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The measurement of time, space, and space-time intervals, and the related geometries in any gravitational field are
analyzed carefully. It is pointed out that synchronization is arbitrary and very complicated operationally; and a method
for doing away with it is given. Then it is shown how space geodesics can be used to construct several useful coordinate
systems in an arbitrary field, and the associated coordinate conditions are derived. These coordinate systems are then
used to find a unique physically meaningful solution to the field equations in the cases of zero, linear, rotation, and spher-

ically symmetric fields.

1. INTRODUCTION

In spite of the fact that Einstein’s general theory of
relativity (GR) is about half a century old, its opera-
tional meaning is still not completely clear. This is
due mainly to the fact that a rigid coordinate system
(CS) is not possible in a time-varying gravitational
field, and that standard clocks may have different rela-
tive rates at different places and times as revealed by
a succession of light pulses from one clock to another.
Moreover, synchronization of clocks may not even be
transitive.

In the last five years or so, there has been a revival
of interest in GR, as evidenced in many recent articles,
conferences, and books [(1)-(4), (6), (7)]. The pur-
pose of this article is to review, clarify, and present
some new material concerning the operational founda-
tion of GR. The recent areas of research pertaining to
the definition of energy and momentum, gravitational
radiation, and quantization of GR, are adequately
reviewed in the books referred to above, and are there-
fore not discussed here.

Time and space measurements are thoroughly dis-
cussed in Secs. 2 and 3; and precise definitions are given
of a standard clock in Sec. 2B, and length-measuring
instrument in Secs. 3A, C. To my knowledge, neither
these definitions nor the definition of rigidity given in
Sec. 3B, are given elsewhere in the literature.

There are in the literature several formulations of
the principle of equivalence, and different measures of
the line element. These are reviewed and discussed in
Secs. 4 and 5B. This material and that developed in
Secs. 2 and 3 are used to discuss the space-time, time,
and space geometries in Secs. 5, 6, and 7, respectively.

It is shown in Secs. 2D, and 8 that synchronization
of clocks in a gravitational field, is arbitrary, has to
be performed continually, and may not even be transi-
tive. Because of this, it seems desirable to eliminate
synchronization from GR. An attempt in this direction
is made in Sec. 8, and as far as I know this material is
new.

Practically all books dealing with GR[(1)-(6),
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(8)-(12) ] emphasize the great freedom one has in the
choice of a CS. However, unless a CS is uniquely speci-
fied at all times by coordinate conditions (CC) that
are operationally meaningful, it is not possible to obtain
a solution of the field equations that has a clear physi-
cal meaning. The construction of such a CS by means
of space geodesics is discussed and carried out in Sec. 9,
for rectangular, cylindrical, and spherical coordinates,
and all the associated CC are derived. With the help
of these CC, a unigue solution to the field equations is
obtained for the cases of the zero, linear, rotation, and
spherically symmetric fields in Secs. 10-13, respec-
tively. In this way, a fairly complete illustration is
given of the ideas discussed in Secs. 5-9.

Conventions

In referring to pages p to q of Ref. R, we write
[(R)p—q]l; and in referring to equations, we use
“(EM, N, ---)” instead of “(E.M), (E.N),««..”
The radical sign “4/”” applies only to the first symbol
succeeding it.

Unless stated otherwise, particles are denoted by
capital letters and events by lower case letters. More-
over, lower case letters are used to denote curvilinear
coordinates, whereas capital letters are used to denote
coordinates in an inertial CS. Latin and Greek indices
range over the values 0, 1, 2, 3, and 1, 2, 3, respectively.

As usual, we use the definitions a®=¢t, X°=¢T,
where ¢ is the speed of light. The summation conven-
tion for repeated sub- and super-scripts is adopted, as
well as the notation for derivatives: ,;=9/dx* and
,ij=0%/9x%9x7, etc.

2. TIME MEASUREMENT

A clock may be defined as a physical system that
generates and counts a sequence of events at a particle,
called the output particle, such as the tip of the hand
of a watch or the end of the output lead from an
atomic clock. The question now is how to define a
standard clock (SC) that records the proper time used
in the theory of relativity? The fundamental impor-
tance of an SC is seen in Sec. 5B to lie in the fact that
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it provides the basis for the definition of congruence
of space-time intervals.

There seem to be two different types of definition
of an SC: (1) A particular physical system is adopted
as an SC on the basis of a physical theory or hypothesis
about its behavior. (2) The SC is chosen as a member
of a finite set of clocks as-a result of the intercomparison
of all the elements of the set. The outstanding example
of an SC of the first type (SC;) is the astronomical
standard [ (2a)188-195]. Other examples are a par-
ticular pendulum clock and a particular atomic clock.
An SC of the second type (SC;) is exemplified by a set
of at least three atomic clocks or quartz crystal clocks
whose beat frequencies are continually analyzed. We
now discuss in turn the two types of time standards.

" A. Solitary-Type Time Standard

Usually, a primary SC; is selected on the basis of a
physical theory. However, one cannot use this theory
to justify the selection, since the theory itself cannot
be verified without the help of the SC. One would have
simply to point to a particular physical system, assert
that it is tke primary SC, and specify exactly how it is
to be used. Any “corrections’ included in the instruc-
tions are part of the definition. Different choices of the
SC lead to different forms of the laws of physics, and
it is a matter of convenience and taste as to which
form is preferable [ (13)66-77].

In addition to the fact that an SC; is arbitrary, its
basic properties cannot be examined in principle except
by comparison with another clock, which is presumably
inferior; otherwise it should be selected itself as the
primary standard. The situation with regard to the
astronomical standard is transitory, since it is compared
with atomic clocks which are recognized to be superior
to it; and this is the reason why there is a plan to adopt
an atomic SC,.

Moreover, it is usually not possible to use a single
primary standard to calibrate secondary standards at
different locations without some uncertainty and sac-
rifice in accuracy. It would not do to set up several
primary standards and declare that they are all equiva-
lent on the basis of a physical theory; because as men-
tioned above, this would lead to a circular definition.

An interesting SC; is the geodesic clock (GC) pro-
posed recently by Marzke [[(1a)50-53]. This clock is
constructed from two particles P, Q, moving along
parallel world lines in a locally flat space-time region,
and a pulse of light reflected back and forth between
them. The parallelism of the world lines is defined in
terms of intersecting world lines or other particles and
photons. Although this definition was ‘“derived” from
SR, it has to be considered simply as part of the defini-
tion of the GC, if circularity is to be avoided. Simi-
larly, the instruments measuring the deviation from
Sflatness of space-time would have to be considered as
part of the GC.
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The space-time interval between any two events
a, b is measured by a GC as follows (Fig. 1): Let a
occur at one of the particles P of the GC, and let a
photon start from P at event &;, be reflected at b,
and return back to P at b,. Let = denote the round-trip
time of the photon bouncing between the two par-
ticles of the GC; and suppose that the number of
round trips between ¢ and &, is N3, and between ¢ and
bz is N». Then the space-time interval, (ab), between
a and b is defined to be (V1V2)?#r. One feature of this
definition, is that if @, b can be connected by a photon,
i.e., if @ coincides with either 8, or by, then Ny or N,
is zero and (ab) =0 by definition. Another feature, is that
if ¢ is an event on P halfway between b, and by, and the
speed of light is defined by %= (bc)/5(bibs), then if

(bic) =Ny'r and (cbs) =Ny'r, we have NY'=N,'=N,
(bc) = (Ny/NeYir=Nz,  3(bibe) =3(Ny'+Ny)7=Nr,

and thus #=1, i.e., the local speed of light is constant
by definition.

If the length of (abd) is such that the deviation of
the world lines of P, Q from parallelism is appreciable,
then Q would have to be replaced repeatedly by other
particles to preserve parallelism [ (1a)56-58].

In order to get a feeling for a GC, let @, b be two
events at a particle 4 in a gravitational field. In order
to measure (ab) one would have to literally throw the
GC from A at e with such a velocity that it falls back
freely to 4 at b. In view of this, I doubt that anyone
would relish using a GC!

B. Comparison-Type Time Standard

A mnecessary condition that any two SCg’s must
satisfy is that if the output particles of the two clocks
coincide, then the ratio of the number of events gen-
erated by one clock to the number of events generated
by the other must be a constant independent of the
location of the output particles and the initial or final
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events [(11)637]. This condition was called by Synge
[(6)106-107] the hypothesis of consistency. Any two
clocks that satisfy this condition are said to be eligible
standard clocks (ESC).

Even if two clocks are ESC, there is a possibility
that their rate may be changing in the same way, as
for example two quartz crystals aging at the same rate,
or two pendulum clocks whose pendulums have the
same thermal coefficient of expansion. Such differential
effects can be discovered by comparing two ESC’s con-
structed from different materials or having different
constructions. Upon their discovery, one can set out
to devise methods to compensate for them by con-
trolling the environment of the clocks or incorporating
servomechanisms into the clocks. In accomplishing
this, one can use any detection instruments, physical
theory, and experience without fear of circularity,
because the ultimate criteria in deciding what clocks
are SC’s, are based purely on the intercomparison of the
clocks treated as black boxes.

It is conceivable that the inhomogeneity of a gravi-
tational field may be such that even two clocks 4, B
of the same construction with coincident output par-
ticles, may be in regions where the field is different,
and may be differently affected. In order to decide in
this case whether the discrepancy between 4, B is due
to an inhomogeneity of the field over the space region
occupied by them or due to the fact that they are not
ESC’s, one may interchange the locations of 4 and B.
If the discrepancy is exactly the same as before except
for the interchange in the roles of 4 and B, one may
assume that the discrepancy is caused by inhomogeneity
of the field.

After obtaining ESC’s of different materials and con-
struction, there may still be an appreciable probability
that due to statistical fluctuation, or unknown factors,
the rates of any two clocks may vary together. This
probability can be made practically negligible by de-
fining an SC as an element of at least r different clocks,
any two of which are ESC, where 7 is a small integer,
perhaps 3. In this definition, statistical fluctuations
in the comparison of any two clocks have been neg-
lected. A careful statistical treatment of this problem
is presented by the author elsewhere [147].

An important question which has been of interest
in the last three years or so is the following: It is known
that physical interactions may be classified as strong,
electromagnetic, weak, and gravitational. Suppose now
that we have two sets of SC’s each constructed on the
basis of a different type of interaction; will the clocks
also behave as SC’s with respect to intercomparison be-
tween clocks belonging to two different sets [ (1a)46-48;
(1b)139-141; (2a)34-35; (2b)1807]? Dicke [(1b)14]
and Finzi [15] have shown that as far as strong and
electromagnetic interactions are concerned, the answer
is yes; but no answer can be given as yet to the cases
of weak and gravitational interactions.

C. Proper and Coordinate Time

The time given by SCy’s will now be assumed to be
the proper time of general relativity. This assumption
can be verified by using these SC’s to test any of the
consequences of the theory. Up to now, no evidence
against this assumption has been discovered.

At any particle it is permissible to use a clock that
runs at an arbitrary specified rate relative to a coinci-
dent SC. Such a clock is usually called a coordinate
clock, and the time it records is called coordinate time.

D. Synchronization of Clocks

So far, we have been concerned only with time in-
tervals between events occurring at one particle. In
order to correlate the time of events at separate par-
ticles, it is necessary to synchronize clocks. Two clocks
A, B are synchronized by sending a light signal from
A reflecting it at B and then receiving it back at 4.
If the events of sending, reflecting, and receiving back
the signal are denoted by a, b, ¢, respectively, then
any event d between ¢ and ¢ may be considered to be
simultaneous with & [(16) Secs. 19, 227, i.e., if ¢, de-
notes the time of event e, then

tb=ld=ta—|—e(tc—f,), (2.1)

Moreover, if b, d occur at another two clocks 4’, B’
moving relative to 4, B, and the same value of e is
used for synchronization, b, d will not be simultaneous
relative to 4’, B’ as is well known in SR. Einstein sug-
gested for convenience the synchronization convention
e=%. Since only the round-trip average velocity of
light can be measured, it is impossible to verify whether
this or any other value of e should be adopted. However,
in SR it is assumed that space is isotropic, which im-
plies that the one-way velocity of light is the same in
any direction, and thus e = % may be motivated in this
way. But in GR, this motivation does not exist.

In SR if two clocks are synchronized, they will re-
main synchronized. This is not true in a time varying
gravitational field, and consequently synchronization
has to be performed continually. Moreover, synchroni-
zation is transitive in SR, i.e., if two clocks B, C are
synchronized with a clock 4, then B, C will be syn-
chronous with each other. This is not necessarily true
in an arbitrary CS, as is demonstrated in Sec. 12 for
the rotating disk. This poses an important question,
namely that if B, C are synchronized with 4, and a
light signal is sent from B to C, could the time of ar-
rival of the signal be earlier than its time of departure?
If it could, then the procedure of synchronizing all
clocks with one clock will be unacceptable. Reichenbach
[(17) Sec. 7, Thm. 6] answered this question in the
negative. Since his book is out of print and I have not
seen this proof elsewhere, his proof is presented here
with slight modifications.

Theorem. 1t is possible to synchronize all (coordinate)

0<e<1.
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clocks with a single (coordinate) clock so that if a
light signal leaves any clock at time ¢ and arrives at
any other clock at time ¢/, then />

Proof. Let “[A(t) B(f) C(#)+++]” mean that a
light signal leaves clock A4 at time #, arrives at clock
B at time £, and then clock C at time 4, ««+. Suppose
that [A4 () B(t) C(t) A(t)], [A(t) B(t) A(%)],
and [A4(f) C(#) A(#)], as shown in Fig. 2. Since the
last two signal chains are more direct than the first,
we have 155—f1£[4— 121 and t4—tegt4—i1, which 1mp1y

1<t, (2.2)

Notice that only time intervals at the single clock 4
have been considered so far. If we now assume that B
and C are synchronized with 4, then

l2=lf1+6(t5—i1), t3=le+6(f4—lfﬁ),

h<ts.

0<e<1.
(2.3)

Since #>14, it follows that £,>#4, which proves the
theorem for the signal from 4 to B. Moreover, from
(2.3) we deduce f5—ta=(1—¢)(ls—1)>0, or >0,
which provides the proof for the signal from B to 4.
It remains to prove the theorem for the signal from
B to C, i.e., to prove 4>1. From (2.3, 2) we have

L'g— lz= (1—6) (te'—tl) +€(l4—t5) 20 QED

Even though this theorem is true, it can be seen that
the experimental procedure of keeping all clocks syn-
chronized with a central clock is very complicated.
One of the main purposes of synchronization of clocks
is to make it possible to describe the motion of a par-
ticle. A simpler and less arbitrary procedure of ac-
complishing this without clock 'synchronization, is
given in Sec. 8.

3. SPACE MEASUREMENT

There are essentially two popular ways of measuring
spacial distance: (1) by means of “rigid rods,” (2) by
the use of light signals and clocks [ (6)108-109, 1127].
In the absence of a gravitational field the results ob-
tained by the two methods agree, but in an arbitrary
gravitational field, they may not.

