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A review is given of some conventions and definitions required for the derivation of the irreducible
representations of the space groups, and of a method to obtain lattice harmonics. These are given for
all the irreducible representations of the simple cubic (Pm3m), face-centered cubic (Fm3m) and
body-centered cubic (Im3m) space groups for /<12. The expansions are given in polar coordinates
and care has been taken that different bases corresponding to the same representation span identical,
rather than equivalent, representations, which are given in full. Moreover, all the different expansions

listed in the tables are fully orthogonal.

1. INTRODUCTION

In many physical problems it is necessary to use
linear combinations of spherical harmonics that belong
to the irreducible representations of the space group of
a crystal. Such expansions were first obtained by von
der Lage and Bethe! who derived them for the cubic
lattice (whence the name of ‘“kubic harmonics” coined
by these authors) and applied them for cellular calcu-
lations of the band structure in cubic metals. Their use
is not, of course, limited to the cellular method. As
just one example of a recent application in a different
method we mention the work of Ham.?

Von der Lage and Bethe did not use the standard
form of the spherical harmonics in polar coordinates:
they gave instead a method to obtain directly homoge-
neous polynomials in the Cartesian coordinates x, y, 3,
with the required symmetry properties. Von der Lage
and Bethe’s work was extended for other space groups
by Bell,®* who introduced the name lattice harmonics
for these polynomials. Bell’s work however is rather
limited, since the use of Cartesian coordinates becomes
extremely difficult for high values of /. Her tables,
therefore, did not go further than /=6. Moreover, her
treatment of the hexagonal close-packed lattice is wrong
since no proper account is given of the necessary phase
factors that relate the two atoms in the unit cell. Also,
the representations that she uses for the top face of
the Brillouin zone are incorrect.

No general method was given to symmetry-adapt,
in the terminology of Melvin,* the spherical harmonics
in their usual polar form, until one of us® provided a
technique for doing so for the point groups. His method
and tables have now been extended and improved by
Altmann and Bradley.® An advantage of this approach
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is that in many cases the expansions can be given for
all orders of / and, where this is not possible, the treat-
ment of large values of / is not difficult. Moreover,
Altmann’ showed how his method could be extended
for space groups. The present paper and the following
one, to which this section also serves as an introduction,
extend this work by making full use of the new results
of Altmann and Bradley,® to cover all the irreducible
representations of the simple, face-centered and body-
centered cubic lattices and the hexagonal close-packed
lattice. The lattice harmonics for the cubic groups are
given for /<12 and for all values of / for the hexagonal
lattice. It should be noticed that, unlike Bell, we give
in full the irreducible representations spanned by our
expansions, since such information is important to spec-
ify the lattice harmonics unambiguously and is essential
in some applications. Also, when two lattice harmonics
with the same values of / and m belong to the same
column of the same representation, they have been
made orthogonal by the technique of Altmann and
Bradley.$

¢

2. GENERAL THEORY

We give in this section a number of results in great
detail which, although well-known in group theory, do
appear to cause a certain amount of trouble in solid-
state theory.

Symmetry operations in configuration space can be
interpreted either as axes transformations (passive in-
terpretation) or as point transformations (active inter-
pretation). We shall represent these with R, and R,,
respectively, and it is well known that R,= R,™. (See,
e.g., Altmann.®) Such operators induce transformations
of functions which we shall designate by operators in
script type, such that

®f (x) =f(R™*x). (1)

This expression is valid in the active as well as in

7S. L. Altmann, Proc. Roy. Soc. (London) A244, 141 (1958).

8S. L. Altmann, “Group Theory” in Quantum Theory, edited
by D. R. Bates (Academic Press Inc., New York, 1962), Vol.
II, p. 144.
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the passive interpretation and ensures the isomorphism
between the script and the roman operators, as shown
by Wigner.? However, it should be observed that active
and passive operators do not multiply in the same
manner. For, if ®,8,=3, then, on taking inverses,
8, 1R, 1=5,7L, Le., SuRa=0s

If we have a representation given by matrix repre-
sentatives D(®,), we obtain one for the active operators
by using the rule D(®,) =D(®Rp™"). For if ®,8,=3,,
then 8,®,=3, and D(8,)D(®,)=D(8,)D(®R,) =
D[((R,,S,,)—l] D(3,1)=D(3,). This new representa-
tion is not identical with the original one, but it is
nevertheless spanned by the same basis. For if ®Rpfi=

ifiD(®yp) i, then Qqfi=®;fi= ZJfJD((PLP D=

i JiD(®a) ji-

In summary, in going from passive to active oper-
ators, one applies the rules

D(®o)=>D(®™), (2)

but the multiplication rules are not conserved. Also,
the labels of the representations have to be revised
with respect to the standard labels given in character
tables.

When ® is a space-group operation it includes a
translational part v as well as a rotational part «. The
well-known symbol {a|v}, introduced by Seitz? is
used to represent such operations. Since it would be
too cumbersome to attempt a distinction in this case
between the function and configuration-space operators
we shall not do so, but it should always be clear from
the context which operator is meant. It is traditional
in solid-state theory, following Seitz, to multiply the
space-group operators as follows

V= {ad | av'+v}. (3)

Nevertheless, it is seldom noticed that this multiplica-
tion rule implies the active interpretation for the oper-
ators {« | v} and that, of course, it is not valid in the
passive convention. Since we consider it important to
preserve (3), which is much used, we shall always
understand the operators {a | v} as active.

