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Introduction
In the 1925 preface to his textbook on "Riemannian

Geometry, " L. P. Eisenhart was noting that, "The
recent physical interpretation of intrinsic differential
geometry of spaces has stimulated the study of this
subject. " In such a context, he devoted a large part of
the book to the description of Riemann spaces em-
bedded in Rat spaces with added dimensionality. It
turned out, however, that general relativity was handy
enough when treated in terms of the curvilinear coordi-
nates of the Riemann space itself; the embedding
seemed to add extraneous spatial extensions which
added little to the understanding of gravitation and the
cosmology. From time to time, some interesting results
would be derived in this way, but they would also be
directly derivable from the Riemannian metric, interest
in the embedding thus subsiding again. An example of
this sort was provided by C. Fronsdal's study of the
complete Schwarzschild solution via its embedding
)Phys. Rev. 116, 778 (1958)j; the remarkable insight
into that problem did not give rise to an interest in the
embedding method, since the same result was achieved

~ Held at the Southwest Center for Advanced Studies, Dallas,
Texas.

shortly afterward by M. D. Kruskal LPhys. Rev. 119,
1/43 (1960)) without using it.

The theory of elementary-particle physics was de-
veloped in terms of a Rat space and its symmetry
properties —the Lorentz group. It is not surprising,
therefore, that attempts to describe properties of parti-
cles in curved space —time should lead to a renewed
interest in the embedding method. The applications
vary, from the development of additional techniques in
handling the Lorentz group, to attempts to identify the
"internal" symmetries of particle physics with the
symmetries of the normal, "extraneous, " piece of the
embedding space.

We have deemed it worthwhile to convene some
physicists and mathematicians interested in this subject
to a discussion of the method and its application. The
following papers formed the nucleus of a seminar, which,
we hope, will prove fruitful to both relativity and parti-
cle physicists, and may provide some mathematicians
with the motivation to complete the study of those

differential

geometry aspects which are extremely
mysterious at this stage.

I. ROBINSON and Y. NE'KMAN
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This is a review of diGerential geometry results pertaining to the problem of embedding curved
space —time in a pseudo-Euclidean space.

I. INTRODUCTION only a few which may be of help in determining the
embedding class for the present metrics. As for global
embedding, there are several fairly recent results, but
they only apply to positive definite metrics.

In this talk I shall survey most of the known results
concerning global embeddings, as well as some results
concerning local embeddings which might be useful for
relativistic metrics.

Recent work in elementary-particle physics ties up
internal symmetries of elementary particles, under
nonstrong interaction, with symmetries of generalized
space-time curvature. The mathematical aspect of the
problem is then to obtain information on the embed-
ding class of various four-dimensional relativistic met-
rics; the embedding considered is isometric and smooth,
and is either local or global.

In the mathematical literature there are numerous In this section we consider isometricembedding of a
classical results on local (isometric) embeddings, but Riemannian manifold ~V„of dimension rt into a Euclid-
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ean space E of dimension m with metric dss= dxis+ ~ ~ ~

dx '. We say that V„ is of class C"(p&1) if the local
coordinates of V„are related to each other by p times
continuously di6erentiable functions. The metric of
V„ is said to be of class C& if, in local coordinates, the
metric tensor has p —1 times continuously differentiable
components. Finally, if the manifold V„ is of class C~

and if its metric is of class C&, then we say that V„ is a
C& Riemannian manifold. An embedding is said to be
of class Cv if the functions defining it are p times con-
tinuously differentiable.

For an embedding of class Cv, p&2, the Riemann
curvature tensor in the image manifold is not defined
and, in fact, may not exist (since its definition involves
the first two derivatives of the metric tensor). This is
why it is natural to consider only embeddings of class
Cv with p&3. However, I will mention some results
concerning C' imbedding for the reason that the dimen-
sion of the embedding (or enveloping) space is sur-
prisingly small.

THEoREM 1. Aey comPact O' Riemannian manifold V
(with or without boundary) has a C' isometric embedding
in Ez„. Any noncompact C' Riemannian manifold has
a C' isometrsc embeddhng in E~ +~.

Actually a more general result is valid. Before stating
it, let us introduce two concepts. A short embedding is an
embedding which, at each point, does not increase the
line element. A point P in the embedding space belongs
to the limit set of the embedding of V„ if and only if
there is a divergent sequence in V„whose image con-
verges to P.

THzozEM 2. If a compact O' Riemannian manifold
V (with or without a boundary) has a C' embedding in
EA where k&n+1, thee it has also a C' isometric em
bedding in EI,. If a eoncomPact C' Rzemanzziae manifold
V has a C' short embedding in Ei„k&n+1, which does
not meet its limit set, then it has also a C isometric em-
bedding i n, EJ,.

