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The complete general-relativistic plane-wave space-times (gravitational, electromagnetic, or
both) are examined in relation to the focusing effect they exert on null cones. The following remark-
able property is then obtained. No spacelike hypersurface exists in the space-time which is adequate
for the global specification of Cauchy data. As a consequence, it is not possible to imbed a plane wave
globally in any hyperbolic normal pseudo-Euclidean space.

1. INTRODUCTION

Recent successes in the application of symmetry
groups to strong interaction physics' have prompted
some authors to suggest? that these and other new
symmetries might possibly arise in some way out of
space-time geometry, or from some extension of the
space-time concept. Since they commute with the
rotational symmetries which generate spin, the new
symmetries would, according to this view, be associated
with some space “orthogonal” to the four-dimensional
continuum of which we are normally aware. Thus, the
idea has been revived, of an imbedding space® which
could possibly house, in addition to the space-time
manifold itself, the extra perpendicular dimensions re-
quired for the new symmetries. The number (and
signature) of these new dimensions is to be determined,
in this approach, by the condition that the imbedding
space be minimal and pseudo-Euclidean. It is thus of
some relevance to try to determine the number and
nature of the extra dimensions required, for the iso-
metric imbedding of a general, physically interesting,
general-relativistic space-time.

The problem divides naturally into two parts, that
of local imbedding and that of global imbedding. It is
known,* however, that ten dimensions—with any signa-
ture® —8, —6, -+, +4—are adequate for the local
isometric imbedding of analytic space~time (signature
—2). Furthermore, it would seem that ten dimensions
are also locally necessary for most general-relativistic
manifolds. For even if empty space-times can be always
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1See, for example, A. Salam, Rapporteur’s Report on Sym-
metry Theories, 1964 Dubna International Conference on High
Energy Physics (to be published).

2Y. Ne’eman, Rev. Mod. Phys. 37, 227 (1965), this issue.

3 Earlier suggestions in the use of such imbeddings for a similar
purpose were made by C. Fronsdal, Nuovo Cimento 13, 988
(1959) ; D. W. Joseph, Phys. Rev. 126, 319 (1962).

4 A. Friedman, J. Math. Mech. 10, 625 (1961).

§ The number of positive eigenvalues of the metric tensor
minus the number of negative eigenvalues.

imbedded locally in fewer than ten dimensions (as seems
unlikely!), it should be recalled that, in the presence of
matter, Einstein’s field equations amount, effectively,
merely to ¢nequalities on the curvature of space-time.
That is, unless detailed equations for all matter fields
present are assumed (and these would be exceedingly
complicated when written solely in terms of the energy
tensor), we are left with inequalities on the Ricci tensor
which state (presumably) the positive definiteness of
energy and, say, the nonnegativeness of the trace of
the energy tensor. Since ten dimensions are minimal
for the local isometric imbedding of a general 4-mani-
fold, it seems fair to assume that ten (with a variety
of possible signatures) is also correct for the local
isometric imbedding of relativistic manifolds in general.
The exceptions which can be locally imbedded in fewer
than ten dimensions would from a class “of measure
zero” for which special equations or symmetries, etc.
might be present—although, of course, these exceptions
include a large number of the known relativistic models.®

The problem of global imbedding® is much more diffi-
cult in general. It is not even known, at present,
whether for a given indefinite Riemannian manifold,
a global isometric imbedding into some pseudo-Eucli-
dean space is always possible.” Furthermore, unlike the
case of local imbeddings the choice of signature for the
imbedding space seems to be important in the global
case.® In fact, it turns out that there are physically
interesting space-times—e.g., the plane-wave metrics—
which cannot be globally isometrically imbedded in any
pseudo-Euclidean # space of signature 2—#= (hyper-
bolic normal signature). There are also many ‘“un-
physical”’ space-time models with the above property,
e.g.. any hyperbolic normal 4-space which contains a

6 See, for example, C. Fronsdal, Phys. Rev. 116, 778 (1959);
J. Rosen, Rev. Mod. Phys. 37, 204 (1965), preceding article.