By using light signals alone, one can learn that light
signals are first-signals, i.e., if a race is conducted be-
tween a light signal and any other kind of signal, the
light signal will never come out second [(16)143].
Nothing else can be found about the velocity of light,
neither about its constancy nor about its magnitude.
To be sure, one can adopt the round-trip time of a light
signal between two particles, as a measure of the dis-
tance between them [ (16)1127] without worrying about
the constancy of the velocity of light. In effect, this
makes the velocity of light constant by definition
[(1b)117]. If this leads to a convenient description
of physical phenomena, then well and good; if not,
one would have to seek another method of measuring

Frc. 2. Synchronization of A<t
clocks.
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distance. By hindsight, we know that for most practical
purposes the use of light signals to measure distance
is acceptable, provided it can be carried out (light
takes about 1071 sec to travel few centimeters).

However, on the laboratory scale, it would be much
more convenient to measure distance by means of solid
objects, if a measure can be defined that will give a
reasonable description of nature. Moreover, since man
has been using this type of measure since time im-
memorial, it would be highly desirable to see if it can
be defined in the presence of an arbitrary gravitational
field, and how it is related to the measure obtained by
means of light signals. It is shown in Sec. 7A that such
a measure can be defined independently of the time
measure, and can then be used to study the properties
of light signals. In this way, more physical information
may be obtained, which is a decisive advantage.

A. Length-Measuring Instruments (LMI)

In formulating the theory of relativity, Einstein
made use of the concept of a rigid rod as an LMI. If
one attempts to define a rigid rod, he will find the w.y
full of vicious circles. Perhaps one of the outstanding
attempts in this direction has been made by Reichen-
bach [ (16)19-287. He first defines solid bodies [ (16)22]
as “bodies having a certain physical state which can
be defined ostensibly; it differs from the liquid and
gaseous state in a number of observable ways.” Then
immediately after, he introduces the definition: Rigid
bodies are solid bodies which are not affected by dif-
ferential forces, or concerning which the influence of
differential forces has been eliminated by corrections;
universal forces are disregarded. It was shown by
Griinbaum [(13)81-97] that the reference to uni-
versal forces is unnecessary and may only serve to
confuse the issue, so in the following only the first part
of the definition is analyzed. As pointed out in the
previous section, the method by which differential
forces are detected, corrected or eliminated is of crucial
importance. One method Reichenbach gives [(16)23],
is to identify differential forces with exterior forces,
and assume that the rigidity condition is approached
as the ratio of exterior to interior forces approaches
zero. It is difficult to see how such a ratio can be esti-
mated without the use of a length standard; and thus
this method is circular. Another method he prescribes
[(16)24-287 is to construct devices which detect the
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presence of differential forces by the separation of
particles that were originally coincident. However, the
operation of the devices depend upon the inhomogeneity
of the differential force over different parts of a device,
which frequently may not be realized. To use special
instruments such as thermometers to detect differential
forces would lead to circularity, as these instruments
already make use of length standards.

In order to overcome the last objection, Lenzen
[(18)292] and Griinbaum [(13)145] suggested a
method of successive approximations, which may well
work in practice, but which is rather difficult to formu-
late theoretically. In the following, a simpler method
will be described which is similar to that used in de-
fining SC’s, and which is free of circularity. As far as
I know, this method has not been mentioned elsewhere
in the literature.

Basically, an LMI is a physical system which as-
sociates with any pair of particles a number, called the
distance between them which determines whether two
pairs of particles can be made to coincide or not, i.e.,
whether there exists a time interval during which it
is known that the two pairs are coincident.

More precisely, we may define coincidence of pairs
of particles as follows: Let p be the event of coincidence
of particles Py, P, into the particle P, and ¢ the event
of coincidence of particles @1, Q. into particle Q. Let
$’, ¢’ be the events of dissociation of P and Q back
into Py, P»and Qy, Q.. We say that P, Q1 coincide with
Ps, Qo uf there exists a clock C and two events ¢, b on
C, with a before b, such that signals can be sent at p, ¢
and arrive at C before the occurrence of ¢, and from
C after b to arrive at P, Q before ', ¢’. This definition
is independent of any CS.

In order to see how to define an LMI, it is helpful
to analyze a concrete realization of an LMI, such as
the vernier caliper. This instrument consists of a metal
ruler with a jaw fixed at one end, and another jaw
with a mark on it that slides along the ruler. Imagine
that the fixed jaw is to the left of the ruler and the
moving jaw is coincident with it. As the moving jaw
moves to the right and the distance between the two
jaws increases, the mark on it coincides successively
with the left sides of the marks fixed on the ruler. On
the other hand, as the distance between the two jaws
decreases the moving mark coincides with the right
sides of the fixed marks. Let coincidences on the left
and right sides of the fixed marks be called events of
type L and R, respectively. If we count L and R events
from the time (¢#=0) when the two jaws were coinci-
dent, then clearly the number of L events minus the
number of R events that have occurred at any time ¢
gives the number of fixed marks and hence the distance
between the two jaws at time ¢. A length interferometer
operates on the same principle, with coincidences be-
tween the moving and fixed marks replaced by the
appearance and disappearance of interference fringes.

Keeping these examples in mind, we may think of

the raw material for an LMT as a physical system, called
an L instrument (LI), which contains two particles,
called its end particles, and a clock. On the world line
of the clock, two types of events occur, such that at
any time ¢ of the clock there exists a definite number
n1(t) of events of one type that have occurred before ¢,
and a number #2(¢) of events of another type that have
also occurred before ¢. The number s(2) =n1(¢) —ns(f)
is called the scale value at ¢.

The elements of a set of different LI’s are called
LMPT’s if, and only if, the following condition is fulfilled:
If the end particles of any LI coincide (according to the
above definition of “coincidence’) with the end par-
ticles of any other LI, their scale values must be equal
to within an acceptable margin of error at all times, all
places, and all possible scale values [(11)637]. Notice
that if the LI’s were not rigid, then it would be possible
to have coincidence of their end particles with unequal
values of their scales, which is excluded by the above
definition. The assumption that two LMI’s with co-
incident end particles will have the same scale values
anywhere they are compared, regardless of their
space-time history, is known as Riemann’s postulate
[(1a)58-62].

This kind of length standard is of the comparison
type, according to the classification given in Sec. 2;
and all the comments that were made there about such
a definition applies here also. The same is true of the
comparison of LMI’s operating on the basis of different
interactions.

The scale of an LMT as defined so far is not neces-
sarily linear; and it is necessary to define collinearity
before a linear scale can be defined. This will be ac-
complished in Sec. 3C. Moreover in order to avoid
having two LMI’s with coincident end particles affected
by inhomogeneities of the gravitational field, it will be
assumed that the spatial extension of an LMI is “in-
finitesimal.”” This can be checked by the interchange of
the two LMI’s, as was done with SC’s. In view of this,
the maximum separation of the end particles of any
LMI may be considered as “‘infinitesimal.” Measure-
ment of finite distances can only be achieved after
collinearity has been defined, and will be accomplished
by the “transport” or “lining up” of LMI’s along a
space geodesic.

B. Rigidity

The distance between two particles is said to be
constant, or the particles are said to be rigidly connecied,
if and only if the scale value of an LMI has the same
value any time its end points coincide with the two
particles. Notice that rigidity is defined affer an LMI
has been defined. No mention is made in the definition
of solid objects, forces, or geometry. Only the co-
incidence properties of pairs of particles and clocks are
employed.

In experiments concerned with the measurement of



the (round-trip) velocity of light in any gravitational
field, it is found that for distances over which the in-
homogeneities of the gravitational field are negligible,
the velocity is constant. This means that if the distance
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between two particles is judged to be constant by means
of an LMI, then the round-trip time of a light signal
traveling between the two particles is constant. This
result is deduced again in Sec. 7A from the comparison
of time and length standards in noninertial and inertial
reference frames. Notice that it would not have made
much sense to perform these experiments, if the ve-
locity of light was taken to be constant by definition,
and distances were measured by the round-trip time
of light signals.

Two rigidly connected pairs of particles will be called
congruent if they are assigned the same distance by an
LMI (not necessarily linear), within an acceptable
margin of error. The value of this definition is due to
the fact that when two separate pairs of particles are
judged to be congruent, it is possible to make them
coincide when they are brought together, i.e., con-
gruence is lransitive.

C. Collinearity

Reichenbach [[(16)1697] essentially defines three par-
ticles to be collinear if they lie along the path of a
light-signal. Another definition of collinearity is given
here with the help of congruent pairs of rigidly con-
nected particles. If such pairs are connected together
into a linear chain, then the minimum number of such
pairs linking two particles 4, B will form a linearly
ordered set of particles between 4 and B, which will
be called the space geodesic (SG) between 4 and B.
Any three or more particles on the same SG are said
to be collinear.

An SG does not always coincide with the path of a
light signal. For instance, on a rotating disk, a radial
line is an SG [(8)242], whereas a light signal which
starts in the radial direction will deflect away from this
direction. Consequently, the above two definitions of
collinearity are not equivalent. From now on we adopt
the definition of collinearity determined by an SG,
since collinearity of particles is basically a property of
the space (not space-time) geometry, and SG’s are
the “straight lines” of the space geometry. One reali-
zation of an SG, is a taut string.

If 4, B, C are collinear, with B befween A and C,
we shall write [ABC7. The directed geodesic segment
from A to B will be denoted by (4B). We assume that
any SG can be linearly extended on either side; and
by extension of an SG, we always mean linear extension.

If the distance measured by an LMI befweern any
two particles 4, B, on an SG is proportional to the
number of congruent pairs of particles between A
and B, the LMI is said to be a linear LMI (LLMI).
The length of (4B) measured by an LLMI is denoted
by | AB |, and called the proper length.

D. Orthogonality

Two SG’s a, b intersecting at 4 (having a common
particle A) are said to be orthogonal at A (in symbols,
al 4b) if and only if there exist two particles B, D on
a with [BAD] and | AB| = | AD|, and a particle C
on b such that | CB |=| CD|. Operationally, we may
think of 4 as being rotated about 4 until | CB |=| CD|.
In effect, this defines right angles, as congruent ad-
jacent angles.

If al 4b, it is always possible to construct an SG
¢ orthogonal to both @ and b at 4. This can be done by
first constructing ¢l 4@, and then rotating ¢ about @
until ¢ 4. The SG’s @, b, ¢, are then said to form an
orthogonal triad at A.

E. Parallel Displacement

In Euclidean geometry, two lines are said to be
parallel if they lie in the same plane and make equal
angles with a straight line in that plane. The space
geometry in an arbitrary gravitational field is general
Riemannian (having variable space curvature), and
consequently it is necessary to generalize the above
definition of parallelism to Riemannian geometry. The
two best known generalizations have been given by
Levi-Civita [ (19)101-111, 137-140; (20) 62-65, 72-74;
(21)II 98-1017] and Severi [(22) Sec. 11; (19)171;
(21)1I 101-107]. The two definitions agree to the first
order infinitesimals, but not to the second order [[(21)II
124-1277]. The mathematical condition for parallelism
is given in Sec. 7E, and we restrict ourselves here to the
operational meaning of parallelism.

The Levi-Civita definition for a space of more than
two dimensions (we are interested here in three-
dimensional space) is given in terms of an imbedding
Euclidean space, and is not suitable for an operational
interpretation. However, the Severi definition is based
upon the intrinsic properties of the space by making
use of geodesics. The definition we give in the following
is the concrete realization of this definition.

Suppose that we have three neighboring rigidly con-
nected particles 4, B, A" (Fig. 3), and we wish to
find a particle B’ such that (4B) is parallel to (4’B’).
The first point to notice is that the direction of (4'B’)
depends upon the path from 4 to A4’ along which
(A4B) is displaced. It is assumed that this path is always
the (unique) SG connecting 4 and A4’. Now the two
directions of the SG’s (AB), (4A4’) determine a sur-
face S4 called the geodesic surface at A as follows: Ex-
tend (4B) and (A A4’) on both sides and connect B with
A’ by an SG. Then connect 4 with all the particles
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on (BA’) with SG’s to obtain the first quadrant of
Sa. If D is a neighboring particle such that [DA4A"],
the second quadrant may be obtained by connecting
A with the particles of (BD). The other two quadrants
may be constructed in the same way. The second thing
to notice is that if (4P) and (4Q) are any SG’s on
Sa4 and P, Q are a finite distance away from A, then
(PQ) does not necessarily lie on Sy, i.e., it does not
necessarily intersect the SG’s between (4P) and
(4Q) [(21)II 135-136]. Consequently, it is not pos-
sible in general to define a totally geodesic surface, and
is one of the reasons why A, A’ have been chosen to
be neighboring particles.

The best thing we can do, is to start (4’B’) tangent
to Sa, by requiring that (4B’) intersect (A4’B); the
rest of (A’B’) may not lie on S4. In the Euclidean
case, this requirement would insure that (4’B’) lies
in the plane S4 determined by (AB) and (44’).

Finally, by analogy with the Euclidean case, we
choose the direction of (4’B’) so that £ZB'A'C=
£ BAA’, where C is a neighbor of 4’ with [4A4'CT],
as shown in Fig. 3. This is accomplished by taking
| A'B"[=| AB|,| A'C|=| A4’ |, and | B'C |=| B4'|,
i.e., by requiring the congruence of triangles 4A’B’C
and ABA’. If all the above conditions are satisfied,
we say that (AB) is parallel displaced along (AA’)
to (A’B’), in symbols AB || A’B’ (the order of the
four letters is important). Notice that if 44’ || BA",
then (BA') and (A’B’) do not necessarily interest
[(21)11 138-139].

If AB1 AA’ and AB || A'B’, then it follows from
the above definition that A’B’1 A’A. Whether (AB)
and (4'B’) intersect or not depends upon the nature
of the space geometry. For instance, if the space has
constant curvature, then they will meet in zero, one
(absolute polar), or two points (antipodal points),
depending upon whether the geometry is Euclidean or
hyperbolic, elliptic, or spherical. However, since the
radius of curvature is of cosmical dimensions, we need
not worry about the intersection of two SG’s orthogonal
to another SG within the region of any concrete CS.

4. PRINCIPLE OF EQUIVALENCE

A principle which plays a fundamental part in GR
as a whole, and in space-time geometry in particular,
is the principle of equivalence (PE). There are several
different formulations of this principle in the literature,
and we now review these.

According to the first formulation by Einstein
[(12)118], PE may be stated as follows: For every
nfinitesimal space—time region there always exists a
physical CS, I, in which SR is applicable. This CS
will be called a local ICS (LICS).

Fock [(7)228-230] took issue with Einstein’s form-
ulation of PE because of its local character. According
to Fock, the important principle is the eguality of
inertial and passive gravitational mass, which has non-
local character. By inertial mass (IM) is meant the

intrinsic property of a body that determines its ac-
celeration under the influence of a nongravitational
force; a passive gravitational mass (PGM) is the mass
on which a gravitational field acts, and an active gravita-
ttonal mass (AGM) is the mass that is the source of a
gravitational field [ (23)423].

Synge [(6)IX] is not sure what PE is; but accord-
ing to him, if it means anything, it is perhaps that the
signature of the space—time metric is +2. The mean-
ing of this statement is explained in Sec. 5B, and is
shown to follow from Einstein’s PE.

