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Possible Polarization Experiments in Fermion —Permian
Scattering as a Test of Invariance Principles
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The Johns Hopkins University, Balt~more, Maryland

The word "fermion" here means "spin-~2 fermion. " Discussion is restricted to processes in which
two arbitrary incoming fermions are scattered into two arbitrary fermions (not necessarily the
same) in the final state. Invariance under space inversion (P,), time-reversal (Pr) invariance, and
charge-conjugation (Pc) invariance is not assumed to hold necessarily. Formulas are derived which
can be applied to any polarization experiment, including correlation experiments. Necessary condi-
tions are obtained which can be tested experimentally to check whether a certain invariance principle
holds in nature. In addition to P, I'z, E& invariance and their combinations, certain helicity in-
variance principles (related to 7 invariance principles) are discussed. The treatment is relativistic.
By a suitable choice of rest frames for each particle, the appearance of some trigonometric functions
of the scattering angle is avoided, and 0. matrices can be used instead of y matrices. Experiments
in which the two incoming fermions are uncorrelated and one of them is unpolarized, are treated
in great detail. It is shown to what extent such experiments can determine the S matrix. A graphical
method is introduced which can often be used to simplify discussion of multiple scattering experi-
ments. Fermion-spin-zero-boson scattering is treated as a special case of fermion —fermion scattering.
Those consequences of invariance principles which can be checked most easily in general polarization
experiments are discussed.

INTRODUCTION

The present paper has three aims. First, we derive
some well-known results concerning polarization ex-
periments'' in a form in which their essential sim-
plicity becomes transparent. Most of the unessential
complications due to space and velocity transforma-
tions do not appear. Second, more general expressions
are given, which are valid whether or not some of the
usually assumed invariance principles hold. They can
be applied to any polarization experiment, including
correlation experiments. From these general expres-
sions, the previously mentioned ones follow as special
cases. Finally, we derive necessary conditions, which
can be checked experimentally to test whether a cer-
tain invariance principle holds in a given reaction.
Space-parity conservation, time-reversal invariance,
and charge-conjugation invariance (if the CI'T the-
orern ho1ds) are discussed. In addition, certain helicity
invariance principles are defined, and their observable
effects described.

In this paper the word "fermion" is used to mean
"spin-~ fermion. " We restrict the discussion to proc-
esses in which there are two arbitrary incoming fer-
mions which are scattered into two arbitrary fermions
(and no other particles) in the final state. The two
fermions in the final state may be different from those
in the initial state, i.e., the scattering need not be
elastic. Ke call such processes simply "fermion —fermion
scattering" and denote them by "f—f scattering. "Space-
parity conservation, charge-conjugation invariance and
time-reversal invariance are not assumed to hold nec-

essarily. Energy —momentum conservation as well as
invariance under rotations in three-space are assumed.

In the first section the definition of certain coordi-
nate frames and some questions of notations are dis-
cussed. In Sec. 2, formulas are derived which express
the results of all polarization experiments in terms of
the o. matrix, which is simply related to the S matrix.
In Sec. 3 the effect of certain invariance principles on
the n matrix is studied. A special class of experiments,
experiments with polarized beams, is de6.ned and dis-
cussed in detail in Sec. 4. In this section formulas are
derived which are the generalizations of the well-known
ones in the literature. " These formulas are valid,
whether or not any of the usual invariance principles
are assumed to hold. The experimentally observable
e8ects of the different invariance principles on experi-
ments with polarized beams are listed systematically.
They can be used to check on the validity of these
invariance principles. A matrix A is introduced, and
it is shown that performing all possible experiments
with polarized beams one can completely determine
the A matrix, but nothing more. The relation between
the A and n matrices is discussed. A graphical method
is described which can often be used to simplify the
discussion of multiple scattering experiments with po-
larized beams. Fermion —spin-zero-boson scattering is
treated as a special case. Experiments with polarized
targets are discussed in Sec. 5. General polarization
experiments, including correlation experiments, are
treated in Sec. 6.

1. NOTATION AND DEFINITIONS
'L. %olfenstein, Phys. Rev. 96, 1654 (1954). L. Ko)fenstein, In any scattering we cal]. one of the incoming par-Ann. Rev. Nucl. Sci. 6, 43 (1956).
2 R. Oehme, Phys. Rev. 98, 147 (1955). tides and one of the outgoing particles "beam particle, "
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FIG. 1. The Ggure represents schematically the relation of
certain frames discussed in Sec. 1.

the other one the "target particle. " The incoming
beam (target) particle may be different from the out-
going beam (target) particle if the scattering is in-
elastic. If one of the incoming particles is at rest in
the laboratory, we call that one the incoming target
particle, otherwise the choice is arbitrary. The follow-
ing abbreviations are used: i particle for incoming
beam particle, f particle for outgoing ("final" ) beam
particle, r particle for incoming target particle, and
s particle for outgoing target particle.

Certain rest frames are defined next. In order to do
this we erst de6ne a frame E in which the center of
mass of the incoming particles is at rest. The three
space axes of this frame: (1), (2), (3) are defined by
the relations

(1)=k; x kr/(sin g),

(2) = (k,—kt)/(2 sin ~~g),

(3) = (k;—k~)/(2 cos —g), (1)

and cos 8=k;.kj.

Here k; and kj are unit three-vectors pointing along
the three-momentum of the i particle and f particle,
respectively, as measured in any frame in„"which the
center of mass of the incoming particles is"at rest. A
set of frames E't, (t=i, f, r, s) is obtained from E by
parallel translation along the velocity of the tth par-
ticle with the velocity of the particle as seen from E.
This means that E'» is a rest frame of the tth particle.
Here we have assumed that the rest mass of the particle
is different from zero. The three space axes of E'» are
denoted by (1) '&, (2)'&, (3) '&. Finally, the set of frames
E» is obtained from E'» by a space rotation around
the first axis of E'» in a manner such that the third
axis of E» points opposite to the direction of motion
of E as viewed from E'». The three space axes of E,
are denoted by (1)&, (2)&, (3)&.

If the rest mass of the t particle is zero, then E'» is
defined to be the frame which is obtained from E by
a parallel translation with arbitrary speed along the
velocity of the particles as seen from E. The frame
E» is then obtained from E'» by a rotation around
their common first axis in such a manner that the
third axis of E» points in the direction of motion of the
particle as seen from E.

The relation of all these frames to each other is
represented schematically in Fig. j..

In the rest of this paper only the frames E» are used.
We call E» briefly "the" rest frame of the t particle'
(t=i, f, r, s).

The definition of the frames E» may be somewhat
cumbersome, but for our purposes they have distinct
advantages. We are interested in polarization phenom-
ena, counting form factors, etc. ; momentum vectors
of particles are irrelevant from this point of view. By
using four distinct rest frames for each scattering we
avoid the necessity of relativistically transforming po-
larizations to a single standard frame. This enables
us to use 2&(2 Pauli matrices instead of 4&&4 Dirac
matrices in a relativistic treatment. By using frames
whose third axes are always parallel to the velocity
of the respective particles we avoid the use of trigono-
metric functions of scattering angles in many expres-
sions. For example, the third component of polarization
in any of the frames E» is always the longitudinal
component of polarization. This would certainly not
be true in general. In the frame E, for instance, one
would have to use the direction cosines of the velocity
of the particle to express the longitudinal component
of polarization in terms of the three components each
of which is parallel to one of the space axes of E. All
the well-known, and from our point of view unessential,
parameters of the scattering are contained in the defi-
nitions of the E and are thus separated out. 4 They
appear only when giving the velocities and orientations
of the E».

In this paper the polarization vectors of all particles
are always given in their respective rest frames, unless
explicitly stated otherwise. When we say, for example,
that the kth component of polarization of the i particle
is I';~, we mean the kth component of this polarization
in E;.

To simplify writing we introduce the following nota-
tion. The equation

Pi+Pv =Pr (2)

means, by definition, that the kth component (k=1,
2, 3) of the vector P," (as measured in «,) js equal
to the kth component of P~ (as measured in «.) plus
the kth component of P~ (as measured in E,). Here'
any of the t, t', t" can mean i, f, r, or s. Of course«=« =«", then Eq. (2) simply says that the vector

3As the energy of a particle in E'„ increases, the transverse
component of its polarization measured in K„approaches zero,
but not the transverse component of its polarization as measured
in its own rest frame. How this transverse component of polari-
zation will affect the results of experiments is a question of dy-
namics, and therefore its discussion does not fall within the scope
of this work. It is not unreasonable to expect that its detection
will become more diKcult as the energy increases.

4 An analogous situation arises in quantum mechanics. There
the cumbersome definition of the interaction representation has
the advantage of "separating out" the well-known changes caused
by the unperturbed Hamiltonian. This information, which is
unessential for purposes of studying the perturbing Hamiltonian,
is transferred into the definition of the interaction representation.
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P& ~ is the sum, in the usual sense, of the vectors Pz
and P&. The last statement is false if E~=E& =E&"
does not hold. Equation (2) should be regarded as
shorthand notation. No deep meaning need be attached
to it.

The usual density-matrix formalism'' is employed
when describing the polarization states of particles.
The polarization state of a collection of i particles, all
moving with the same velocity, is characterized by a
2)&2 density matrix p;. In general the polarization
state of a collection of t particles (i=i, f, r, s, as usual),
all moving with the same velocity, is characterized by
a 2&&2 matrix p&. The kth component of polarization
of the t particle is defined to be the expectation value
per particle of the operator at,~. It is given by the ex-
pression

(3a)
where

is the expectation value of the operator 0-z'. We nor-
malize so that it gives the density, the number of t
particles per unit volume. The o," (k=1, 2, 3) are the
Pauli matrices. To simplify writing we introduced in
Eq. (3b) the notation o.P for the unit 2X2 matrix
(for all 3). According to our convention the P," is
measured in E,. This implies that 0.," (p=0, 1, 2, 3)
and p& are 2)&2 matrices operating in the coordinate
space given by the axes of E&. In principle we could
choose a different representation of the Pauli matrices
in each E& frame, but we shall agree to choose the same
representation for them in all frames. To be specific,
we may choose (for any t)

(0 1) (0
~ 1— —~l

k1 0) ki 0)
t'1 0)

(4)
EO -17 I»)

Once the representation of a-~I' is fixed, the representa-
tion of p& is determined. '

The advantages of choosing this representation can
be illustrated by giving an example. We find, for in-

stance, that a purely forward longitudinal polarization
(as viewed from E) is always given in spin space by
a spinor (,') whatever the value of t may be.

The polarization state of the two incoming particles
at a given energy and c.m. scattering angle (c.m.
means center-of-mass system), is described by the 4X4
density matrix p;„. This matrix is a sum of terms, each
of which is a direct product' of two 2&2 matrices. The
first 2)&2 matrix in each product operates in the spin
space of the i particle, the second in the spin space of

' For a discussion of direct multiplication of matrices, see for
example, E. P. signer, Group Theory and its Application to the
Quantum 'Mechanics of Atomic Spectra (Academic Press Inc. ,
New York, 1959), p. 17.

the r particle. Any such matrix can be expanded in
the form

3

p~r= Q gP~r" &88&r ~

Here the symbol 13 signifies direct multiplication. ' The
coefficient P,,I"" is simply the expectation value of the
operator o-,&I30-„". Similarly the density matrix describ-
ing the polarization state of the two outgoing particles
p~, can be written as

3

py Q —Pf r l(Jr' 30

We use the expression "polarization state" of the
i particle to mean density as well as the polarization
vector, i.e., all four of the numbers P,l" (u=0, 1, 2, 3)
as defined in Eq. (3). By "polarization state of two
incoming particles" we mean their densities, their po-
larizations, and correlations between these quantities,
i.e., all 16 coefficients in Eq. (5). Similar statements
hold for the outgoing particles.

The coefficient P;„'0 is equal to the product of the
density of the i particles with the density of the r
particles. The equation P';„"=P", P„' is true in general.
The quantity P,„~ /P, „' with 0 = 1, 2, 3 is equal to PP,
the kth component of polarization of the i particles
(we have assumed P,„"WO). If P,,"WO, and P;„"=0
for all k, then we say that the i particles are unpolarized
Similarly, if P,„'"~0 and P;,.'"=0 for all k=1, 2, 3,
then we say that the r particles are unpolarized. The
quantity P,,'"/P;„"—=C;P" with k, &=1, 2, 3 gives the
correlation between the kth component of polarization
of the i particle and the hth component of polarization
of the r particle. The equation P,,""/P,„"=P," P„" is
rot true in general. If it is true for all k and h, then we
say that the i particle and the r particle are Nmcorre-
lated, because in this case the correlation between P,~

and P„"is exactly what is expected statistically. If the
i particles and the r particles are uncorrelated, then
the equation p;,=p; p„holds (but not otherwise). The
i particles and the r particles may be correlated even
if they are both unpolarized. The coefficients appear-
ing in Eq. (6) can be discussed similarly.

We define the T matrix as

T= S—j.,

where S is the S matrix of the scattering. The T
matrix is a sum of terms. Each term is proportional
to a direct product of two 2&(2 matrices, one of which
takes a state of the i particle over into a state of the
f particle; the other takes a state of the r particle over

'lt follows from the rules of direct multiplication of two
matrices that when taking the transpose, the hermitean conjugate
etc. of a direct product of two matrices, the order of the matrices
is not exchanged. Therefore our ordering convention is not af-
fected by these operations.
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into a state of the s particle. Any such matrix can be
expanded as

3

2 = Q IYpvaf vatT vv)

P, y=o
(7)

where the rows of o.f„& (iI=0, 1, 2, 3) are labeled by
spinor indices describing the spin state of a particle
in Ef, and its columns are labeled by spinor indices
referring to the frame E,. Thus the matrices O-f, j" take
states of the i particle (given in E;) over into states
of the f particle (given in Ef). An analogous statement
can be made about the matrices o-„&. We choose the
representation of the O-f, & and ~„.i", in analogy to Eq.
(4), to be

.0 —~0f~

.1 ~1
f& 0-,„=o-, etc.1—1

Invariance under rotations in three-space and energy—
momentum conservation requires that the coefficients

np~ appearing in Eq. (7) depend only on the two inde-

pendent scalars which can be formed from the three-
momenta of the four particles involved in the scattering.
These two scalars may be chosen as k; kf and k,'k;.
We call that matrix, whose element belonging to the
pth row and yth column is aIp~, the gI matrix. A knowl-

edge of o. is equivalent to knowledge of T, and thus to
knowledge of S.