In view of well-known embedding theorems of Whit-
ney, the assumptions of Theorem 2 always hold if k= 2n,
k=2n+1 in the compact and noncompact cases re-
spectively. Thus Theorem 1 follows from Theorem 2.

Theorem 1 is due to Nash. ' Theorem 2 was proved by
Nash' in the weaker form k&e+2 and, in its present
form, by Kuiper. ' From Theorem 2 one deduces:

CoRoLLARY 1. For aey Pozet of a C' Riemaenian
maeifold V„ there is a neighborhood which has a C'
isometric embedding As E„+~.

CQRoLLARY 2. The flat e torus (i.e., t-he metric product
of e circles) has a C isometric embedding in E„+i.

CQRQLLARY 3. The hyperbolic space II„ f z.e., E„pro-
vided with the metric ds'=EA(dp'+Ip(p) do'), where do is
the Euclidean surface element onthe unit sp, here of E„, p

' J. Nash, Ann. Math. 60, 383 (1954).
'N. H. Kuiper, Ned. Akad. %'etensh. Proc, Ser. A58=Indig.

Math. 1'7, 546, 683 (1955).

is the radial distance aed tp(p) = (sinh cp) s/c' j has a C'
isometric embedding in ~I.

We turn to imbeddings of class C", p&3.
THzozzM 3. Any compact Cv Riemaneiae nzanifold

(p&3) has a Cv isometric embedding into E, where
m= ,'n-(3n+11). The same result holds for noncompact
manifolds, but with m= ,'n(e-+1) (3e+11).

The theorem is due to Nash. ' The bound on m seems
much too high, but so far there has been no progress in
decreasing this bound for the general case. In the
special case of the hyperbolic space B,Blansula4 found,
by explicit formulas, a C isometric embedding in
E6 5 lf QW2 and ln E6 lf K=2.

We now state a result in the converse direction, i.e.,
in the direction of giving a lower bound on m.

THEoREM 4. Let a compact C' Riemannian manifold
V„have the following property: At each point of V„ there
is a q plane such that all the sectional curvatures of all the
2 planes in it are &0. Thee V does not have a C' iso
metric embeddinginto any E with m&e+q 1. —

Thus, in particular, the Sat n torus has no C4 iso-
metric embedding in E,„ I (it has, of course, C iso-
metric embedding in Es„). Compare this result with
Corollary 2.

Theorem 4 was proved by Chem and Kuiper' in case
q=2, 3 and by Otsukie for general q. The special case
where V„ is Rat was previously established by Tomp-
kins. ~ Otsuki 9 obtained other related results. Thus, he
gave an example in case n=q=2 of a compact surface
with everywhere negative Gaussian curvature which
can be isometrically embedded in E with m=e+q=4.
He also showed that if the condition on the curvature
(in Theorem 4) is assumed only at one point, with q= n,
then there is no C isometric embedding in E~„2.

In the proofs of all the previous theorems, the posi-
tivity of the metric plays an indispensable role and, in
fact, the proofs break down if the metric is indefinite.
We shall illustrate this just in the case of Theorem 4.
The proof here is based on the following geometric idea:

Suppose V„ is a submanifold of 8 and take 0 to be a
fixed point in E . As a point P varies on V, the Euclid-
ean distance OP achieves a maximum at some point
Po. At Po the manifold must then be "concave toward
0" and this will impose some "positivity condition" on
the Riemann curvature tensor at P'0. In order for this
condition not to contradict the assumption of negative
sectional curvatures at Po, the dimension m must be
sufficiently large (i.e., m& e+q —1) .

It is clear that in the case of indefinite metric, even if
one could And a local maximum for OP, attained at

3 J. Nash, Ann. Math. 63, 20 (1955).
4 D. Blansula, Monatsh. Math. 59, 217 (1955).
5 S. S. Chem and N. H. Kuiper, Ann. Math. 56, 422 (1952).' T. Otsuki, Proc. Japan Akad. 29, 99 (1953).I C. Tompkins, Duke Math. J. 5, 58 (1939).' T. Otsuki, Math. J. Okayama Univ. 3, 95 (1954).' T. Otsuki, Math. J. Okayama Univ. 5, 95 (1956),
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some point I'p, the manifold still need not be "concave"
at Io as before.

III. LOCAL ISOMETRIC EMBEDDING

In this section, all embeddings are local.
THzoEEM S. Any Riemannian manifold V„with

analytic positive definite metric can be analytically and
isometrically embedded in E, where m= 2in(n+1).

The theorem is due to Janet M Cartan "and Burstin 'e

We next consider V„with indefinite metric. The nota-
tion V„(p,q) indicates that the tensor metric has p
positive and q negative eigenvalues (p+q=n). The
Euclidean space with metric dse=dxie+ ~ +dx„'—
dx„+is—~ ~ ~ —dx„' is denoted by E„(p,q) where q=
n —p. We finally set V (n, 0) = V .

