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This article presents a review of coherence properties of electromagnetic fields and their measurements, with special
emphasis on the optical region of the spectrum. Analyses based on both the classical and quantum theories are described.
After a brief historical introduction, the elementary concepts which are frequently employed in the discussion of inter-
ference phenomena are summarized. The measure of second-order coherence is then introduced in connection with the
analysis of a simple interference experiment and some of the more important second-order coherence effects are studied.
Their uses in stellar interferometry and interference spectroscopy are described. Analysis of partial polarization from
the standpoint of correlation theory is also outlined. The general statistical description of the field is discussed in some
detail. The recently discovered universal "diagonal" representation of the density operator for free fields is also con-
sidered and it is shown how, with the help of the associated generalized phase-space distribution function, the quantum-
mechanical correlation functions may be expressed in the same form as the classical ones. The sections which follow
dealwith the statistical properties of thermal and nonthermal light, and with the temporal and spatial coherence of black-
body radiation. Later sections, dealing with fourth- and higher-order coherence efFects include a discussion of the
photoelectric detection process. Among the fourth-order effects described in detail are bunching phenomena, the Hanbury
Brown-Twiss eGect and its application to astronomy. The article concludes with a discussion of various transient super-
position efFects, such as light beats and interference fringes produced by independent light beams.
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1. INTRODUCTION

Although some optical coherence phenomena are
known to all physicists, no general agreement exists
on the precise meaning of the term "coherence, "
or on the domain encompassed by coherence theory.
This lack of agreement is partly due to the fact that
the subject has substantially outgrown its traditional
bounds. It has gradually become evident that the
notion of coherence is involved in the whole field of
statistical optics and more generally in the quantum
description of mixed states.

Every optical Geld found in nature has certain Auctu-
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ations associated with it. In its broadest sense, optical-
coherence theory is concerned with the statistical de-
scription of the Quctuations, and optical coherence
phenomena may be said to be manifestations of cor-
relations between them. The concept of optical co-
herence has long been associated with interference,
presumably because interference is the simplest phe-
nomenon that reveals correlation between light beams.
However, with the availability of modern light de-
tectors and electronic circuitry of very short resolving
time, other types of correlations in optical Gelds began
to be studied. These investigations, as well as the
development of some quite new types of light source,
lead to questions concerning the systematic classifica-
tion, of optical correlation phenomena and the complete
statistical description of optical fields.

The earliest investigations of coherence' were those
of Verdet (1865, 1869), von Laue (1907, 1915c, p.
405—410), Berek (1926a, b, c, 1927), Lakeman and
Groosmuller (1928a, b, c), and Schrodinger (1928).
Some early researches of Stokes (1852) and Michelson
(1890, 1891a, b, 1892, 1920), although not explicitly
concerned with coherence, have also contributed to
the understanding of the subject (cf. Zernike, 1948).
The work was carried further by Wiener (1928, 1929,
1930), van Cittert (1934, 1939), Zernike (1938), Hop-
kins (1951, 1953, 1957), Wolf (1954a, b, 1955, 1956,
1959), Blanc-Lapierre and Dumontet (1955), Dumon-
tet (1956b), and Pancharatnarn (1956a, b, 1957a, b,
1963a, b). The main outcome of these researches was
the introduction of a precise measure of correlation
between the Geld variables at two space —time points,
and the formulation of dynamical laws which the cor-
relations (in gen. eral second-order tensors) obey. This
"second-order" theory also provides a unified frame-
work for the treatment of most commonly occurring
coherence and polarization phenomena.

Shortly after the second-order theory was formu-
lated, some important experiments of Hanbury Brown
and Twiss (1956a, 1957a, b) demonstrated that corre-
lations can also be measured between quantities which
depend quadratically on the field variables. This ob-
servation led to the study of higher-order correlation
eGects in optical fields. As long as the fields considered
were produced by thermal sources (e.g. , incandescent
matter or a gas discharge), second-order correlation
functions were adequate for the description of second
as well as higher-order effects; for a thermal light wave
has the statistical character of a Gaussian random
process, and such a process is completely characterized
by second-order correlations Lcf. Davenport and Root
(1958), p. 154j. However, with the development of
some new types of light source (e.g. , the Smith —Purcell
radiator and the optical maser), a more general ap-

'Ior a fuller historical account, see M. Born and E. Wolf
(1964), Chap. X.

proach was required, which would provide a complete
statistical description of any optical Geld. Such an ap-
proach, based on the concepts of the theory of stochastic
processes has been described by Wolf (1963) fcf. also,
Mandel (1964a); Wolf (1964)$.

These developments which employed an almost
entirely classical description of the field, ' have now
been paralleled by a systematic quantum-mechanical
description [Glauber (1963b, c)). A connection be-
tween the two descriptions was already apparent in
the coherence-matrix representation of the state of
polarization of light [Wiener (1928, 1929, 1930);
Wolf (1954b, 1959); McM aster (1954); Tolhoek
(1956); Fano (1957); Parrent and Roman (1960)$,
which has the form of a density matrix even in the
classical description. Glauber has now introduced the
quantum analogs of the correlation functions of the clas-
sical theory. These quantum correlation functions are
expectation values of normal ordered products of the
creation and annihilation operators, and are closely
related to quantities that are measured by means of
photoelectric detectors.

Following this development, several workers have
studied the relation between the classical and the quan-
tum description of coherence. The starting point of
some of these investigations was a result found by
Sudarshan (1963a, b), according to which the quantum-
mechanical correlation functions are expressible in the
same form as the classical ones, if a certain generalized
phase-space distribution is employed for the description
of the statistical properties of the field.

In practice, Geld correlations are measured with the
help of photoelectric detectors. In all cases of practical
interest that have been considered so far, it was found
that correlations between photon numbers of the quan-
tized field can be determined from correlations between
photoelectrons in an appropriate photodetection ex-
periment. Moreover it was shown that such correla-
tions can be calculated from a semiclassical theory in
which the electromagnetic field is described classically,
and the interaction is treated quantum mechanically
LMandel, Sudarshan, and Wolf (1964);see also, Jaynes
and Cummings (1963); Senitzky (1965)j.

The development of optical coherence theory has
incidentally cleared up a number of old misconceptions
surrounding the subject. Among these we might men-
tion the widely held belief that no intereference effects
between completely independent light beams are pos-
sible, and that photon counting measurements with a
photoelectric detector can give no information about
the spectrum of the light. In fact the appearance of
beats LForrester, Gudmundsen, and Johnson (1955);

~Until very recently no systematic treatment of coherence
within the framework of quantum mechanics appears to have
been given, although a number of publications dealing with special
problems were available Lci. Whittaker (1953), p. 96; Pauli
(1958), p. 133; Pano (1961)].
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Javan, Ballik, and Bond (1962); I.ipsett and Mandel
(1964a)j and also of interference fringes LMagyar and
Mandel (1964)j resulting from the superposition of
independent light beams has now been conclusively
demonstrated, and can be understood in terms of both
the classical and the quantum description. Moreover,
the analysis of photoelectric fluctuations is becoming
an important technique for the determination of ex-
tremely narrow spectral profiles, such as those of laser
beams.

In this review we confine ourselves to the discussion
of coherence properties of free fields and their measure-
ments. We are not concerned with questions of the
origin and growth of coherence within the source itself,
which have been treated by Dicke (1954), Senitzky
(1959, 1960, 1961a, b, 1962a, b), and other authors, nor
with problems of induced coherence and optical pump-
ing which have been discussed at length LBrossel and
Kastler (1949); Brossel and Bitter (1952); Kastler
(1957); Barrat (1961); Barrat and Cohen-Tannoudji
(1961a,b); Bell and Bloom (1961a,b); Brossel (1961);
Cohen-Tannoudji (1961a, b); Series (1961); Dodd,
Series, and Taylor (1963); Kastler (1963); Cohen-
Tannoudji and Kastler (1965)].

We begin in Sec. 2 by summarizing some quite ele-
mentary concepts which are frequently used in the
analysis of the simplest interference phenomena. The
quantitative description of second-order coherence is
given in Sec. 3, on the basis of both classical and
quantum theories. Section 4 deals with the problem
of the complete statistical description of an optical
field. This problem is again discussed from the stand-
point of classical and quantum theories, and Sudar-
shan's phase-space representation, which leads to a
formal similarity between the two theories, is described.
The notion of coherence of different orders is intro-
duced, and the difference between the fluctuation prop-
erties of thermal and laser light is emphasized. The
most important second-order coherence effects are dis-
cussed in Sec. 5,' and the most important higher-order
effects—including the Hanbury Brown —Twiss effect-
in Sec. 6.' The Anal section (Sec. 7) d.eals with various
transient interference and beat effects produced by
independent light beams.

2. SOME ELEMENTARY CONCEPTS AND
DEFINITION 85

2.1. Temporal Coherence and the Coherence Time

Suppose that a "steady" light beam from a small
source 0. is divided into two beams in a Michelson inter-

' A. fuller account of some of the second-order coherence eBects
will be found in Born and Mlolf (1964), Chap. X.' A fuller discussion of fourth-order coherence effects has been
given by Mandel (1963d).' More precise definitions of some of the quantities introduced
heuristically in Secs. 2.1 and 2.2 will be given later (Secs. 5.1
and 5.4). See also A. T. I'orrester (1956).

zzriuwzpill M,

M,

I' IG. 1. Temporal coherence illustrated by means of the Michel-
son interferometer.

ferometer and that the two beams are united after a
path delay As=cdt (c=velocity of light) has been
introduced between them (Fig. 1). If As is sufficiently
small, interference fringes are formed in the plane S.
The appearance of the fringes is said to be a mani-
festation of temporal coherence between the two beams,
since the fringe contrast depends on the time delay
At introduced between them. In general, interference
fringes will only be observed if

AtAv &1,

where Dv is the effective bandwidth of the light. The
time delay

At 1jdv

is called the coherence time of the light and the corre-
sponding path cAt the coherence length.

A rough elementary derivation of Eq. (2.1) may be
obtained by decomposing the total intensity pattern
into a sum of contributions of different frequency com-
ponents, and noting the condition for the different
monochromatic contributions to remain "in step" (all
intensity maxima to be suKciently close to each other) .

2.2. Spatial Coherence and the Area of Coherence

Let us next consider an interference experiment of
the Young type, with quasimonochromatic light from
an extended thermal source (Fig. 2). The qualifying
term qnasimoeochromatic means that the effective band-
width Av of the light is small compared to its mid-
frequency vo,

Av/ve«1. (2.2)

For simplicity a symmetrical arrangement is assumed
in Fig. 2, with a source in the form of a square of side
Al. If the pinholes Pj and P2 are close enough to each
other, interference fringes will be observed near the
central point P on the screen S. The appearance of
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of the plane of the pinholes and will not, in general, be
given by Eq. (2.4).

2.3. Volume of Coherence and the Degeneracy
Parameter

FIG. 2. Spatial coherence illustrated by means of Young's
interference experiment.

these fringes is said to be the manifestation of spatial
coherence between the light reaching P from the two
pinholes, since the fringe contrast depends on the spa-
tial separation of the pinholes. Interference fringes will
in general be observed near P only if

~0~~ &&o, (2 3)

AA~ (RA9)'~R'(Xp/At)'= (c'/vpP) (R'/5) (2.4)

where 60 is the angle which the line PjP2 subtends at.
the source and Xp=c/vp is the effective wavelength
of the light. If R denotes the distance between the
source o- and the plane Q, of the pinholes, it follows
that in order that fringes are observed near P, the
pinhole must be situated within an area around Q (see
Fig. 2), of size

Suppose now that the field is that of a nearly plane,
quasimonochromatic wave. The right-angled cylinder,
whose base is the area of coherence in a plane normal
to the direction of propagation and whose height is
the coherence length, may be called the volume of
coherence. It is also the volume corresponding to one
cell of phase space of the photons [see also A. Kastler
(1964)7. It occupies a domain of space of volume
AV =cdIDA.

When At is given by (2.1) and AA by (2.4),

AV~chpPR'/Av (At)'= (R/At)'(Xp/AX)XpP, (2.6)

where AX= A (c/vp) = cAv/vp'.

It will be seen later that the average number of
photons in the same state of polarization, which can
be found in a "volume of coherence, " i.e., the average
number of photons in the same state of polarization
which traverse the area of coherence per coherence
time, is a very significant parameter. It is known as the
degerterocy parameter 6 of the light [Mandel (1961a)].

H E„ is the average number of photons emitted per
unit area of the source, per unit frequency interval,
per unit solid angle around the direction normal to
the source, per unit time, then evidently

where 5= (Al)' is the area of the source. This area is
said to be the area of coherence of the light in the plane
0', , around the point Q. It should be noted that accord-
ing to (2.4), the area of coherence will be large if R
is large, i.e., if the plane 0', of the pinholes is suKciently
far away from the source. The solid angle AQ which
the area of coherence subtends at the source is, in this
case (thermal source), given by

Afl AA/R' (c'/vp') (1/S). (2 5)

A rough elementary derivation of Eq. (2.3) may be
obtained by considering the interference pattern at (9
to arise from the superposition of independent inter-
ference patterns formed by light from different ele-
ments of the source, and noting the condition for
the individual interference patterns to remain approxi-
mately in step.

Although the above discussion has been confined to
light from a thermal source which directly illuminates
a distant plane, it is evident that the concept of the
area of coherence applies much more generally. Such
an area can be defined in terms of a similar two-pin-
hole experiment, without reference to the source. The
area of coherence depends, of course, on the location

8—
~ E,SAv606$. (2.7)

—', (c'/vp') E„. (2.8)

This expression is seen to be independent of the ge-
ometry.

In particular, for blackbody radiation emerging from
an equilibrium enclosure

E„=(2v /c')[exp (hv/KT) —1] ' (2.9)

where E is the Boltzman constant, T the absolute
temperature of the radiation, h the Planck constant.
In this case (2.8) becomes

[exp (hv/KT) —1 (2.10)

The factor —,
' on the right-hand side arises from the

fact that the light is assumed to be generated by a
thermal source and hence is unpolarized; thus it may
be regarded as a mixture of photons of two mutually
orthogonal polarizations, present in equal amounts. In
the usual situations, where the expressions (2.5) and
(2.1) for AQ and At apply, (2.7) evidently reduces to
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The expression on the right of (2.10) is precisely the
expression first derived by Einstein (1912) in his study
of radiation in a cavity in thermal equilibrium with
the walls of the cavity. He showed that this quantity
describes the average number of photons in a cell of
phase space, which is what in quantum statistics is
known as the degeneracy parameter of the radiation.
However, the definition of degeneracy given here in
terms of the "volume of coherence" applies also to
light far away from its source, whether or not the
light is of thermal origin.

The concept of volume of coherence may be shown
to correspond to a quantum-mechanically dehned cell
of phase space Lcf. Hanbury Brown and Twiss (1957a),
p. 321). To see this consider again a beam of quasi-
monochromatic light, propagated in the direction s
normal to the plane of a distant thermal source of
square shape and sides dl. In that case, the photons
of different momenta and polarization will be effec-
tively independent and the beam is describable in
terms of the "one photon" phase space. Now the vol-
lume of an elementary cell of phase space is given by

Ap, ApsAp, Aq, Aq„Aq, =h', (2 11)

where hp„~ ~ ~ and Aq„~ ~ ~ are the uncertainties in
the components of the momentum and position co-
ordinates' of a photon in the beam. In the present case
one readily finds from elementary geometrical consid-
erations that

Ap, =Ap„= (hvp/c) (Al/R) (2.12)

Further, if the square of the "angular size" LU/R of
the source is assumed to be negligible compared to
Av/vp, the uncertainty in hp, arises mainly from the
uncertainty in the frequency and is given by

Ap, = (h/c) Av. (2.13)

On substituting from (2.12) and (2.13) into (2.11),
one obtains

bq, d q„Aq, =c)~'R'/hv (Dl) ', (2.14)

' Strictly speaking the position of a photon cannot be dered
more closely than to within a region of linear dimensions of the
order of a wavelength tcf. Akhiezer and Berestetsky (1953), p.
17; Acharaya and Sndarphan (1960l g.

which is seen to be identical with the expression (2.6)
for the volume of coherence.

Finally it may be useful to note typical orders of
magnitude of some of the parameters which we have
been discussing. The values of these parameters are
vastly different for thermal light and for light gener-
ated by some optical masers. For example, the band-

width Av of the best "monochromatic" thermal light
that can be produced in the laboratory is of the order
of 10' cps, while for maser light values of 10' cps or
even smaller may be achieved. The corresponding
coherence times are, therefore, of the order of 10 '
and 10 ' sec, the coherence lengths of the order of
1 and 10' m, respectively. The largest value of the de-
generacy parameter which can be obtained with ther-
mal light produced in a laboratory is of the order 10 ',
while values greater than 10"have now been achieved
with maser light Lcf. Mandel (1961a); Gabor (1961),
pp. 133, 146)j. Thus the usual thermal light is non-
degenerate (8«1), while maser light is normally highly
degenerate (5&)1).

3. THE LAWS OF INTERFERENCE AND THE
DESCRIPTION OF SECOND-ORDER

COHERENCE

3.1. The Classical Description

In the preceding section we have introduced rough
criteria which indicate conditions under which simple
interference effects may usually be expected to take
place. Ke will now examine some of the interference
e6ects more fully, and introduce a precise quantitative
measure of so-called second-order coherence, of which
these effects may be regarded as manifestation. This
measure, which is classical in this context, will later
be shown (in Sec. 3.2) to correspond precisely to a
measure defined quantum mechanically.

Let V&'&(r, t) denote a real classical wave function,
characterizing the field at the point I at time I,. This
function may represent, for example, the electric field
or the vector potential. We purposely do not specify
the nature of the wave function V&"& any more closely
at this stage, since the main analysis is independent of
the particular choice of the wave function, and differ-
ent choices may be best suited to describe different
experimental situations. In the case of photoelectric
detection, it is appropriate, as will be shown in Sec.
6.1, to consider the vector potential (actually in a
certain complex representation) as the basic field vari-
able. But detection processes may be envisaged, for
which other choices may be more suitable.

For any realistic light beam, V&"~ will be a Quctuat-
ing function of time, which may be regarded as a
typical member of an ensemble consisting of all pos-
sible realizations of the field. There are several reasons
why V("~ Quctuates. When the light is produced by
thermal sources for example, Quctuations arise mainly
because V'") consists of a large number of Fourier
components which are independent of each other, so
that their superposition gives rise to a Quctuating field
which is only describable in statistical terms. But even
light from a well-stabilized source, such as an optical
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maser (where the Fourier components may be coupled
to some extent because of saturation properties of the
maser), will exhibit some random fluctuations, since
the effect of spontaneous emission is never entirely
absent. In addition there will be further contributions
to such fluctuations from vibrations of the mirrors as
the ends of the resonant cavity.

As already mentioned, coherence eAects are essen-
tially a manifestation of the correlation which may
exist between the fiuctuations at two or more space—
time points. Now correlation effects can, of course,
best be treated by the techniques of the theory of
probability and a general treatment along these lines
will be given in Sec. 4. However the description of the
averaged light intensity only needs second-order cor-
relations, and in this section we will briefiy introduce
them in connection with simple experiments. Before
doing so, it will be useful to introduce a complex
representation of the field, which is a generalization
of the representation frequently used to describe the
idealized case of a strictly monochromatic field, and
has proved to be of considerable importance in the
development of coherence theory.

Let us assume that V&"& may be represented as a
Fourier integral with respect to the time variable, ~

V&"&(r, t) = v(r, v) exp (—2vrivt) dv, (3.1)

and note that because V&"& is real, v(r, —v) =va(r, v),
where the asterisk denotes the complex conjugate.
Hence the negative frequency components (v(0) do
not provide any information which is not already con-
tained in the positive ones (v)0) and so may be
safely omitted. Thus, in place of V&"&, we may employ
the function

(3.2)

V(r, t) is known as the comptex analytic signaP or

7 In the case when V("){r,t) represents a typical member of a
stationary ensemble of random functions as we will later assume,
it will not be square-integrable and hence the Fourier integral
representation of V&"&{r, t) may not exist. This difficulty can be
overcome in the usual way, by considering in place of V(") the
truncated function

Vr&") (r, t) =V&"&(r, t), when
~

t
~
(T

=0, when [ t ~) T

and proceeding to the limit as T~~ at the end of calculations
involving formulas which contain the analytic signal associated
with Vr&'& Pcf. Born and Wolf (1964), Chap. Xj.

8 The customary definition of the complex analytic signal
associated with V(") differs trivially from {3.2) by having a multi-
plicative factor 2 in front of the integral. In the context of this
article the present definition seems preferable, since, as we shall
see later (Secs. 3.2, 4), it leads to a more elegant correspondence
with quantities that arise naturally in the quantum treatment of
coherence.

complex amplitud. e associated with V&"&(r, t). This
concept was introduced by Gabor (1946) Lsee also,
Born and Wolf (1964), Sec. 10.2; Beran and Parrent
(1964), Chap. 2.) $. The term "complex analytic signal"
arises from the fact that, by a well-known theorem
LTitchmarsh (1948), p. 128j, the absence of negative
frequency components in (3.2) ensures that each Car-
tesian component of V, considered as a function of
complex t, will be analytic and regular in the lower
half of the complex t-plane. Now from (3.2) and (3.1)
it follows that the real part of V is 2'V&"&, while from
the analytic property just mentioned it follows that
the real and imaginary parts of V form a Hilbert
transform pair:

where

V(r, t) =-';[V&"(r, t)+iV&'&(r, t) j, (3 3)

V&'&(r, t')
V&*'&(r, t) =or 'I', '

dk',
t' —t

V&"'(r t) = m='I'—- V&'&(r, t') dt'

t' —t
(3.4)

and I' denotes the Cauchy principal value of the inte-
gral at t'=t.

This transition from the real Geld V~"& to the com-
plex Geld V has other signifi. cant features. The complex
field V will later be shown to appear naturally in the
theory of photoelectric detection of light fluctuations.
It will be seen to be an eigenvalue of the operator
used in the theory of the quantized Geld to represent
the annihilation of a photon at the space —time point
(r, t)

Consider now a beam of quasimonochromatic light. .
We assume Grst that it is linearly polarized, so that
we may represent it by a (complex) scalar function
V(r, t). Now because of the high frequency of optical
vibrations, V cannot be measured as a function of
time with any presently available optical detectors.
The mean optical periods are of the order of 10 " sec,
whereas the fastest optical detectors presently avail-
able (best photodetectors) have resolving times of the
order of 10 ' sec, although special techniques now
exist by means of which resolving times down to about
10 " sec may be achieved. However, although one
cannot study the rapid time variations of the field
experimentally, one can make measurements of the
correlations of the Geld at two or more space —time
points. Let us consider the correlation at two space-
time points and its determination from a simple inter-
ference experiment.

The light vibrations at points P&(r&) and P~(r2) are
isolated by placing an opaque screen across the beam,
with pinholes at the two points, and we observe the
effect at a screen S, some distance beyond 8 (Fig. 3).
To a first approximation, the instantaneous field at a
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point P on the screen S is given by

V(r, t) =EiV(ri, t ti)—+EtV(rs, t—ts), (3.5)

where ti ——si/c and ts ss——/c are the times needed for t.he
light to travel from P& to P' and P& to P, respectively,
c is the velocity of light, and E& and K2 are constant
factors which depend on the size of the pinholes and
the geometry. From elementary diGraction theory it
follows that E'& and E2 are pure imaginary numbers.

The instantaneous intensity I(r, t) at the point
P(r) and time t may be defined by the formula'

Sf

I(r, t) = V*(r, t) V(r, t) (3.6)

From (3.5) and (3.6) it follows that

I(r, t) =
I

E'& I'Ii(ri, t—ti)+ I Es I I(rs, t—ts)

+2(RIE*iEsV*(ri, t—ti) V(r ,st —ts) I, (3.7)

where (R denotes the real part. If we take the average
of I(r, t) over an ensemble of different realizations of
the field and denote this ensemble average by ( ~ ~ ).,
we obtain

also ergodic. Under these conditions the ensemble av-
erages become time-independent and may be replaced
by the corresponding time averages. ' Let us denote
the time average of a stationary process f(r, t) by
(f(r, t) )», i-e,

T

(f(r, t) ),= lim f(r, t) Ct.
+~co 2 T

(3.11)

FzG. 3. The meaning of the second-order coherence functions
I'(x&, rs, r) and y(r~, rs, r) illustrated with the help of a two-beam
interference experiment.

where

and

Then the "ensemble correlation function" I'(r irs, ti, ts)
may be replaced by the corresponding time correlation

+2(RIE*iEsI'(ri, rs, t—ti, t—ts) I, (3 8) function and. this function depends on the time argu-
ments only through their difference 3&

—f&. Hence if
we set

I (rt r2 tl t2) = (V'(», ti) V(r2 ts) ) (3.9)

= lim V*(r„ t) V(rs, t+r) dt, (3.12)
'+~ca 2 T —T

I'(ri, rs, ti, ts) obviously represents the correlation be-
tween the Geld at r2 and the complex-conjugate field
at ri, at times ts and ti, respectively, and (I(r;, t, ) ),
represents the (ensemble) averaged intensity of the
light at the pinhole P;, at time t; (j =1, 2). We shall
see shortly

I
Eq. (3.20)] that under the usual condi-

tions the third term on the right-hand side of Eq.
(3.8) gives rise to a sinusoidal modulation of the aver-
aged intensity (I(r, t) ) with r.

Usually one is concerned with statiortary fields, in
which case all our ensemble averages are independent
of the origin of time; moreover the Geld is as a rule

'I(r, t) is not strictly proportional to the square of the real
field variable V«& (r, t) . However, it may easily be shown that if the
light is quasimonochromatic, ~I(r, t) represents a short-time
average of V&")~, taken over a time interval of a few mean periods
of the light vibrations.

the expression (3.8) for the averaged intensity at P
becomes, under the assumption of stationarity and
ergodicity,

(I(r t) ) I
I~1

I (I(rl t) )+ I E2
I (I(r2 «) )

+28.IE*iEsI'(ri, rs, ti—ts) I, (3.13)

where we have omitted the subscripts t or e for the

"In discussion of actual interference experiments, where the
detector integrates over a time interval long compared with the
coherence time, the time average may appear to describe the
experimental situation more realistically than the ensemble
average. However it should be remembered that for a stationary
ergodic light beam the long record of the time variations of the
field contains within it a large number of typical members of the
statistical ensemble. In any case the ensemble average represents
the average over a large number of separate measurements.

For discussions of stationarity and ergodicity, see, for example,
Davenport and Root (1958),Goldman (19S3),or Yaglom (1962).
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two types of average, since it is now unnecessary to
distinguish between them.

We note that, if the last term on the right-hand side
of (3.13) does not vanish, the averaged intensity
(I(r, «) ) is not equal to the sum of the (averaged)
intensities of the two beams which reach the point of
observation I' from the two pinholes. It differs froIn
this sum by the term 2(RIE*&Esl'(r&, rs, «t —«2) I. Hence
if F/0, the superposition of the two beams will give
rise to an ir««erferer«ce epee«.