In the rest of this paper we write all direct products
of matrices in a manner such that the first matrix
operates in the spin spaces of the beam particles, and
the second one in the spin spaces of the target particles. '
Using this convention, together with Eqs. (4) and

(8), we may drop all the subscripts on all the a."
matrices in every expression. All polarization states
are then given in the rest frame of the particle, and
the T matrix connects states given in such frames. In
the following all subscripts on a& matrices in Eqs. (3),
(5), (6), and (7) accordingly are dropped. With this
notation the expressions we derive below assume famil-
iar forms, similar to those encountered in nonrelativistic
treatments.

We have chosen to expand the T matrix in the form
given by Eqs. (7) and (8) partly because the restric-
tions imposed on n by the conservation laws we con-
sider turn out to have a very simple form, as shown in
the next section. There are of course other ways to
decompose 2)&2 matrices, by choosing any four linearly
independent 2)&2 matrices as a basic set. For example,
we may choose a basic set so that it should be very
simple to take the trace of any product of them. How-
ever, it turns out that in this case the restrictions
imposed on e by the relevant conservation laws have
a more complicated form. For this reason we prefer
to use the set of the four 0.& matrices.

Everywhere in this paper summation over repeated
indices is rot implied unless indicated explicitly by a
summation sign.

2. GENERAL FORMALISM: THE 0 AND ~
MATRICES

I (r, )j,,-
—= -„' Tr (a&aPa"a') Tr (a&o&g.va")

=
I @.E(k

~
o) ~p.e—(P I 0)+~pv4+4t~"

3

+ Z ~earp" 4p &-'(0
I k ~) I

p~ &I=o

~ [—B„,s(q
~
0) 5~,s(y t 0) +B,.8,„+B,„B.,

+ Q I'Qy'vv'Sly'5vvI S(0
~

I/y V) I ~ (13)

Equation (5) shows that the matrix p;„contains 16
coefficients P,„"" (p, P=O, 1, 2, 3). Once all these are
known for a certain c.m. energy and scattering angle,
the polarization state of the incoming particles in a
scattering at that c.m. energy and scattering angle is
determined by them, and vice versa. Similarly, the
knowledge of the 16 coeKcients Pf,&& in Eq. (6) at
all c.m. energies and scattering angles is equivalent
to the knowledge of the polarization state of the out-
going particles.

Let us assume that p;„and T are known. The pf,
matrix then can be determined from the well-known
formula'

pf, = Tp;„T+. (9)
Substituting Eqs. (5), (6), and (7) into Eq. (9),

multiplying both sides by (a&ag") either from the
right or from the left, and finally taking the trace in
the spin spaces of both the target and the beam par-
ticles, we obtain

Pf kn

3

~p IY P &v Tr (g r'gPgvgv) Tr (gvg'Ig "g ")
Pv P~P vV v &v Pt=o

(10)
After having taken the trace of both sides in deriv-

ing Eq. (10), we have used the relation

T L(-"-) (-"'-")3
= (Tr a "a."') (Tr a "a."') =45

We rewrite Eq. (10) in the form

3

Pf '"= Z fit. ,"P'."" (11)
p vV=0

where elements of the 0 matrix are defined by

Qt„,„„= g np~n, ."Tr (otaPa "a') Tr (a&o&o"g"). . (.12.)
p, e, y, a=o

All elements of the 0 matrix are real. This can be
checked directly, but also follows from the fact that
all P;„&"and P'f, && are expectation values of observables,
and thus real.

Elements of the Ia($p, pI ) matrix are defined by the
relation
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—1 otherwise. (14)

The totally antisymmetric four-index tensor et„„„(where
$, g, p, v=0, 1, 2, 3) is defined so that eo&~3 ——1.

Using the &o matrices we can rewrite Eq. (11) as

3

~h, ~~ Z 40'ps~« ~(&l~ pi') pv, «
P, y, e, e=o

(15)

The 0 matrix depends on the c.m. energy and angle
of the experiment to which it refers, because ay~ which
appear in Eq. (12) depend on these quantities.

The co matrices are all independent of the parameters
of the scattering. They form a complete set of 16)&16
matrices. We denote the transpose of the cu(Pg, iiv) ma-
trix by co(Pg, pv), and define it to be that matrix for
which $~(fg, pv) jp ...=l cv($g, pv)$, „,p holds. Then all
m matrices are hermitean and unitary. In this sense
they play a similar role among 16&16 matrices as the
sixteen y matrices play among 4)(4 matrices, and the
four a.& matrices among 2)&2 matrices.

Generally speaking polarization experiments are those
in which some of the I';„I""and I'~,&& are measured at
certain values of the c.m. energy and scattering angle.
The purpose is to deduce from these data via Eq. (11)
some information concerning the S matrix at those
c.m. energies and scattering angles. Equation (11)
shows that the most one can hope to deduce from
experiments of this kind is the elements of the 0 ma-
trix. Of course, as shown by Eq. (12), all 256 elements
of the 0 matrix are completely determined by the
sixteen complex elements of the ~ matrix, or equiva-
lently, by the T matrix. The converse, however, is
not true. The 256 elements of the 0 matrix do not
sufhce to determine the 16 complex elements of the n
matrix uniquely. For example, one may multiply all
elements of n by a common phase factor without
changing 0, which means that the n matrix can be
determined only up to a phase factor. On the other
hand, we know that 0. contains 16 complex elements,
and therefore it depends on 32 real parameters. One
of these real parameters, the over-all phase of a, cer-
tainly does not influence Q. Thus all 256 (real) ele-
ments of 0 depend at most on 31 real parameters.

3. RESTRICTIONS IMPOSED BY INVARIANCE
PRINCIPLES

If all 16 complex elements of the n matrix are inde-
pendent, then for all values of the c.m. energy and
scattering angle one needs 16 complex numbers to
describe f f scattering. The us—ual way of saying this

In Eq. (16) we have used the notation

e(u, s, c, ." le, f, :, ";I, i j, " )

I +1 if the set of numbers Ia, b, c, ~ } is contained
in the set of numbers le, f, g, ~ ~ }, or Ih, i,

0 otherwise. (16)

For example 8(1, 2
l

1, 2) =1, 8(1, 2
l
2; 3; 4) =0,

8(1, 2
l
1; 2, 3; 2, 4) =0, 6(a

l b) =8,s, the usual Kro
necker delta.

In Appendix 1 it is shown that if the 5 matrix is
invariant under space inversion (denoted by P ) and
the product of intrinsic parities of the four particles
(denoted by g,) is +1, then npv must satisfy

~»=~»~(P, & l 0, 1; 2, 3).
To satisfy this equation, the elements F02 o.(}3 o.]2 0.]3,
A2p cL2] (130 A3] have to be equal to zero. When p = —1,
then the other eight n„„must be equal to zero. The
nonzero elements can have arbitrary values. One con-
cludes that I' invariance alone permits eight inde-
pendent form factors in f f scattering. —

If time-reversal (denoted by Pr) invariance holds,
then as shown in Appendix 1, o.p~ must satisfy

p.= p.&(&» l
o 1 3'2), (1g)

where elements of e~ are the coeKcients appearing in
T~= S —1. The S is the S matrix which describes a
scattering in which the f particle is the incoming beam
particle with a momentum —k; and polarization —P;
(reversed momentum and spin of the i particle in the
original scattering), the i particle is the outgoing beam
particle with momentum —k~, polarization —P~, and
the r and s particles are similarly exchanged with
respect to the original scattering. In short, the S~
matrix describes the (Wigner) time-reversed process
corresponding to the original scattering, which is de-
scribed by S.

The particle exchange operation P~2 is dehned as
V All form factors referring to a given c.m. energy and angle

may be considered to be independent. However, unitarity re-
quires that certain integral equations be satisfied by form factors
referring to a given c.m. energy, the integral being taken over all
angles. In the present paper we are not concerned with these
integral equations.

is that there are 16 independent form factors, each of
which is a function of the c.m. energy and angle.

If the S matrix of the scattering process is such that
it is invariant under certain operations, then the 16
complex elements of the o. matrix are no longer arbi-
trary. In other words, fewer than 16 independent form
factors may be needed to determine f f sc—attering.
The restrictions imposed upon the o. matrix by certain
invariance principles are summarized in this section.
The detailed derivation of these results is given in
Appendix 1.

We make use of a mathematical symbol which is
defined in analogy to Eq. (14) as follows:

&(~)» ~) '''
I p~f~@ ''i»'42~ ''

i ''')
+1 if the set of numbers l a, b, c, ~ ~ ~ } is contained

in the set of numbers le, f, g, ~ ~ ~ } or else it is
contained in the set of numbers [ h, i, j, ~ ~ ~ }
etc. ,
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that operation which exchanges the three-momenta and
polarizations of the i particle and r particle; at the
same time it exchanges the three-momenta and polari-
zations of the f and s particles. Thus the e8ect of P» is:

k&&—&k„,

p,~p„,
k~k„
p~~p„

(19a)

(19b)

where k& and P& are the three momentum and polariza-
tion vectors of the t particle (t=i, f, r, s). A necessary
and sufficient condition for the 5 matrix to be P»
invariant is

as, =a,se(P, y ~
0, 1; 2, 3), (20)

where e(P, y i 0, 1; 2, 3) is defined by Eq. (14) .
The significance of P» invariance is demonstrated by

the following rule: Define E,„(Er,) to be that operation
which exchanges all the observable physical quantities
associated with the i and r particles (f and s particles)
with the exception of their energy —momenta and p&1-

larizations. If E;„=E~,=—E and S is invariant under
G. E, where 8 is any operation, then 5 is G P» invari-
ant. The simplest special case of this rule is the restric-
tion imposed on the 5 matrix by the Pauli principle:
E=1, 8=1 and 5 is P» invariant. Other special cases
and a more complete discussion of the relation between
P» invariance, the Pauli principle, isotopic-spin invari-
ance, G-parity invariance, etc., is given in Appendix 2.

Next we define certain helicity invariance principles.
We say that the beam particle switches its helicity
during the scattering if X;, the expectation value of
the helicity of the i particle, and X~, the expectation
value of the helicity of the f particle, are related by
~~ ———)„. Similarly, we say that the target particle
switches sign during the scattering if X,= —),.

We consider several distinct helicity invariance prin-
ciples:

(a) Either both the beam and the target particle
switch its helicity during the scattering, or else neither
of them does.

(b) One of the scattered particles (either the beam
particle or the target particle) switches its helicity
during the scattering, but the other does not.

(c) Neither switches its helicity.
(d) Both switch helicity.
(e) The beam particle does not switch helicity, but

the target particle does.
(f) The beam particle does switch helicity, but the

target particle does not.
In the following we refer to these invariance princi-

ples as case (a), case (b), etc. Clearly case (c) and
case (d) are subcases of case (a); case (e) and case (f)
are subcases of case (b).

The interest in these invariance principles arises
from the fact that at high energies they have to hold
whenever the 5 matrix satisfies certain y' invariance

principles. ' " Cases -(a) through (f) impose the fol-
lowing conditions on the 0. matrix:

In case (a), ns~
——crs~b(P, y ~

0, 3; 1, 2). (21a)

In case (b), as~=as, (1 5(P,—V ~
0, 3; 1, 2) ). (21b)

In case (c), cry, =cree, 5(P, y i 0, 3).

In case (d), ns~=ap76(P, y ~
1, 2).

(21c)

(21d)

Let us go to the limit of infinite particle energies (where the
rest mass is negligible). In)case (a) the S matrix will then be
invariant under the substitution +g—+y%'» carried out simul-
taneously for all t. The subscript indicates that the field +& de-
scribes the t particle. The S matrix will then also be invariant un-
der the substitution +;~y&;, +y~ —

+CAN,

+„~p&„,+,~—y%,.
In case (c) the S matrix will be invariant under the substitution
+;~y%;, Ny~y'Ny and also under the substitution %,~y%„,
+„~y'+,. In case (d) the S matrix will be invariant under the
substitution +;~y'+;, +~~—y'%~ and also under 4'„—+p'+„,
+.,—& —~'+,. Analogous results hold for cases (b), (e), and (f).

~ J. Tiomno, Nuovo Cimento 1, 226 (1955); S. Hori and A.
%akasa, ibid. 6, 304 (1957); J. J. Sakurai, ibid. 'V, 649 (1958).
Y. Nambu, in Proceedings of the 196Z Annual International Con-
ference on High-Energy Physics, edited by J. Prentki (CERN,
Geneva, 1962), p. 153.IA. A. Logunov, V. A. Meshcheryakov, and A. N. Tavkhe]idze,
in Proceedings of the B'6Z Annual International Conference on
High-Energy Physics, edited by J. Prentki (CERN, Geneva,
1962), p. 161.

In case (e), n~~=|xp~5(P
~
0, 3)6(y

~
1, 2). (21e)

In case (f), n~~=rxs75(P
~
1, 2) b(y

~
0, 3). (21f)

All the results presented in this section can be easily
visualized if one represents them schematically by
pictures in the manner shown in Fig. 2. We refer to
such pictures as schemes, and they are to be under-
stood as follows. Rows are imagined to be labeled from
zero to three from top to bottom, columns from left
to right. A square in the scheme located in the ith
row and kth column corresponds to 0.;~. A shaded
(unshaded) square indicates that the corresponding
element of n may (may not) be different from zero.
A dashed line along the diagonal represents a semi-
symmetric matrix. A semisymmetric 4&(4 matrix is by
definition one that satisfies Eq. (20).

We say that the 5 matrix is P P& invariant if it is
invariant under the combined operation P~ followed
by P,. We say that the S matrix is P,+P& invariant
if it is invariant under both P, and P'& separately.

It is easy to find the scheme of o. corresponding to
an 5 matrix invariant under P .P~, where P and P'I,

are two operations appearing in Fig. 2. One has only
to superimpose the scheme corresponding to P and
that corresponding to P& and note where a white square
of one scheme overlaps with a shaded square of the
other scheme. In this manner one finds the locations
of all white squares in the scheme corresponding to a
P, P~ invariant 5 matrix. For example, let us assume
that the S matrix is invariant under P, followed by
P~, i.e., it is P .P~ invariant. The scheme of the cor-
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responding 0. matrix, for elastic scattering, can be ob-
tained by superimposing the 6rst two schemes in Fig. 2
as described above. The result is shown in Fig. 3(a).
Of course, if the CPT theorem holds, then such an 0,

matrix corresponds to an 5 matrix which is invariant
under charge conjugation (denoted by Pc). In this
case 0. has ten independent complex elements. Thus
the number of form factors permitted by P ~ P& in-
variance in elastic fermion —fermion scattering is ten.

