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Lattice Harmonics I. Cubic Groups
S. L. ALTMANN, A. P. CRACKNELL*

DePartment of Metattnrgy, Oxford Unieersity, Oxford, L&ngtand

A review is given of some conventions and de6nitions required for the derivation of the irreducible
representations of the space groups, and of a method to obtain lattice harmonics. These are given for
all the irreducible representations of the simple cubic (Pm3m), face-centered cubic (tm3m) and
body-centered cubic (Im3m) space groups for t&12. The expansions are given in polar coordinates
and care has been taken that diferent bases corresponding to the same representation span identical,
rather than equivalent, representations, which are given in full. Moreover, all the different expansions
listed in the tables are fully orthogonal.

1. INTRODUCTION

In many physical problems it is necessary to use
linear combinations of spherical harmonics that belong
to the irreducible representations of the space group of
a crystal. Such expansions were first obtained by von
der Lage and Bethe' who derived them for the cubic
lattice (whence the name of "kubic harmonics" coined
by these authors) and applied them for cellular calcu-
lations of the band structure in cubic metals. Their use
is not, of course, limited to the cellular method. As
just one example of a recent application in a diGerent
method we mention the work of Ham. '

Von der Lage and Bethe did not use the standard
form of the spherical harmonics in polar coordinates:
they gave instead a method to obtain directly homoge-
neous polynomials in the Cartesian coordinates x, y, s,
with the required symmetry properties. Von der Lage
and Bethe's work was extended for other space groups
by Bell, ' who introduced the name lattice harmonics
for these polynomials. Bell's work however is rather
limited, since the use of Cartesian coordinates becomes
extremely dificult for high values of /. Her tables,
therefore, did not go further than /=6. Moreover, her
treatment of the hexagonal close-packed lattice is wrong
since no proper account is given of the necessary phase
factors that relate the two atoms in the unit cell. Also,
the representations that she uses for the top face of
the Brillouin zone are incorrect.

No general method was given to symmetry-adapt,
in the terminology of Melvin, 4 the spherical harmonics
in their usual polar form, until one of us' provided a
technique for doing so for the point groups. His method
and tables have now been extended and improved by
Altmann and Bradley. ' An advantage of this approach
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is that in many cases the expansions can be given for
all orders of / and, where this is not possible, the treat-
ment of large values of / is not difficult. Moreover,
Altmann~ showed how his method could be extended
for space groups. The present paper and the following
one, to which this section also serves as an introduction,
extend this work by making full use of the new results
of Altmann and Bradley, ' to cover all the irreducible
representations of the simple, face-centered and body-
centered cubic lattices and the hexagonal close-packed
lattice. The lattice harmoriics for the cubic groups are
given for /&12 and for all values of / for the hexagonal
lattice. It should be noticed that, unlike Bell, we give
in full the irreducible representations spanned by our
expansions, since such information is important to spec-
ify the lattice harmonics unambiguously and is essential
in some applications. Also, when two lattice harmonics
with the same values of / and nz belong to the same
column of the same representation, they have been
made orthogonal by the technique of Altmann and
Bradley. 6

2. GENERAL THEORY

Ke give in this section a number of results in great
detail which, although well-known in group theory, do
appear to cause a certain amount of trouble in solid-
state theory.

Symmetry operations in configuration space can be
interpreted either as axes transformations (passive in-
terpretation) or as point transformations (active inter-
pretation). We shall represent these with Ro and R„
respectively, and it is well known that R,= Re '. (See,
e.g., Altmann. ') Such operators induce transformations
of functions which we shall designate by operators in
script type, such that

Nf(x) =f(R 'x).

This expression is valid in the active as well as in

r S. L. Altmann, Proc. Roy. Soc. (London) A244, 141 (1938).
s S. L. Altmann, "Group Theory" in Qguntum Theory, edited

by D. R. Bates (Acadennc Press Inc., New York, 1962), Vol.
II, p. 144.
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DI E
I t}=exp ( —ik t). (6)

9 E. P. Kigner, Group Theory (Academic Press Inc., New
York, 1959).

'e F. Seitz, Ann. Math. 37, 17 (1936).

the passive interpretation and ensures the isomorphism
between the script and the roman operators, as shown

by Wigner. ' However, it should be observed that active
and passive operators do not multiply in the same
manner. For, if (R„S~=G~ then, on taking inverses,

If we have a representation given by matrix repre-
sentatives D((R~), we obtain one for the active operators
by using the rule D((R,) =D((R„ i). For it (RrS~=&„,
then S.(R,=G. and D(S.) D((R,) =D(S„')D((R ') =
Dl ((Rp~) 'j=D(;i~ ') =D(3 ). This new representa-
tion is not identical with the original one, but it is
nevertheless spanned by the same basis. For ii (R„f,=
g; f,D((R,);;, then (R.f;=(R f;=g;f;D((R i);;=
+~AD((R.) ~'.

In summary, in going from passive to active oper-
ators, one applies the rules

D((R.)~D((R„-'), (2)

but the multiplication rules are not conserved. Also,
the labels of the representations have to be revised
with respect to the standard labels given in character
tables.

When (R is a space-group operation it includes a
translational part v as well as a rotational part 0.. The
well-known symbol Ia I v}, introduced by Seitz" is
used to represent such operations. Since it would be
too cumbersome to attempt a distinction in this case
between the function and con6guration-space operators
we shall not do so, but it should always be clear from
the context which operator is meant. It is traditional
in solid-state theory, following Seitz, to multiply the
space-group operators as follows

'I v'+v} (3)

Nevertheless, it is seldom noticed that this multiplica-
tion rule implies the active interpretation for the oper-
ators In I v} and that, of course, it is not valid in the
passive convention. Since we consider it important to
preserve (3), which is much used, we shall always
understand the operators In I v} as active.