It is well known that the bases of the representations
of space groups are Bloch functions

Yu(r) =exp (ik-1)u(r), (4)

where k is the label of the representation and u.(r) is
periodic in r. We now denote as usual with the symbol
{E |t} a translation of the translation subgroup I' of
the space group. (£ is the identity of the rotation
group.) Hence

{E | thn(r) =du(r—t) =exp (—ik-t)Yx(r), (5)

whence

R,

falvie’ v

D{E |t} =exp (—ik-t). (6)

9 E. P. Wigner, Group Theory (Academic Press Inc., New
York, 1959).
0 F, Seitz, Ann. Math, 37, 17 (1936).

The negative sign in the exponent should be noted,
since in many treatments in solid state it is given as
positive. However, this is the only choice compatible
with (1) [used in the first step in (5)], (3), and (4).
The need to maintain the latter, of course, arises from
the physical meaning of k as a quasimomentum, which
would make it unnatural to take a negative exponent
in the Bloch function. Confusion in the literature arises
from the fact that Bloch used the translations in the
passive convention: he gave the second term in (5) as
Yi(r+t), and this form is still the most commonly
used. But this is incompatible with the active conven-
tion for the Seitz operators implied by (3) and which
is entirely standard. We do not give a list of references
where such inconsistencies appear since it would be
too long. It may suffice to say that of a large number
of papers and books that we have surveyed the only
fully consistent treatment that we have been able to
find is the one given by Herring!! with whom our con-
ventions and basic expressions agree entirely. It is
probable nevertheless that, since Herring did not ex-
plain his conventions at all, the whole point has failed
to be duly appreciated. Since we shall now use the
active convention, whereas in our previous work on
point groups we employed the passive one, we shall
make the necessary changes, when required, by means
of the rules given in (2).

The theory of the space groups given by Seitz?®
and Bouckaert, Smoluchowski, and Wigner? is well
known.®%5 An irreducible representation of a space
group is fully determined by means of the group of
the k vector, G* (the subgroup of operations of the
space group that leave k invariant or transform it into
an equivalent vector) and one of its representations.
The reduction of the space group is therefore achieved
by reducing G*. The space groups we deal with in this
paper are symmorphic, that is they contain no screw
axes or glide planes. (Asymmorphic groups are treated
in the following paper.) All the operations of the
space group can in this case be written as products
{E|t}{a]|o0}, where {E|t} €I. In the notation of
Altmann,’® G* can be expressed as a semidirect prod-
uct: GE=TAGY, where G*%, the cogroup of k, is the
subgroup of operations of the point group that belong
to GX. This simplifies considerably the work required
to produce the symmetry-adapted harmonics. They
are obtained by using the well-known projection oper-
ators (Wigner?), which are defined as follows. Consider
a group G of operations ® and assume given an irre-
ducible representation of matrices Di(®). Then the

11 C. Herring, J. Franklin Inst. 233, 525 (1942).

21. P. Bouckaert, R. Smoluchowskl, and E. Wigner, Phys.
Rev. 50, 58 (1936).

8G. F. Koster, Solid State Phys. 5, 174 (1957).

uD, F. ]ohnston, Rept. Progr. Phys. 23, 66 (1960).

S, L. Altmann, Phil. Trans. Roy. Soc. London A255, 216
(1963). In this paper the cogroup of k, Gk, was denoted with a
symbol G* with bar. The present change is due to typographical
reasons.
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projection operator,

2, Di(®)u*®, )
ReG :
is such that when applied on any arbitrary function ¢
(called the generator) it will adapt it into a function
belonging to the sth column of the ith irreducible
representation of G. The generator will always be in
our case a spherical harmonic. If ® is a point-group
operation, ®¢ can then be evaluated by using the
familiar representations of the rotation group, for
which it is necessary to express ® in terms of its Euler
angles. The representations of the rotation group are
complicated and various short-cuts are necessary, which
have been fully described.®:¢

When the properties of the symmorphic groups de-
scribed above are taken into account, the operator(7)
applied on a spherical harmonic takes the form

;D{Elt}*{Elt}%‘D{alO}*{aIO}Yz"‘. (8)

The summation over the point-group operations can
be carried out exactly as in the work of Altmann® and
Altmann and Bradley® and no further description is
necessary, except that the appropriate allowance must
be made for the active interpretation for . The result
of this summation will be a spherical harmonic of
order /, symmetry-adapted to G¥, which we call Xj,.
This is a linear combination of several ¥;» with con-
stant / and varying m: the index » is an arbitrary label
to distinguish the various harmonics of the same order
that belong to the same representation. We shall always
take X;,=X1,(0, ¢) as a function of the polar coordi-
nates around the origin of coordinates for the lattice,
r=o. Let us define *X;, as a function identical with
X1, except that it is centered around the point at the
end of the vector t of the lattice (r=t). That is

{E |t} X0p="X,,. (9)
Then, on using (6), (8) gives
> exp (ik-t) X,  allter. (10)
12

This multicentered expansion is a lattice harmonic.
It should be noticed that it is fully given if we know
X1, in the unit cell at the origin. The expansion through-
out the lattice follows at once, if required, from the
Bloch condition, as is apparent from (10). Therefore,
it will be enough for symmorphic groups to give the
expansions X,. The discussion of asymmorphic groups
will be left for the following paper.

3. THE METHOD FOR THE CUBIC GROUPS

It follows from Sec. 2 that the problem of obtaining
lattice harmonics for the cubic lattices is in principle
solved: we must obtain harmonics adapted to the vari-
ous G* groups that appear in the lattice. G* is a point
group and clearly also a subgroup of the full cubic

group Oj. Therefore the harmonics can be obtained by
the use of the techniques of Altmann and Bradley.t
In fact, for some groups G* the results can be read off
their tables. It should be noticed, nevertheless, that
although G* may be a point group given in the tables
referred to, it will often appear in our present work
in an orientation that differs from the standard one
used by Altmann and Bradley, which causes a drastic
change in the harmonics. Rather than repeating their
work for these new orientations, the following method
yields the results more quickly and in a more conven-
ient form.

Consider the group of operators G, a subgroup of
O,, and take an irreducible representation of Oy from
the tables, with basis symbolically written as a row
vector (¢ |. The matrices of this representation that
correspond to the operators of G* form a representa-
tion of G* which is called a subduced representation.
This is, in general, reducible. We reduce it under a
unitary transformation with a matrix M and we ob-
tain the subduced irreducible representations of G*
that are required. At the same time the new bases are
given, as is well known, by (¥ | =(¢ | M. We there-
fore have the new symmetry-adapted harmonics as
well as the representations that they span.