The correlation function I'(rt, rs, r) is known as the
mu«nal coherer&ce fur«c«ior&, ,

"and is the central quantity
in the elementary theory of optical coherence. It is
convenient to normalize F by setting

perimental measurement of the averaged intensities
(I(r, «) ), (I&"(r, «) ), (I&s& (r, «) ), (I(rt, «) ), and (I(rs, «) )
immediately provides information about the real parts
of the correlation functions's p(rr, rs, r) and 1 (rt, rs, r).
However, it is the absolute value of the normalized
comp«ex correlation function y, rather than its real
part, that is a true measure of the "sharpness" of the
interference effects to which superposition of the two
beams may give rise. To see this let us examine (3.17)
more closely. We set

Y(zl rs, r) =
I y(rt, rs, r) I

exp I i[&r(r&, rs, r) —2&rvor] I,

(3.18)
where

&r(r&, rs, r) = arg y(rt, r2, r)+2rrv&&r. (3.19)

On substituting from (3.18) into (3.17) we obtain
(3.14) the following expression for the averaged intensity

L(I(rt) )]'[(I(rs) )]' in the plane 63 of observation:

From Schwarz' inequality it then readily follows that
this normalization ensures that (I(, «) )= (I"'(, «) )+(I"'(, «) )

0&
I y(rt, rs, r) I

(1.
Let us also set

(I"&(r, «) )= I
It I'(I(r«, «) )

5 = 2&rvp(st —$2) /c = k&&($&
—$2), (3.21)

(315) +2[(I"'(' «) &]'[(I"'(r «) &]' I ~(r& rs (»—")/c) I

X cos [&r(rr, r, , (s&—s,)/c) —5], (3.20)

where

=
I
Ic;I-'(v*(,, «)t (;, «))= Iz, I'r(, , ;, 0),

(3.16)

( j= 1, 2) . (I&'& (r, «) ) obviously represents the average
intensity of the light reaching the point P(r) through
the pinhole at I'r only, and (I"&(r, «) ) has a strictly
analogous interpretation.

From (3.13), (3.14), and (3.16), it follows that the
averaged intensity of the light at I' may be expressed
in the form

(I(~, «))=(I"'(r, «) &+(I"'(r «) )

+2[(Io&(r «) &]l[(I&s&(r «) &]l&R[y(r, r, (s, s,)/c)]

(3.17)

From (3.17) and (3.14) it is evident that an ex-

"The mutual coherence function as customarily employed in
the literature, follows the original definition given by Wolf (1955)
/see also, Wolf (1954b) and Blanc-Lapierre and Dumontet
(1955)J. It corresponds to the quantity which in our present
notation would be denoted by 4I'(r2, ri, r). The factor 4 arises
from the fact that in the present article we have supressed a
multiplicative factor 2 in the definition of the analytic signal, for
reasons explained in footnote 8. The inversion of the order of the
two position vectors rq and r2 is here made for similar reasons.

with kQ 2&re&&/c= 2'&r/)&,
&&

and Xp representing the effective
wavelength of the light. Now, in general, the intensi-
ties (I&'&) and (I"') of the two beams will change
slowly with the position I'(r) on the screen S. More-
over, as we shall see later [cf. Eqs. (3.26) and (3.27) ]
I y I

and n will also change slowly over any part of the
screen S over which the change in the path delay
(sr—ss) is small compared to the coherence length of
the light. However, the cosine term in (3.20) will
change rapidly, because of the presence of the term 8
which is inversly proportional to the very small effec-

i' The imaginary parts of these functions could, in principle, be
determined from the knowledge of their real parts for all values of
7- since, as may readily be shown from (3.2) and (3.12). I' and
consequently also y are analytic signals, and so their real and
imaginary parts are coupled by Hilbert transform relations.

The real and imaginary parts F("& and I'(') of r may be expressed
in terms of the real Geld U(") and its Hilbert conjugate U('). In
fact Lcf. Roman and Wolf (1960 a), p. 474—476; Mandel (1963 d),
p. 241-242$,

I'&~& = 2r (V& & (rq, t) V&"& (rq, t+r) )= r
( V&'& (rz, «) U&'& (rq, «+r) ),

P"&=
2 (V" (ri, «) I""(«, «+r) ) = —

2 (V "& (r~, «) V'"'(rs «+r) ).

In particular it follows from these relations that

(V'"(r, «) )= (V""(r, «) )=-'(V*(r, «) V(r, «) ),

&U'"'(r, ~) U"'(r, ~) )=o.
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tive wavelength )0 of the light. Hence over a suKciently
small portion of the screen 8, the averaged intensity
(I(r, t) ) will vary nearly sinusoidally and periodically
with position.

The usual measure of the sharpness of interference
fringes is the so-called visibi/ity, and is due to Michelson.
The visibility Q(r) at a point P(r) in an interference
pattern is dehned as

(3.22)

(I)-*=&I"'(, t) )+ (I"'(, t) )

+2I:(I"'(r, t) &O'I:&I"'Cr, t) &j*
I v(ri, rs, (»—ss)/c) I,

(I&
-= &I"'(r, t) )+ &I"'(r, t) &

—2I:&I'" (r, t) &3'*L(1"'(r, t) )j I ~(», rs, (»—») /c) I

and hence (3.22) becomes

(3.23)

where (I),„and (I&;„represent the intensity max-
iiiia and minima in the immediate neighborhood of P.
Now from (3.20) we have, to a good approximation,

respect to the light at I's. Equation (3.25) shows that
the argument of p may be determined from measure-
ment of the position of the maxima of the fringe pat-
tern.

We have seen that, on the one hand, p is a measure
of the correlation of the complex 6eld at two points
P» and P2, and, on the other hand, it is a measure of
the sharpness and location of the fringe maxima
obtained by superposing the beams propagated from
these points. For this reason it is customary to refer
to y as the comp/ecc degree of coherence of the field at
the points P» and P2. This term is, however, ambigu-
ous, since p depends not only on the location of the
two points P» and P2 but also on the location of
the point of observation

I
characterized by I'i, P2, and

r= (si—ss)/c]. It may be more appropriate to reserve
the term "comp/esc degree of coherence" for the quantity
Max, y(ri, rs, r). However, when the light is quasi-
rnonochromatic, and when 7. is restricted to a small
enough range of values as is usually the case, this
distinction is not very significant. For one may then
show

I
cf. Eq. (3.36) below and (3.14)$ that

y(ri, r2, ri) 7(ri, rs, r2) exp
I

—2srivo(ri —rs) $, (3.26)

(vo
——midfrequency of the light) for any two values 'Ti

and v-2 such that
'U(r) =2(ts+ts ') '

I y(ri, r2, (si—ss)/c) I, (3.24)
I
ri r2

I
«1/—Av, (3.27a)

arg ~('»» (»—»)/c)

—:n(ri, rs, (si —ss)/c) —(2sr/Xo) (si—ss)

= 2m& (m=0, &1, &2, ~ ~ ~ ). (3.25)

The positions of the maxima given by (3.25) coincide
with those which would be obtained if the two pinholes
were illuminated by strictly monochromatic light of
wavelength Xo, and the phase of the vibrations at P'»

was retarded with respect to that at P2 by the amount
A=a(ri, rs, (si ss)/c). Hence, for the purpose of de-
scribing the interference effects near the point P,
n(ri, r2, (si—s2)/c) may be regarded as representing
the "effective retardation" of the light at P» with

where tc=
I

(I&"(r, t) )/(I"& (r, t) &)~. In particular, when
the averaged intensities of the two beams are equal,
as is frequently the case, then ts=1 and (3.24) reduces
to "U (r) =

I y(ri, rs, (si—ss)/c) I, i.e., I y I
is then sim-

ply equal to the visibility of the fringes and may thus
be determined from simple measurements.

The argument (phase) of y also has a simple opera-
tional significance. It follows from (3.19), (3.20), and
(3.21) that the positions of the maxima of the averaged
intensity in the fringe pattern are, to a very high degree
of approximation, given by

i.e., such that their absolute difference is small corn-

pared to the coherence time of the light" I cf. Eq.
(2.1)7. Thus, over a r range satisfying the condition
(3.27a), y and also I' are effectively periodic in r, with
period equal to the midperiod 2sr/va of the light.

In relating the correlation functions y and I' to
results of measurements, we have, of course, irnplic-

itly assumed that the detecting apparatus measures
the average of the instantaneous intensity I(r, t) =
V~(r, t) V(r, t). In practice this will almost certainly
be the case if V is identified with the appropriate Geld

variable, and if the detector performs a time average
over a time interval that is long compared to the
characteristic time scales of the fluctuating Geld—i.e.,
long compared to the mean period and the coherence
time of the light. (Alternatively the ensemble average
of the intensity may be found from a succession of
measurements, whether the measurement times are long
or short. ) Under these conditions the time average may
be assumed to diBer by an inappreciable amount from
the average over an infinitely long time span, dehned

by Eq. (3.11). If these conditions are not satisfied,
other types of interference effects (transient interfer-
ence) may take place; these will be discussed in Sec. 7.

' If the light is not cross-spectrally pure (cf. Sec. 5.5), the
effective spectral width hs must be interpreted with some caution.
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I.et us now return to (3.20) and restrict ourselves to
a region of the pattern such that Eq. (3.17) is satisfied,
i.e., such that (see Fig. 3)

( si—s2 ) «lb, (3.27)

I4The corresponding equations for the "ensemble correlation
function" I'(r&, r&, t&, t&) defined by (3.9) are

ripI'=c '(O' F/Btp), (j=1, 2), (3.28a)

and follow at once from the fact that V(r, t) obeys the wave
equation. These equations reduce to (3.28) under assumption of
stationarity and ergodicity.

where hs= c/Av is the coherence length of the light
(cf. Sec. 2.1). Then from (3.24) it follows, in view of
(3.26), that when y =0, no interference fringes are
formed at all in the region of the pattern under con-
sideration ('U=O), and this is what one traditionally
understands by the statement that the two light beams
reaching the point I' and its neighborhood are mutually
incohererct On .the other hand, when

( y
~

=1, one ob-
tains, according to (3.24) and (3.26), interference
fringes with maximum possible visibility; if, moreover,
the average intensities of the two beams are equal
(tc =1), as is frequently the case, the visibility 'U is
unity (zero minima of total average intensity), and
this is what is traditionally understood by the state-
ment that the two beams are mutually completely co-
hererct. The intermediate cases 0(

~ y ~
(1 characterize

partial coheremce.

Ke shall refer to the coherence effects just discussed
as coherercce sects of the secorcd order, since they are
characterized by a correlation function which depends
on two space —time points. A general classification of
coherence effects and a quantitative dehnition of co-
herence of any order will be given in Sec. 4.4.

It is a basic property of the mutual coherence func-
tion F(ri, r2, r), in terms of which the degree of coher-
ence was deGned, that in vacuo it obeys two wave
equations:

P;F=c '(r)'F/r)r'), ( j=1, 2) (3.28)

where P; denotes the Laplacian operator with respect
to the coordinates of the point P;(r;). These two wave
equations for the mutual coherence function" were
first derived by Wolf (1955) /see also, Born and Wolf,
(1964), Sec. 10.7.1j. With the help of Eqs. (3.28),
one may study the distribution of second-order coher-
ence throughout an optical field. Some examples of
this type will be given in Sec. 5.1.

It is evident that the phenomena of temporal co-
herence and spatial coherence, which were brieQy
mentioned in Secs. 2.1 and 2.2, are characterized by
I'(ri, ri, r) and I'(ri, re, 0), respectively. In the first
case the dependence of the correlation on the param-
eter v is exhibited, with the points I'~ and I'2 coincident
and fixed; in the second case the dependence on the

F(r, r, r) = W(r, r, v) exp ( 2irivr) dv, —(3.29)
0

W(r, r, v)= F (I' i' T) exp (2irivr) dr. (3.30)

If the 6eld variable V(r, t) is identified with the
analytic signal associated with the electric field (still
assumed to be linearly polarized), then W(r, r, v)
represents the spectrum of the light at the point p(r),
or more precisely the electric energy spectrum of the
light. It may be worthwhile to stress that the spectrum
is rot the Fourier transform of the Geld variable V
itseH', as is often incorrectly assumed. In fact, in the
case of a stationary random Geld, which we are now
considering, the random Geld variable V is, in general,
not square integrable )as immediately follows from

position of the two points is exhibited, while the time
delay r («1/Av) is kept fixed. However, it is now clear
that only in the simplest cases can one sharply distin-
guish between temporal and spatial coherence. In
general, these two types of coherence are not inde-
pendent. This is clear from the fact that F obeys the
two wave equations (3.28).

An interesting consequence of the two equations is
the fact that spatially incoherent light may become
partially coherent, or almost completely spatially co-
herent by the very process of propagation. A familiar
example of this situation is the coherence of light which
reaches a telescope from a distant star. The star light
orginates from very many almost independently radi-
ating atoms and so is initially spatially incoherent at
the source (star). However, since on a good observing
night, relatively sharp diffraction fringes (with very
low minima) are formed by the starlight in the focal
plane of an observing telescope, the light has obviously
acquired spatial coherence in the process of propagation.
This and other consequences of the elementary theory
of coherence will be discussed in Secs. 5.1 and 5.2.

In the terminology of the theory of stochastic proc-
esses, the mutual coherence function I'(ri, re, r) is
known as the complex cross correlatio-rc functioe of the
two random processes characterized by V(ri, t) and
V(ri, t) and the "self-coherence function" F(r, r, r)
is known as the autocorrelatioii furcctiorc of the random
process V(r, t). A basic theorem of the stochastic
theory, the so-called Wiener Ehintch—iree theorem Lcf.
Rice (1944), Secs. 2.1 and 2.2; Wang and Uhlenbeck
(1945)j, asserts that the potoer spectrum (spectra-l dere

sity) W(r, v) of the random process and the auto-
correlation function I'(r, r, r) form a Fourier transform
pair. Moreover, in the present case where V is an
analytic signal, F itself may be shown to be an ana-
lytic signal (cf. footnote 12), so that the Fourier
transform of F does not contain any components of
negative frequencies:
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(3.12) on the assumption that the mean intensity
(I(r, L) )=I'(r, r, 0) is nonzeroj, so that the Fourier
transform of V may not even exist.

More generally, the cross-power spectrum W(rl, r2, v)
and the cross-correlation function (the mutual-coher-
ence function) I'(rl, r2, T) form a Fourier-transform
pair and again the frequency integral extends only
over the positive frequency range:

I'(rl, r2, T) = W(rl, r2, v) exp (—22rivT) dv, (3.31)
0

W'(rl, r2, v) = I'(rl, r2, T) exp (22rivT) dT (3.32)

W(rl, r2, v) is sometime known as the cross sPectraL-
density or mutual sPectral dertsity of the light vibrations
at the points I'1(rl) and &2(r2) .

When the light is quasimonochromatic,
~
W(rl, r2, v)

~

will be appreciable only for p values which lie in an
interval ve——2'Av, ve+-2, dv, where 6v/ve«1. Let us re-
write (3.31) in the form

I'(rl, r2, T) = I'(r, , r, , T) exp (—27riveT)

where

(3.33)

I'(rl, r2, T) = W(rl, r2, tt) exp ( 22ritsT) dtt —(3.34)
vo

W(rl, r2, v) = W(rl) r2) vp+v). (3.35)

In view of the behavior of
~

W ~, the "shifted" mutual
spectral density

~
W ~, considered as function of tt, will

have appreciable values only when p, lies in a small
interval of effective width Av around p, =0. Thus the
function I'(rl, r2, T) contains only low-frequency com-
ponents and hence, when considered as function of z,
it will change very slowly compared with variations
arising from the periodic term exp ( 22riveT). —In fact
I'(rl, r2, T) considered as function of T will remain
effectively constant in any T interval (Tl, T2) for which

) Tl T2
~

&&I/Av, i—.e., one whose duration is small com-
pared to the coherence time of the light. From this re-
sult and from (3.33) the following useful formula then
follows:

I', one must now introduce the second-order coherence
tensor s

ejA(rl, r„ l„ t2) = (E', (r,, l, ) Et„(r„ t, ) ),

~~jk(rip r21 tip l2) (II j (rip ll) IL2(r2y t2) ) I

gjA(rl) r2) tl) l2) —(E~j(rl) tl) HA(r2) l2) )~

LA(rl r2 Ll L2) (+ j(rl tl)EA(r2 t2) ), (3.37)

where the suffixes j, k refer to Cartesian components,
and where the averages are to be regarded as ensemble
averages.

When the Geld is stationary and ergodic each of
the correlation tensors (3.37) again depends on tl and
t2 only through the difference t=t~ —t2, and becomes
equal to the corresponding tensor defined by means of
a time average Lcf. Wolf (1954b, 1956)$:

8;A(rl, r2, T) = (E*;(rl, l) EA(r„ t+T) ), (3.38)
etc.

These coherence tensors provide the mathematical
framework for the description of all second-order co-
herence phenomena and lead to a unified treatment
of coherence and polarization effects. Some examples
relating to polarization will be given in Sec. 5.6. Other
applications of these tensors to problems of interfer-
ence and diffraction have been described by Germey
(1963) and Karczewski (1963a, b).

Since the electric and magnetic fields are coupled
by Maxwell's equations, one may show that these
coherence tensors are related by two sets of tensorial
differential equations. When the field is stationary and
ergodic, one set of these equations, relating to a field
irt ltctcuo, becomes LWolf (1956); Roman and Wolf
(1960a)$"

ejetcj'Aglm —g,m= 0—,
—

cB~ ™r

ejAtjj'1'r'jim —X;m =0, ——
C8z

1 tIII

eeet' gAtm+——gj =0,
CBv

I'(rl, r2, T2) = I'(rl, r2 Tl) exp L
—22rivo(T1 —T2) j,

1
ejk tct'2+1m+ ——g jm =0,c0r (3.39)

So far we have considered the light to be linearly
polarized, but it is not difhcult to extend the consider-
ations to light of any state of polarization. In place of
the complex scalar field variable V(r, t) we must em-

ploy appropriate complex vector Geld variables, for
example the complex fields K(r, t) and H(r, t), which
are the analytic signals associated with the real elec-
tric and magnetic vectors K&'& (r, t) and Ht'&(r, L) re-
spectively. In place of the mutual coherence function

8'jg jA 0, =
8',gp, = 0,

8';BC;I,=0.
» For the same reasons as mentioned in footnote 11, the correla-

tion tensors of the form (3.38) differ trivially from those originally
introduced. As a consequence of this slight change, the sign of
each term involving the derivative 8/Br in (3.39) is opposite to
that which can be found in the corresponding equations in the
literature.

Generalizations of Eqs. (3.39) to regions of space containing
currents and charges have been given by Roman (1961 a) and
Beran and Parrent (1962, 1964).
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Here e,l, & represents the completely antisymmetric unit
tensor of I.evi-Civita, and c&'i, ——c&/Bx"i are the Cartesian
components of the operator V' taken with respect to
the coordinates of the point Pi(ri). There is a similar
set of equations involving the second point Ps(rs).

Some conservation laws were derived from these
equations by Roman and Wolf (1960b) and Roman
(1961b).

3.2. The Quantum-Mechanical Description

We shall now give a quantum-mechanical descrip-
tion of the simple interference experiment represented
by Fig. 3. As practically all image detectors of light
rely on the photoelectric effect (this includes photo-
electric detectors, photographic emulsions, the eye,
etc.), the operator which most closely corresponds to
the 'observable' in the measurement is the positive
frequency part of the field operator, or A&+&(» 1).
A. '+&(r, 1) is also the annihilation operator associated
with the vector potential of the field at r, t in the
Heisenberg picture Lcf. Schweber (1961),p. 170].The
operator corresponding to the measurement of the
total light intensity over all polarization components
at the space —time pointr, twill be" A.& &(r,1) A&+&(r, 1)
(cf. Sec. 6.1 below). This can be seen at once by an
argument due to Glauber (1963b). For the rate of
absorption of photons by an ideal detector will be
proportional to

vectors defined up to a unitary transformation
I
cf.

Messiah (1962), p. 1032], with

k, s ' &k,s' &s,s'y

I»' &k,e= 0. (3.42)

If p is the density operator Lcf. ter Haar (1961)]of
the combined field due to both light beams, then,
according to the usual rules of quantum mechanics,
the expectation value (I(r, () ) of the intensity at
(r, i) summed over all polarizations, will be given by

(I(» ') )= Tr I PA& &(» 1) A&+&(» 1)]. (3.43)

&k, s &k, s = &k, ~ &k, s (3.44)

Now consider the state

&k, s = &k,s )
k, s

(3.45)

where It&k, } is to be interpreted as the set of all t&k, ,
From (3.40), (3.44), and (3.45) we find that

It is worth noting that the operators A&+'(r, &,) and
&ik,, are closely related to the complex fields p(» i),
and their Fourier series complex amplitudes vk, , of the
classical description. For the eigenvalues of dk, , are all
complex numbers t&k, , I.et

I
t&k, , ) be the eigenstate be-

longing to the eigenvalue vk, . Then"

where
I s;) and

I s;) are initial and final states of the
radiation fieM and the sum is taken over all final states
[see also, Eq. (4.5)]. A.&+&(r, t) may be expressed in
terms of the annihilation operators ak, , for photons of
momentum itk and polarization s (s= 1, 2) in the form
Lcf. Messiah (1962), p. 1031]

A&+& (r, 1) = (hc/&s)**+(1/k*') &tk, ,ek, , exp I i(k r—chal) 7,

(3.40)

where the ak, and 8 k,, obey the commutation relations

I &tk,s) &ik', s'7 L&i k, sp &s k', s'7 0)

A&+&(» ()
I

It&k, ,})
= (hc/I-') gk 't&k, .ek, , exp Li(k r—chal) ] I I t&k, } )

k, 8

(3.46)

so that the complex analytic wave amplitude V(» 1)
defined by

v(» «) = (&c/I') lpga
—'tk .ek, , exp

I i(k r ckt) 7, —

(3.47)

is also an eigenvalue of the operator A.&+&(r, 1). This

L&ik, aq &i k', s'] ~k,k'~s, s'y (3.41)
'7 This may be seen at once from the definition of ak „by allow-

ing ak, , to operate on a state of the form

and the ak, form a set of complex orthogonal unit

' Throughout this article operators are denoted by circumflex.
From here on angular brackets are to be understood as repre-
senting the quantum-mechanical expectation of the operator
within the brackets, or the ensemble average of the corresponding
statistical variable.

I », )=exp ( —I sk, 'I'/2) &
I ek, ."k "/(ak, l)'1

I Nk. .»

where the
I tik, ,) are Pock states, and vk, , is any complex num-

ber. We then arrive at Eq. (3.44). For an introduction to the
states

I sk, , ) see Louisell (1964), p. 126; also Schi8 (1955), p. 67.
The states have recently been studied in detail by Glauber
(1963b, c), who refers to them as coherent states for reasons which
will become clear in Sec. 4.4. The states were also used by Schwin-
ger (1953) in his formulation of quantum electrodynamics.
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already points to the close connection between the
quantum-mechanical description and the classical de-
scription of the field in terms of the complex analytic
signals, which will be further examined in Sec. 4.3.

It is natural to choose the set of states
) {i)}...) ) as

basis for the representation of the density operator p
[cf. Glauber (1963a, b, c)). Although they are not
orthogonal and form an overcomplete set, they satisfy
a closure relation of the form [Kiauder (1960), p.
125-126j

(3.48)

where d'v~, , indicates an integral over the complex
i)k, , plane. A valuable feature of the

~ {v}...}) representa-
tion has recently been found by Sudarshan (1963a, b),
and formulated rigorously by Klauder, McKenna, and
Currie (1965) and Mehta and Sundershan (1965) (see
Sec. 4.3 and Appendix).

Thus, if we represent the state of one beam in the
basis { {n'},, ) ), and that of the other in the basis

)
{v"),, ) ), the density operator of the combined field

may be expressed in the form

x
I
{",), {"',.) &&{.",.), {",.} I

d'{",.} d'{v"g,.}.

(3.49)

In order to avoid the problem of symmetrizing the
state of the combined field, we assume that the two
beams do not share any common k,s modes. This
would be the situation if two plane beams, inclined at
a small angle, were superposed. The functional 4 ( {v'}...),
{i)"),,)) here plays the role of a generalized weighting
or 'probability' functional.

On substituting from (3.49) into (3.43), we find that

(I(r, t) )= Tr fe(}r'r,.}, }r"r,.})

&& I
{~'~,.}, {"'~,) ) &{"'~,}, {"~, } I

cyclic permutation of operators, we obtain

(I(r, t) )

= Tr C'({n'}„), {})"}„))[V'*(r, t)+V"*(r, t) j
[V~ '(r, t)+V"(r, t)g

X
~

{i"~,,), {i'},„})({i')...}, {i")...} ~

d'{i'}...) d'{i"k„}

C ({v'},„), {i)"},, )) [V'*(r, t)+V"*(r, t) ]
~ [V'(r, t)+V"(r, t) j d'{w')„.}d'{w"}...). (3.52)

Since C ({v'}...), {i)"},,)) is a weighting function for the
distribution of different complex amplitudes V'(r, t)
and V"(r, t) it seems natural to interpret the integral
in (3.52) as defining an ensemble average. The impli-
cation of such an interpretation will be considered
more carefully in Sec. 4.3 below. %ith this understand-
ing we may write

(I(r, t) )
= &[v'*(., t)+v"*(., t) j.[v'(., t)+ v"(., t) ~ &,

(3.53)

and„:Eq. (3.53) is identical with the ensemble average
of the classical Eq. (3.6) when V'(r, t)+V"(r, t) is
replaced by V(r, t), in the special case of linearly
polarized light.

If, as in (3.5) and (3.6), we restrict ourselves for
the sake of simplicity to linearly polarized light and
express V'(r, t) and V"(r, t) in terms of the values at
r& and r2, respectively, i.e., if we set

V'(r, t) =KiV'(ri, t—t,)

V"(r, t) =E,V"(r„ t—t,),

we would, of course, on expanding (3.53), reproduce
all the steps of the argument leading to Eq. (3.8) or
Eq. (s.ls).

Two conclusions of this analysis are worth noting.
First, of all, since on expansion Eq. (3.53) becomes

&&A(
—)(r, t) A(+)(r t) d'{v'}, ) d'{s"„,,). (3.50)

&I(r, t) &= & I
v'(r, t) I'&+ & I

V"(r, t) I'&

Now A( )(r, t) is the total operator for the combined
field so that, in view of (3.46),

({"'~,.), {~'~, ) I
A' '(r t)

= {V'*(r,t)+V"*(r t) }({i'"),, ) {"'),. } I. (3 51)

On making use of (3.51) and its conjugate in (3.50),
and remembering that the trace is invariant under

+28.([V'*(r, t) V"(r, t) )), (3.54)

we see that no cross or interference terms appear if
V'(r, t) and V"(r, t) are orthogonal to each other.
Thus, two orthogonally polarized light beams will not
give rise to interference effects even though they may
be strongly correlated. Secondly, although

(V'(, t) V"(, t) )= (V'(, t) &
&V"(, t) &=0 (3.55)
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if the two beams are statistically independent, the
converse is not necessarily true. Absence of second-
order correlation does not imply statistical independ-
ence, except for "Gaussian light" (generated by ther-
mal sources, cf. Sec. 4.5). It is in principle possible
to observe higher order correlation eQects with light
beams which do not give rise to interference fringes.

But even when the two beams are statistically quite
independent, as reflected in the factorization of the
diagonal density matrix C((e'&,,}, in"&,,}) into the
product of separate density matrices

we shall see that certain transient, not entirely pre-
dictable, interference effects may be observed. These
will be discussed in Sec. 7.

