6 ~=C,.XJ.
This is a group, so that M is of type A.
In (22) we can take

J= fr I Oj+ fI I ~I},
and form (15)

C~= y"X (C .XJ).
E= (0, 1/3, 2/3)

(22)

We find:

(mnP) Q I x if 2P —n=3v, (v integral), (24)

(mnP) 6 yx if 2P —n=3v+1 or 3v+2. (25)

In the same manner as for 3f:

v =
f &

I 0}+f &
I
t }+f &

I
2t }, (26)

and the corresponding representatives are 1, exp (2si/3),
and exp (—2si/3), respectively.

P is a D3~ group in which the secondary binary
axes and mirror planes are C2„" and cT&„, respectively
(r=1, 2, 3). Therefore, in forming 6'x, we must asso-
ciate a translation ~ with these operations.

We take in (Px the operations f Cp,
"

I ~„}and fog„ I ~,},

The coordinates of points in k space will be given in
reciprocal lattice coordinates: a symbol such as (f,
g, h) will mean k=fTp+gTI+kTs Lsee Fig. 1(b) for
the reciprocal lattice vectors].

The expressions "type A, B, or C"- refer to the three
cases listed in (vii) of Sec. 4.

I'= (000)

We find j. ~=—F, that this point is of type A and
that C =Dpi, XJ. There is no restriction on ~, which
can be any one of the six vectors of this type. For
convenience we shall take ~=~~.

M= (00-')

The condition for F is (00-,'). (mtp+ntI+pts) =
2sv, (v integral). Hence:

CIr= ~X(P x (28)

As observed in Sec. 4, (Pt~ is isomorphic to P~=D3~,
so that the representations of C~ follow at once. The
class structure of (P~~ must, of course, parallel that of
Dy„although changes such as the substitution of the
class f Cp+

I 0} by the class fCI+
I ti}, fCS I 2ti} are

required.
The treatment carried out for E is equally valid for

K*= (0s-', ), except that the right value of k must be
introduced in the representatives exp ( —ik t) of the
operations of yx in (28). These representatives are
now 1, exp ( —2m.i/3) and exp (2Iri/3), respectively.
This remark should serve as a general example of the
way in which, if necessary, the representation for points
outside our basic domain of the Brillouin zone can be
obtained.

A = (-,'00)

The translations of 1 A are f E I 2mtp+ntI+Pts} and

v'= f &
I o}+f& I to}. (29)

P~ is, as for F, D@, but when we form (P~ we lose the
closure. In fact,

(30)

We have therefore a group of type C and

CA=PA+61&f~
I t,},

which, for future reference, can also be written as

C"=Cr+Cr f E I
to}.

(31)

(32)

When we consider the class structure of C~ we shall
find that for some operations fn I

w} and fII
I
w+tp}

appear in the same class, whereas for others the classes
are duplicated when multiplying by to. In fact, let us
write D6~=C3„)&C,XC,". the operations of C3, appear
in (PA as fa I 0} and therefore they still form a sub-
group of C~. Moreover, C will contain C3,Xy as a
subgroup and since foA I 0} and f

I',
I

~ j, both of which
commute with C3„cannot introduce additional con-
jugations, then the classes of C3„must be duplicated
in C~. On the other hand, the classes of D6I, correspond-
ing to GATI, and i are not duplicated in C~. In fact, it is

and we find that (P~ does not close:

fodi I ~I}fo.ss I ~sj =
f Cs

—
I ti+ts+tp} = f Cs

—
I 2ti}. (27)

Further multiplication shows that in no case does
the product of two operations of (PH belong to Q: we
have a situation of type B. At the same time multi-
plication shows that f Cs+

I 0} and f Cp I 0} of (Ps must
be replaced by fC&+

~
ti} and fC&

I
2ti}, respectively

(see, e.g. , 27), to obtain closure. Also, f Sp+
I
0 and

fS& I 0} must be replaced by fS&+
I ti} and (Sp 2ti},

respectively. These operations, 'plus the remaining ones
of (P~, that require no modification, form the group (Pt~

(see its operations in Table I). From (17)
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easy to prove from (30) that

CL —CM+CM {E ~
t

o»=o M=C„XJ.
(33)

(34)

Here C2.=cpXc„where Cp=E+Cpi, C,=E+o.„i, and
it is only the classes of C, that split each in two: there
are therefore two new classes and two new representa-
tions, with respect to CM, but the representations of
C~ itself should be discarded.