In order to solve the problem as stated we must
find the matrix M that reduces the subduced repre-
sentation. Most methods given in the literature for
this purpose require a knowledge of the irreducible
representations that appear under reduction, which
would defeat our purpose. Fortunately there is a
method that is free from this drawback (Altmann?
p- 123). The prescription for it is as follows. Consider
a matrix representation to be reduced: take all the
matrices of any class and sum them. Find the matrix
M that diagonalizes the matrix obtained: this is the
matrix that reduces the representation.

It should be noticed that two bases of the same
representation may subduce into equivalent rather than
identical representations. If this is the case, a similarity
transformation is required to make all the bases ob-
tained span the same representation.

4. NORMALIZATION

As follows from Sec. 3, the symmetry-adapted spheri-
cal harmonics will be given as linear combinations of
those for the cubic groups. The latter are given in
Tables 8-11 of Altmann and Bradley.® However, in
that paper unnormalized spherical harmonics Y=
Py (cos 8) exp (im¢p) were used to give the necessary
“coefficients in the X, exact to any number of figures.
In practical applications normalized spherical har-

monics,
24+1 (—|m])!

Yim(8, ¢)=[( dr (4| m|)!

are required and expansions X, in terms of them were

)]%P;”’ (cos §)etm¢, (11)
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Fic. 1. The first Brillouin zone for the simple cubic lattice.
The points marked with open circles belong to planes, but not
lines, of symmetry. A is a general point.

obtained on a Ferranti Mercury computer and are
given in Table I. The coefficients are correct to at
least seven significant figures. Various checks and re-

Fic. 2. The first Brillouin zone for the body-centered cubic
lattice. The points marked with open circles belong to planes, but
not lines, of symmetry. A is a general point.

peated calculation have been used to ensure that these
tables are free from error.

TaBLE I. The normalized symmetry-adapted harmonics for the cubic groups.

Notes

(2) Representations. The symmetry-adapted harmonics are the
same whether the active or the passive interpretation is used. In
the latter case the matrix representatives are identical with those
listed by Altmann and Bradley® in their Tables 6 and 7. If the
active convention is used these matrices can be employed, but for
the operation « the matrix corresponding to & must be taken.
1E and 2E are the first and second representation, respectively,
in the table for T of Altmanns. The complete representations of
0, 0x, and T; can be obtained from Tables IT and III below.

(#) Spherical harmonics. They are

Yyme=(Yim4+-Yrm™) /V2,
Yyme=—ji ( ym— Yz_"') /\/2,

(12)
(13)

where the normalized Y™ are defined in (11).
(#22) Bases. They are understood as row vectors. Their trans-

formation properties are obtained by postmultiplying them with
the matrix representative: the first function belongs to the first
column of the representation, the second to the second, etc.

(4v) Notation of the tables. A harmonic such as a V™ ¢4V me+
cY®e is given as follows: the values of ! and the superscript ¢
(or s) appear under the headings ! and ¢-dep, respectively. The
rest of the expansion appears on the same line in the form a (m) +
b(n)+c(p). Degenerate representations are given in several
lines, and they must be understood as a row vector, the successive
lines corresponding to the successive columns of the vector. In
the three-dimensional representations the first two partners are
given in one line: the first letter under “¢-dep” and the upper
sign in the expansion correspond to the first partner.

(v) Orthogonality. The expansions Xy given here are ortho-
normal for different / or different ». Also in a multidimensional
basis all the partners in the same basis are orthogonal. (See
Altmann and Bradley.%)

TaBLE I (a). Harmonics for the one-dimensional representations.

T Tx Ta 0 0x ! ¢-dep
4 4, A, A, Ay 0 ¢
A Au Al Az Azu 3 N
A Aﬂ Ay A, Alg 4 c
A Ag Al A1 A]g 6 c
A Ag A, A2 Azg 6 c
4 Ay A 4, Az 7 s
A Aa Al A4, Alg 8 c
4 Ay 4, A Az 9 s
A Au A2 A1 Alu 9 S
A Aa Al Al Alg 10 c
A Aa A A Azg 10 c
4 Ay Ay Ay A, 11 s
A Ag Al A1 Al,, 12 c
4 A, A A, Ay, 12 ¢
A A, Az Az Azg 12 c

Spherical harmonic
1(0)
1(2) ,
0.76376261(0) +0.64549722(4)
0.35355339(0) —0.93541435(4)
0.82915619(2) —0. 55901699 (6)
0.73598007 (2) 4+0.67700320(6)
0.71807033(0) 4-0. 38188131 (4) +0. 58184333 (8)
0.43301270(2) —0.90138782(6)
0.84162541 (4) —0.54006172(8)
0.41142537(0) —0. 58630197 (4) —0.69783892(8)
0.80201569(2) +0.15728822(6) —0.57622153(10)
0.66536331(2) —0.45927933(6) —0. 58851862 (10)
0.69550266(0) 0. 31412557 (4) 4-0. 34844954 (8) +-0. 54422798 (12)
0.55897937 (4) —0.80626751(8) +0.19358400(12)
0.21040635(2) —0.82679728(6) +0.52166600(10)
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TasLE I(b). Harmonics for the complex representations of T and T,. The harmonics of 2E, 2E,, and 2E, are the complex conjugates
of the expansions listed in this table. The labels of the representations given are valid only in the active convention. If the passive con-
vention is used it is enough to interchange the superscripts 1 and 2 in this table. That is, 1E goes into 2E, etc.