4. GENERAL STATISTICAL DESCRIPTION
OF THE FIELD

We will now generalize the foregoing discussions of
correlations in optical fields in a systematic way. We
shall see that such a generalization is equally feasible
in classical terms and in terms of the quantized field,
and that, moreover, there is an interesting correspond-
ence between the two descriptions when Sudarshan's
phase-space representation is employed.

space —time points, from the rule

(F(Vi, V2 ~ ~ ~ V~) )==- ~ ~ ~ P(Vi V2 ~ ~ Vg)

XpN(Vi) V2, y VN) d'Vi d'V2. d'&N. (4.1)

—(l js(&1) ' ' ' l jg(&N) l~jN+s(&N+1) ' ' ' Vjg+z(&N+M) )q

It should be noted that, since the V are complex
vectors, p~ is a distribution of 61V real variates, and
the integral in (4.1) extends over 3X complex planes.
Ke shall see in Sec. 6.1 that the complex representation
is particularly suitable for the quantum-mechanical dis-
cussion of photoelectric measurements of the field.

As the specification of the complex V is equivalent
to the simultaneous specifications of the amplitude
and phase of the classical wave, and for quasimono-
chromatic light of V(") and its time derivative, it might
appear that p~(Vi, V2, ~ ~ ~, V~) will have no analog
in the description of the quantized field. We shall see
however that a very close correspondence exists never-
theless.

We have already encountered the second-order mo-
ments of the V in the discussion of a simple interference
experiment. More complicated correlation measure-
ments in general involve the higher order moments-
or correlation tensors —of the V, defined by

4.1. The Classical Descriytion

Consider an optical field which is represented by
the complex analytic wave amplitude V(r;, t;) at the
space time p—oint r;, 3; (we shall sometimes abbreviate
this to V;). It would seem clear that the most com-
plete "classical" description of the field possible will
be given by the joint E-fold probability distribution,
for all X Lcf. Wolf (1963)j

where

pN(Vi, Vu, , Var) d'Vid'V2 "d'V~,

d'Vg, =dV &"'g,dV &'&g,

(Va =V'"'a+ &V'o~; 4=1, 2, ~ ~ ., E).

Ke may imagine that this joint distribution of the
complex field has been derived from the known prob-
ability functional of the real field V&"& (r, t), when the
appropriate transformation to the new variates V&'& (r, t)
LEq. (3.4)) is applied. However we will leave open
questions regarding the construction of p~ which have
not been examined in general. In principle this dis-
tribution allows us to calculate the ensemble average
of any function F(V&, V2, ~ ~ ~, V~) of the field at X

(4.2)

where g; stands for the space and time coordinates
r;, t, and the j; are now polarization indices referring
to the Cartesian components of the complex vector
V(r;, t,). Such general moments of order %+M were
introduced )Wolf (1963, 1964); Mandel 1964a)7, for
the discussion of correlation experiments with light
from nonthermal sources. Moreover, by analogy with
the second-order cross-spectral densities defined in
Sec. 3.1 PEq. (3.32)$ one may also define a general
(/+M) th-order cross-spectral density, although we
shall not need to use it here. For the usual case of
stationary ergodic optical fields the ensemble averages
may be replaced by time averages and the I"(~~&

functions do not depend on the origin of time. In the
following it will be taken for granted that an (&+~)th
order correlation, which is written as an explicit func-
tion of only (X+35 1) time variable—s, refers to a
stationary field.

We might mention that several experiments in which
the fourth-order correlation is effectively measured
have been performed, and proposals have been made
for measuring sixth-order correlations. In addition the
fourth-order correlations are occasionally valuable for
describing interference eGects with random features.
These questions will be discussed in more detail in
Secs. 6 and 7.
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4.2. The Description in Terms of Quantized Fields

In the quantum-mechanical treatment of the radi-
ation Geld, the transverse' Geld at each space —time
point r, t in the Heisenberg picture is represented by
the Hermitian operator A(r, t), which may be given
a Fourier series expansion in terms of plane waves

A. (r, t) = (Sc/L') **+(1/k'*)[&f&„.e&...exp[s (k r—ckt) j
k,s

+&tt&, ,ee&...exp[ —i(k r—ckt) ]]
= A&+&(r, t)+A.&

—
&(r, t) (4 3)

A&+&(r, t) and A& &(r, t) are the annihilation and.
creation operators, which were already encountered
in Sec. 3.2. These operators are Hermitian conjugates
of each other and obey commutation rules which are
derivable from (3.41). We have already noted that
A&+&(r, t) has right eigenstates of the form I Ltr&. ..I)
and corresponding eigenvalues which are the complex
wave amplitudes V(r, t) given by (3.47). Similarly
A& &(r, t) has left eigenstates ({tr&...L I

and correspond-
ing eigenvalues Ve(r, t).

The coherence properties of the Geld can now be
described by correlations of the Geld operators in a
number of possible ways. Thus Senitzky (1962b) de-
fined a correlation operator as a symmetrized product
of real operators at two points. However a different
operator appears to be more useful in the present

il" jgiig+1 jg+"rrr(X1' 'XN& XN+1' ' 'XN+M)

= Tr [pA&
—

&;,(xl) ~ ~ A&—
&j„(xN)

yA&+&j„„( „,)...A&+&, , ( „ (4 4)

where x; stands for the space —time point r;, t; and
where p is the density operator representing the (gener-
ally mixed) state of the Geld. An operator of the type

A&—
&;,(xl) ~ ~ A& &;„(xN)A&+&;,(xl) ~ ~ A; (xN)

is needed to describe E-fold photoelectric delayed co-
incidence measurements of the Geld, at the space —time
points x~ ~ xN, with detectors sensitive to polariza-
tions jl ~ jN, respectively [cf., however, Holliday and
Sage (1964), who suggest a different operator). For,
if I Sl) is the state of the Geld before the measurement
and

I Ss) after the measurement, the matrix element
corresponding to the absorption of photons of the speci-
Ged polarizations at each detector at the given times is
[cf. Glauber (1963b), p. 2531$

(S, I
A&+& (x) ''A&+&j (x ) I

S ).
The rate at which such absorptions occur, summed over
all final states, is therefore proportional to

context. Corresponding to the tensor equation (4.2),
Glauber (1963a,b, c, 1964) has introduced correlation
tensors deGned in terms of ordered products of the
complex field operators of the form'9

2 I (srl A'+'j&(»)" A'+'&. (xN) I») I'=Z(»I A' ' (»)" A' ".(xN) I»)(»l A'+'i&(»)" A'+';. (*N) I»)
s2 8$

= (s, I
A&—

&;,(xl) ~ ~ A&—
&;„(xN)A&+&;,(xl) ~ ~ A&+&;„(xN)

I sl) (4 5)

and, when the right-hand side of this equation is averaged over the ensemble of initial states of the system, it
becomes identical with the right-hand side of (4.4) for xN+„——x„jN+„——j„, (r=1, 2, ~ ~ ~, E) and 3II=E.

A number of properties of the G&N M& follow from the deGnition. Thus [cf. Glauber (1963b), Sec. 3j,
(N&M)+. ~ o e ( ~ ~ ei),",jg,jg+1, jg+M (xl) ,"& xN& xN+1» xN+M)~ ~ ~

jg+&.",jg+&rj1 jg(,XN~+I»' ' ' XN+M& Xl, ' ' ', XN) (4.6)

and it may also be shown that
&1,'" &1g '&", (&gl x) & xN¹t *1»xN) + 0& (4 7)

L j1,.",jN, jN+1,".,jl&f+I ylq y &Nq &N+17 ~ &N+Mg~ ~ ~

(~(NN). . . . ( ~ ~ ~ )/ (M, M) .G ' j&,"~,jg ji, ",jg(xi) ' '
) xN) xl»' ' xN) G ' jg+1,"~jgj+e&I, g+1jg+)rr(xN+1) ' ' '& xN+M) xN+1»' ' ' xN+M) .

(4 g)

The similarities between the quantum-mechanical
correlations G(N M) and the classically defined correla-
tion I'(N M) suggest that there is a close correspondence
between them. Ke shall see that this correspondence is
brought out particularly clearly by the phase space
representation. We should mention that, while the nor-
mally ordered products of creation and annihilation op-
erators have played a preferred role in the theory of

'8 As the transverse part of the field is the only part leading to
observable effects, we shall deal only with the transverse part.

optical coherence, other products and their physical
significance have also been discussed recently [Jordan

"Actually in Glauber's correlations, the operator A. is re-
placed by the electric Geld operator R Pcf. also Eq. (5.61a) and
(5.79) below). As we shall see later, the present deGnitions are
somewhat more convenient for applications to questions relating
to photoelectric detection of light fluctuations.

Glauber discusses only (E+E) order products of the 2X Geld
operators, to which he refers as "Eth"-order correlations. How-
ever the E, M type correlations may be useful in the treatment
of the coherence properties of harmonically generated light. )See)
for example, Ducuing and Bloembergen (1964); Bloc'mbergen
(1964)].
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(1964); Kano (1964b, 1965); Mandel (1964d); Mehta
and Sudarshan (1965)j.

4.3. A Phase-Space Representation

Shortly after the introduction of the higher-order
correlations it was shown by Sudarshan (1963a, b)
that there exists an interesting phase-space (or "diag-
onal"

I
vk, )-space) representation of the density op-

erator p of the electromagnetic field, which brings out
a correspondence between the classical and quantum-
mechanical descriptions. The possibility of such a
representation, in some special cases has also been
noted by Glauber (1963c), who called it the I' repre-
sentation, but its universal validity was first recognized
and established by Sudarshan.

Sudarshan indicated that every density operator p of
a free electromagnetic field may be represented in the
"diagonal" form in the basis formed by the eigenstates

I jvk, j) of the annihilation operator A.&+&(x) Lcf. Eq.
(3.46)j:

r= c(j»,.j) I {»,.j)(f»,.} I
d'{»,.j (49)

end of Appendix below) . Although in general C ( {vk,j )
in Eq. (4.9) is to be regarded as a generalized func-
tional, it is found that in many important cases
C ( {vk, .j ) may be taken to be an ordinary, nonnegative
well-behaved functional.

We may look on C ({vk,, j) as a phase-space distribu-
tion describing the mixed state of the field in the
multidimensional space of the complex {vk,j. This is
further emphasized by the fact that the {vk,j are
eigenvalues of the {dk,,j, whose real and imaginary
(Hermitian and anti-Hermitian) parts 6i(dk, ,), 8(ak, ,)
behave like canonically conjugate operators

I
Mandel

(1963a)g. Thus, in view of (3.41),

=il2. (4.10)

I,et us now evaluate the correlation tensors G™
given by (4.4), when the density operator p is ex-
pressed in the "diagonal" form (4.9). We have

/ (N, M) .ji "' is is+i '' js+ss(&lr q &N~ SSNql~ ' ' 'q &N+sr)

Sudarshan's original formulation of this representation
was somewhat heuristic. It was based on a formal series
(see Appendix below) involving the Dirac delta func-
tion and its derivatives, for the functional C ( {vk,,}) in
terms of the elements ( fssk, ,}, {ss'k,,}) of p in the Fock
representation. Rigorous formulations of Sudarshan's
theorem were given later by Klauder, McKenna, and
Currie (1965)"'and Mehta and Sudarshan (1965) (cf.

"~ In a recent publication (Quantzcm Optics and L~ lestronic's,
Les Pouches, B'64, edited by C. DeWitt, A. Blandon, and C.
Cohen-Tannoudji (Gordon and Breach Publishers, New York,
1965), p. 144), Glauber refers to this representation and states
that:

"In a recent preprint, Klauder, McKenna, and Currie con6rm
the conclusion that no useful weight function P need exist for
arbitrary density operators. To minimize this difficulty they
express matrix elements of the density operator through a limiting
procedure involving an infjnite sequence of operators expressed
as P representations. This procedure, however, does not preserve
the most useful property of the P representation, the reduction
of statistical averages to simple integrals over the complex ~
plane. "

To us, this interpretation of the main result of Klauder, Mc-
Kenna, and Currie appears to be misleading, since these authors
(and also Mehta and Sudarshan, 1965, see also end of Appendix
below) show precisely in what sense the convergence has to be
interpreted to make Sudarshan's theorem rigorous. In this con-
nection, it may not be inappropriate to recall that when a wave
function p(q) is expanded in terms of a complete orthonormal
set @„(g), (n= 1, 2, 3, ~ ~ ~ ),

y(&) = z c e (&), (1)

what is generally meant is not ordinary pointwise convergence
in a strict mathematical sense, but convergence in the mean-square
sense Lsee, for example, E. C. Kemble, The Fvadameltal Principles
of Quantum mechanics with I /ementary APP/ications (Dover
Publications, Inc. , New York, 1958), p. 138), viz. ,

N
lim

~ g (q) —Z C„d„(g) P dg=o. (2)

Nevertheless, the limiting procedure implied in (2) does not
prevent a wide use of the symbolic expansion (1) in the calculation
pf "averages as simple integrals" over the q plane.

XA& ';, (xt) ~ ~ A& ';„(mrs)A&+';„~, (xa~t) ~ ~ ~

X+ is+sr(sssryM) d {'vk,s j.
By repeatedly applying the conjugate of the eigen-
value relation (3.46),

({,.} I
~' ', (*)= i'*s, (*.) ({

(r=1, 2, ~ ~ ~, E)
in this integral, and then inverting the product of
I {vk, ,}) ( f vk, ,} I with the remaining operator and ap-
plying (3.46) again, we arrive at

f (N, M) .js,".,s'&,j&+r, j&+ss(zI, ' '"', as', aN+1& ' ', ax+M)

=Tr C

X ~Ss+1(*rS+t) "~Ss+ss (»+Sr) I {Vk,s j ) ({»,a} I
d {Vk, s j

C'({v, j) l' ' (&)'''l *' (~ )

X&; +, (xzr )+t. .V;„-+„(x„„„)d {vk, j

(l ig(at) ' ' l jar(+rs) l ss+r(ssN+1) ' ' ' l jr+sr(&~+sr) ).
(4.11)

The angular brackets in Eq. (4.11) may be interpreted
as defining an expectation value of the product of the
p;(x), when the phase-space distribution C(jvk, }) is
used as weighting or "probability" function. Although
C({vk,,}) is a real function of the complex fvk, }, it
is not necessarily positive everywhere like a classical
probability. Functions of this type were first discussed
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by Wigner (1932) I
cf. also, Moyal (1949); Baker

(1958); Sudarshan (1962), Sec. 4.1; Mehta (1964)],
who pointed out that they are usable as weighting or
"probability" distributions for the calculation of ex-
pectation values of physical observables. The name
"quasiprobability" for such functions was suggested
by Baker (1958). The choice of a phase-space distri-
bution is not unique in general, in that there exist
different distributions leading to the same expectation
value of any function F(Vi, V,, ~ ~ ., Vg) of the classi-
cal field variables

I cf. Mehta (1964)j.The nonunique-
ness is in part due to the many alternative ways in
which quantum-mechanical operators may be associ-
ated with functions of the classical Geld variables.

I
For

a review of the various ways of associations see Shewell
(1959).$

The right-hand side of (4.11) is of exactly the same
form as the expression (4.2), for the classically delned
correlation functions F&~ ~~. The analogy may be made
even closer by introducing "configuration space prob-
ability densities'" pii(Vi, V,, ~ ~ ~,&,.Vii)~which corre-
spond to C({vk,,}).~it is only necessary to integrate
C(fvk, ,}) over the fvk, } variables, subject to X con-
straints of the type Lcf. Mandel (1963a)j

hc
'

v(r, , t;) = —Q—,vk, ,ek, , expI i(k r;—ckt,)]
k, s

(i=1, 2, , N). (4.12)

px{V(ri, ti), , V(rx, 4) )

C({vk,})gb{V(r;,t;)

—(bcjr.') leak lvk, ,ek, , expLi(k r,—ckt, ) $} d'fvk
k,e

(4.13)

With this choice of the probability densities, the corre-
lations F&~~) are identical with the corresponding
correlations G&~ ~&. A description of the field in terms
of C or the associated probability densities p~ is some-
times called semiclassical Lcf. Sudarshan (1963a, b) j,
although it is in fact a representation of a strictly
quantum-mechanical description. '0'

Whether one uses as weighting functions the prob-
ability densities fp&} defined classically in Sec. 4.1
or quantum mechanically by Eq. (4.13), it is clear
that the resulting formulas have a strict correspond-
ence. Moreover this correspondence persists throughout

"Like C, the p~'s so defined are not necessarily nonnegative.
The use of negative probability functions for the calculation of
expectation values has been discussed, for example, by Bartlett
(1944)." Throughout the present article we use the adjective "semi-
classical" in its more customary sense, namely, to refer to a treat-
ment of problems involving the interaction of the electromagnetic
field with matter in which the field is treated classically and the
interaction quantum rpp&Panically.

the whole theory of coherence. For this reason we will
from now on denote all the field correlations by I",
leaving the choice of the weighting functions open,
unless we are specifically concerned with the dis-
tinction between correlations defined classically and
quantum mechanically. In any case we shall see that
a strict eqlaHty between the "probability distribu-
tions" and therefore between the corresponding correla-
tions exists at least in the case of thermal light.

It has sometimes been stated
I

Glauber (1963b, p.
2533)$ that, for a stationary, ergodic field, the correla-
tion function G"" defined quantum mechanically by
Eq. (4.4), would, in the limit of a strong, low frequency
field, reduce to the mutual coherence function I'~' ')

defined by Eq. (3.12) in terms of the unquantized field.
It should be evident from the preceding remarks (and is
supported by explicit calcu/ations relating to black. —

body radiation
I
Mehta and Wolf (1964a, b)) that

exact equality may exist between the correlation func-
tions G and I', irrespective of the strength and the
frequency of the field.

The phase-space representation also leads to an inter-
esting expression for the probability distribution p(rt)
of the number of photons e within a given volume P
of space at time t (see footnote 6) for an arbitrary
state of the field

I
cf. Ghielmetti (1964)j. We choose

V as the volume of normalization, and observe that
the probability for an arbitrary distribution {Nk,}
among the different modes is given by the expectation
value of the corresponding projection operator. Thus

P({~k, })
= »I:r I f~k,.})(f~k, } lj

and from (4.9),

= Tr C({v,,}) I {v,,})({v,,} I

X I {~k,.})(f~k, } Id'f». .}
C(f», }) I({»,.} I {~k,.})I'd'f", .}

(v k,svk, s) +k, s
c'({vk,,})lI ' ' '

exp( —v*k„vk, )
k, s +k,s ~

(4.14)

when we make use of the known scalar product of the
I fnk, ,}) and

I {vk, ,}) states Lcf. Glauber (1963c)j.Now

p(~) = Z p(f~k, .})~-,-
fnk s}

where

f8 Rk, g

k, s

and from (4.14), with the help of the multinomial
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theorem, we arrive at

where

k, 8

(4.15a)

to be a measure of the degree of second-order coherence
at the space —time points x&, x2 between the j& and j2
components of the field. The condition for full second-
order coherence between these components at xI and
xs is then given by Lcf. Mandel and Wolf (1961a);
Parrent (1959a, b); Streifer (1964); Mehta, Wolf,
and Balachandram (1965)j

Equation (4.15a) may also be written in the alternative
form

i&,ta(x» x&) I

= 1 ~ (4.16)

where

U'~n

p(e) = I'(U') e ~'dU',
0

(4.15b)
The relation (4.16) has been generalized by Glauber

(1963b, 1964) to de6ne a necessary condition for 2Xth-
order coherence. "He introduces a 2Sth-order normal-
ized correlation by

r(lp)=fc'(i»;1)8(U U) d''—(t

This is the required distribution. We note that it is in
the form of an average over Poisson distributions,
weighted with the phase-space distribution C. It is
interesting to observe that somewhat similar results
were already obtained by Bothe (1927). Expressions
identical to (4.15b) were obtained more recently by
Mandel (1958) and Mandel, Sudarshan, and Wolf
(1964) from semiclassical considerations of the photo-
electric measurement process Lsee also Kelley and
Kleiner (1964)7. These results will be described in
Sec. 6.2. We shall see that Eqs. (4.15) lead to a useful
characterization of differences between some optical
fields, such as those produced by lasers and by thermal
sources"" Lcf. Mandel (1964a) $.

As we shall see, for many purposes the discussion
of coherence is more readily based on the correlations
than on the distributions themselves, and the distinc-
tion between the quantum mechanical and classical
descriptions then disappears formally, although it will

still be implicit in the manner in which the expectation
values are calculated (i.e., in the choice of the prob-
a,bility distributions p&) .

4.4. Order and Degree of Coherence

The relation between the second-order correlation
function P&' '&;,;(rr, rs, tr, ts) at two space —time points
and the visibility of the interference fringes formed if
the radiation at r& and rs (linearly polarized in direc-
tion J) is allowed to interfere has already been described
in Sec. 3.1. For a stationary, linearly polarized field,
the modulus of the normalized correlation function

I
y&' '&;,;(rr, rs, tr —t, ) I, which lies between 0 and 1,

was seen to be a useful measure of the degree of co-
herence. More generally we may take

I
yo r&;, ,;,(x&, x&) I

These considerations have been criticized by Glauber
{Quantum Electronics III, p. 108, I964) in highly acerbic terms.
The criticism has not however prevented Glauber from making
similar deductions from a similar equation in a recent publication
(Glauber, Quantum Optics and Electronics, Les IIozfclzes 1964,
edited by C. deWitt, A. Blandin, and C. Cohen-Tannoudji
(Gordon and Breach Publishers, New York, 1965)j, pp. 65, 181).

(N, N) . . fjz, "~,jm(xi) ' ' '1 x&Ã)

2N
' l, , ... ,;,„(xr, ~ ~, x,~)/lI ( P"',„;,(x„;x„)I',

,ta (xr '"'' x& ) I
=1 for all e&)Lt

(4.18)

has been proposed as condition for 2iVth-order coherence
LGlauber (1963b, 1964)]. As F&~»;r, ... ,,„,;,, ... ,,„(xr,
~ ~ ~ x~ xr ~ ~ ~ x~) is a real positive quantity propor-
tional to the joint E-fold photoelectric counting rate
for polarization components j&, ~ ~ ~, j& at the space —time
points xr, ~ ~

) xg, it follows that y&~ ~&;, , ... ,;„,J, ,
~ ~,„(xr,

~ ~ ~, x~,' xr, ~ ~, x~) is real and positive also. Thus the
condition (4.18) for 2/th-order coherence implies that
the joint e-fold counting rate reduces to the products
of the counting rates of the m separate detectors for
e+Ã. The condition for 2Sth-order coherence there-
fore rules out the possibility of intensity correlations
up to the Eth order. On this definition the intensity
correlation effects, erst observed by Hanbury Brown
and Twiss (1956a, 1957a, b) and discussed. in Sec. 6.4
below, do not exist with light having coherence of
order higher than 2. Moreover, in view of the foregoing
interpretation, a radiation field having a limited num-
ber—say E—of photons cannot be coherent to an order
greater than 2X.

Again by analogy with
I
y' "t,t(»») I

rt is tempting
to regard

I
pi~ N&;, , ... ,;,„(xr, ~ ~ ~, xs~) I

as the degree of
2%th-order coherence. However this quantity does not
appear to be bounded by 0 and 1, in general, and such
an interpretation therefore seems to be unjustified.

&' &of(: that Qagber refers to it g,s Sth-order coherence.

(4.17)

which reduces to the usual form for X= 1. F&' '&;,
,;„(x„,

x„) is of course the mean light intensity associated
with the polarization component j„at the space —time
point g„.

By analogy with the condition (4.16) for second-
order coherence, the relation
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It has been pointed out [Glauber (1963b, 1964))
that the condition (4.18) of 2Nth-order coherence is
not rotationally invariant and ought to be replaced
by a stronger condition. Now it was shown [Mandel
and Wolf (1961a); Parrent (1959a, b) j that the rela-
tion (4.16) for some space-time points xl and xe, with
j~=j2 implies factorization of the form

(4.19)

By analogy Glauber (1963b, 1964) has proposed the
factorization property

2n

r=n+1

for all st &X (4.20)

as the condition for 2Xth-order coherence. It is evident
that (4.20) implies (4.18) and that, in general, such a
strong condition would not be expected to hold except
over a limited region of space —time.

Nevertheless it is easy to show that, at least in
principle, there exist radiation 6elds which are coher-
ent to all orders at all space —time points [cf. Glauber
(1963b, 1964)$. Consider a field. which is in an eigen-
state

~
{v't...} ) of the annihilation operator xi&+~(r, t)

satisfying Eq. (3.46). Then the density matrix in the
Sudarshan representation (4.9) will be of the form

(4.21)

and when this is substituted in the Eq. (4.11) the
usual argument leads to

T (N, M).jl, '' div, jiv+1, ''jar+sf (~ly y ocNl ~N+ly y ocN+Aj)

N %+M

Thus a field in a state
~

{n'1...}) is coherent to all
orders at all space —time points. However, it may be
shown that the only state of this kind which represents
a stationary field is the vacuum state.

Although the foregoing definitions all refer to co-
herence of even order, it is clear that the factorization
property (4.22), and a normalized correlation function
of the type p&N ~'l, , ... ,j„+„(xl, ~ ~ ~, xN+~), can just as
readily be used to dehne coherence of odd order, or
more generally of order cV+3II, where tV and M are
arbitrary nonnegative integers. Such a description may
appear natural for the discussion of coherence proper-
ties of optical harmonics generated in nonlinear media
[cf. Franken and Ward (1963);Bloembergen (1963)j.

The correlation functions for E&2, M) 2, and the
corresponding measures of coherence, have as yet played
a negligible role in practice. Indeed the usefulness of
the whole concept of higher order coherence still re-
mains to be shown. As we shall see, for optical Gelds

generated by thermal sources in equilibrium (e.g. , a
hot star, an incandescent filament, a gas discharge,
etc.) the (1+1)-order correlations contain all the re-
quired information about the field, and no full coherence
of order greater than 2 is possible.

4.5. Thermal Light

p 1
III= Qtt st, „ak„chk, (4.24)

k, 8

if the zero-point energy is neglected. In order to arrive
at a "diagonal" representation of p in the basis of the
states

~ {»,,}), we substitute (4.24) in (4.23) and
make use of the closure relation (3.48) . This gives

p= P/Tr (F), (4.25)

The radiation field generated by a thermal source
is of a particularly simple kind, in which the ensemble
distribution of the complex Geld amplitude V(r, t) is
Gaussian. Until fairly recently such optical 6elds were
of course the only ones of any signihcance.

The Gaussian nature of the field Quctuations has
usually been proved by an appeal to the central limit
theorem of statistics, for the radiation field at each
point in space generally consists of contributions from
many independent atomic radiators. An interesting dis-
cussion of the question of the representation of the
probability distribution took place between Von Laue
and Einstein in 1915 [Von Laue (1915a, b); Einstein
(1915); see also Einstein and Hopf (1910)j, and a
thorough investigation of the problem in classical terms
was made more recently [Janossy (1957, 1959); see
also, Van Cittert (1934, 1939); Blanc-Lapierre and
Dumontet (1955); and Dumontet (1956a), p. 173j.