It is well known that the bases of the representations
of space groups are Bloch functions

Pi, (r) =exp (ik r)ug(r), (4)

where k is the label of the representation and uq(r) is
periodic in r. Ke now denote as usual with the symbol
IE I t} a translation of the translation subgroup F of
the space group. (E is the identity of the rotation
group. ) Hence

fE I t}fq(r) =1 q(r —t) =exp ( —'k t)itq(r), (5)

whence

The negative sign in the exponent should be noted,
since in many treatments in solid state it is given as
positive. However, this is the only choice compatible
with (1) fused in the first step in (5)], (3), and (4).
The need to maintain the latter, of course, arises from
the physical meaning of k as a quasimomentum, which
would make it unnatural to take a negative exponent
in the Bloch function. Confusion in the literature arises
from the fact that Bloch used the translations in the
passive convention: he gave the second term in (5) as
gati, (r+t), and this form is still the most commonly
used. But this is incompatible with the active conven-
tion for the Seitz operators implied by (3) and which
is entirely standard. We do not give a list of references
where such inconsistencies appear since it would be
too long. It may suQice to say that of a large number
of papers and books that we have surveyed the only
fully consistent treatment that we have been able to
find is the one given by Herring" with whom our con-
ventions and basic expressions agree entirely. It is
probable nevertheless that, since Herring did not ex-
plain his conventions at all, the whole point has failed
to be duly appreciated. Since we shall now use the
active convention, whereas in our previous work on
point groups we employed the passive one, we shall
make the necessary changes, when required, by means
of the rules given in (2) .

The theory of the space groups given by Seitz'
and Bouckaert, Smoluchowski, and Wigner" is well
known. "" An irreducible representation of a space
group is fully determined by means of the group of
the k vector, G" (the subgroup of operations of the
space group that leave k invariant or transform it into
an equivalent vector) and one of its representations.
The reduction of the space group is therefore achieved
by reducing 6".The space groups we deal with in this
paper are symmorphic, that is they contain no screw
axes or glide planes. (Asymmorphic groups are treated
in the following paper. ) All the operations of the
space group can in this case be written as products
IZ I t}I~ I o}, ~h~~~ I E I t} C r In the notation o&

Altmann, "G~ can be expressed as a semidirect prod-
uct: G"= FAG", where G", the cogroup of k, is the
subgroup of operations of the point group that belong
to G". This simplifies considerably the work required
to produce the symmetry-adapted harmonics. They
are obtained by using the well-known projection oper-
ators (Wigner'), which are defined as follows. Consider
a group G of operations 8, and assume given an irre-
ducible representation of matrices D'((R). Then the

"C. Herring, J. Franklin Inst. 233, 525 (1942)."I,. P. Bouckaert, R. Smoluchowski, and E. signer, Phys.
Rev. 50, 58 (1936).

'3 G. F. Koster, Solid State Phys. 5, 174 (1957).
~4 D. F. Johnston, Rept. Progr. Phys. 23, 66 (1960).
» S. L. Altmann, Phil. Trans. Roy. Soc. London A255, 216

(1963). In this paper the cogroup of k, Gk, was denoted with a
symbol 6"with bar. The present change is due to typographical
reasons.
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projection operator,

g D'(e) ..*e.,
1,~&

The summation over the point-group operations can
be carried out exactly as in the work of Altmann' and
Altmann and Bradley' and no further description is
necessary, except that the appropriate allowance must
be made for the active interpretation for n. The result
of this summation will be a spherical harmonic of
order /, symmetry-adapted to G", which we call X~„.
This is a linear combination of several Yg with con-
stant l and varying m: the index v is an arbitrary label
to distinguish the various harmonics of the same order
that belong to the same representation. Ke shall always
take Xq„=—X~„(8, P) as a function of the polar coordi-
nates around the origin of coordinates for the lattice,
r=o. Let us de6ne 'Xg„as a function identical with
X~„except that it is centered around the point at the
end of the vector t of the lattice (r=t). That is

{E
~
tIX,.='X„.

Then, on using (6), (8) gives

Q exp (ik t) 'Xg„, all t g F. (10)

This multicentered expansion is a lattice harmonic.
It should be noticed that it is fully given if we know
X~„in the unit cell at the origin. The expansion through-
out the lattice follows at once, if required, from the
Bloch condition, as is apparent from (10). Therefore,
it will be enough for symmorphic groups to give the
expansions X&,. The discussion of asymmorphic groups
will be left for the following paper.

