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The embedding of space —time in a higher-dimensional pseudo-Euclidean space is considered as a
means of studying the representations of coordinate transformations in curved space-time. To the
extent that this approach is valid, the existence of particles belonging to various representations of
some internal symmetry group is "predicted" in much the same sense that particles of spin 0, ~~

etc. are "predicted" by the structure of representations of the Lorentz group.

1. INTRODUCTION

When we know the transformation properties of a
certain quantity. we can often guess the laws which
govern its behavior merely from the requirement that
physical laws must be convariant under transforma-
tion from one coordinate system to another; at least,
the number of possible such laws is greatly reduced. For
example, Einstein in his book on relativity' has given
numerous examples of the application of this approach
to both pre- and post-relativity nonquantum physics.
In quantum physics, the significance of transformation
properties is perhaps even more frankly admitted,
though somewhat distinguished by the language used:
when a new particle is discovered the first questions
asked are, "%hat is its spin? —its mass? —its isospin?"—
and so forth.

It might be said that there are two levels of subtlety
in the uses to which one may put the principle of
covariance. On the one hand, when we know the trans-
formation properties of all quantities that enter a
certain physical law, then we can make a useful guess
about the form of that law. But also, if we are presented
with some new quantity (for example, the wave func-
tion of a newly discovered particle), we can often guess
its transformation properties on the basis of rather

meager experimental results. This is, 6rst of all, because
any such quantity must have a well-de6ned behavior
under any coordinate transformation —that is, more
explicitly, it must belong to some representation of the
group of all coordinate transformations. And, secondly,
there is the happy empirical fact that simple systems
seem to transform according to representations of low
dimension. Thus, for instance, it is very useful to know
that the representations of the Lorentz group can be
characterized by a quantity called spin, which (for a
certain class of representations) can take on only inte-
gral and half-integral values; then in order to determine
that the spin of a new particle is such-and-such, it is
only necessary to show that it cannot have any other
low value.

2. THE PROBLEM

The Lorentz group was mentioned above, but of
course we know that physical space —time is not actually
Rat, so that Minkowski coordinates are strictly speaking
not appropriate, and the Lorentz group is appropriate
only in some sort of approximate sense. Certainly the
curvature is slight, so one might expect its effect to be
small; but is it really legitimate to jump immediately
to the Minkowski approximation when questions of
symmetry are concerned? One might put it this way:
since the curvature is so slight, if the Minkowski ap-
proximation is allowable, it should be a very good ap-
proximation; but is it even allowable? Experimentally,
it seems to be a good approximation in that linear and
angular momentum are well conserved; but could the
nonprediction of "internal" symmetries be an example
of a place where the approximation breaks down com-
pletely?

The decision to give up the Lorentz group leads, of
course, to difficulties. If we take the traditional ap-
proach of using general curvilinear coordinates, the
group of coordinate transformations now has an in6nite
number of parameters; these could, for instance, be
taken to be the coeKcients in a power series expansion
of the new coordinates in terms of the old (by contrast,
of course, the Lorentz group has only 10 parameters).
It would certainly appear difIicult to determine all
representations of such a group (as has been done for
the Lorentz group). ' One particular class of representa-
tions consists of the well-known tensor fields trans-
forming according to

or the corresponding expression for contravariant fields.
Since these 6elds do not include fields of half-integral
spin, we might try to generalize (1) as follows:

f'(sc') = A,.P(x),

' A. Einstein, The Meaning of Relativity (Princeton University
Press, Princeton, New Jersey, 1955).

where the components of P have been arranged in a

~ However, Shlomo Sternberg is currently working on the theory
of representations of inGnite-dimensional Lie groups.
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column, and A,. is a matrix depending on the point x',
such that the set of all matrices

