degenerate spin-zero mesons, belonging to the (3*®
3-4+3T®3~) representation of S®. This symmetry
group can be reduced by an SUs-invariant interac-
tion to S°=SUs(+4, —), the group of simultaneous
SU; transformations on the right- and left-handed
quarks which is generated by their total SUs-spin,
F;=F+4F. F; is so constructed that it does com-
mute with space-inversion, and the 18 level conse-
quently splits into four, a scalar singlet and octet
and a pseudoscalar singlet and octet. Finally, adding
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an SUs-breaking interaction splits the octets further
into the conventional /-spin multiplets.
An era of model-building clearly lies ahead. .
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Rotations and Vibrations in Deformed Nuclei
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A general survey of phenomenological, collective-model theories, especially those based upon the
hydrodynamic model of rotations and vibrations of a deformed liquid drop, is presented. Details
of models of even—even, odd-odd and odd-4 nuclei are given as well as a discussion of electromagnetic
moments and transitions in these models. The influence the vibrating and rotating nuclear surface
has on alpha and beta decay of deformed nuclei is outlined. The discussion is extended to collective
model calculations of the photonuclear process from which information can be obtained on the shape
of nuclei in their ground states. Comparison of theory with the results of some recent experiments

is given where this has been considered useful.
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I. INTRODUCTION

The need to consider a deformation degree of free-
dom, and thus the low-energy collective rotations and
vibrations of atomic nuclei, occurred some time ago
with the first attempts to explain the phenomenon of
nuclear fission. Immediately after its discovery, and
essentially at the same time, Feenberg (Fe 39) and
Bohr and Wheeler (Bo 39) studied the shape and sta-
bility of a deformed and charged liquid drop and
showed how the total energy changed as a function
of deformation from the spherical equilibrium shape.
Feenberg’s original note was concerned with demon-
strating the stability of nuclei against spontaneous
fission, while Bohr and Wheeler investigated in detail
the theory of the process. The nuclear instability arises
from the fact that the total energy considered in this
process is the sum of surface and Coulomb energies
[ideas originally introduced by Weizzéicker (We 35)
in the empirical binding energy formula] and distor-
tions from spherical increase the surface area, and hence

the surface energy, while necessarily decreasing the
Coulomb energy. Long ago Lord Rayleigh considered
a similar classical problem in his studies on the sta-
bility of electrically charged liquid drops (St 82), and
some of the early work on the hydrodynamical model
of the nucleus parallels quite closely his theoretical
investigation.

While it has been usual to consider the axially sym-
metric deformation from the spherical equilibrium
shape, a more general treatment is only slightly more
involved. Following Feenberg’s notation (Fe 39) we
may define an ellipsoid of volume equal to that of a
sphere of radius Ry by

AP ky? 422/ Ne= Re?, (I-1)
where the eccentricities may be taken as
er=(a—c)/Re=2(1=v/N) +(1—v/x),
ea=(0—¢)/Re=(1—/N)+2(1—+/k), (I-2)

and the semi-axes are made definite by requiring
a>b>c. For a deformed liquid drop, the change in
Coulomb plus surface energies is then, to lowest order

AE= (4/45) QES— E®) (ep—erepted),  (1-3)

where E° is the spherical energy in question. For axial
symmetry this reduces to the usual value (Fe 39).
Treating the eccentricities as variational parameters
we see that the spherical shape is the most stable. From
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these arguments one could conclude that the equilib-
rium and low-energy shape of even-even atomic nuclei
was spherical and because of this they would, in general,
not display a low-energy rotational level structure.

The next step occurred at the time the shell model
was being rapidly developed and a large number of
ground-state nuclear electric quadrupole moments had
been measured. That a relation between these moments
and nuclear shell structure existed was suggested by
Gordy (Go 49) who showed that near closed shells
the quadrupole moment was small, while in the middle
of the shells it was fairly large. However, Townes,
Foley, and Low (To 49) demonstrated conclusively
that the large quadrupole moments observed near
the middle of the shells; especially in the rare-earth
region, were not compatible with the shell model as
they required contributions from a large number of
the protons and not just one. That a simple explana-
tion for these large nuclear polarizations existed was
shown by Rainwater (Ra 50) who demonstrated that
a single particle moving in a potential well had a lower
energy if the well were deformed than if it were spheri-
cal. In fact, the change in particle energy due to the
distortion is proportional to the eccentricity; hence a
nonspherical deformation is possible.