3. THE METHOD FOR THE CUBIC GROUPS

It follows from Sec. 2 that the problem of obtaining
lattice harmonics for the cubic lattices is in principle
solved: we must obtain harmonics adapted to the vari-
ous G~ groups that appear in the lattice. G" is a point
group and clearly also a subgroup of the full cubic

is such that when applied on any arbitrary function p
(called the generator) it will adapt it into a function
belonging to the sth column of the ith irreducible
representation of G. The generator will always be in
our case a spherical harmonic. If (R is a point-group
operation, (Rp can then be evaluated by using the
familiar representations of the rotation group, for
which it is necessary to express (R in terms of its Euler
angles. The representations of the rotation group are
complicated and various short-cuts are necessary, which
have been fully described 5'

%hen the properties of the symmorphic groups de-
scribed above are taken into account, the operator(7)
applied on a spherical harmonic takes the form

group 01,. Therefore the harmonics can be obtained by
the use of the techniques of Altmann and Bradley.
In fact, for some groups G" the results can be read oG
their tables. It should be noticed, nevertheless, that
although G" may be a point group given in the tables
referred to, it will often appear in our present work
in an orientation that differs from the standard one
used by Altmann and Bradley, which causes a drastic
change in the harmonics. Rather than repeating their
work for these new orientations, the following method
yields the results more quickly and in a more conven-
ient form.

Consider the group of operators G", a subgroup of
OI„and take an irreducible representation of O~ from
the tables, with basis symbolically written as a row
vector (p ~. The matrices of this representation that
correspond to the operators of G~ form a representa-
tion of 6" which is called a subduced represeulatiou.
This is, in general, reducible. Ke reduce it under a
unitary transformation with a matrix M and we ob-
tain the subduced irreducible representations of G"
that are required. At the same time the new bases are
given, as is well known, by Q ~

= Q ~

M. We there-
fore have the new symmetry-adapted harmonics as
well as the representations that they span.

In order to solve the problem as stated we must
find the matrix M that reduces the subduced repre-
sentation. Most methods given in the literature for
this purpose require a knowledge of the irreducible
representations that appear under reduction, which
would defeat our purpose. Fortunately there is a
method that is free from this drawback (Altmann, '
p. 123). The prescription for it is as follows. Consider
a matrix representation to be reduced: take all the
matrices of any class and sum them. Find the matrix
M that diagonalizes the matrix obtained: this is the
matrix that reduces the representation.

It should be noticed that two bases of the same
representation may subduce into equivalent rather than
identical representations. If this is the case, a similarity
transformation is required to make aH the bases ob-
tained span the same representation.

4. NORMALIZATION

As follows from Sec. 3, the symmetry-adapted spheri-
cal harmonics will be given as linear combinations of
those for the cubic groups. The latter are given in
Tables 8—11 of Altmann and Bradley. ' However, in
that paper unnormalized spherical harmonics 'JJp=
Pg (cos 8) exp (i~) were used to give the necessary

'coeKcients in the X~„exact to any number of 6gures.
In practical applications normalized spherical har-
monics,

n!+1 (i—
~

~ ()!»
~s"(0, 4) =

I
Pp (cos 8) e'"&, (11)

g 4~ (!+)m()!&
are required and expansions X~, in terms of them were
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A

A

A
A

A

A

A
A

A
A

A

A

Ag

A„
Ag

Ag

Ag

A„
Ag

A„
A„
Ag

Ag

A„
Ag

Ag

Ag

Td

Ag

Ag

Ai
Aj
A2

Ai
Ag

Ai
A2

Ag

A2

Ai
AI

AI

A2

Ag

A2

Ag

Aj
A2

Ag

A2

Ai

A2

A2

Aj
Ag

Ag

Oa

A~g

A2„
Agg

Agg

A2g

Ag„

Agg

A2„
Ai„
Agg

A2g

A2u

Aig

AIg

Apg

3

6
7

8
9
9

10
10
11
1.2
12
12

@-dep Spherical harmonic

1(0)
1(2)
0.76376261 (0) +0.64549722 (4)
0.35355339(0) —0.93541435(4)
0.82915619(2) —0.55901699(6)

0 . (4)+0.58184333(8)
2 0.67700320(6)

0.71807033(0)+0.38188131(4)+
0.43301270(2) —0.90138782(6)
0.84162541(4) —0.54006172(8)
0.41142537(0) —0.58630197(4) —0.69783892

954(8) +0.5 22798(12)
+0. 9358400(12)

0.21040635(2) —0.82679728(6
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TAELE X(b) . Harmonics for the complex representations of T and Tz. The harmonics of '8, 'E„and 'E„are the complex conjugates
of the expansions listed in this table. The labels of the representations given are valid only in the active coeeentioe. If the passive con-
vention is used it is enough to interchange the superscripts 1 and 2 in this table. That is, E goes into 8, etc.

1+
1+
1gq

1L/'

lg
lg
1@
1+
1+

lg
1P
lg
1gq

lg

1@
lg
Bg

2
4
5
6

8

9
10

10

11
12

@-dep Spherical harmonic

0.70710678(0) —0.70710678(2)i
0.45643546 (0) -0.54006172 (4) +0.70710678 (2) i

0.70710678(2) —0.70710678(4)i
0.66143783(0) +0.25 (4) —$0.39528471 (2) +0.58630196(6)$i
0.47871355 (2) —0.52041650 (6)+0.70710678(4) i
0.49212549 (0) -0.27860540(4) —0.42448973 (8) +t 0.46010167(2) +0.53694176(6)gi

0.59115342(4)—0.38799180(8)+t 0.53694176(2)—0.46010167(6)gi
0.38188131(4) +0.59511903(8)+$0.63737/44(2) +0.30618622 (6)gi

0.64448784 (0) +0.18714046(4) +0.22274170 (8)
—$0.31464779(2) +0.34379898(6)+0.53178852 (10)$i

0.54139029(4) —0.45485883 (8)
—$0.28174844 (2) —0.60780957 (6) +0.22624178 (10)gi

0.52786914(2) —0.28945395 (6) —0.37090508 (10)
+$0.35023357 (4) +0.61427717(8) $i

0.55744745 (6) —0.43503142(10)+t 0.6142'/'717 (4) —0.35023357 (8}gi
0.50807284 (0) —0.21500378(4) —0.23849688 (8) —0.37249777 (12)

+$0.36487352 (2) +0.38689303(6) +0.46602693 (10)Ji
0.49820374(4) +0.23953507(8) —0.44092628(12)

+t 0.58'713874 (2}—0.09228708 (6) —0.38308119(10)Ji

TanxE X(c). Harmonics for the two-dimensional representations of Tq, 0 and Oy,.
For the representations marked with an asterisk the partners must be interchanged and the sign of one of them reversed.