H= (1/2, 1/3, 2/3)

%e have

CM=Cx+Cx{E
~
t,}. (35)

The classes that derive from Cp are split (as in A)
but not those of the remaining operations: this intro-
duces three new irreducible representations.

d=(f, 0, 0)

q'={E}~t, },

0&f&—'

and that therefore the conjugate of foA
~
0} under

{(Ter
~

vl} is {oA t
'tp}. An analogous result is also true for

fi )~}
It follows from the above that C~ contains only

three new classes with respect to those of D6t„which
come from the three original classes of C3„. There are
therefore three new representations. It follows from
(32) that of the fifteen representations of C" the first
twelve arise from those of C~ by taking the repre-
sentative of fce

~
tp} equal to that of fce

~
0}.Since this

is equivalent to taking the representative of {E
~
tp}

equal to unity, these representations should be dis-
carded Lexp (—ik tp) = —1 for A$. The three extra
representations are found by the usual rules to be two
2-dimensional and one 4-dimensional and are given
in Sec. 6.

L=(p0p)

It can be shown that I. and M are related in the
same way as 2 and F, so that t'cf. (32)$:

Z= (00h) 0&h&-,'

Comparing with M (see 23)

CZ=YZXC

r=(0, g, 2g), r'=to, g, -', (1+g)] 0&g(-,'
PT=C,Xcp, C,=E+op„Cp——E+Cpp"

6'T=E{E}O}+{C„"
I
~,}7XC.,

which is a group isomorphic to C2, . Also C =y X6' .
For P substitute {Cpi"

~
~i} for f Cpp"

~
~p} in the above.

I' = (-',Oh) 0(h&-',

Compare with Z:

~=(2, fi, 2g),

CE= QXcp,

~'=f:p, tI, 2(1+g) l,
CB=CT+CT{E

~
tp}.

0&g&3

Only the class {E
~
0} splits in two: there is one

additional representation with respect to those of T.
For S' substitute T' for T in the above.

6. RESULTS

(36) and (39) show that the representations of CA

are derived from those of Ca„ in accordance with the
two possible representatives of f Cp } ~}.

U= ( f, 0, —,') 0&f(
c'=v'fc L{EIo}+fee I ~}3} (40)

where C,=E+o.„i. The representations follow from
(40) and (39).

I' = ( f, 1/3, 2/3) 0&f&-,'
P~ is C3, and to form (P~ it is enough to take the

operations of (P that derive from C3„. It is found, in
analogy to (38) and (39), that

D {a.e„j s„}=+exp (—ik. tp/2) 1,

from which value the representations follow easily.

for all nt such that tnf is not an integer.

P~= C6.=C3, )&C2

L{EIO}+{C I }3
C'= ~' {C,„L{EI O}+{C, I ~}j}.

To find the representations we observe that

{Cp
~
s}{Cp )

~}=fE (tp},
whence

ttD{C, ) }j'=exp ( —ik t,)1
and we can choose

D f C2
~

~ }=&exp ( —ik tp/2) l.

(36)

(37)

(38)

(39)

The groups C~ for all points in the Brillouin zone
have been described in Sec. 5 and their character tables
are given in Table I. These groups are in most cases
isomorphic to well-known point groups and their rep-
resentations are immediately obtained. As explained
in Sec. 5 the groups in question admit in a few cases
of some representations that are additional to those of
point groups: their characters were obtained from the
tables of Herring. '

Since we have chosen our axes and notation to co-
incide with those of Altmann and Bradley' we can
obtain from their tables, for those groups that are
isomorphic to point groups, the irreducible representa-
tions in matrix form, although allowance has to be

(Text conttnnes on p. 40)
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TmLE I. Character tables for the groups of all k vectors.

Notes

(i) Points. The points in k space (k vectors) should be iden-
tified from Fig. 2.