(3)

only difference is that we have to allow ten coordinates,
rather than four. Just as we de6ned pseudo-Euclidean
coordinates in Bat space by the condition

is a representation of the set (as)'= (S~)s—g(S*;)s, (5)

t II»/»'ll" I (4)

of all Jacobian matrices. Note that the form (2) includes
all possibilities (1). However, it is not too hard to
show' that there are no representations (3) which are
double-valued, under space rotations, with respect to
the matrices (4); hence representations of the form (3)
do not include any which can correspond to spin one-
half particles. Of course, people have thought of ways
to deal with electrons in curved space; what is done is
equivalent to introducing a set of pseudo-orthogonal
axes ("four legs" ) at each point of space, and letting
the matrices A, represent the smaller group of (Lor-
entz) rotations of these axes. If we wish, we can tie the
four legs to the coordinate lines by requiring the first to
lie along the tangent to the x~ line, the second to lie in
the plane determined by the x~ and x2 tangents, and so
on. Then indeed we get a set of fields which seem to
transform like all the usual representations of the
Lorentz group. But this is certainly only a very limited
subset of all possible representations Land it may be
noted that they are all many-to-one representations of
the matrices (4)j.

Another approach is to consider the group of all
transformations preserving certain boundary conditions
in an asymptotically Oat space; the result is something
akin to the Lorentz group. 4 However, since such spaces
need not really correspond to the actual universe, it
would seem that we cannot base our search for repre-
sentations on this approach, for the same reason that
the Minkowski approximation is questionable. The idea
of restricting the set of all curvilinear coordinate sys-
tems to a smaller set is certainly very appealing, and
one might hope that an approach such as this will be
developed to the point where something more general
than asymptotic fatness is allowed.

'See footnote 6 of D. Joseph, Phys. Rev. 126, 319 (1962).
That paper treats some of the present points in more detail.

4 R. Sachs, Phys. Rev. 128, 2851 (1962).

3. A SOLUTION

The source of our difhculties evidently lies in the use
of general curvilinear coordinates. In fact, we would
have suffered much the same confusion in looking for
representations in Oat space had we chosen to use
curvilinear coordinates there. However, in that case,
there exists a preferred class of coordinate systems, the
pseudo-Euclidean ones; and none other need ever be
considered.

It turns out that a very similar set of preferred
coordinate systems exist for curved space —time; the

so we can define pseudo-Euclidean coordinates in
curved space by the condition' —~

(ds)'= (dip)' —Q(dx )'. (6)

4. DISCUSSION

Higher-dimensional pseudo-Euclidean spaces E„thus
constitute an arena in which we may hope to play the
games of quantum mechanics and general relativity

' Actually, such a set of coordinates is guaranteed not for all of
space but only for some finite region. The possibility of writing
(6), locally, with only one positive sign follows from Ref. 6; that
the maximum number (ten) of coordinates will be required is
suggested by Ref. 7.

6 Avner Friedman, J. Math. Mech. 10, 625 (1961).
r Joe Rosen, Rev. Mod. Phys. 37, 204 (1965), this issue.

The group of Lorentz transformations, preserving (5),
is now replaced by the group of (pseudo) rotations and
translations of a ten-dimensional space. preserving (6) .
Perhaps it hurts one's sense of economy to introduce
ten coordinates when four (curvilinear) coordinates
would "do"; but the economy in number of coordinate
transformations (from an infinite number of parameters
to only 55!) is certainly a relief.

Though the introduction of pseudo-Euclidean co-
ordinates is quite straightforward, we must still take
account of the fact that the space —time surface R4 does
exist, and find an approximation in which coordinate
covariance leads to conservation of momentum and
angular momentum. Since all physical observations are
restricted to R4 (or at least to a region very close to it),
we would not expect exact symmetry when we apply
coordinate transformations to laboratory objects only,
unless these transformations preserve R4. (We would,
of course, expect symmetry if we applied the transfor-
mations to the whole universe —but this we do not do. )
In general, there are no transformations exactly pre-
serving R4, but there is a set which preserves the tan-
gent hyperplane to R4 at any given point. On intuitive
grounds, we would expect approximate symmetry under
such transformations. This electively amounts to re-
placing R4 by its tangent plane T4, a sort of zeroth-order
approximation which we will call the tangent-plane
approximation. In this approximation, there are sym-
metry transformations of two sorts: transformations of
points within T4, analogous to Lorentz transformations;
and transformations leaving the points of T4 fixed,
having the appearance of rotations in an "internal"
space.
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simultaneously: on the one hand, E4 can be non-
Euclidean, and on the other, the groups of coordinate
transformations are suKciently manageable that we
can classify wave functions according to their repre-
sentations. Other arenas are surely possible, but none
seem to be presently available. The E„arena has the
interesting feature that an intuitive approximation
strongly suggests the presence of a group of internal
symmetries.