The scheme of an n matrix describing a P,+Pb
invariant scattering can also be obtained by super-
imposing the scheme of a P invariant a matrix and
the scheme of a P~ invariant a matrix. A white square
appears in the resulting scheme wherever a white
square appears in any one or both of the two original
schemes. The rest of the squares are shaded. As an
example, consider the case when S is P +Pr+Pzz
invariant. For elastic scattering the result is shown in
Fig. 3(b) . In this case the number of nonzero elements
of a is six, but due to the semisymmetry of n only
five are independent. This result implies that for ex-
ample in the standard theory of nucleon —nucleon strong
elastic scattering, where P,+Pr+Pzz invariance is as-
sumed, there are Ave independent form factors.

4. EXPERIMENTS WITH POLARIZED BEAMS

A. Basic Formulas

We now turn to a special class of scattering experi-
Inents which satisfy the following two conditions. First,
the target is unpolarized before the scattering and the

P~ PT invar i ance
(elastic scattering )

FiM
M

M
p +p +p invariance

(elastic scatter tng )

FIG. 3. Schemes representing the restrictions imposed on the ~
matrix by the invariance principles indicated. These schemes can
be constructed by superimposing certain schemes appearing in
Flg. 2.

polarizations of the beam and target particles are un-
correlated. This condition means that the coefficients
appearing in Eq. (5) satisfy

P ~=P ~" b (22)

Second, the polarization of the target particles after
any scattering is not observed. This means that only
those coefficients in Eq. (6) are measured which satisfy

(23)

Experiments which satisfy these two conditions will
be called experiments with polarized beams.

If one performs all possible experiments with polar-
ized beams, then one can determine from Eq. (11) all
those elements of the Q matrix for which the indices

q and v are both equal to zero. There are 16 such ele-
ments of the 0 matrix Lthey are real as explained after
Eq. (15)7. The other 240 real elements of 0 can not be
determined by such experiments.

How much can we say about the ~ matrix if we know
all Qzo „0? To find the answer we first use Eq. (13) to
write

FiYii

F/~Fi
P& invaria nce

Fri F~

FE~Fii
&Y/i Fii

ase a.

S~&/zi

WiiFii FziS
WiFi~ 8

p invariance
(eiastic scattering )

Case c,

Mpzipi~p~li

FiFiiFiiM
Pjp invar i ance

FjiFii

Case d.

I:~(~0, &0)7„,„=(—s,„.(~ I o) ~, .(p I o)+s,„~,,+~„~,„

+ Z zeus "~ss ~- e(0 I 6 z ) I ~." (24)
pl +f=o

Substituting this into Eq. (15) we find

~iso, ,a= 4+ I
—~t.e(k I o)(«.~o7* Z~sv~sv'—+~"«v"

+nz~a„~*+ g zezp„~np~n~7 e(0 I $~ p) I

=8(gz„e(( I 0) (-', gApp —Apo) +Re Ai„
P=o

YiFp~,

F/i

FiiPI~
Case b.

PP/i

Pi@
Ca se e. Case f.

S
Fii

+,' Q eg„,e(0 I P, p)-Im As„(25)
P, eM

where the elements of the Hermitian matrix 3 are de-
6ned by

FIG. 2. Schemes representing the restrictions imposed on the 0.'
matrix by the invariance principles indicated. Schemes are dis-
cussed after Eq. (11).For scheme 1 vre have assumed that y, =1.

(26)
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Equation (25) shows clearly that all elements Q~o oo

are completely determined by the elements of the A
matrix. The converse is also true. The symmetric part
of Q~o, &o determines Re (A i), and the antisymmetric
part of Q~o „o determines (Im A);P, the matrix (Im A)D
being the dual of Im A. Thus by performing only ex-
periments with polarized beams one can determine all
elements 2;I, but nothing more.

Once all elements A;I, are known, then the n matrix
is determined up to an arbitrary unitary transforma-
tion. More precisely, we show that once A is known,
and an a is found which satisfies Eq. (26), then the
most general matrix n' which satisfies Eq. (26) is
given by

n =nU) (27)
where U is unitary.

The fact that the matrix n' given by Eq. (27) does
indeed satisfy Eq. (26) is obvious. The fact that all n'
matrices satisfying Eq. (26) are of the form given by
Eq. (27) is also easily proven in a few lines of algebra.
Nevertheless, we prefer to give another proof, which
has the advantage of exhibiting a geometrical inter-
pretation of Eq. (2'I). The 16 complex elements of n
may be thought of as specifying the 16 complex com-
ponents of four four-dimensional vectors (in "index
space") .

i'= (~po, o'pi, npo, npo) (P=O, 1, 2, 3). (28)

The diagonal elements A» (y=O, 1, 2, 3) of the
Hermitian matrix A determine the "lengths" (i.e., ab-
solute values) of the vectors defined by Eq. (28),
while the oft-diagonal elements of A determine the
complex angles between any two of them. That is, they
determine the relative orientations of the vectors n&

(P=O, 1, 2, 3) with respect to each other. No other
information is contained in A. If we rotate the system
of four vectors nr' "rigidly, " i.e. without changing the
lengths or relative orientations of the vectors, then all
elements of A remain unchanged. All such "rigid" rota-
tions are described in a complex four-dimensional space
by unitary matrices. This proves the assertion.

A remark is in order here to qualify the foregoing
argument. If Det (A) is equal to zero, then by Eq.
(26) Det (u) is also equal to zero and thus the char-
acteristic" p of a is less than four. In this case a well-
known theorem in the theory of matrices states that
the four vectors np (p=0, 1, 2, 3) do not span the
whole four-dimensional index space, but only a p-dimen-
sional subspace of it. To perform a rigid rotation in
this subspace one need not have a transforming matrix
which is unitary in the whole four-dimensional index
space; one only needs one which transforms the sub-
space in question rigidly, " and may do anything to
vectors perpendicular to this subspace. Ke may call
such matrices "unitary from the p-dimensional sub-
space spanned by np" and denote them by U(p, np).

"See, for example, F. G. Tricomi, Integra/ I'quatjons (Inter-
science Publishers, Inc. , New York, 1957), p. 59.

It is clear that any 0."=nU(p, np) will satisfy Eq. (26)
if n does. However, any such n" can be written in the
form of Eq. (27), thus the original assertion is correct.

If certain invariance principles hold, then the U
matrix is no longer an arbitrary unitary matrix. In
this case U has to be such that if n satisfies the restric-
tions due to the invariance principle in question, then
so does n. It is quite easy to find the restrictions im-
posed on U by the invariance principles discussed in
Sec. 3, because of the simple structure of the schemes
of n. These restrictions on U are so simple that they
too can be expressed in terms of schemes. For example,
assume P invariance and g.=1, then n has to have
the first of the schemes shown in Fig. 2. The matrix n'
has the same scheme if and only if the unitary matrix
U also has this scheme. We found the simple result,
that if P, invariance hoMs, then the scheme of U must
be the same as the scheme of n. The same result holds
for elastic scattering when P„P, Pr, or P,+Pr
invariance holds, and for the helicity invariance princi-
ples cases (a), (c), and (d). For the helicity invariance
principles cases (b), (e), and (f), the scheme of U
has to be the same as the scheme of U (or a) in cases
(a), (d), and (c), respectively.

We denote the differential cross section (summed
over all polarizations) evaluated at a certain c.m. en-
ergy and angle, by do-, where do- is a function of the
c.m. energy and angle. If thei particles are unpolarized,
we denote the differential cross section by do(uu).
The two subscripts remind us that the i particles and
the r particles are unpolarized. (At the same time, as
everywhere in this section, the incoming beam and
target polarizations are uncorrelated. ) By definition
dr is the expectation value of the operator 0'o-' after
the scattering has taken place. We find from Eqs. (11)
and (25) that

do. (uu) =Pfg /Pjg =Qoo, oo

=Aoo+Aii+Aoo+Aoo=»~ (29)

If the i particles are polarized, then P,„I' may be
nonzero for any value of p. The differential cross sec-
tion is denoted in this case by do (pu) and is given by

do(pu) =P "/P "=QQ P &'P "
p=o

=do. (uu) L1+ (U—V)P,j, (30)

where the three-vector P; is defined to be the vector
whose kth component (k=1, 2, 3) is P i'/P " it is
the polarization of the i particle. The kth component
(k = 1, 2, 3) of the three-vectors U and V, are defined by

Uo—= (2Qoo, oo) '(Qoo, oo+Qio, oo) = (2/Tr A) Re Aoi,

(k=1, 2, 3) (31a)
& = (2Qoo, oo) (—Qoo, oo+Qio, oo)

= (2/Tr A)-,' Q sod, p, Im Ap, . (31b)
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We denote the polarization of the fparticle by P~(NN)
if the i particles are unpolarized, and by Pq(pu) if the
i particles are polarized. The kth (k= 1, 2, 3) compo-
nent of this quantity is always equal to Pq,"'/Pz, "
(k=1, 2, 3), and from Eqs. (11), (25), (29), (30),
and (31) we find that it can be written as

Pf~ (nN) = PfP o/[P, ,oodo (uu) j=Q~p, pp/Qpopp= (U"+U"),
(32)

—(gg p. po/p oo) —igfl p. io/p oo

= (do (uN) /do-(pu) ) (P~"(ue) +QZ'"P ")

(33)

The 3&&3 matrix appearing in Eq. (33) is defined as

~kp, hOZ""= ' = [—Bi,g(ioTr A—Aop)
&oo,po Tr A

+Re Ai,a+Qeoip Irn Ap, j. (34)
e=p

Equations (29), (30), (32), and (33) are the general-
izations of the corresponding equations which were
published earlier in the literature. '' They are valid
whether or not any of the usually assumed invariance
principles hold. " In deriving them we have used only
invariance under rotations in three-space together with
energy —momentum conservation.

In the following discussion we call the vector (U—V)
the "beam-analyzing vector, " because it is the scalar
product of this vector with P, which determines the
asymmetry in do (pu) in what may be called an "ana-
lyzing scattering, " i.e., a scattering in which the incom-

ing beam particle is polarized and the differential
scattering cross section is measured. The vector (U+V)
is called the "beam-polarizing vector" because it deter-
mines the polarization of the outgoing beam particles
after what may be called a "polarizing scattering, " i.e.,
when the incoming beam particles are unpolarized. "

B. Observable EGects of Invariance Principles

In order to test invariance principles, using experi-
ments with polarized beams, we have to determine the
observable eGects of such principles. More precisely,
we are interested in finding the restrictions imposed

"Division by 000, 00 in the definition of U, V, etc., does not
cause difhculties, because 0&0,&0=0 if and only if a=0, i.e., when
there is no interaction whatsoever."It is shown in part 8 of this section that when P, invariance
holds as it does, for example, in the case discussed by Wolfenstein
(Ref. 1) then both (U+V) and (U —V) can have onlyone com-
ponent which is nonzero. These one component quantities are
essentially those which were called by Wolfenstein (Ref. 1) the
:polarizing power and analyzing power, respectively.

by invariance principles on the quantities which can
be measured by experiments with polarized beams.
These quantities are Tr A, the vectors U~, V~, and the
tensor Z'~.

The invariance principles under discussion in this
subsection are P„P~, and P, P~ invariance, and the
helicity invariance principles case; (a), (c), and (d) ."
[P» invariance will not be discussed here. The helicity
invariance principles cases (b), (e), and (f) are men-
tioned at the end of this subsection. ]

We have defined the 0. matrix so that the restric-
tions imposed by all the relevant invariance principles
(except P») can be expressed simply by the statement
that certain elements of n have to be equal to zero."
These restrictions can be summarized in terms of the
schemes introduced in Sec. 3. From Eq. (26), which
defines the A matrix, it follows that the restrictions
imposed on A by the invariance principles under dis-
cussion are also of this simple nature. Certain elements
of A have to be equal to zero, while the others are arbi-
trary. In fact, it turns out that the restrictions im-
posed on A by P„P&, and P P& invariance, and the
helicity invariance principles cases (a), (b), and (c),
are exactly the same as the restrictions imposed on o.

by the same invariance principles. For example, if P,
invariance holds, then from Eqs. (17) and (26) it fol-
lows that Ap~ has to satisfy when q, =+1

A» A»b(P, ——q ~
0, 1; 2, 3), (35)

which is exactly the same as Eq. (17) for a. The
restrictions on A can also be represented by schemes
and, as we have just seen, the schemes for A are exactly
the same as the schemes for n whenever any of the
invariance principles mentioned above hold. "

To find the restrictions on U~, V~, and Z'~ due to
the invariance principles under discussion, one has only
to keep the scheme of A (which is the same as the
scheme of n) in mind, and put the proper terms equal
to zero in Eqs. (29), (31), and (34). For example, if
P invariance holds, then from Fig. 1 (1) for g, =+1,we
find that A pg, A p3, A y2, A yg are zero. We know that A

' We do not list here the restrictions due to Pg, P,. Pz and
P,+P~ invariance for inelastic scattering. They correspond
exactly to (and are quite easily obtained from) the restric-
tions obtained for elastic scattering. The difference is that in the
inelastic case it is the (n —u ) matrix (and not a) which has the
scheme shown in Fig. 2(2), when q =1.Thus Uk, V", Zk"= —U~",
—V~", —Z~k", if for elastic scattering U~, V", Z~"=0. For the
other components U"= U~~ etc. When q, = —1, then the argument
is similar, where the superscript T indicates that the corresponding
quantity refers to the time reversed reaction. We also do not
list the restrictions due to P g and P, .P ~ invariance. The relations
due to P~ invariance are obvious and can be summarized by the
statement n=-n~, where the superscript C indicates that the
quantity refers to the charge-conjugate reaction. The restrictions
due to P -Pz correspond exactly to the restrictions due to P
invariance; in this case it is the (n —n~) matrix (not a) which
has the scheme Fig. 2(1).The observable effects of these restric-
tions are that if P .Pg invariance holds, then V~ —V~~=0,
U~= U k=O, etc. , if P, invariance requires that V~=0, U~=O, etc."This statement would be false for the helicity invariance prin-
ciples cases (b), (e), and (f) . Nevertheless, these cases do not
have to be treated separately, as is shown later.
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is always Hermitian. Putting this information into Eq.
(31) we see that the second and third components of
both U~ and V~ are equal to zero. Ke conclude that
both U+V (the polarizing vector) and U—V (the
analyzing vector) can have only their first component
different from zero. The same holds when g, = —1, the
scheme of A being unchanged. From Eq. (34) we see
that Z does not mix the erst component of polarization
with the second and third components. In the same way
one can immediately see that the results listed below,
numbered from 1 to 28, are correct. The number of
parameters in parentheses indicates the number of real
parameters on which A depends if the indicated invari-
ance principle holds. It is the number of shaded squares
in the scheme of A (or n), since A is Hermitian.

of the beam polarizing vector is (—1) times the thircl
component of the beam analyzing vector.