(ii) Symmetry operations T.hey are interpreted in the active
convention and should be identified from Fig. 1. The suffix r
takes the values 1, 2, 3 with reference to the symmetry operations
of Fig. 1, and a symbol such as gd„stands for the three corre-

sponding operations. When more than one translational vector
is given in the symbol of an operation, each of the rotational
operators indicated must be associated with each of these vectors:
{n, I u, v}, for instance, denotes six operations.

When ~ appears without a suKx any of the six vectors of this

type (the e„and their reQections in the plane of Fig. 1) can be
used.

(iii) Groups asd opsratiorts. The groups listed are the groups
C" defined in the text. They have a translational subgroup y",
the operations of which, and their corresponding characters, are
listed at the bottom of the table for each point. Consider a space-
group operation given by the product {n I v} {EI t}{EI

t'f,
where {n I v} is an operation listed in the 6rst row of the table
for each point, and {EI t} and {EI

t'} are a translation of Y~

and I ", respectively. The character of such an operation in the
group G" is obtained by multiplying the characters of {u I v} and

{EI t} obtained from the body and the bottom of the table
respectively by the character of the translation of r~ which is 1.

It should be noticed that for points on lines of symmetry the
translations given for y~ may contain some of 1""if k has frac-
tionary rather than irrational values. This is easily recognized
because the characters jisted for y~ become unity for certain
translations.

(is) Direct product groups In these gro. ups the names of two

representations appear in the column under the name of the
point. Also, the operations are listed in two complete rows, linked
with braces. For the two representations listed together the char-
acters of the operations in the first row are those given in the
table. The characters of the operations in the second row are,
for the first representation listed, those in the table and, for the
second, their negatives.

(v) Represerttatiorts listed Only thos.e representations for
which the characters of Y" have the correct value exp( —ik. t)
are given.

(m) Nomenclature of the irreducible representations. This has
been chosen so as to coincide as far as possible with the standard
notation for the point groups. In particular, whenever C"/Y" is
isomorphic to a point group, the notation is identical with the
standard one, except that for Cg, this has been chosen so as to

Symbol Position Operation Diagonal elements

12

superior

inferior

inferior C~, C2, 0~

inferior {Cs
I ~}, {os I

e f W exp( —ik to/2)

The upper sign in the last column corresponds to the first

symbol in the first column. When the main symbol of the repre-
sentation is 8 or I, the suKxes 1 and 2 cannot, of course, be used.
The operation to which this suSx refers is chosen as follows: ir
the nondegenerate representations priority is given to the opera-
tions in the order listed. In the degenerate representations cr,

takes priority. As regards the sufiixes P, m, {Cs
I
e } takes priority

over {0s I
ef.

For comparison, the number of the representation in Herring's

tables is given in brackets on the right of our symbol. To com-

plete the correspondence it is enough to notice that the +, —
superscripts of Herring coincide with our +, —sures.

(vii) Time resersat In addition t.o the spatial symmetry oper-
ations time reversal must also be considered. This operation in-

troduces additional degeneracies and the criterion given by
Herring' (see also Elliott') shows that this is the case for R only.
There is also time-reversal degeneracy for general points of the

top face of the Brillouin zone.

give priority to OI„which is an important operation in the lattice.
The main symbols are as follows:

A, 8: nondegenerate representations, symmetrical and anti-
symmetrical, respectively, with respect to C3+. (Here and in

what follows, the translational part of a symmetry operation,
unless stated, will be disregarded. )

8, I:as above, but with respect to C2', C2", or 0,
A&@: doubly degenerate representation in which C3+ is repre-

sented by the matrix +1.
E: doubly degenerate representation in which C3+ is not repre-

sented by +I.
8: doubly degenerate representation of a group that does not

contain C~+.
8&4&: four-dimensional representation.

E, P: a pair of complex-conjugate two-dimensional represen-
tations.

These symbols carry superscripts and suf5xes, which denote
the behaviour of the representation with respect to certain sym-

metry elements, as shown below.