The quantum-mechanical derivation of the statisti-
cal properties of the field is usually based on Bloch's
theorem [Bloch (1932)g for oscillators in thermo-
dynamic equilibrium. In the following we shall make
use of the Sudarshan phase-space representation to
show simply that, when the quantized radiation field
is in equilibrium at temperature T and is therefore
describable by a canonical ensemble, the joint prob-
ability distribution for all the Fourier amplitudes v&,
is a product of Gaussian distributions [cf. Mandel
(1963a)j. The joint probability distribution of the
complex field V(r, t) at any number of space time
points is therefore Gaussian also, since V(r, t) is a
linear combination of the e~,,

The density operator for a quantum-mechanical sys-
tem in equilibrium at temperature T is given by [cf.
Messiah (1961),p. 448)

exp( H/KT)—
p= (4.23)

Tr [exp( —H/KT) ]
where II is the Hamiltonian of the system and K is
Boltzmann's constant. Now for the quantized free
electromagnetic field we have [cf. Messiah (1961),

. 439
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where

exp (—12'k„dk, ,cAk/KT)
I »,, & (»,, I

d'zk, ,

and, on introducing this into (4.26) and making use
of the eigenvalue equation (4.27), we obtain

k, s

(4.26)
F= $$— g P exp ( rz—k, ,cI'zk/KT) exp (—I », I')

Now the
I », ) states have a simple expansion in terms

of the eigenstates
I

zzk, , ) of the number operator 8 k, sttk, „
&z k, teak, I rzk, ) zzk, I zzk, ), (4.27)

in the form
I
cf. Klauder (1960), p. 125]

I
zk. &=+exp (—I ». I'/2) I», ""/I (zzk, ) ]'I Iuk, &,

(4.28)

cg 'AQ s&|l rrzkem

x ' ', Iuk )(~k, Id». . (429)
rtk, s mk, s ~

By making the substitution», r,
k——, exp(zek, ) and in-

tegrating over ek, , we see at once that contributions
to the integral in (4.29) vanish unless rzk, ,= zrzk, , With
the help of the substitution», , exp( —

—2,chk/KT) =uk„
(4.29) and (4.25) allow us to express j& in the form

k s
exp j

—
I
uk, I2Lexp (cfzk/KT) —1]I I

uk, , ) (u1„. I
d'uk„

k, s
expL —

I u1„,. I'(exp (craik/KT) —1)]d'uk, ,

exp (c6k/KT) —1
expI I uk, I2Lexp (c5k/KT) 1]I I

zzk, , &(uk, I
dzuk, ,&

k, s
(4.30)

which has the form (4.9). It follows that the joint
probability density for the set I»,, I may be taken to be

c'({»,.I) =ll(1/~(uk, )) «p I:—I »,. I'/(uk, )]
k, s

(4.31)

where (zzk, , ) is the well-known expectation value of the
number operator d k,,ik&s in thermal equilibrium
LHuang (1963), p. 255; cf also Kano (1964b)]

(rzk„)= Lexp (ckk/KT) —1]—'. (4.32)

(~*(,t).~(, t) )= (I(, t) )= (k /L') Z((.)/k).

Since the probability distributions of all the vk&s are
independent Gaussian distributions with zero means,
it is clear from (3.47) that the resultant complex wave
amplitude V(r, t) will also obey a Gaussian distribution
with zero mean and variance Lcf. Kenney and Keeping
(1954), p. 169]

blackbody radiation, it can be seen at once that the
conclusions remain valid if the spectrum is modified
in an arbitrary way by the introduction of any linear
6lters. For a Gaussian random process remains Gauss-
ian under linear transformation

I
cf. Davenport and

Root (1958), p. 155].It follows incidentally that ther-
mal light will, in general, be distinguishable from light
from a nonthermal source, such as an optical maser,
by its fluctuation properties, even if the corresponding
spectral and angular distributions coincide.

Now it is an important property of Gaussian proc-
esses that they are completely determined by their
first and second moments. Thus, for radiation fields
produced by thermal sources, the higher-order correla-
tions of type (4.2) all reduce to products of second-
order correlations

I
Reed (1962); Mehta (1965b),

p. 398]:

T (N,N).
j& j»j&&+1",j"s&(&,1 &', ' »ZN& jtN+1& ' ' ', AN)

k, s

(4.33)
j&,js&+&(&1& &N+1) ' ' I '

js&,jss&(&N& &2N) &

(4.35)

r the sum over all Ef possible
permutations of the indices 1 to E. This no doubt
accounts for the emphasis that has been given to second-
order correlations in the past. In particular the correla-
tions for a blackbody radiation field have been calcu-
lated and will be discussed in Sec. 5.7.

From (4.35) we note also that, when all the coordi-

P(X, F) =(1/-(I, &) -p L-(X+F)«1,)] (434)

where use has been made of the fact that (XI')=0,
(X')= (Y2&=—,'(I;) (cf. footnote 12).

Although all the foregoing applies strictly only to

Thus, if X and I' denote the real and imaginary parts
of one component Vj(r, t), the joint probability dis-
tribution will be where stands fo
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nates x, and polarization indices j; coincide,

F~ ~);,... ;(x ~ ~ ~ x)

=& [1'"",(, . )]"=&'(I( )), (436)

where (I; (x) ) is the mean intensity of the particular
polarization component. It follows therefore that the
conditions (4.18) and (4.20) for full coherence can
only be satisfied for E= 1 [cf. Glauber (1963b, 1964)],
so that the concept of complete higher-order coherence
is not relevant to thermal light.

While the phase-space description of a thermal radi-
ation field in terms of 4 (I»,,}) is the one most gener-
ally useful, it is simply related to the alternative de-
scription in terms of occupation numbers ek, of the
different k, s modes. This can be seen by transforming
the density matrix 4 ( I »,,}) given by (4.31) to the
basis of the energy eigenstates

~
Its)...} ) with the help

of the general transformation [Sudarshan (1963a, b)]

p((~. , }, f~'~, })
p+ksk p + k sk@re/

=II 4'(}», })exp( —I», I').
k, s (rt). ..!tt'), , t)

*'

(4.37)
when we find

P(I tt).}, Itt'. ,.})

k, s

(4.38)

The density matrix is diagonal and corresponds to a
set of statistically independent Bose—Einstein distribu-
tions [cf. Morse (1962), p. 218] for the occupation
numbers of different modes [see also Holliday (1964);
Kano (1964b) ].

In practice neither the distributions of V(r, t) nor
of ek, for an optical field are measurable directly.
However, the total instantaneous intensity V*(r, t) ~

P(r, t) =I(r, t), or the intensity V*;(r, t) V;(r, t) =
I; (r, t) associated with a particular polarization com-
ponent j, may be accessible to measurement with the
help of a photoelectric detector. The detection process
will be considered more specifically in Sec. 6.1. Here
we merely wish to indicate the forms of the distribu-
tions p(I;) and p(I) for a Gaussian variate V(r, t).

According to (4.34) X and V are statistically in-
dependent Gaussian variates with zero means and
variances -', (I, ). Then it follows from the well-known
properties of the chi-square distribution in statistics
[Kenney and Keeping (1954), p. 98] that

I;=X'+ V'

obeys the exponential distribution

P(I,.) = (1/(I, )) exp ( I,/(I, )) (439)

1-0

Fin. 4. Some examples of the probability density p(I) PEq.
(4.41)j for different values of the degree of polarization F.
)After L. Mandel (1963c).]

The distribution of the total instantaneous intensity
I in general depends on the degree of polarization
I'(0&I'&1) of the light, and this quantity will be
discussed more fully in Sec. 5.6. In the special case
in which the two orthogonal polarization components
Vi(r, t) and Vs(r, t) obey the cross-spectral purity
condition (see Sec. 5.5), the derivation of p(I) becomes
very simple, for the mean intensities (Ii), and (Is) of
the two components may be expressed as [cf. Eq.
(5.58)]

(Ii)=-'(1+I') (I),

(Is)= (1 I') (I) (4.40)

t(l) fr(I))=(I II) d&—
0

2I
(I)(1+I )

2I—exp (4.41)(I)(1—I )

Some examples of the distribution p(I) for dif-
ferent values of P are given in Fig. 4. It is seen that
all the curves start at the origin, except the one for
P=1 corresponding to fully polarized light. The rea-
son is that in such a beam the ensemble of spin states
degenerates to a single member. An expression closely
related to (4.41) has also been given [Blanc-Lapierre
(1956)] for the fiuctuations of the envelope of a Gauss-
ian random process [see also Hurwitz, (1945)].Finally
we find from (4.41) that the fluctuations of intensity

and both pi(I, ) and p, (Is) are of the form (4.39).
The resultant intensity I therefore obeys the distribu-
tion [cf. Mandel (1963c)]
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obey the relation

((»)')= s-(&+I") (I ), (4 42)

which leads to upper and lower limits for (( AI)').

4.6. Nonthermal Light

The most important example of nonthermal or non-
Gaussian light is that produced by an optical maser,
which also differs in several other important respects
from typical thermal light. Thus the degeneracy pa-
rameter 8(cf. Sec. 2.3)—or the average occupation
number per unit cell of phase space—may be very
great (8))1) for maser light, while it is usually very
small for thermal light (typical figures were quoted at
the end of Sec. 2). The nonthermal nature of the
radiation from a laser was recognized early on by
several workers

I Golay (1961); Smith and Williams
(1962); Mandel (1962a, b); Glauber (1963a); Mandel
and Wolf (1963a, b); but see also Forrester (1961a,b);
Corcoran and Pao (1962); Bolwijn, Alkemade, and
Boschloo (1963)]and has now been demonstrated ex-
perimentally LBellisio, Freed, and Haus. (1964);Bailey
and Sanders (1964); Armstrong and Smith (1964,
1965); Freed and Haus (1965)].

A laser differs from a thermal source most signi6-
cantly in the strong coupling that exists between the
source and the field, leading to one (or possibly a few)
strongly preferred atomic transition(s). The radiation
is produced mainly by stimulated emission. It may be
in thermal equilibrium with the source, but the strong
coupling rules out the substitution of the "free" Hamil-
tonian (4.24) in the density operator (4.23). The de-
scription of the combined system of source and field
in a maser has been discussed by many authors I Weber
(1957, 1959); Senitzky (1958, 1959, 1960, 1961, 1961b,
1962); Louisell, Yariv, and Siegrnan (1961);Schwinger
(1961);McCumber (1963); Gordon, Walker, and Lou-
isell (1963); Gordon, Louisell, and Walker (1963);
Lamb (1964); Schwabl and Thirring (1964); Wagner
and Hellwarth (1964)].We shall not go into the rather
lengthy analyses which involve solving the equations
of motion of the coupled system, but merely note
that for the case of an ideal laser oscillating in a single
k', s' mode, the radiation 6eld is very close to being in
a "classical" state of well-dined complex amplitude

The case for considering this the proper state
of a laser Geld has recently been argued by Pauli
Brunner, and Richter (1963), Jordan and Ghielmett,
(1964), Picard and Willis (1965), and Haken (1964)
I
but see also, Mandel (1964c) and Kano (1964a)].As

the phase of v'i, .„.will in general be random, we can
write an approximation to the "diagonal density ma-
trix" of the 6eld in the form:

C(I»,.I) = (2w
I
s'', " I) '~(l ». I

—
I "'," I)

(2w
I »,. I) '~(l »,. I) (4 43)

k, sQht', s~

Although (4.43) does not represent a pure state, it is
easy to show that a field in such a state is nevertheless
coherent to all even orders of the type (1V+tV) in. the
sense of the coherence condition (4.20) Lcf. also Paul
(1963)].

The state represented by (4.43) leads to a particu-
larly simple expression for the probability distribution
p(n) of the number of photons counted in a volume
8V at a given time (or falling on a surface in a given
time interval). It is merely necessary to substitute
(4.43) into (4.15). We then find that

& k', s'
p(st) = '

exp L
—

I
s's „.I'], (4.43a)eI

which is a Poisson distribution in e. Recent photo-
electric measurements of the Quctuations of a single-
mode laser beam, appear to be in agreement with this
distribution LBellisio, Freed, and Haus (1964); Bailey
and Sanders (1964); Armstrong and Smith (1964,
1965); but compare also the results of Freed and Haus
(1965)], although as yet they provide a test only of
the second moment of ss.

However, if the distribution (4.43a) is regard. ed as
empirically correct, it can be shown to have the fol-
lowing implication for the correlations of a single-
mode laser field. I Mandel (1965)]:
(A&

—l",(r, t) A&+i";(r, t) )= (3& &, (r, —t)A &+i;(r, t) )~,

(4.43b)

where the angular brackets denote the quantum-me-
chanical expectation value. The density operator of
the field would then be an operator satisfying (4.43b),
and a form very different from Kq. (4.43) is possible.

Of course in practice the light fj..om an optical maser
contains contributions from spontaneous emission and
from several modes which, moreover, may be coupled

I
cf. Paananen, Tang, and. Statz (1963);Lamb (1964);

Haken and Sauermann (1963);DeLang and Bouwhuis
(1963);Lipsett and Mandel (1963, 1964a); Haus and
Mullen (1962, 1963);Bellisio, Freed, and Haus (1964)].
It is clear that in practice the density matrix may be
much more complicated than that of Kq. (4.43). In-
deed when a large number of independent modes is
present, it may again approach the Gaussian form
(4 31) 21a

Nevertheless it is of some interest to see the conse-
quences of Kq. (4.43) for an ideal single-mode laser
beam. If V;(r, t) is some particular polarization com-
ponent of V(r, t) and

6tI V;(r, t)]=X, SLV;(r, t)]= I,
2'~ A more detailed discussion of the properties of a laser field,

and particularly of the spectral linewidth, has recently been given
by Lamb fQuautum Opttcs aud Etectrouecs, Les Houches, 1964,
edited by C. DeKitt, A. Blandin, and C. Cohen-Tannoudji
(Gordon and Breach Publishers, New York, 1963), p. 377).
(See also Glauber, eMd , p. 165.).
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where R and 8 denote the real and imaginary parts,
then, corresponding to Kq. (4.34), we have from (4.43)

Zip(x)

1
p(X, V)=,il{(X'+7')&—(I;)'}

2s (X'+ Y') '*

where
(I )'*=

I ~," II (",") I
(&c/&'I-') '

(4.44)
) I

l.o
I n-

and from the properties of the Dirac 5 function, it
then follows that

p(X, Y) = (1/ ) 8(X'+F'—(I,)). (4.44a)

It is seen that X and V are no longer statistically
independent, although it is easy to show that (XF)
still vanishes (cf. footnote 12). By integrating over
one of the variates we find

CO

p(X) =— 8(X'+ V' —(I;)) d V

L~M 3i i I

-2.0 "t.o

0.6 ;

0.5 -.
'n=2

0.2

= x]/z0 1.0 2.0

n=l

((»)—X')'*I ' «» IXI ((It)'
=0 for

I
X

I
) (I;)i. (4.45)

04

p(u)

0.5

Unlike the Gaussian distribution, this probability dis-
tribution has a mAzimlm at 1=0. The two distribu-
tions are compared in Fig. 5 and are seen to correspond
to well-known positional distributions of the harmonic
oscillator in the ground state and in the limit of very
high excitation. This suggests that the field of a laser
may be pictured as a set of highly excited quantum
oscillators. The quantity (I;) is, of course, the expecta-
tion value of the light intensity associated with the

j component. In the ideal case represented by (4.43),
I; never departs from (I;) and

P(Ir) =5(I (I )) (—446)

It is easy to see that these simple distributions for
the ideal single-mode laser field become very different
when two or more modes are present. Thus suppose
that we are dealing with a field consisting of a super-
position of m independent laser modes having the same
direction of propagation and the same state of polar-
ization. If p(X) describes the distribution of the real
part of the resultant complex amplitude and pi(Xi),
ps(Xs), ~ ~ ~, p„(X„)describe the distributions of the
separate components, then evidently

(II)& 0.)~

P(X) = '' Pi(Xr)P2(Xs) '''P(X. )
—(11)& —(r )&

X 6(X—Xr—Xs—~ ~ ~ —X„) dXi dX, ~ dX„. (4.46a)

In the special case of a two-mode field with equal
mean intensities si (I), this becomes, with the help of
Eq. (4.45)

p(r))& Qx
P(X) =

~' x-(-:(»l1I s (I)—*'3'Ls (I )—(X—*)'3'
for

I
X

I
((2(I))*'

=0 for
I
X

I )(2(I))'

0,2

0.1

I.O 2.0 4.0

(b)

Fio. 5. (a) A comparison of the probability densities p(X)
PX=6tV(r, t)) for thermal light (broken lines) and light from an
ideal maser with one mode (us=1) and two independent modes
(a =2). /After L. Mandel (1964a, 1965).g (b) Probability densi-
ties for the real part of the instantaneous complex amplitude re-
sulting from the superposition of n sinusoidal waves together
with Gaussian noise. The broken curve shows the distribution for
Gaussian noise alone /After H. Hodara (1964).j
which can be shown to be expressible as a complete
elliptic integral of the 6rst kind

I see, for example,
Grobner and Hofreiter (1950), part II, p. 4'I), i.e.,

(4.46b)

A similar result has also been obtained by Hodara
(1964) for a simple model. This distribution is also
illustrated. in Fig. 5(a). It will be seen to differ very
appreciably from the corresponding single-mode dis-
tribution. %ith the addition of further independent
modes p(X) tends rapidly towards the Gaussian form.
Hodara (1965) has recently calculated curves for the
distribution of the real part of the instantaneous com-

plex amplitude resulting from the superposition of
several sine waves plus Gaussian noise. Some of these
curves are illustrated in Fig. 5(b). In the absence of
Gaussian noise these curves correspond to a particular
situation described by the general distribution (4.46a).
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As has already been pointed out, in practice the
distributions may depart appreciably from the above
simple forms and the higher-order correlations will in
general be required for a full description of the sta-
tistical properties. Among other examples of nonthermal
light are the Cerenkov radiation produced by a rela-
tivistic electron moving through a medium [cf. Som-
merfeld (1954), Sec. 47j, and the dipole radiation
from an electron beam moving over a periodic structure
as in the Smith —Purcell effect [Smith and Purcell
(1953); Kastler (1955); Toraldo di Francia (1960);
Ishiguro and Tako (1961)j.Little appears to be known
about the statistical properties of such radiation.

4.7. Entropy of an Optical Field

For any physical system described by an ensemble
of quantum states, it is, in principle, possible to define
an entropy according to the rules of Boltzmann, Gibbs,
and von Neumann [see, for example, Landau and
Lifshitz (1958), Chap. V]. Not surprisingly, the
earliest discussions of the entropy for a quantized
field were concerned with blackbody radiation in ther-
mal equilibrium at a given temperature. Indeed it was
the study of entropy of the electromagnetic 6eld that
led Planck to the introduction of quanta [Planck
(1901a, b, 1959); see also Klein (1962)j. The problem
was taken up also by Einstein (1905).

Later von Laue and other workers applied thermo-
dynamical considerations to problems of interference
[von Laue (1906, 1907, 1915c, pp. 405—410] and dif-
fraction [von Laue (1909, 1910); Toraldo di Francia
(1948)$. Some related questions were considered by
Kahan (1952) and Jones (1953).

Of particular relevance to the subject under review
in this article is the early investigation of von Laue
(1907). Von Laue studied how the entropy of a light
beam which is obtained by the superposition of two
or three beams that are partially coherent with respect
to each other depends on the intensities of the indi-
vidual beams and on their degree of coherence. Very
recently Gamo (1964a, Sec. 7.2; 1964b) found some in-
teresting generalizations of Laue's results, and showed
how one may calculate the entropy of an optical field
that is produced by a thermal source and is propagated
through an optical system. Gamo's analysis is based
on a representation of the partially coherent field as
the sum of certain mutually incoherent elementary
fields, de6ned with the help of the sampling theorem
of information theory. " Such a representation of a

'2 With the development of statistical theory of communication
by Shannon (1948) attempts were made to treat problems of
optical transmission and image formation in terms of Shannon's
communication "channel" /see, for example, Fellgett and Linfoot
(1955); Linfoot (1955); O' Neill and Asaknra (1961)j. These
treatments, in which the optical image is regarded as a "signal"
in the sense of Shannon, lead to expressions for the entropy of the
optical image, but this "signal" entropy is entirely distinct from
the measure of entropy of the 6eld as understood in statistical
mechanics or thermodynamics Lcf. Gabor (1950, 1961, p. 148-
152); O' Neill and Asaknra (1961},p. 301; Gordon (1962)g.

partially coherent 6eld was first introduced by Gabor
(1956a, b) and by Garno (1956, 1957a, b, 1958a, b,
1960).

Since Gamo's results were already reviewed else-
where [Gamo (1964a)$ we will restrict ourselves to
indicating how an expression for the statistical entropy
of an optical field may be derived by means of the
Sudarshan representation of the density matrix. For
this purpose we recall the conclusion of Sec. 4.3 that
we may regard the space spanned by the eigenvalues

I»,,} of the annihilation operators aq,„for all k, s, as
the phase space of the field. It follows that the "diagonal
elements" C(I», ,}) of the density operator p of the
field, when expressed in the Sudarshan representation
in which the

~ I»,,} ) are the basis states, constitute
the phase-space distribution of the field.

In view of the commutation rule (4.10) obeyed. by
the real and imaginary parts of al, „we first quantize
the phase space in cells of volume (-', )", where e is the
number of possible k, s modes of the field. Let there
be E cells which we label successively by j= j., 2, ~ ~ ~,

X.Then the probability of 6nding the system in a state
corresponding to the jth cell is

cell j
(4.47)

S= —Zgp;log p;, (4.48)

where E is the Boltzmann constant. The elitropy is a
measure of the disorder in the Geld and obviously
depends on the correlation properties. As is well known,
S is a maximum when the p s are all equal. Broadly
speaking, this implies that the values of el. .. are then
uniformly (and independently for diGerent lr., s) dis-
tributed over the range allowed by the external con-
straints.

It is not difficult to give a rough, intuitive description
of the signi6cance of maximum entropy for the co-
herence properties of the field. For, when the range
of possible k, s modes and their amplitudes ~k, is as
wide as possible, it follows from Eq. (3.47), and the
well-known properties of Fourier transforms, that the
range of the correlations between the V(r, 1) 's in the
conjugate domain of con6guration space will be as
short as possible. This will hold for correlations both
in space and time, and we may roughly speak of the
optical field as being in its most incoherent state. It is
worth noting that the range of correlations in black-

where the integral extends over the volume of the
cell j. Unlike C(I»,,})d'I»,,}, the probability p; has
physical significance in quantum mechanics and is ex-
pected to be nonnegative. The statistical or thermo-
dynamic entropy of the 6eld in the mixed state repre-
sented by P is then given by [see, for example, Landau
and Lifshitz (1958), pp. 25 and 34$
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5. SOME SECOND-ORDER COHERENCE EFFECTS

5.1. Propagation Laws

In Sec. 3 it was noted that ie eaclo the mutual
coherence function obeys two wave equations. If the
field is stationary the equations take the form" [Eq.
(3.28)j

q';I'= c—'(cl'I'/8 ') (j=» 2) (5 1)

These two wave equations, subject to prescribed bound-
ary and initial conditions, may be solved by standard
techniques. The propagation of mutual coherence from
a 6nite plane region 0 was considered by Parrent
(1959a, b) [see also, Beran and Parrent (1964), p. 40$
with the help of Green's function techniques. If S& and
S2 are two typical points on cr, Pj and P'2 are two
points in the wave field, E~= S~P~, E2= S2P2, and Oi

and 02 are angles which the lines SjP'~ and S2P2 make
with the normal to the source (see Fig. 6), then the

2' Since throughout Sec. 5 we shall be concerned with second-
order coherence only, we will use the shortened notation I' for
P("& and y for y&I '& as in $ec. 3.

body radiation is only of the order of the mean wave-
length) in space and of the order of the mean period
1/v in time (see Sec. 5.7).

On the other hand, it is easy to show that the field
which is completely coherent in the sense of the defini-
tion of Sec. 4.4, has minimum entropy. Let the state
of the field be an eigenstate

~ {tt'q, ,}) of the annihilation
operator A&+&(r, t) . Then C ({vi...}) reduces to the form
(4.21), viz. , C ({ei...})= 8({nk,,}—{tt'i...}),and theprob-
abilities P, given by (4.47) vanish for all j except for
the one cell, say j =l, containing the point
for which pi ——1. It follows that the entropy S vanishes
for a coherent Geld, as might be expected.

It seems plausible also to expect that a field which
is coherent to the order 2X will have a lower entropy
than one which is coherent only to the 2%th order,
when M(E, and that for a given order of coherence,
the field with the greater correlation range in space-
tirne will have the lower entropy. However the be-
havior of the entropy under different conditions of
coherence (of order higher than 2) has so far not been
investigated.

Although the provision of a single measure, such as
entropy, for the totality of the coherence relationships
of the field may be attractive in some circumstances,
the general value of the measure is rather doubtful.
It is probably for this reason that the measure of
entropy has so far played no part in the development
of coherence theory.

0 8

FIG. 6. Illustrating the notation relating to Eq. (5.2), which
describes the propagation of mutual coherence I' from a finite
plane region cr in vuclo.

solution may be written in the form"

I"(I'i, I'e, r)

1 cos 8y cos 02 ( Ry —E2|
&I'~ Si, 52, r —

~
dSid52,

where Q denotes the differential operator

Eg—E2 8 EgR2 8'
D= 1+

c BT c 87

(5.2)

(5.3)

24 An error in Parrent's formula is corrected here.
"The representation of an incoherent source by means of a

Dirac delta function is, of course, an idealization not strictly
realized in practice, but it is satisfactory for most practical
purposes. Some refinements have been discussed by Beran and
Parrent (1963l.

In (5.2) d Si and d S2 denote elements of the surface
of the source centered on the points Si, S2 and the
double integral indicates two-folded integration over
o-, as dS& and d$2 explore 0- independently. In deriving
(5.2) it was assumed that the field obeys the Sommer-
feld radiation condition at infinity in the half-space
containing the points P~ and P2.

If fT is an extended thermal source, then one may
assume that the radiation emitted from different ele-
ments of 0 is effectively mutually incoherent. If, more-
over, the radiation is quasimonochromatic and of
midfrequency ve then" [cf. (3.36)j
I'(Si, S~, r) I(Si)8(Si—S2) exp (—2s.iver)

({r { &1/av), (5.4)

where I(S) represents the, (averaged) intensity at S
per unit area of the source. If, moreover R~))) p, E&)Xp,
(Xe= cve), the angles 8t and e& are suKciently small and

} r (Z,—Z,)/c { ((—1/av,

(5.2) reduces to

1(I'„I'„)r
kp I(5)

exp ( 2rrivor) —exp [ iko(Ri A—)]dS.—
27r g JR/E2

(5.5)
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l.o

where

s= (ksz/R) L(»—*z)'+ (ys —yz) '3' (5.9)

0.8

0.6

0.4

0.2

Equation (5.5) is essentially a mathematical formula-
tion of the so-called eazs Citteri Zernske —theorem )van
Cittert (1934); Zernike (1938)).This formula, which
is of the same form as one frequently encounters in
the elementary theory of diffraction based on the
Huygens —Fresnel principle, is very useful in the solu-
tion of coherence problems of instrumental optics.

The van Cittert —Zernike formula (5.5) may be sim-
plihed if, as is often the case, the points I'j and I'2
are situated in a plane parallel to that of the source,
and the separation between these two points is small
compared with the distance R between the plane con-
taining I'~ and I'2 and the plane of the source 0-. Under
these conditions (5.5) reduces to

k s
' exp $i Q —2mvsr) j.

I'(Pz, Ps, r) 1(k, n)2'

&& exp [ike(pp+qrz)] dpdq, (~ r
~

&&1/hv), (S.6)

where

p= (xs—xz)/R, V= (y.—y )/R, (5.7a)

0'=ksL(x's+y's) —(x'z+y'z) 3/2R (5 7b)

Here (xz, yz), (xs, ys) are coordinates of Pz and P,,
respectively, and ($, rz) are coordinates of the source
point S referred to Cartesian axes with directions
OX, OI' in the plane of the source. Equation (5.6)
shows that, apart from a simple proportionality factor,
the mutual coherence function is now the I'ourier
transform of the (averaged) intensity distribution
across the source.