T

E
E
E
1B
E
E
1E
E
1E

E

E

E
E

E

Ta

1R,
1R,
1B,
1R,
1R,
1E,
1E,
1R,
1R,

1E,
1R,

1R,
1R,

lEﬂ

-~

OO 00O~

—

11

11
12

12

¢-dep

A T IS S TS T R S W o Y

Spherical harmonic

0.70710678(0) —0. 70710678 (2)i
0.45643546(0) —0. 54006172 (4) +0. 70710678 (2)i
0.70710678(2) —0. 70710678 (4)i
0.66143783(0) 0. 25(4) —[0. 39528471 (2) 0. 58630196 (6) Ti
0.47871355(2) —0. 52041650 (6) 4-0. 70710678 (4)
0.49212549(0) —0. 27860540 (4) —0. 42448973 (8) -+[0. 46010167 (2) 40. 53694176 (6) i
0.59115342 (4) —0. 38799180(8) +[0. 53694176 (2) —0. 46010167 (6) Ti
0.38188131(4) 4-0. 59511903 (8) +[0. 63737744 (2) +0. 30618622 (6) Ti
0.64448784 (0) +0. 18714046 (4) +0.22274170(8)
—[0.31464779(2) +0. 34379898 (6) +0. 53178852 (10) Ji
0.54139029 (4) —0. 45485883 (8)
—[0.28174844(2) —0. 60780957 (6) +0. 22624178 (10) Ti
0.52786914(2) —0. 28945395 (6) —0. 37090508 (10)
+[0.35023357(4) +0.61427717(8) Ti
0.55744745(6) —0.43503142(10) +[0. 61427717 (4) —0.35023357(8) i
0.50807284(0) —0. 21500378 (4) — 0. 23849688 (8) —0. 37249777 (12)
+[0.36487352(2) +0. 38689303 (6) +-0. 46602693 (10) Ti
0.49820374(4) +0. 23953507 (8) —0. 44092628 (12)
+[0.58713874(2) —0.09228708 (6) —0. 38308119 (10) Ti

TasLE I(c). Harmonics for the two-dimensional representations of Ts, 0 and 0.

For the representations marked with an asterisk the partners must be interchanged and the sign of one of them reversed.

Ta

E*

E*

E*

E*

m 8 &8 &N o

o]

(U

&

&

l ¢-dep Spherical harmonic
2 c 1(0)
c 1(2)
4 c 0.64549722(0) —0.76376262 (4)
¢ —1(2)
5 s 1(4)
s —-1(2)
6 ¢ 0.93541434(0) +0.35355339 (4)
c 0.55901699 (2) +-0.82915619(6)
7 s 1(4)
s 0.67700320(2) —0.73598007 (6)
8 ¢ 0.69597054(0) —0.39400753 (4) —0.60031913 (8)
¢ —0.65068202(2) —0.75935032(6)
8 c 0.83601718(4) —0.54870326(8)
c —0.11588441(2) +0.99326270(6)
9 s 0.54006172(4) +0.84162541 (8)
s —0.90138782(2) —0.43301270(6)
10 ¢ 0.21628928(0) +0.62804094 (4) 0. 74751824 (8)
c 0.44497917(2) +0.48620518 (6) 4-0.75206253 (10)
10 c 0.76564149 (4) —0.64326752(8)
c 0.39845246(2) —0.85957253 (6) +0.31995420(10)
11 s 0.49530506(4) 4+0.86871911(8)
s 0.74651970(2) —0.40934970(6) —0.52453900(10)
1 s 0.86871911 (4) —0.49530506(8)
s —0.78834975(6) +0.61522733(10)
12 ¢ 0.71852351(0) —0.30406127 (4) —0.33728553(8)

—0.52679140(12)
—0.51600008 (2) +0. 54714937 (6) 4-0. 65906160 (10)
12 ¢ 0.70456648(4)+0.33875374(8) —0.62356392(12)
¢ —0.83033957 (2) -+0. 13051364 (6) +0. 54175861 (10)

S
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TaBLE I(d). Harmonics for the three-dimensional representations of the five cubic groups.

T T,
T T,
T T,
T T,
T T,
T T,
T T,
T T,
T T,
T T
T T,
T T,
T T,
T Ty
T T.
T T,
T T,
T T,
T T,
T T,
T T,
T T,
T T,
T T,
T T,

Ta

T2

T

T

Ty

T,

Ty

T

Ty

Ty

T

T

T

T2

T

Ty

Ty

Ty

A

T

Ty

T

Te

T

4

Ty

T,

T,

Ty

Ty

T

T,

Ty

7>

Ty

T

Ty

Ty

Ty

T,

Ty

Ty

T

T

T

T

T,

TZu

14

¢-dep

Spherical harmonic
1(1)
1(0)
1(1)
1(2)
0.61237243(1) F0.79056941 (3)
—1(0)
F0.79056941 (1) —0. 61237243 (3)
1(2)
0.35355339(1) F0.93541435(3)
—1(2)
F0.93541435(1) —0.35355339(3)
1(4)
0.48412292 (1) 0. 52291252(3) 4-0. 70156076 (5)
1(0)
+0.66143783(1) —0.30618622(3) 0. 68465320(5)
1(2)
0.57282196(1) 2£0.79549513(3) +0.19764235(5)
1(4)
0.19764235(1) 0. 56250000 (3) +0.80282703 (5)
1(2)
+0.43301270(1) —0.68465320(3) 0. 58630197 (5)
1(4)
0.87945295(1) 0.46351240(3) +0.10825318(5)
1(6)
0.41339864 (1) F0.42961647 (3) +0.47495888(5) F0.64725985(7)

—1(0)

F0.57409916 (1) 0. 41984465 (3) F0.07328775(5) —0. 69912054 (7)

1(2)

0.53855275 (1) 0. 10364452 (3) —0. 78125000 (5) F0. 29810600 (7)

—1(4)

F0.45768183 (1) —0.79272818 (3) F0. 39836090 (5) — 0. 05846340 (7)

1(6)

0.13072813 (1) F0. 38081430 (3) 4-0. 59086470 (5) F0. 69912054 (7)

—1(2)