{c,+ I of
{S,~ I e}
{c,+ I t, f

{Cg-
I

2tg}

{c,„ I of
&dr

{cs"I"}
{c,l.f

{s.'
I o}

{c, l~f
{0.„, I 0}
{Cs,"

I ~I

frdr &r

Ag+', Ag ' (1, 4)
(2, 3)

A2+", A2 "(3,2)
E+', E ' (5) 6)

(6 g)

Ag' (1)
AR' (3)
Ag" (2)
A,
'"

(4)
E' (5)
E" (6)

1
1

1

1
—1

1
—1

0
0

1
—1

2
—2

1

—1

1

1
—1
—1

1
0
0

X: {EI t&f: exp (2m.i/3); {EI 2t&}:exp (—2xi/3)

s C. Herring, Phys. Rev. 52, 361 (1937). ' R. J. Elliott, Phys. Rev. 96, 266 (1954).
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TAELE I (Cosstslged)

fE }0} {EI to} fC3 10} {C3 } to} {Csr j 0i to} {&310&to} {Ss+
I 0~ to} {qsr '} 0} {& j to}

A, (2) (1)
As&3& (2)
E(4) (3)

—2
—2

4

2
2

—2

—2
—2

2

0
0
0

2
—2

0

—2

2
0

The characters of the operations of A associated vvith ~:

{3 f
'0& oi+to} fSo f

'oe '0+to} fo'dr j 'o~ oi+toj, {Cs f ol, '0+to}, {Co ( oi, oi+to}, fCs." j ol, '0+to},

vanish in all representations.

fEIo} {~,lo, t, } fo 1 I toj

—2
2

The characters of the operations of L that contain ~:

f 3 j 'Os
&

'03+to j 4 {0dl f 'Ols '01+to j 3 f CS { 'Ols 4'1+ to }3 f Col } oils 'Ol+ tO },

vanish in both representations.

{EI o}
(Cs'

I tl} {Cs+
~
tl+toj

{433 ( 0, to}
fs,+

I
t, } {S+

I
tl+t, }

{Cs
~
2tl} fCs

~
2tl+toj (S3 f 2tl+to} fS3 j 2tl}

A&» (1)
Z (2)
~* (3)

2
2
2

2
—1

—2
—1
—1

0
—i'i'

0i'
—ill

{E } tl }:exp (23si/3); {E ~
2tl }:exp (—23si/3)

The characters of the operations of H that contain ~:

f Cs,' f s., br+to}, {~dr f s., ~.+to},

vanish in all representations.

A, U, P: e=exp (—ik. to/2)

{~., } 0} fCs I ~j

{Cobol

~j f« I ~}

Ag„(1)
Ag (2)
Ag„(3)
As (4)
z„(5)
L" (6)

1
1
1
1

—1
—1

1
1

—1
—1

0
0

{E} slsto}: exp (—isNR'to)
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TAsLz I (Contznzzed)

{oez I ez}

e„(i)
0; (2)
m„(4)
m (3)

f
L~'

I
znto }:

1

1
—1
—1

exp ( —iznk'to); {EI tz}: —1

{Co+ I tz}

fc
&dr &r

a„(&)
A (2)
8 (3)

{E I znto}: exp ( iznk —t,); f E I tz }:exp (2zri/3); {E I 2tz}:exp (—2zri/3)

e+', 8 ' (1, 2)
e,', ot ' (4, 3)

ot,",ot " (3, 4)

Z
T
T'
R

fElo}

f Coz'
I O}

Odl &1

{c„'Ioj
I Czo"

I ~o}
{Coz" I ~z}
(C»'

I oI

1
—1

1
—1

fo„ I o}

foe I o}
fo„l o}

foo I oI

1
1

—1

0'tz1

{~so

[&dl

{o.z

0}
z:o}

~z}

0}

(ozlo}
{Coz"

I ~z}

3E: {EI toj: —1

z {EI pto}: exp (—ipk. to)
T: {EI ntz}: exp (—ink tz)
T" {EI pto}: exp ( ipk to)—
R: {EI to}: —1; {EI pto}: exp (—ipk. to)

In R time reversal introduces extra degeneracy: the pairs (8', 8") and (S', 8") become degenerate.

