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Elementary Particles in a Curved Space
C. I'RONSDAL*

University of California, Ios Angeles, California

Ke report a beginning in a project to determine the consequences of the following assumption,
"that a physical theory in Bat space is obtainable as the limit of a physical theory in a curved space. "
Because of the absence of groups of motion in general curved spaces, we discuss only the case of
constant curvature. Then operators of angular and linear momentum exist, and we show that the
interesting irreducible unitary representations of the group of motions reduce very simply to those
of the inhomogeneous Lorentz group in the limit of zero curvature.

I. INTRODUCTION

Some of the enigmas of elementrary-particle physics
may be characterized as an embarras de choix. Some
are ancient, as the failure to understand why a relatively
small set of states are favored by the existence of ele-
mentary particles. Others are more recent, as the
ambiguities introduced by divergent integrals in weak
interactions. One of the motivations for the research
presented here is the hope that the following assump-
tion turn out to be restrictive with respect to some of
these ambiguities:

2 physical theory that treats space time as Mi—nhowshi an
flat must be obtainable as a well deftned -limit of a more
general physical theory, for which the assumption of
flatness is not essential

It is facile to brush the suggestion aside with argu-
ments approximately as follows: It is known that the
important di6'erential equations (Klein-Gordon and
Dirac) may easily be generalized to forms that possess
general covariance. Or: It is possible to treat gravitation
as just another particle field, thus avoiding the idea of
a curved space —time altogether. We answer the latter
argument by pointing out that if such a Rat-space,
essentially linear and perturbational, treatment of
gravitation is adequate, then the smallness of the
coupling constant removes this science from relevance
to elementary particles; hence our interest in the sub-
ject depends on the possibility, however remote, that
the nonlinearity is essential —and the only under-
standing of nonlinear effects has come from Einstein's
geometrical interpretation.

With respect to the objection that the Klein —Gordon
and Dirac equations may be easily generalized, I say
that this is almost totally irrelevant. For the modern
theories of elementary particles, both field theory and
the phenomenological treatment, are not primarily
studies in differential equations. The construction of a
physical theory, and the interpretation in particular,
rests instead on the concepts of energy, momentum,
and spin, whose existence is due to invariance prin-
ciples —more specifically, the principle of invariance
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under the inhomogeneous Lorentz group. From this
point of view the Klein —Gordon equation is interesting
because the solutions form the basis for an irreducible
unitary representation of that group.

The inhomogeneous Lorentz group comes to the fore
as the group of motions of Minkowski space. The
absence of groups of motion in more general Riemannian
spaces is a formidable obstacle to the extension of physi-
cal models. There is, however, a class of Riemannian
spaces in which the road to generalization is well
marked. A space of constant curvature has a group of
motions that, though it differs from that of a flat
space, has the same number of parameters. In a space
of constant curvature we may define energy and
momentum, mass, and spin. We may study the irre-
ducible representations, elementary particles, and their
interactions, and we may inquire whether the class of
physical theories obtainable as limits as the curvature
tends to zero includes all known possibilities —or, as
we hope, it is more restrictive. It may be hoped, for
example, that divergent integrals may be replaced by
regularized ones and that the limit of zero curvature
exists if taken after the integrations are carried out.
(The principle of gauge invariance supplies a prescrip-
tion of this kind, but is limited to electromagnetic
phenomena. )

In this first report we specialize to the case of con-
stant curvature. We identify the group and make a
preliminary study of the irreducible unitary representa-
tions, and we show how intimately some of these are
related to the representations of the Lorentz group.

II. THE GROUP

A four-dimensional Riemannian space may admit a
continuous group of motions with up to ten essential
parameters. ' The maximum number is realized only
for a space of constant curvature, that is, the case
when the curvature tensor takes the form

+prat=P(gpvgrp gppgvX) ~

Here p is a constant, which is not an additional assump-

' L. P. Eisenhart, Continuous Groups of Transforrnations
(Dover Publications, Inc. , New York, 1961),p. 215.
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tion but a consequence of the interpretation of R„,z, as
a curvature tensor. (Ref. 1, p. 207.)