7. The off-diagonal elements of Z'~ satisfy the equa-
tion Z'~= L1—2(6;s+8I3)jZ".

P,+Pr invariance, elastic scattering (6 parameters)

Since any two of the following three operations, P„
P&, and P, P& imply the third one, this case is equiva-
lent to P,+Pr+P, Pr invariance.

8. The beam polarizing vector is perpendicular to
the scattering plane.

9. The beam analyzing vector is equal to the beam
polarizing vector.

10. The only nonzero off-diagonal elements of Z are
Z" and Z". They satisfy Z"= —Z".

P, invariance (8 paranieters)

1. The beam polarizing vector is perpendicular to
the scattering plane, i.e., when scattering unpolarized
beam particles on unpolarized target particles the out-
going beam particles can be polarized only perpendicu-
lar to the scattering plane.

2. The beam analyzing vector is perpendicular to
the scattering plane, i.e., if the incoming beam particles
are polarized in the scattering plane, then the differen-
tial cross section will be the same as if the incoming
beam particles had been unpolarized.

3. Z'~ does not mix the first component of polariza-
tion with the other two components, i.e., if I'; is per-
pendicular to the scattering plane, then so is

QZ&IP j
I =1

Land also Pr(pu)g. If P, is parallel to the scattering
plane, then so is

gzapi,
I but Pq(Pu) is not, unless (U+V) =0).

P& i nvari ance, elastic scattering" (10 parameters)

4. The first (third) component of the beam polariz-
ing vector is the same as the first (third) component
of the beam analyzing vector. The second component
of the beam polarizing vector is (—1) times the second
component of the beam analyzing vector.

5. The off-diagonal elements of Z'~ satisfy the equa-
tion Zik —

( 1 ) 1+kZks'
P,Pr invariance, elastic scattering (10 parameters)

If the CPT theorem holds, then P, P~ invariance
is equivalent to charge conjugation invariance, Pz.

6. The first (second) component of the beam polar-
izing vector is equal to the first (second) component
of the beam analyzing vector. The third component

Helicity invariance case (a) (8 Parameters)

11. The beam polarizing vector is longitudinal, i.e.,
only its third component can be nonzero. Therefore,
when unpolarized beam particles are scattered on un-
polarized targets, then the outgoing beam particles can
have only longitudinal polarization.

12. The beam analyzing vector is longitudinal. There-
fore, only the presence of longitudinal polarization in
the incoming beam can be detected when measuring
the differential cross section of scattering on unpolar-
ized targets.

13. The only nonzero off-diagonal elements of Z are
Z" and Z". Therefore, Z does not mix the longitudinal
component of polarization with the transverse compo-
nents of polarization. If the incoming beam polariza-
tion is longitudinal, so is the outgoing beam polar-
ization. If the incoming beam polarization is transverse,
the longitudinal component of the outgoing beam
polarization is the same as if the incoming beam had
been unpolarized.

If together with case (a) some other invariance princi-
ples hold as well, we may add to statements 11, 12, 13
the following ones:

Case (a)+P, invariance (4 parameters)

14. Fig. 1 shows that for elastic scattering case (a)
+P, invariance implies Pr invariance and therefore
P, -P'~ invariance as well. If the CPT theorem holds,
then this implies Pc invariance. (The converse is not
true. Case (a) +P& invariance does not imply P,
invariance, nor does case (a) +P, P& invariance imply
P invariance).

15. The beam polarizing vector is zero. No polariza-
tion whatsoever can be induced by scattering unpolar-
ized beam particles on unpolarized target particles.

16. The beam analyzing vector is zero. Xo polariza-
tion in the incoming beam can be detected by observing
the differential cross section when scattering on an un-
polarized target.

There is a simple reason for the fact that both U and
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V are zero in this case. We know that I' invariance
requires that these vectors be perpendicular to the
scattering plane. At the same time in case (a) they
have to be longitudinal. Therefore they vanish.

The only parameter which can be determined in ex-
periments with polarized beams in this case is da(nn) =
do (pu) . Multiple scattering experiments with polarized
beams can not yield any additional information.

17. Z is diagonal.

Case (a) +Pr irlariance, elastic scattering

(6 Parameters)

18. The beam po'. arizing vector is equal to the beam
analyzing vector.

19. The only two c ff-diagonal elements of Z satisfy
the relation Z"=—Z"

Case (a) +P, Pz invariance, elastic scattering
(6 Parameters)

20. The beam polarizing vector is (—1) times the
beam analyzing vector.

21. The only two o8-diagonal elements of Z satisfy
the relation Z"=Z". Therefore Z has three mutually
perpendicular eigenvectors, one of which is parallel to
the longitudinal direction. '

Helicity ineariance case (c) (4 parameters)

22. Case (c) for elastic scattering implies Ps invari-
ance, as can be seen from Fig. 1. Therefore, even for
nonelastic scattering the conclusions 11, 12, 13, 18, 19
hold now, and in addition we find:

23. Z assumes the form:

Z=1—(2/Tr A) t
E

~
(R (p) (36)

where

[ R
t =QL(Re 233)'+(Im Ap, )'g,

cos p=Re 2 / i
R

i

Tr A=Re dao+Re 233, sin p= —Im AQ3/ ]
P

~

~

cos p sin p 0

S,i(p) = —sin p cos p 0

0 0 of
Case (c) +P, ineariance (Z parameters)

This is a special case of case (a) +P, invariance.
Therefore, conclusions 15 and 16 now hold. In addition
we find:

24. From conclusion 22 it follows that for elastic
scattering case (c) +P, invariance is equivalent to
case (c) +P, P& invariance.

"%e recall again that this does not mean that the direction of
a longitudinal incoming beam polarization is left unchanged by Z.
It means that is is changed by Z into a longitudinal outgoing
polarization, as discussed before Eq. (2).

25. Z assumes the form

Z=1—(2/Tr A) 833(Ri(p=0). (37)

P invariance requires p=0. Physically this follows
from the observation that if (Ri(p) rotates the trans-
verse components of polarization by p in the clockwise
direction before I', has been performed, then it will
rotate by +p in the counterclockwise direction after
a I', has been performed. Invariance under I', re-
quires p= —p, from which p=0 follows.

Helicity ineariance case (d) (4 parameters)

26. For elastic scattering case (d) implies P, Pr
invariance. Therefore, even for nonelastic scattering,
conclusions 11, 20, and 21 now hold. In addition we
find that

27. Z"= —1, and Tr A = En+R22.

Case (d) +P, invariance (Z parameters)

This is another special case of case (a) +P, invari-
ance. In addition to conclusions 15 and 16 and 27, we
have:

28. For elastic scattering we see from 26 that case
(d) +P, invariance is equivalent to case (d) +P,.Pr
invariance.

All restrictions due to the invariance principles under
discussion on all quantities which can be observed in
experiments with polarized beams have been given
above. In this sense the list of conclusions is com-
plete. '4

Conclusions 8 and 9 were proven by Wolfenstein. '
They are called Theorem 1 and Theorem 2 in his
work. A result similar to conclusion 15 was proven by
Logunov, Meshcheryakov, and Tavkhelidze. '

The helicity invariance principles, cases (a), (e),
and (f) have not yet been discussed. In fact, it is not
necessary to treat them separately. All conclusions ob-
tained above for the cases (a), (c), and (d) are also
valid for the cases (b), (e), and (f), respectively. The
reason is that the schemes of the A matrix in cases (b),
(e), and (f) are the same as in the cases (a), (c), and
(d) respectively. This is a consequence of Eqs. (21)
and (26), and physically it means simply that experi-
ments with polarized beams can not distinguish be-
tween cases (a), (c), and (d) or cases (b), (e), and
(f), respectively. Indeed, to be able to distinguish
between cases (a) and (b), for example, it is necessary
to determine not only what happens to the helicity of
the beam particle during scattering, but also what
happens to the helicity of the target particle. In ex-
periments with polarized beams, however, this can
never be done, since the polarization of the target
particle after scattering is never observed.

The main importance of these conclusions is that
they can be used to test the validity of invariance
principles. If it is proven experimentally that any one
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of the conclusions concerning (U+V), (U—V), or Z,
and appearing under the heading of a certain invariance
principle, is false, then that invariance principle can
rot hold in nature in that experiment. Several of these
conclusions should not be too difficult to check experi-
mentally, since often it is not necessary actually to
measure a quantity to test whether a particular invari-
ance holds. It is frequently sufficient to ascertain only
that a given term is diferent from zero to prove that
a given invariance does rot hold.

C. Multiyle-Scattering Exyeriments

This subsection deals with multiple-scattering ex-
periments with polarized beams, that is, multiple-scat-
tering experiments in which every scattering satisfies
Eqs. (22) and (23). In addition, we assume that all
target particles are at rest in the laboratory.

To emphasize that a certain quantity refers to the
Nth scattering (v=1, 2, ~ ~ ~, lV), we add a subscript n

to that quantity. Here E is the total number of scatter-
ings in the multiple-scattering experiment under dis-
cussion. We set off the subscript e by a comma from
any other subscripts. For example, n~~ „ is the matrix
element up~ evaluated at the c.m. energy and angle of
the nth scattering, (V+V)2~ is the kth component of
the beam polarizing vector evaluated at the c.m. en-

ergy and angle of the second scattering, Z3 is the Z
matrix of the third scattering, E; ~ is the rest frame of
the i particle of the second scattering, (1),, is the first
component of this frame, etc.

Since the f particle of the nth scattering is also the
i particle of the (ii+1)st scattering, their polarizations
are related. However, I', „+~', the kth component of the
incoming beam polarization in the (++1)st scattering,
is robot equal to I'~,„', the kth component of the outgoing
beam polarization in the eth scattering. The reason is,
that I „„+~~ and I'~ ' are the kth component of the
same quantity, but measured in two different frames,
namely, K, ,„+& and EJ,„, respectively, as discussed in
Sec. 1. These two frames are both rest frames of the
same particle. Therefore, they are related to each other
by an ordinary space rotation at most, not by a general
I.orenz transformation. This fact greatly simplifies ac-
tual calculations. We define the space-rotation matrix
R„by the relation

Pi,n+1 Rnp f,n

The matrix R„ is completely determined by the "geom-
etry" of the experiment, more precisely, by the veloci-
ties of all the particles involved in the eth and (n.+1)st
scattering.

Since all target particles are at rest in the laboratory,
the matrix R can always be written as

R„=R„L(3);,„+],y„jR„L(1)f„,8„]. (3, 8a)

Here the matrix R„L(1)~,„, 8„j rotates Kfaround,
its first axis, (1)i,„, by an angle 8„, so that the third

=Ol2[~ (pi~, [ + [ Ol2i. JJ pic [ cos (pi+pi),

Q,g
=—(U—V)2, (Pi =RiP f (BR) i (39)

As usual, the subscripts 1 and 2 indicate that the
quantity refers to the first or second scattering. We
designate the longitudinal component of a vector by
a subscript

~~
and the transverse component by a sub-

script J . The angle between CL2i and 6'ii is (pi+Pi),
where yI is the angle between the first and second
scattering planes, and consequently p, is the angle
between 62~ and 6'~~ when y&=0. Choosing y~ to be
first zero, then m-, we can determine both

[ 82~ ~ )
~

[ (Pi~
~ )

and
)

0',» )
~

t
5'ii

[ cos pi. A third triple-scattering ex-
periment in which Vi is, for example, m/2 can serve to
determine pi. We conclude that double-scattering I—I
experiments can be used to determine three param-
eters.

In triple-scattering I—I experiments the differential

axis of the rotated frame will be (3);,„+i.By definition,

(3)~,„points opposite to the direction of motion of K„
as viewed from the rest frame of the f particle of the
nth scattering. The (3);„+,axis has been defined so
that it points opposite to the direction of motion of
K„+i as viewed from the same rest frame Lsince the

f particle of the nth scattering and thei particle of the
(is+1)st scattering are now the same particle). We
see that R„f(l)~ „, 8„) is the matrix which takes into
account the relative velocities of E„and E„+~. On the
other hand, the matrix R„((3)i,„+i, 7„jrotates around

(3)i,„+i by an angle y„so that the first axis of the
rotated frame will be (1)y,„+i. The angle y„ is related
to the relative orientations of the nth and (v+1)st
scattering planes, and therefore we conclude that
Ri(3);,„+i, y„) is the matrix which takes into account
the relative orientation of successive scattering planes.

We define the angle between the vth and (m+1) st
scattering planes (not a covariant concept) to be y .
For example, we say that the eth and (m+1) st scatter-
ing planes are parallel if p„=0; we say that they are
perpendicular if y„=&sr/2.

Those multiple-scattering experiments with polarized
beams, in which the i particle of the first scattering is
not polarized and the polarization of the f particle of
the last scattering is not measured, are called I—u
scattering experiments. The symbol signifies originally
(before first scattering) unpolarized beam and unpolar-
ized targets.

Sy performing a single-scattering I—I experiment
one can determine one parameter, da(NN), at each
c.m. energy and angle.

In double-scattering u—I experiments the beam par-
ticle is generally polarized after the first scattering,
and a measurement of the differential cross section
in the second scattering, do(pn), together with Eq.
(30) enables us to determine

(U V) 2P, 2 (U V) 2R1Pf(NB) i
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cross section of the third scattering is given by Kqs.
(32), (33), and (30). One finds

d~(uu)2l
da(pu) 2= do (uu), 1+ Ct,(P2+Q2Z2(P, , (40)

da (pu) 2

where
Z„=R„Z„.