5
S' {Elt, }

{Coo I esz so+to}
f Coz

'
I ~z, ~z+to I

foo I o, to}
{o„I o, t, }

foes I ~o, ~o+toj
foez I ~z, ~z+to}

2

S: f E I ntz}: exp (—ink tz)

S'. fE I pto}: exp (—ipk. to)

made for the change from the passive to the active
interpretation of the operators. In the remaining cases
the matrices were not dificult to obtain, by an exten-
sion of the methods g,sed for the point groups. The

- matrix representations are listed in Table II. In Table
III we give the compatibilities between the irreducible
representations as k moves over the Brillouin zone.
The lattice harmonics are tabulated in Table IV.

(Text eonttnnee on p. 45)
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1Votes

Tmr. E III. Compatibilities for all the representations of Dy, .

{i) Corepatibilities for the irreducible representations along
the seven lines of symmetry are given. (Along the lines 2 SH and
LS'll all the representations are compatible. ) To consider any
circuit several of these lines must be combined.

(ii) All the representations listed in one column of a block
corresponding to a symmetry line are compatible. When more
than one sign is given either of them can be used.

Ag~', E~'
8,'

8+'

A2P', E~'

S '

Agp", E~"
g/I

S~"

A„",E,"
S//

S I/

Ag+', A2 "
Ag~
Ag(2)

Ag ', A2+"
Ag

A2+', Ag
"

A2~
(2)

Ap ', Ag+"
A2
A2(2)

/ E //

E(4)

/ E /I

E(4)

Ag+ 7 A2—7 E+ A2+ 7 Al—7 E+ Al 7 A2+ 7 E+ AI+ 7 A2— 7

0," S' 0'," S/I

A ' E' A ' E'1 7 2 7

II EI /
1

I / EII
2 7

M
T'
x

8 ', S+'
S'

A2', E'

8 ",S+"
g//
I/ E//

1

8+",S"
S//
// EI/

2 7

M
U
L

0',+', S "
0',„
4

8 ', S+,"
8

Gy

S+', 6"
S~

82

S '7 8+"
Sm

g2

A„
A(2)

A2', A),
"

A(2)

E' E"
7

E

Q~(2) E(4)
8'

Gy

A2(2) E(4)

82

A (2) E(4)
g//

A (2) E(4)
S7

x

Notes

TAaI,E IV. The lattice harmonics for the hexagonal close-packed lattice.

for them:

(i) Representations. The representations spanned by the bases

given here are obtained from Table I (one dimensional) and
Table II (two and four dimensional). These representations
correspond to active operators.

(ii) Periodic extensionThe expa, .nsions are given in a centered
unit cell. This contains two halves one around the atom at the
origin in Fig. 1 and the other around either the atom at ~~ or the
one at c2. The expansions outside this unit cell are obtained by
application of the Bloch theorem (see LS) .

(iii) Vatnes of t and m. t is given mod (+2), that is any mul-

tiple of 2 can be added to the value of / in the table. m is given
either mod (+s), with an analogous meaning or mod s in which

case a multiple of s can be added to or subtracted from the value
of m in the table. An indication for this is given in the last column

of the table. l and m appear in a double column and the permitted
values are obtained by forming the whole succession derived
from the two pairs given. For instance, for FA~+" or I'A~ ", the
permitted values of l and m are: (4, 3), (6, 3), (7, 6), (8, 3),
(9, 6), (10, 3), (10, 9), (11,6), etc

(io) The A sign When there .are two representatives listed
in the same row, the upper sign in the harmonics expansion corre-
sponds to the Qrst of the two representations.

(s) The spherical harmonics. We use the following notation

m=F& (tt, p);
c= F,m, ~(7 4,).

(—m) = Fg "(8,4);
s= F~"'(e 4);

where the harmonics themselves are de6ned in I (11), (12), and
(13).

The four symbols above correspond to harmonics centered at
the origin with a set of axes x, y, s shown in Fig. 1. Harmonics
centered around the second atom in a set of axes inverted with
respect of x y s are denoted by placing a bar —above any of
the four symbols (atom at ~~) or a tilde '~ (atom at es) .