0' OI

10

10

@-dep

c

Spherical harmonic

1(0)
1(2)
0.64549722 (0) —0.76376262 (4)
—1(2)
1(4)
—1(2)
0.93S41434 (0) +0.35355339(4)
0.55901699(2) +0.82915619(6)
1(4)
0.67700320 (2) 0 73598007—(6).
0.69597054(0) —0.39400753 (4) —0.60031913(8)
—0.65068202 (2) —0.75935032 (6)
0.83601718(4) —0.54870326 (8)
—0.11588441(2)+0.99326270 (6)
0.54006172 (4) +0.84162541 (8)
—0.90138782(2) —0.43301270(6)
0.21628928(0) +0.62804094(4) +0.74/51824(8)
0.44497917 (2) +0.48620518 (6) +0.75206253 (10)
0.76564149 (4) —0.64326752 (8)
0.39845246 (2) —0.85957253 (6)+0.31995420(10)
0.49530506(4) +0.86871911(8)
0.74651970(2) —0.40934970 (6) —0.52453900 (10)
O. 86871911(4)—0.495S0506(S)
—0.78834975 (6)+0.61522733 (10)
0.71852351(0) —0.30406127 (4) —0.33728553 (8)

—0.52679140(12)
—0.51600908(2) +0.54714937 (6) +0.65906160(10)
0.70456648(4) +0.33875374(8) -0.62356392(12)
—0.83033957 (2) +0.13051364(6) +0.54175861(10)
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TABLE I(d). Harmonics for the three-dimensional representations of the Gve cubic groups.

Tu

Tg

Tu

Tu

Tg

Tu

Tu

Tg

Tu

Td

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

Tlu

T2g

Tlu

T2p

Tlu

T2u

Tlu

Tl p

T2g

T2u

Tlu

T2'u

Tlg

T2g

Tlp

Tlu

Tlu

T2u

@-dep

C, S

C

S) C

S

C) S

C

C) S

C

S) C

S

S) C

S

C) S

C

C) S

C

C) S

C

S, C

S

S) C

S

S) C

S

C) S

C

C) S

C

C) S

C

C) S

C

S) C

S

S) C

S

S) C

S

S, C

S

C) S

C

C

C) S

C) S

Spherical harmonic

1(1)
1(0)
1(1)
1(2)
0.61237243(i) +0.79056941 {3)
—1(0)
+0.79056941(1)—0.61237243 {3)
1(2)
0.35355339(1)+0.93541435(3)
—1(2)
%0.93541435(1)—0.35355339(3)
1(4)
0.48412292 (1)%0.52291252 (3)+0.70156076(5)
1(o)
&0.66143783(1)—0.30618622 (3)~0.68465320 (5)
1(2)
0.57282196 (1)&0.79549513(3) +0.19764235 (5)
1(4)
0.19764235 (1)+0.56250000 {3)+0.80282703 (5)
1(2)
a0.43301270 (1)—0.68465320 (3)~0.58630197(5}
1(4)
0.87945295 (1)&0.46351240(3)+0.10825318(5)
1 (6)
0.41339864(1)T0.42961647 (3)+0.47495888 (5) W 0.64725985 (7)
—1 (0)
%0.57409916(1)+0.41984465 (3)%0.07328775 (5) —0.69912054(7)
1{2)
0.53855275 (1)+0.10364452 (3) —0.78125000(5)+0.29810600 (7)
—1 (4)
W 0.45768183 (1)—0.79272818 (3)+0.39836090(5) —0.05846340 (7}
1(6)
0.13072813(1)TO. 38081430{3)+0.59086470(5}+0.69912054(7)
—1(2)
%0.27421764(1) +0.60515364(3)+0.33802043 (5) —0.66658528(7)
1(4)
0.45768183 (1)+0.47134697 (3) —0.70883101(5)~0.25674495 (7)—1 (6)
~0.83560887 (1)—0.51633474(3)~0.18487749(5) —0.03125000(7)
1(8)
0.36685490 (1)+0.37548796 (3)+0.39636409(5) WO. 44314853 (7)

+0.60904939{9)
1(0)
~0.51301422(1)—0.42961647 (3)~0.25194555 (5) +0.05633674(7)

~0.69684697 (9)
1(2)
0.49435287 (1)%0.13799626(3) —0.39218439(5)~0.67232906 (7)

+0.36157614(9)
1(4)
+0.45768183 (1)+0.29810600 (3)+0.60515365(5) —0.56832917(7)

~0.11158452(9)
1(6)
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TAsx, z I(d) (Coltsnseed)

qb-dep Spherical harmonic

2 2g

Tlp

T2p

Tlg

2g

T2Q

T2Q

T2g

Tlp

T2g

TIg

T2g

Tlg

10

10

10

10

10

12

12

c, s 0.38519666(1)+0.75268075 (3) +0.50931269(5) &0.15944009 (7)
+0.01657282(9)

c 1(8)
s, c 0.09472153(1)+0.27885263 (3)+0.44538102 (5)+0.57486942 (7)