Equation (40) can be used to determine 82Z2(P1, since
all other terms appearing on the right-hand side of
that equation are known from single- and double- n—I
scattering experiments. To determine X2 one has to
perform nine different scattering experiments. For ex-
ample, one may choose the angle between the first
and second scattering planes to be 0, 2r, and 2r/2 while
keeping the angle between the second and third scat-
tering planes at the values 0, 2r and 2r/2. However,
these nine elements do not determine X2 completely,
because we have seen that Q,3 and (P~ can not be deter-
mined completely from double I—u scattering experi-
ments. Therefore, only the elements of the matrix

H '(h)() hi, x) z2H(h)() hi) x)
can be determined, where h~~, h~ and y are arbitrary.
The matrix H(h~~, hi, x) is defined to be that matrix
which multiplies the longitudinal component of any
vector by h~t, the transverse component by h~, and
rotates the transverse component by an angle x.

Higher than triple I—u scattering experiments can
yield no new information, since they would only serve
to determine terms of the form

Zly Z2y Z3)' ' ' (H Z1H) ' (H Z2H) ' (H ZBH) ' ' '

and each term on the right-hand side of this equation
is already known from triple-scattering experiments.

These results are to be contrasted with the well-
known ones, that in elastic scattering if P,+Pr invari-
ance holds, then single-scattering u—e experiments can
be used to determine one parameter, do. (uu), but that
double-scattering u—u experiments can measure only
one additional parameter (not three), that triple-scat-
tering I—I experiments can determine only two more
parameters, and finally, that I—I experiments with
more than three successive scatterings can also be used
to determine new parameters. In fact, choosing the
angles between the successive scattering planes prop-
erly, two quadruple-scattering I—I experiments can
determine two more parameters.

This contrast is easily understood, by remembering
that in deriving the previous results we made use of
an important implicit assumption. This was that none
of the quantities Q, ~~, Q, J., 6'~~, 6'i is zero. If this is not
a valid assumption, then rotations around the longi-
tudinal axis can not take 8 or 6' over into three linearly
independent vectors in three-space. For example, if Q,

is purely transverse, which is the case when I' invari-
ance holds, a rotation around the longitudinal direction
will never remove it from that plane (a two-dimen-

sional subspace of three-space) which is perpendicular
to the longitudinal direction.

One of the efIects of an invariance principle is to
restrict the structure of Z. For example, if I', invari-
ance holds, then Z"=Z"=Z"=Z"=0 This reduces
the number of elements of Z to be determined, and
thus simplifies the task of the experimentalist. Another
effect of an invariance principle, however, is to restrict
the form of U and V and in so doing it affects the very
instruments, the "polarizer" and the "analyzer" which
are used in a multiple-scattering I—u experiment to
determine the elements of Z. For example, if I', in-
variance holds, then the "polarizer" (the first scatter-
ing) can not produce a component of polarization
parallel to the scattering plane, and the "analyzer"
(the last scattering) is "blind" in any direction except
the one perpendicular to the scattering plane.

Restrictions on U and V may effect our results in
another way, namely, they may be used to determine
the matrix H(h~ ~, h2. , X) to some extent. For example,
if P,+PI invariance holds, then we know that V
and U are perpendicular to the scattering plane. It fol-
lows that in this case 8=&1. Therefore, multiple-
scattering I—u experiments can determine Z in this
case completely. However, to do this, quadruple or
higher order I—I scattering experiments have to be
performed.

Summing up, if none of the quantities Q()y SLp (P))y
6'i is zero, then one single-, three double-, and nine
triple-scattering I—I experiments have to be performed
(in order to learn everything about the S matrix that
can be learned by performing zs—I scattering experi-
ments). These experiments do not completely deter-
mine the elements of the A matrix. Higher order scat-
tering I—I experiments yield no new information.
Therefore, in order to learn more about the S matrix,
experiments other than I—I scattering experiments
have to be performed. The restrictions imposed by
invariance principles decrease the number of param-
eters to be measured, but at the same time may make
it necessary to perform higher than third-order-scatter-
ing I—u experiments. In certain cases the eGect of the
matrix H can be determined.

Suppose that by some means it is possible to polar-
ize the beam particles along the l direction, and to
determine the kth component of polarization of the
beam particles (0, 1,=1, 2, 3). Suppose further, that
the interaction between the beam and target particles
satisfies certain known invariance principles. We ask:
In order to determine Z as closely as possible, how
many intermediate scatterings have to be performed,
and what should the relative orientation of successive
scattering planes be? What combinations of the ele-
ments of Z can we determine by performing a certain
multiple-scattering experiment?

To answer these questions, one has to use Eqs. (30),
(32), and (33) together with the explicit form of the
R rotation matrices which were de6ned after Eq.
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(40) . The explicit form of the R depends on the geom-
etry of the experiment, such as the relative orientations
of successive scattering planes, velocity of the beam
particles, and so on. As the number of successive scat-
terings increases, the resulting formulas become in-
creasingly more complicated, and the process of ob-
taining the correct answer increasingly more tedious.
It is quite easy to make simple mistakes by failing to
visualize correctly the relative orientations of scattering
planes, particle velocities in different frames, etc. To
illustrate how tedious the answer to questions of the
above type can get, we consider two examples.

Suppose that P,+Pr invariance holds. Suppose fur-
ther that we perform a quadruple u—I scattering ex-
perirnent in which each of the scatterings is elastic,
the first and second scattering planes are parallel to
each other, the second and third scattering planes are
perpendicular to each other, and the fourth scattering
plane is parallel to the third. We wish to determine
which combinations of elements of t.he Z matrix we
can determine by performing this experiment. As we
know, if P.+Pr invariance holds, then for elastic
scattering the polarizing vector and the analyzing vec-
tor are both perpendicular to the scattering plane.
Therefore, by scattering unpolarized beam particles on
an unpolarized target, we can polarize the beam parti-
cles parallel to the 6rst axis of their rest frame. ' When
using such a polarizing scattering to induce a polariza-
tion in a beam, l=1. Similarly an analyzing scattering
can determine the first component of beam polariza-
tion, "and therefore, in this case 0= 1.The intermediate
scatterings take place after the polarizing scattering
and before the analyzing scattering. The plane of the
first scattering (the polarizing scattering) is parallel
to the plane of the second scattering (the first inter-
mediate scattering). Therefore, the i particle of the
second scattering is polarized along the first axis. (The
RiL(1)~ i, 8ij leaves any direction parallel to (1)r,i
unchanged, and since 7i=0, the matrix RiL(3);,2, pi=0)
is equal to unity. ) The Z2 matrix of the second scatter-
ing will change the magnitude of this polarization, but
will leave its direction unchanged, because for elastic
scattering Z„"=Z„"=0for all n if P,+Pr invariance
holds. As a result, the polarization of the f particle of
the second scattering is parallel to the first axis. The
plane of the third scattering (which is the second in-
termediate scattering) is perpendicular to the second
scattering plane. Therefore the i particle of the third
scattering will be polarized along the second axis. (The
matrix Rig(1) ~,i, Sif leaves the (1)r i axis unchanged,
and RiL(3)i,2, y&j rotates it by pi=&+/2, so that it,

will end up parallel to (2);,2.) The Z~ matrix will in
general have elements which connect the second com-
ponent to the second and third components, so P~ 3

will in general have a second and third component. If
there is no third intermediate scattering, then the fourth

17 Unless by some accident Red 0&
——0.

scattering will be the analyzing scattering. Let the
fourth scattering plane be parallel to the third scatter-
ing plane. Then P;,4, just as P~,3 will have no first
component. Nevertheless P, 44P~ 3, because E;,4 is ro-
tated with respect to E~,3 around their common first
axis by 53. This rotation mixes the components of Pf,3

to give P;,4. The differential cross section of the ana-
lyzing experiment is different from da. (uu)4 only if
I', ,4', the first component of P;4 is not zero. In the
experiment described above this is not the case. Ke
conclude that this quadruple-scattering u—I experiment
can not be used to determine any of the elements of Z.

As the second example, consider the same experi-
ment, but let the fourth scattering plane be perpen-
dicular to the third one. Then P;,4'NO, and will be a
linear combination of two terms, one of which is pro-
portional to Z3", the other to Z3", and both of them
proportional to P,3, which in turn is proportional to
Z2" and P2, , the latter being the known P~, ~. The
coefficients of proportionality are linear combinations
of certain elements of the R2 and R3 matrices.

Questions of the type discussed above can be an-
swered more easily by using a graphical method. This
substitutes the drawing of straight lines for writing
equations, which leads to considerable time saving.
The lines have to be drawn according to a set of simple
rules which can be followed mechanically, thus reduc-
ing the chance of making an error. A further advan-
tage of the graphs is that their structure is often more
easily grasped visually than the structure of equations
in which a large number of parameters appear. In the
next few paragraphs the rules of how to draw these
graphs are given. After that, as an illustration, we
will assume that P,+Pr invariance holds, and discuss
elastic multiple-scattering n—u experiments in detail.
The graphs corresponding to the two quadruple-scat-
tering experiments which were discussed in the previ-
ous paragraph are given in Figs. 6(a) and 6(b) . After
having constructed the graphs appearing in Fig. 5, one
should describe in words the experiments which they
represent, just as the experiments corresponding to
Figs. 6(a) and 6(b) were described in the previous
paragraphs. In the process of doing so, the principle
of the graphs (an approximately one-to-one corre-
spondence between a graph and the words describing
it) should become quite clear. Therefore, no detailed
proof of the rules is given.

To discuss a u—u scattering experiment, with the
beam polarizing vector and beam analyzing vector as-
sumed to be known, the rules are as follows:

A graph contains lattice points, denoted by x 's and
o's and +'s (Fig. 5). The lattice points are arranged

in rows and columns.
There are three rows, numbered from 1 to 3 from

top to bottom. They correspond to the three compo-
nents of polarization of the beam. Each row starts
with an ~ on the right, which is followed by an o
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(to the left of the x ), which in turn is followed by a
+, and so on alternately x, o, +, x, o, +, ~ ~ .

Each of the x 's together with the o's and +'s
immediately to the left of it form a column, together
with the x 's, o's and +'s of the other two rows. The
x 's belonging to the same column lie on a vertical line.
So do the 0's and the +'s belonging to the same col-
umn. Columns are numbered from 1 to E from right to
left. Here X is the total number of x, o, + triplets
in a row.

(The ordering from right to left corresponds to the
ordering of matrices in a product. For example, in the
product CBA the matrix A acts first, B acts second,
and C acts last. )

We say that a graph and a multiple-scattering u—u
experiment correspond to each other if E is equal to
the number of successive scatterings in the experiment.

A solid line may connect an x belonging to the eth
column with an o belonging to the eth column. We
say that this solid line belongs to the eth column.
We establish a one-to-one correspondence between the
solid lines of the eth column and the elements of Z„,
which is the Z matrix [see Eq. (34)7 of the eth scat-
tering in the experiment under discussion. We say
that the solid line belonging to the eth column and
connecting an o of the sth row with an x of the rth
row corresponds to Z„'". Conversely, we say that Z„'"
corresponds to the above-described solid line.

If a certain element of Z„ is not zero, then we call
the solid line corresponding to it "allowed. " A line is
"forbidden" if it is not allowed.

(For example, assume that I',+I'r invariance holds,
and the eth scattering is elastic. Then from rule 10 in
Sec. 4.8 we know that Z "=0.Therefore in this case
the solid line belonging to the mth column, starting in
the first row and ending in the second row is forbidden. )

Dashed lines may connect an o belonging to the
mth column with a + belonging to the eth column.
We say that such dashed lines belong to the eth col-
umn. Dashed lines which belong to the eth column,
and which connect a + of the sth row with an o of
the rth row correspond to the (sr) element of the
matrix R„[(1)~,„, 8„7 [defined in Eq. (38a) 7.

A dashed line starting in the first row must always
end in the first row. It corresponds to a matrix element
whose value is unity. A dashed line which starts in
the second (third) row may end in the second (third)
row, or else in the third (second) row. In the former
case it is said to be uncrossed; in the latter case to be
crossed. Uncrossed dashed lines correspond to cos 6„,
crossed ones correspond to &sin 8 . Therefore, except
for special cases (when 8„=0, &m./2, &~, ~ ~ ~ ), both
uncrossed and crossed dashed lines are allowed.

(These rules follow from the fact that the matrix
R[(1)f,„, 8„7 rotates three-space around (1)r „by an
angle 8„. Consequently, its diagonal element belonging
to the first row is always unity. Therefore, the dashed
line corresponding to this matrix element —the dashed

line starting and ending in the first row —is always
allowed and corresponds to unity. The off-diagonal
elements of the rotation matrix R„[(1)r „, 5„7 belong-
ing to its first row or its first column are zero. There-
fore, the dashed lines corresponding to these elements—the dashed lines starting (ending) in the first row,
but not ending (starting) in the first row—are always
forbidden. Those diagonal elements of the rotation ma-
trix which belong to its second or third row have the
value cos 8„. The corresponding dashed lines are the
uncrossed ones belonging to the second and third row.
Finally, the crossed dashed lines correspond to the
other two elements of the rotation matrix. These ele-
ments are &sin 8„.)

Dotted lines may connect a + in the eth column
with an x in the (0+1)st column. We say that such
a dotted line belongs to the eth column. A dotted line
belonging to the eth column and connecting an x in
the sth row with a + in the rth row corresponds
to the (sr) element of R„[(3)i,+i, y 7 (defined in
Eq. (38a) 7.

A dotted line starting in the third row must always
end in the third row. It corresponds to a matrix ele-
ment whose value is unity. A dotted line belonging to
the eth column and starting in the first (second) line
may end in the first (second) line, or else in the second
(first) line. In the former case it is said to be uncrossed,
and corresponds to cos y„; in the latter case it is said
to be crossed, and corresponds to &sing„. If the
(n+1) st scattering plane is parallel (perpendicular) to
the eth scattering plane, then only uncrossed (crossed)
dotted lines are allowed, and they correspond to the
value +1.

(These rules can be proven very simply, just as we
have proven the rules for dashed lines. )

When a multiple-scattering experiment is set up in
such a way that any two successive scattering planes
are either parallel or perpendicular to each other, then
we call this a basic arrangement of scattering planes.
Any more general arrangement can be treated as a
linear superposition of basic ones. It is therefore suffi-
cient to treat a complete set of basic arrangements. In
practice basic arrangements are almost exclusively used.

In graphs corresponding to any basic arrangement
of a multiple scattering experiment all allowed dotted
lines correspond to the values %1.