To demonstrate this, we generalize a perturbation
calculation by Feenberg and Hammack (Fe 51) and
consider a particle moving in an ellipsoidal potential
well of the form

V)=—D <R
=0 t._>_R0)

where Ry is defined in Eq. (I-1). Then the change in
energy due to the deformation of the well from the
spherical is just

AE,= E(ey, e2) — E(0)
=/ | Yo(ayz) LV () =V (r)]dx dy dz

I(41) —3m?
" 3(20—1) (21+3) ’
where the unperturbed state functions are
',’0(7'; 0, ¢) = Ry1(7) Ylm(gy ¢))

the Yi.(6, ¢) being the usual spherical harmonics of
order I. The total energy for an odd-4 nucleus is then
just the sum of Egs. (I-3) and (I-4) or

AE= A (e®—e1eate2?) +B(er+ez).

Again treating the eccentricities as variational param-
eters yields the fact that

e=e=—B/A,

=DR#R (I-4)

that is, the system will assume a deformed but sym-
metric equilibrium shape.

The development of these ideas and the consequences
derived from them have proceeded rapidly in the past
decade until now the regions of applicability of this
unified, or collective, hydrodynamic model are quite
well known and progress is being made on the more
fundamental understanding of the parameters of the
model. This would seem then to be an opportune time
to review the successes and failures of this phenom-
enological, unified model and to attempt to bring
together some of the great mass of experimental in-
formation which can be codified by use of the model.
In the remainder of this section the theoretical founda-
tions of the model are reviewed, especially the theory
of the surface oscillations of a liquid drop. In the follow-
ing sections, the model is applied to even—even, odd,
and odd-odd-4 nuclei to discuss the energy-level
structure as well as the alpha-, beta-, and gamma-ray
transitions in such nuclei.

Finally, a few words are said concerning the role
the model plays in the theory of photonuclear reactions
in heavy nuclei.

Because of the very rapid advances being made in
understanding and applying the effects of pairing forces
to nuclear matter, this is perhaps a poor time to include
the results and predictions of these calculations in
this review. Therefore, only passing reference is made
to these calculations in places where they are of funda-
mental importance. The reader is refesred to a recent
article (Ki 63) and a book on the subject (La 64).

Since Rainwater’s suggestion indicates that a nuclear
system of a single particle (or perhaps a group of them)
coupled to a core may achieve a relative minimum
energy configuration if the core is deformed from spheri-
cal, we consider the classical theory of the surface
vibrations of a liquid drop. By a liquid drop we mean
a system whose deformations are volume preserving
ones since nuclear matter is considered essentially in-
compressible. While keeping the discussion as general
as possible, we assume that the oscillations are about a
spherical equilibrium shape. In general we follow the
treatment by Bohr (Bo 52) and point out where this
parallels the classical treatment.

Let the nuclear surface be represented by SZ(6, ¢)
in a coordinate system fixed in the laboratory. Then
if Ry is the radius of the undistorted nuclear surface
of the same volume (assumed spherical), the surface
can be expanded in spherical harmonics (St 79)

SL(07 ¢) = Rﬂ[a0+ Z a*)\,,. Y (07 ¢) ]) (I'—SL)
N>l

where a, differs from unity by small quantities of the
second order. On the other hand, the surface shape
could be expanded with respect to a coordinate system
fixed in the nucleus (the body-fixed system) or

SB (el, qﬁ’) =R0[00+ )\; a*)\,v Y)\v(e,) ¢,) :l- (I"SB)
1,v

From these expansions we see that the SZ(6, ¢) and



SB(6', ¢") represent the magnitude of the radius vector
to the nuclear surface. In both expansions, A=1 terms
vanish as they represent simple translations of the
nuclear surface, a type of motion which does not con-
cern us here (see Sec. V).