+0.62002414(7)
s 1(2)
s, c +0.19515619(1)—0.48613591(3)&0.49410588(5) —0.09110862(7)

+0.68785502(9)
s 1(4)
s, c 0.31049159(1)%0.53906250(3) —0.01746928 (5) &0.69255289 (7)

+0.36479021(9)
s 1(6)
s, c +0.46456465 (1)—0.31560953(3)%0.70572436 (5) —0.42100605 (7)

%0.09631897(9)
s 1(8)
s, c 0.80044772 (1)&0.54379714(3)+0.24319347 (5) &0.06594509 (7)

+0.00873464(9)
s 1(10)
c, s 0.33321251(1)%0.33846028 (3) +0.35033967 (5) %0.37296506 (7)

+0.41975833(9) %0.57997947 (11)
c —1(0)
c, s %0.46765008 (1)+0.41655170(3)+0.31014124(5)+0.13689999(7)

+0.13594929(9) —0.68875008 (11)
c 1(2)
c, s 0.45637974 (1)%0.23534954 (3) —0.13435456(5) &0.49510852 (7)

—0.55722625 (9) %0.40329075 (11)
c —1(4)
c, s %0.43552936(1) —0.04764184 (3) &0.52272828 (5) —0.32425699(7)

TO. 63603689(9) —0.15847416(11)
c 1(6)
c, s 0.40022386 (1)&0.39401846(3) —0.40784786(5) %0.65553754 (7)

—0.29501240 (9) %0.03832308(11)
c —1(8)
c, s +0.33485131(1)—0.70641321(3)%0.56871666(5) —0.24930093(7)

%0.05695964 (9) —0.00458048 (11)
c 1(10)
s, c 0.07271293 (1)+0.21528718(3)+0.34870256(5) %0.46435521 (7)

+0.54718532 (7) +0.55833077{1.1)
s —1(2)
s, c %0.14842465(1) +0.39257812 (3) %0.48401456(5) +0.34123000(7)

&0.07446249 (9) —0.68381274(11)
s 1(4)
s, c 0.23130311(1)%0.49003980(3)+0.27404717 (5)&0.30237819(7)

—0.58930834 (9) %0.43879508 (11)
s —1 (6)
s, c %0.32928552 (1)+0.45497333 (3)&0.23408185 (5) —0.54296875 (7)

%0.55492127 (9) —0.16438770(11)
s 1(8)
s, c 0.46435521 (1)%0.20164538 (3) —0.65705604 (5) TO. 52110934(7)

—0.19834078(9) %0.03311685(11)
s —1(10}
s, c ~0.77144482 (1)—0.55833077 {3)~0.28725881 (5) —0.10066650(7)

%0.02196723 (9) —0.00239208 (11)
s 1(12)
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kz
I

y

I
X 8

I/b

Ir
as

FIG. 3. The first Brillouin zone for the face-centered cubic
lattice. The points marked with open circles belong to planes,
but not lines, of symmetry. A is a general point.

S. RESULTS

%e must 6rst identify the cogroups G" for all the
k vectors of symmetry in the cubic lattices. The latter
are shown in Figs. 1, 2, and 3 in the standard notation
of Bouckaert, Smoluchowski, and signer. " For each
k the symmetry operations of G" are obtained in the
notation of Fig. 4 (from Altmann and Bradley' ). The
character tables of the corresponding groups are given

FIG. 4. The symmetry operations of the cubic groups. The 0.

planes (m=x, y, s) are perpendicular to the corresponding m
axes, and the oe„planes (p=a, b, c, d, e, f) are perpendicular to
the C2~ axes.

in Table II, where the actual symmetry operations for
each group can be identified from the heading. These
tables duplicate to a large extent those given by
Bouckaert, Smoluchowski, and 7Vigner. Nevertheless,
they are required here for the following reason. These
authors were interested in the characters of the opera-
tions only and therefore used the same symbol for

(Text corttsrsues on p. 30)

TABLE II. Character tables of the cogroups of the k vector for all the k vectors of the cubic lattices.

Notes

(i) Points The points in lt sp. ace (lc vectors) should be iden-
tified from Figs. 1, 2, and 3.

(ii) Symmetry operations. They should be identified from Fig.
4. The sures m, n,, p take the following values, with reference to
the symmetry operations of Fig. 4: m: x, y, and s; n: 1, 2, 3, and
4; p: o, b, c, d, e, and f. A symbol such as 0's(v, .f) stands fo, r the
three operations od&, 0-z„and o-gf.

{iii) Direct prodmct grolps. These are recognized in the tables
because the names of two representations appear in the column
under the name of the point. Also, the operations are listed in
two rows linked with braces. For the two representations listed
together the characters of the operations in the first row are

those given in the table. The characters of the operations in the
second row are, for the first representation listed, those in the
table and, for the second, their negatives.

(iv) nomenclature of tbe irreducible represemtotiorts The names.
of the representations that correspond to a given point are given
in the standard notation for point groups (see, e.g., Altmann, '
p. 163) under the point symbol underneath, or to the left, of the
symbol of the given point. In brackets, underneath the name of
the point, we give the suffixes that the corresponding represen-
tations carry in the notation of Bouckaert, Smoluchowski, and
signer. A su%x 1 for 1", e.g., corresponds to their symbol F&.