7 The case of positive definite Riemannian manifolds was settled
in the affirmative by J. Nash, Ann. Math. 63, 20 (1956).

8 For example, while it is a classical theorem of D. Hilbert,
Trans. Am. Math. Soc. 2, 87 (1901), that the Lobatchevsky
plane cannot be globally imbedded in ordinary Euclidean 3-space,
it is easy to achieve a global imbedding as a suitable pseudosphere
in pseudo-Euclidean 3-space. A result of this kind, when the
space to be imbedded has an indefinite metric, has also been
obtained by A, M. Garsia (private communication to Y.
Ne’eman).
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closed timelike smooth curve. (The Godel cosmological
model would, in this sense, be classed as ‘“‘unphysical.”)
Remarkably enough, the above result for plane waves
is not a topological one in the most obvious sense, the
plane waves having a Euclidean topology and the time-
like and null lines being all open. Instead, the result rests
essentially on the surprising fact, obtained here, that
a plane wave admits no spacelike hypersurface which
would be adequate for the global specification of
Cauchy data.

2. HYPERBOLIC NORMAL IMBEDDINGS

Before discussing the plane-wave metrics in detail,
let us consider the general question of isometrically
imbedding a hyperbolic normal r-manifold 91, (i.e., of
signature 2—7) in a hyperbolic normal pseudo-Euclidean
&.. The &, may be given by coordinates x, %1, *++, %1
and the metric

ds?=dx—dx2—dx?— « + + —dxp_,2 (2.1)

The manifold 917, is to be a smooth 7-dimensional subset
of &, whose induced metric given by (2.1) has signa-
ture 2—7. This amounts to saying that the tangent 7
space to 91T, at any one of its points contains a timelike
vector of &, [“Timelike” means that the ‘“‘squared
length” of the vector, according to the metric (2.1),
is positive. Similarly, “null” would mean that this
“squared length” is zero, etc. The terms “past” and
“future” will refer to the ordering with respect to w,
which is thus thought of as a “time” coordinate.] At
each point of 91,, the tangent » space contains two half-
cones of nonzero null vectors—the past and future
half-cones. The systems of past and future half-cones
are thus disconnected from each other.

Consider, now, the section of &, by some spacelike
hyperplane 3C, ; meeting 9, given, say, by xp=c¢
(where ¢ is constant). The induced metric on 3¢, is
negative definite, so the induced metric on the inter-
section 8, ;, of 3C,; with 9N, is also negative definite.
That is to say, 8, is a spacelike hypersurface in IMN,.
It must, in fact, be a nonsingular (i.e., smooth) hyper-
surface, since 3C,_; can be nowhere tangent to 9N,.
Denote the parts of &, and 91,, for which xy<c by &,
and 91T,~, respectively. Similarly, denote those parts for
which x,>¢ by &% and I, *+. Note that 8,_; is the
boundary between the two disconnected portions 9,~
and 91+ of the manifold 9N,.

Observe that any smooth connected timelike or null
curve in &, meets JC, in at most one point, since xg
may be used as a parameter on the curve. Choose any
point P in §,*, with coordinates («o, %1, * =+, %._1). Let
©; be any smooth connected timelike curve in &, whose
future end point is P. Let £; be the straight line seg-
ment joining P to the point (¢, &1, * * *, %,-1) . The length
(dx—da>— -+« - —dx,12)? of any element d@; of @ is
clearly not more than the length dx, of the orthogonal
projection d€; of d@; on £;. Hence the total length of

@ is at most xy—c. Thus, the timelike curves in &,
which extend into the past from P have bounded total
length. A corresponding statement holds if P is in &,™.

We may specialize these statements to the case when
P and @ lie on 91T, and collect together the following
necessary conditions for the imbeddability of 91, in &,.

(2.2) The null half-cones of I, form lwo systems dis-
connected from one another—we may call these the
systems of “past’” and “future” half-cones of M,. To
each point of M, corresponds one past and one future
half-cone.