A path is a continuous line (as distinguished from a
solid line). It contains at least one solid line. If it
contains more than one solid line, then it contains one
and only one dashed line, together with one and only
one dotted line between any two successive solid lines.
Two or more paths may partially overlap. A path
starts at an o of the first column and ends at an x of
the /th column.

Suppose that the interaction to be studied is such
that the known polarizing vector does not have a
component parallel to the jth axis, and that the known
analyzing vector does not have a component parallel
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b.

I'IG. 4. (a) Scheme of the
Z matrix for elastic scat-
tering, when P +P~ in-
variance holds, The dotted
line along the diagonal
indicates that the of-
fdiagona elements of Z are
antisym metric. (b) Al-
lowed solid lines corre-
sponding to the shaded
squares in Fig. 4(a).

to the mth axis. If such a j and jor m exist, then we

say that any path which starts in the jth, and any
path which ends in the mth row is spurious.

(A path which ends in the neth row corresponds to
a term which affects the neth component of polariza-
tion of the incoming beam in the last scattering. By
assumption this component does not inhuence the dif-
ferential cross section of the last scattering, and there-
fore its presence can not be detected. For this reason
such a path is called spurious. Similarly, a path which
starts in the jth row corresponds to a term which would
inhuence the differential cross section of the last scat-
tering ij a jth component of polarization could be
produced in the polarizing scattering. )

To analyze an eth-order I—I scattering experiment,
draw a graph which corresponds to this experiment
and draw into it all paths which are not spurious and
contain only allowed lines. Note all the Z„"' elements
corresponding to all solid lines drawn. These are those
elements of Z„on which the result of the experiment
depend. Furthermore the result depends on terms, each
of which is proportional to a product of the Z "' corre-
sponding to all solid lines in one particular path. The
actual value of the numerical coefficient is a product

'

of those elements of R L(1)r,„,5„$ and R„L(3)r,„+r, y~$
which correspond to all dashed and dotted lines in
that particular path. Experiments corresponding to
graphs in which only spurious paths are allowed can
not yield any information about Z.

To analyze a multiple-scattering experiment with
polarized beams in general (not just u—u scattering),
the rules are similar. The on1y difference is that the
polarizing device is considered to be the first scattering
and the analyzing device the last scattering. For exam-
ple, assume that the polarizing device can produce
only a polarization parallel to the first axis, and the
analyzing device can detect only the first component
of polarization. Draw the graph corresponding to all
the experiments with polarized beams in which the
beam is polarized by this polarizer, then scattered
once, and finally analyzed by the analyzer just de-
scribed. These graphs are exactly the same as the
ones corresponding to a triple-scattering I—I experi-
ment when I', invariance holds. The effect of magnetic
fields, which rotate the po].arization vector, can be
taken into account by drawing additional dotted lines.

As an illustration, we discuss the case of elastic
fermion-fermion u—u scattering when I',+I'r invari-
ance holds. As we know from rules 8, 9, 10 in Sec. 4.B,

+ 0 X "+——. 0—X"~ "+—-0 X

+ 0 X + 0 X + 0 X

+ 0 X + 0 X + 0 X

( II II )

0 X + 0 X

+ 0 X '+--0—X

+ 0 X + 5 X

+ 0 X

+ 0 X

+ 0 X .+——0—X"'"+—-0 X

+ 0 X + 0 X + 0 X

+ 0 X + 0 X + 0 X

(J I I )
C.

+ 0 X + 0 X,+—-0 X

+ 0 X ~ ~ "+-—0—X + 0 X/'
x

+ 0 X ~ ~ ~ '+ —-(f X + 0 X

(Il J )
d.

I'IG. 5. The graphs shown correspond to all basic arrangements
of elastic triple-scattering u—I experiments when P,+P~ in-
variance holds. Construction of graphs is discussed in Sec. 4.C.

the polarizing vector is parallel to the first axis and
the analyzing vector is equal to it. They can be deter-
mined, up to a sign, from double scattering experiments.
Any path which is not spurious must start and end in
the first row. The scheme of Z, as given by rule 10, is
drawn in Fig. 4(a). The dotted line along the diagonal
symbolizes that the off-diagonal part of the Z matrix
is antisymmetric. The allowed solid lines (they corre-
spond to the shaded squares in the scheme) are shown
in Fig. 4(b).

The graphs corresponding to all basic arrangements
of triple-scattering experiments are given in Fig. 5.
The symbol (~t J ) means that the triple scattering
in question is such that the first scattering plane is
perpendicular to the second, and the second is parallel
to the third. (Scatterings are ordered from right to
left in graphs. ) In Fig. 5(a) there is one path which
is allowed and not spurious. It contains a solid line
corresponding to Z2". Therefore the triple scattering
experiment with the arrangement ( ( ( ( () will depend
on one term which is proportional to Zs". In Fig. 5(b)
there are two paths which are allowed and not spuri-
ous. They partially overlap; the first dashed line and
both dotted lines belong to both paths. One path con-
tains a solid line corresponding to Z2", and the other
contains one corresponding to Z~32. Therefore the result
of a triple-scattering experiment with the arrangement
(J J ) will depend on two terms, one of them pro-
portional to Z&", the other proportional to Z2". In
other words, the result will determine a linear combi-
nation of Zs and Zs . In fact, accordmg to Eq. (40R),
this linear combination is just X2", because it connects
the second component of I'; ~, measured in the frame
K; 2 with the second component of polarization of Pf,2

measured in E, ,;. The paths drawn in Fig. 5(c) and
Fig. 5(d) are allowed, but spurious. There are no
paths which are allowed and not spurious. Therefore,
the results of experiments with arrangements (J

t t)
and (~~ J ) are independent of Z. We conclude that
performing triple scattering experiments we can deter-
mine Z2" and a linear combination of Z2" and Z2". To
achieve this, the arrangements ((t t() and (J J ) have
to be used, respectively. The other basic arrangements
do not yield any information about Z.
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Pro. 6. The graphs shown corre-
spond to three basic arrangements of
elastic quadruple-scattering e—u
experiments when I',+Ez invariance
holds.

(&i Z il)
a.

+ 0 X. + 0 X + 0 X,+——0 X

+ 0 X

+ 0 X

+ 0 X +—— X + 0—X

+ 0 X + 0—X"~ ~ +—— X

(J J J)
C.

(zz ii)
b.

There are eight basic arrangements for quadruple
scattering. The graphs corresponding to three of them
have been drawn in Fig. 6. The experiments with the
basic arrangements ([t J )[) and (J J t[) have been
described in words before the rules of drawing graphs
were given. We see immediately that Fig. 6(a) con-
tains only spurious paths, and there are no allowed
paths which are not spurious. Therefore, the arrange-
rnent (t )

J )[) can not be used to determine anything
about Z. In Fig. 6(b) there are two paths. They both
contain a solid line corresponding to Z~", therefore
one can factor out Z2" from the total expression which
corresponds to the two paths in this figure. We remem-
ber that Z2" can be determined by the experiment

(~~ )~). The other factor of the expression is a linear
combination of Z32 and Z3 . Ke observe that this is
the same linear combination as the one given by a
triple scattering (J J ), namely Z3". We conclude
that the experiment (J J

~ ~) does indeed yield in-
formation about Z, but the quantity which it deter-
mines is a product of two other quantities both of
which can be measured in triple scattering experi-
ments. One can verify that only the basic arrangements

( J
t ~

J ) and (J J J ) can yield information which
can not be obtained by triple scattering experiments.
The case ( J J J ) is illustrated in Fig. 6(c) . The
graph corresponding to case (J ~~

J ) is similar, but
contains two additional paths. The quantity corre-
sponding to these additional paths is a product X~".X2".
Ke know that both of the elements X2" and 2;3" can
be determined from experiments of the (J J ) type
by appropriately choosing the c.m. energy and angle
of the second scattering. Thus the quantity determined

by the experiment (J ~t
J ), except for terms already

known from lower order scattering experiments, is the
same as the quantity determined by the experiment
(J J J ). This quantity, as the graph shows, is a
product of two factors. One is a linear combination of
Z222 and Z2", and the other a linear combination of Z~23

and Z3". Sy keeping the c.m. energy and angle of the
third scattering fixed, but varying those of the second
scattering, we can determine the value of the erst factor
up to a constant. This, together with the result of the
experiment (J J ), provides us with two independent
linear combinations of Z2" and Z2", so Z2" and Z2" can
be determined up to a constant. Varying the c.m. angle

D. Permion-Spin-Zero-Boson Scattering

Fermion —boson scattering does not strictly speaking
fall within the scope of this paper. Nevertheless, it is
v orthwhile to mention the fact that fermion —spin-zero-
boson scattering can be treated as a degenerate case
of fermion —fermion scattering. We agree to call the
boson the target particle. (If it were the beam particle,
then the beam could not be polarized. Experiments
with polarized beams in this case are trivial and need
not be discussed. ) All our previous results are still
valid if we impose the following two restrictions.

P. kh P. kh. g„

I f3,n +fs,n ' ~AO.

These restrictions, loosely speaking, mean that a spin-
zero boson can be treated as a fermion whose polariza-
tion is zero. All elements of the 0. matrix, except those
in the first column, can now be considered to be zero,
and we may write

p~, n =p~, n~~o= &p,n (42)

This means that the u matrix has degenerated into
a column vector in index space. The lnost general
fermion —boson (spin-zero) experiments are beam po-
larization experiments, since Eq. (41) states that the
relations (22) and (23) always hold in this case. In
other words, "a spin-zero-boson target can never be
polarized. " Therefore, all experimentally observable
information is contained in the A matrix. The defining

Eq. (26) together with Eq. (42) gives (dropping the
subscripts n)

c4 ~
—A'g '0! (43)

and energy of the third scattering, the second factor
can also be determined up to a constant. Since Z„"=
—Z„", this gives us the value of Z3", up to a constant.
This way all elements of Z can be determined.

In practice, the graphs here described can be simpli-
fied, All the +'s can be omitted, and the difference
between dashed and dotted lines is not essential. They
were introduced only to make the discussion easier.
More significant simplification can be achieved in some
cases, if solid lines are made to correspond to elements
of the matrix Z (and not Z).
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S. EXPERIMENTS WITH POLARIZED TARGETS

Experiments with polarized targets are those in which
the polarization vector of the i particle is zero, that of
the f particle is not measured, and the polarization
three-vectors of the target and beam particles are un-
correlated. Therefore, only those elements of 0 can be
determined by these experiments which have the gen-
eral form Qp& p„with p and v arbitrary.

The discussion of target polarization experiments
follows the same lines as the discussion of beam-
polarization experiments. In fact, all formulas con-
cerning experiments with polarized targets can be
obtained immediately from the analogous ones for
experiments with polarized beams. To obtain these
formulas, one must redefine what one means by the
target and beam particle. We may call target (beam)
particle that which used to be th'e beam (target) par-
ticle, if at the same time we exchange the order of
factors in all direct products of two o- matrices. This
exchange is to be performed according to our conven-
tion concerning notation as discussed in the second
paragraph after Eq. (8). Equation (5) then requires
that at the same time the following substitution be
performed:

P. kh~P. hk (45a)

Similarly, to satisfy Eqs. (6), (7), (11), and (15) we
have to perform together with Eq. (45a) the substi-
tutions

+f8 +f~ v ~P7 YP&

Lcu((g, pv) jp, „„~L(u(qg, v&)],p,„,.

(45b)

Let us call P„ the polarization vector of the r particle,
P, (uu) the polarization vector of the s particle when
P„=O, and P, (up) the polarization of the s-particle

Therefore, for example,

Agq=A(OApq/Aoo (Apo/0) (44)

has to hold. One consequence of Eq. (42) is that the
U matrix in Eq. (27) is now simply a multiplicative
phase factor. This means that for fermion —spin-zero-
boson scattering, experiments with polarized beams
can determine n up to a (physically trivial) phase
factor. Of course, this was to be expected, since in
this case no other experiments can be performed. The
helicity principles defined for f f scat—tering degenerate
into two cases: either the beam particle switches he-
licity, or it does not.

Generally speaking, all the other results obtained
for f f scat—tering remain valid for fermion —spin-zero-
boson scattering, and in addition to them Eq. (44)
has to hold. For example, in elastic scattering, when
I'r invariance holds, Eq. (44) demands that A~2 ——0,
whereas in fermion —fermion scattering, under the same
circumstances, A&~ need not be zero.

when P„WO. Denote by da (up) the differential scatter-
ing cross section when P„/0. The expressions for
do(up), the kth component of P, (uu), and P, (up)
are given by the right-hand sides of Eqs. (30), (32),
and. (33), respectively, if one performs in them the
substitution (45) and at the same time writes P„ for
P;. Care must be taken that the substitution (45) be
carried out in every term, including Tr A, U~, V",
and Z'~. This can be done by changing Tr A, U~,
V~, and Z'~ into Tr A', U'~, V'~, and Z"", respectively,
where the last three quantities are defined by the
right-hand sides of Eqs. (31a), (31b), and (34), re-
spectively, if in these equations we substitute 2 ~„ for
A~„. The A'~„ in turn are defined by the right-hand
side of Eq. (26), if we substitute in this equation n, p

for up~,

3

y=0
(46)

6. GENERAL POLARIZATION EXPERIMENTS

In the last two sections we discussed two special
classes of polarization experiments. Their importance
is mainly historical, since in our formalism the discus-
sion of more general experiments is no more dificult
than the discussion of these special cases."

In the experiments discussed in this section, both
the i particles and the r particles may be polarized
and their polarizations may be correlated. After the
scattering has taken place, the following quantities
may be measured: do., P~, P, and CrP" (k, 8= 1, 2, 3) .
Here we use the notation introduced after Eq. (6) .

The first line in each of the following equations fol-
lows from the definition of the corresponding quantities
as given after Eq. (6) .The second line in each equation

's Mter this paper had been completed a preprint by I.. Durand
III and Jack Sandweiss was called to my attention in which some
of the questions discussed in Sec. 6 are considered.

In analogy with the discussion after Eq. (26) we
conclude that experiments with polarized targets can
determine all elements A'~„, but nothing more.

Suppose that an n is found which satis6es Eq. (46).
Then the most general n' which satisfies Eq. (46) is
given by

(47)

This equation divers from Eq. (27) only in the fact
that the U appears to the left of 0.. Once again, if
certain invariance principles hold, then the form of U
may be restricted.