This controversy was somewhat clarified by Dicke
[(1b)13; (2b)16-19] by breaking PE into fwo prin-
ciples, a weak and a strong principle. According to
Dicke the weak principle of equivalence (WPE) is the
statement that all bodies fall with the same accelera-
tion at a given point in space, and the strong principle
of equivalence (SPE) is the statement that in a freely
falling laboratory all the laws of physics have the same
form and numerical content (values of dimensionless
“constants’), asin a gravity-free region, independent
of the position of the laboratory in space and time.
As pointed out by Dicke, WPE is very well supported
by the experiments of Eétvés [24] and Dicke [(25);
(26)18-197, but SPE has been verified only for electro-
magnetic and strong interactions, and its status is
unknown for weak and gravitational interactions
[(1b)14-15; (2b)19-317]. Notice that WPE is a non-
local statement, whereas SPE is local, and it is SPE
that corresponds to Einstein’s PE.

The relation of WPE to Fock’s statement “IM=
PGM” was derived by Einstein himself [(11)57] as
follows: For particles with speeds negligibly small
compared to the speed of light, Newtonian mechanics
provides a valid approximation. In accordance with
this theory, the equation of motion of a particle in a
gravitational field is given by mia= —mpgVe, where
my is the IM, mpq is the PGM, a is the acceleration,
and ¢ is the gravitational potential. According to
WPE, we have a=—V¢, and thus mi=mpg.

Inasmuch as the statement “IM=PGM” derives its
meaning from concepts in dynamics and gravitation,
whereas Dicke’s statement of WPE makes use only of
kinematical and geometrical concepts, it seems to me
that Dicke’s statement is more preferable. Due to the
importance of WPE and its acceptance by all authors
in some form or another, it seems worth while to make
it more precise as follows: By WPE we shall mean that
any two particles which are acted upon by the same
electromagnetic, strong, and weak forces, and which
are coincident for two neighboring events (have the
same initial position and velocity) will move along
exactly the same trajectory. The nonlocal character
of this statement is clear, and the presence of the listed
forces make it unnecessary for the particles to be “fall-
ing” to test this statement experimentally. Since the
bodies are suspended by wires in the E6tvos and Dicke
experiments, it is the statement in the above form which
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is actually verified. From now on, we shall mean by
WPE the above statement.

If the forces listed in WPE are zero, either because
their sources are zero or the charge, magnetic moment,
etc. of the particles are zero, the particles are said to
be falling freely. Notice that this concept would be
meaningless if it were not for the validity of WPE. A
local ICS (LICS) may now be defined as a set of
freely falling particles confined to within a space region
R during a proper-time interval AT, such that if D
is the dimension of R in any particular direction, and
AX is the change during AT of the proper distance along
the same direction of any two particles initially at
rest, then AX/D may be considered negligible com-
pared to the smallest dimensionless number under
consideration. This is the operational meaning of the
adjective “infinitesimal” describing the LICS in
Einstein’s PE. In Sec. 5C “infinitesimal” will mean
that the second derivatives of the metric coefficients
are negligible; but it seems circular to define “infinites-
imal” in terms of the metric if PE plays a role in the
introduction of the metric.

Having defined an LICS, we may express SPE more
precisely by the brief statement that SR is valid in an
LICS. Notice that the validity of WPE is necessary
for the formulation of SPE, and thus Einstein’s PE
implicitly assumes WPE.

Another version of PE was given by Rohrlich
[(26)183] in terms of the two statements: (A) IM=
PGM, (B) PGM=AGM. Statement (A) was shown
above to be related to WPE, whereas statement (B)
seems to be a new proposal. Rohrlich noted that (B)
is a consequence of Newton’s third law and the law of
gravitation, and that since Newton’s third law must
be abandoned in relativity due to the finite propaga-
tion speed of interactions, (B) is not trivial. However,
it is not clear what role (B) plays in the postulates
of GR.

Since according to WPE the trajectories of freely
falling particles are the same for all particles, the
dynamical trajectories may be identified with geometri-
cal paths. This fact makes it possible to identify the
gravitational field with the metric. In Secs. 5B, C it
is seen how Einstein made use of SPE to derive the
expression for the line element and equations of mo-
tion; but because of the adjective “infinitesimal,”
it is also seen in Sec. 5D that the applicability of SPE
is limited.

5. SPACE-TIME GEOMETRY

Since the points of space-time are events, and four
coordinates are necessary to specify an event, space-
time is four dimensional. In order to develop space-
time geometry, it is necessary to introduce a muetric
or a measure ds of space—time intervals. Congruence of
intervals can then be defined in terms of the value of
such a measure. The type of measure determines the
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nature of the geometry [(16)35; (27)64-71; (13)11,
115-1177. In this section we discuss the three principal
measures used in the literature.

A. Coordinates

For the study of space-time geometry it is convenient
(but not necessary) to introduce coordinates [1(c)19].
The main function of coordinates is to catalog events
[1(a)40-457]. One rather unconventional way of as-
signing coordinates to an event which illustrates very
well the great freedom one has in such an assignment,
was given by Synge [(5)7]. It consists essentially of
four “old battered” but hardy clocks carried by flying
aeroplanes that turn, dive, and climb in an arbitrary
way. If the event is an explosion, the times of arrival of
the sound of explosion recorded by the four clocks may
be used as the four coordinates of the event. The es-
sential point here is that four numbers are needed to
identify an event, not three or five; and in this lies
the meaning of the statement that the totality of all
possible events form a four-dimensional continuum
L(5)6].

More conventionally, a coordinate system (CS) in
GR may be described [(16)263-264; (28)] as a scaf-
folding constructed from an elastic material and having
coordinate clocks at its intersections which are syn-
chronized with a central clock. The use of coordinate
instead of standard clocks is purely a matter of taste
or convenience. However, the use of an elastic material
is necessary, because a rigid structure is not possible
in a time-varying gravitational field, as becomes ap-
parent in Sec. 7B.

B. Line Element

As already mentioned, coordinates serve simply as
labels of events, and differences of coordinates dux*
give no information by themselves about time or space
intervals as measured by SC’s or LLMT’s, i.e., proper
time and length intervals. In order to obtain such in-
formation, it is necessary to state how the space-time
interval ds between two events is to be measured.
There seem to be three different methods in the liter-
ature of accomplishing this, which will be shown to
be equivalent. We now discuss these methods.

1. Einstein’s Method

To measure ds, Einstein [(12)118-120; (11)63]
made use of SPE as follows: Let dx? be the coordinate
differences of two events in an arbitrary CS and dX*
the rectangular coordinates of the same two events
relative to an LICS, I. According to SPE, we may
apply SR to I and conclude that

dS2 = _‘T]rL‘jdXide
=cdT*—dL?,

(5.1)
(5.1
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is an invariant, where
Ni0="—08in,  7Nap=ap,
and
dX'=cdT, dL?= 0,5 X*dXP. (5.2)
Since one can measure d7' by synchronized SC’s in 7
and dL by an LLMI, it follows that ds is measurable,
which is what was desired.
In order to find the expression of ds in terms of dx?,
we recall that coordinates are only labels, and thus
there must exist a nonsingular transformation between

X and &% i.e., we can write
Xi=X*(a0, &', a2, a?), dXi=X: ; dw?, (5.3)

where X* are the coordinates within the “infinitesimal”
space-time region of 7. Substituting (5.3) into (5.1),
we obtain the desired expression

ds?= — gsdatdad, (5.4)
where the melric coefficients gi; are functions of 7.

Since (5.3) has an inverse, it is always possible to
reduce (5.4) locally to (5.1). The reduction to a diag-
onal form is always possible for a nonsingular quadratic
form (5.4), i.e., if det(gs)£0. The important thing
here is the number of positive and negative signs in
(5.1), which is characteristic of the form and cannot
be changed by a coordinate transformation. The
number of negative signs minus the number of positive
signs is called the signature of the form. In (5.1),
there are 3 negative signs and 1 positive sign, and thus
the signature is +2. The physical significance of the
number of positive and negative signs was very well
explained by Synge [[(5)17-18], and is worth outlining
here.

If ds represents the interval between a particular
event ¢ and an arbitrary event b in the neighborhood
of a, then b can either be connected with a by a particle,
or by a photon, or cannot be connected at all. Since the
speed of a particle is always less the speed ¢ of a photon,
it follows from (5.1’) that

> inside
ds=0 for events on the light cone. (5.3)
< outside

Events b inside and on the light cone are either in the
past or future of ¢ and those outside the cone cannot
be connected with ¢ by any signal, and any one of
these events may be considered simultaneous with a
in a properly chosen CS. Since ds is an invariant, the
classification of events relative to any particular event
is independent of the CS.

Now if we write (5.1) in the form ds?’=e¢,(dX*)?,
where ¢,= -1, we notice that there are five possibilities
for the signs of e, €, €, €3, namely:

(b)—!—_—_‘—';
(e)++++.

(a)__—_;

(C)++__':

Since all values of ds in (5.5) must exist, and case (a)
excludes ds>0, while case (e) excludes ds<0, these
two cases must be ruled out. In cases (c) and (d), if
we let dX?*=dX3=0, we see that along X', ds<0 is
excluded, and thus these two cases must also be ruled
out. This leaves case (b), which coincides with (5.1),
as the only case possible.

Since ds? is an invariant, it follows that dx? are the
components of a vector and g;; are the components of
a tensor of the second rank, i.e., if we perform a trans-
formation x"i=x""(x? ', a2, ®), then da'i=x'? ;dxs,
and
(5.6)

For this reason g;; are also referred to as components of
the metric tensor.

We may always decompose g;; into symmetric and
antisymmetric parts as follows: gi=gS;;+g4:;, where

7, ’ 7
gi=x"* " g .

8%i=3(gitgi) =8%,  &%=3%(gu—gi) =—g%s
Since g4;daidxi=0, it follows that g4;; contributes
nothing to ds?, and we may assume g;; to be symmetric
without any loss of generality, i.e., we may assume

8ii= i1

Consequently, there are only 10 independent metric
coefficients instead of 16.

2. Synge’s Method

Instead of making use of SPE to measure ds, Synge
[(6)105-107] defines first the measure on a time-like
interval by the time dr recorded by a freely falling
(inertial) SC (ISC), from the start-event of the in-
terval to the end-event. The question immediately
arises as to the relation of dr to the coordinate differ-
ences da’ of the two events [(5)15-197]. In general,
one may write dr=f(x, dx), where “x” is an abbrevia-
tion for “af, «!, x% &%’ and f must be an invariant since
dr is a measurable quantity. If one assumes that
Sf(x, kdx) =kf(x, dx) for >0, then f is positive homo-
geneous of the first degree and the space-time geometry
is said to be a Finsler space. This allows many possi-
bilities for the invariant function f. Two such possi-
bilities may be (5.4) with

ds = cdr and  dr=(gyudvideida*dst)t.

The choice of f must be decided experimentally. One
way of accomplishing this [ (16)249-2507], is to assume
a particular form for f and find out the number of
different time-like intervals emanating from a given
event that are necessary to determine the metric co-
efficients uniquely. For instance, if (5.4) is the correct
choice, then 10 measurements of dr will be necessary
and sufficient to determine the 10 g;;; and it is then
possible to calculate the value for any other time-like
interval and check the result experimentally. On the
other hand, if the other possibility of f is correct, then
many more measurements of dr than 10 are necessary
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to determine g;z:;. It turns out experimentally that
(5.4) is the correct choice, and this fact may be adopted
as a postulate. In effect, this states that space-time
geometry is a Riemannian space, which is a particular
case of a Finsler space. However, the g;; obtained in
this way do not @ priori have to be the same as those
obtained previously, because the measures of ds are
different. But it is shown in Sec. 6A that they are the
same.

So far, a measure of ds has only been defined for
time-like intervals. However, since this is sufficient to
determine g;; completely, one may use these values of
g:; to calculate ds from (5.4) for any other kind of in-
terval. It turns out experimentally that ds=0 for events
connected by photons. Again we must introduce this
fact as a postulate in the theory, and it amounts to the
statement that photons have the maximum speed of
any possible physical signal. For separated events which
cannot be connected by any signal, ds<0. In order
to express these facts mathematically, one assumes
that ds? is nonsingular (det g;0) with signature
+2[(5)17-197, an assumption which is closely related
to Einstein’s PE.

3. The Method of Marzke and W heeler

The method of Marzke and Wheeler [ (1a)45, 53-56 ]
is the same as that of Synge with the exception that
they measure any type of interval ds by using geodesic
clocks constructed from freely falling particles and
photons, as discussed in Sec. 2A. It was shown there
that by definition, ds=0 for events connected by a
photon. Since the same statement was found to be
true by the use of SC’s, it follows that a geodesic clock
is equivalent to an SC. Therefore, the method of Marzke
and Wheeler is equivalent to that of Synge.

C. Space-Time Geodesics

Before presenting how Einstein identified the paths
of freely falling particles (FP) with space-time geo-
desics by the use of SPE, we shall investigate the ap-
proximation implicit in the adjective “infinitesimal”
applied to an LICS. For this purpose, let us transform
from % to «’%. Then g;; transforms to g’;; according to
(5.6). Expanding g’;; about any point P, we get

g'i;(a") = gij(«'p) + (9g'1i/ 0x™®) p (2% — x"p)
+ (62g’,~,~/6x’kax’l) p(ﬂG’k'— x'kp) (x”— x”p) —l'- e,

Moller [(8)274-2757] showed that it is always possible
to find a transformation so that (9g’;;/8x™)p=0. More-
over, because the signature of ds?is +2, it is also pos-
sible to set g’ij(x#'p) =7:. Consequently, by choosing
x'i—x"%p sufficiently small, we may neglect the remain-
ing terms in the above expansion and obtain an LICS.
Thus, ‘“infinitesimal” means that the extension of the
LICS is such that terms involving derivatives of the metric
coefficients of the second order and higher may be neglected.
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Following Einstein [(12)142-1437, we notice that
the path of an FP in an LICS is a straight line, which is
a geodesic in this case. As is well known in Riemannian
geometry [ (20)48-51; (8)228-2307], the geodesic equa-
tions may be derived from the variational principle

b
6/ ds=0, day=0x%=0. (5.7)
Since ds is invariant, (5.7) is valid in any CS, and by
SPE it may be assumed tentatively that (5.7) is the
equation of motion of an FP.

Making use of (5.4), the geodesic equations result-
ing from (5.7) may be written in the form [ (9)268-270]

a'=dut/ds= —Tuubf=A* (5.8)
wi=dx*/ds, (5.9)
where
Dip=g"Trje,  2Tei=gijutgiwi—&iws, (5.10)
and g% are defined by
gV =0%. (5.11)

Ii.jr and I'’j, are known as the Christoffel symbols of
the first and second kind, respectively. From (5.8, 10)
we see that only first derivatives of g;; are involved,
and thus the use of SPE to obtain (5.7) is justified.
Since Synge did not make use of SPE, he had to
assume that (5.8) are the equations of motion [[(6)110].
The necessity of this assumption stems from the fact
that once the measure and form of ds have been de-
cided, then g;; and hence the geodesics are uniquely
determined; and there is no guarantee that the paths
of FP will be geodesics. After selecting the form of ds,
one can either define the measure of ds to be given by
an ISC and essume that the paths of FP are geodesics,
or he can define the geodesics by the paths of FP and
assume that the measure of ds is given by an ISC.