F0.27421764 (1) +0. 60515364 (3) F0. 33802043 (5) —0. 66658528 (7)

1(4)

0.45768183 (1) F0. 47134697 (3) —0. 70883101 (5) F0. 25674495 (7)

—1(6)

F0.83560887 (1) —0. 51633474 (3) F0. 18487749 (5) —0.03125000(7)

1(8)

0.36685490 (1) F0. 37548796 (3) +-0. 39636409 (5) F0. 44314853 (7)
+0.60904939 (9)

1(0)

+0.51301422 (1) —0. 42961647 (3) ==0. 25194555 (5) +0. 05633674 (7)
F0.69684697 (9)

1(2)

0.49435287 (1) =F0. 13799626 (3) —0. 39218439 (5) 0. 67232906 (7)
+0.36157614(9)

14)

+0.45768183 (1) 40.29810600 (3) F0. 60515365 (5) —0. 56832917 (7)
F0.11158452(9)

1(6)
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TaBLE I1(d) (Continued)

T,

Ta
T2

T2

Ty

T

Ty

T

T2

Ty

T2

Ty

T

Ty

Te

Ty

Ty

T

Ty

Ty

T:

Ty

T:

T

T

Ty

T,

T

T

Ty

T

T

Ty

T:

A

T2

Tlu

TZu

T2u

Tlu

T2u

Ta,

10

10

10

10

10

11

11

11

11

11

11

12

12

12

12

12

12

¢-dep

s

c
5, ¢

s
s, ¢

s
s, ¢

s
s, ¢

s
s, ¢

S

¢, s

4

¢, s

¢
c,s

c
¢, s

c
c, s

c
s

c
s, ¢

N
s, ¢

N

5 ¢

s
S¢

s
5 ¢

S

s, ¢

B

Spherical harmonic

0.38519666 (1) 20. 75268075 (3) 0. 50931269 (5) 0. 15944009 (7)
+0.01657282(9)

1(8)

0.00472153 (1) 0. 27885263 (3) +0. 44538102 (5) F0. 57486942 (7)
++0.62002414(7)

1(2)

+0.19515619 (1) —0.48613591 (3) 2=0. 49410588 (5) —0. 09110862 (7)
F0.68785502(9)

1(4)

0.31049159 (1) 0. 53906250 (3) —0. 01746928 (5) 0. 69255289 (7)
+0.36479021(9)

1(6)

£0.46456465 (1) —0. 31560953 (3) FF0. 70572436 (5) —0. 42100605 (7)
F0.09631897 (9)

1(8)

0.80044772 (1) 0. 54379714 (3) +0. 24319347 (5) 0. 06594509 (7)
+0.00873464(9)

1(10)

0.33321251 (1) 0. 33846028 (3) 4-0. 35033967 (5) F0. 37296506 (7)
+0.41975833(9) F0. 57997947 (11)

—1(0)

=0.46765008 (1) +0.41655170(3) F0. 31014124 (5) +0. 13689999 (7)
£0. 13594929 (9) —0. 68875008 (11)

1(2)

0.45637974 (1) 0. 23534954 (3) —0. 13435456 (5) 0. 49510852 (7)
—0.55722625(9) F0. 40329075 (11)

—-1(4)

7£0.43552936(1) —0. 04764184 (3) 20. 52272828 (5) —0. 32425699 (7)
70.63603689 (9) —0.15847416(11)

1(6)

0.40022386(1) 2=0. 30401846 (3) —0. 40784786 (5) F0. 65553754 (7)
—0.29501240(9) 0. 03832308 (11)

—1(8)

0. 33485131 (1) —0. 70641321 (3) 0. 56871666 (5) —0. 24930093 (7)
70.05695964(9) —0.00458048 (11)

1(10)

0.07271293 (1) 0. 21528718 (3) +0. 34870256 (5) F0. 46435521 (7)
+0.54718532 (7) F0. 55833077 (11)

—1(2)

0. 14842465 (1) +0. 39257812 (3) 0. 48401456 (5) +0. 34123000 (7)
£0.07446249(9) —0. 68381274 (11)

1(4)

0.23130311 (1) F0.49003980 (3) +0. 27404717 (5) 0. 30237819 (7)
—0.58930834 (9) F0. 43879508 (11)

—1(6)

0. 32928552 (1) 4+0. 45497333 (3) 0. 23408185 (5) —0. 54296875 (7)
=F0.55492127 (9) —0. 16438770 (11)

1(8)

0.46435521 (1) 0. 20164538 (3) —0. 65705604 (5) F0. 52110934 (7)
—0.19834078(9) F0. 03311685 (11)

—1(10)

0. 77144482 (1) —0. 55833077 (3) 0. 28725881 (5) —0. 10066650 (7)
=F0.02196723(9) —0.00239208 (11)

1(12)
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F1c. 3. The first Brillouin zone for the face-centered cubic
lattice. The points marked with open circles belong to planes,
but not lines, of symmetry. A is a general point.

5. RESULTS

We must first identify the cogroups G* for all the
k vectors of symmetry in the cubic lattices. The latter
are shown in Figs. 1, 2; and 3 in the standard notation
of Bouckaert, Smoluchowski, and Wigner.? For each
k the symmetry operations of G* are obtained in the
notation of Fig. 4 (from Altmann and Bradley®). The
character tables of the corresponding groups are given

gv\/"'

FiG. 4. The symmetry operations of the cubic groups. The om
planes (m=x, v, z) are perpendicular to the corresponding
axes, and the oup planes (p=gq, D, ¢, d, ¢, f) are perpendicular to
the Cy, axes.

in Table II, where the actual symmetry operations for
each group can be identified from the heading. These
tables duplicate to a large extent those given by
Bouckaert, Smoluchowski, and Wigner. Nevertheless,
they are required here for the following reason. These
authors were interested in the characters of the opera-
tions only and therefore used the same symbol for

(Text continues on p. 30)

TasLE II. Character tables of the cogroups of the k vector for all the k vectors of the cubic lattices.