The laboratory and body-fixed expansion coefficients
are related by

arna= D2 Dy 2 (0:) aru (1-6)
where the D, *(6;) are the (2\+1)-dimensional repre-
sentations of the rotation group defined by Rose
(Ro 57) being functions of the Euler angles relating
the orientation of the body-fixed system with respect
to the laboratory system.! The reality of the nuclear
surface imposes the condition

(I-7)

an—u=(—1)*a*\,

and similarly for aj ,.
Making use of the classical theory of small oscilla-
tions we may take the oy, as generalized coordinates
so that in the laboratory the kinetic energy is repre-

sented by
TE=32 Bau | éon [* (1-8)
Au

On the other hand, assuming the potential energy of
the nucleus to consist of surface (attractive) and
Coulomb (repulsive) terms we can write it as

V=%ZC7\.F l Q\p |2- (1_9)
Ap

The kinetic and potential energy expansion coefficients

are independent of u if the surface is expanded about

a spherical equilibrium shape and the nuclear flow is

taken to be irrotational.

Since the potential energy is conservative a La-
grangian may be defined in the usual way and from it
a momentum ., conjugate to the coordinate an,.
This in turn permits one to determine the Hamiltonian
for the classical motion:

H=3>(1/B)) | muu PH32-Cr | o = ;Hx-
An Ny

(1-10)

The coefficients for the sphericai case are (St 79, St 82)
Ba=pRe/\, (I-11a)

Cv= (A\—1) (\2) R*S—[3(\—1) Z2%*/2x (\-+1) Ro],
(I-11b)

where p is the nuclear density, assumed constant, S
the surface tension, and Ze the nuclear charge.

The Hamiltonian of Eq. (I-10) is that for a system
of uncoupled harmonic oscillators of frequency wi=
(CV/ByE

1 We use the same Euler angles as Rose with 6;33=¢, 8, v to
avoid confusion later, and also the spherical harmonic phases of
Condon and Shortley (Co 57).
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The angular momentum of the nucleus L is defined
classically from the nuclear velocity field v(r)
L= [prxv() dr, (I-12)

the integral being over the nuclear volume. The as-
sumption of irrotational flow implies the existence of
a velocity potential which, because of the constancy of
the density, is a solution of Laplace’s equation. For

small distortions about a spherical equilibrium shape
this potential function is (St 79)

x(r)=— Roﬁf‘?(a*x,ﬂ/x) (r/ROV(6,4)  (I-13)

with
v(r) =— grad x(r).
Substitution of Eq. (I-13) into Eq. (I-12) yields

L=i > Bia*yanw (W' | L 2),  (I-14)

Aup!

where
T | T )= [ P00, 6) Rox V) Fu(89) d

has been used which is diagonal in .

The theory may be quantized in two different ways.
If the number of nucleons outside the deformable core
is small, then the zero-point energy of the oscillations
is greater than the energy of deformation and the core
shape, on the average, does not possess a stable de-
formation and we must deal with a theory of quantized
surface oscillations (Bo 52, Sc 55). On the other hand,
for a larger number of particles coupled to the deform-
able core, the zero-point oscillations are of sufficiently
low energy compared with the energy of deformation
that the nuclear surface stabilizes about a deformed
shape. It is instructive to outline the former before
passing on to a more detailed study of the latter.

One can quantize the nuclear surface oscillations
given by Eq. (I-10) in a number representation
(Sc 55a) by introducing the quantities b, and b*,,

o= (71/2Bron) ¥ (Or u+ (— 1) #0%\ _),
7")\m=i(ﬁB)\w>\/2)%(b*)\,u_ (_ 1)“17)\,—;4);

and requiring the quantization conditions

(I-15)

[""k.u, (2% ,p':] = imx.w%,,u
so that
[b)\’“, b*)\' ,M’:I = 5)\,)\’5;4 W'y

all other commutators being zero. As usual, the number
operator is defined as

* _—
b )\,‘b)\,,-— oW

The b*\, operating on the vacuum state | Q) creates
a A surfon in the u state, while by, operating on a state
with a single A surfon in the u state gives the vacuum
state. Thus the Hamiltonian of the surface oscillations
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TasLE I-1. The possible angular momenta to which a number
N of \ surfons can couple for A=2 (positive-parity states) and
A=3 (negative-parity states).

A=2 A=3
N I I
0 0 0
1 2 3
2 0,24 0,2,4,6
3 0,2,3,4,6 1,3,3,4,56,7,9
becomes

H=§:ﬁwx[N>\+(2}\+1)/2], (1-16)
where
Na=D mu=0,1,2, «+-.