D. Field Equations

Up to now no mention was made of how to calculate
gi;- From WPE; i.e., the identification of FP trajectories
with geometrical paths, it became evident to Einstein
that the gravitational field must be given by the metric.
But since the gravitational field is determined by the
environment, this meant that equations must be found
that relate the metric to the environment. The deriva-
tion of these equations is given in every book on GR
and is not repeated here. For our purposes we only need
the field equations outside the sources of the field,
namely [ (8)310-312, 287]

Ri=(In /=) ii—T*;je— (In v/ —g) 4%
+ %, T=0, (5.12)

where g= det(g;;), and R;;= Rj; are the components
of the curvature tensor of the second rank. Since (5.12)
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involves second-order derivatives of g;;, SPE cannot be
used to derive them.

Due to the general covariance of (5.12), i.e., the
fact that (5.12) does not change its form under ar-
bitrary transformations of the four coordinates, only
six out of these ten equations are independent [ (8)311].
Consequently, it is necessary to impose four additional
conditions, called the coordinate conditions (CC), on
g:; in order to determine the 10 g;; uniquely. The CC
are related to the choice of the CS and rates of clocks.

E. Matter and Transformation Fields

A gravitational field generated by matter or energy
will be called a matter field, and one that can be obtained
by a coordinate transformation from a (finite) ICS
will be called a transformation field. The presence of
a matter field can always be detected by verifying
whether the following condition is fulfilled:

2Rijmr= gk 18tk — itk Gik, it
+2g" (T 6T j1— Lo itLnejie) = 0.

If R;u#0, then at least part of the field is a matter
field; whereas if R;j:=0, then the field is purely a
transformation field. Since R;j is the curvature tensor,
space-time is said to be curved if R340, and flat if
R;juu=0. In the latter case, it is possible to find a
transformation (5.3) that will reduce (5.4) to (5.1)
in a finite region, since (5.13) is the necessary and
sufficient condition for the existence of such a trans-
formation. By substituting (5.3) into (5.1), it can be
seen in this case that

gii=X* X .

(5.13)

(5.14)

If g;; are known, (5.14) can be used to derive the trans-
formation (5.3).

The question now is whether it is possible to separate
a matter field from a transformation field in case
R;;x5£0? This can be done if the asymptotic behavior
of the field at infinity is examined. According to GR
in its present form, a matter field should be asymp-
totically flat [(7)3, 230; (9) 244-2457, i.e., as the
proper distance from the sources of the field approach
infinity, g;; should approach the values 7;;. However,
if GR is modified or reformulated [(1b)121-125;
(1d)303-344; (2b)31-48; (29)7] so as to take Mach’s
principle into account, g;; should vanish asymptotically.
In either case, the asymptotic behavior of a transfor-
mation field is different, as will be demonstrated in
Secs. 11 and 12.

The condition (5.13) is coordinate independent, since
if all the components of a tensor vanish in one CS,
they will vanish in any CS. Moreover, the curvature
tensor R has the following properties:

Rij=g" Riji,
R’ijkl: - Rjikl= - Rl]lk= Rkl’ij-

(5.15)
(5.16)

6. TIME GEOMETRY

The true nature of time becomes apparent when one
restricts one’s self to events at a single particle. The
subclass of events obtained in this way form a one-
dimensional space ordered by the binary relation “be-
fore,” which is irreflexive, asymmetric, and transitive.
A metric on this space is introduce by means of clocks,
as was shown in Sec. 2. In order to extend the concept
of time over space, it is necessary to synchronize clocks.
In the following we go into the formulation of the
important properties of time intervals in GR.

A. Relation between Proper and Coordinate Time

Consider a standard and a coordinate clock at rest
(dx*=0) at the same point in an arbitrary CS, R.
For two neighboring events @, b at this point, it follows
from (5.4) in Synge’s formulation that

dT=\/—‘g00dt, (61)

where dr is the proper time and dt is the coordinate
time. This shows that /—geo is the ratio of the rate of
a coordinate clock to the rate of a coincident SC. If it is
desired, SC’s may be used throughout R, in which
case goo= — 1. By squaring (6.1), it can also be seen that
we must always have

200<0. (6.2)

Suppose now that an ISC is momentarily at rest
relative to the SC under consideration, during the oc-
currence of @, b, and d7 is the time interval between
a, b that it records. It is an experimental fact, the
validity of which is assumed in GR [(8)49], that

dr=dT. (6.3)

This assumption was thoroughly examined by Romain
[30] from the point of view of transformation from an
ICS to a “uniformly” accelerating CS.

In the LICS attached to the ISC, dsg=c¢dT'; and
in R, dss=cdr. The subscripts E and S are used to
differentiate between the measures assigned to ds by
Einstein and Synge, respectively. It thus follows from
(6.3) that dsg=dsg, i.e., the two measures of ds are
equivalent. Consequently the g;; obtained from the
two different measures are the same.

B. Clock Synchronization

Let A, B be two synchronized coordinate clocks in
R, and let a photon depart from A4 at time ({—dt),
be reflected by B at time /, and return to 4 at time
(¢4dts). The time intervals df, (u=1, 2) can be cal-
culated from the equation of motion of a photon

[(9)257].

— ds?= goo(cdl) *+2goadx*(cdl) + gapdadxP=0. (6.4)

With the help of the definitions

Ya=goa/V =800,  Y0=go0/V—gw=—+'—gu, (6.5)
Vg = Gap VY8 (6.6)
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the solution of the quadratic equation (6.4) may be
written as

C\/—gondt,‘= (vagdx“dxﬂ) éi'yadx"‘, (67)

where the positive sign is associated with u=1 and
the negative sign with u=2.

By Einstein’s convention [e=3 in (2.1)], the event
at A which is simultaneous with the reflection event at
B occurs at time

= (l'—' dl1) +%(dll+dlz) = t+%(dlz—(ﬂ1) .
Making use of (6.7) we get
cdr=c\/—goo(t' — 1) = c/— goo(dla— dty) = vadx*.

Thus, if clocks are synchronized along a closed path,
the last clock will be found to be off from the first
clock by [(9)259, 276]]

cf 67'=7§ Yo dx"‘=/ Tag df*5,

where df*# is an area element on the x*x% surface (a%g3)
and

(6.8)

(6.9)

The last step was obtained by the use of Stokes’ theorem
[(9)22]. The necessary and sufficient condition for
transitive synchronization is

f or=0,

which in view of (6.8) is equivalent to

Tii=Y4,i Vi

7a8=0. (6.10)

One way of testing experimentally whether syn-
chronization is transitive or not, is to let two beams of
light travel around a closed path P of nonzero area in
two opposite directions and measure the phase dif-
ference between the two beams. The last quantity is
related to the proper time difference Ar between the
travel times of the two beams. Making use of (6.7), we
get as in (6.8)

Ar=261 ]5 e dx*=2 f 5.
P

Such an experiment was performed on a rotating disk
first by Sagnac [317] and more recently with the help
of lasers by Macek [327].

(6.11)

C. Gravitational Frequency Shift

One of the basic experiments that can be performed
with photons, is the comparison of the rate of two clocks
at separate points 4, B. This can be done by sending
two photons from A4 at times ¢ and ¢ + d¢, and receiving
them at B at times ¢’ and #/+d#'. If A and B are neigh-

bors, then according to (6.7) we have
V' — goo(¥ — 1) = (Yapdadal) i yada=,
¢(— goo— cgoo,odt) } (¢ +dt' — t—dt)
=[ (Yas+Vap 00t) Ax*daP T+ (YatcYa,0dl) da=.

Subtracting the first equation from the second, we get
to the first order infinitesimals

dt' Jdt=1+de, (6.12)

where
V — go0de = Ya,002% 45 (YapdxdaP) 74 (yap odaxdaf) .

(6.13)

If B is a finite distance away from A4, we can cal-

culate dt'/dt by subdividing the path of the photon

from A4 to B into infinitesimal segments, say # in

number. If the time intervals between the two photons
along this path are di=dt, dts, +++, dt,=dt’, then

dt'  dty dlp

dt Aty dly s

Thus,

dty
.o -—2= Hz(l—l—del),’t’,l—l—zz de,;.
dh Y

arJdi=1+ / de. (6.14)

For a stationary field, defined by g;;,0=0, de=0
and dt’'/di=1. Making use of (6.1), we get the familiar
result [ (4)60-61]

v/v'=dr'/dr=(g'0/gw)? (6.15)

where », v’ are the proper frequencies of the clocks. This
formula is used to explain the gravitational red shift
and recent experiments [ (33), (34)] as will be seen
in Secs. 11-13.

7. SPACE GEOMETRY

The points of space geometry are particles not events.
The most basic relations between particles are those of
collinearity and betweenness, whose operational meaning
were discussed in Sec. 3C. When the way these con-
cepts were defined is examined, it is seen that they
have an absolute meaning independent of any CS, just
as the relation ‘‘before’ has an absolute meaning. How-
ever, whereas before is a binary relation between events,
betweenness is a ternary relation between particles. This
points out one of the important differences between
the topological structure of time and space. The prop-
erties of belweenness are discussed in books on the
foundation of geometry [(35)26].

The dimensionality of space may be established with
the help of collinearity as follows: One starts with a set
L of collinear particles, and discovers that there exists
at least one particle which does not lie on L. This es-
tablishes that space is at least two-dimensional. Then
after defining a geodesic surface S at a particle, as
in Sec. 3E, one finds that there is at least one particle
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d
dv,
a b Fr1c. 4. Space-interval measure-
ment.
de,
¢
C

not on S, which shows that space is at least three di-
mensional. Finally, by setting up a three-dimensional
space CS, one finds that any particle can be located
by means of three coordinates, which proves that space
is at most three-dimensional.

A metric on space may be introduced with the help
of an LLMI, as shown in Sec. 3C. The relation of this
measure on intervals between particles to the measure
on space-like intervals between events, will now be
discussed.

A. Measures of Space Intervals

In Sec. 5B2, we have seen that a space-like interval
ds between separate events a, b may be calculated from
(5.4). Synge [(5)24-26; (6)112-1137 has given another
way of measuring such an interval as follows: Suppose
that the event @ occurs on an SC, C, and a photon starts
from C is reflected at &, and returns back to C (Fig. 4).
Let the start and return events of the photon be de-
noted by ¢ and d, respectively. Since ds is space-like,
a must occur between ¢ and d. Let the time intervals
on C between ¢ and ¢ be dr;, and between a and d be
drs, Synge proved that (aside from a factor of 1=+/—1,
which he takes care of by the use of an indicator
[(5)23])

ds=ic(drdry). (7.1)

By definition, a is simultaneous with b if dry=dr,=3dr,
where dr is the round-trip time. In this case (7.1)
becomes

(7.2)

An interesting question is, if @, & occur on a rigid
rod (LLMI), 4, at rest in an arbitrary CS, R, and the

ds=1Xicdr.

F16. 5. Measure-
ment of speed of
light.

df. dby

measured distance is dl, what is the relation between
dl and ds given by (7.2)? To investigate this question,
we let another rigid rod, B, fall freely and assume that
its end points coincide with those of 4 at the events
a, b while B is momentarily at rest. Another assump-
tion in GR [(8)223] is that if the distance between
a, b measured by B is dL, then

dl=dL. (7.3)

Because of (6.3), event a also occurs haliway between
¢ and d on an SC attached to B. Consequently, a, b
are simultaneous in the LICS attached to B, and it
follows from (5.1") and (7.3) that

ds=1idL=1dl. (7.4)
Comparing (7.4) with (7.2), we see that
dl=3%cdr. (7.5)

Therefore, the chronometric measurement of a space-
like interval, described by (7.2), is equivalent to the
measurement of the same interval by an LLMI at rest
in R. Moreover, (7.5) shows that the Jocal speed of
light as measured by an SC and LLMI at rest in R
is always the same constant ¢ as in an LICS. These
significant conclusions could not have been reached
by purely chronometric measurements.

However, the speed of light may be different than
¢, if measured over a finite distance. For instance, in
Fig. 5, the speed of light ¢/ measured over the total
distance (dl;+dle) is given by

Cl =32 (dlr]rdlz) /(dT1+dT,2) .

If dl; and di, are infinitesimal, then it follows from
(7.5) that 2dl,=cdr, (u=1, 2). Thus

CI/C= (dT1+dT2) /(dT1+dT'2) .

dry and d7r'; are related by (6.12), and are not equal in
general. Consequently ¢’ may have a different value
than ¢.

B. Space Metric

We now express the right-hand side of (7.5) in
terms of v45. Let di; and dt; be the coordinate time in-
tervals that the photon takes to travel from C and back
to C, respectively. According to (6.1) and (7.5),

dl=3c/ —goo(dh+dty) (7.6)

Substituting (6.7) into (7.6), we get the desired result
[(8)238; (9)257-258]

dl= (yapdaodaf)?. (7.7)

Here dl is determined by <vas and not by ges. More-
over, even if da® is constant, d/ varies with time if vyqg
varies with time. Thus a necessary and sufficient con-
dition for a spatial structure to be rigid, is that in the
whole space region occupied by the structure, vyqs must
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not vary with the time [ (36) Eq. 4.3, p. 161; (3)71]

'Yntﬂ,0=0, (7.8)

even though g.s may depend on time.
From (5.11) we have
g %us g %80s= 0%  gge+£""g0=0.

Eliminating g% between these two equations, we get

L(9)258]

&Y us= 0%. (7.9)
Thus if we define y*# by
Y Yup= 0%, (7.10)
we get
yoB=gob, (7.11)
Moreover, it can be shown [(8)381-382] that
g= g0,
where
g=det (gi), v= det (vap). (7.12)

Mgiller [(8)374] showed that dI? is invariant and
Yes are the components of a three-tensor with respect
to coordinate transformations of the type

20=x(x%),  xr=x'*(aF). (7.13)
A special case of (7.13) is the transformation
20=2x"(x%), x/r=x", (7.14)

As might be expected, (7.14) does not affect the space
metric, i.e., Y'ag=7vas, @ fact which was proved by
Mgller [(8)374-375]. The class of all coordinate
systems related to each other by (7.13) are said to
belong to the same reference system (RS) [(8)236].
The transformation x°=x"(x?) is simply a change
in the kind of clocks that are used, and a'*=x'2(xf)
is nothing but a relabelling of the space coordinates
of particles. In view of this, (7.13) does not involve a
change in the physical situation, but only a different
description of the same situation. For example, on a
rotating disk, (7.13) may be a change from cylindrical
to rectangular coordinates and from standard to co-
ordinate clocks, whereas a general transformation

(7.15)

involves a transformation to a different RS, such as
an ICS, in which the space and time geometry may be
completely different.

From the above and (7.7) it can be seen that di?
and v.s play the same role in space geometry that ds?
and g;; play in space-time geometry. Consequently,
the names space line element for di* and space metric
for vyas are fully justified; and many of the equations
in space-time geometry can be taken over to space
geometry by simple substitutions, as is done in the
following. However, dI? is positive definite, whereas ds*
is not.