(si) The expansions They are obtai.ned from the column
headed "harmonics" by associating with the harmonics listed
there any of the values of l and m permitted. They are normally
given in one line but for R the harmonic around each center
must be read from a separate line and the appropriate combina-
tion formed as indicated in the table. In most cases the harmonic
around the second center carries a coefficient &1. In others,
coeKcients with the following values are used:

g =exp (xif) (f~To component of the k vector),

r =exp (2'/6),
x, y =arbitrary coefBcients.

In the nondegenerate representations only one expansion is
usually given in each line. If there are two separated by "or" it
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Tanz, E IV (Continued)

means that either of them can be used. In degenerate representa-
tions all the partners in one basis are given in one line. The ex-
pansions given in this table are two-center expansions, symmetry-
adapted over the unit cell. To obtain the full lattice harmonics
combinations of them over all lattice points must be obtained
with the appropriate Bloch coeKcients, as in (I.5).

(224) Bases. They are understood as roio vectors. Their trans-
formation properties are obtained by postmultiplying them with
the matrix representative.

(c222) An example of ttie use of the table The. following are
suitable bases for HA&2):

An expansion for the erst column of the representation around
the atom at the origin will be

A2R2'(r) Y2'(8 d ) +A2R2 2(r) F2 2{g 2t) +A2R2'(r) F2 (g d,)

+A4, —2R4 '(r) F4 '(~ d') +A4 4R4'(r) F4'(t 22) +

and the corresponding expansion for the atom at ~1 will be:

B2R2 ' (r) Yi ' (tt 4b) +B3R22(r) Y22 (tt y)

+B4R4 '{r)Y4 '(I) &t4)+
(Y22, —iF2 2), (jY2 2, F22), (Fi 2, —SY2')

(Fr iF 2)

(F4 ' —iY4'),

(1Y22 Yi
—

2) (iY4 ',

(F,4, —iY4 4), etc.

Y4'),
Here the A's and 8's are arbitrary complex coefEcients in a

convenient notation and the 2's and 8's are arbitrary radial
functions around the 6rst and second atom, respectively.

Harmonics

A1+', A1 '

/ p /

0
3

1

1
2
2

3

3

7

5
5
6

3
6
6
3

5

5

c~c
$~8
$~8
c~c
c&c) $&8
chic, —(sos)
c&c) $&s
c+c, —(sag)

mod (+6)

8+', CL'

S",8"

0

0

C~C
$~8
S~B
C&C

mod (+2)

A1') A2'
// A //

1 ) 2 2

0
2

1
3

5
3
5

6

m+ (—tn)
m+ (—m)
m+ ( rn),

imam

—(—m) p-
m+( —m), —

imam
—(—m)g

m —(—m), i(m+( —rn) j
m —(—m), imam+( rn) j— —

mod 6

A, (2)

g(4)

0
0
3
3
1
2
1
2

3
4
6
7

5
5

3
3
6
6
4
5 .

4
5

C) 1C

C) —1C

$) 18

8) 1S

C) $) —C) —8

C) —$) —C) 8

c) 8) —c) —$

c) —8) —c) $

mod (+6)

C) —1C

C) —1C

$) 18

8) 1$

mod (+2)

A &2)

2
2

0
3

1

2
0
0
2

5
5

3
6

m, —i(—m)
i(—m), m

m, i(—m)
—i(—m), m

i(—m), m

m, —i(—m)

mod 6
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TAELE IV (Continued)

Harmonics

Alyp Alm

A2~, A2

g/I g//
7

0

3

1

2

2
3

0
0
1

1
1
0
2
0

0
1
1
0

0
0
1
1

1
1
0
0

3

6
7

5
5
6

4
5
3
5

6

1
2
2
3
3
2

2
1

3
5
3
5

3
6

5
5
3
6

5
5

1
1
2

2
2

2
1

C&qC

C&qC

$&q8
s&q8
c+qc, s~q8
c&qc, —(s&q8)
C~qC) S+q8
C&qC, —(SWQ8)

c~qc
c&qc
$&q8
s+q8

m&q( —m)
mWq( —m)
m+q( —m), i[m —q( —m) ]
m+q( —m), —i[m —q( —m)]
m —q( —rn), i[m+q( —m)]
m q( —m), —i[m+—q ( m) ]—
SC+yC
xs+y8
xsiy8
xc+yc