Except for S, when two representations g and I are listed to-
gether we give the Bouckaert, Smoluchowski, and Wigner symbol
for g only. That for u is obtained by priming the latter, if un-

primed, and vice versa.

I'. , IV, R

Td

8C3„+
8S6~+
SC3„+

3C2m

3C2

6C4 +

6S4m+

6S4 +

6C2„
60-d„

60.d„

Agg, Ag„

A2g, A2„
p g&

Tlgs Tits

T2g s T2tt

(1)
(2)
(12)
(15')
(25')

Ai
A2
p'

Tl
T2

(1)
(2)
(3)
(5)
(&)

—1

0
0

1

1
2

—1
—1

—1

0

—1

1
—1

0
—1

1
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TABLE II (Conkinged)

G
D
S, V
Z

E
E

E

C2,
C2b

C2,

C2,

C2z

C2a

~db

0'de

Oz

C2z

0'da

C2~ D2$

Al
A2

Bl
B2

(1)
(2)
(4)
(3)

(1)
(~)
(3)
(4)

Ap, Au

Blg) Blu

B2gy B2u

B3g, B3u

(1 2')
(2 1')
(4, 3')
(3, 4')

1

1
—1
—1

C4, Dg, D2d

E
E

z.

z

C2z

C2„
C2„

Oy

C2z

C4„+
C4„+

S4z~ 0(*,v)

C

&d(a, b)

0'd(e, c)

C2(c,e)

&d(c,e)

C2(a,b)

&d(a, b)

0 (y, z)

Al
A2

Bl
B2
E

(1)
(1')
(2)
(2')
(5)

A]gp Alu

A2g, A2„

Blgy Blu
B2g, B2u

E, E„

(1)
(4)
(2)
(3)
(5)

Al
A2

Bl
B2

(1)
(&)
(1')
(2')
(3)

1

1
1
1

—2

1
1

—1

0

1
—1

1
—1

0

1
—1

1

0

D3g

C31+

C34+

C31+

S01

&d(b, e,f)
&d(a, d, e)

C2(b, e,f)
ad(b, e,f)

Al
A2

E

(1)
(2)
(3)

Alg, Al„
A2g, A2u

Eg, E„

(1)
(2)
(3)

1
1

—1

1
—1

0

V
C
0
J

E
E

E

&da

A II
A

A

Cl

A
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TABLE III. The two- and three-dimensional representations of the cogroups of the k vectors for
all the k vectors of the cubic lattices.

Notes

All the matrices correspond to operators in their active interpretation.

TAEI,E III(a). The two-dimensional representations. Key:

—2103 I 1~32 2

—-v3I I
2 2 1~3 I

For the representations E, the matrices listed in the left (right) column under E correspond to the operations listed in the first (last)
column of the table. For the points that admit representations E„E„,both operations which are on the same row and are in the first
and last columns of the table belong to the group. Only the matrices for the operations in the first column are given. Those for the
corresponding operations of the last column, are,, for the E, representations, the same and for the E„representations the same matrices
multiplied by —1.For typographical reasons the negatives of the matrices listed in the key are printed with a bar above the correspond-
ing symbol.

I.', JI, R

Eg

E„

C3I+

C31

C32+

C34+

C2,

C2y

C2,

~ ~ ~

P o ~ ~

Q ~ ~ ~

P ~ ~ ~

Q ~ ~ ~

P o ~ ~

Q ~ ~ ~

P o ~ ~

QP ~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~ C ~ ~ ~

P ~ ~ ~

QP ~ ~ ~

~ ~ ~

P ~ ~ ~

Qt ~ ~ ~

~ ~ ~

P o ~ ~

Q ~ ~ ~

P o ~ ~

Q ~ ~ ~

P o ~ ~

Q ~ ~ ~

P o ~ ~

Q ~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

K ~ ~ ~

~ ~ ~

K ~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~ ~ ~ ~

P ~ ~ ~

Q ~ ~ ~

Sm

S61+

S62

S62+

S6a

S63+

S64

S64+

C4+

C4,
+

C4y

C4,+

C4.

C2N

C2~

C2.

C2d

C2.

C2f

Jg ~ ~ ~

p o ~ ~

gp ~ ~ ~

p ~ ~ ~

~ ~ ~

'A ~ ~ ~

~ ~ ~

~ ~ ~

p ~ ~ ~

p o ~ ~

'p ~ ~ ~

~ ~ ~

p ~ ~ ~

~ ~ ~

~ ~ ~

p ~ ~ ~

~ ~ ~

~ ~ ~ K ~ ~ ~

~ ~ ~ P

~ ~ o p

~ ~ ~

~ ~ o p
~ ~ ~ 'p

~ ~ o p
~ ~ o p
~ ~ ~ V

~ ~ ~ p

~ ~ ~

~ o ~

~ ~ ~

~ ~ ~

~ ~ ~ p

~ ~ o p
~ ~ ~ p

~ ~ o p

p ~ ~ ~

p ~ ~ ~

~ ~ ~

~ ~ ~

p ~ ~ ~

p ~ ~ ~

~ ~ ~

K o ~ ~

~ ~ ~ p

~ ~ ~ p

K ~ ~ ~

K ~ ~ ~

~ ~ ~

'p ~ ~ ~

p o ~ ~

+

S4y

S4y+

S4g

&db

&dc

add

&dc

&df
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Notes

TABLE III(b) . The three-dimensional representations.