Notes

(2) Points. The points in k space (k vectors) should be iden-
tified from Figs. 1, 2, and 3.

(#2) Symmetry operations. They should be identified from Fig.
4. The suffices m, n, p take the following values, with reference to
the symmetry operations of Fig. 4: m: «, , and z; n: 1, 2, 3, and
4; p:a, b, ¢, d, ¢, and f. A symbol such as gap,e, ) stands for the
three operations oa, ga., and oay.

(#42) Direct product groups. These are recognized in the tables
because the names of two representations appear in the column
under the name of the point. Also, the operations are listed in
two rows linked with braces. For the two representations listed
together the characters of the operations in the first row are

those given in the table. The characters of the operations in the
second row are, for the first representation listed, those in the
table and, for the second, their negatives.

(v) Nomenclature of the irreducible representations. The names
of the representations that correspond to a given point are given
in the standard notation for point groups (see, e.g., Altmann,?
p. 163) under the point symbol underneath, or to the left, of the
symbol of the given point. In brackets, underneath the name of
the point, we give the suffixes that the corresponding represen-
tations carry in the notation of Bouckaert, Smoluchowski, and
Wigner. A suffix 1 for T, e.g., corresponds to their symbol T}.
Except for N, when two representations g and % are listed to-
gether we give the Bouckaert, Smoluchowski, and Wigner symbol
for g only. That for « is obtained by priming the latter, if un-
primed, and vice versa.

T,H, R { E 8Cun* 3Com 6Cim™ 6Cap

7 8Sen” 3om 6Sim " 6oap

P E 8C3,.:‘: 3C2m 6S4m=t 6lrdp

Oh Td
Aigy At 1) A, 1) 1 1 1 1 1
Asgy Azu (2) A, (2) 1 1 1 —1 -1
E,, L, (12) E (3) 2 -1 2 0 0
Ty T (15" T1 (5) 3 0 —1 1 —1
Tagy Tou (25") Ty (4) 3 0 -1 —
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TaBLE 1T (Continued)
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z, K E Caa o, B
G E Czb Oda (7]
D L Co. aab Oda
S, U E Cae ads oy
Z E Coz a2 oy
N {E C2a CZ: CZb
7 Gda A odb
Cay Do
4, (¢)) (1 Agy Ay (1,29 1 1 1 1
Az (2) (2) By, Bi, (2,19 1 1 -1 -1
B, (4) 3 Bsg, Bau (4,3) 1 -1 1 -1
B (3 4) By, By (3, 4’) 1 —1 —1
T E Cas Ci* ) 0d(ab)
A E Cay Co* O(z,2) Gd(e,c)
X E Cay Cuy Coz,2) Cae,0)
7 oy Say™ T(z,2) Gd(c,0)
E Caz Ci* Cozm) Co(aby
i 2 ST 2,y Od(a,b)
w E Caz Sy Ce@,n )
Cyy D Dy
4 (1 Ay, Ara ) 4, 1) 1 1 1 1 1
Az 1" Azg, Aou 4 A (2) 1 1 1 -1 -1
Bl (2) Bla, Blu (2) Bl (1') 1 1 —1 1 -1
B (2" By, Bay 3) B, (2) 1 1 -1 —1 1
E (5) E,, Eu (5) E 3) 2 -2 0 0 0
A E Ca* Gad,e.f)
F E CM* Od(a,d,e)
L {E Ca* Cap,ef)
: Sa Gd®,e.f)
sz D3Il
Ay (1) Argy A1 (1) 1 1 1
A, (2) Asgy Aou (2) 1 -1
E (3) E,, E, (3) 2 -1 0
14 E Gda
C E odb
(0] E o2
J E Cde
B E ay
Q E Cor
Ci C.
A’ A 1 1
A" B 1 -1
A E
C
A 1
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TasLE III. The two- and three-dimensional representations of the cogroups of the k vectors for
all the k vectors of the cubic lattices.
Notes
All the matrices correspond to operators in their active interpretation.

TasLE III(a). The two-dimensional representations. Key:

€ A K p
1 1 1 1
1 —1 1 —1
«@ B " v
-3 -3 - -5 —10 -1 1
~5 -3 W -3 —35 3 WS 3

For the representations E, the matrices listed in the left (right) column under E correspond to the operations listed in the first (last)
column of the table. For the points that admit representations E,, E,, both operations which are on the same row and are in the first
and last columns of the table belong to the group. Only the matrices for the operations in the first column are given. Those for the
corresponding operations of the last column, are, for the E, representations, the same and for the E, representations the same matrices
multiplied by —1. For typographical reasons the negatives of the matrices listed in the key are printed with a bar above the correspond-
ing symbol.

T',H4,R A T A F P X M w
E, E, E, E,
E E E E E E
E, E, E, E,

E € ooe € .. € eee € eee € . € ees € oo PR €  ees € ooe i
Car B ee- B e B eee B oo Ser™
Cat @ oo eee @ ees @ ove Set
Co* B ee- B eee Sea™
Css @ e « .. Sex™
Cas™ B . B e Ses~
Css Qe a e Ser™
Cast B e B eee B eee Ses
Cad o ees o  eee Seat
Coxr € soe cee k eee A € e K oo A oo ¢ o
Cay P H .. cee N € € eee X oo eee A oy
Coz € oo eee F € ces € ces B eee € ooe eee N o,
Cat oo oo eee p Saz™
Cis G oo - cer p Set
Cyy* p e P eee ces AR Sty
Cay~ Y ees PR ooy .. Sayt
Cuz N ees P ees e N p e Ssz
Cyz N eee ] e cee A P oeee Siz
Caq N eee cee T cee A IEEIDN K see Oda
Co A oo e i eee A cee N K soe A see oa
Cae P oeee cee A cee p A oo Tde
Coq B oo oo g cee odd
Coe Y ees eee X ces p R e p N oo P oees Gde

Cay PR e e K eee poeee oy
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TaBLE III(b). The three-dimensional representations.