C&C

$~8
ca [-,'c+ (K3/2) s)
s~[ks —b3/2) c]
c+[-,'c —(W3/2) s]
s& [-,'s+ (v3/2) c]
C~C
$%8
cW[-',c+ (K3/2)s]
sW[-', s —(v3/2) c]
ca[-', r. —(V3/2) s]
s+ [-',s+ (K3/2) c]
c+c or s&8
c&c or $%8

Sc+
yC.

XS+
y8.
XS+
y8.
Sc+
yC.

m, —i(—m)
i(—m), m

m, ir( —m)
—ir( —m), m

m, ir*(—m)
—ir*(—m), ns

ns, —i(—m)
i(—m), m

mod (+6)

mod (+2)

mod 6

mod (+2)

mod (+6)

mod (+2)

mod (+2)

mod 6

moQ 2
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However, this equation appears to be valid owly whee
the variable is r. For instance, if we introduce a new
variable

then,

s=g(r)

Rf(s) &f(as).

(42)

(43)

Rather, it seems to us that Professor Slater defines

Rf(s) = Rft.g(r) 3=fLg( rj (44)

In this way he maintains the isomorphism of his
operators as follows: Take

E;R;=EI, (45)

(46)

PCf. Slater's Eq. (11) and the line above it.) Then,
form

R;f(r) =f(arr). (47)

Operating roith R; on both sides of this equation, we have

R;R;f(r) =R;f(a&r),
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Note added in proof. Since this paper was communi-
cated we have learned that a paper by Professor J. C.
Slater on the same subject will appear in the same
issue. Professor Slater proposes in his paper a new
scheme of definitions for the function-space operators
and since this is diGerent from the one that we have
used, we feel that a few comments are necessary.

tAJ'e shall try to enunciate explicitly the conven-
tions which we believe are used by Professor Slater.
In doing so, we shall drop the translational part of
the space-group operators, since the new features of
Professor Slater's scheme do not depend on them. A
point group operator E is now defined, from Slater's
Eqs. (5) and (6) as

Rf(r) =f(ar).

which, on using (44), gives

R;R f(r) =f(a'ai). (49)

Now, (45) and (46) substituted in (49) give the cor-
rect result

RA f(r) =f(a'r). (50)

It is seen that the procedure given from (47) to (50)
parallels that given by Wigner' in the English edition
of his book (p. 106) as an example of a wrong modus
operandi. In particular, with the ordinary function-
space operators as defined for instance by signer, the
step in italics under our Eq. (47) is not valid: these
operators operate on functions and (47) is a numerical,
not a functional, relation. (It states that the value of
the function R;f at the point r is equal to the value of
the function f at the point a'r) . In fairness to Professor
Slater it should be said that Kigner's criticism could
be considered irrelevant in the new scheme, since, on
account of (43), Slater's operators are no longer defined
as operators that transform functions and should be con
sidered as formal entities defined by (41) and (44).

In fact, we believe that Professor Slater may be
consistent, but this is at the expense of a very sub-
stantial price. The whole theory of linear transforma-
tions is based on the fact that (43) and (41) are
equally valid. Also, the meaning of the operators g
in the usual scheme is clear and perfectly well defined,
whereas we have seen that in the new scheme they
have to be treated as ad-hoc entities for which it can-
not even be claimed that they transform functions.
The reader must appreciate, for instance, that Slater's
inversion applied on exp (s) may not give the func-
tion exp (—s).

The Slater operator is an entirely new symbol, tied
up to one absolute system of axes (his r variable) and
again this is contrary to the mathematical practice of
the last century where linear transformations are always
defined with respect to Qoating systems of axes.

One of us (C. J. 3.) would like to acknowledge cor-
respondence with Professor Slater and the other a kind
letter from Professor Wigner in 1954 that set him on
the right path after his early mistakes in this field.

»E. P. signer, Grolp Theory (Academic Press Inc., New
York, 1959).