= ai(w),

Since the quadratic form d? given by (7.7) is posi-
tive definite, it follows that for as=£g [(9)258]

Yaa Yaf
Yaa>0, >0, v>0. (7.16)
YBa VBB
From (7.16) and (6.2, 5, 6) it follows that
goo fZoa  ZoB
8oo  goa
g00<0; <07 820 faa Lap <O, g<0,
8a0  faa
8po  8Bpx 888
(7.17)
8ac 8o
gaa>0, >0, det (ga;;)>0. (7.18)
8o 888

D. Space Geodesics

An SG was defined operationally in Sec. 3C. Since
veg Plays the same role in space geometry that g;; plays
in space time geometry, we may obtain the equations
of an SG from (5.8) by replacing g:; by vag, and ds by
dl. Thus if we define the “space” Christoffel symbols by

Ctas=g"Csap,  2Cuap="Vua s TVuBa—Yops  (7.19)
the equations of an SG may be written as
&+ AP+ Crog(da/dl) (daf/dl) =0.  (7.20)

Another useful form of this equation is [(8)241]

d ( dx"‘)_ 1 dx® dxf
Ve =2VaB.1 dl d

7.21
dl al ( )

E. Parallel Displacement

In Sec. 3E, the different methods of defining parallel
displacement were discussed. It was pointed out there
that up to the first order the different definitions are
equivalent. The first-order equation they lead to, may
be derived in a relatively simpler way as follows:
Suppose that a vector 4 is parallel displaced by an
amount da*, and 8A4* is the change in the component
A* due to the displacement. Intuitively we expect that
84* should be proportional to da*. Moreover 84*
should also depend linearly on A4*, since the sum of two
vectors should change the same way as each of its
parts [(9)261]. Therefore, we may expect that §4*=
KrpAedxf, where KF,s is the coefficient of propor-
tionality. It can be shown [(9)261-266] that Kt.,s=
—(C#g, and the equation of parallel displacement
becomes

§Ar=— ChpgAeda?. (7.22)

F. Euclidean Geometry

It was stated in Sec. SD that the necessary and
sufficient condition for space-time to be flat, i.e., to
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b
P
Fic. 6. Lag time and speed
e measurement.
a .
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be able to reduce (5.4) to (5.1) over a finite region,
is (5.13). In complete analogy with this, we may con-
clude that the necessary and sufficient condition to
reduce (7.7) over a finite region to the Euclidean form

AP = b.pdada?, (7.23)
is that
2.Sapou="Yas 8ut"YBu, b Vau,8— Y85 ,an
+27K)‘(Cx.a5C)\.glu— CK.Q#C)\.;;,;) =0. (724)

This is the condition that determines whether the space
geometry is Euclidean in any particular RS.

8. RELATIVITY WITHOUT SYNCHRONIZATION

In GR, a single time over all space is established by
synchronizing all clocks with a central clock (See
Sec. 2D). Let a free particle P depart from a particle
A at event ¢ and arrive at a particle B at event b.
Let ¢ be the event at B which is simultaneous with a
(Fig. 6), i.e., ¢ has the same time according to the
clock at B that @ has according to the clock at 4, where
the clocks at 4 and B are continually synchronized
with a central clock. Since synchronization may not
be transitive, 4 and B are not necessarily synchronous
with each other. In other words, if 4 and B were syn-
chronized with each other, the event @’ which is now
simultaneous with ¢ may be different than ¢. Thus, the
event at B which is simultaneous with @, not only
depends upon the synchronization convention, but
also upon which clock, B is synchronized with; which
points out clearly the great arbitrariness of this event.
Consequently, the time interval between ¢ and b is
arbitrary, and so is the velocity of P from A4 to B,
defined in terms of this interval. In view of this ar-
bitrariness, it seems highly desirable to find a less ar-
bitrary way of describing the motion of a particle. Such
a way is described in this section.

A. The Basic Relation between Proper Times

For convenience, let 74(ab) =74(a) —74(d), where
74(a) denotes the time of event e according to the
SC, A. Referring to the same particles and events de-

scribed above, let a photon depart from B at event d,
be reflected by A at e, and return to B at event e
(Fig. 6). We shall now derive a relation between the
proper time intervals 7p(ba), 75(ed), and 75(be), as-
suming the validity of GR.

Before we do this, the following important points
should be noted: (1) According to Secs. 5B2, 6A, if
ds is the line element, and ¢ is the speed of light, then

crp(ba) =ds. (8.1)

(2) If dl is the proper distance between 4, B measured
by an LLMI whose end particles coincide with 4, B
at the events @, ¢/, and dx* are the components of
space coordinate differences between 4, B, then ac-
cording to (7.5, 7),

Lorp(ed) = dl= (yqpdxdaP)?. (8.2)

vap is evaluated at event @/, where the time of &’ is
given by Einstein’s synchronization convention

rp(a’) =75(d) +375(ed). (8.3)

(3) 7s(be) is the time that P arrives at B behind the
photon that starts with P from A, and travels to the
same particle B. Thus 75(be) will be called the lag time
of P from A to B. Since the speed of a photon (not to
be confused with phase or group velocity of electro-
magnetic waves) is independent of the energy (fre-
quency) of the photon, the lag time of a photon is
always zero.
From (5.4) and (8.1) we have

2rp(ba)?= — goo(da)— 2g0adadx®— gasda’da?, (8.4)
where according to (6.1),
'/ — godx’=75(bc) =715(be) +15(ec). (8.5)
It thus follows from (8.4, 5) that
7p(ba)2=75(bc)?— 275(bc) ¢y adx®— ¢ 2gupdxdaP.
(8.6)
Moreover, from (6.7, 1) and (8.2) we get
r5(ec) =%375(ed) +cVyadxe. (8.7)

Substituting (8.7) into (8.5), and (8.5) into (8.6),
we find with the help of (6.6) the desired relation

Tp(bd)2=TB(b6)2+TB(b6)TB(8d). (88)

With the help of (8.2), we may also write (8.8) in the
form

rp(ba) =15 (be) [r5(be) +2c'dlas].  (8.9)

B. Proper, Coordinate, and Lag Velocities

In GR, there are two different types of velocity:
The proper velocity

w*=dx*/ds=cdx*/7p(ba),
u= (yogu*uf)i=dl/7p(ba),

(8.10a)
(8.10b)



and the coordinate velocity
v=dx*/rg(bc) or v*=dx*/T5(bd’),
v=(ya50%%)}=dl/rp(ba’).

As already pointed out, »* is rather arbitrary, and it
seems better to use instead the lag velocity

w":dx"‘/rg(be) ,

(8.11a)
(8.11b)

w= (yapww?)=dl/7p(be),
(8.12)

The measurement of w involves one e.m. signal from
A to B, whereas the measurement of » involves in ad-
dition another signal from B to 4 for the purpose of
synchronization. Since 75(de) is the lag time, and the
lag time of a photon is zero, it follows that the lag
velocity of a photon is infinite. Thus the maximum
lag velocity of any interaction is infinite. In view of
these features, it seems that the lag velocity is both
operationally simpler, more natural, and does not in-
volve any arbitrariness.

The relation between » and w may be obtained from
(8.5, 7) as follows:
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75(bc) =75(be) +375(ed) +cyadas. (8.13)

Dividing this equation by dI, and making use of (8.11b,
12, 2), we get

vl=w 4 (1+y.dx2/dl).
C. Equations of Motion

(8.14)

We now derive the equations of motion without
synchronization from the variational principle (5.7)
and the basic relations (8.1, 8). In order to get a better
understanding of the situation, we consider first finite
differences as shown in Fig. 7. The actual trajectory
is represented by a solid line, and the varied path by
a dashed line.

If we introduce the definitions

dr=7p(@nln1), Th=Ta,, Ta=Tar,, A=7a(bn),
(8.15a)

AA=1,(a:bn), n=dN/dr, v;=03v/\, dl,=dI,
(8.15b)

and apply (8.9) to Fig. 7, we get
drt=dN+2c7"dNdl,y,  dr?=dN?-2c7dN Al .

(8.16)
Moreover, if we let
Sdr=dr'—dr,  Sd\=dN'—d\,  édi=dl'—dl,
then it follows from (8.16, 15, 10b) that
odr= (n+u) 6dA+cnédl, 1. (8.17)
Referring to Fig. 7, it can be seen that
ddN=1",(a' ") — Tu(@nbn) o7 (Cadr) — Tul(Anby)
=T (Cn@n) = Tn(dnbr) = 672(@r) — 674 (b2) . (8.18)

Space >

F16. 7. Variation of trajectory.

The variations 67, (@x) and 67.(b,) are not independent.
To find the relation between them, we notice that the
times for the paths (@.cn@'nb'ni1) and (@wbni1dni1d’ni1),
marked by circles in Fig. 7 are equal. Thus

Tn(Cn@n) +c 0l c'dl = cdl,,

+ Tntl (dn+1bn+1) + C“&ln_;.l,
or

6Tn (dn) = (STﬂ.H(b,H.],) +6_1 (6ln+1"' 5ln> _— Chl (dl/n—‘ dln)
= 07n41(bnt1) +c21(dbl,— 6dl,) .

Substituting this value into (8.18), we find with the
help of (8.15) that

8dN= [ 0711 (bn1) — 674 (bn) JH-c 1 (ddl,— 8dl,)
=déN-c71(ddl,— ddl,) .
If we use this result in (8.17), and observe that
dél,— 6dl=0

is permissible by virtue of the fact that é\ is independ-
ent of dx*, we find

ddr= (n+u) do\c—nddl. (8.19)
Making use of (8.2), we have
8dl= 8 (vapdx®dxP)}= (50vapdtP~+vos0dxF) dx/dl

= [3¢(Vap w02 +vap 50N) WPdrT+vapd 0P Ju/u, (8.20)
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since
8dxf=8(afpy1—2P,) = 0xPpy1— 0xPp=doxf,
and (see Fig. 7)
8Yap="ap(8'n) —Yas(0n)
=[vas(8'n) —Yas(dn) ]
="ap,u00+Vap, 50N+ [ Ve (dn) —Yas(bn) 1.

With the help of all these results, we may finally write
(8.19) in the form

ddr={[ (n+u) dON— Fu v e s uPdTON ]
+ (ct) Ty e ddxt 30 Iy op uOx".
If we substitute this expression into (5.7), we can
deduce in the usual way the equations of motion
d(ntu) [ds— 50 ryep su =0, (8.21)
(U yuett®) /ds— 38 Y ap P2 =0. (8.22)

If (8.21) is multiplied by 5 and (8.22) by u* and the
two equations are added, it can be verified that the
result is d(n*+2nu)/ds=0. This equation also follows
from the division of (8.16) by dr and the use of (8.15b,
10b), i.e.,

4+ 2qu=1, or

(8.20)

(nt+u)2=14u2

Thus the equations (8.21, 22) are not independent.
Moreover, since they lead to (8.16), which is equivalent
to (5.4), they are together equivalent to (5.8). How-
ever, (8.22) is not equivalent to (5.8) for ¢=q, since
the variation 6\ was used instead of 8x°. Notice that
(8.22) involves only <v.s, whereas (5.8) for i=« in-
volves all the components gi;, [(8) Sec. 110, p. 2907]
which seems to be an important simplification.

(8.23)

D. Concluding Remarks

By working with proper times only, the Lorentz
contraction and time dilation of SR cannot even be
formulated, since they depend upon synchronization.
Since synchronization is conventional and arbitrary,
there is no loss of physical information. In fact it seems
from this, that these effects have received altogether
too much attention in the literature. However, the
twin paradox is still meaningful, since it does not in-
volve synchronization.

In order to complete the reformulation of GR without
the use of synchronized time, it still remains to derive
the field equations. This is an interesting problem,
which the author has not had sufficient time yet to
tackle.

9. SPACE GEODESIC COORDINATES

In a CS such as that described in Sec. 5A it 4s pos-
sible to (1) specify an event uniquely, (2) measure a

unique set of values of gi; (3) calculate any field in-
variant such as the scalar curvature R(=g%R;;), and
(4) verify whether all of the components of Ry
vanish or not, i.e., whether the field can be obtained
by transformation from an ICS. However, it is not
possible to determine all the four CC associated with
the CS, and thus it is not possible to separate the physi-
cal from coordinate contributions to g;;. Another way
of expressing this is, if two different values of g;; are
measured at different times, it is not possible to tell
whether they represent two different physical situa-
tions, or the same physical situation in two different
states of the CS.

Bergmann [37] and Komar [38] have tried to over-
come this difficulty by specifying events in terms of
four scalar invariants (observables) of the field, whose
values do not depend upon the particular choice of the
CS. In a field which has #o symmetry, a set of four in-
dependent observables can be found; otherwise, such
a set does not exist. This can be understood as follows:
Consider a field in one spatial direction «. If the field
varies along w, the position of an event can be speci-
fied by the value of the field at the place of occurrence
of the event; on the other hand, if the field is uniform,
this cannot be done. In SR where space is both iso-
tropic and homogeneous, one would be at a complete
loss if he wished to specify the spatial position of an
event by observables of the gravitational field, for no
such observables exist. In spite of this, it is possible to
specify uniquely the position of an event by means of
a CS, and physical information can be obtained from
such a specification.

In this section we show how this method of specify-
ing events by means of a CS, which is the usual pro-
cedure in physics, can be extended to the case of an
arbitrary gravitational field. The CS in such a case
cannot be rigid and must be continually adjusted, but
it can be constructed just the same. Basically, we are
going to set up a CS in which g;; will reduce to known
values, called the zero-field values, if the space-time
region in which the CS is set up were inertial. Any
deviation from these values can be attributed directly
to the physical situation. For instance, it is shown in
Sec. 10A that in rectangular coordinates the zero
field values are ;.

Although the CS’s that we construct can be used
in any situation, it is instructive to distinguish three
different situations: (1) If Rix=0 holds throughout
a CS, the values of g; with the help of (5.14) will de-
termine a transformation to an ICS, and the CS can
be specified uniquely by means of this transformation.
(2) I Rijx1520 for some values of the indices, and the
field has no symmetry, a set of four independent ob-
servables exist, which can be used as the four coordi-
nates. (3) If R0 and the field has some symmetry,
then it is necessary to use a specific CS such as described
in the following.
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A. Rectangular Coordinates

To construct rectangular coordinates, we start with
an orthogonal triad of SG’s, x2, x*(0), x'(0, 0), at a
particle 4. The orthogonality conditions at A are

’Yl?(xoy OJ Oy 0) :0)
713(x0) 0, O) O) :0)

ve3 (a2, 0, 0, 0) =0. (9.1)

If we agree to let the value of x? give the proper dis-
tance from A4, then

a2 (29, 0, 42, 0) =1. (9.2)

The condition that x? is an SG may be obtained from
(7.21) by setting da'=dx*=0, and making use of
(9.2). Thus

(9.3a)

(9.3b)

[’)’12,2"‘%’}’22,1]0,02 0,
[732,2—“%’)’22,3]0,():0,

where “[ Joo”” denotes “[ Ju_so.”