If, in particular, the quasimonochromatic and spa-
tially incoherent source 0. is uniform and circular, of
radius p, (5.6) and (3.14) then give the following
expression for the complex degree of coherence:

y(Pz, Ps, r) =12Jz(zt)/e] exp fig' 2rrvsr))—
(I r

I
«1/») (5.8)

=v
2 4 6 8 IO

Fzo. 7. The behavior of
~ y(Ez, I's, r)

~
as function of the dis-

tance p,p, = P(xs —xz)'+ (ys —yz)')& for light from a quasimono-
chromatic uniform incoherent circular source of radius p.

v=kovE(xs —»)'+ (ys —yi)'j&/&,
~
r ~&(1/zzv.

and J~ is the Bessel function of the first kind and
first order. The behavior of

~ y ~

for this case is
shown in Fig. 7. It is seen that, as the points I'~
and Ps are separated, the absolute value of

~ y ~

de-
creases from unity and becomes zero (complete second-
order incoherence) when v=3.83, i.e., when PzPs
L(x2 xz)'+(ys —yz)'7'*=061R"o/p. As the points are
separated still further y ~

again acquires nonzero values
and becomes zero for the second time when ~=7.02,
i.e., when PzPs 1.12R——)ts/p. In instrumental optics the
somewhat arbitrary condition

~ p ~)0.88 is regarded
as representing "almost coherent" light. Now from
(S.8) one readily finds that this condition is satisfied
when n(1, i.e. when PzPs&0. 16R)zs/p. Hence one may
say that the diameter of the circular area, which a
uniform circular quasimonochromatic incoherent source
of radius p illuminates almost coherently on a plane
far away from the source and parallel to it, is 0.16RXs/p.

We have now obtained a more accurate way of esti-
mating the "area of coherence" than the one given by
the order of magnitude relation (2.4). For example,
in the case just considered, the area of coherence d A,
defined by the criterion

~
y ~)0.88, is seen to be AA =

7r(0.16R)zs/p) =0.25c~R /vssS, where S=s.p is the area
of the source. This result should be compared with (2.4) .

So far we have only considered the distribution of
(second order) coherence for propagation in free space
from a p/ave surface. If the surface is curved, it is of
course in principle still possible to obtain the appropri-
ate solution of the two wave equations (5.1), but
there are practical difhculties caused by the require-
ment of determining the appropriate Green's function.
However, various approximate formulas relating to
propagation from curved surfaces both in free space
and in material media have been found $Zernike
(1938); Hopkins (1951, 19S3); Wolf (1954a, 1955);
Dumontet (1955, 1956b); Born and Wolf (1964), pp.
516, 534j. Some of these formulas bear a somewhat
similar relationship to the exact solution of the wave
equations for F as the Huygens —I" resnel principle bears
to the exact solution of the wave equation for the
complex disturbance V.

5.2. Stellar Interferometry

Beautiful illustrations of some of the concepts and
results of the second-order coherence theory are pro-
vided by two methods introduced by Michelson very
many years ago. One of these methods concerns the
determination of angular diameters of stars, the other
concerns the determination of the energy distribution
in spectral lines. Originally the principles of these
methods were explained in different but equivalent
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ways. However, coherence theory provides a deeper
understanding of the physical principles involved, and
as we see in Sec. 6, it also suggests useful modifications
of the experimental techniques. In this section we will
consider Michelson's method for the determination of
angular diameters of stars. His method for determina-
tion of energy distribution in spectral lines will be
considered in Sec. 5.3.

As is well known, the angular diameters which stars
subtend at the surface of the earth are exceedingly
small, so that no available telescopes can resolve a
star. In the focal plane of a telescope the star light
effectively gives rise to a diffraction pattern appropri-
ate to light from a point source, di8racted at the
aperture of the telescope.

Michelson (1890, 1920) Lsee also, Pease (1931)j
showed that information about the angular diameter
of the star (and, in principle, also about the intensity
distribution across the star) may be obtained with the
help of an interferometer, shown schematically in Fig.
8. Light from the star is incident on the outer mirrors
Mz and M2 of the interferometer, is then reRected at
two inner mirrors M3 and M4 and is brought to the
back focal plane F of a telescope to which the inter-
ferometer is attached, after passing through two fixed
diaphragms S~ and S2. The two inner mirrors M3 and
M4 are fixed while the two outer mirrors M~ and M2
can be separated symmetrically in the direction j~oin-

ing S~ and S2. In the focal plane 5 of the telescope one
then observes the diffraction image of the star on
which the telescope is directed, crossed by interference
fringes formed by the two beams which pass through
the diaphragms.

The visibility of the fringes in the focal plane P
depends on the separation of the mirrors M~ and M2.
Michelson showed by an elementary argument that,
from measurement of the variation of the visibility
with the separation of the two mirrors, one may ob-
tain information about the intensity distribution across
the star, at least in cases where one may assume that
the distribution is rotationally symmetric. In particu-
lar Michelson showed that, if the stellar disk is circular
and uniform, the visibility curve, as function of the
separation d of the two outer mirrors, will have zeros
for certain values of d, and that the smallest of these
d-values for which a zero occurs is given by do=
0.61Xp/a, where n is the angular radius of the star.
Thus from measurement of do the angular radius of
the star may be obtained. Angular diameters of several
stars, down to about 0.02 seconds of arc were deter-
mined in this way. LMichelson and Pease (1921);
Pease (1931).7

From the standpoint of second-order coherence the-
ory the principle of the method is very clear. At the
two outer mirrors M~ and M~ the incident light is,
in general, partially coherent and, according to the
simplified form (5.6) of the van Cittert —Zernike the-

FrG. 8. The Ms-
chelson stellar inter-
ferometer.

Mg

Ml )(S,

Mg

2

orem, with the appropriate normalization [Eq. (3.14)g,
the complex degree of coherence is given by (for
( r

~
«1/a. ; P«1)

y(x„yt, x2, yp, r) exp ( 2rrivpr—)

I(ee, p) exp I
—ik,L(x,—x,)I+(y,—y,)vjI dude

I(N, v) dudv

(5.10)

Here I(et, w) represents the (averaged) intensity
distribution across the star disk, as function of the
angular coordinates

u= &/R, ~=st/R,

S.3. Interference Spectroscopy

Let us now brieRy consider the other method, also
due to Michelson, . referred to at the beginning of Sec.
5.2, of determining the energy distribution in spectral

and (xt, yt), (xp, y, ) are the coordinates of the outer
mirrors Mt and Mp. Now according to (3.24) (with
ts= 1 as appropriate here),

~ y
~

represents the visibility
of interference fringes which are found when light from
the two mirrors M~ and M2 is allowed to interfere.
Hence the visibility in the focal plane of the telescope is
proportional to the absolute value of the Fourier trans-
form of the (averaged) intensity distribution across
the star. In particular if the star disk is circular and
uniform, (5.10) reduces to (5.8) (with P 0), and
the smallest separation of the mirrors for which p,
and hence the visibility, vanishes is given by v=3.83,

dp= L(+2 +1)'+ (yp —
y&) '$&= 0.61Xp/n, in agreement

with Michelson's result.
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lines. Here a beam of quasimonochrornatic light is
divided into two beams in a Michelson interferometer
(Fig. 1) and the beams are superposed after some
path difference cr has been introduced between them.
In the region of superposition interference fringes are
formed, the visibility of which depends on the path
difference c7. Michelson showed that, from the meas-
ured visibility curve (i.e., the curve which represents
the visibility 'U as function of r), one may obtain
information about the energy spectrum of the light.

The principle of the method may again be readily
understood from the standpoint of coherence theory.
If we assume the two beams to be of the same inten-
sity, then, by an argument similar to that leading to
(3.24), the visibility of the fringes is given by

(5.11)

Here, for brevity, y(r) is written in place of y(r, r, 3),
where r specifies the position of the (fixed) dividing
mirror Mi. Let us represent y(r) as a Fourier integral,

y(r) = w(v) exp ( 27rivr) —dv,
0

(5.12)

where, according to (3.29) and (3.14), 7(7(v) denotes
the normalized spectral density of the light. I No nega-
tive frequency components are present in the Fourier
integral (5.12), since y(r) is an analytic signal. j

It will be useful to express p(r) in the form

y (r) =y (r) exp (—27rivpr), (5.13)

where v0 is the midfrequency of the light. Then from
(5.12) and (5.13),

y(r) = ii7(p) exp (—27ripr) dp,

with

ii7(p) = i(7(vp+p) when p) vp,

=0 when p& —v0. (5.15)

From (5.11), (5.13), and (5.14) it follows that

'U(r) = $(p) exp ( 2rrivr) dp —. (5.16)

U( 7=+f e(p) exp (—2 ip ) dp, (5.77)

Suppose first that the spectrum iv(v) is symmetric
about the mid frequency vo. Then Co will be an even
function and hence the integral appearing in (5.16)
will be real. It follows that in this case one may write
in place of (5.16)

or, taking the Fourier inverse and using the fact that
'U is an even function of r I which follows from (5.11),
(3.14), and (3.12)$,

y(r) =e((r) —27rvpr, (5.19)

which follows from (5.13). According to (3.25), Q(r)
may be determined from measurement of the position
of the maxima of the fringe pattern. Unfortunately,
such positional measurements are exceedingly dificult
to perform and, in fact, apart from those of Perard
(1928, 1935), none appear to have been reported in
the literature.

It has been commonly assumed, following a discus-
sion of this question by Rayleigh (1892), that meas-
urernents of the visibility and the position of the fringes
provide two indepe7idemt sets of information, so that
both have to be performed in order to obtain the data
necessary for determining asymmetric spectral profiles.
However, it has recently been pointed out by Wolf
(1962) that this is not necessarily so, since the analytic
properties of the complex degree of coherence and the
physical constraint that its spectrum be nonnegative
impose severe restrictions on the phase 717(r) of y(r)
Lsee also, Marathay (1963); Roman and Marathay
(1963)$.

To indicate the nature of the restriction arising from
the analytic properties of p we note that, since p(r) =
I p(r) I expI ip(r) j is analytic and regular in the lower
half-plane II of the complex 7--plane Lthis is so since
y(r) is an analytic signal —cf. footnote 12], the function

log v(r) = »g I v(r) I +ie(r) (5.20)

will evidently also be analytic in II, but it will have
logarithmic branch points at points (if any) where

'N(p) =iv(vp+p) = &2 'U (r) cos 27rpr dr. (5.18)
0

Equation (5.18) shows that, under the assumption of
symmetry, the spectral energy distribution, referred to
the midfrequency v0 as origin, may be calculated from
the knowledge of the visibility curve, provided the
ambiguity in the sign of the integral may be removed;
this may usually be done by an appeal to physical
plausibility.

If, on the other hand, the spectrum is not symmet-
ric, the I:ourier transform of the "shifted" spectral
density w(p) is no longer everywhere real and so Eq.
(5.16) no longer leads to (5.17). In order to determine
the spectrum, according to (5.11), (5.13), and (5.14)
it is now necessary to know, in addition to the visibility
curve, the phase n(r) of the Fourier transform y(r)
of Co((((), or alternatively the phase (t (r) of the com-
plex degree of coherence. The two are of course, related
by the equation
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p (r) has zeros. Assume first that y (r) has no zeros
at all in II. In that case log y(r) will not only be ana-
lytic but will also be regular in II and hence its real
and imaginary parts, just like the real and imaginary
parts of y, will be coupled by Hilbert transform rela-
tions. One of these two relations is

(5.21)

Hence in this case, the phase p(r) is uniquely specified
by

~
y(r) ~

itself. If, however, y(r) has zeros in II at
points r=r, (i=1, 2, ~ ~ ~ ), (5.21) no longer applies,
but the following modihed relation may be shown to
hold instead Lcf. Toll (1956), p. 1767]:

(5.22)

covery of the phase p(r) from
~ p(r) ~

have also been
suggested recently. One due to Gamo (1963a, b) is
based on a triple intensity correlation measurement,
and is briefly described in Sec. 6.4. The other due to
Mehta (1965a) is based on two separate sets of meas-
urements of

~
y(r)

~

and ) yt(r) ~, where yf(r) refers to
the beam after it has been passed through a particular
kind of linear filter.

Finally it may be mentioned, that the problem of
complete determination of the spectral distribution of
energy from the knowledge of the absolute value of the
complex degree of coherence is strictly analogous to
problems arising in other branches of physics and en-
gineering, e.g. , in the quantum theory of decay t Khalfin
(1957, 1960, 1961)j, in scattering theory, particularly
in the x-ray region t Goldberger, Lewis, and Watson
(1963)j, in the diffraction theory of image formation
$0'Neill and Walther (1963); Walther (1963)j in the
theory of linear electric filters [Lee (1932)$, and in

other fields.

where the summation is extended over all the zeros 7;
of y in the lower half-plane II.

The relation (5.22) together with (5.11) shows that
the phase @(r) of y(r), and hence the spectral profile,
may be determined from the knowledge of the visibil-
ity function 'U(r) and the location of the zeros of p
in the half-plane II. Unfortunately nothing appears to
be known at present about the physical significance
of the zeros, nor about their location in particular
cases. However, the location of the zeros cannot be
quite arbitrary, since, as already noted, one has the
additional constraint that the Fourier transform must
be nonnegative. It may be readily shown that each of
the additive factors arg $(r—r,)/(r —r*,)) in (5.22)
is nonnegative, so that the 6rst term on the right-hand
side of (5.22) represents a lower boured on the phase
function that may be associated with any given

~ p(r) ~.

It has been shown by Kano and Wolf (1962) that
the complex degree of temporal coherence p(r) of
blackbody radiation has no zeros at all in the lower
half-plane II, so that its phase, and hence the spectrum,
can be determined from its absolute value

~
y(r) ~, in

spite of the fact that the spectrum of this radiation is
not symmetric.

Michelson's method, which, as we just saw, still
poses some unsolved problems, is to some extent being
superseded by another interferemetric technique, the
so-called method of the interjerograrfc Lsee, for example,
Fellgett (1958a, b); Jacquinot (1958, 1960); Strong
and Vanasse (1959)j. This method, which is proving
particularly useful in the infrared region of the spec-
trum, allows direct determination of the real part y~"~

rather than determination of
~ y ~. From the knowledge

of &("& as function of 7. the spectrum may, in principle,
be determined unambiguously.

Two alternative experimental approaches to the re-

5.4. Coherence Time and Bandwidth

(g,t)'=1V—' r'
I V(r, r, r) (5.23)

where

Iv(r, r, ) l's =f w'(r, r, ) s, (5.24)
0

and w(r, v) again denotes the normalized spectral den-
sity of the light. The equality of the two integrals in
(5.24) follows from Parceval's theorem on Fourier
transforms LSneddon (1951),p. 25j.

If the effective bandwidth of the light is defined by
the equation

(hiv)'=Z ' (v r)'w'(r, r, v—) dv,
0

(5.25)

YA'th the help of the second-order complex degree of
coherence one may define the coherence time of light
somewhat more precisely than by the order of magni-
tude relation (2.1).

Consider again the simple interference experiment
illustrated in Fig. 1, where a beam of light is divided
in a Michelson interferometer into two beams, which
are then brought to interference after a time delay z
is introduced between them. Since the visibility of the
interference fringes observed in the plane S is propor-
tional to the absolute value of the degree of coherence
y(r, r, r) (r specifies the position of the dividing
mirror Mi), it is evident that one may define a coher-
ence time At in terms of

~ y(r, r, r) (. One possible
definition is provided by the formula LWolf (1958)7



260 REvIEws oP MoDERN PHYsics . APRIL 1965

with

vw'(r, r, v) dv,
0

(5.26)

(t4t) (~») & 1/4~. (5.27)

then one may show, by a similar argument as that
given by Weyl and Pauli LWeyl (1931), pp. 77, 393]
in proving the uncertainty relation, that the following
reciprocity inequality always holds LWolf (1958);Born
and Wolf (1964),pp. 541, 542; see also Gabor (1946)]:

around a point P(r) in the field. For experiments
involving division at two or more widely separated
points (e.g. , as in the case of Young's interference
experiment) more general definitions may be needed
Lcf. Wolf (1958), Sec. 5; Born and Wolf (1964), pp.
543—544]. However, when the normalized spectral den-
sity is the same at every point in the field, when the
spectra are of relatively simple form, and when, in
addition, the light is cross-spectrally pure (cf. next sec-
tion), then the definitions given above seem to be quite
adequate for most practical purposes.

For quasimonochrornatic light whose profile approxi-
Inates to the Gaussian distribution, the inequality sign
may be replaced by approximate equality. However,
in view of the fact that the lower limits in the frequency
integrals in Eqs. (5.24) —(5.26) are zero rather than
minus infinity, the equality sign in (5.27) can never
be attained" (cf. Mayer and Leontovich (1934); Kay
and Silverman (1957, 1959);Kharkevich (1960)].

Another measure of coherence time has been sug-
gested by Mandel (1959) (see also, Eq. 6.14) below),
from considerations of the extent of the unit cell of
photon phase space. It is also defined in terms of y, as

(t4t) =
( y(r, r, r) ('dr (5.28)

If the bandwidth is then defined as

(62v) =
0

1

w'(r, r, v) dv (5.29)

then, in view of (5.24), one always has

(t4t) (t4v) =1. (5.30)

"Since y(r) is an analytic signal, only those complex correla-
tion functions are admissible in the calculation of (AIt) whose
I'ourier transforms m (v) vanish identically for v &0.

For simple types of spectral profile one finds that
(t4t) (62t), (t4v) (t4v) pcf. Mandel and Wolf
(1962); Mehta (1963)]. However, if the spectral
density distributions are of a more complicated form,
as for example in the case of an optical maser (multi-
ply peaked spectral distributions), the two sets of defi-
nitions may lead to results of quite different order of
magnitude fMandel and Wolf (1962)].Hence caution
must be exercised in applying a particular definition
in certain cases. It is of interest to note that a some-
what similar situation arises in connection with meas-
ures of uncertainties of radar signals and the cor-
responding measures of bandwidth Pcf. Woodward
(1953), Chap. 7]. The definitions which we discussed
in this section are appropriate for experiments where
a beam of light is divided into two beams in a region,

5.5. Cross-Spectral Purity

We have already mentioned (p. 240) that in gen-
eral spatial and temporal (second-order) coherence can-
not be sharply separated. These two types of coherence
are related because the mutual coherence function I'
obeys the two wave equations (3.28), which relate
the variation of I' with respect to its space and time
variables. Nevertheless, it may be shown that in many
cases of practical interest the second-order complex
degree of coherence may be expressed, at least to a
good approximation, as the product of two functions,
one of which represents spatial coherence, the other
temporal coherence. The possibility of such a factoriza-
tion has been studied by Mandel (1961c), who also
showed that it is intimately connected with certain
spectral properties of the light.

To begin with let us restrict ourselves to linearly
polarized light. The field may then be represented by
a complex stochastic scalar wave function V(r, t).
Suppose that Vi(t) —=V(ri, t), V2(t) —=V(r2, t) repre-
sent the field at two points Pi(ri) and P2(r2), respec-
tively, and let wi(v) and w2(v) be their normalized
spectral density functions, i.e., the Fourier transforms
of their respective temporal normalized correlations
y(ri, ri, r) and y(r2, r2, r) .Suppose that the light from Pi
and P2 is superposed at a point Po(ro), and let w, (v)
be the corresponding normalized spectral density of
the light at this point. In general w;(v) will not be
simply related to wi(v) and w2(v), even if wi(v) and
w2(v) are identical.

If w2(v) =—wi(v) and a region of neighboring points Po
exists such that w2(v) =—wi(v), then Vi(t) and V (t)
are said to be cross spectrally pu-re It was show. n by
Mandel (1961c) that in this case 7(ri, r, , r) may be
expressed as a product of two factors, according to the
following reductio22 formula, valid for all r'.

V(r1 r2 r) 7(rl r2 ~o)7(ri, ri, r ro) ~ (531)—
Here zo is a constant representing the time delay
([PiP2]—p'2P2]) /v, where [ ~ ]denotes optical path
length in the medium, assumed to be riortdisPersive, in
which the light is propagated and v is the velocity of
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W v =Kiv =tv2v (5.32)

(2) ~f
I (ri—rp) —ro I))r.:

~(&) = it i(&) I 1+~
I &(», » «) I

X cos [arg y(», », ro) —2rrpo(ri rp ro) $I, (5.—33)—

where

II ' I2
(5.33a)

It is of interest to compare these results with the
corresponding relations relating to the (time averaged)

light in the medium. The first factor on the right of
(5.31) represents spatial coherence, the other temporal
coherence. A converse of the result which we just men-
tioned is evidently also true: If (5.31) holds, the light
at I"j and I'2 is cross-spectrally pure.

It has also been shown with the help of a propaga-
tion law for the mutual coherence function that, if
the reduction formula (5.31) holds for all pairs of
points on a (fictitious) surface intercepting a light
beam and if, moreover, the norInalized spectral density
is constant on this surface, then (5.31) will also hold
throughout the held propagated from the surface, pro-
vided the dispersion properties of the medium and
the path differences involved are sufficiently small.
In particular, if the light originates in a spatially in-
coherent source, then for any two points on the source
'y, l']» r) may be approximately expressed in the form"
8(»—») f(», r), where f is some function of ri and
z, hence the light is cross-spectrally pure at the source.
If, moreover, the normalized spectral density is the
same at every element of the source, then, according
to the result just quoted, the Geld produced by the
source is also cross-spectrally pure, subject, of course,
to the restrictions on dispersive properties of the
medium and the path differences involved.

An interesting behavior of cross-spectrally pure beams
is described by the spectral modulation law (Mandel
(1962a)j, expressed by Eq. (5.33) below. Suppose that
the beams are superposed at the point I', such that
the optical path length [PiPj= vri, [P&, Pj=sr&. Now
whereas for cross-spectrally pure beams the normalized
spectraI density remains unchanged when the path
delay v

I (r&—r&) rp
I

is small —compared to the coher-
ence length (cr, say), it becomes cosine modulated
when s

I (ri —rp) —rp
I
becomes large, and the amplitude

of this modulation depends on the degree of spatial
coherence of the light. More precisely, for cross-spec-
trally pure beams one has

im/easily distribution arising from the superposition of
two beams:

(I)=[(J)+(I )hl1+ lv(», », o) I

Xcos [arg y(», », rp) —2srt p(ri —rp 'ro)]—}~ (5.34)

(5.35)

Equation (5.34) follows from the interference law

(3.20), when (3.26) is used. Equation (5.35) follows
from (3.17) when one uses the fact that y(», », r)~0
fo«))r. . Equation (5.34) shows that when

I
ri rp rp

I

is small compared to the coherence time, the degree of
coherence

I y(», », rp) I
may be determined from meas-

urement of the intensity variation in the pattern. When

I r, rp rp —
I

gre—atly exceeds the coherence time, deter-
mination of the degree of coherence by this method
becomes impossible according to (5.35). However, the
spectral modulation law (5.33) shows that in this case
the determination is, in principle, possible from the
analysis of the spectrum of the combined beam in the
region of superposition, provided the light is cross-
spectrally pure. It is remarkable that the modulation
of the spectrum persists for arbitrarily large path dif-
ference m(ri —rp), although there is a lower limit on
this quantity. This result has a bearing on investiga-
tions which have their origin in an experiment relating
to the measurement of the velocity of light, carried
out by Alford and Gold (1958) [cf. the end of Sec. 7.2) .

So far we have considered only the case of linearly
polarized light, but the concept of cross-spectral purity
and the associated reduction formulas are, of course,
also relevant for light of other states of polarization.
In general we must then consider in place of the
(second-order) scalar correlation function y(», », r)
the second-order correlation tensor y, t, (», », r), where

j and k are polarization indices, and we must then
examine the possibility of expressing each component
of the tensor as product of simpler terms. Relatively
little is known about such questions but some problems
of this type have been brieQy considered by Mandel
and Wolf (1961b, Sec. 3) and Mandel (1963c,p. 1107).

5.6. Partial Polarization

In the last part of Sec. 3.1, second-order coherence
tensors of the electromagnetic field were defined and
it was mentioned that these tensors lead to a uniQ. ed
treatment of coherence and polarization effects. In the
present section we will show how the degree of polar-
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ization of a quasimonochromatic plane wave can be
expressed in terms of the rotational invariants of the
associated coherence matrix, and we will also discuss
some related questions.

Consider a stationary and ergodic ensemble of quasi-
monochromatic plane waves, of midfrequency vo and
effective bandwidth Dv((vo, propagated in the direction
of the positive s axis. Consider a typical wave of this
ensemble and let E (r, t), E„(r, t) be the complex
analytic signals associated with the components of the
(real) electric vector in two mutually orthogonal direc-
tions perpendicular to the s direction, with x, y, s
forming a right-handed triad. Because of transversality
of plane waves (E,=O), the electric coherence tensor
(3.38) when referred to the x y s directions will have
(at most) four nonvanishing components, namely those
with suffixes xx, xy, yx, and yy. I.et us consider the
associated 2&2 matrix

8 (rl& r2) r) =E(E J (rl f) Ek (r2 3+r) )$

( j, k= x, y), (5.36)

where on the right of (5.36) either an ensemble average
or a time average of a typical member of the ensemble
may be taken, because of our assumption of stationarity
and ergodicity.

%e will only consider correlations between the com-
plex 6eld components at the same point (r~ r2 r——)——
and for small values of ) r

~ (~ r ( &&1/Dv). Under the
last assumption, each element of (5.36) depends on r
only through a multiplicative factor exp (—2mivor)

Lcf. (3.36)j so that we then have"

It will be useful to introduce the column vector

(5.39)

g(r) = (S(r, t)8t(r, t) ). (5.41)

This coherence matrix is clearly Hermitian: g=g. The
averaged intensity at the point r is, in suitable units,
given by

(I(r, t) )= (E*,(r, r) E,(r, 3) )+ (E*„(r,t) E„(r, t) )

= (ate) = Tr g. (5.42)

I.et us now consider how the coherence matrix
changes when the light passes through some simple
(non-image forming) optical device such as a com-
pensator or a polarizer. The vector 8' representing
the emerging field is related to the vector 8 repre-
senting the incident field by a relation of the form

8'= Z4) (5.43)

where 2 is a 2)&2 matrix which characterizes the opti-
cal device. It follows that the coherence matrix g' of
the emergent field is given by

and its Hermitian conjugate, the row vector

g (, f) = (E* (r, t) E*„(,3)). (5.40)

The coherence matrix g may then be written in the
form

8(r, r, r) =g*(r) exp ( 2xivor)—, ~

r
t
«1/a. ,

(5.44)

From (5.42) and (5.44) it follows that the averaged
(5.37) intensity of the light emerging from the device is

given by
where g~ is the matrix which is the complex conjugate
of the matrix

(I')= Tr (Zgxt). (5.45)

8=L(E(, ~)E*(,~))j (,&=, ). (538)

g is called the coherence nsatrix )Wolf (1954b, 1959);
Parrent and Roman (1960)). Since the waves are as-
sumed to be plane, the matrix g=t g;I,j will be the
same for all points r which are situated in any one
plane perpendicular to the direction of propagation of
the wave.

The form of the matrix Z for some simple optical
devices has been discussed by Parrent and Roman
(1960). LSee also, Jones (1941a, b, 1942, 1948); Hsu,
Richartz, and Liang (1947); Marathay (1963);O' Neill
(1963), Chap. IX). For a compensator which introduces
small retardations e~&&vo/Av and e,&&vo/Av between the
x and y components, respectively, 2=Z„where

(5.46)

' We write g* rather than g on the right-hand side of (5.37),
so that the coherence matrix g is of the customary form and is
then formally closely analogous to the density matrix. However,
the analogy between the coherence matrix and the density matrix
is only partial. Moreover the trace of J is not unity.