Notes

The matrices of the operations listed in column (1) are those
printed on the right of the symbol for the operation, for all the
representations of T, H, R, and P.

The matrices for the operations listed under column (2) are
obtained by postmultiplying the matrix printed on the left of the
symbol of the operation with the following matrices:

for Ty, T2, 0f Ty H, R and T: of P:

Lattice Harmonics 1.

29

For the operations in the columns (1’) and (2’) obtain first
the matrices of the corresponding operations in the columns (1)

1 and (2), respectively, by means of the above-given prescriptions:
Then multiply the matrices thus obtained with 1 for T3, T3, and
for Ty, Thwof T, H, R and T} of P: 1 , —1 for Ty, Tou
-1
TH T,H T, H I, H I,H T,H H T,H
R,P R R R P R,P R R R P
1 an (2) (29 2 1 an )] ) (2)
|_1 ] [~ -1 "}
E 7 1 Caa Gda Gda Ci~ Se™ 1 Cor aif gaf
L1 | -1 a
[ 17] B 1?
Cat  Sa| 1 Cy~ Syt Syt Cast Se] —1 Cae gde ade
L 1 L -1 _J
T -]
Ca~  Sa' 1 Ci* Sz Saz™ Ca~  Set -1 Cu oad Gad
L1 . L1 .
B —17] 1 T
Ct  Se| 1 Cyt Sy Sy~ Cox oz -1 Cs; Sat Stz
L -1 L -1
r 1 ] [ -1 7
Cis™ Seat] —1 Caz™ S4x+ Siz Ce gy 1 C4z+ Siz Siz
v
|1 _ | -1}
’_ — 1"] r— 1 ]
Cust  Se| —1 Cao ode gdc Ce o2 -1 Ca o o
T L 1|
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different operations that have the same characters. On
the other hand, since we want to specify the full repre-
sentations we must identify the operations explicitly.
As an example, for the point = Bouckaert, Smoluchow-
ski, and Wigner list two operations, given in their
notation as C, and JC,, respectively (J is the inver-
sion). However, the binary rotations are around d ffer-
ent axes. We name our representations in the standard

notation for point groups and, therefore, we give in
Table IT the correlation with Bouckaert, Smoluchowski,
and Wigner’s notation.

The two- and three-dimensional representations that
appear under subduction are given in Table III and
the symmetry-adapted harmonics in Table IV. A com-
plete table of compatibilities between the representa-
tions is given in Table V.

(Text continues on p. 32)

TaBLE IV. The symmetry-adapted harmonics for the cubic groups.

Notes

(2) Representations. The representations spanned by the bases
given here are obtained from Table II (one dimensional) and
Table III (two and three dimensional). Although these represen-
tations correspond to active operators, the bases listed here are
also correct for the representations that correspond to passive
operators (Altmann and Bradley®).

(42) Notation. The symmetry-adapted harmonics are given as
linear combinations of the bases that span the representations of
0; (point T'). These are obtained from Table I. The successive
partners of a multidimensional basis of 0s in Table I are iden-
tified with superscripts 1, 2, etc. The symmetry-adapted har-
monics that span a multidimensional basis are linked together
with braces. The resulting bases should be understood as row
vectors.

To simplify the printing, all symmetry-adapted harmonics

which are given as a sum of two or three terms have been denormalized.
To normalize them one must therefore divide the functions
concerned by the square root of the sum of the squares of the
coefficients; thus Ta,+ T5,2—2T3,8 should be read as (T !+
T22—2T2.%) /V/6.

The suffix s (¢) in the body of the tables must be given suc-
cessively the values g, % (u, g), which correspond, respectively,
to the first and second representations given.

(#33) Example. The normalized harmonics up to /=2 that are
obtained from those listed for 4; of A are: V19, $V2+3V3 Yobe,
Yll.a_

(4v) Uses of the tables. Although the symmetry-adapted har-
monics given here are such that, on using (10), they generate
immediately all the lattice harmonics for all the cubic groups,
they can also be used as symmetry-adapted harmonics for the
point groups listed in Table II, if the special setting therein used,
rather than that chosen by Altmann and Bradley?® is required.

T, H, R
Identical with those of 05

P
Al, A2 Als, Azt
E {E}, E2}, {E2 —EJ}}
Ty, T {Tut, Tu?, w3}, {Ted, Ted, T}

5, K

A, 4o Aisy Bty Toi?y, Tolr—Tad, Thit+ 11
B, B Az, E2, T1d, Tor+Tod, T1d— 112

G
Ay, A Asey Ey Tod, Tod+To2, T1t—T18
By, B Az, EZ, T18, Tolt—Tad, Ti!+T1s?

D
A1, 4 Are, Aoy, ER, EZ, Tod, Tidd
B, B Toit+ T2, Ti' — Thi?, Tor— T, T1t+Ths?

S, U

41, 4 Asey EQ+3Y E2) Tol, Tod—Tad, Thd+Théd
B, B Az, =3 EQHE2, Th2, Tol+Tosd, T1t—Thd

Z
4, 4. Ay, Ase; By E?, Toft, Tid
By, B; Tos?, Thsd, Tod, Thé?