Next, we parallel displace the unit vector A*
(vagA*AP=1) tangent to x3(0), parallel to itself along
2% to get the a%(x?) axes. If we assume that x3 gives the
proper distance from «2, then

vas(a, 0, 4%, 2%) = 1. (94)

Consequently, A'=A4%=0, A’=vyzi=1, da'=dx?*=0,
and the condition (7.22) for parallel displacement
becomes C#3»=0. Making use of (7.19), this implies

[v22,3J0.0=0, (9.5a)
[vi2,5F 18,2~ 28,1 J0,0=0. (9.5b)

Moreover, if we require the x3(x?) axes to be SG’s,
we may set dal=dx?=0, dl=+/ysdx’=dx?® in (7.21)
and get
(9.6a)

(9.6b)

[713,3—733,1]o=0,
[723.3]020,

where “[[ Jo” denotes “[[ Juo.”

Finally, we parallel displace #'(0, 0), first along a2,
and then along x*(x?) to get x'(«2, «*) axes, assume that
these axes are SG’s, and let «! give the proper distance
from «3(x?). The last requirement means

’yn=1, (97)

and the assumption that x'(a?, ®) are SG’s implies
with the help of (7.21) that

Y12,1=0, Y131=0. (9.8)

Making use of (7.22), the parallel displacement of
21(0, 0) along x? yields the conditions,

[722,1]0,(): 0,
[723,1+'Y13,2— 712,3:]0,0-: 0,

(9.9a)
(9.9b)

and the parallel displacement of x'(x?, 0) along a?
yields
[vas.ido=0,

[732,1+712,3—‘le,2:]o= 0.

(9.10a)
(9.10b)

In order to specify the x? curves uniquely, we assume
that the angles they make with the «! axes do not vary
with 2% at 2'=0, i.e.,

[v12:5J0=0. (9.11)

We now deduce the CC pertaining to rectangular
coordinates. From (9.3a, 9a) it follows that

[vi2,200.0=0. (9.12)

It then follows from (9.12, 1) that vi,(a%, 0, 2, 0) =0,
which with (9.11) implies y12(2?, 0, 22, 43) =0. In view
of (9.8), this means that

v12=0. (9.13)

Similarly, (9.5b, 9b) imply [vis,2]o,0=0, and (9.6a,
10a) imply [v13,3Jo=0. From these results and (9.1, 8)
we can conclude

v13=0. (9.14)

Finally from (9.3b, 5a) we get [vz3.2]o,0=0. Com-
bining this result with (9.1, 6b) we find

yas(x9, 0, 22, %) =0. (9.15)
Moreover, (9.10b, 13, 14) imply
[v23,100=0. (9.16)
Summarizing, we have:
yu=1, Yie="v13=0; (9.17a)

Yo (2%, 0, x%, 0) =1,

(22,1 Jatmas0=0,

[ve2,3Jui—ar0=0; (9.17b)
va3(20, 0, a2, #%) =1, (Y831 Jzim0=0; (9.17¢)
a3 (20, 0, 22, %) =0, [ves,1Je1m0=0. (9.17d)

According to (9.17a),
v=det (Yap) =Yoryss— Vs (9.18)
In addition, we find with the help of (7.10),
yi=1,  ylz=yl=, (9.19)
YYP=ve, YP=vm,  vP=—vs. (9.19b)

The order in which a rectangular CS is constructed
is important, and the space coordinates assigned to an
event will in general be different if, say, x? is parallel
displaced along «?® instead of the reverse. Moreover, in
general the curves x%(x?)= const are not geodesics,
nor are they parallel to #2. In addition, the distance
along these curves (determined by vs) may vary with
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time. Similar statements can be made about the curves
x!(a?, #%) = const. Thus our CS is not rigid, but it leads
to the specific CC (9.17).

B. Cylindrical Coordinates

We start with an SG called the z(0, 0) axis and con-
struct at some point 4 on it, SG’s called the 7(6) axes,
orthogonal to it at 4. Then we parallel displace 2(0, 0)
along r(6) to get the z(7, §) axes. If we let z and 7 give
the proper distance, then

Ye=1, Yo (2% 7, 60,0) =1. (9.20)
The condition that z(7, §) are SG’s implies
Yree=0,  vu.=0, (9.21)
and that 7(6) are SG’s implies
[y Jo=0, (9.22)
(Vrer—Yrr2Jo=0, (9.23)

where “[[ Jy” denotes “[ J.—o.”
Moreover, from the parallel displacement of z(0, 0)

along 7(8), we find
[ver.220=0,

['Yzﬂ ,«r+’Y7'0 2 'erﬁ]O: 0.

(9.24)
(9.25)

The 6 coordinate can be partly specified by requiring
that the 6 direction be orthogonal to z on 7(8),

vo.(a°, 7,6, 0)=0. (9.26)

Further specification is achieved by requiring that the
7 directions at 4 be continuously aligned with equally
spaced radial directions on an LICS. This implies that
at 4, g; must equal to the corresponding quantities
in the ICS [(8) p. 274, Eq. 57]. Thus, we assume
[(39)181]

¥r2(2% 0,60,0)=0,  v(a0 0,6,0)=0, (9.27a)
lim 7_2[703/77‘7]2:0: 1; lim 7’-1[709,7'/77‘7']2:0: 2.

7->0 >0

(9.27h)

From (9.26, 21) we conclude vs,=0, and from (9.23,
24) we obtain [, o=0. Thus, in view of (9.27a, 21),
vr.=0. Similarly, (9.22, 27a) imply v.¢(2°, 7, 6, 0) =0.

Summarizing, we have

Yzz= 17 ’YTZ:O) 'yﬂz:o; (928&)
’Yrr(xoy 7, 0) 0) = 17 [’Yrr,z]z:():(); (92813)
'y,g(x”, 7,90, 0) =0, ['Yr@,z]z:o: 0, (928C)

and (9.27b). From this we see that for 270, the 7
and 6 directions are not necessarily orthogonal, and
the distance along » may vary with time.

Making use of (9.28a) and (7.10), we find

y= det (Vag) =VrYoe—Vre% (9.29)
22— , v = 7=0= O’ (930&)
Y=Y, Y=, vY'=—7s.  (9.30b)

C. Spherical Coordinates

Let many SG’s, called the 7(f, ¢) axes, originate
from the same particle A. The directions of these
SG’s at 4 may be controlled by continually aligning
them with radial directions in an LICS. As above,
this implies

Y:0(x2, 0,8, $) =0, e (2,0, 8, ¢)=0. (9.31a)
HIEI " 2Y00="Yrr,
lirrol 77 2y46="sr SIN2 0,
lirf)x rv05=0, (9.31b)
lirrol 7 Y00, = 2711,
lixrol 7 Y= 27y sin? 6,
lim 7~ typy ,=0. (9.31¢)

70

From the condition that (6, ¢) are geodesics, it follows
that

770,7:‘0; Yror= 0} (932)
We thus conclude from (9.31, 32) that
Yr9=rs=0. (9.33)

If we wish, we may agree to let » give the proper
distance from 4 and write

Yrr=1. (934)
Then (9.33, 34, 31b, ¢) will constitute the three CC.

D. Radar Method

So far we have shown how to specify events within
the space-time region of a CS. In many cases, this
method has to be supplemented by a radar type of
detection. For this method it is necessary to specify
the directions of emission and reception [[(6)118-119,
123-1247 and the round-trip time of a photon. But
in order to accomplish this, it is necessary to have a
“photon gun,” as Synge puts it, whose direction must
be referred to a CS such as we have been describing.
One difficulty with this method is that the path of the
photon may not coincide with an SG during its round
trip. Thus to get full information about the reflecting
object, it is necessary to know something about the
environment through which the photon travels. If this
knowledge is not available, then one has to be satisfied
with some ambiguity of information from this method.

E. Coordinate Conditions

Choice of the space coordinates, as was done above,
determines three y’s and some boundary conditions
on the other 4’s, and thus provides three CC. The
fourth CC may be determined by specifying the clock
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rates and synchronization convention. Mathematically
this may be accomplished by the transformation

W=f(x'% x'), (9.35)

since such a transformation does not affect the values
of vap[ (8)374].

Substituting (9.35) into (5.4) and making use of
the invariance of ds? we get

go=8g0(f0)?%  §owu=(goatguSfa)fo (9.36a)
g'ap=gapt 2800 f 5800 f 2 f - (9.36b)

It is always possible to use SC’s throughout; in which
case, we must set g’opo=—1. On the other hand, it may
be more convenient to set g’o.=0 for one of the values
of a.

The values of 7,5 limit the choice of the function f.
For instance, if 7,3=0, then it is possible by the syn-
chronization convention, to set g'n=g'ne=g3=0 by
taking f o= —goa/goe. This is not permissible, if for
some values of a and B, 7,57#%0.

Another restriction on the choice of f is exerted by
the value of the acceleration function [see Eq. (5.8)]

N
xX¥=x'%

Ax= —T* . (9.37)
For a particle at rest, u*=0, and
Ax=—T0(u")*= — g**(goi.o—380,:) (u")%.  (9.38)

Thus, if 420, (9.38) sets a limitation on the possible
values of go and goa. If goo=—1, then goa,0, and hence
Zoe cannot be zero for all values of a. On the other hand,
if goa=0 for all «, then at least for some «, goo,o70.
The fourth CC is not simply one condition on the g,
but rather a transformation (9.35), which may de-
termine several g’s at once.

In view of (9.35), the above discussion is limited to
transformations within the same RS (see Sec. 7C).
If an arbitrary transformation (7.15) to another RS
is allowed, then one can always find a RS in which
gio=—20i0 [(8)296-2987]. Such a RS consists of freely
falling particles, but is in general not rigid. However,
once the RS is fixed, then in general it is no longer
possible to make g=—28,. In other words, the ques-
tion of transitivity of synchronization is only relevant
to a particular RS (not CS).

10. ZERO FIELD

A zero field g©;; is the field in any ICS. For example,
in an ICS in which rectangular coordinates, standard
clocks, and the Einstein synchronization convention
[e=% in Eq. (2.1)] are used, g©;=n,, where 5, is
defined by (5.2). A zero field is characterized by the
fact that it is the most uniform field possible [ (7)1].
We now explain what this statement means.

A transformation,

2 i=xE(x), (10.1)
is said to be a motion if at any point P, g’;;( P) = g:;(P),
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where g;; is calculated by means of (5.6), and £ is
infinitesimal. The necessary and sufficient condition
for (10.1) to be a motion is that Killing’s equation,

§i;7145;:=0, (10.2)

is satisfied, where £;; is the covariant derivative of
£=g:;60(20)233-234; (1c)35-38]. The larger the
number of arbitrary parameters in £ the more motions
are possible, i.e., the more symmetric or uniform the
field is. It can be shown [(20) Sec. 27] that in a space
of # dimensions, the maximum possible number of
parameters in £ is in(n+1). In our case [n=4,
tn(n+1)=10], the most uniform field is the one that
permits motions with 10 parameters.

By making use of g@;=7, in (10.2), it is found
[(1c)38] that the most general solution of (10.2) is

£i=ai,-xf—l-—bi, (103)

This generates the infinitesimal inhomogeneous Lorentz
transformations, and does contain 10 arbitrary pa-
rameters. In effect (10.3) states that for a zero field,
space is homogeneous, isotropic, and all ICS’s moving
with constant velocity relative to each other are equiv-
alent [(7)17]. From this we see that a zero field is
indeed the most uniform field possible in four dimen-
sions. Moreover, it is possible to check whether a field
g:; is a zero field or not by making use of g;; in (10.2),
and verifying whether the most general solution of
(10.2) contains 10 arbitrary parameters or not.

If in any particular CS, g;; and g@©,; are known, then
g9 ;= gi;—g@s; is the contribution to the field from
either acceleration of the CS relative to an ICS, or the
presence of matter or both. If R;%;=0, we know that
g®P4; is due to acceleration of the CS. However, if not
all of the components of R;j; are zero, then at least
part of the field is due to the presence of matter. To
separate this part from the rest, the asymptotic be-
havior of g®,; should be examined, as discussed at the
end of Sec. 5D.

The importance of knowledge of g©;; in any given
CS is clear from this. A unique solution for g@;; may
be obtained with the help of the following four neces-
sary and sufficient conditions for a reference system
to be inertial:

Q= — Qji.

(i)  Space-time is flat (5.13): Rijr=0.
(10.4)
(ii)  Space geometry is Euclidean (7.24):  Sas,s=0.
(10.5)
(ili) Synchronization is transitive (6.10): 7,4=0.
(10.6)
(iv) Acceleration function is zero: Ae*=0.
(10.7)

To Synge [ (7)IX], the most important of these con-
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ditions is (i). However, (i) can be satisfied without any
of the other three conditions being satisfied, as will be
seen in Sec. 12, which constitutes a considerable de-
viation from the space-time geometry in an ICS.

It was shown in Sec. 9 that the specification of the
CS determines three <.s’s, and specification of the
coordinate clocks determine go. In particular, one may
use SC’s throughout and get

Since this leaves only six of the metric coefficients to
be determined by the conditions (i)—(iv), it is clear
that these conditions must be highly interdependent.

It will be seen in the following that (ii)—(iv) imply
(i). Moreover, out of the six equations contained in
(iii) and (iv), only three are independent; and ac-
cording to Sec. 9E, they make it possible to choose
the synchronization convention so that

g0a=0. (10.9)

The remaining three v.4’s are then determined by three
out of the six equations in condition (ii), as will now
be demonstrated for the CS’s discussed in Sec. 9.

A. Rectangular Coordinates

The decision to use rectangular coordinates amounts
to the adoption of the CC (9.17). Since these condi-
tions already specify three of the v’s, (10.5) may be
used to determine the remaining three v’s. Making use
of (7.24, 19), we get

2 S1010= 22,1~ 5[ v22,1 (Y2¥22,1+ 2v%28,1) +7*v23 2] =0,
2S115=vss,n— 5[ V3,1 (V*¥vs3,1F 27 v23,1) Fv?y931%]=0,
2.S1918= 28,1 3 v28,1 (V2v22 1P va3 1+ s3,1)
+’)’23’Yzz,1’)’33,1]= 0.
Differentiating (9.18) once, we find
¥ 1="Y35Ya2,1+Yarvas 1— 2v25Ys,1.

With the help of this equation, (9.19), and the defini-
tion

K="y,1v33,1— 723,17, (10.10)

we may rewrite the preceding three equations in the
form

27%(7_%7113,1) a1+ Kves=0,

With the help of (10.11), the equation “(y—*K) ;=0"
may be derived, whose solution is y K =f(a?, 2, x%).
Making use of (9.17b—d), it can be seen that at x'=0,
f=0. Thus, K=0 and (v #y.s,1) 1=0. Again, use of
(9.17) leads to va,1=0, and finally to ye=1vu=1,
v23=0. Therefore, it follows from (9.17) and (10.5)
that vap= gap=0ap. These results and (10.8, 9) may
be summarized in the statement that the zero-field for

a,8=2,3. (10.11)

the rectangular coordinates defined in Sec. 9A is given
by
29=mn;. (10.12)

B. Cylindrical Coordinates

Cylindrical coordinates may be treated in close
analogy with rectangular coordinates by giving z the
role of x!. Using the CC (9.28), we find as above that
SzazB:0 imply Kc=7r1‘,z760,z_7'r€,z2:0, and Yrr= 1,
v-6=0. Moreover, we deduce from S,4,0=0, and (9.27)
that yg=7% Summarizing, we have

@ ,=0, yO,=O =0,
(10.13)

YO =y O = 2y Oy 1

C. Spherical Coordinates

Here again, by using the CC (9.33, 34), and letting
r take the role of &!, we deduce from S,.s=0 and
(9.31b, c) that K,=,vss,r—Voe>=41/y sin 6, where
Y="0vss— V0> In addition, we have in analogy with
(5.7),

(V" apr) H2 sin 6y ya=0, (10.14)

a, =0, ¢.