For a po7ariser which only transmits a component of
the electric field making an angle 0 with the x direction
in a plane perpendicular to the direction of propagation,



L. MANDEL AND E. WDLr Coherence of Opticat Fields 263

Z=Z„, where

( cos' 8

(sin 8 cos 8

cos8 sin 8 l
!

sin' 8
(5.47)

e"' cos' 0
z=z,z.=!

~ ~e"' sin 0 cos 0

e'" cos 8 sin 8)
(5.48)

e"'" sin' 8

From (5.48) and (5.45) one readily finds that the aver-
aged intensity of the emerging light wave is given by

For a transmission through a succession of several
devices, the formulas (5.43)—(5.45) still apply, with
2 being given by the product of the 2 matrices which
characterize transmission through the individual ele-
ments of the device. Thus for a transmission through
a compensator, followed by a polarizer,

This formula is very similar to Eq. (3.20), which
refers to interference between two partially coherent
beams. The coeKcient p „(0) now plays the role of
the second-order complex degree of coherence
y (ri, rs, 0) of the scalar wave field. It is seen from (5.52)
and (5.38) that y,„(0) represents the correlation be-
tween the components of the complex electric field at
the point r.

Light which is most frequently encountered in na-
ture is comp/etely Nrspo/arized (or natural) light. Such
light is characterized by the fact that the averaged
intensity (I'(8, 8, t) ) is independent of b and 8; i.e.,
it is independent of any phase delay which may be
introduced between the x and y components of its
electric 6eld and is the same for all its azimuthal com-
ponents. One may readily show from (5.49) that, for
this to be the case, the coherence matrix must be
given by

(I'(8, 8, t) )=ci„cos'8+cd» sin'8

+ ($,„e "+/„,ce") sin 8 cos 8, (5.49)

(1 0)

0 1
(5.54)

where
8= E2 Ey) (5.50)

(I(') )= ci„coss 8, (I(s) )=ci» sin'8 (5.51)
and"

v*,(0) =
I v*.(0) I pL'0" (o) 7=8*,/(A. )'(8-)',

and ci, , etc. , are the elements, given by (5.38), of the
coherence matrix of the light incident on the device.
Equation (5.49) shows that the elements of the co-
herence matrix of a plane, quasimonochromatic light
wave may be determined from measurements of the
averaged intensity (I'(/i, 8, t) ) for a number of selected
values of the parameters 6 and 0; i.e., for a number of
selected values of the phase delay and the angle of
transmission introduced by passing the wave through
a compensator and a polarizer ! cf. Wolf (1959), Eq.
(3.6); Born and Wolf (1964), p. 5467. This deter-
mination of the elements of the coherence matrix is
analogous to the determination of the mutual coher-
ence function I'(ri, rs, r) from intensity measurements
in a Young's interference experiment (cf. Sec. 3.1).
In fact, the analogy between the two situations is
closer still, as will now be shown.

If we set

p= Tr c)(s)/(Tr ci(i)+ Tr ci(~)) (5.55)

where (I)=r/„+cf» is the total averaged intensity of
the light. Thus the coherence matrix of unpolarized
light is proportional to the unit matrix.

According to (5.54), the off-diagonal elements of
the coherence matrix of unpolarized light are zero.
Hence any two mutually orthogonal components of
the complex electric 6eld of an unpolarized wave, which
are perpendicular to the direction of propagation, are
completely uncorrelated L&,„(0)=07. The other ex-
treme case, where the components are completely corre
lated, represents what is traditionally described as com-
pletely polarized light Lcf. Born and Wolf (1964),
pp. 549—5507. In this case

I y,„(0) I
= 1, and according

to (5.52) this condition implies that detg=g„g»—
S*u8w*=0.

It has been shown by Wolf (1959) that the coher-
ence matrix cI of any quasimonochromatic plane light
wave may be uniquely decomposed into the sum of
two coherence matrices ci(") and cl("), the first of which
represents a completely unpolarized wave and the other
a completely polarized one." Since the averaged in-
tensity of a wave is, according to (5.42), given by the
trace of its coherence matrix, it follows that the ratio

Eq. (5.49) reduces to

(I'(~, 8, t) )= (I"')+(I"')

(5.52) represents the degree of po/arisattors of the wave. Ex-
plicit calculations give LWolf (1959); Born and Wolf
(1964), pp. 550-5527

+2 (I(') )& (I(') )'
I y,„(0) I cos! P,„(0)—l)7. (5.53)

&= I1—L4 det 8/(Tr 8)'7I' (5.56)

"The argument zero in y, „, i 7,„i, and P,„ is written here to
stress that the quantities refer to correlation for zero r delay
between E„and E„.

29 A somewhat different decomposition into two fully polarized
components is more useful for discussing intensity fluctuations
t Mandel (1963 c) g.
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and this formula expresses the degree of polarization
of the wave in terms of the rotational invariants of its
coherence matrix.

There are a number of equivalent alternative ex-
pressions for the degree of polarization. Thus it may
be shown Lsee, for example, Wolf (1959);Parrent and
Roman (1960); Born and Wolf (1964), p. 552j, that
in terms of the eigenvalues (Ii) and (I2) ((I2)((Ii))
of the coherence matrix,

&= ((Ii)—(I2))/((Ii)+(I2)) (5 57)

Since the total averaged intensity of the wave is given
by (I)= Tr g= (Ii)+ (I2), it follows from (5.57) that
the eigenvalues may be expressed in terms of the degree
of polarization in the form

(Ii)=2(1+&)(I)i (I2)=2 (1—&) (I)) (5 58)

and this result was used in the derivation of (4.41).
It is to be noted that the correlation coefFicient

depends on the particular choice of the xy axes, so
that y,„(0) will, in general, change as the axes are
rotated about the s direction. However, it may be
shown )Wolf (1959); Born and Wolf (1964), p. 553j
that the maximums value which

~ y,„(0) ~

attairts as the

axes are rotated, isjust the degree of Polarisatiol P of the

mane. Moreover, the special choice of axes which maxi-
mizes

~ y,„(0)
~

is such that the intensities (I,) and

(I„)are then equal.
The coherence matrix representation which we dis-

cussed in this section is intimately related to a repre-
sentation in terms of so-called Stokes' parameters
LStokes (1852)j. Connections between the coherence
matrix, the density matrix, and the Stokes parameters
are discussed in many publications, in particular in
the following ones: Falkoii and MacDonald (1951);
Fano (1954, 1957);McMaster (1954);Tolhoek (1956);
Wolf (1954b, 1959); Parrent and Roman (1960); ter
Haar (1961);Marathay (1963); O' Neill (1963);Born
and Wolf (1964, Sec. 10.8.3). Some applications of the
coherence-matrix techniques were described by 3 uscer
and Ribaric (1959), Ko (1961, 1962) Karczewski and
Wolf (1963, 1965a, b), and by Jacobson (1964).

The coherence matrices considered in this section
are appropriate for the description of polarization phe-
nomena associated with plane, quasimonochromatic
waves, under conditions where only short time delays

(~ r
~

&&1/d v) are introduced between the components
of the electric Geld. For other wave Gelds, and under
conditions when either long time delays are introduced
or when the wave is propagated through more compli-
cated (dispersive) media, more general coherence ma-
trices must be used —namely those associated with the
r-dependent coherence tensors such as (3.38). Alterna-
tively one may employ their frequency dependent
Fourier transforms. Historically, coherence matrices es-
sentially of this latter type were introduced (for plane-

wave fields) by Wiener (1928, 1929, 1930) t see also,
Barakat (1963), and Pancharatnam (1963a, b) j.

S.'7. Coherence properties of Blackbody Radiation

In Sec. 4.5 the main statistical properties of black-
body radiation were outlined. In this section we shall
evaluate some of the coherence tensors of this radiation.

Expressions for the second-order electric correlation
tensor of the real field } essentially the real part of the
tensor 8;& defined by (3.38)j of blackbody radiation
were derived by Bourret (1960), by means of tech-
niques analogous to those employed in the theory of
isotropic turbulence of an incompressible Quid. Bourret
employed only concepts of classical theory, but quan-
tum features of the radiation were taken into account
in assuming the spectrum to be given by Planck's law.
The main results were later rederived by Sarfatt (1963)
by explicit quantum-mechanical calculations. Some
related questions were briefly considered by Hamm and
Harris (1963).

Correlation functions of the associated complex
field were studied by Kano and Wolf (1962), by Mehta
(1963), and by Mehta and Wolf (1964a, b). The
first two papers deal with temporal coherence. The
other two deal with temporal as well as spatial co-
herence, and include a detailed discussion of the be-
havior of the electric, the magnetic and also of the
mixed correlation tensors of the second order, as well as
general expressions for the electromagnetic correlation
tensors of arbitrary order. The complex electric cor-
relation tensors of arbitrary order were also con-
sidered by Glauber (1963b, p. 2787) } see also Mandel
(1963a)j. Some of these investigations were based
on the classical wave theory, others on the theory of
the quantized field, and, as might be expected (in view
of the discussion in Sec. 4.5 above), the two approaches
have lead to equivalent results. We will brieQy outline
the derivation of the main formulas based on the quan-
tum field-theoretical approach, and discuss some of
their consequences.

The electric Geld operator K and the magnetic Geld
operator H at the space time point x—=I, ct of a radi-
ation 6eld con6ned to a rectangular box whose sides
are of length I., may be expanded in Fourier series of
the form I cf. (4.3)j

K(x) = Kt+&(x) +Ki—i(x),

H(x) =Hi+i(x)+H& i(x),
where

A A

K'+)(x)= {K'—'(x) }i=i —g h ag, ,e e'i*
k, 8

JL 6c ',„kx ci...H(+i(x) = IH~—'(x) }t=i — Q h~ai, , 'e'"*.
L,' i, , '

k

(5.60)
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Here kx=k r—kct (k=
~
k ~). aj... and dtk, , are the

annihilation and creation operators for photons of
momentum k and polarization s(s=1, 2) which obey
the commutation relations (3.41), and eq, are the unit
vectors obeying the relation (3.42) .

Now the second-order correlation tensors (3.37)
defined in terms of the operators (5.60) are ~;;(r, ~) = (1/N) 8;;(r, ~) = (1/Ã) Se;, (r, r), (5.66)

radiation, and this has been indicated explicitly by
writing 8;,(r, r) in place of Gg(xi, x2), . etc.

It will be useful to normalize 8;, in the usual way
and to normalize the other tensors similarly. Ke there-
fore set

a.„(r, r) = (1/X) g,,(r, r) = —(1/X) g,, (r, 7), (5.67)
Rg(xi, x2 ——Tr pE&—

&,(xi) E&+',(x2, (5.61a
where

X=[K,,(0, 0)]'* [G,, (0, 0)]'=8;;(0, 0) =K;,(0, 0)

bg(xi, x2) = Tr IpE&
—

&;(xi)H&+&, (x,) }, (5.6ic)

g,;(xi, x2) = Tr I pH&
—

&,(xi) E&+&;(xi) }, (5.61d) =—i e [n-'E4T'/(kc) '].
(no summation)

(5.68)

where p is the density operator of the field.
Next we express P iii the "diagonal form" (4.9) and

substitute for the "phase-space distribution function"
C the expression (4.31) appropriate to blackbody radi-
ation. This gives

The integrals in (5.64) and (5.65) may be developed
into series and one then obtains the following expres-
sions for the normalized correlation functions [Mehta
and Wolf (1964a, b) j:

900.' 8g
p,,(r, r) =

7r' „=, I (~n+icr) '+r'}'

X exp L
—

I »,. I'/(~~, .)l I », ) (»,. I
d'», ' (5 62)

As before, the vk, are the eigenvalues of the annihila-
tion operator dq, , [cf. (3.44)), and (t'ai, , ) is the ex-
pectation value (4.32) of the number operator,

(ii ) (eai 1)—i n=rc/1ST. (5.63)

X exp Ii(k r—kcr) } d'k, (5.64)

From (5.61), (5.62), (5.60), and (3.44), one obtains
after a straightforward calculation [Mehta and Wolf
(1964b)j, on the assumption that the linear dimen-
sions I. of the enclosure are large compared with the
mean wavelength of the radiation,

Pic
8,, (r, r) =K,,(r, r) =

4m' k(e "—1)

ic7 2 r'' '

180n4 itn+ic7.
(5.70)

~'s(0, ) = (90/ ')i[4, 1+( / ) j~', (5.»)
where 1 (s, a) is the generalized Riemann zeta function
[Whittaker and Watson (1940), p. 266j:

(5.72)

Several conclusions may readily be drawn from the
formulas (5.69) and (5.70). Let us consider first the
normalized correlation tensor y;, . If one sets r=0 in
(5.69) one obtains the following expression for the
normalized tensor which characterizes temporal co-
hereitce of the electric (and also of the magnetic) field:

X exp (i(k r kc7) } d'k. (5.6—5)

Here r=r2 —r~, 7.=t2—t~ and e;;~ is the completely
antisymmetric unit tensor of I.evi-Civita, i.e., e;;& is
+1 or —1 according as the subscripts (i,j, k) are even
or odd permutations of (x, y, s) and e;p, =0 when two
suffices are equal. We see that the arguments (xi, x2)
of the four tensors only enter in the combinations
r2—r~ and t2—t~, as might have been expected from
considerations of isotropy and stationarity of the

We see that the tensor y@(0, r) is diagoiia/. Hence any
two orthogonal components of the complex fields
E;(r, t), E*;(r, t+7) [or H;(r, t), H*;(r, t+v) j
(i'), considered at the same point r, at times t and
t+r, respectively, are completely uncorrelated, irrespec-
tive of the value of ~. The diagonal components are
all equal to each other. A curve showing the behavior
of the modulus of a diagonal element is shown in Fig. 9.
It is to be noticed that the temporal coherence of the
diagonal elements only extends over a 7. range which is
of the order of 5n/c, this being the order of magnitude
of the mean period 1/i 1.9n/c of the radiation [see
Mehta (1963)j.
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(a) (b)
Fin. 9. Temporal coherence of blackbody radiation. (a) The modulus

~ y„(0, ~)
~

and (b) the argument @„(0,7) of a typical diagonal
component of the normalized second-order complex electric coherence tensor.

7'= (ICT/h)r [After Y.. Kano and E. Wolf (1962). An error in the labeling of the 7.' axis in the original figures is corrected here. ]

Next consider spafiul coherence of the field, which is
characterized by p,;(r, 0). Setting r=0 in (5.69), we
obtain

90 2 r r, —r'8"
y,,(r, 0) =—Q ',+—

~4 (tt2+r2/~2) ~2 (ts2+r2/~2) s

(5.73)

The series occurring in (5.73) may be summed and
yields the expression

B(r') = 3r' coth r'+3r" cosech' r'

with

+2r" cosech' r' coth r' —g, (5.75)

y,, (r, 0) = (45/4r'4) ~ LA (r') 8,,+B(r') (r',r', /r") j
(5.74)

where

A (r') = r' coth r' —r" cose—ch' r'

—2r" cosech' r' coth r'+4,

tudinal spgtiul coherence, i.e., the variation of y„(r, 0)
with r, when r is along the z axis and lateral spgtia
coherence, i.e., the variation of y„(r, 0) with r, when
r is perpendicular to the s' axis. By symmetry, the be-
havior of each of the other diagonal components of the
tensor y;, (r, 0) is, of course, the same as that of
y„(r, 0). Figure 11 illustrates the behavior of the
diagonal as well as oG-diagonal elements of y;, (r, 0)
in various planes.

Let us now consider the norma1ized "mixed" cor-
relation tensor o,, We see from (5.70) that this tensor
is completely antisymmetric, so that its diagonal com-
ponents are zero. Also o,;(0, r) —=0, so that there is no
temporal coherence between the complex electric and
magnetic fields at the same point. As regards spatial
coherence we see from (5.70) that a typical oK-diagonal

l.o

0.8

0.6

r'= (vr/ct) r. (5.76) 0.4

Equation (5.74) is valid for all r but is not suitable for
computing y;, (r, 0) when r' is small. For r' small one
however obtains from (5.73) directly

0.2

0
lO

yg(r, 0) = b,,L1—s"ir"+s'-,r"+ ~ j

It is seen from (5.73) that the "spatial" coherence
tensor y;;(r, 0) is reu/. Figure 10 illustrates jongi

FIG. 10. (a) Longitudinal spatial coherence of blackbody ra-
diation. Variation of a typical diagonal component p„(r', 0) with
r when r' is along the s axis. (b) Lateral spatial coherence of
blackbody radiation. Variation of a typical diagonal component
y„(r', 0) with r', when r' is perpendicular to the s axis. r'=
(m/a)r; a=Re/ET. t After R. C. Bourret (1960); J. Sarfatt
(1963); and C. L. Mehta and E. Wolf (1964a).g
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Y'

X
yI

PIG. 1I. Spatial coher-
ence of blackbody radia-
tion. The behavior of typi-
cal diagonal and o6'-diago-
nal components of the
normalized second-order
complex electric coherence
tensor 7;;. LAf ter C. L.
Mehta and E. Wolf
(1963a).g (a) Contours of
y„(r, 0) in the xy plane.
(b) Contours of y„{r,0)
in the ys plane. (c) Con-
tours of y „(r, 0) in the
xy plane. (d) Contours of
i,„(r, 0) in the plane x=y.

y5

p(X, M) .jl,j2,"~,jNyM(x1& x2&
' ' '

y xN+M)

= Tr IPE&
—ij, (xi) ~ ~ ~ E&—

&j„(xN)

j + (xN+1) '''E ' + (xN+M) }~ (5.79)

(c)

component of 0-, for 7 =0, is given by

.180 ~ e

From (5.78) it follows that o~(r, 0) =0 for v=0.
Figures showing the behavior of o.,„(r, 0) have been
given by Mehta and Wolf (1964a) .

It is seen from Figs. 10 and 11 that spatial coherence
extends only over a region whose linear dimension r
is of the order of 5cr/sr~1. 6cr, and this is of the order
of magnitude of the Incan wavelength 8~1.9e of the
radiation Lsee Mehta (1963)j.

For the sake of completeness let us also briefly con-
sider the higher order correlation tensors of blackbody
radiation. The correlation tensor of the electric field
of an arbitrary order is defined by an expression anal-
ogous to (4.4) with the operators AI & and 4&+& being

replaced by K( ~ and K~+&, respectively:

"5--

Here K& &j, (x„) and K&+&j,(x,) are Cartesian com-
ponents of the operators K& &(x„) and Kf+&(xe) at the
space —time points x„and x„respectively. Now with
the help of (4.9), (5.60) and (3.44), these correlation
tensors may be expressed as phase-space averages of
the product of the components of the complex classical
electric field Pcf (4.12)g. , viz. ,

8 ™j1,~ ",i~+sr (xly x2& 's xN+M) C ( Ivts, s})

XE jz(xi) ' '+ jo(xN) +jar+&(xN+1) ' ' Essr+I (xN+M)

X If2I vt, „}. (5.80)

In evaluating the integral (5.80), the classical field
K must be regarded as expressed in the form Lcf.
(3.47)j

. hc't:
K(x) =i —

~ Q klvt. ..eI, , exp (iltx) (5.81).Jsj

Now for blackbody radiation, the phase-space dis-
tribution C(Ivt. ..}) is the multivariate Gaussian dis-
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tribution (4.31) in the variables nq, Hence according
to (4.35), all the higher-order electric correlation tensors
may be expressed in terms of the second-order ones as
follows:

Z 8 jl,ix+1(zij +x+1)8 jm,jr+2(z2j zN+2)

X8"";„,;,„(x~,. zg~); (5.82a)

g(X, llf) P if NNM. (5.82b)

On the right-hand side of (5.82a), 8&' '&;, ,;„+(g,, g~+i),
etc., denote the second-order complex electric correla-
tion tensor, which, in the notation of the previous part
of this section (5.7) wouM be denoted by the same
symbols, but with the superscript (1, 1) suppressed.
The symbol g denotes sum over all N! possible
permutations of the indices 1 to E. Similar expressions
hold also for the magnetic and the mixed correlatioIl
tensors of an arbitrary order.

6. FOURTH- AND HIGHER-ORDER
COHERENCE EFFECTS

While the second-order correlation of the complex-
field amplitude has the dimension of intensity (i.e.,
of

~
V(r, t) ~') and is useful for describing the intensity

distribution of the field, the fourth- and-higher order
moments are necessary for describing the correlations
of the light intensity Quctuations at two or more space—
time points. The first demonstration that such cor-
relations exist in some optical fields was given by
Hanbury Brown and Twiss (1956a), who used fast
photoelectric detectors to measure the correlations of
intensity Quctuations. In the following years the effect
was investigated more thoroughly, both by correlation
and photoelectric coincidence counting techniques
[Hanbury Brown and Twiss (1957a, b); Twiss, Little,
and Hanbury Brown (1957); Twiss and Little (1959);
Rebka and Pound (1957); Brannen, Ferguson, and
Wehlau (1958); Harwit (1960); Janossy, Naray, and
Varga (1961)j, and it became the basis of a new
method —correlation interferometry —for the determi-
nation of angular diameters of stars [Hanbury Brown
and Twiss (1956b, 1958a, b); Ratcliffe (1956), p. 233;
Hanbury Brown (1960, 1964); Garno (1961, 1963b);
Hanbury Brown, Hazard, Davis, and Allen (1964);
see also, Bracewell (1958)$. It was later shown that
correlation measurements also carry information about
the spectral distribution [Forrester (1961a, b); Gamo
(1961, 1963a, b); Givens (1961b, 1962); Wolf (1962,
(1965); Mandel (1962b, 1963b, 1965)j and about the
state of polarization of the light [Wolf (1960);Mandel
and Wolf (1961b); Mandel (1963c)$.

Most theoretical discussions of intensity correlation
effects have been in classical or semiclassical terms

[Purcell (1956); Hanbury Brown and Twiss (1957a;
Wolf (1957); Janossy (1957, 1959); Mandel (1958,
1959); Kahn (1958); Mand el and Wolf (1961b);
Mandel, Sudarshan, and Wolf (1964);Wolf and Mehta
(1964)$, often with the explicit or implicit assumption
that the radiation field of a thermal source may be re-
garded as a Gaussian random process. The first quan-
tum-mechanical treatment of the origin of correlations
appears to have been given by Dicke (1954) [see also,
an outline of the method given by Dicke (1964)j, and
this was later greatly extended [Senitzky (1958),
1962a)].In particular Fano (1961) showed that two in-

dependent excited atoms (corresponding to an incoher-
ent source) would lead to correlation in the excitation
of two nearby independent atoms (corresponding to two
detectors). More recently, some of these effects have
also been discussed in terms of ensembles of quantized
Acids [Glauber (1963a, b, 1964); Sudarshan (1963b);
Goldberger and Watson (1964, 1965); Holliday and
Sage (1964); cf. also Mandel (1965)j.

As the photoelectric effect plays an essential role in
all measurements of intensity correlations, we begin
by considering the photoelectric detection process.
Following the method of Mandel, Sudarshan, and Wolf
(1964), we shall show that the output of an illuminated
photodetector carries information about the Quctu-
ations of the radiation field, in the sense that the
instantaneous probability of photoemission is pro-
portional to the "instantaneous classical intensity"
V*(r, t).V(r, t) of the light at the photocathode.
This conclusion holds as long as the intensity of the
light is not too great, so that the photoelectric emission
is describable by first-order perturbation theory. It is
also related to the fact that V(r, t) is an eigenvalue
of the photon annihilation operator at &, t. We shall
then examine the form of the Quctuations and their
correlations. A detailed analysis of the photoelectric
detectio~ process has recently been given by Kelley
and Kleiner (1964).The main results are in substantial
agreement with those given below for an unquantized
field.

6.1. The Photoelectric Detection Process

Consider a plane wave of quasimonochromatic light
falling normally on a photoelectric surface containing
many electrons in bound states

~
fb). Under the in-

Quence of the light some electrons will make transitions
to a continuum of unbound states

~ P~) and will then
be free to be counted by the photodetector with some
average probability y. Since the

~ f&) are eigenstates
of the unperturbed Hamiltonian Ho of the electron,

&0
~ 6)= &~ ( p~). (6.1)

Let the inQuence of the incident light be described by
an interaction Hamiltonian

Hi(r, t) =(e/mc)A(r, t) p, (6.2)
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where A(r, t) is the real vector potential representing
the classical field, which is assumed to be in the form
of a plane, quasimonochromatic wave, and p is the mo-
mentum of an electron. Then it may be shown by the
usual method of time-dependent perturbation theory
I
cf. Mandel, Sudarshan, and Wolf (1964)) that the

probability of photoelectric detection P(t)ht at time
t within the time interval t, t+Dt is given by

P (t) At = (27re'r//5, 'rrt'c') P g W*(t) W(t) ht
yol

(6.3)

gb stands for the sum over all initial bound states of
the electrons and go, i for the sum over all polariza-
tions of the final states. W(t) is a complex scalar func-
tion whose Fourier spectrum contains only positive
frequencies, which is obtained from the field vector
A(r, t) by a linear transformation. In the typical case
where the matrix element Qi„ I p I fb) connecting the
initial state of energy E& with the final state of energy
lrtco+Eb is independent of co over the narrow frequency
range of the incident light, and the same is true for the
density of states p(&o), P(t)ht reduces to

P (t) Lt =aV*(r, t) V(r, t) at. (64)

V(r, t) is the vector "analytic signal" Lcf. (3.2)) ob-
tained from A. (r, t) by suppressing the negative fre-
quencies in the Fourier integral expansion, and can be
identified with the complex field amplitude of equa-
tions (3.2) and (3.47). a is a constant representing
the quantum efficiency of the detector and, for the case
of one electron, is given by LMandel, Sudarshan, and
Wolf (1964))

2' 8
a=q, , p(~o) Z 2 I

' 9-o I p I 6) I',
fPrrt c 5 y01

(6.5)

where e is the complex unit vector (defined up to
a unitary transformation) satisfying the relation
V(r, t) =eV(r, t) and coo/2sr is the midfrequency of
the light. Thus the instantaneous probability of photo-
detection is according to (6.4) proportional to the
instantaneous classical intensity I(r, t) of the light.
This conclusion was of course to be expected from the
fact that V(r, t) is an eigenvalue of the annihilation
operator A&+&(r, t), and that the probability of photo-
emission is proportional to the square modulus of the
matrix element (S2 I

Ai+i(r, t) I Si) connecting the
initial state

I Si) and the final state I S2) of the field

Lcf. Eq. (4.5)). The result emphasizes once again the
close con~ection between the semiclassical and quan-
tum descriptions of the field as applied to photoelectric
detection. A similar conclusion was recently drawn by
Jaynes and Cummings (1963) from a discussion of the
interactions of fields and atomic systems.

6.2. The Probability Distribution of Photoe1ectric
Counts

With the help of the differential probability P(t)
it can be shown Lcf. Mandel (1958, 1963d); Corcoran
and Pao (1962); Kelley and Kleiner (1964)) that the
probability p(st; T, t) of counting rt photoelectrons in
the interval t to t+ T is given by the ensemble average
over the Poisson distribution

P(rt; T, t) = (1/rt!) (I aU(T, t))" exp L
—aU(T, t))),

(6.6)
where

U(T, t) = I(t') dt', (6.7)

and the average is to be taken with respect to the
ensemble of U(T, t) . The resulting expression Lsee also

Eq. (6.12) below) is the analog for photoelectrons of
the quantum-mechanical distribution (4.15) for the
number of photons of the quantized field. If, as is
usually the case, the radiation fieM is stationary and
ergodic, the probability p(st; T, t) will be independent
of t and may be written as p(rt, T) .The operation of en-

semble averaging will in general cause p(rt, T) to
depart from the Poisson distribution. But consider
the special case in which the intensity of the incident
light does not Quctuate significantly in time. As we

have seen in Sec. 4.6, the output of an optical maser
oscillating in one mode approximates to this situation.
Then, according to (6.6), p(rb, T) remains a Poisson
distribution with parameter (se)=a(I)T, and the
counts obey the statistics of classical particles LMandel
(1964a); Mandel, Sudarshan, and Wolf (1964); see
also Mehta and Wolf (1964)).