(2.3) There exists a nonsingular spacelike hypersurface
8r—1 1 M, the removal of which separates N, into two
disconnected portions: N, which lies on the future
side of $,_1, and N,~, whick lies on the past side of
8y—1, and furthermore:

(2.4) every smooth connected timelike or null curve in
WM, meets 8,1 in at most one point;

(2.5) the smooth connected timelike curves in N+
[resp. IM,~], whose future [resp. pasi] end poinis
are a given fixed point P in M, [resp. M, ], have a
Jixed upper bound to their lengths.

The fact, physically desirable for a space-time, that
9N, cannot contain a closed smooth timelike curve is
ensured by (2.3) and (2.5). For if such a curve met
8,1, this would contradict (2.3), whereas if it did not
meet 8, ;, neighboring open curves could be found
which contradict (2.5). [However, closed smooth null
geodesics n 9, would not apparently contradict
(2.2), +--, (2.5), although such curves would clearly
preclude the imbedding of 9, in &,. The condition that
9, contain no closed smooth null geodesics could be
added to the list (2.2), -+, (2.5) but it will not be
used here.] In fact, (2.4) is an easy consequence of
(2.3).

3. THE PLANE WAVES

The metric for a general gravitational-electromag-
netic plane wave ‘W, can be put in the form?®

ds?=dudv+h:j(u) xxdu?— do; dz., (3.1)

® This metric (without electromagnetism) was given originally
by H. W. Brinkman, Proc. Natl. Acad. Sci. (U.S.) 9, 1 (1923);
Math. Ann. 94, 119 (1925) in the more general form (“plane
fronted” wave) that %;; is allowed to be a suitable function of the
xx as well as of . N. Rosen [Phys. Z. Sowjetunion 12, 366 (1937)]
obtained the metric ds?= 4 (df2—dz?) + B;;dy:dy; for plane waves
(but he only considered the case when By; is diagonal). Here 4
and Bi; are to be appropriate functions of ¢—z. I. Robinson
(Report to the Eddington Group, Cambridge, 1956) showed
that this latter metric (with electromagnetism included) can be
transformed into the form {2.1) by a coordinate transformation
and that the singularities that Rosen found to be necessary with
his form of metric were, in fact, spurious coordinate singularities.
See also Ref. 10.

The existence of Rosen’s coordinate singularities is closely
related to the phenomenon that is discussed here. The time de-
velopment of the hypersurface =0 in the Rosen metric gives
only that part of “W, covered nonsingularly by his coordinates,
i.e., =0 is not a global Cauchy hypersurface for ‘Wi.



where
hii(u) >0. (3.2)

The indices ¢, 7, -+, take the two values 1, 2 and the
summation convention is used throughout. All variables
u, v, %1, %z range from —o to 4o and the entire
manifold ‘W, is covered in a (1—1) fashion by this one
nonsingular coordinate patch. Without loss of gener-
ality, we may take h;;(#) as symmetric:

hij—_—-hj,'. (33)

The condition for a purely gravitational wave (vanish-
ing Ricci tensor) is that the equality in (3.2) should
hold:

hii(u) =0. (3.4)

For a purely electromagnetic wave (vanishing Weyl
tensor) we have

hij(u) =h(u) 8, (3.5)

with %(#)>0. The amplitude and polarization of the
gravitational part of the wave is given, in the general
case, by the trace-free part of %;;. This may be chosen
quite arbitrarily as a function of #. The amplitude of
the electromagnetic part of the wave is measured by
the square root of the trace of %;;, which again may be
chosen arbitraily as a function of #. The polarization
of the electromagnetic part of the wave may also be
chosen arbitraily as a function of # but it does not
contribute in any way to the curvature. (The electro-
magnetic field is null everywhere and independent
duality rotations can be applied in each hyperplane
u=const. The gravitational field is also null.)

There is, thus, exactly as much freedom in the con-
struction of the full general-relativistic plane waves as
is the case for their linear approximations (spin 1 and
2 zero-mass waves in Minkowski space). There is
also exactly as much symmetry, namely a five parameter
group of motions® in general. This group acts transi-
tively on the 58 system of null geodesics of Wy, ex-
cepting those null geodesics parallel to the propagation
world-direction:

(3.6)

Thus, the null geodesics, which are nof the propagation
lines (3.6), are all equivalent to each other in W,.