Differentiating v with respect to » and making use
of (10.14), we find (y*y,) ,=4sin 6, whose solution
is

v/ y=7*sin 6. (10.15)

If we substitute (10.15) into (10.14), and use

(9.31b, c), we get finally

YOu=r", ¥ O4=rsin®0,  yPu=0. (10.16)
This, in conjunction with
YO,=1,  4©,=0, y©,,=0, (10.17)

obtained from (9.33, 34), completes the solution.

11. LINEAR FIELD

The linear acceleration field has been discussed by
many authors from the point of view of transforma-
tion from an ICS, e.g., [(8)118-123, 253-2587. In the
following, the same problem is solved by starting
with the “rectangular” coordinates defined in (9.17),
and the field equations, and then imposing physical
conditions (PC) that limit the field to the one of
interest. In this way, we obtain an illustration of the
ideas of Sec. 9 and a useful supplement to the usual
treatment of the problem.

CC 1-3. (9.17).

PC 1. The space geometry is Euclidean: Sag,s=0.
As was shown in Sec. 10B, this implies
yoB= gob=§ob (11.1)

Yap= 0ap, 8008 = — goa-
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PC 2. The acceleration function has zero components
only along x* and «3:

A15£0, A= A3=0, (11.2)

where A* is defined in (5.8). Since (11.2) holds for
any value of the velocity components #*, it follows
with the help of (11.1) that

gOaFO,ij=g00I‘a,ij for a= 2, 3. (113)

Making use of the definitions (6.5, 9), we may de-
duce from (11.3) for ¢=0, and j=0; 2, 3; 1 the follow-
ing results, respectively:

Te=703=0; (11.4)
753=0; (11.5)
YoT12= YaT10, YoT13= Y3T10- (1 16)

PC 3. Synchronization is transilive in the x'x?* and
x'a® planes:

T2=713=0. (11.7)
Making use of (11.4-6), we may write
A=~ oy oy suint= vy oy (14 Sapuuf) . (11.8)

Since, according to (11.2), A'5£0, then 70,40, and it

follows from (11.7, 8) that
Yo="73=0, (11.9)

because gp=0. Consequently, (11.4) implies go o=
g00'3=0, (117) 1mphes g01,2=g01‘3=(), and thus
gij2=8ij3=0. (11.10)

Because A!'340, (11.9) is dictated rather than al-
lowed by (11.7). Moreover, since

or ge=_gr=0,

—70= (V= gw) 1+71.0 (11.11)
we cannot set both gu=0 and gp=—1. However,
because of (11.7), we may take

cC 4. gu=0, (11.12)

but 70t ge,e=0, if we are to allow A! to vary with a?
in case of nonuniform acceleration.
In view of these results, we get from (5.10)

2g00I"00= g00.0, 28001%:= goo1, 2T0= — goo,1,

(11.13)

and all other I's vanish. We then find that the field
equations (5.12) are identically satisfied for 4, j=2, 3;
and for 4, =0, 1, they yield the single equation

2800g00,11— (goo,1) 2=0.

This equation is equivalent to {In[~/—gw) 1]}, and
thus its solution is

V= g1+ a0
since for zero field we must have v/— gg=1.
By examining the nonrelativistic form of the equa-

tions of motion (5.8), ¢%a(x?) may be identified with
the nonrelativistic acceleration of the CS relative to

(11.14)
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an ICS. As #—>—a7, gow—0, ds? becomes negative,
and no time-like intervals or signals are possible. This
imposes a restriction on the spatial extension of the
CS, and is a consequence of the fact that the field is
an acceleration field.

From (11.1, 9, 12, 14) it follows that

ds?= (14-ax')?(da®)2— Sepda*dax®  (11.15)

which is in exact agreement with the line element ob-
tained by Mgller [ (8) p. 255, Eq. 137] from a different
approach.

If we wish to use SC’s instead of the coordinate clocks
having the rate (11.14), we will have to make the trans-
formation

x'0=/\/_goo da®,  ale=g, (11.16)

For the case a= const,
x’°=/(1+ax1) dx®=/— goox°.
Thus, dx*=dx'®, \/— godx®=dx""— (1+4ax) ax'0dx".

Substituting these values into (11.15), and making
use of the invariance of ds?, we find

go=—1, gu=(1+ aa")ax”, gu=gw=0,
(11.17a)

g'11=1—g'012, g'22=gl33= 1, g'12=g'13=g/23=0-
(11.17b)

As was stated after (7.9), this transformation does not
affect the space geometry, i.e., ¥'og="Yas-

It is interesting to note that all the components
R are zero except Rgoi, and that Ryn=0 is equiva-
lent to Ryp=0. Thus, the conditions that have been
imposed on the field already insure that R.;;=0, i.e.,
that the field can be produced by motion of the CS
relative to an ICS, I. The transformation between
x* and the coordinates X* of I can be obtained with
the help of (5.14), supplemented by the condition
that a particle at rest in 7, will be falling freely along
X% 1.e.,

dX'/dx*= X' y+41X1 1 =0, (11.18)

where the velocity 8'=dx'/dx? has to be obtained from
the equations of motion. It can be shown that for
a=const, the transformation obtained in this way is
in complete agreement with the transformation ob-
tained by Mgller [ (8) p. 256, Eq. (140) ]in a different
way.

The equations of motion are solved by Mgller
[(8)257], and the solution need not be repeated here.
However, the following two observations can be made,
which are not usually mentioned in the literature:
(1) The motion in the x? and #? directions is coupled
to the ! motion through the factor (—g;;88%)%, in
contrast to the nonrelativistic motion which is not



310 REVIEWS OF MODERN PHysIcs « APRIL 1965

coupled. (2) The motion of a particle in a constant
gravitational field obtained here, is different than the
motion under the influence of a constant nongravita-
tional force in an ICS [(8)75], such as the motion
of a charge in a constant electric field.

The earth’s gravitational field may be considered
to be a uniform linear field in a sufficiently small region
of space. The gravitational frequency shift was recently
measured in such a region [337], and the results con-
firmed the theory. We now use (6.14) to calculate this
shift in two ways, the first and usual way is by means
of (11.14), and the second way is by means of (11. 17).
Since the solution of (11.15) is stationary, we may use
(6.15) and (11.14), and get for the ratio of proper
frequencies at two points separated by a vertical dis-
tance Ax, the expression

Vl/y2: (g(Z)OO g(l)oo)%

=[14a(x+Ax) ]/ (14 ax)x14+aAx, (11.19)
where we let x'=x. On the other hand, since (11.17)
is not stationary, we have to use (6.14, 13). Noting
that

Y a8,0= 8ap,0=0, Y a,0=0a1g’01,0= ¢ (14 ax") a1,

we get

V1/V2—'1=fdé=[(1+dx’)_1d(dx/)

=[In (14ax’) J,*t4*~aAx,

in agreement with (11.19).

12. ROTATION FIELD

In the previous section we discussed a transforma-
tion field in which the space geometry is Fuclidean,
synchronization is framsitive, and a rigid CS can be
constructed regardless whether the acceleration is
constant or not. In this section, we discuss a transfor-
mation field in which none of these properties hold.
This field can be produced by the rotation of a CS
about an axis fixed relative to an ICS. The rotating
CS can be rigid only in the special case where the
angular velocity is constant. Thus by studying this field,
we can get a feeling for all the relativistic pecularities
arising in an arbitrary gravitational field, except for
the property R;y720. A field with the latter property
is taken up in Sec. 13.

Our approach is again to start with the field equa-
tions and find a unique solution with the help of co-
ordinate and physical conditions. The approach by
transformation from an ICS is adequately treated else-
where [[(8)123-125, 222-226, 240-245].

A. Metric Tensor

CC I-3. Cylindrical coordinates: (9.28, 27b).
PC 1. No acceleration along 3: A*=0. (12.1)
As in (11.3), this implies go.To,:j=goI',;; and hence
(12.2)

(12.3)

70.=0,
Y2700 YT za,
where v; and 7;; are defined in (6.5, 9).
PC 2. Synchronization is transitive in the zr plane:
(12.4)

T74=0.

Here again, A" is proportional to 7o, and if 4750,
then 7,520, and we conclude from (12.3, 4) and (9.28a)
that

v-=0, g2i= 0z, 74=0. (12.5)
Therefore, (12.2, 4, 5) implies
g0i,==0.
PC 3. vmr,:=0, v6,:=0, vp,.=0.
This, in conjunction with (9.28b, c), implies
'Yrrz 17 77‘9:07 (126)
and
ij,.=0. (12.7)
PC 4. Cylindrical symmetry:
Yeo,60=0, 7:0,6=0, A%6=0
when
u=0.
Consequently,
gij,,;:O. (128)
Because of (12.4), we may adopt
CCA4. go=0. (12.9)

However, we cannot set in addition go=0, since 7,55%0.

Instead of continually lining up the radial directions
with the help of a local ICS at the origin, as indicated
in (9.27), property (12.8) allows us to accomplish the
same thing much easier as follows: Construct a rigid
circular ring with 360 equally spaced holes around the
circumference, then let the radial coordinates be marked
along rigid wires that slide freely through the holes.
The ring will move radially in or out as the angular
speed increases or decreases, respectively, as is shown
later in this section. But the radial wires will all be
maintained at equal angular spacings.
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Summarizing, we have from (9.28) and (12.5, 6, 9),

Y2i= gai= 024 Vri= Gri= Opi, gri= 6% gri=om
(12.10)
ge%=gw,  gg"=gw,  gg¥=—gw, (12.11a)
where
g = det (gi;) = googes— goi®= goovee. (12.11b)

With the help of these values, we find from (5.10) that

2T%0= g™g00,0+ 28 g0s,0— 6 Zo0,r, I%,=0, (12.12a)
2T%= — g%gs9,0— 07 gs0,1,

(12.12b)

2T%9= g% gs0,0— 6% gog,r,

2T% 6= g%gos,»+ g% go0 1.
(12.12¢)

20, = g"%g00,++-g"gos r,

Substituting these values into the field equations
(5.12), and using the definition

K= goo,go0,»— (go.r)% (12.13)

we get from R,,=0,
A= g0, g% go0, - 28%g00 v —2(In /—g) 2= —K/g.
(12.14)
From the vanishing of Ry, R, and Ry we obtain
gijr—gijr(I0 v/ —g) »=gi;(B—K/g), 1,7=0, 6,
(12.15)
where
B=(—g)7[(—g)*gmw.0l0- (12.16)

The other field equations do not lead to anything new.
From (12.15) we can deduce 4=2(B—K/g). Com-
paring this equation with (12.14), we find

[In (K/+/—g)1.=0.
Thus,
K/v/—g=f(%), ~/—gB=/(gw.o/v—g) o=—3f(2"),

and consequently go,o/v/—g=h(x?). With the help
of (9.27b), we conclude that %(x°) =0, and therefore

(gij/—g) »=0 for 4,7=0,86.
(12.17)

£06,0= 0: K= 0:

The solution of these equations may be written in
the form

go=—1+a(@)f, =), gw=+abf, (12.18)

where

70r) = / V=g dr. (12.19)

Substituting (12.18) into (12.11b), and using (12.19),
we find —g=0%=f 2 Thus 2f*,=0, 2o/f=br+d, and

V=g=vV— goVv0e=b/f=3b0(br4d).

Applying (9.27b) to this equation, we conclude b=+/2,
and 2f=72% If we let a=2[w ()¢, and

u=w(x%)r/c (12.20)
we obtain from (12.18),
go=—1+u’  gu=r,  gu=Ltwr, g=—1
(12.21)

It thus follows from (12.10, 21) that

ds?= (—14-p2) (dx°) 24 2udx’rdf+ (dr) 2+ (rd6) %+ (dz)?,
(12.22)
in agreement with [ (8) p. 240, Eq. (72)].

As r—o0 | y— oo ds? becomes negative, and no time-
like signals are possible. This sets a limitation on the
possible physical extention of the CS, and is to be
expected from the fact that the field is an acceleration
field.

To find what the metric tensor would look like if
we use SC’s throughout, we have to perform the trans-
formation (11.16). The result for the special case of
constant w is

go=—1,  go=—(1—p2)"%"/r,
g'of): (1_[1’2)”%#/7/, g/[)z:O’ (12.23a)
g,"= 1_g/0721 g,”: ’/2: g/rfi: _glt)rg,()@: Laz= Oz,
(12.23b)

where u'=wr’'/c. As before, this transformation does
not alter the values of vy.s. When w is constant, the
solution (12.10, 21) is stationary, i.e., g; are inde-
pendent of x° whereas the solution (12.23) is not.

B. Transformation to an ICS

Since R;;=0 is satisfied by (12.10, 21), there exists
a transformation to an ICS, I. Instead of deriving the
transformation from (5.14) it is much easier to rewrite
(12.22) and make use of its invariance. Thus

—ds?= — (cdt)*+ (dr) 2412 (d0-wdt)*+ (dz)?
= — (cdt)?+ (dR)*+ R2(dO)*+ (dZ)?,

where T, R, 6, Z are the coordinates in /. It is clear
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from this that the desired transformation is [[(8)222,
226]

t
T=t, R=r, 6=0:i:/w(l’) at',  Z=z.
0

The significance of 7=t will be discussed shortly. It
can be seen from this that the sign of g in (12.21) is
associated with the direction of rotation.

C. Space and Time Measurements

From (12.11b, 21) we see that vye= (1—u?)772
Thus, in view of (12.10), the space line-element is
given by

(a)?= (dr)*+ (1—w?) 7 (rdf)*+ (d2)*,

in agreement with [(8) Eq. (7), p. 224]. This shows
that the space geometry is not Euclidean, a fact which
is not altered by the transformation (11.16).

If ] and 7 are the circumference and radius of a circle
on the rotating disk with center at z, measured by an
LLMI at rest on the disk, then for >0

(12.25)

2T 7
l/r:/ (1—p2) "% d@// dr'=2r (1—p2)~4>2m.
0 0
This result was first derived by Einstein [(12)116].
A detailed interpretation of his derivation is as follows:
Let the circumference and radius of the projection
of the rotating circle on I, measured by an LLMI in
an ICS, I, be denoted by L and R, respectively. Ac-
cording to assumption (7.3), a moving length interval
measured in J undergoes a Lorentz contraction de-
termined only by its speed and not influenced by its
acceleration. Thus L=I[1— (wR/c)%*] and R=7, be-
cause v=wR is the linear speed, and the radius is per-
pendicular to the direction of motion. Since the space
geometry on the ground is Euclidean, then L=2rR,
and

Ur=(L/R)[1—(wR/c)*T*=2n[1— (wr/c)* ],

in agreement with the above result. Consequently it
is impossible to rotate a rigid disk from rest without
cracking at the circumference. A rotating rigid disk
must be assembled in motion like a space-station. More-
over, the angular velocity of a rigid disk cannot be
changed without the disk breaking up. For a disk having
a radius of few centimeters, an angular frequency of
10 turns/sec will produce a fractional change in the
circumference of only about 10~%, which can be ac-
commodated by most materials.