Making use of the definitions (I-15) in Eq. (I-14)
for the z component of the angular momentum,

L= ﬁ'Zﬂ”MZ ZLZ)\
Ap A

since (\u' | L. | Mt )=pd,u. Thus the \ surfons are field
particles with spin A. Now it is well-known (He 52a)
that particles of angular momentum M\ have parity
(—1)* so that to describe positive-parity nuclear
levels we need to take N\ even, while to describe nega-
tive-parity levels we must take N odd. Since wr;>w);
for >4, we should expect in even nuclei the lowest
levels to be positive parity while negative-parity levels
will first appear at higher energies. In Table I-1 the
total angular momenta to which several \ surfons can
couple for A=2 and 3 are listed and in Fig. I-1 a
schematic energy-level diagram of low-lying levels to
be expected from nuclei of this type (which occur in
what is sometimes called the vibrational or transi-
tional region). The first excited stales for A=2 are
all =2 while the second excited state is a triply de-
generate level with I=0, 2, 4, etc. An example of this
sort of structure is to be found in the energy-level struc-
ture of cadmium-114, a nucleus in this transitional
region. The ground and first excited states have spins
0+ and 2+ as expected from the model. Instead of
a triply degenerate second excited state, four states
appear between 1.13 and 1.36 MeV with spin sequence
04, 2+, 44, 24-. A negative-parity level, the 3— level,
occurs at 1945 keV (Mc 64).

The theory of these quantized surface oscillations
has been further developed (Fo 50, Sc 55, Ra 59). In
particular Scharff-Goldhaber and Weneser (Sc 55)
have coupled a group of four frs particles to the vi-
brating core in weak coupling. Using a Tamm-Dancoff
calculation including up to three surfons, they have
determined the energy-level structure of transitional
nuclei. This coupling does indeed remove the de-
generacy of the second excited states yielding a struc-

ture similar to that found in Cd". The important
experimental difference between these nuclei and the
deformed nuclei is that these have a closely lying triplet
for the second excited state with spins 0, 2, 4. As we
shall see the deformed systems have either a spin of
2 or 4 for the second excited state and only rarely is
there a triplet but with spins 2, 3, 4. This difference is
not trivial.

If the deformation energy is very great compared
with the vibrational energies we may consider the
system as a stable, deformed, rigid rotator which will
display a typical rotational spectrum. If the surface
stabilizes on the average about some definite non-
spherical shape, then the kinetic and potential energies
can be referred to a set of axes fixed in the body. This
allows us to transform Eq. (I-8) to one involving the
ar,» parameters by using Eq. (I-6), and assuming
small deviations from a spherical equilibrium shape

TB=1> B\ | drs |?
A »
+ 2 a* e (W | L Ly | W )awe
vyl kk!

+[i D0 d*apan, (W | Li | W)ar+C.C.T}.  (I-17)

v/v,k
The time derivatives of the D*,, are written as
3 A
Dﬂv)‘*:i Z Z 0‘” I Ly I )‘V>D#v)‘*wk7
k=1 g=—\

where the w; are the body-fixed cartesian components

N, L N, L
3 ,3,3,4
5,6,7,9
3 0,2,3
4,6
2 —0,2,4,6
2————— 02,4
I 3
| 2
(o] (o] o 0
x=2 =3

(a) (b)

F16. I-1. A schematic diagram of the energy levels of the pure
surface vibrational model from Eq. (I-16). The principle quan-
tum number N, is to the left and the total angular momenta to
which these surfons can couple to the right. The diagram (a) is
for surfons of order 2 and represents the positive parity levels of
even—even nuclei while diagram (b) represents the negative-
parity levels of such vibrating nuclei.



of the angular velocity. It is necessary, when working
in the body-fixed system, to recall that the angular
momentum operators satisfy (in units of 7)

[Ly, Lo]=—1Ls, (1-18)
cyclically. The potential energy becomes just
VB=%ZC)\ | Ay l2. (1—19)
Ap

The three terms in Eq. (I-17) are a vibration term,
a rotation term, and a rotation-vibration cross term,
respectively. The rotation term can be placed in a more
usual form if the inertial tensor 9% is defined by

I =By Z a*vran NV | L L | W) (1-20)
v,y

so that the rotational kinetic energy becomes

—1
TB,-ot—- 2 Z Sxk'kwkfwk.
DR ]

(I-21)

At this point in classical rigid-body dynamics it is
usual to pick for the body-fixed axes that system which
diagonalizes the inertial tensor which is then the prin-
cipal axis system of the rigid body. It has been shown
that a sufficient condition to diagonalize the inertial
tensor is to require the ay,, to be nonzero only for even
or odd values of » (Wi 62a). This process of course
arbitrarily reduces the number of degrees of freedom
(except for the case of A=2 where it can be shown from
the ellipsoidal nature of the surface that a4;,=0). In
essence this means that if we relax the rigidity re-
quirement on the nuclear surface we will then consider
only those vibrations which preserve the principal
axis system.