.If a~p=o.p~, then A'~~=A~„and, therefore, experi-
ments with polarized targets can determine only those
parameters which can be determined by experiments
with polarized beams. This is the case, for example, if
we consider nucleon —nucleon scattering and assume
that isotopic spin invariance (q, = 1) and I', invariance
hold. Then n has to be P»+P, invariant and this, by
Eqs. (17) and (20), implies the symmetry of n.
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= g (Pir ) 'IQoo, oo+Qoo, kopi. " +Qoo, ofpi~ '

+Qoo, kf p'r" f}

=do(uu) g 1+(Uk+Uk)p, k+(U'f+V'f)p„&
h, j=o

P k P ko/P oo

Pp, kfcQ

Qoo, oo
(47a)

= Z (Pfs ) 'IQko, popish +Qko, kop'~"

+Qko, o~P r '+~& o,kfP'r"' }

do (uu) P "(uu)+Z'"P "+ ' 'P fQko, oj

do Qoo, oo

p,"=p p */p op

kp, kg~Q
XT )

Qoo, oo

(47b)

Z(pf& ) IQpi, oppir +Qoi, hoPir

+Qko, o& P'~ '+Qo;,kfP,,""}'

dO (Nu&j 3 Q() I 0P.'"(uu)+ ' P k+Z'k&p ~

I, j=1 Qoogo

ki Pki/—P oo

+ ' 'C k& (47c)
Qp; I j
Qoo, oo

3

= p (pf. ') '{Qk',oop. '+Qk', kop;"

+Qk', o; P,r"+Qk;,k; P,," }

kT(uu) Qk, pp Qki kp Qk, pf+ ' pk+ pi
der g j=1 Qpo po Q(l() (lo Qoo oo

+ ' 'C,,"' . (47d)
QI ',aj

Qoo, oo

Of the coefFicients appearing in the third lines of these
equations, the quantities d&r(uu), (U+V), (U—V), and
Z have been defined in Sec. 4.A. The target polarizing
vector (U'+V'), the target analyzing vector (U' —V'),
and Z' have been defined in Sec. 5. The coefficient
Qpp, k, /Qpo, pp could be called an element of the analyzing
matrix. The quantities Qk, pp/Qop po are called the sPon-
taneous correlations, because they determine the Ct,~'

if both P, and P„are zero, and if, at the same time, P,
and P„are uncorrelated.

follows from Eq. (11).The third line serves to define
the coeKcients appearing in them. "

po/p, op

In the rest of this section we restrict the discussion
to I' invariance, helicity invariance principles cases
(a) through (f), and for elastic scattering Pr, P, Pr
and P,+Pz invariance. We refer to any one of these
invariance principles as IP.

Ke wish to determine the restrictions imposed by
the IP on the quantities which can be measured in
general fermion —ferrnion scattering polarization experi-
ments. This is equivalent to finding the restrictions
due to the IP on the elements of the Q matrix. It is no
more difFicult to do this in general than in the special
cases discussed in Secs. 4 and 5. One simply has to
substitute into Eq. (12) the most general form of n
permitted by the IP. Once the conditions imposed on
Q are found, they can be used to check experimentally
whether or not the IP obtains in nature. The easiest
restrictions to check experimentally are those which
require that certain elements of Q be zero. In the rest
of this section we limit the discussion mainly to finding
these restrictions. That is, we wish to 6nd all those
elements of Q which are zero when a certain IP holds. "

To investigate all 256 elements of Q for each IP
wouM be tedious. Fortunately this can be avoided by
the use of four theorems, given below, which are proved
in Appendix 3.

To simplify the language, we introduce some ex-
pressions and conventions of notation that are used
only in this section, and Appendix 3. As everywhere
in this paper, all indices can take the values 0, 1, 2,
and 3. We denote the pair of indices $ and u by ($, ki).

We say that ($, u) belongs to the same family of
indices as ($', ki') if either one of the following two
conditions hold:

1. $Aki and 5((, p,
t

$', u') =1,"or else eo„o.„&0;
2. )=If, and $'=p'.

The family to which (P, u) belongs is denoted by
I$, p}. H ($', ki') belongs to the same family as (p, ki),
we write (f', u') ( IP, u}.

For example (0, 1), (1, 0), (2, 3), and (3, 2) all
belong to the same family of indices and (0, 1) ( I 1, 0}.
Similarly (0, 0), (1, 1), (2, 2), and (3, 3) belong to one
family of indices. Clearly every pair of indices belongs
to one and only one family of indices and every family
of indices has four pairs of indices as members.

We say that Qo„,„„belongs to the same family (of
matrix elements) as Qk.„.„„ if ($', u')( IP, u} and at

"Re restrict the discussion to elastic scattering in case of an
IP involving P~ invarianee, because it is clear that in ease of
inelastic scattering these IP do not lead to restrictions of the type
Qq„,„„=o.For the same reason we do not discuss Pg invariance.
However, as pointed out in footnote l4, once the restrictions
imposed on cx by these IP are understood, the relations between
elements of a and n~, or o. and n~ are easily obtained. Conse-
quently, relations between parameters of a scattering process,
those of the time reversed and charge conjugate reactions can be
derived simply. For example, using tI ' notation of footnote 12, we
find that if P -Pg invariance holds, then Q~„,„„—Qp„,„„~=0,when-
ever Op„,„,=o is required by P, invariance.

"The symbol 8(g, p ~
g', p') has been defined in Eq. (16).
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the same time ()t', v')t {st, vj. The family to which

Qs, ,„„belongs is denoted by {Qs„„„}.If Qs„. „„.and

Qss, „„belong to the same family, we write QS „,„'„.Q

F«example, Qo2, 12, Q01,11, Q21,81, etc. all belong to the
same family. It follows from the definition that every
element of Q belongs to one and only one family.
Every family has 16 members. Since the total number
of elements of Q is 256, there are altogether 16 families.

Suppose that we wish to perform a substitution in
certain indices in the following manner. Whenever
any one of the indices under consideration takes the
value a change it to the value a'. Whenever one of the
indices takes the value a', we change it to the value a.
Similarly, whenever the indices take the value b, c, d
(b', c', d'), we change them to b', c', d' (b, c, d), respec-
tively. We denote such a substitution by a, b, c, d+—&a',

b', c', d'. For example, the substitution 0, 1, 2, 3+-+1, 0,
3, 2, tak.es np1 and Q02, 08 over into n10 and Q», », respec-
tively. The substitution 0, 1, 2, 3~2, 1, 0, 3 takes
cs0„over into ns„ if )=1, 3 and y=1, 3, it takes cs0„
over into a„s if (=0, p=2, etc.

If the scheme of the matrix o.p, is such that a substi-
tution a, b, c, d~a', b', c', d' performed on the indices

P and y takes shaded (unshaded) squares into shaded
(unshaded) squares we say that this substitution takes
the scheme of n over into itself.

In this language, four simple theorems can be stated
as follows:

Theorem 1. If one of the IP requires that Q~„,„„be
zero, then it requires that Qp „,„„also be zero when-
ever Q0„,„„.t {Qt„,„,}. (Note that if the IP does not
require that Q~„„„bezero, but by some accident Q~„„,
is zero, then the IP does not require that Q~ „,„„be
zero. )

Theorem Z. If one of the IP requires that Q~„„„be
zero, then it requires that Q; „,„, also be zero when-
ever Qps) v~)~Q {Qss yv}.

Theorem 3. If the substitution a, b, c, d&—&a', b', c', d'
takes the scheme of u required by one of the IP over
into itself, and this IP requires that Q~„„„bezero, then
it also requires that Q~ „„„.be zero, where the set
t', rt', p', v' is obtained from the set $, g, ss, v by the
substitution a, b, c, d~a', b, c, d .

Theorem 4. Consider two of the IP. Denote them by
(IP)1 and (IP) 2. Suppose that the scheme of n required
by (IP)1 is such that the substitution a, b, c, d~a', b',
c', d' takes it over into the scheme of n required by
(IP),. Suppose further that, (IP)1 requires that a cer-
tain relation hold between the elements Q;., „„,Qp~, q„
~ ~ ~ . Then (IP), requires that the same relation hold
between Qs„,„„,Qts ~,s, , ~ ~ ~, where $', 1t', Ss', v',

by the substitution a, b, c, d~a', b', c', d'. In particular,
if (IP)1 requires that Qt„„„bezero, then (IP) 2 requires
that Q( „,„„bezero.

The first of these theorems shows that in order to
find all Q~, ,„„which are required to be zero by a certain

IP, it is sufficient to determine whether or not a set
of properly chosen sixteen elements Qg„,„„are zero.
This set is properly chosen, if it contains one member
of every family. Such a set is, for example, the set
Qoo, ,„(p,, v=0, 1, 2, 3).

As an application of this, consider the case when the
IP is such that it requires that the second component
of (U—V) be zero. We know that this term is propor-
tional to Qoo 20 Since Q)o,sop {Qoo,so} and Qso, 10C {Qoo,so}
we conclude from Theorem 1 that Q10 80=Q8p 10=0.
These two elements of Q are proportional to Z", Z",
respectively. Therefore, Z»=Z"=0 holds in this case,
in agreement with conclusions 1 and 3 in Sec. 4.8.

The problem is further simplified by Theorem 2,
which relates members of different families. We find
that, in general, it is sufficient to determine whether
or not a set of ten (not 16) properly chosen elements
of Q is required to be zero by the IP. This set is properly
chosen tf {Q;„„„}4, {Qs.„,„.).} and {Qt„,„„}A{Q„.p „.„j,
where Q~„,„„and Q~ „,„„are any two of the set of ten
elements. For example, the following set is properly
chosen:

(Qoo, oo) ) Q00, 10) Q00, 20) Qoo, so) Qoo, ll) Q00, 21) Qoo, sl)

Q00, 22) Qoo, ss, Qoo, ss (48)

We have put the first element into parentheses, because
it is a trivial task to decide whether or not it is required
to be zero. The element Qpp pp is zero if, and only if, all
elements of the o. matrix are zero, that is, if there is
no interaction whatsoever.

An interesting property of this set of elements is
that they all appear as coefficients in Eq. (47a) . There-
fore, each of them can be determined experimentally
at any c.m. energy and angle by a measurement of
the differential cross section alone at that value of
c.m. energy and angle. However, to do this it is neces-
sary to set up the experiment in such a manner that
it should be possible to control the correlation between
the polarizations of the incoming beam and target
particles.

As an application of Theorem 2 consider, once again,
the case when the IP is such that it requires that the
second component of (U—V) be zero. Then, using
Theorem 2, we conclude that Q01 p8 and Qp8p1 have to
be zei-o j e Z'»=Z'»=0»

Theorem 3 has to be applied for the case of each
IP, individually. For example, if P, invariance holds,
then the scheme of o. is taken over into itself by any
one of the two substitutions: 0, 1, 2, 3~1, 0, 2, 3;
0, 1, 2, 3~0, 1, 3, 2. The second of these substitutions
exchanges Q00, 20 Q00, 22 Q00,21 with Q00, 30 Q00, 88 Q00, 81

spectively. Therefore, in this case it is sufficient to
investigate only seven (and not ten) elements of Q.
If we consider elastic scattering and assume that P PT
invariance holds, then the scheme of 0. is taken over

"The Z' ha, s been defined in Sec. 5.
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into itself by any one of the following three substitu-
tions: 0, 1, 2, 3+-+1, 0, 2, 3; 0, 1, 2, 3~2, 1, 0, 3; 0, 1,
2, 3~0, 2, 1, 3. In this case it is sufficient to investi-
gate only four elements of Q, for example (Q«oo),
Q()p gp, Qpp, 12, and Qpp U.

The fourth theorem explains, for example, the marked
similarities in structure between P invariance and
helicity invariance case (a). These similarities are a
consequence of the fact that the schemes given in
Figs. 2(1) and 2(4) are taken over into each other by
the following substitution 0, 1, 2, 3+-+0, 3, 2, 1. Once
conclusions 1, 2, 3 in Sec. 4.8 are known, then using
Theorem 4, the conclusions 11, 12, 13 follow. In the
same way for elastic scattering, Theorem 4 relates P'~
invariance and P, P~ invariance. We find that con-
clusions 6 and 7 are consequences of conclusions 4 and
5 if we notice that the schemes shown in Fig. 2(2)
and Fig. 3(1) are taken over into each other by (for
example) the substitution 0, 1, 2, 3+-4, 1, 3, 2.

Summarizing, suppose we wish to determine which
of the 256 elements of Q are required to be zero by
one of the IP. By Theorems 1 and 2 it is always sufFi-

cient to check which of a properly chosen set of ten
elements are required to be zero by this IP. One such
set is given in (48). It is usually possible to reduce
further the number of elements to be investigated using
Theorems 3 and 4.

The necessary and sufficient condition that an ele-
ment Q~, ,„„be required to be zero by one of the IP is
that all products of the form n~,"n„„berequired to
be zero by that IP. Here, ($', tz') Q jP, zz} and (zI', r') Q

{ran,

z }.This is a simple matter to check once the scheme
of u is known.

In the rest of this section we consider some examples
in detail.

P, imari arIce

As shown above, in this case we can reduce the num-
ber of elements to be investigated to seven. A properly
chosen set of seven elements is (Qoo, oo) & Qoo, zo& Qoo, zo,

'

Qpp 11 Qpp 21 Qpp 22 Qpp 32 The first three of these
already discussed in Sec. 4, where we found that Qpp, 2p

is required by I', invariance to be zero, but (Qoo oo) and

Qpp, 1p are not. Checking the other four, the result is
that Q00, 21 is required to be zero, but Qpp, 11 Q00,22 Q00,32

are not. We conclude that an element Q~„,„„is required
to be zero by P invariance if and only if it is a member
of one of the following families: {Qoo,zo}, {Qoo,oz}, {Qoo,oo},
{Qoo,ol} {Qoo,ozj {Qoo,12} {Qoo,oz} {Q00,13}. As expected
Q~, ,„„is required to be zero if the number of indices
which take the value 0 or 1 is odd. The experimental
consequences, other than those discussed in Sec. 4 are
listed below. As usual we will write P» for the polariza-
tion of the t particles (t=z, f, r, s). That component
of polarization which is perpendicular to the scatter-
ing plane is denoted by a subscript t while the corn-
ponent of polarization lying in the scattering plane
is denoted by a subscript

~
~.

Only the first component of the target polarization
vector can be different from zero.