A space of constant curvature may be realized as a
pseudosphere in 6ve-dimensional space, and the group
of motions is the set of pseudorotations that take this
four-dimensional surface into itself. The algebra of
infinitesimal generators is therefore that of Op (also
known as Bp or Cz). The commutation relations satis-
fied by the ten independent rotation operators are

LL~e L70]= z(g—~7Lep+gezL~v g~p—Lo~ go~—L.p) ~

cp, P, y, 5=1, 2, 3, 0, 5, (2)

where g p is the 6ve-dimensional pseudo-Euclidean
metric tensor. The radius of the sphere goes to infinity
as the curvature p tends to zero; in the limit a Bat
Minkowski space is obtained and the group becomes
the inhomogeneous Lorentz group.

The interpretation of these ten operators is straight-
forward and corresponds closely to the meaning of the
ten operators of the inhomogeneous Lorentz group. Ke
pick a point in four-space and select the coordinates
in 6ve-space so that the 6fth axis passes through our
point. Then I„„p,v= 1, 2, 3, 0, generate ordinary rota-
tions around that point and

sentations of the algebra of in6nitesimal motions in a
space of constant positive curvature. They are:

m+: These representations are characterized by the
existance of a lowest eigenvalue m of 1.05, the states
that belong to this eigenvalue form the basis for an
irreducible unitary representation of the rotation sub-
algebra (Lip, Lop, Lip) with spin l, such that m)l.

m: Same as m+, except that I.05 has a highest eigen-
value —m.

m': These representations have no bound on the
energy and, for each energy the spin is unbounded.
These representations are expected to be of secondary
physical interest and are not discussed further in this
report.

I: The identity representation.
We study classes no+. Let

al'=0 0, 0 1 for p=1 2 3 0.

We start with the set of states that belong to the
lowest eigenvalue of the energy, denoting them P(a, l,)
l, = l, —l+1—, ~ ~, +l. These states are characterized
within the irreducible representation by (suppress the
variable l, )

Lop/(a) =mf(a), m&l

L.p -=1'.l(I o I) ' (3) (Lip +Lop +Loi )P(a) =l(1+1)P, l=0, 's 1, ~ ~ ~, (5)

generate parallel displacements (covariant transla-
tions). The commutation relations between the L„„
and the P„are

I Lu» Lu&] z(guuL»+g»Luu gu&Luu guoL&)

LL", 1'.]=-z(g-&.-g"&.)

These reduce to the commutation relations for the
inhomogeneous Lorentz group when p=0. The signa-
ture of the five-space metric is

gu= g22= g33= —
~&

goo + 1&

gpp=t il o I

We shall take gpp
——+1, p positive, because in the con-

trary case the energy operator P~ LOS cannot be
diagonalized. LThis is seen by constructing the raising
operator E+ for Lpp. It turns out that if Loof=a and
f'=E+f, then Lope'= (E+i)P'. But that is impossible
if the energy spectrum is real, hence E+f does not exist
if P is an eigenstate of Lpp.]

where Lip, Lop and Lpi are Hermitian matrices. (Both
m and l take on a unique value. ] All the other states
may be generated from these 21+1 states; we need only
devise a system of labels for them.

By a geodesic Lorezzts transformation on a we shall
mean an interation of a transformation

au-+au+ a„8"u,

where 8 "& is in6nitesimal, real and antisymmetric. Let
au be a four-vector with ao)0 and auu„=1. Let n(a)
be the unique geodesic Lorentz transformation that
transforms uu into au, and. D(a) the representative of
n(a). Then define f(a, l,), or simply P(a), as the trans-
form of f(a, l,) by D(a).