One further point, which does not restrict the de-
grees of freedom, is that we should divide the kinetic
and potential energies into two parts, one a sum over
even \, the other other odd X since it is known that
parity is a very good quantum number for nuclear states
(Mi 64).

For those cases where we neglect the rotation—vibra-
tion cross terms we may define a deformation parameter
B by taking a, real and setting

(I-22a)

The e\, are asymmetry parameters and without loss
of generality we may require that

Ee“’)\,,'—- 1.
v

With these substitutions the kinetic and potential
energies become

ar=Prénr-

(I-22b)

A 3
TB=1Y (B8 +BaBx 2 &t didwi?}  (1-23)
A y=—\ k=1
VE=13 C\8x, (1-24)
A

where
g k)‘ =d )‘k ke
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If we suppose, as seems physically reasonable, that
the form of the nuclear surface for low energies of
excitation are well represented by the lowest even or
odd X term in Eq. (I-SL) or Eq. (I-5B) for positive-
or negative-parity states then the proper Hamiltonian
to use for them will be the sum of a term from each of
Eqgs. (I-23) and (I-24). That is, we should expect that
the Hamiltonian operator to be used to investigate the
properties of the low-lying positive-parity levels in
even nuclei would be the sum of the A=2 terms in
these equations while for the odd-parity states one
would take the sum of the A= 3 terms. Indeed the theory
for nuclear states whose surface is well-represented by
an expansion in terms of the Ath spherical harmonics
only has been studied under the restrictions discussed
before (Wi 62a) and the Hamiltonian used was just

A 3 :
Hy=3B\(Bx+8x 2_ &)+ gdw+3C\82  (1-25)
y—A =1
This equation forms the basis of most of the phe-
nomenological models of deformed nuclei. A detailed
examination of the application of Eq. (I-25) to even
nuclei is made in the next section.

II. MODELS OF EVEN NUCLEI

A. Energy-Level Systematics

The collective model of deformed nuclei is that of a
rotating, deformed, almost rigid body whose inertia
tensor g has in the principal axis system the components
91, 93, 93. The Hamiltonian is just

RIL2 Lt Ly
H=_[_1 L _3_],

II-
219 92 95 (1-1)

where the body-fixed angular momentum operators?
satisfy '

[Ly, Ly]=—iL,, (11-2)

cyclically. The quantum-mechanical system specified
by Egs. (II-1) and (II-2) possesses the symmetry
properties belonging to the point group Dy for which
four representations A, By, Bs, B; exist (La 58). The
Hamiltonian (II-1) does not connect states of different
representations. Defining an angular momentum repre-
sentation | LMK ) diagonal in L? and its projections
on laboratory and principal Z axes by

L?| LMK )=L(L+1) | LMK),
L,| LMK)=M | LMK),
L;| LMK )=K | LMK),
in units of #.2> The nonvanishing matrix elements of

2 We use the convention that L is the total angular momentum
of even nuclei and the core angular momentum for other nuclei:
that is, the eigenvalues of L2 are restricted to integral values.

3 These state functions | LMK ) are in fact the state functions
for a symmetric top Dyx ™ introduced in Eq. (I-6) (Wi 59).
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TasLe II-1. Symmetry properties of asymmetric-top state functions, representation of the point group D, to which they belong and
allowed values of the angular momentum associated with them.

Represen-
Ti| LM) T:| LM ) K A _g/Ax tation Allowed L values
+ + even (1)L 4 0,2,2,3,4,4,4,5,5,+
— + even (—1)Lh B,
+ - odd (—1)2n By 1,2,3,3,4,4,5,5,5,++
— — odd (=1L By

L expressed in the principal axis system are the
(LMK'| L,| LMK)

=[L(L+1) PC(L1L; K—p, p, K) 0xr k—p, (I1-3)

where
Lyga="F(1/V2) (Liz=iL,)

L(): L3.