N
Aa: Au AIA, E'l, Tz.“
Blg; Blu Tz;l—TZaz, T1.l+ Tuz
B2q, Bzu Az., E.R’ Tl,s
Bay, B:m T2;1+ T232, Thl— Tl.!2
T
Ah 42 All, Eal, VAT
Bl) B2 AZ{, E}, T213
E {To, o}, {Th, — T}, {Td, — Tty (T Tt}
A
Al, A2 Ah, E¢1+39E32, Tuz
By, B; Agsy —REJE2, Ty

E {Tot— T, Tog+ T}, {Tog+Tog?y Tat— Tt
{— Toul— T8, Tol—T23},
{ - Tlul+ Tlua, Tlu1+ Tlua}

X
Alﬂ, Alu Alsy Eal+3iEa2
A2a, AZu Tls’
Blﬂ, Blu Ah, '—39E31+E32
Bay, Bau Tas?
Ea, Eu { TZGI'" Tzas, Tﬁal‘i’ T2as}, { Tlal+ Tlss, Tlsl'— Tlas}




S. L. ALTMANN AND A. P. CRACKNELL Lattice Harmonics I. 31

TaBLE IV (Continued)

M L
Alv: Alu Ah, Esl Alq, Alu Als, T231+ T2sz+ T2s3
A207 A2u Tlsa AZa, Azu Azs, Tlsl+ T132+ Tl.‘x3
By, B Az, E? E,, E, {Ed, E2}, {Ted+ To2—2Tss3, Tost— T},
By, Bau Ts® (Tt~ T, TW+T12—2T)
Fa Ba (T3, Tad), (Tud, —T2) T “
14
w
A’y A” Als: Azt, Exl; Etz, T2s3, T]lsy Tlsl+ T1~2,
A1, By Avsy Toit, ES—3VE? Tolt — T22, Tor+ T, Thit— T2
Az, By Age, Ths, IEAHE2
E { T2027 T203}) { Tlﬂz’ - Tlﬂs}r { T2u37 Tzuz}, C
{ - Tluay Tluz}
A7, A" Ais, Aze, B2, Ed, Tod, Tid, Tolt+Tos?,
A Tit —T1s?, Toit — Tof, Tid+Ths?
41, Ao Ays, Agey Told+Tol2+To3, Ti+T12+T18 0
E {Eoly Eﬂz}y { - Euzy Eul};
{ Tlnl— T1027 Tlal+ Tlgz—'ZTlgs;, A', A" Als, A2s, Esl, Esz, Tzzl, Tuz, Tul, Tuz, T2s3, T1s
{Tol— T2, Tol+T22—2T28},
{ = To' — T2 +2T0 2, Tol—Ta, J
{— Tot—Tu242T13, Tut— T}
A, A Ass, Aggy EA-RER, —REAE2, Tol 4T3, T,
F Tt — T3, Tz_z’ —Tod, i+ 118, Thé
Ay, A A, Aoty Toit— Tod+Tod, Tit— T2+ T B
E {EM, E2}, {EJ, E2}, 4, A" Avsy Aos, Edy E2) To2 Ti2, Tod, Tod, Thdy, Thd
{Tog'— To?—2Tag%, — To'—To?},
{Tut—Tu2—2Tw3, —Tht—Tul}, 4
{1+ Th? Tit— T2 =271,
{ Toul -+ T2u2, Toul— To2—2T5,3} A All harmonics of T'.
TaBLE V. Compatibility conditions.
Notes with the condition that no more than one of the points listed in

The compatibility conditions are given along lines in the
Brillouin zones. The three points of a line have to be chosen from

brackets can be used for any one line. All the representations

listed in each of the columns corresponding to a line are com-

the appropriate column (or columns) to the left of the table, patible.
T R Ala, Ea, Tlu Tla, Alu, E'u A?a; Ea, T2u T2u, A2uy Eu T2|7, Tla, TZu, Tlu
A T Ay A, B, B, E
(H) Aln, Ea; Tlu Tla; Alu; Eu AZa, Eg, T2u ng, A2u, Eu ng, Tlg, T2u, Tlu
(X) M Asgy Ao Asgy Aru By, Bau Bsg, Bru E, E,
T Alm E,, T2tn Touy Tru T20» Tlﬂ; A, Eyy Tou A2a: E,, Tla» Tﬁu, T Ty, Tlm A2m Eu» T1u
=z Al Az B1 Bz
(N) Aﬂ) Blu Bla, Au BZa, B3u Bsg, BZu
(K) 4, A4 B, B,
(M) Alv: B2v; E, Alu: BZuy Ea Azp, By, E, A2u, Blu, Eo
r H Alﬂ) T2ﬂ7 A2": Tru A20) Tlﬂ) T2u1 Aru EU: TZG) Tlﬂ: Eu) T2u: Tru
A F Ay A E
(P) P Ax, T2 A2, T1 E, Tl, T2
(L) Alo, A2u A2a» Alu Em En

(B

Alh T207 AZu, T1u

Ay, Tigy Touy, Aru

Eﬂ: T201 Tlg; Eu) T2u; T1u
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TaBLE V (Continued)

H R Avgy Eyy Toyy Touy T1u Tagy T1gy Aruy Euy Tou Togy T1gy Asuy Euy Tru Asgy By, Trgy Touy T
G S A) A2 B] B2
N AG: Bgu B:;g, Au Blg, BZu BZg, Blu
X Aly, BZa, ]-’:u Em Alu, B2u Ey, A2u; Blu AZa: Blﬂ; Eu
P Ay, E, T Asy E, Ty Ty, T Ty, T
D A, A, B, B;
N Ay, Bay Ay By Bsg, Bru Bsy, By
X Alﬂy Blth Iy Em Aluy By, Eg, A2u, Ba, Azg, Bgﬂ, Eu
VA Ay A By Bs
w) Ay, By As, By E E
() Arg, By, Eu E,, Alu; By Eu; A2a» By Az, B2u: E,
K Al, B1 A2, B2
O AI AI/
w Ay, By, E As, By, E
L Arg, Aoy, By, Ey Asg, Aruy Eqy Ey
c AI A//
K Ay, B, A3, By
L Avgy Asu, By, By Asg, Avuy g, B
] Al AII
U Al, B1 Az, BZ
X Alg, BZa; Ey Eg, Axu, Bs, Eq, A2u, Blu A2th Blh Ly
S A1 A2 Bl BZ
U A1 A2 Bl B2
w Al} Bz, E AZ, Bl, E
B AI AII
U Ay, By Aqy By
L Ala: Alu: Ew E, A20: A‘M; Eﬂ, E,
0 A B
w Ay, By, E As, By, E
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