The matrices of the operations listed in column (1) are those
printed on the right of the symbol for the operation, for all the
representations of I', H, R, and P.

The matrices for the operations listed under column (2) are
obtained by postmultiplying the matrix printed on the left of the
symbol of the operation with the following matrices:

for T1„T1„ofj. , H, R and T1 of E:

for T2, T2 of I', H, R and Tgof E:

For the operations in the columns (1') and (2') obtain fust
the matrices of the corresponding operations in the columns (1)
and (2), respectively, by means of the above-given prescriptions.
Then multiply the matrices thus obtained with 1 for T1g, T2, and

1 for Tlap its

r, H r, H

R, I' R

(1) (1')

r, H r, H

(2) (2') (2)

r, H r, H

(2) (2') (2)

C33 S63+ Cgy

C31+ S61 1 C4y S4~+ C34+ Cue &de

C31 S61 S4, S4 C34 S~+

C32+ S62 C4„+ S4„ C2g C4. S4,+ S4 +

C32 S62+ C4, S4,+ S4+ C4,+ S4, S4g

C33+ S63 —1 Cmc &dc Cg, 4'db
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different operations that have the same characters. On
the other hand, since we want to specify the full repre-
sentations we must identify the operations explicitly.
As an example, for the point Z Bouckaert, Smoluchow-
ski, and Wigner list two operations, given in their
notation as Cs and JCs, respectively (J is the inver-
sion) . However, the binary rotations are around di fjer
ent axes. We name our representations in the standard.

notation for point groups and, therefore, we give in
Table II the correlation with Bouckaert, Smoluchowski,
arid Wigner's notation.

The two- and three-dimensional representations that
appear under subduction are given in Table III and
the symmetry-adapted harmonics in Table IV. A com-
plete table of compatibilities between the representa-
tions is given in Table V.

(Tezl coafsmles oe P. 32)

TABLE IV. The symmetry-adapted harmonics for the cubic groups.

Notes

(i) Representations. The representations spanned by the bases
given here are obtained from Table II (one dimensional) and
Table III (two and three dimensional). Although these represen-
tations correspond to active operators, the bases listed here are
a]so correct for the representations that correspond to passive
operators (Altmann and Bradley ).

(ii) Notation. The symmetry-adapted harmonics are given as
linear combinations of the bases that span the representations of
Os (point 1'). These are obtained from Table I. The successive
partners of a multidimensional basis of OJ, in Table I are iden-
tiied with superscripts 1, 2, etc. The symmetry-adapted har-
monics that span a multidimensional basis are linked together
with braces. The resulting bases should be understood as row
vectors.

To simplify the printing, all symmetry-adapted harmanics

rvhjch ore givers as a sum of two or three terms hove beee denorrnalssad

To normalize them one must therefore divide the functions
concerned by the square root of the sum of the squares of the
coeKcients; thus T2„'+T2„'—2T2„' should be read as (T2 '+
T»' —2 Ts„s)/Q6.

The suKx s (t) in the body of the tables must be given suc-
cessively the values g, e (u, g), which correspond, respectively,
to the Grst and second representations given.

(ir'i) ExomPle The no.rmalized harmonics up to l=2 that are
obtained from those listed for Al of 6 are: Flo, ~ F20+21%3 F'22 ',
p'll, s

(v'v) Uses of the tables Althoug. h the symmetry-adapted har-
monics given here are such that, on using (10), they generate
immediately all the lattice harmonics for all the cubic groups,
they can also be used as symmetry-adapted harmonics for the
point groups listed in Table II, if the special setting therein used,
rather than that chosen by Altmann and Bradleye is required.

Al, A2

E
Tla T2

F, B, R

Identical with those of Ojj,

Al„A2t
{E.' E'j {E-' -E-'j
{Tls iTIs i Tri ji {T2Fi'TsPi TsP j

Ag, A„
Blg, Bl,
B2pa B2u

B3g, Blu

Alsa Es a T2»

T241—T242a Tl 1+Tls2

A2, Es', Tl'
T2'+T22 T11—T12

Al, A2

Bl, B2
Ala, E 1 T2,3, T2tl —T2p Tltl+Tlp
A2aa Ea a Tle a T2t +T2P Tlt T1P

Al, A2

Bl, B2
E

Alaa Es 4 T1t

A2, EP, T2t3

{Tsr'i Tsv'li {T4'i T&e li {T»i T»'li {Tl~'i T»'l

Al, A2

Bl4 B2

Al, A2

Bla B2

E' T2, T2t'+T2P Tltl —TlP
A2t, Ep TiP, T2a' —T2s2, Tls'+Tie'

Alta A2ta s a Pa T2s a Tlt
T2a +T24 a Tla Tla g T2t T2t a Tlt +Tlt

Al, A2

Bla B2
Al., E.1+3&E.2, Tlp

{Tsa Tsa i Tsu +Tsii ji {T&p +T&v i T4I T&p li
{—Ts '—Tg„', Ts r —T»'j,
{—T»'+T»', Tr '+T»'j

Al, A2

Bl, B2

Al, A2

Bla B2

S, U

A isa Eel+3~ Ea2 T242 T2tl T2t3 Tltl+ Tlt3

A2t, —3 Et'+EP, T1P T2'+T2, ', Tl ' —Tla

22) T2t', T
T24 a Tla a T2P T1P

Alg, Alu

A2g, A2u

Blpa B1u

B2ga B2u

Eg,

Al„E,'+3&E,
Tla.