The Hamiltonian (II-1) thus connects states such
that AK=0, 2.

The state functions for an asymmetric top designated

by | L, M) are
L
| LMY= > Ax| LMK). (11-4)
K—L

Thus the rigid rotator Hamiltonian only connects state
components for which K is either even or odd. That is,
the state functions of the most general top can be
initially classified into two broad categories, one being
a linear combination of functions for even K, the other
for odd K.

The assignment of the labels 1, 2, 3 to the semi-axis
of the momental ellipsoid (and thus the choice of the
principal axis system) is quite arbitrary and the physi-
cal properties of the states must be indifferent to such
an assignment. Indeed confining oneself to right-handed
systems there are 24 different ways this assignment can
be made. The relabeling transformations 73, T, and
Ts which carry out this process are defined in the follow-
ing way (Bo 52):

(i) T1 produces the interchange 1<—1, 3&—3
which corresponds to a rotation of = about the 2-axis
and T2=1.

(ii) T» produces the interchange 12, 2¢—1,
which corresponds to a rotation of w/2 about the 3-axis,
so that Ty*=1.

(iii) T5 produces the cyclic interchange 1¢52¢53¢>1,
thus Tg¢=1.

The most general relabeling transformation is
Ty ToT* where i=1, 2, j=1, 2, 3, 4, k=1, 2, 3 yield-
ing 24 such transformations. The transformations T}
and T, applied to the state functions | LM ) give

Ty| LM)== | LM),
T | LM )== | LM), (II-5)

so that four classes of state functions exist labeled by

the sign obtained from these two transformations.
These are tabulated in Table IT-1 where the notation
of Ref. La 58 is used to designate these four different
representations of the point group D, (see also Ref.
Va 54). For the symmetric top functions

Ti| LMK )= exp [ir(L+K)] | LM—K),
T2 | LMK )= exp (irK) | LMK), (I1-6)

the latter relation shows that the representations A4
and B; are associated with K even while representa-
tions B; and Bs are associated with odd K. Finally re-
lations between Ax and A_gx can be obtained from
Egs. (I1-4)-(11-6).

(i) A4 representation (K even):
A_g=(—1)LAg;

(ii) B representation (K even):
A_g=(—1)H1A4g;

(iii) B, representation (K odd):
A_g=(—1)""4x;

(iv) Bs representation (K odd):
A_g=(—1)E4x.

These last four relations show that the energy levels
of A-type systems contain one level with L=0, no
levels of L=1, two levels of . L=2, one level of L=3,
three levels of L=4, two levels of L=3, etc. On the
other hand, the level systematics for By s s-type systems
contain no levels of L=0, one level each of L=1
and 2, two levels, each of L=3 and 4, three levels,
each of L=35 and 6, etc. These spin classifications are
quite general, being completely independent of the
model involved for the momental ellipsoid and are all
tabulated in Table IT-1.

Without specifying a model for the momental ellip-
soid, the energy eigenvalues of asymmetric tops can
be specified for the various representations. For the
A representation the- ground-state function contains
but one component,

| 00)= | 000},

and the energy eigenvalue is zero for all moments of
inertia. Therefore, A-type systems always have an
L=0 ground state. Next there are two states for L=2



with state functions
| 2Ma'y= A2 | 2M0)
+(4222/V2) (| 2M2)+ | 2M—2)),

and with energy eigenvalues

(I1-7)

1 1 1
1,2y — 2 1 T
E(2) ﬁ(gl+ o+ 53)

1 1 1\? 1 1 1\
Fl—+—+—) =3 —F+—F—})|.
[<§1+52+93> (9132+5153+9293>:I

The state for L=23 also contains essentially one com-
ponent, which if normalized is

| 3M )= (1¥2) (| 3M2)— [3M—2))

with energy eigenvalues
11 1
EQ3) =2 —4+—+—).
¥ (91+92+93)

One can proceed in a similar manner for higher L
values. However, for all A-type rigid rotators the re-
lation

E(2)+E(2*)=E(3) (II-8)

is always true. Similar relations hold for higher L values.
For the B-type systems the lowest spin is L=1 for
which the normalized state functions are

| LMY= | LMO)

B; representation, (1I-9a)
| LM)=(/N2) (| LM1)+ | LM—1))

B, representation, (II-9b)
| LM)=(/N2) (| LM1)— | LM—1))

B; representation, (II-9c¢)

with energy eigenvalues

o1

2 9

/o1
E(1By) =7 (9—1_*_;!;)’

o1
28 =5 (G47)

E(1B;) and E(1B;) can be gotten from E(1B;) by
replacing 9, by 95 and 9; by s, respectively. This is
generally true or higher values of L.