It should be emphasized also that the space-time W,
is physically satisfactory from the point of view of causal-
ity. The fact that it contains no smooth closed timelike
or null curves is evident from the form of the metric.
On any timelike or null curve not parallel to the propa-
gation world-direction (3.6), we can use # as a param-
eter continuously increasing with time. On a null curve
(geodesic) parallel to this direction, v serves as such a
parameter.

A particular type of plane wave whose properties are

10 H. Bondi, F. A. E. Pirani, and I. Robinson, Proc. Roy. Soc.
(London) A251, 519 (1959).

%= const., x;= const.
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Fie. 1. The sandwich wave W4 and the related configuration
of points mentioned in the test. The diagram essentially repre-
sents the two-dimensional section of Wy by x;=0.

easily studied is the “sandwich” wave.l In this case
we suppose that the gravitational and electromagnetic
amplitudes vanish outside a certain range (a, ) of
values of %, but that they do not both vanish every-
where. Thus

hij(u) =0 unless a<u<b; some h&;(u)#0 (3.7)

so that the space-time is flat for #<a and again flat
for u>b, but it is curved in between (see Fig. 1). For
simplicity, the arguments will be given here for the
case of sandwich waves only, which are “sufficiently
weak” (in a sense to be defined shortly). In fact,
general plane waves can also be treated by essentially
the same method.

Let Q be a point in “Wy. The complete null cone Kz of Q
is the set of points lying on all the null geodesics through
Q. Now choose Q with coordinates

x;=0, V=1,

(3.8)

so that Q lies in one of the fla! regions of “W,. Near Q,
the equation of &; is therefore

nu=1u<a,

(u—1u0) (v—120) —xs2,=0 (3.9)
which can be written
v={fi;(u) xa2;+ 00 (3.10)
where, near Q,
Jii(uw) = (u—ue) ™ 5y5. (3.11)

If we choose fi; as a function of % so that the hyper-
surface (3.10) remains null (i.e., with null normal
vector) also throughout the curved region of W, then
(3.10) will be the equation of X; We may choose fi;
symmetric:

fii=Fii. (3.12)
The only condition to be satisfied by f;; then turns out
to be

fil +fafrurthi=0, (3.13)
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where the prime denotes differentiation with respect
to #. Given the starting value (3.11), the equation
(3.13) therefore extends the definition of f;; uniquely
into the curved region and, with (3.10), defines &,
until eventually f;; may be come infinite.

To examine this last possibility, note that the trace
of (3.13) gives

fil F3feifii= =5 fa fadindii—fudar f11 851) — ha KO
by Schwarz’ inequality and (3.2). Thus

e

with strict inequality holding for at least some values
of u. If we choose Q so that u, is very large and negative,
then in the limiting case #y= — « we get, from (3.11),
fii=0 for u<a. That is to say, &3 becomes the null
hyperplane v=1, in the initially flat region [see (3.10)].
Thus, initially {exp (3[fudu)}’=0, so from (3.14) we
see that exp (% [f:udu) eventually becomes zero for some
finite value of . Hence, some component of f,; must
become infinite!? for some least value #; of u, where
w1 >a (since f;;=0, for m<a).

Let us suppose that the amplitudes /;; become zero
before this value is reached, that is to say

%1>b.

(3.14)

(3.15)

This is the meaning of the notion that the wave W4 be
“sufficiently weak,” as alluded to earlier. Now if we
replace the value — o, for #g, by a finite value which
is very large and negative, then for values of # near a,
(3.10) will be altered only slightly. Thus #; will change
only slightly—it will remain finite and satisfy (3.15).
Thus the complete null cone &3 of Q (for Q sufficiently
far off) necessarily encounters singularities at the other
side of the sandwich wave—where W, has again become
flat.