Finally, it must be remarked that this tangent-plane
approximation is probably not the best "zeroth-order"
approximation to R4. For example, E4 could have "cor-
rugations" in it, even though it is nearly Qat in an

intrinsic sense. A solution to this might be to introduce
the intrinsically Rat space E4 which best approximates
R4,' E4 then admits a set of pseudo-Euclidean coordi-
nates, so that momentum and angular momentum in
the usual sense are conserved to the extent that E4 6ts
R4. To complete the coordinate system, one would then
introduce coordinates which are everywhere normal to
E4 and as nearly Euclidean as possible within a range of
a few fermis, say, from E4. These would constitute the
"internal" space which would now be not quite Eucli-
dean. It might be interesting to try to estimate the
effects which would arise from this non-Euclidean
character; they would presumably be quite weak.
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Embedded Space —Time and Particle Symmetries*
YUVAL NE'EMAN f
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The bootstrap yields the strong-interactions symmetry provided the hadron currents participating
in nonstrong interactions are 6rst fed into it; the alternative course, in which the bootstrap is required
to generate the entire symmetry uniquely, with no a priori information from the nonstrong interac-
tions, seems to lie beyond the present techniques and would also leave unexplained the subsequent
emergence of the weaker couplings. We suggest that "internal" symmetries may have a geometrical
origin, corresponding to transformations in the global embedding space of the four-dimensional
physical Riemann universe. These would be the unitary or orthogonal transformations of the normal
subspace, since the latter do transform a small region of curved space-time into itself. This picture
fits in with the short ranges of the strong interactions. Cosmological and astrophysical implications
are noted.

SO-CALLED "INTERNAL" SYMMETRIES

The conservation laws and the dynamics of particle
physics have found their most useful formulation in
terms of apparently nonkinematical, i.e., "internal"
symmetries. These are generalizations of the concept of
"charge, "used in electricity for the last 150 years; they
appear as a set of charge currents satisfying equations of
continuity under certain limiting conditions. In prac-
tice, the equations really have "sink" terms due to some
symmetry-breaking interactions. Ke have used the
word symmetries since we may relate each conserved
neo-charge with the generator of some Lie group, the
latter then representing a symmetry of the system. This
connection, sometimes known as Noether's theorem,
has lately been reformulated appropriately, since what
we really want is an inverse theorem leading from the
observation of a conserved or quasiconserved quantity
to a symmetry group. Okubo' had earlier shown in de-
tail why an unrenormalized coupling implies the exist-

*Work supported in part by the U.S. Atomic Energy Com-
mission.

)On leave of absence from Tel Aviv University, Tel Aviv,
Israel, and the Israel Atomic Energy Commission.

' S. Okubo, Nuovo Cimento 13, 292 (1959).

ence of a conserved current; Horn' has now exhibited
the emergence of the algebra from the current.

Another starting point for the detection of a con-
served current has been shown by Ogievetski and
Polubarinov' to derive from the observation of particles
with unit spin and negative parity, this time in a more
exact inverted Yang —Mills technique. 4 Cutkosky' has
obtained a similar result —i.e., the generation of a sym-
metry from vector-meson couplings —in terms of an
approximate and idealized bootstrap (a theory with no
"elementary" strongly interacting particles, in which all
hadrons appear as self-bound states of one and the
same hadron matter) .

The symmetry itself shows up in many diGerent
ways —mainly a multiplet structure accounting for the
various sets of particle states and relative coupling
strengths or amplitudes for strong reactions (this is in
fact the "law of force"—like the e' in the Coulomb

2 D. Horn (to be pub]ished).
V. I. Ogievetski and I. V. Polubarinov, Zh. Eksperim. i Teor.

Fiz. 48, 966 (1963) )English transl. : Soviet Phys. —JETP 18,
668 (1964)3.

C. ¹ Yang and R. Mills, Phys. Rev. 96, 191 (1954); also R.
Shaw, thesis (unpublished) .' R. Cutkosky, Phys. Rev. 131, 1888 (1903).