The target analyzing vector is parallel to the target
polarizing vector.

(These rules are the analogs of rules 1 and 2 in
Sec. 4.3. They apply to target particles. )

Suppose that the incoming (beam) particles are un-

polarized and that the polarization of the incoming
beam and target particles is uncorrelated. Then neither
P~~; nor P}}„caninhuence any of the following four
quantities: (1) Pir, (2) Pz.„(3) the correlation be-
tween Pif and Pi„and (4) the correlation between
P] [f and Pi I,. (They may influence Pt t f and P

t t
sepa-

rately. ) Neither P~~s nor P~~, can be influenced by
either Pi; or P&„.

Neither the correlation between Pj~; and P&„nor
the correlation between Pi, and P}~„can inQuence any
of the following Gve quantities: (1) the differential
cross section, (2) P~~f, (3) P~~„(4) the correlation
between P~~r and P~~„and (5) the correlation between
Pif and Pz, .

The spontaneous correlation between Pj[f arid PJ.,
is zero. So is the spontaneous correlation between P~f
arid P( (8.

Neither P~~f nor P~~, can be influenced by the corre-
lation between P}~; and P~~„, nor by the correlation
between P~; and P~„.

Neither the correlation between P~~f and Pi, nor
the correlation between P~; and P}~„can be influenced

by any of the following four quantities: (1) Pz.;, (2)
Pi„(3) the correlation between Pz.; and Pz.„, and

(4) the correlation between P~~; and P~~„.

Pz imariamce, elastic scattering

No elements of Q are required to be zero.

P, P~ ievariamce, elastic scatterirIg

No elements of Q are required to be zero.

P,+Pr irzoarzarzce, elastic scatterizzg

This is a special case of P, invariance. Therefore it
is sufficient to investigate the same seven elements of
Q as in the case of P', invariance. For elastic scattering
I',+I'& invariance requires that only those elements
of Q be zero which are required to be zero by P, invari-
ance alone.

Heliczty izzoariazzce case (a)

As shown earlier, the substitution 0, 1, 2, 3~2, 3, 0, 1
takes the scheme of a required by P invariance over
into the scheme required by helicity invariance case
(a). Using Theorem 4 we conclude that all the experi-
mental consequences listed under P, invariance hold
in this case, if we perform in them the following sub-
stitution: Write P»' for Pi» and, at the same time,
write "any linear combination of P»' and P»"' for PI~».
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As usual, we have denoted the kth component of P~
by PP (k=-1, 2, 3).
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APPENDIX 1' PROOF OF RESTRICTIONS
IMPOSED ON THE (x MATRIX BY

INVARIANCE PRINCIPLES

In order to derive Eqs. (17), (18), (20), and (21),
we consider first any center-of-mass frame of the scat-
tering in question, and call it the basic frame. We will

say that a quantity switches (does not switch) sign as
a result of a certain operation if it switches the sign of
its components in the basic frame under that operation.

Let us first perform E„ i.e., reverse all three axes
of our basic frame. Under I', all polar three-vectors
switch sign, and all axial three-vectors do not. The
three-momentum being a polar three-vector, we And

from Eq. (1) and the definition of Ei that for i=i, r,
f, s the (1) i which is the first axis of Ki does not switch
sign under P, while (2) i and (3) i do switch sign under
P,. (All K, are by definition always right-handed, even
after a P has been performed in them. ) The polariza-
tion of a particle measured in its rest frame is an axial
three-vector, and therefore does not switch sign. From
this it follows that I'~', the erst component of I &

measured in E~, does not change its sign, while the
components P&' and E'&' do. This result may be sum-
marized by writing

P~
e 'P]' (k=1, 2, 3), (A1-1)

where e," is defined to have the value +1 if k= 1, and
—1 if k=2, 3. We see from Eq. (3a) that P,~ is the
expectation value of 0-&', we conclude that I' takes
over the expectation value of cr~~ into e "0-&~. Equation
(3b) shows that the expectation value of aio is equal
to E&, a particle density, and therefore does not switch
sign under I' . The last two conclusions can hold only
if any two-component spinor p= (;) is taken over by
P, into y, = (,') (times an arbitrary phase factor. ) We
have thus found the transformation law under I', of

Case (a) +P, invianance

The only families whose members are not required
to be zero are jQoo, oo}, j&oo,ii}, jQoo,n}, and jQoo, 33} The
experimental consequences of this fact couM now be
listed.

two-component spinors described in the frames E~.
Using this law together with Eq. (8), which gives the
representation of of,&, o„& (p=0, 1, 2, 3), we conclude
that (pi (

0
( p2) goes over under P, into e,"(pi

~

o"
~
p2).

Here a& (p=0, 1, 2, 3) can have either the two sub-
scripts f, i or s, r or, in fact, any subscripts; e," is
defined to be +1 for p=0, and has been defined above
for p, =i, 2, 3 and the y& and p2 are two arbitrary
spinors. The matrix element of T taken between any
initial and any 6nal states is a sum of terms of the
form (&i I

ae
I &2) (&8 I

~'
I &4) Acco rding to the f»c-

going discussion, any such term will go under I', into
~ e,& times itself. If T is to be invariant under I'„

then the coefIicient mp~ of only those terms can be
nonzero for which e & ~ &=q„which is the condition
expressed by Eq. (17).

Next we consider the effect of a %igner time-reversal
operation, I'~. This operation will change the incom-
ing (outgoing) state with three-momentum k; (k~)
and polarization P; (P~) into an outgoing (incoming)
state with three-momentum k, ~ (kP) and polarization
PP (Pir) such that

k;~= —kg,

P;~= —Pg,

kg~= —k;,

Pg~ ———I';. (A1-2)

The axes of E are defined by Eq. (1). Substituting
Eq. (A1-2) into this definition one finds that (1) and

(3), the first and third axes of E, both switch sign
under Pz, but (2) does not. Remembering the defini-
tion of E we conclude that (1)i and (3)i do switch
sign under Pr but (2) i does not. From this and the
second line of (A1-2) it follows that PP", the kth
component of polarization of the i particle in the time
reversed reaction (measured, as always, in its own
rest frame) is er" times Pq", the kth component of
polarization of the f particle in the original reaction.
Here er" is +1 for k=1, 3, and is —1 for k=2. The
expectation value of r; which is equal to a density, is
changed into c~' times the expectation value of o-f',

where ei» is +1 for p, =0. An argument very similar
to the one employed in the case of I' leads to the con-
clusion that an expression (pf

~

oe y, ) (y,
~

o ~
~
y, ) goes

over under Pz into ere ei& (q; . oe ~
~

q~)(&p,
~

0.~
~
p, ).

Time-reversal invariance of T requires that only those
ne~ coefficients can be nonzero, for which e~e ~ e~7=+1.
From this requirement Eq. (18) follows.

One of the effects of P» is described by Eq. (19a).
Since in any center-of-mass frame momentum conser-
vation requires k;= —k„kq ———k„Eq. (1) shows that
under the operation Pi2 the (2) and (3) switch sign,
while (1) does not. Using once again the definition of
Ei we conclude that (2) i and (3) i switch sign under
P» while (1) & does not. This is just as in the case of
space-parity inversion, and as in that case results in
multiplying each term on the right-hand side of Eq.
(7) by a factor e.e ~ e.&.
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The other effect of P» is expressed by Eq. (19b).
This equation is equivalent to the statement that P&~

exchanges the spin spaces of the beam and target
particles. Thus in every term on, the right-hand side
of Eq. (7) the operation P» exchanges the two factors
in a direct product of two matrices. By renaming the
dummy indices in the double sum we see that this is
equivalent to exchanging the two indices of up~.

The total e6ect of P» on each term on the right-
hand side of Eq. (7) is to multiply it by e p. e,& and
exchange the two indices of n. The condition that a
term be invariant under this operation is expressed
by Eq. (20).

Turning to the helicity invariance principles, we re-
call from the discussion after Eq. (4) that the helicity
of any particle (as viewed from E) is always the third
component of polarization of that particle. If helicity
is conserved for the beam (target) particle, then the
expectation value of o' referring to the beam (target)
particle does not change during scattering. Terms in
Eq. (7) in which o,z', a,f' appear do not change the
helicity of the beam particle, while terms in which
4 'f 0 'f appear, do. A similar statement can be made
about the helicity of the target particle. Eqs. (21)
follow from these observations.

E;, (i, r)= —P» (i, r).

Assuming that the S matrix satisfies

(A2-1)

(A2-2)

where 8;„and 8y, are two suitable operators, we find

~Equation (A2—1) contains the simple Pauli principle, and
what is commonly known as the "generalized Pauli principle" as
special cases.

APPENDIX 2: THE OPERATION p, m

The operations E;„and Ef, have been de6ned in the
main text after Eq. (20). We clarify this definition by
two examples. In neutron —proton elastic scattering E,„
is the operation which changes a neutron into a proton,
a proton into a neutron, leaving their momenta and
polarizations unchanged, and Ef, is the same as E;„.
In this case both E;„and Ef, may be identihed with

V2, the operation which rotates any vector by 180'
around the second axis in isotopic-spin space. In the
reaction e+n~h. '+Zo the operation E;„e cxhan egs an
e and an n, while Ef, exchanges a h. and a Z'. The
E;„can now be identified with charge conjugation, but
Ef, has no special name.

We denote the incoming two-fermion state by ( i, r)
and the outgoing two-fermion state by t f, s). The
operation P» E;, completely exchanges the two fer-
mions in

~
i, r ) and thus multiplies the state by a factor

(—1). Using the fact that (Pi2)'=1, we find~'

from Eq. (A2-1) and the similar equation for
~ f, s)

Lg rP»] f, s)j+SPS;„P» )
ir)g= (fs )

8 ( ir). (A2-3)

If 8;„ is the same as 8~, then we may denote both of
them by the symbol 8. In this special case Eq. (A2-3)
says that the matrix elements (fs

~
5

~
ir) is invariant

under 8' P».
We illustrate this simple rule by some examples,

Consider first the case in which two identical fermions
scatter elastically. Both E;, and Ef, are now equal to
unity and Eq. (A2-1) simply states the Pauli princi-
ple. Choosing 8;„=8f,=8 also to be unity we have
8E=1. Since any S matrix is trivially invariant under
the unit operation, our rule tells us that in such an
experiment any S matrix has to be P» invariant. As
another example, consider neutron-proton elastic scat-
tering, which we have discussed in the first paragraph
of this appendix. If the S matrix is invariant under

V2, which is Usually assumed for strong interactions,
then we can choose 8=1 and our rule tells us that the
Smatrix has to be P» invariant. In the case of proton-
antineutron scattering, E can be chosen to be Pg, the
G-parity inversion operation. Again, if the S matrix
is invariant under Pg, then with the choice 8=1 we

Gnd that the S matrix has to be P» invariant. On the
other hand, if the 5 matrix is not invariant under Pg,
then this conclusion may be false. I'"or example, if the
S matrix is isotopic-spin invariant, time-reversal in-

variant, but not invariant under charge conjugation,
and if furthermore the CPT theorem holds, then it is
not invariant under Pg, but it is invariant under P, Pg.
Choosing 8=P our rule tells us that it is also invari-
ant under P, P».

APPENDIX 3:/PROPERTIES OF THE a) AND 0
MATRICES

This appendix uses the notation introduced in Sec. 6.
Any to(«, pr ) matrix can be written as a direct product

~(~k) p.*=~(b )p., (A3-3)

where

co(Pli) p, =Tr (o&aPo&o')

=f —&t. (~ I o)&p. (P I0)+&p.4+&pt&.,
+isa „~ (happ 5„—5p, 5,p ) e(0

~
$u) I. (A3-2)

Equation (A3-2) shows that all sixteen 4X4 oi($p)
matrices are Hermitian and unitary. They have one
and only one nonzero element in every row and every
column. They form a complete linearly independent
set of 4X4 matrices. Up to a common unitary trans-
formation they can all be written as a direct product
of two o& (p=0, 1, 2, 3) matrices. We also see from

Eq. (A3-2), that
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i.e., the ~ are "Hermitian" under the exchange of p,

and t. It is also clear from Eq. (A3-2) that

(A3-4)

where pp, is a phase factor which may depend on the
indices $, p, $', p'.

We deine ~($g, »), the transpose of r»($g, »), by
the following relation.

(A3-5)

With this definition, using Eq. (A3-1) and the analo-
gous properties of the &u(gg) matrices, we find that the
~($p, ») are Hermitian and unitary. They have one
and only one nonzero element in each row and each
column. They form a complete linearly independent
set of 16&16 matrices. Among 16)&16 matrices they
play a role analogous to the role of the 16 I' matrices
among 4X4 matrices. Equations (A3-3) and (A3-1)
give

(A3-6)

In analogy to Eq. (A3-4) we find

co($g, ») p „.=exp (imp, „)cv($'g', p'I") II,,„(A3-7)

From Eq. (15) and the Hermiticity of &u($p, ») we
fjnd that all Q~, ,„„are real.

To prove the theorems stated in Sec. 6, we notice
that the restrictions imposed on n by any of the IP
are always such that all elements of 0. which are not
required to be zero are independent of each other. From
this fact, it follows that all nonzero terms in the ex-
pansion of Qg„,„„on the right-hand side of Eq. (15)
are independent of each other. Therefore, the only
way one of the IP can require that Qg„,„„bezero is to
require that all terms in that expansion vanish. Sup-
pose that this is the case.

It follows from Eq. (A3-7) that if ($', p') Q{), Iti, }
and, at the same time, (g', v') Q {g, i },then all coeffi-
cients &v($'g', y'v')iiv, ,„ in the expansion of Qt.„,„.„. are
zero if and only if all the cv((g, ») p~, ,„ in the expansion
of Q~, „„are zero. Therefore, in this case, the expan-
sion of Q~, ,~„and Q~, ,„„.contain the same terms
o.~","n„,"*.Since all terms in the expansion of Q~, ,„„
are zero by assumption, all terms in the expansion
of Q~, „„.also have to be zero. This proves Theorem 1.

Equation (A3-6) shows that the terms appearing in
the expansion of Q„„,~„are up to a phase factor the
same terms which appear in the expansion of Qg„,„„.
This proves Theorem 2.

The proofs of Theorems 3 and 4 follow from Kq.
(A3-6) and the hermiticity of ~($q, »). These two
properties imply that

(o(gg. Pv) p, „„a)(PI,gg),„,——p, . (A3-8)