In order to examine these singularities, we consider
(3.13) in the flat space region %> b. The equation (3.13)
may then be written

pii’ = 8ij, (3.16)
where p,; is the matrix inverse to f;;:
pii fir= 0. (3.17)

11 The necessary existence of singularities in the fi’s is essen-
tially the same phenomenon as that discovered by A. Ray-
chaudhuri, Phys. Rev. 98, 1123 (1955); and A. Komar, Phys.
Rev. 104, 544 (1956). Here the result is applied to null geodesics
rather than timelike ones. A case of this particular phenomenon
was also found by I. Ozsvith and E. Schiicking in Recent De-
velopments in General Relativity (Pergamon Press, Ltd., London-
Warsaw, 1962).

2 This fact has relevance to the question of two colliding weak
plane sandwich waves. Each wave warps the other until singu-
larities in the wave fronts ultimately appear. This, in fact, causes
the space-time to acquire genuine physical singularities in this
case. The warping also produces a scattering of each wave after
collision so that they cease to be sandwich waves when they
separate (and they are no longer plane—although they have a
two-parameter symmetry group).

The solution of (3.16) is
pii(u) =u 8;— qij, (3.18)

where g;, is constant and symmetric [by (3.12) ]. This
gives infinite values for f;; whenever # is an eigenvalue
of g:;. Two essentially different cases can occur. Either
the eigenvalues of g;; are distinct or else gi;;=u18:; (g;
can be diagonalized since it is symmetric). In this
latter case, (3.18) gives the same form as (3.11),
that is to say, the null cone X; has two vertices, namely,
Q and also the point R with coordinates

(3.19)

The null cone of Q is thus focused® by the wave to the
single point R (see Fig. 2). This is the case of pure
anastygmatic focusing and it occurs with a purely
electromagnetic wave. In the gravitational case, we
expect to get some resultant astygmatism!* and the
eigenvalues of ¢;; will generally be distinct. In this
case the null cone X3 is focused to a spacelike line
through R, as will be seen in a moment.

The null geodesics which generate &; are the curves
on ¥s; with null tangent vectors. Hence by (3.1),
(3.13), and the derivative of (3.10), using # as a
parameter, we get for each particular geodesic,

2;=0, V=1, u=1u;.

xi’ =fi,~x,- (3 . 20)

with v then given by (3.10). [Note that (3.20) and
(3.13) imply the relation ;"= —h;x;, which shows
that %;; measures the geodesic deviation of the null
rays.’] There is an exceptional null geodesic ©; through
Q which is not parametrized by #, however, namely the
one parallel to the propagation world-direction. Thus,

1/
v
P

Fi1c. 2. The purely electromagnetic plane-wave space-times
have exact analogs in two space and one time dimension. A null
cone can be focused again to a second vertex. The situation is
depicted above. A connected spacelike surface through Q can
never meet the null line ®, (if the surface has no boundary).

13 This focusing effect and its possible relation to energy flux is
discussed in greater generality in R. Penrose, Hlavaty Festschr.
(to be published).

4 R. K. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961),
F. A. E. Pirani and A. Schild, Bull. Acad. Polon. Sci. Ser. Sci.
Math. Astron. Phys. 9, 543 (1961).



@ is given [see (3.6) ] by
(3.21)

When X; enters the flat region #>5, we can solve
(3.20) using (3.18) [see (3.17)] and obtain

U= Uy, x,~=0.

xi= (u 8ij— qaj) mj, (3.22)