THzoRzM 6. Any Riemannian manifold V„(P,q) with

analytic metric can be analytically and isometrically em-
bedded in E (r,s) where m=2n(n+1) and where r,s
are any prescribed integers satisfying: r) p, s& q.

The theorem is due to Friedman. "
From now on all the ernbeddings are isometric and

sufficiently smooth. It is useful to introduce the fol-
lowing concepts:

Let kp be the smallest nonnegative integer such that
V„(p,q) can be embedded in E +e,(p,q+ke). For each
k, 0&k&he, we define the kth embedding class of V„(p,q)
to be the smallest number Xi such that V„(p,q) has an
embedding in E„+~e(p+ae, q+k) (where ae+k =Xi,).
The embedding class of V„(p, q) is defined to be
minp&&&I„Ã&.

According to Theorem 6, Xi,& ,'n(n 1)-for a—ll k.
FUNDAMENTAL PRoBLEM. Given V (p,q), determine

the EI,.
For many special relativistic metrics (n=4) upper

bounds (less than 6) on 1' are known. For a recent
treatment and references, see Rosen. "Fujitana, Ikeda,
and Matsumoto" also considered embedding of gener-
alized Schwarzschild fields in Ee(p, q) .

To determine whether or not E~——0 one simply
checks whether or not the Riemann curvature tensor
vanishes identically (see, for instance, Ref. 16) .

"M. Janet, Ann. Soc. Po]on. Math. 5, 38 (1926).
"E.Cartan, Ann. Soc. Polon. Math. 6, 1 (1927).
"C. Burstin, Rec. Math. Moscou (Math. Sbornik) 38, 74

(1931).
"A. Friedman, J. Math. Mech. 10, 625 (1961).
'4 J. Rosen, Ph.n. thesis, Hebrew University, Jerusalem, 1964

(to be published)."T.Fujitana, M. Ikeda, and M. Matsumoto, J. Math. Kyoto
Univ. 1, 43, 63, 255 (1961/62) .

"L.P. Eisenhart, Eiemuneiue Geometry (Princeton University
Press, Princeton, New Jersey, 1949).

For definite metrics Thomas'7 and Rosenskon'8 gave
an algebraic criterion to determine whether or not the
imbedding class is 1. This criterion involves rather
lengthy calculations (evaluation of a fairly large number
of determinants) . Their work extends with minor
changes to the case of indefinite metrics. Thus, there is
always a sure (though lengthy) way to determine
whether or not X~=1. There are however instances
where some fairly simple necessary (or sufficient) condi-
tions can be used to check whether or not SI,——1. We
state a result of Schouten and Struik" which involves a
necessary condition.

THEOREM 7. If the Ricci tensor of V„(p,q) is sero, then

EI,Q1.
Certain extensions of the work of Thomas'~ to im-

bedding classes )1 were given by Allendoerfer. '0 He
considered only V„, but his result undoubtedly extends
to V (p,q). He proved the following theorem:

THEQREM 8. If at each point in V„ the first normal
space is of dimension q and the type is &3, then V„can
be embedded in E„+,.

The first normal space is defined as follows: Suppose
V„ is already embedded in some E+„(p&q) (this is

always true if p =-,'n(n —1)) and is given by y'= y'(x ) .
Then the first normal space is the vector space generated
by the vectors I'

p with components

The definition of type is quite involved. The type is
always &Ln/q]. Since, in relativity, n=4, Theorem 8
can only be applied in case q=1. Thus its usefulness

may be only in giving a sufficient condition for the em-

bedding class to be equal to 1.
We shall conclude with an example where XI,/Xq

for k/h. First we recall the following fact (see Ref.
16):

If V„(p,q) has a constant curvature then its embed-
ding class is 1, i.e., there is a space E„+i(r,s) (with
r) p, s&q) such that V (p, q) is (locally) isometric to a
portion of a hypersphere in E„+i(r,s). Thus, X=
min p cg & lco, Sy = 1.

Take now V with constant negative curvature. As
proved by Lieber, " V can be embedded in E2 & but
cannot be imbedded in E2„2, i.e., Ãp=n —1 whereas
E=1.

' T. Y. Thomas, Acta Math. 6'7, 169 (1936).
'

¹ A. Rosenskon, Izvest. Akad. Nauk SSSR 7, 253 (1943)."J.A. Schouten and D. J. Struik, Am. J.Math. 43, 213 (1921).
~ C. B. Allendoerfer, Am. J. Math. 61, 633 (1939)."E. Lieber, Doklady Akad. Nauk SSSR 55, 291 (1947).