Since every Lorentz transformation is a product of
two geodesic Lorentz transformations and a rotation,
every representative may be expressed in terms of the
D(a) and the L;;, i,j= 1, 2, 3. The calculation is identi-
cal to that which leads to the explicit form of the
irreducible unitary representations of the inhomogene-
ous Lorentz group, and the result for the generators of
the homogeneous part is the same, namely,

. , t' 8
L;,g(u) = L,;&"—i 'I a, —a, . P(u),

III. REPRESENTATIONS, MASSIVE CASE

The knowledge acquired in the Appendix may be L04'(a) =
summarized as follows:

There are four classes of unitary irreducible repre-

8 8'II . .ioi z ' ap——u
I P(u)a'+1 ' Ba' Ba'1

i j=12 3.
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Here L;;() are independent of a& and reduce to the
L,, when al'= 0,&; they are the "spin" part of the L,;.

The statement that P(a) are states with lowest
energy means that all the lowering operators for I.&5

must annihilate P(d) . Thus

(iLp,—Lp;) P(a) = 0, i=i 2 3.

This may be combined with Kq. (5) to read

L„pg(8) = (ma„ia "—L„„)P(a) .

This equation is Lorentz covariant, except for the
specialization u&= a&. Hence, in general,

L„gk(a) = (ma„ia "L—„„)P(a)

set of states is obtained by applying Lorentz transfor-
mations to those of lowest energy, and for all of these
the momentum is defined by ascribing to p„ the trans-
formation properties of a four vector. Thus, the set of
states P(p) may be characterized as those for which
the operator pI'E„has its lowest value m'.

APPENDIX

The following discussion is in a form that completely
obscures the physics. All the results are summarized at
the beginning of Sec. III.

We recast the commutation relations in the Acyl
form (almost). If

We re-express our results in terms of P„[Eq. (3)],
and introduce

m=—mp', pg:—map.

Summary. Every nontrivial unitary irreducible rep-
resentation of the group of motions of a space of con-
stant curvature for which the energy is bounded below
is of the following form:

then

81 L12 +2 L05

L+= 1/v2(L»+zL„), M+= 1/v2(zLQ3+ Iop)

E+ += -,'%2(i(LoiaiLoo) —(Lio&iLop) )
E +=-,'%2—(i(Loi&iLoo) + (Lio~zLzp) )

f 8 8)
&p' &p'J

zI, (P) —z
—i1 . . I 8 8)

"=p+- " Ii'~p' ~piI

i=i 2 3

i=1, 2, 3 [I.+, L ]=Hi, [M+, M ]=Hz-

[H, , L+]=0, [Ho, M+]= &M+

[II, E++]=aE++, [H„E +]=aE—
[H„E++]=+E+ +, [H„E-+]=—E-+

pz
P =p+ p"L—

zm
@=1,2, 3, 0

p„'=m', pp) 0, m& p'1

where L;;& & are the (2l+ 1)&( (21+1) dimensional mat-
rices of a unitary irreducible representation of the
three-dimensional rotation group.

Remarks (1) S.tates P(p), P(p') with different
values of p are not orthogonal when p/0. But as p
tends to zero P„ tends to p„and then f(p) and p(p')
become orthogonal as the operators turn into those of
a unitary irreducible representation of the inhomogene-
ous Lorentz group.

(2) The differential operators P„may be interpreted
as inducing transformations on p„, thus continuing p„
into the complex domain Re p„p s+, p&p„=m'. But it is
not necessary to enlarge the representation space in
this way; the finite translations may equally well be
expressed as integration operators over the set of real p„.
This means that a plane wave is transformed into a
wave packet as a result of parallel transfer.