Consider now the other important case of thermal
light falling on the detector, when V(r, t) is a Gaussian
random process. For light that is cross-spectrally pure
with respect to polarization, we have shown in Sec.
4.5 that the corresponding probability distribution

P(I) of I depends only on the degree of polarization
P and is given by (4.41) .Let us assume iirst of all that
T is much shorter than the coherence time of the light,
so that U(T, t) reduces to I(t) T. Then the distribution

P(st, T) follows directly from (6.6) and (4.41) Lcf.
Mandel (1963c);Helstrom (1964)):

1+2/(1+P) (&)

1+2/(1 —P) (rt)
(6.8)

(aIT)"
p(n, T((1/Av) = P(I) exp ( aIT)dI—

0
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where (n)=n(I)T is the expectation value of the
number of counts. The expression (6.8) has the form
of a distribution of n bosons over 2/(1+8) cells of
phase space, with 1&2/(1+I') &2. Polarized light
(I'= 1) corresponds to one cell with

p(n, T«1/hv) =1/(1+ (n)) 11+(1/(n)) 1", (6 9)

which is the familar Bose—Einstein distribution formula
(cf. Fiirth (1928a); Morse (1962),p. 218$. Unpolarized
light (I'=0) corresponds to the two-cell distribution

p(n, T«1/») = (1+n) /(1+ (n)/2) '(1+2/(n))"

(6.10)

Thus, according to (6.8), the fluctuations of the number
of photoelectric counts carry information about the
state of polarization of the radiation field, and their
measurement allows the degree of polarization P to be
determined t cf. Wolf (1960)j. Since we have shown
in Sec. 5.6 that the eigenvalues of the coherence matrix
are determined by P, it follows that the whole matrix
is obtainable from p(n, T«1/»). We note that, al-
though the distribution p(n, T) refers to the photo-
electrons, it is naturally interpreted in terms of Quctu-
ations of the numbers of photons of the quantized field,
as is borne out by comparison with Eq. (4.15) .

At first sight it may seem strange that the number of
cells of the single-photon phase space is determined
entirely by the state of polarization, and not also
by the distribution of momenta of the photons. The
reason is that we have chosen to treat a plane beam—
traveling in the Os direction, say—and a counting
interval T«1/» which does not span more than
one cell along the s axis of phase space Lsee also, Gabor
(1950)j. From (6.8) it may readily be shown that the
variance ((An)') of the number of counts registered
is given by

((~n)') = (n)L1+l(1+3")(n)j, (6»)

which is a result that has also been derived more di-
rectly LWolf (1960)j. The formula has recently been
generalized to situations where the accessible volume
of phase space is limited LDecomps and Kastler (1963);
Kastler (1964)j.

When T is not necessarily short compared with 1/»,
p(n; T, t) has to be evaluated by averaging over the
ensemble of the integrated intensity U defined by
Eq. (6.7). Thus, if p(U) is the distribution of U,

(nU)"
p(n; T, t) = p(U) exp (—nU) dU, (6.12)

0 e!
which is analogous to Eq. (4.15) describing the fluctua-
tions of photon numbers of the quantized Geld. The

similarity of (6.12) and (4.15b) suggests that p(n, T)
reflects the properties of the distribution of the number
operator. The fact that Eq. (6.12) can be derived from
semiclassical considerations is partly responsible for
the success of the semiclassical methods in accounting
for the results of measurements. It may be of interest
to note that Eq. (6.12) may be inverted, i.e., that it is
in general possible to derive the distribution of U from
knowledge of p(n, T) [Wolf and Mehta (1964)].

In general, no simple expressions for p(U) are
known, even for thermal light. However the limiting
form of p(U) as T~~ for polarized thermal light has
been given by Rice (1945, Sec. 3.9), and when this
is inserted in (6.12) we obtain Lcf. Mandel (1959);
Helstrom (1964); Bolgiano (1964)]

~
y~''&(r, r, r) ~'dr (6.14)

here appears as a natural measure of the coherence
time, in the sense that T/r, determines the statistical
degrees of freedom of the light (see also Sec. 5.4). If
the light is partially polarized the corresponding count-
ing distribution is obtained by a convolution of ex-
pressions like (6.13) t cf. also, Mandel (1963d);
Helstrom (1964)j.

The results embodied in Eqs. (6.8) and (6.13)
apply to light of thermal origin. Although explicit ex-
pressions for p(U) are generally not available, we can
readily use (6.12) to relate the moments and cumulants
of the distributions of e and U for any kind of light
beam. If 3'(x) and M: (x) denote the corresponding
moment generating functions, we have from (6.12)
and the well-known properties of the Poisson distribu-
tion t cf. Kenney and Keeping (1954), p. 74)

31„(x)= (exp t a U(e' —1)j), (6.15)

where the ( ) now denotes the ensemble average over
the random variate U. From the definition of the
moment generating function

3I (x) =3fu(ne' —n), (6.16)

and, by making a series expansion of this relation in
powers of x and equating coefficients, we obtain rela-
tions between the corresponding moments. Alterna-

p(n, T&)1/Dv)

I'(n+ T/, )

n!r(T/r, ) (1+(n)r /T) r~"(1+T/(n)r. )" '

(6.13)

which is a reasonable approximation when T))1/».
This distribution has the form appropriate for e bosons
distributed over T/r. equal cells of phase spa, ce fcf.
Mandel (1959)j. The time parameter r, defined by
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tively (6.16) allows us to write a similar equation con-
necting the cumulant generating functions E„(x)'and
E~(cc) )Kendall (1952), p. 90j,

E„(x)= E'r&(ne*-n), (6.17)

and, if a(')„and g&')~ are the corresponding cumulants,
we obtain by a power series expansion

On expanding the right-hand side as a power series
in x and comparing the coefficients of x', we obtain the
following relations between the cumulantsee LMandel
(1959, 1963d)j, valid for any kind of light:

a(') =al(:(')U

K t =nK( +n K

K(2~ =nK(li +3n2K(2) +neK(@&1

K ~=nK( (1+7n K( i +6n K &&+n K( ip,

etc.

which shows that the Quctuations of the photoelectric
counts are always expressible as the sum of contzibu-
tions from the fiuctuations of classical particles and the
fluctuations of classical wave fields $cf. Mandel,
Sudarshan, and Wolf (1964)j.The result is reminiscent
of the well-known Einstein formula LEinstein (1909a,
b); see also, Bothe (1927)j, later generalized by Fiirth
(1928a, b) for energy fluctuations of blackbody radi-
ation in thermal equilibrium. The above relation (6.19),
on the other hand, is valid for stationary beams of
any type. In particular, when ((AU)2) is very small
as it may be for a laser beam, ((Ate)2) (22).

In general, when the radiation Geld is very weak. ,
the first terms on the right-hand side of Eqs. (6.18)
tend to become dominant. It follows that all the cu-
mulants K('&„ tend towards nK('&1( ——n (U) =n(I) T= (tt),
which means that the distribution of e becoInes Pois-

30 There is an error in Eq. (10) of the paper by Mandel (1959),
which is corrected here.

For some cases, such as polarized light from thermal
sources, where the distribution of I(r, t) is exponential,
the cumulants K&'&c( have been found LSlepian (1958)$
and the ~&')„ follow directly. But one or two interesting
general conclusions can be drawn from {6.18) without
explicit knowledge of the cumulants.

Thus from the second equation (6.18), since K(@„

and K(2&&( denote the variances ((titt)2) and ((&U)2),
we have

(6.19)

A& &t(r, t) A(+&;(r, t)

operators used previously, such that Lcf. Schweber
(1962), p. 172j"'

A' t, (r, t) A. ', (r, t) d'r.

Then if the sharp brackets denote the quantum-
mechanical expectation, the mth moment of n is

(22„)= ~ ~ ~ {A't;(r„ t) A';(ri, t) ~ ~ ~

8F

XA";{r,t) A'; (r, t) ) d'r, ~ der,

while, as explained in Sec. 4.2, the mth-order correla-
tion of e is given by

(U )=(::)= '" {A'( t)'''
8V'

XA't;(r~, t) A';(ri, t) ~ ~ ~ A';(r, t) ) der' d'r,

where the pair of colons denotes normal ordering of
operators.

It may be shown that the generating functions for
(n ) and (U ), i.e.,

are related by Lcf. Schwinger (1961);Mandel (1964d);

A (r, t) is defined by the expansion

A (r, t) = (t'ic/L')&Z&11. ..(e1...); exp [i (lz r —ckt)
h, e

rather than by Eq. (3.40).

sonian. Thus in very weak fields the photoelectrons
obey the statistics of classical particles. In strong
fields, on the other hand, it is the last terms in (6.18)
which become dominant, and ~")„—&n'~(i)U. The dis-
tribution of m then tends towards the distribution of
O, U, which is proportional to the integrated classical
intensity.

We should emphasize that expressions such as (6.19)
apply to light beams, and not necessarily to an isolated
optical 6eld, for example one con6ned in a box. How-
ever both Eqs. (6.16) and (6.19) can be generalized
to apply to an arbitrary quantum state of an optical
field itself, irrespective of the detector, by a re-inter-
pretation of e and U.

Thus, let n be the operator corresponding to the
number of photons in the volume liV (assumed to be
large compared with the wavelength) at a given time
t with polarization j. We can express this operator in
terms of creation and annihilation operators A'st(r, t)
and A';(r, t), which are linearly related to the
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which is a quantum-mechanical generalized analog
of (6.16).The n and U may now be related by equat-
ing coefficients of x in the power series expansion of
Eq. (6.20). Thus for the expectation value of the
variance of n we find

I
cf. Mandel (1964d))

&(an)') = (n2) (—n)'

= &n)+L&U ) (U )'), (6.21)

where the sharp brackets denote the quantum-me-
chanical expectation value for an arbitrary state. This
is the quantum-mechanical generalized analog of
(6.19)

I
cf. the somewhat different result of Holliday

and Sage (1964)). While it appears to be formally
similar, the term within the square brackets now has
the nature of a correlation and is not necessarily posi-
tive. Indeed it is evident that the term must be negative
for Fock states of the field for which (( An)') vanishes.

Ghielmetti (1964); Louisell (1964) p. 116)

(expLnx))= (: exp Ln(e*—1)):), (6.20)

For a stationary process this probability will of course
depend only on r.

YVe can see immediately that, in the special case
where the instantaneous intensity I(t) of the light is
substantially constant, pi(t I t+r) h7 reduces to nId r,
which is constant and independent of the previous
count. The separate counts are therefore statistically
independent and, as shown in Sec. 6.2, the counting
distribution is a Poisson distribution. But in all other
cases p, (t I t+r) depends on r.

Consider a photoelectric detector illuminated by a
plane beam of light from a thermal source, for which
V(r, 3) is a Gaussian random process. If Vi(r, t) and
V2(r, t) are mutually orthogonal polarization com-
ponents of V(r, t) in a plane normal to the direction
of propagation of the light, it can be shown from the
moment theorem on the complex Gaussian random
process that Lcf. Reed (1962); Mehta (1965b), p. 398;
the formula also follows immediately from Eq. (A.7)
of Mandel and Wolf (1961b))

6.3. Bunching EGects in Photoelectric Detection

p, (& I rye) sr = &I'(t) I'(),+r) )a&Sr/&I'(i) )Z&,

=e).(I(t)I(t+r) )Dr/&I). (6.22)

Ke have already seen that the photoelectric count-
ing distribution will, in general, depart from the Poisson
form„and that the variance of the number of counts
registered is usually in excess of that given by Poisson
statistics. This of course implies that the photoelectrons
(or photons) are not arriving at random, but have
certain characteristic bunching properties.

The problem of determining correlation effects in
the emission of radiation was first examined in detail
by Dicke (1954), who showed that the correlation is
a consequence of the coupling by the radiation field
of the separate radiators of the source. This coupling
is very strong in a maser, but is always present to some
extent in all sources, and leads to both spatial and
temporal correlations of the emitted photons. The
correlations and their development in time have been
studied in considerable detail by Senitzky (1958,
1961a, 1962a) . Here we merely wish to note that bunch
ing properties of the photoelectric counts are implicit
in the nature of the distribution p(n; T, t) given
by (6.6) . The bunching gives rise to correlations
of the numbers of counts registered at several detectors.

Consider the conditional probability p, (t I t+r) Dr
that a photoelectric count will be registered in the time
interval t+r to /+~+57, given that one has been regis-
tered at time t and that the field is stationary. From
the definition of conditional probability Lcf. Kendall
(1952), p. 16/) it follows with the help of (6.4) that

&Il) &I2)L1+ I
'r" "12(r, r, r) I') (6.23)

where yi' ')12(r, r, r) is the normalized cross-correla-
tion function of Vi(r, t) and V, (r, t+r). If the polari-
zation components obey the cross-spectral purity con-
dition" (cf. Sec. 5.5)

yu 1)12(~)—yo, ))12(0)P(1,1) (~)

""12(0)y" "22(r) =—y" " (0) r" "(r)
(6.23) becomes"

(Ii(r, t)I2(r, t+r) )

= &Ii)(I2)L1+ I
V" "12(0) I'

I
V" "(r) I') (6.24)

Hy writing

I(, 3) =I,(, t) +I,(, ]),

and using (6.24), we can express the autocorrelation
of the total intensity in the form Lcf. Mandel and
Wolf (1961b))

+2&Ii)&I2)L1+ I7""12(o) I'I V" "(r) I'). (6.25)

Until now the axes of the orthogonal polarization
components Vi(r, &) and V2(r, )') have been arbitrary,

"For the sake of brevity we shall sometimes suppress the
space coordinate r.
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nd it is clear from the nature o qof e uation (6.25) that
be independent of the c oicethe correlation must e in ep

(W lf 1959)

Born and Wolf (1964), p. . i
immediately reduces to

(I(r, t)I(r, t+r) )

» t))'L1+l(1+&') Iv""(r, r, ) I'j, (626)7

and (6.22) becomes

1.0

n of density D(r) zn a Bose-Einstein gasz. 3. T v o o sy
with distance r from g', n e

de Broglie wavelength at 2'e. (After F. London 1

p, (t I
t+r)dr=re(I(r, t) )

+=AytX2

p, (t/t+z-)/~y

hotons wit e sh th arne momentum fik. It is worthp
noting that spatia c us er''

1 1 tering distributions of the form
F' 12 are well known for a photon gas in

mal equilibrium I Kothari and Auluc (

shown in ig.
ck 1957

XI1+-', 1

l Uhlenbeck and Gropper (193 ); Lo donh. an enhanced probabilitywe see that t ere is an
1943) . This is i us ra e

d t D, ) t d t fomean partic e ensi y
3

iH a wHko
%thong, p

t the rate of "coincidence countsto an enhancement in e rh 1 t ns and not of the photons,erties of the photoe ectrons an
recorde y two p o od t the emission of a photo- t p o o two

; h aft 0th o1 p
d of course interpre

artially co eren
similar beams o po arize

I t, dI (t)
' 'ds intenb toFigure 12 s ows e

fed to a coinci ence circui o'a ' t of resolving time T, which
~ ~ ~

p. (t I
t+ )

ives an output only if the two pulses arrive within a
of 6.4 the coincidence rate

'
ed thermal lignt aving a al ~T. yn v, ew o ( )clusterin ~ ~ ~le. We note that there is a maxim

lT

(I (t)I (t+ ))«.he anal sis of Dicke (19 4~ o e

~ ~ ~
rocess in an excite gas, w ic

By an argument simi art '
ilar to that used in deriving Eq.htosad

f the emission of successive
ion in the emission o p o ons a

(6.27) we n c .
' Sillitto

enhanced probability for t e emiss
and Twiss a,
(1963)j
R=RiR2TL1+ I

7o '&(ri, r2, O) I2((T)/Tj (6.28)

2.0 where Rg an g ared R the separate counting rates of the
two detectors and

I,O

~sT

2
I
v" "(ri, », r) I

&r. (6.29)

[ I

0.2
= Thv

OA 0.6

t 7. for aF . 12. The conditiona prol robability density P,
Gaussian spectral prohle of rmswit v.

(1963 dl.]

The first term on the right of Eq. (6.28) represents the

'1 h d is attributable to the bunching prop-
all

for T))r, (in which case&(T) f'(co) =r,
I
cf. (6.14))),

whereas t e woth t o are comparable when T«7-, and
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FIG. 14. The apparatus used for
the demonstration of excess counting
coincidences EAfter R. Q. Twiss and
A. G. Little (1959).]

n U(rt, », r) l=1 (in which case I (T) T). The
enhanced coincidence effect will therefore be detect-
able only with circuits having high time resolution and
light beams of extremely narrow bandwidth. It is
significant that the erst attempts to record excess
counting coincidences with partially coherent light
beams failed through having too small a factor f (T)/T
LAdam, Janossy, and Varga (1955a, b); Brannen and
Ferguson (1956)), although the first one was ad-
mittedly more concerned with the beam splitting
action of a half-silvered mirror than with the bunching
phenomenon I

see also, Hanbury Brown and Twiss
(1956c); Z. Bay and P. S. Farago (1963)$. The prac-
tical problem of measuring counting fluctuations has
been discussed by Alkemade (1959).

The first successful demonstration of the excess
counting effect was reported by Twiss, Little, and
Hanbury Brown (1957) l

see also Twiss and Little
(1959)j with the apparatus shown in Fig. 14. By using
light from a low pressure Hg"' isotope gas discharge
having a coherent time of about 0.7)&10 ' sec and a
coincidence circuit with resolving time T 7&10 '
sec, they were able to realize a factor

I
&tt &(r„r„o) lsi(z')yr-o. o4.

The experiment has since been successfully performed
by others LRebka and Pound (1957); Brannen, Fergu-
son, and Wehlau (1958);but see also, Janossy, Naray,
and Varga (1961)).

As the conditional counting probability p, (t l t+r) dr

contains information about the degree of polarization
of the light and about the spectral distribution, direct
measurements of the interval distribution between
counts might be thought to be worthwhile. In par-
ticular, when the spectrum of the light becomes too
narrow to be readily resolved by the usual spectroscopic
techniques, the time resolution called for in measuring

l
&&' '&(r, r, r) l

becomes relatively modest. The prob-
lem of recovering the spectrum from a knowledge of
l
y" "(r, r, r) l

has been discussed in Sec. 5.3 and a
scheme for measuring p. (t l t+r) directly has been
proposed by Mandel (1963b) Lsee also, R. M. Sillitto
(1963)$ and is shown in Fig. 15. Tn this arrangement
the coincidence circuit counts only when two pulses
appear separated by a preselected time delay r, which
can be varied, and p, (t l t+r) can then be determined
from a series of measurements with different z. An
experiment of this kind has also recently been reported
by Martienssen and Spiller (1964), who used an arti-
ficially degenerate "pseudothermal" light beam, pro-
duced by moving a ground-glass screen in front of a
gas laser.

6.4. Intensity Correlations and Correlation

Interferometry

Ke have already seen that two partially coherent
light beams incident on two photodetectors will in
general lead to counting "coincidences" in excess of
those expected from random events. Historically the
correlated emission of photoelectrons was first demon-
strated by Hanbury Brown and Twiss (1956a) in the
form of a correlation between the two photocurrents

188
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FIG. 15. Outline of the apparatus for measuring the time inter-
val distribution of photons. EAfter L. Mandel (1963b).]

FIG. 16. The apparatus used for the demonstration of correla-
tion between the intensity Quctuations of partially coherent light
beams. (After R. Hanbury Brown and R. Q. Twiss (1936a).]
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treated as continuous signals. Their apparatus is shown
in Fig. 16. Light from a mercury lamp was divided
into two beams by a half-silvered mirror and fell on
two photocells, whose outputs were sent through band-
limited amplifiers to a correlator. The experiment has
recently been repeated by Martienssen and Spiller
(1964) with the help of their "pseudothermal" source.

Consider a system of E detectors illuminated by
beams of partially coherent light. Let suKxes i = 1 ~ ~ ~

E label the N channels. If e; is the number of counts

registered by the ith detector in a time interval from
t to t+ T, then, from a generalization of the argument
leading to Eq. (6.6), we find that

rt, )n, U, (T, t))"'
exp —n.,U, (T, t

i=1

where the angular brackets denote the ensemble
average. With the help of (6.6) and a property of the
Poisson distribution, this may be shown to reduce to
$cf. Mandel, Sudarshan, and Wolf (1964)7

=Ago!2' ' 'A~

t+T

(Il(ri, tl)I2(r2 t2) ' ' 'IN(rN tN) ) dtl dt2' ' 'dtN

=a~a.2 n~ jul, ,jz,jx,js, ',jz(rip r2y ' ' 'y rNl rid r2y~ ~ ~ ~

~

~ ~ ~ ~

21 22

ti, t2, ' ' ', tN, ti, t2, ' ', tN) dti dh2' ' 'dtN, (6.30)

U, (T, t) = I;(t') dt' (6.31)

be the integrated classical intensity at the ith detector.
Then we can write (6.30) in the form Lcf. Mandel,
Sudarshan, and Wolf (1964))

=n,n2 ~ nN(U~ ,(T) t) U2(T, t) ~ ~ ~ UN(T, t) ), (6.32)

or, on introducing the deviations d,rt; = rt; (22;), —
AU;= U;—(U, ), and making a multinomial expan-

where 0.~, 0,2, etc., are constants representing the photo-
efficiencies of the E photodetectors. Thus the S-fold
correlation of the counts is entirely determined by the
22Vth-order correlation function of the field. We can
also express this result in another form. Let

sion, we can write

(~221+122' ' '~rtN) nln2' ' nN(~'U1~U2' ' 'It UN).

(6.33)

Thus the correlations of the photoelectric counts could
be described as having their origin in the correlations
of the integrated classical intensities. A somewhat
different point of view of these correlation effects, re-
lated to the approach of I'ano (1961), has recently
been presented by Goldberger and Watson (1964a, b).

The foregoing relations are quite general and hold
for light beams from any source. However for stationary
thermal light beams, for which the random process
V(r, t) is (complex) Gaussian, it is well known Lcf.
Reed (1962);Mehta (1965b), p. 398) that 1'tN N& is in
general expressible in terms of products of second-order
correlation functions. In particular, when there are
just two detectors, and the following strong conditions
for cross-spectral purity hold

jlj2(rl r2 tl h2) p jl(rl) Iss (r2) ) Y jlj2 (rl rl 0)p j1 jl (rl r2 0) r jlj1 (rl 'rl tl t2)

'Y jl j2( 1& rid 0) 7 ' jlj2( 21 21 ) )

(rl r2 0) =y&"& „(rl r2 0)

=ainu(rl

r2 0)

(6.34)

we can use a simple generalization of relation (6.26) obeys the inequalities Lcf. Mandel (1958, 1959))
in (6.30) to yield

6(T) &T
(ass,an2) =-2'(1+I")(22, ) (n2) ~

y~"&(r,, r, , 0) ~' g(T)/T.

(6.35)
5(T) &k(~), (6.37)

The time
T/2

p(T) = T '
~

y&' o(rl, rl, tl —t2) ~' dkl dt2

-r/2

and P(~), which may be shown to be identical with
the expression for r, given by (6.14), can be interpreted

(6.36) as the coherence time of the light. The relation (6.35)
is the equation describing the Hanbury Brown—
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C

I IG. 17. Schematic
diagram of the stellar
intensity interferom-
eter: A, mirrors; B,
amplifiers; C, multi-
plier; M, integrator; P,
phototubes; r, delay
line. t'After R. Hanbnry
Brown and R. Q. Twiss
(1958a).g

Twiss effect with thermal light. In practice the cor-
relation is usually measured as in Fig. 16 by feeding
the currents from two photoelectric detectors through
two bandlimited ampli6ers to an electronic correlator.
nt and Ns are then proportional to the signals Sr(t)
and Ss(f) in the two correlator channels, and 2' plays
the role of a "resolving time" or reciprocal pass band-
width Lcf. Hanbury Brown and Twiss (1957a); Mandel
(1963d)].When T is much smaller than the coherence
time of the light, it is easy to show that the following
slightly more general correlation between S&(t+r)
and S,(f) holds:

Shortly after the successful demonstration of the
existence of an intensity-correlation eAect, Hanbury
Brown and Twiss (1956b, 1958a, b) succeeded in

applying the correlation technique to the determina-
tion of the angular diameter of the star Sirius. Their
apparatus, which has been called a stellar intensity
interferometer, is illustrated in Fig. 17. It bears a
certain resemblance to the Michelson stellar inter-
ferometer (see Fig. 8), but is based on the correlation
principle. The light from the star was focused by means
of two large reflectors onto two similar photomultipliers,
and the correlation of the output currents was examined
for diferent separations of the detectors to yield

~
y&"&(rt, rs, r) ~. This in turn allowed information

about the intensity distribution of the source to be ob-
tained Lcf. Eq. (5.10)). More recently a large stellar
interferometer of this type was built at Narrabri,
Australia LHanbury Brown (1964)j. It can operate
with a base line up to 600 ft, about 30 times longer
than that utilized by Michelson and his collaborators
in the original version of their interferometer. Kith the
Narrabri instrument, diameters of certain types of
stars (brighter than magnitude +2.5 and with spectral
type earlier than F.O.) can be determined, down to
angular diameters of about 0.0005 sec arc. First pre-
liminary measurements of the diameter of a-Lyrae,
were recently reported LHanbury Brown, Hazard,
Davis, and Allen (1964)j.

It is an important feature of the technique that the
measurements are based on the photoelectric signal
S(t), which depends on the slowly varying instantan-
eous intensity I(r, f) rather than on the rapidly vary-
ing complex wave amplitude V(r, t). For this reason
small variations of optical path difference, e.g. , due to
atmospheric fluctuations or mechanical disturbance
of the detector, do not affect the measurements,
whereas they may be intolerabl. e for the Michelson
stellar interferometer. On the other hand, we note
from equations (6.35) and (6.38) that the phase of
y" "(rt, r2, r) cannot be obtained directly.

A mathematical approach to the derivation of the
phase through the analytic properties of p&''& has
already been described in Sec. 5.3. An alternative ap-
proach, in which two coherent light beams of known
spectral distribution from an independent source are
superposed on the two beams to be correlated, has been
suggested by Gamo (1961)."Although the correlation
of the photoelectric counts can in this case be made to
yield information about the phase of p&'"(rt, rs, r),
the method suffers from experimental diQiculties of
the kind that surround the Michelson interferometer.