where the m; are constant for each geodesic. When #;
is a repeated eigenvalue of ¢;; (the anastygmatic case)
we see that x;=0 for u=u, so that all the null geodesics
through Q, with the single exception of @, pass through
the point R [given by (3.19)]. When #; is a simple
eigenvalue of ¢;; (the general astygmatic case), we may,
for convenience, choose the original x; and x; axes in
(3.1) so that g;; is diagonal with gu=1u;, ¢12=0, go=
s (s #u1) . Thus, x1=0 when u=1u, so that all the null
geodesics through Q, with the single exception of Qi, pass
through some point of the spacelike line: =0, v=1y,
u=u;. In fact, through each point of this line there
will pass the ! null geodesics given when m, takes a
fixed value. In particular, the null geodesics through
both Q and R are those given when the linear relation
my=0 holds. The linearity of (3.20) then implies that
the values of x; at points near Q, for these geodesics,
are also determined by a linear relation: xy.;=0 (¢;
constant). That is, near Q, the null geodesics on X3
which eventually pass through R are the ones—except
for @—1lying on the intersection of ®; with the time-
like hyperplane x,c;=0. This is a connected »! system
of curves (the generators of an ordinary three-dimen-
sional cone). Thus in botk the above cases we have the
property that there are null geodesics through Q, arbi-
trarily close to Q; which pass through a fixed point R
not on Q.

The roles of Q and R may be interchanged. If ®; is
the null geodesic through R parallel to the propagation
direction (i.e., ®; has equation u=u;, v=1v, x;=0),
then ®; does nof pass through Q, but neighboring null
geodesics to ®; through R do pass through Q—these
being the same null geodesics as in the previous case.!
Thus, the null geodesics through otk Q and R form
either a two-dimensional or a one-dimensional system,
a limiting position of the geodesics of this system giving
the pair of null geodesics Qi, ®;:. Hence W, has a char-
acteristic property:

Wy contains a sequence of null geodesics which converges
on a pair of nonintersecting null geodesics. (3.23)

The convergence in (3.23) is to be taken in the sense
that any neighborhood of a point on either of the limit
lines contains a point of every geodesic sufficiently far
on in the sequence. There is clearly a sense in which
this convergence is nonuniform. We can also allow
that more than two null geodesics may emerge in the

15 Note that, somewhat remarkably, X; is not a closed set.
The null geodesic ®; is not part of & but it consists of limit points
of K.
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limit, although this will not in fact happen with the
“sufficiently weak” waves considered here.

One consequence of (3.23) is that W, contains no
global Cauchy hypersurface. For a hypersurface to be
completely satisfactory globally, for the specification
of Cauchy data,'® we would require that every null
geodesic should intersect it exactly once. However, if
each null geodesic of the sequence in (3.23) were to
meet the hypersurface just once, it is clear that a¢
most one of the limiting geodesics could meet it—the
other would have to miss the hypersurface altogether.
The situation can be made more graphic if we examine
the diagram of Fig. 2. A connected spacelike surface
through Q must initially lie entirely “below” (i.e., to
the past of) the future null cone of Q. As this cone
folds down in order to focus again at the point R, the
hypersurface gets trapped beneath it (it cannot cross
the null cone and remain spacelike everywhere). Thus
the hypersurface can never intersect ®; nor any of the
propagation lines beyond ®;. Cauchy data on such a
hypersurface could thus give no information for speci-
fying amplitudes for a parallel wave which might lie
beyond ®;.

The situation of (3.23) also serves to prove the non-
imbeddability of ‘W, in a hyperbolic normal &,, by
means of a similar argument to the above. For suppose
that W, can be isometrically imbedded in &,. Then
there exists a nonsingular spacelike hypersurface 8; in
%, which is in accordance with (2.3), (2.4), and (2.5)
(with W, for M,). Thus, by (2.4), every null geodesic
of the sequence in (3.23) must meet §; in at most one
point. Hence, §; cannot meet dotk of @i, ®;. Suppose,
first, that $; does not meet @;. Then, by (2.3) either
@, lies entirely in ‘W4t or entirely in W,~. Suppose @
lies in “W,+. Choose a fixed point P, with x,=0, v=1,,
u=1uo+e, where a—uo>e>0. Then since P and @
both lie in the flat region #<a, there will be a straight
timelike segment joining P to any point S on the half
of @ which lies to the past of Q (see Fig. 1) We may
specify S by x;,=0, v=1,—s, u=1uo with s>0. Then the
Minkowski length of the segment SP will be se [see
(3.1)7]. This is clearly unbounded for s—, whereas
SP remains within W,+. Thus, (2.5) is contradicted.
Similarly, if @, lies in “W,~, we choose P’ with coordi-
nates x;=0, v=1y, u=up—e and .S’ with x;=0, v=10,+s,
u=1up and let s—o. Again (2.5) is contradicted. The
argument is essentially the same if §; does not meet ®;.