(3) It is possible to define "states of momentum p„"
in a way that generalizes to the case of constant, non-
vanishing curvature. First define the momentum of
the states of lowest energy to be p„= (0, 0, 0, m), where
m is the lowest value of the energy. Then a complete

[E++,E -]=,'(H +H, ), —[E+ -, E +]=,'( H—+H)-—
[L+, M+]= iV2E++, —[L,M+]= iV2E-

[L+, E+ -]=[L—,E++]=z/v2

[M+, E +]=[M, E+ +]= i/v2L+—

All other commutators vanish.
We study the four rotation subalgebras:

Gi ——{Hi, I.+, L}-
Go ——{Hz, M+, M }

Go= {-',(Hi+Ho), E++, E

G4 ——{-',(—Hi+Ho), E+ -, E +I.

Let us use the notation {H, E+, E } generically. Then
the Casimir operator is the same in every case, namely,

n=H(H —1)+2E+E .
Thus

E+E =isa —-,'H(H —1-).

Now we are interested in unitary representations, that
is, L" e +L e. Then E+= (E )t ——in the case of Gi and-
E+= —(E-)t in all the other, cases. Thus, E+Eis-
positive definite for G1 but negative definite for G2, G3
and G4. The eigenvalues of 81 are therefore limited
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above and below for given 0.. If the lowest value of
H~= —l then L must annihilate that state and, hence,
n= l(l+1) . The highest value of Hi is then +l and that
state is annihilated by L+. For any one of the three
other subgroups E+E must be negative for all eigen-
values of B that are realized. The spectrum need have
no bounds but then n&HO(Ho —1), where Ho is the
eigenvalue with the smallest absolute magnitude. If a
lower bound exists, B&P;„,then E- must annihilate
that state and hence

0&E E+=f—E, E+j= H;„—

H;„&G.

The equality is realized for the identy representation
only.

A parallel discussion may be carried out for the case
of a spectrum bounded above, and we conclude that
there are four types of unitary irreducible representa-
tions of the groups G2, G3, and G4

H= Hminq Hmin+ 1' Hmin+ 2q

+me, X~ +mSX ~y +mRX

mp: H=ap, Hp+1, Bp+2, ~ ~ ~

I H=O

H;„&0
&max &O

Theorem: In a unitary irreducible representation of
the whole algebra there appears only one of the four
types of irreducible unitary representations of G&. The
proof is based on the

Lemma: If P is a basis vector and (M+) "/=0 for
some positive integer e, and if 2 is in the algebra,
then (M+)"+'2/=0 for i=0, 1 or 2. The proof of the
lemma is a trivial consequence of the commutation
relations and need not be reproduced here.

Proof of Theorem: According to the lemma, if there
exists a set of states tied together by M+ and M, and
if this set forms the basis for an irreducible representa-
tion of types m+ or m of G2, then every other state
must belong to the same type. Also, if both M+ and M-
annihilate a state (which would then belong to an
identity representation of G2) then every other state
must be annihilated by both (M+) ' and (M ) ', which
is only true for the identity representation. Hence, the
theorem is proved.

In this theorem G2 may, of course, be replaced by
G3 or G4. It is also easy to see that the type of repre-
sentations present must be the same for all three sub-
groups. Thus we have

Theorem: The algebra of the group of motions of a
space of constant curvature has four types (called m+,
m, nz', and I) of unitary irreducible representations
characterized by the appearance in each of only one of
the four types of unitary irreducible representations of
the subalgebras G2, G8, and G4. )In m+(m ) the lowest
(highest) eigenvalue of H2 shall be called m( —m).7

Here we limit ourselves to the case m+ (later we in-
clude m as well), because only this type offers an
energy spectrum that is bounded from below.

Theorem: In an irreducible unitary representation of
type m+ of the whole algebra, the states of lowest
energy form an irreducible representation of the rota-
tion subgroup G~.

Proof: The theorem is analogous to the theorem that
highest weights are simple, which is true in the case of
compact Lie groups, and the proof is easily carried
through in the same way.

Let the highest value of H~ among the states of
lowest value (m) of H2 be f; then 2(H2+Hi) are
bounded below by 2~(m —l). Whence the restriction