More recently Gamo (1963a, b) has proposed a three-
point intensity correlation method for the determina-
tion of the phase of y"'I (rt, rt, r) for which he suggests
the arrangement shown in Fig. 18. A stationary
collimated beam of polarized thermal light is split;
into three beams by partly silvered mirrors. The
beams fall on three photodetectors in such a way
that the optical path is the same for all three beams,
and the photoelectric signals are passed to a triple
correlator via delays v- and 87- as shown. If suffixes

Col L I MAT E D
BEAM

BI hI,

I3T

DELAY LINE

J MULTI- INTE- I
PLIER GRATORJ

/4

'2This technique, referred to by Gamo as the method of the
coherent background must not be confused with another technique,
also known by this name, due to.1Zernike". (1948). In Gamo's
method the two "background beams, " though coherent with re-
spect to each other, are incoherent with respect to the main beams
onto which they are superposed. In Zernike's method the back-
ground beam and the main beam are coherent with respect to
each other. Zernike's method of the coherent background is
utilized in his phase contrast technique of observation in a micro-
scope and in Gabor's technique of imaging by reconstructed
wavefronts Pcf. Born and Wolf (1964),Sec. 8.6 (c) and Sec. 8.10$.

PHOTODETECTOR DELAY LINE

Fio. 18. The apparatus relating to a proposed triple correlation
experiment for the determination of the phase of y('»(r, r,~).
)After H. Ganm (1963a).j
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1, 2, 3 refer to the three channels, and the resolving time of the correlator is su%ciently short, the triple
correlation of the photocurrent Quctuations will be proportional to

C= (aI, (t+T) aI, (t+T DT)—aI, (t) )
=F ' (rl~ r2~ r3q rl) r2~ r3) t+T) t+T 5T) t j t+T) l+T 8T) t)

—(I;)(I,)(I,)—(I,) ~

1 ~'»(r„r„r„r„t+. S.,—t; t+.—S, t)
~

—(I2) I
r&2»(r„r„. r„r, ; t, l+T; t, t+T) I2

—(I3)
~

I'&22&(rl, r2,' rl, r2, l+T, t+T 6T,' t+—T, t+T 8T) —~2. (6.39)

Kith the help of the moment reduction formulas for
F&'@ and F~2 2& for a complex Gaussian random process
fReed (1962); Mehta (1965b), p. 398$, in the limit of
very small 67. this reduces to

&Q(T) Ldg(T) /dT j—22rpo. (6.42)

Since Q(T) can be obtained experimentally from
measurements of C, it follows that @(T) can be derived.
Note however than an ambiguity in the sign of Q(T)
still leaves a certain ambiguity in @(T),which can o»y
be resolved by additional measurements.

The method is interesting in that it furnishes one of
the very few proposed applications of sixth-order cor-
relation functions of the field.

7. TRANSIENT SUPERPOSITION EFFECTS

All the interference e8ects treated in Secs. 3 and 5

can be described in terms of the averaged light in-

tensities at different space-time points together with

the second order correlations. However, there remain

a number of transient phenomena associated with the
superposition of light beams, which are observable
even with completely independent beams, and are not
readily describable in this way. Although the term
interference is applied to them, we shall see that in

general these phenomena involve the fourth-order
correlations of the combined field.

The light beats obtainable with quasimonochromatic
beams of slightly different center frequencies are

perhaps the best known example of the effects we wish

to discuss here, and will be described 6rst. These beat
effects must be clearly distinguished from the light
beats observed by Brossel and Bitter (1952), Dodd

C=2(Il)(I2)(I3) ~

y&' '&(T) ~2cos LQ(T) &j, (640)

where

+Q(T) bT =y(T) y(T ST—) y(—ST), —(6.41)

snd p(T) is the phase of the normalized autocorrela-
tiOn funCtiOn y&"& (T) . NOW, fOr Small 8T, p(5T) = 22rveeT

fcf. Eq. (3.26) j, where 33 is the midfrequency of the
light, so that (6.41) becomes

el al. (1959) Lsee also Colegrove et al. (1959);Franken
(1961);Dodd and Series (1961);Barrat (1959a, b, c,
1961);Cohen-Tannoudji (1961a, b) j, under conditions
of induced coherence, for example when two, initially
independent, atomic states are coupled by an oscillating
magnetic field.

7.1. Light Beating EGects between Indeyendent
Beams

The erst demonstration of beats resulting from the
superposition of incoherent beams was given by
Forr ester, Gudmundsen, and Johnson (1955),
made use of the two spectral components of a Zeemann
doublet. Their apparatus is shown in Fig. 19. The
photoelectric detector was in the form of a resonant
cavity tuned to the Zeeman diQ'erence frequency, and
they succeeded in obtaining an acceptable signal-to-
noise ratio only by severely restricting the response
bandwidth of the detector. Indeed it is remarkable
that the experiment succeeded at all, for it was carried
out with nondegenerate light. The mean number of
photons received on a coherence area, in the time for
which a steady beat is expected to persist (the co-
herence time), was much less than 1.

With the development of the laser, which produces
light beams for which the degeneracy parameter 5
may easily be in excess of 10" Pcf. Mandel (1961a)g,
such beating experiments became much easier to per-
form. Figures 20 and 21 show the apparatus used by
Javan, Ballik, and Bond (1962), and Lipsett and
Mandel (1963, 1964a), to determine the coherence times
of the He.'Ne laser and the ruby laser, respectively, by
superposition of beams from two independent sources.
Several other workers LHerriott (1962); McMurtry
and Siegman (1962)j have used the alternative tech-
nique of beating together two or more modes of the
same laser, although the statistical independence of
the beams is then somewhat questionable (cf. Paananen,
Tang, and Statz (1963); Lamb (1964); Haken and
Sauermann (1963)j. The different experiments have
been discussed by Forrester (1961a, b), McMurtry
(1963), Lipsett and Mandel (1963, 1964a, b).

The superposition eGects are readily described in the
classical terms of Sec. 3.1. If Fig. 3 represents the
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Eq. (3.7) becomes

I(r, t) =It (t—tt) +Is(t—ts) +2t Ir (t—tr) Is(t —ts) )l

X cos (2s (vs —vt) t+2s. (vttt —vsts)

+4'2(t ts) $1(t—tt) ). (7.2)

Now the response S(t) of the photoelectric detector
in the receiving plane may be expressed in the form
(cf. Sec. 6.1)

I, F, A MP.
ago

OE T. S(t) =n I(r, t) dr, (7 3)

ME TER AM P. J
SIGNAL OUT P UT

45 GPS

AMP,

L 0 MONITOR

where 0. is the quantum efficiency, and the integral

FIG. 19. The apparatus used for the demonstration of beats
resulting from the superposition of incoherent beams. /After
A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson (1955).g

experimental situation, then the instantaneous intensity
at the point of superposition I'(r) of the two polarized
beams will be represented by Eq. (3.7). However, in
this case we cannot expect the ensemble average, given
by equation (3.8), to describe the experimental situ-
ation in which the detailed behavior of the instan-
taneous intensity is measured. Indeed the ensemble
average of the last "key" term of (3.7) vanishes for
incoherent beams. If It(t) and pr(t), etc. are the in-
stantaneous intensity and phase of E&V(r&, t), etc.
we may write
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ICtV(rt, t) = [It(t) ]l exp L2rivtt+iIt t(t) ]
KsV(rs, t) = LIs(t) 3' exp L2rivst+ips(t) j,

(7.1)
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where vI and v2 are the midfrequencies of the two
quasimonochromatic beams. With the help of (7.1)

(b)

Pro. 21. The apparatus employed for observing beat signals
between two optical maser (ruby) beams. (a) Over-all arrange-
ment of the system. (b) Block diagram of the beat detection
system. )After M. S. Lipsett and L. Mandel (1963).g
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is to be taken over the surface 0 of the photocathode.
In the evaluation of the integral with the help of (7.2)
we shall assume that the "sources" P~ and P2 are at
a great distance from P, so that the wavefronts at the
receiver are practically plane and that the intersections
of all three planes can be colinear. Let 8~ and 8~ be the
angles of inclination between the two wavefonts and
the receiver, which we tak.e to be of rectangular di-
mensions a)&b for simplicity. Then we may simplify
(7.3) to

FIG. 20. The apparatus employed for observing beat signals
between two optical maser (He:Ne) beams. I After A. Javan,
E. A. Ballilr, and W. L. Bond (1962).g

a

S(t) =nb I(x, t) dh,
0

(7 4)
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lr ——rr+(x/c) sin 8r,

Is= rs+ (x/c) srn 8E,

(7 5)

where x is a coordinate defining position across the
photocathode in a line normal to the intersection of the
wavefronts. Evidently
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where

+4+4 (l r) 4—(l —rr) j, —(7 6)

where rr and rs are constants. Now Ir(l), ls(l) and

gr(t), @&(l) are slowly varying functions [cf. Born
and Wolf (1964),p. 496$. If (a/c) sin 8r and (a/c) sin 8,
are much shorter than the coherence times of the two
beams, both Ir(t —tr) and gr(t —fr), etc. , will remain
constant under the integral (7.4). We then arrive at
Lcf. Lipsett and Mandel (1963)$

$(l) = Sr(l)+Ss(l)+2LSr(f) Ss(f))'(»n 0/0)

&& cos $2Tr(vs —vr) l+2Tr(vrrr —vers)

PHOTO-
DETECTOR

POWER SUPPLY
AND TRIGGER UNIT

FOR OPTICAL MASER

I"ro. 22. Outline of the apparatus used for recording transient
interference fringes.

I
After G. Magyar and L. Mandei (&963).j

field. However it is one of the attractive features of the
classical description that the operation of averaging
can be avoided very easily.

P= (Tra/c) (vr sin 8r —vs sin 8s), (7.7)

and the photoelectric signals Sr(t) and Ss(t) are those
due to the separate light beams. We see that, for a time
short compared with the coherence time, the photo-
electric signal will carry a steady sinusoidal modula-
tion at the difference frequency v2 —vj, of relative mod-
ulation amplitude

2 srn II

LS,(l)/$, (l)]'PPS, (l) /Sr(f) g-'*

To ensure an appreciable modulation it is evidently
necessary to make P small. For small angles 8r and 8,
and nearly equal frequencies v& and v2 this implies that

(Trav/c) (8r —8,) (&1,

or that the two wavefronts have to be aligned to within
a fraction of a wavelength within the width a. This
suggests that an autocollimator is needed for the
alignment of the two laser beams. The beat note will

remain steady as long as Sr(t), $&(l), Pr(t), Ps(l) re-
main constant and, in the absence of other effects, the
duration of a 'steady' beat note is a measure of the
coherence time. Moreover, the spectral excursion of
the beat note over a long time is a measure of the
spectral width of the light beams.

We stress once again that Eqs. (7.2) and (7.6)
refer to instantaneous values, or to single members
of the ensembles of fields and photoelectric signals.
Because the phase angles Pr(l) and Ps(t) are randomly
distributed over 0 to 2Tr, the ensemble average of $(l)
does not show any sinusoidal dependence on t, and
gives no indication of beats. The description of the
phenomenon in terms of ensemble averages is not
quite so direct, and will be given later for the quantized

V.2. Interference Fringes Produced by Independent
Beams

It is possible to think of interference fringes as
"beats" in the spatial domain, and to describe them
by the same mathematical relations, such as equation
(7.2), that were used in the previous section. Ezperi-
rnentally the phenomenon is very different however.
It is significant that the interference analog of the ex-
periment of Forr ester, Gudmundsen, and Johnson
(1955) has never been carried out with nondegenerate
thermal light, although the possibility has been dis-
cussed t Mandel (1960, 1961b, 1962b; Neugebauer
(1962)$. The development of the laser made the ex-
periment feasible, and by using laser beams, Magyar
and Mandel (1963, 1964) succeeded in recording
fringes in the visible. "' The outline of their apparatus
is shown in Fig. 22. It is not diS.cult to see why a
large value of the degeneracy parameter 8 is so im-
portant in these experiments. For the number of
photons dehning the interference pattern in the re-
ceiving plane in a time less than the coherence time
has an upper limit of 8. When 8«1 it is hard to think
of interference fringes at all.

As in the previous section, the instantaneous light
intensity at each point in the receiving plane is ex-
pressed by equation (7.2), with tr and f, given by (7.5) .
The receiver is now in the for'm of a photoelectric image
detector, such as a photographic plate or an image tube,
which resolves the pattern in space but integrates over

32a An analogous experiment has recently been carried out by
Martienssen and Spiller (1964), who used a degenerate "pseudo-
thermal" source consisting of a gas laser and a moving ground-
glass screen.
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S(x, t, T)=o.

time. If T is the exposure time, the effective signal re-
corded at the point with coordinate x will be

5+r
I(x, t') dt'. (7.9)

In practice T will usually be made small compared
with the coherence time r, . With the help of (7.2) and
(7.5), and with the same restrictions on the size and
inclination of the receiver as before, (7.9) becomes

t cf. Magyar and Mandel (1963, 1964))

S(x, t, T) = Si(t, T)+S,(t, T)+2t Si(t, T) S2(t, T))'* )sin gr(v2 —pi) T/~( p2—pi) T)
X cos L2m-(v2 —vi) (t+-,' T) +27r (x/c) (vi sin Oi —vm sin 0,)

+2vr(viri —v2r2) +rti2(t r2) ——yi(t —ri) ). (7.10)

Thus S(x, t, T) is a cosine function of position x, and the recorded signal will show a spatial modulation in
the plane of superposition, which we interpret as interference fringes. For small 0& and 02 and nearly equal v&

and v2, the spacing of the fringes in the receiving plane will bee/vi(ei —02), exactly as for coherent beams. The
visibility of the ringes is LEq. (3.22) )

2 Sin 7I (v2 —pi) T'0—
LS,(t, T)/S, (t, T))-:+CS,(t, T)/S, (t„T))-: .(„—„)T ' (7.11)

and this has its maximum possible value 1 when
Si(t, T) = S2(t, T) and the exposure T«1/~ v2 —vi ~.

However if the sources are independent, and there is
no close control over the midfrequencies v& and v2 of
the two light beams, the visibility may never approach
its maximum value, even though T&&7-,. Because the
phase angles P&(t) and p, (t) are randomly distributed
over 0 to 27'., the positions of the fringe maxima and
minima cannot be predicted beforehand. This feature
is one that sharply diGerentiates the above phenomenon
from conventional interference. The simplicity of the
foregoing treatment is again due to the avoidance of
the operation of ensemble averaging, which would
eliminate the modulation term from equation (7.10).

There is another superposition eGect, already re-
ferred to in Sec. 5.5, which is only distantly related to,
and occasionally confused with, the foregoing. It has
its origin in an experiment first performed to determine
the velocity of light LAlford and Gold (1958)), and
has been called the Alford and Gold effect Pcf. Givens
(1961a, 1962); Mandel (1962a); Paul (1963)). It
occurs with (second-order) coherent or partially co-
herent light beams, when the optical path difference
at the superposition plane greatly exceeds the coherence
length. Under these conditions interference fringes are
not normally observed, and one may easily be misled
into believing that the two beams have no second-order
coherence (cf. Sec. 5.5).

However, although the ensemble average of the re-
sultant light intensity is constant over the receiving
plane Pcf. Eq. (5.35)), the spectral density shows a
sinusoidal modulation given by Eq. (5.33). The phase
of this modulation depends on the optical path di6er-
ence, and therefore on the position x in the receiving
plane. If the receiver is a photoelectric detector re-
sponding to the light intensity in the immediate
neighborhood of x, the beats between different spectral

components may show up in the photocurrent. It then
follows that the output of a sharply tuned filter (of
passband 8v«c/optical-path difference) following the
photodetector will vary sinusoidally with x. An ob-
server measuring this output may conclude that the
detector is registering interference fringes in the re-
ceiving plane, although the ensemble average of the
light intensity is constant in this plane.

7.3. The Quantum Theory of Transient Superposi-
tion EGects

We have already shown in Sec. 3.2 that a descrip-
tion of ordinary interference eGects may readily be
given in terms of the quantized field, and that it follows
the classical treatment fairly closely. It might there-
fore be thought that the transient superposition effects
discussed in the last two sections can also be described
quantum mechanically, in a closely parallel manner.
However, here we come up against the basic feature
that quantum mechanics is always concerned with ex-
pectation values of observables, whereas the calcula-
tion of expectation values was deliberately avoided in
the simple treatment leading to Eqs. (7.6) and (7.10).

Of course it might be argued that any difhculty can
be avoided by considering only pure "coherent" states

~
Isj...I) of the radiation field, which are eigenstates

of the annihilation operator Ai+&(r, t) Lcf. Eq. (3.46))
corresponding to the desired eigenvalue V(r, t) in the
classical description. Such an approach has already
been used [Paul, iBrunner, and Richter (1963); Paul
(1964); Mandel (1964b)). However, these states do
not describe fields encountered in practice and it is
easy to show that there are other quantum states of
the field for which the approach fails to give any indi-
cation of interference effects. The problem has recently



been considered in some detail by Richter, Brunner,
and Paul (1964).

Consider two radiation fields in pure states of
the kind

~

{v'1, ,} ) and
~

{v"1...} ), corresponding to t.he
classical complex amplitudes

V'(r, t) = p(hc/kL2) 'v'1, ,22, , exp Li(k r—ckt) ],
k, s

V"(r, t) = P(hc/kL2) '*v"1...21, , exp Li(k r—cB)).
k, s

(7.12)

If we assume that the two 6elds do not share any com-
mon k, s modes, the state of the combined 6eld will

be represented by

&ks & ks

The expectation value of the total intensity at the
space time point I, t in the combined field will then be
given by Eqs. (3.50) and (3.52), with the "density
matrix" C({v'2,}, {v"2,}) diagonal. These equations
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then reduce to

(I(r, t) )

={V""(r, t)+V"'(r, t)].LV'(r, t)+V"(r t)]
(7.13)

and the subsequent argument becomes identical to
the argument of Secs. 7.1 and 7.2. Ke again And an
almost periodic dependence of (I(r, t) ) on t (beats)
and r (fringes).

However very different states of the quantized fmld

lead to very different results. Consider two energy
eigenstates of the field

~

{22'1...}) and
~

{22"1...}), cor-
responding to {n'1...} and {22"1...} numbers of photons
in momentum —spin states k, s, etc. With the simplifying
assumption that no k, s modes are common to both
fields, the state of the combined Geld is represented by

~

{22'1...})~
{22"q,,}).The expectation value of the in-

tensity can again be obtained from equation (3.52)
with the help of explicit expressions for the density
matrix C({v'1, ,}, {v"q,,}) LSudarshan (1963a, b); see
also, Appendix to the present article]. However, it is
easier to proceed directly from the definition

(I(r, t) )=({~".. } I
({~'..} I

A' '(r, t) (A'+'(r, t) I
{~'2,'}) I

{12"~k,.}), (7.14)

and the expansion (3.40), together with the relations

{ cf. Messiah (1961),p. 436)

&», I
{~'~, })I

{I"~,})
=(~'k, )'l~'~, —1) II I22'2, )l~"2, )

k, s&kl, s1

if k„s, is a mode of
~

{22'„,,} );
= (~"», 1) '

I
~"», 1

—1) II I
~'~, ) I

~"~, )
k,s+k],S1

if kl, s, is a mode of
~

{22"2,,} );

As the detection of a spatial interference pattern, or
a beat effect in time, necessarily involves intensity
measurements at two or more space —time points, it is
natural to examine intensity correlations Lcf. Mandel
(1964b)). Consider two space —time points rl, tl and
r2, t2. If I(r, , tl) and I(r2, t2) are the total intensities,
summed over all polarizations, of the combined field
at these points, then the ensemble average

(I(rl, tl)I(r2, t2) )
= Tr LpA'

—'(r, , tl) A&—~(r„ t2):A&+1(r,, tl) A&+&(r2, t2) ),
=0, otherwise. (7.15) (7.17)

As the states
~

22'2, ) and
~

22'2, ,,—1), etc. , are orthogonal,
the expansion reduces to

(I(r, t) )= Q(hc/kL2) (22'g, +n "2,), , (7.,16)
k, s

which does not depend on r or t. Equation (7.16) there-
fore gives no indication of any transient interference
or beat effects in the superposition of two light beams.
However, this conclusion does not imply that the effects
are absent, but only that the expectation value of the
light intensity is not an appropriate quantity for their
description, as we noted earlier. Vet the averaging
operation is here unavoidable.

where the colon signifies the scalar products between
the first and third and the second and fourth operators,
respectively. If we again make use of the universal
"diagonal" representation of the density operator p
LSudarshan (1963a, b); see also Appendix to the present
article] as in Sec. 3.2 and 4.3, together with the as-
sumption of non-overlapping modes, and express the
statistical independence of the two superposed light
beams in the form

C'({v'j,.} {v"2,.})= C"({v'1,.})C'"({v"1..}), (7 1g)

we arrive, by the same argument as previously, at

(I(r„ t,)I(r„ t,) )
= (LV (rl, tl) +V (rl tl) )LV (r2 t2) +V (1', t )].LV (rl, tl) +V (rl tl)){V (r2 t2) +V (r2 t2) ]).

(7.19)
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In this relation V'(ri, ti) and V"(ri, fi), etc. , are the complex classical field amplitudes at ri, ti, etc. , due to
the separate beams, and they are statistically independent. Of the 16 terms resulting from the expansion of
(7.19), ten vanish, if we make the usual assumption that the phases of V(ri, ti}, etc. , are randomly distributed
over 0 to 2z. The remaining terms simplify appreciably if

I r2 —r, I&(1/Ak and
I 4—4 I(&1/cAk,

where cAk is the total frequency spread over both beams, which are assumed to be quasimonochromatic.
If, in addition, each beam is polarized, and all the Fourier components of the same beam have the same
polarization vector s', or s", [cf. Messiah (1962), p. 1032$ it may be shown that [cf. Mandel (1964b) $

(I(ri, ti) l(r~, t~) )= (I"(ri, ti) )+ (I"'(ri, 4) )+2 (I'(ri, ti) ) (I"(ri, ti) )

&&I1+ I
s* e I'cos[(k', —I",) ~ (r,—r,) —c(k',—k",)(t,—t,))I. (7.20)

k'o and k"o are here the mid-wave vectors of the two
beams. Thus, over a limited space —time region, the in-

tensity correlation shows a sinusoidal dependence on
space and time, which can be interpreted both in
terms of interference fringes and light beats. The
periodicity is found to be the same as in Secs. 7.1 and
7.2. We note however that the positions in space —time
of the modulation maxima and minima are not given
by (7.20). They are of course randomly distributed
for statistically independent light beams, as we have
seen already. In so far as the equation (7.20) describes
the intensity correlation at two space time points, the
above theory is formally somewhat similar to the theory
of the Hanbury Brown —Twiss effect in a partially
coherent field. (cf. Secs. 6.3 and 6.4). The effects are
however very clearly distinguished experimentally.

Discussions of both the experiments and theory on
the transient interference effects are sometimes di-
verted by a remark of Dirac (1947, p. 9) that ".. . each
photon interfers only with itself. Interference between
different photons never occurs. " Although this state-
ment appears to contradict the effect we have been
discussing, it can nevertheless be given a meaning. We
may think of the detection (of localization in space—
time) of a photon as a measurement that forces the
photon into a superposition state in which it is partly
in each beam. It is the two components of the state of
one photon which interfere, rather than two separate
separate photons. Of course, the concept of a photon is
not helpful in understanding this experiment.

8. CONCLUSIONS

We have shown that the current theory of coherence
is capable of describing a very wide class of optical
phenomena, ranging from interference patterns to high-
speed photoelectric correlations. Moreover we have
seen that in most situations considered so far, those
coherence properties of the quantized field which are
exhibited in experiments with photoelectric detectors
may be described by a semiclassical theory. In this
theory, the field is described classically, but the photo-
electric interaction is treated quantum mechanically.

The results appear to be identical with those of the
quantized-field theory for first-order processes, as long
as the inRuence of the measuring apparatus on the
field may be neglected. The semiclassical theory is,
therefore, likely to be adequate for the description of
most macroscopic effects. [In this connection see also
the articles by Jaynes and Cummings (1963) and
Senitzky (1965)]. These remarks do not imply that
situations do not exist for which the semiclassical
theory is inadequate, but only that such situations are
the exception in the optical domain.

The detailed description of the fluctuation properties,
implicit in the higher order correlations of the field,
has as yet had very little experimental confirmation,
as we have indicated. This is an area where further in-
vestigation is obviously very desirable and likely to
be most fruitful.

APPENDIX

In this Appendix we will brieRy consider the pos-
sibility of representing any density operator p in the
symbolic "diagonal" form (4.9) of Sudarshan"
(1963a, b).

I et us consider first a system with only one degree
of freedom and let p(e, m) be its density matrix in the
Fock representation, i.e.,

p= p s, 5$1b m,
n=o m=o

(A1)

"A possibility of such a representation in some cases has been
noted by Glauber (1963 c, Sec. 7).

where
I
e) is the eigenstate of the number operator

a~a, d is the annihilation operator and a~ the creation
operator ([a, Itj= 1) .

Let
I v) and (v I

be the right and left eigenstates,
respectively, of the annihilation and the creation
operators,

(A2)

((v
I
v)=1). These eigenstates may be expressed in

terms of the basic vectors of the Fock representation
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Consider next the operator

I v) = Q exp (—-',
I

v I') Lv"/(re!) l]
I re),

n=O
(A3)

C'(v)
I v&(v I

d", (A5)

(v I

= Q exp ( —-',
I

v I') Lv*"/(n!) i] (m I. (A4)

(A6)

' p(re, m) (rv!m!)'
C (v) I

v ) (v I
d'v= Q g exp Lr'+i(m —re) S]

o=p m=p p p (I+m) 7l r
r "+' exp Li(k —l)0]

X f L
—(8/Br)]"+ 8(r) } exp (—r') gg, , rdr dg

I k) (l I

a=p t=p (k!)'(l')'

" p(re, m)(e!m!)i
C(v) = Q Q ' ' '

exp fr'+i(m —e)e}fL —(S/ar)]"+™B(r)}.=p m=p (cpm)!~r
v=r exp (ie), and the integration in (A5) extends over the whole complex v plane. On substituting from (A3)
and (A4) into (A5), one obtains

p(s m) (B!ml) (k+l)
=p k=p t, p(t=t+m) ! ' (k!l!)'

p 'p)ss s I

(0)= hm C~(v) (v I
0 I

v ) d'v. (A8)

Hence the integral (AS) correctly represents the density
operator p in the "diagonal form. "

It should be noted that the phase-space distribution
function given by (A6) is not an ordinary function;
it must be regarded as a generalized (symbolic) func-
tion Lcf. Friedmann (1956), Chap. 3; Lighthill (1959)].

The sense in which Eq. (A6) is to be understood has
recently been discussed by Mehta and Sudarshan
(1965). They showed that, if both of the series in (A6)
are terminated after N terms, the resulting function
C~(v) can be considered as a tempered distribution
with respect to the test function (v I 0 I v) correspond-
ing to any operator 0 for which (0) exists, and that

(A7)

any finite number of degrees of freedom. The Fock
representation basis is then labeled by a sequence
frek, } of non-negative integers and the density matrix
by two such sequences,

~(f~~k,.},fm" }).
In place of (A1) one now has

P= Q Q ~(f~k, }, fmk, }) I f~k, } &(fmk, } I.
fnl, } {ml,

(A9)

In place of the state
I v) one now has a state

I
fvk, } )

labeled by a sequence fvk, ,} of complex numbers. A
"diagonal representation" of p again exists and is
given by

It has also been stated by Sudarshan (1963a, b) that
these considerations may be generalized to a system of

where

P = C' &k, s &k, s &k, s d &k, s )

with vk„——rk, exp (iSk,,).
Similar comments as above apply to the functional C'(fvk, .}).

C(f",.})= Z Z (f~. .}, fm. .})II
fnk } fml, ,} k, a (Sk,g+mk, s) ™rk,s

X exp fr'k, ,+v(nk, ,—mk, ,) gk,.} f (—S/Srk„) "' + "S( k,.) }

(A11)
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