For the spin-two states, the state functions in the
B; and Bj representations will of course contain only
K=1 terms being simply combinations of | 2M=1).
The state function for the B; representation contains
only a K=2 term,

| 2M )= (1V2) (| 2M2)— | 2M =2)),
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with energy eigenvalues

W w1
E(2, By) ==+~ =+~
(2, B) s 5 (g1+gz>’

the others being gotten by the proper interchange of
91, 99, and J;. Higher spin-state functions can be con-
structed from Eq. (II-1) with the aid of Table II-1;
however, the eigenvalues cannot generally be given in
closed form if L>4 and numerical methods must be
used in such cases once values for the moments of
inertia have been assigned. The energy eigenvalues for
the asymmetric top have been tabulated by several
authors (Ki 43, To 55) in terms of moment-of-inertia
ratios.

The problem of the rigid symmetric top is analytically
simpler as all of its eigenvalues can be given in closed
form. For this case let 9;=9y=9¢5%9;; then the Hamil-
tonian is

2 2 2 2 2.2
Ifsym=zi <L1 + Ly +_]j_"_>=ﬁ; [£ +<_1__1_>L32]

gO 53 2 90 93 go
whence
[ L(L+1) (1 1) ]
Egyn(L)=—| ——+(———|K?|. II-10
(D) =5 [FE (D) @0

Deformed nuclei, as is true of rotating molecules,
are not perfectly rigid but tend to distort under rota-
tion. One might expect, in analogy with the classical
case, that as these systems rotate their equatorial di-
ameters would increase while their polar diameters
would shorten. This would have the effect of lowering
each energy level slightly. Indeed this can be seen in
the case of symmetric tops in their K=0 bands for
the centrifugal distortion will increase 9, and hence
decrease Egm(L). One has in this case that

Esym(L, K=0) = (#*/9o) L(L+1) —bL*(L+1)?
(II-11)

where b is positive.* The form of b can be given when
a model for the momental ellipsoid is picked. This is
done later when the hydrodynamical model is dis-
cussed in detail.

Without further complications introduced by taking
a particular form for the momental ellipsoid we might
see to what extent a quantum-mechanical rigid rotator
might represent atomic nuclei. We should expect that
if such a model works it would work best for nuclei
with a sufficiently large number of nucleons to have
a fairly rigid structure. The simplest class of these are
the even nuclei, most of which have ground-state spin
zero, positive parity, and a 24 first excited state. The
zero ground-state spin means that we must pick the
A representation for the state functions of the rigid

4 This relation might be considered as the first two terms of a
power series expansion in terms of L(L--1) of the energy. This
technique has been used in studying the level structures of Th??
and U8 by F. S. Stephens et al. (St 59a).
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rotator which also has as its first excited state one
with spin 2. [Assigning the symmetry class or repre-
sentation from experiment might be objected to on
the ground that these nuclei possess ‘‘front-to-back’
symmetry and hence of necessity belong to the 4
representation, such assignments being common in
molecular studies (He 45). However, such a statement
is a model statement depending upon the nature of
the nuclear surface. The momental ellipsoid upon which
the dynamics of the system depends does of course
have “front-to-back” symmetry. However, there would
seem to be no a priori reason to conclude at this stage
that the lower lying levels of even nuclei should belong
to the A representation, except that they might belong
to the lowest symmetry. It would seem preferable to
use the experimental determination of the representa-
tion to restrict the models of the nuclear surface. ]

Mallman (Ma 61) has based an investigation of the
energy-level structure and gamma-ray branching ratios
of even nuclei in the range 40<A4<250 on just such
a general model as has been developed here. [For early
speculations on nuclear rotational spectra see (Te 38,
Gu 42, Pr 50).] We review the results of his investiga-
tion of the energy levels, deferring until later any dis-
cussion on gamma-ray branching ratios.