A2s, —3~E'+E 2

T2s'

{Ts '—Tsi', Ts'+Tsi'j, {Tri'+Tris, ~i ' &is'j—
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TABLE IV (Continued)

Alg) Alu

A2g, A2u

Blg, Bl
B2g, B2„
Eg) Eu

Als) E,'
Tl
A2„E,2
T2.3

{Tsl Tss} {Tg1 T

Alg) Al„
A2g, A2u

p

A ls) T2s +T2s +T2s

A28) Tls +Tle +Tls
{E,' E,s} {Ts,'+Tsar —2Ts,e Tg,' —TsP }

{Ti.'—Ti.', Ti''+ Tie' —2 Tie'j

Al, Bl
A2, B2
E

Al, T2' E'—3~E2

{ Tg ', Tg„'j—

A' A"

A' A")

A18) A2ts Es ) Et s T28 ) Tlt ) Tls +Tl' )

T28 T28 ) T2t +T2t ) Tlt Tlt

A18) A2t) Et ) 8 ) T28 ) Tlt ) 28 +T28 )

Tl,'—TI82 T2t' —T2t2) Tlt'+Tlt2

Al, A2

E
Als) A2ts T28 +T28 +T2 '

s T]t +Tlt +Tlt
{E',E'}, {—E-', E-'}

{Tg ' —Tg ' Tgo'+Thos 2T(g'j, —
{Ts„' Ts~' T '—s+Ts~' —2T2,P},
{—Ts '—T2 '+2 Tsg', Tg '—Ts '}
{—Ti~' Tie'+—2'~', Ti ' —Ti~' j

A' A")

A' A"
s

A18) A2S) E8 ) ES ) T2t ). T2t2) Tltl) Tlt ) T2s3) Tls'

Al A2t Ee'+3&E —3"Et'+Et' T2'+T283 T2'
Tla ) T2t T2t ) Tlt +Tlt s T t

Al, A2

E
Ale) A2t, T2' —T2'+T2s', Tlt' —Tlt'+Tlt'
{Eg', Eo'j, {E-' E-'},

{Tea' —Tsg' —2Ts', —Ts.' —TsF j

{Ts~'+ Ts~', Ts~' —Ts~' —2'~'}

A' A"
s

A

B
Ale) A2ss Es ) Es ) T2s s Tls ) T2t ) T2t s Tlt ) Tlt

All harmonics of P.

TABLE V. Compatibility conditions.

Notes

The compatibility conditions are given along lines in the
Srillouin zones. The three points of a line have to be chosen from
the appropriate column (or columns) to the left of the table,

rvith the condition that no more than one of the points listed in
brackets can be used for any one line. All the representations
listed in each of the columns corresponding to a line are com-
patible.

(H)
(X)

Alg, Eg, Tl„
Al

A Ig) Eg) Tlu

Alg, A2„

Tl p) A lu) Eu
A2

Tlgs A lu Eu
A2„Alu

A2g, Eg, T2u

Bl
A 2g) Eg) T2u

Blg, B2u

T2g ) A 2u) Eu
B2

T2g, A2u, E„
B2g, Bl„

T2g) Tlg) T2u) Tlu
E

T2g) Tlg) T2us Tlu

(P)
(L)
(&)

(N)
(E)
(m)

H
p
P

Alps Ep) T2g) T2u) Tlu

Ag) Blu
Al

Alg, B2g, Eu

A lg) T'2p) A 2us T1u

Al
Al) T2

Alp, A2„

gs T2ps A

T2gs Tlg) A Iu) Eu) T2u

A2

Blg, A„
A2

A lu) B2u) Ep

A2g, Tlg, T2u, Alu
A2

A2, Tl
A2g, Alu

A2p) T1ps T2us Alu

Eg)
Bl

B2g) B3u

Bl
A2p) Blg)

Eg) T2g) Tlp) Eus T2u) Tlu

E, TI, T2

Eg) Eu

Egs T2ps Tips Eu) T2us Tlu

T2g) Tlg) A2u) Eu) Tlu

B2
B3g, B2u

B2
A2u) Blu) Eg
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Tax,E V {Continued)

R
S

jg) p) 2p)

Ag, B3„
A jg) B2p) J~u

T2g) Tjg) A jQ) EQ) T2Q

A2

Bap) A Q

Ep) A ju) B2Q

T2g) Tjp) A 2u) EQ) Tju
Bj

Blg) B2Q

Ep) A2Q) Bju

A2g) Eg) Tjg, T2Q) Tju
B2

B2g, Bj
A2g, Bjg, EQ

I.
C
E

Aj, E, T2

Aj
Ag, B2Q

Ajg) Bjg)
Aj

Aj, B2
A jg) Bjg) EQ

Aj, Bj
A'

Aj, B2, E

Ajg, A2Q) Eg, E„
A'

Aj, B2

Ajg) A2Q, Eg, E„
A'

Aj, Bj

A jg) B2g) EQ

Aj
Aj

Aj, B2, E
A'

Aj, B2

A jg) A ju) Eg) Eu
A

Aj, Bj, E

A2, E, Tj
A2

Au, B2g

Eg) Aju) Bju
A2

A2, Bj
Eg, Aju, Bju

A2, B2
A"

A2, Bj, E

A2g, Aju, Eg, Eu
A"

A2, Bj

A 2g) ju) g) Eu
A"

A2, B2

Eg) A ju) B2Q

A2

A2

A2, Bj, E
A"

A2, Bj
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