The space geodesics on the disk may be determined
from (7.21). This problem is solved by Mgller [ (8)241-
2437, and the reader will find it worthwhile to look it up.

For the sake of discussing time measurement in the
rotating CS, let Cg be a coordinate clock at rest on

the disk, Cs an SC coinciding with Cg, and C; a set
of synchronized SC’s in I distributed along the path
of Cg and Cg. Let dt, dr, dT be the time intervals be-
tween the same two events recorded by clocks Ckg,
Cg, Cr, respectively. According to (6.1),

dr=~/—good!.

Moreover, according to assumption (6.3), the rate of
Cg relative to Cy is only determined by its speed and
is not influenced by its acceleration. It thus follows
from the time dilation of special relativity that

(12.27)

(12.26)

dr=(1—u2)¥T.
Eliminating dr between the last two equations, we get
\/—'g()odtz (1—/.l,2>:dT (1228)

By adopting the value of gy in (12.21), we have in
effect set t=T, i.e.,, we have used coordinate clocks
whose rate is just enough higher than that of local
SC’s that the time dilation is exactly compensated
[(8)226]. For this reason solution (12.10, 21) is sta-
tionary when w= const.

If we integrate (6.8) along a closed path starting
with a clock on the rim proceeding to the clock in the
center, then to a neighboring clock on the rim, and
back, we find [using (12.10, 21)]

of o= ( f e /0 pran /o - do'><goe/—goo)

= ur do#0.

Thus, if two neighboring clocks on the rim are syn-
chronized with the center clock, they are not syn-
chronous with each other, i.e., two events on the rim
clocks that are judged to be simultaneous by syn-
chronization with the center clock, are found to be off
by (urdf) when the two rim clocks are synchronized
with each other. Similarly, if we synchronize clocks
completely around the circumference of the disk, then
according to (6.8) the last clock will differ from the
first clock by a time interval [(9)281]

2T
cf st= [ (gw/—gu) d6=2m(1—p2)~tpr=20.  (12.29)
1]

Moreover, according to (6.11), (12.29) implies that two
light signals travelling in opposite directions around
the circumference take different times to complete one
rotation, a fact which has been verified experimentally
[(31), (32)].

To understand (12.29), we apply the general argu-
ment used in deriving (6.8) to the disk. Assuming
u<K1, we neglect in the following all terms having
powers of p higher than the first. We may therefore,
ignore the difference between the values of the time
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and space intervals on the disk and their values in
I. If we send a light signal a distance dI along the cir-
cumference of a circle on the disk and reflect it back,
then because of the rotation of the disk, it takes a time
interval cdty=xdi+wrdty to travel in the direction of
rotation and cdfyxldl—wrdty to travel in the opposite
direction. Therefore the difference in time assigned
to two events at the ends of d/, which are simultaneous
according to Einstein’s synchronization convention,
is given by

odt= c(dty— dtr) ~RAIL (14 1)~ — (1— )~ Jpdl.

Consequently,
c f IS jg Al 2mpr,

in agreement with (12.29) to the first order in p.

The gravitational frequency shift on a rotating disk
can be calculated by means of (12.21) or (12.23), as
was done at the end of Sec. 11. From (6.15) and (12.21)
we find

r1/ve= (§P00/gP00) i= (1—w?c2s) 1/ (1—w?c 22)

1 — 302 (r2—1i2).

(12.30)

This result has also been confirmed experimentally

[34].
D. Equations of Motion

Since the transformation (12.24) is exactly the same
as the nonrelativistic transformation, the resulting
equations of motion and their solution also have the
same form as in the nonrelativistic case. However,
these similarities are misleading, since the time ¢ in
(12.24) is measured by clocks that run at a higher
rate than local SC’s. If we were to use SC’s we would
have to use (12.23), and the equations of motion would
become considerably more complicated.

13. SPHERICALLY SYMMETRIC FIELD

The problem of the spherically symmetric field is
discussed in practically every book on GR. The only
justification for discussing this problem here is to bring
out clearly the physical and coordinate conditions in-
volved in the solution.

Since we are interested here in the solution ouiside
the sources of the field, and are taking the origin of
the CS at the center of the mass distribution, we cannot
line up the directions of the radial SG’s by (9.31). How-
ever, we can start as before with radial SG’s, i.e., we
adopt (9.32) as our first CC.

CC 1. (13.1)

¥+0,,=0, ¥r0,,.="0.

We may agree to measure the radial distance by an
LLLMI or an equivalent method, and thus take:

cC 2. (13.2)

In order to specify the nature of the angular coordi-
nates and line up the radial directions we require:

CC 3. As r—w, (13.3a)
(13.3b)

Yrr= 1.

¥re—0, ¥r5—0,

Yo5—0,  Vgs—ve0 SIn* 65

(13.3a) states that asympotically the § and ¢ coordi-

nates lie on a surface orthogonal to 7, y4s—0 requires

that they are mutually orthogonal on this surface,

and the last relation establishes the angular spacing.
An immediate consequence of (13.1, 3a), is

Yro="Yrs="0, (13.4)
as in (9.33).
PC 1. Synchronization is transitive: To5=0.  (13.5)
PC 2. Acceleration function is static:
A*o=0 when #f=0. (13.6)

According to (9.36) and the discussion following it,

(13.5, 6) permit us to adopt the following CC:
CcC 4. 20=0, (13.7)

20.=0 is allowed by (13.5) and ge,=0 by (13.6).
In view of the definitions (6.5, 6), (13.7) implies

(13.8)

800,0= 0.

Yop= ZaB-

Frequently, the condition of spherical symmetry is
imposed before the coordinates have been specified.
In that case it is partly a condition on the coordinates,
which is purely conventional, and partly a physical
requirement. However, after the coordinates have been
specified, as in CC 1-4, it becomes purely a physical
condition. One of the very few authors who brought
out this point is Synge [ (6)266].

PC 3. Spherical symmetry:
Yoo=Hk(0),

Yoo=h? (7’, xO) ’ Yoo = Hm (0) )

(13.9a)
A%py=A%4=0 when uf=0. (13.9b)
It follows from (13.9a, 3b) that
Yoe=h2(r, t) sin® 6, Yoo=0, (13.10)
and from (13.9b, 7) that
£00,6= 80,6 =0. (13.11)

It is important to make sure that we do not use a
rotating CS, since this vitiates the physical meaning
of measurement of quantities such as the precession of
perihelion of Mercury. We have seen in Sec. 12C that
in a rotating CS; 7,570 and ge depends on the angular
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speed, [see (12.20, 21) 7 if g, is taken to be zero, as in
(12.9). Thus by assuming (13.5), we have already
partly insured that our CS is not rotating. To make
completely sure, we also impose the following condi-
tions [ (10) 165, 170) :

PC4.As r—o, go——1, h—r. (13.12)

This does not agree with Mach’s principle, which re-
quires g;—0.

In order to relate the field to the properties of the
source, we need one more condition, namely:

PC 5. As r—ow, A" must approach the Newlonian

value, 1.e.,

2A™—>—GMr? when u*=0, (13.13)

where G is the universal gravitational constant, and
M is the mass of the source.
From (13.2, 4, 7-10) we have

ds?= goo(7) (dx®)2+dr*+ 2 (7, 2°) (d6?+ sin? 0d¢?).
(13.14)

The coordinates we have chosen are called by Synge
[(6)266, 2707 polar Gaussian coordinates. If we let

B=eb (13.15)

—goo= e2a,

(Synge uses B for b and v for 2a), then the field equa-
tions can be shown to be [(6) p. 271, Eq. (77)],

R.,=a +a,2+b+3b,2=0. (13.16a)
2Rep=—2+& (b r+b 2+a b ) — €722 (b 0120 ¢*) =0,

(13.16b)
Roo=b0+1b2— e (amtaita,b,)=0 (13.16¢)
2Ro=2b o +bo(b,—2a,)=0.  (13.16d)

R;= Ry sin? 0, and the other equations are identically
satisfied. Aside from the factor “2” of b ¢ in (13.16b),
these equations are the same as those given by Synge.

Noting that ¢ depends only on 7, differentiating
(13.16a) with respect to «°, and (13.16d) with respect
to 7, and eliminating & o between them, we get

(a,rr+a,r2)b,0:O-
For a nonzero field (47#£0), ¢ ~+a >0, and thus
boy=0, (13.17)

which shows that the field is static, since g;;,0=0.

From (13.16¢, 17), we find [In (e,e*t*)],=0, or
a.e*t*= const. Similarly, we find with the help of
(13.16a), b, ,e*—*= const. Making use of (13.15, 12, 13),
we get

(v —gw) »=GMc?=1q, he=~—gun. (13.18)

Finally from (13.16b, 17, 18) we deduce

—go=1—a/h=(h,)% (13.19)
Solving this equation for %, we get
r—ro=[h(h—a) Pt+aln [(h—a)+r], (13.20)

which is rather complicated. This is the reason why

cc 2. h=r (13.21)

is usually preferred over (13.2).

If one adopts (13.21) and solves for go(7), g (7, a°),
then one would get the Schwartzschild exterior solu-
tion [ (8)323-325]

—‘g00=1‘—0{/1’, grrz—l/goo. (1322)

14. SUMMARY

We have finally reached the end of our task, and it
is hoped that at this point an adequate, sound, opera-
tional foundation of GR has been laid. In particular,
we have tried to show how a physical CS can actually
be constructed in the presence of an arbitrary gravita-
tional field, and how the coordinate conditions are
linked to the CS, choice of time and length standards,
and the synchronization convention. The operational
meaning of all the metric coefficients, and their role
in the time, space, and space-time geometries were
thoroughly discussed. It was also demonstrated by
several examples how a unique solution for the metric
can be obtained from the field equations, coordinate
conditions, and other physical conditions. Since many
of these points are not adequately discussed in standard
books on GR, this article should be a useful supple-
ment to these books.

ACKNOWLEDGMENTS

I am grateful to Professor N. Ashby, Professor
A. Barut, Professor P. Bergmann, Professor W. Brittin,
Professor D. Burkhard, Professor A. Griinbaum, and
Professor G. Hudson for discussions that helped sharpen
some of the ideas in this article.

REFERENCES

[1] (a) R. Marzke and J. Wheeler, (b) R. Dicke, (c) J. Ander-
son, (d) J. Wheeler, Gravitation and Relativity (W. A.
Benjamin, Inc., New York, 1964).

[2] (a) B. Bertotti, (b) R. Dicke, “Evidence for Gravitational
Theories,” Course 20, Proceedings of the International School
of Physics “Lnrico Fermi”’ (Academic Press Inc., New
York, 1961).

[3] A. Arzelies, Relativité Generalisée Gravitation (Gauthier-
Villars, Paris, 1961).

[4] J. Weber, General Relativity and Gravitational Waves (Inter-
science Publishers, Inc., New York, 1961).

[5] J. Synge, Relativity: The Special Theory (North-Holland
Publishing Company, Amsterdam, 1956).



SauL A. Basrt Operational Foundations of General Relativity 315

[6] J. Synge, Relativity: The General Theory (North-Holland
Publishing Company, Amsterdam, 1960).

[7] V. Fock, The Theory of Space, Time and Gravitation, trans-
lated from the Russian by N. Kemmer (The Macmillan
Company, Inc., New York, 1964).

[8] C. Mgller, The Theory of Relativity (Oxford University
Press, Oxford, 1955).

[9] L. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Publishing Company, Inc., Reading, Mas-
sachusetts, 1951).

[10] W. Pauli, Theory of Relativity, translated from the German
by G. Field (Pergamon Press, Inc., New York, 1958).

[11] A. Einstein, The Meaning of Relativity (Princeton Univer-
sity Press, Princeton, New Jersey 1953).

[12] A. Einstein and others, The Principle of Relativity (Dover
Publications, Inc., New York).

[13] A. Griinbaum, Philosophical Problems of Space and Time
(A. A. Knopf, Inc., New York, 1963).

[14] S. Basri, IEEE Trans. Instr. Meas. (to be published).

[15] A. Finzi, Nuovo Cimento 20, 1079 (1961).

[16] H. Reichenbach, The Philosophy of Space and Time (Dover
Publications, Inc., New York, 1958).

[17] H. Reichenbach, Axiomatik der Relativistischen Raum-Zeit-
Lehre (Friedrich Vieweg and Son, Braunschweig, 1924).

[18] V. Lenzen, International Encyclopedia of Unified Science
(University of Chicago Press, Chicago, 1955) Vol. 1, Part 1.

[19] T. Levi-Civita, The Absolute Differential Calculus, trans-
lated from the Italian by M. Long (Blackie & Sons, Ltd.,
London, 1947).

[20] L. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, New Jersey, 1949).

[21] A. Forsyth, Intrinsic Geometry of Ideal Space (MacMillan
and Company, Ltd., London, 1935), Vols. I and II.

[22] F. Severi, Rendiconti di Palermo 42, 227 (1917).

[23] H. Bondi, Rev. Mod. Phys. 29, 423 (1957).

[24] R. Eotvos, D. Pekar, and E. Fekete, Ann. Physik 68, 11
(1922).

[25] P. Roll, R. Krotkov, and R. Dicke, Ann. Phys. (N.Y.)
26, 442 (1964).

[26] F. Rohrlich, Ann. Phys. (N.Y.) 22, 169 (1963).

[27] H. Poincaré, Science and Hypothesis (Dover Publications,
Inc., New York, 1952).

[287] B. Hoffmann, Rev. Mod. Phys. 4, 173 (1932).

[29] F. Giirsey, Ann. Phys. (N.Y.) 24, 211 (1963).

30] J. Romain, Rev. Mod. Phys. 35, 376 (1963).

[31] G. Sagnac, Compt. Rend. 157, 708, 1410 (1913).

[32] W. Macek and D. Davis, Appl. Phys. Letters 2, 67 (1963);

W. Macek and G. White, IEEE Trans. Instr. Meas. (to be

published).

[33] R. Pound and G. Rebka, Phys. Rev. Letters 4, 337 (1960).

[34] W. Kundig, Phys. Rev. 129, 2371 (1963).

[35] K. Borsuk and W. Szmielew, Foundations of Geometry

(North-Holland Publishing Company, Amsterdam, 1960).

[36] E. Newman and A. Janis, Phys. Rev. 116, 1610 (1959).

[37] P. Bergmann, Rev. Mod. Phys. 33, 510 (1961).

[38] A. Komar, Phys. Rev. 111, 1182 (1958).

[39] L. Eisenhart, An Iniroduction to Differential Geomeiry
(Princeton University Press, Princeton, New Jersey, 1947).

(pan'y

T