4. CONCLUDING REMARKS

In order to assess the relevance of this result to the
question of imbedding “physically sensible” space-
times in a hyperbolic normal &,, we must examine how
b . 1 S

physically sensible” the general relativistic plane
wayves really are. It seems fair to assume that they are

16 See, for example, Y. Bruhat in Gravitation: An Introduction
to Current Research, edited by L. Witten (John Wiley & Sons,
Inc., New York, 1963), and the references cited therein.
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no Jess physical (as idealizations) than their flat space
counterparts. But there are, of course, difficulties en-
countered with plane waves even in flat space. The
total energy, for example, is infinite. Whereas the local
energy flux remains meaningful for an electromagnetic
wave, this is not so in the spin-2 zero-mass case. Also,
the angular momentum due to the photon spin in a
circularly polarized plane electromagnetic wave cannot
be exhibited locally in a gauge invariant way; etc.
These concepts all become meaningful only for waves
(e.g., wave packets) whose amplitudes fall off suitable
in all spacial directions so that the fofal energy—-momen-
tum and angular momentum, etc., can be defined.”

In the general relativistic case, the equivalent con-
dition is usually interpreted as some form of asymptotic
flatness condition for the space-time manifold—
although some other assumptions are presumably
appropriate on the cosmological scale. A question of
some interest, therefore, is whether the somewhat
strange properties of plane waves encountered here
will still be present for waves which locally approximate
plane waves, but for which the space-time is asymp-
totically flat, or asymptotically cosmological in some
appropriate sense.

A geometrical approach to the global question of
asymptotic flatness has been recently proposed by the
author'® which has relevance to this problem. Moreover,
various asymptotically cosmological situations can also
be treated by essentially the same method. A space-
time is termed asymptotically simple if, from the point

17 The question of including a source for the wave should also
be considered to be completely physically realistic. However this
seems to be not essential for the case of wave packets.

18 R. Penrose, Phys. Rev. Letters 10, 66 (1963); in Relativity
Groups and Topology (the 1963 Les Houches lectures), edited by
C. DeWitt and B. DeWitt (Gordon & Breach Publishers, Inc.,

New York, 1964). A more complete account is due to appear
shortly in Proc. Roy. Soc. (London).

of view of its conformal structure, a sufficiently extensive
boundary hypersurface g; can be introduced “at in-
finity”’ which satisfies certain regularity conditions. For
an asymptotically flat space-time, it turns out that g3
is null. The cases when 3 is spacelike are also of some
interest cosmologically, since these cases are, in an
appropriate sense, asymptotically de Sitter with a posi-
tive cosmological constant. The asymptotic simplicity
condition then implies that in these cases the Riemann
tensor falls off suitably (the “peeling off”’ property)
for Einstein-Maxwell fields. In particular, the Weyl
and Maxwell tensors must fall off as ! along every
null geodesic, a property clearly not shared by the
plane waves (r being a linear parameter on the null
geodesic) .

It is a simple matter to show, in fact, that the key
property (3.23) cannot occur in any such asymptotically
simple space-time. [If g5 is timelike—the asymptoti-
cally de Sitter cases with negative cosmological con-
stant—then there appears to be no reason against
(3.23) occuring. However, these cases appear to be of
lesser interest cosmologically.] On the other hand, the
focusing effect of a wave on null cones encountered here
is a quite general phenomenon'*—although it is pecu-
liarly exact in the case of plane waves. In the case of
a wave packet, the effect would be quite similar to
that depicted in Fig. 2 for null geodesics fairly close to
QR, but the extreme deflections of null geodesics
through Q near @ would not take place. It is still an
open question, therefore, whether global Cauchy hyper-
surfaces or global imbeddings in some hyperbolic
normal &, will always exist for wave packets.
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