Mallman makes use of the relation of Eq. (II-8)
or a similar one for the first L=35 level to test the va-
lidity of a rigid rotator model for the low-lying positive-
parity levels of even nuclei in the range 40< 4 <250,
In general he obtains a quite good fit only within the
deformed regions, that is for 150<A4 <190, 4>228.
A more recent compilation is given in Table II-2 in
which the ratios

E(2H)+E(2°) - E@3)
E(2Y)+E(2)

and
4E(2Y) 4 E(22)— E(5Y)
4E(2Y)+E(2?)

are given for all nuclei with two L=2 and at least one
L=3 or L=5 level measured. Here E(L") is the nth
level of spin L. (Great care must be exercised in using
spin and parity assignments reported in various com-
pilations, such as Ref. He 61, which have not been
actually measured. Such assignments are often made
from model systematics.) This table has been ex-
tended to the 2s-1d shell which is often considered a
deformed region (Go 60). Here it is possible to see
that the criterion of Eq. (1I-8) is quite well satisfied
within the deformed regions but in general not outside
of them. Another characteristic of these deformed re-
gions, evident from this table, is the fact that the lowest
L=2 Jevel rises rapidly at the edges of these regions,
being quite high outside of them.

The discrepancies in Table II-2 were explained by
relaxing the condition of rigidity permitting a small
amount of vibration. Mallman used a relation similar

to that of Eq. (II-11), but for an asymmetric top
(Ma 60a) :

E (LM =E(L"—bEx(L"),  (II-11a)

where the subscript ¥ means the result including vibra-
tion, and & was treated as a fitting parameter. It can
be shown that & must be positive and small. Thus to
fit the low-lying, positive-parity energy levels of even
nuclei, Mallman had at his disposal four fitting param-
eters which he determined for 27 nuclei from Ti* to
Ci%0. With these values he then calculated the energies
of other levels and compared with experiment. Again
the model fits very well in the deformed region but less
well outside of it. Of the 27 nuclei investigated, six
had negative values for d. (Negative values for b are
associated with negative values in column six of Table
II-2.) There have been suggestions that two other de-
formed regions might exist one near iron (La 61) and
the other near barium (Sh 61) and it is in just these
regions that Mallman finds some evidence for rota-
tional levels.

From this rather general approach to nuclear rota-
tions we now turn to a study of other models which
are in fact models for the momental ellipsoid and its
elastic properties. The most studied and also most
successful is the hydrodynamic model first investigated
by Aage Bohr and by Bohr and Mottelson in a long
series of papers (Bo 51, Bo 52, Bo 53, Bo 53a, Bo 53b,
Bo 55a, Me 57). In this work they assumed that the
surfaces of deformed nuclei were well represented by
the spherical harmonic expansion of Eq. (I-SL). In
studying the low-lying positive-parity states of even
nuclei it was assumed that the terms with A=2 were
of major importance so that we have to deal with a
pure A\=2 surface. For the low-lying negative-parity
levels Lipas (Li 61) and Davidson (Da 62) have studied
the A=3 surfaces. Since the bulk of information cur-
rently available concerns the positive-parity levels,
we discuss the theory of the A=2 surface first and touch
upon the A=3 surfaces later.

The Hamiltonian for the positive-parity levels is
given without approximation as the A=2 (quadrupole)
terms of Eq. (I-25) and it is customary to take the
asymmetry parameters, en, of Eq. (I-22) as

€= COS Y
ezza=(1/V2) siny

and to suppress the N subscripts on the deformation
parameter B, and the mass parameter Bs. In what
follows we take the quadrupole deformation and asym-
metry parameters as 8 and v, but retain the N sub-
scripts on the mass and potential energy parameters
B; and C,. The moments of inertia then are obtained
from Egs. (I-20), (I-22a), (1I-12)

9i2=4ByB? sin? [y— (2w/3) k. (I1-13)

In his paper on the coupling of motion of individual

(II-12)
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TaBLE II-2. Energies of the first spin-2, 3, and 5 levels and the second spin-2 level in a number of even nuclei and a comparison
with the energy systematics of a rigid top. The symbols (?) mean the spin and/or parity is in doubt and probably assigned by level

systematics, (U) means upper level of a close doublet of that spin.

EQ1)+E(22)—E@B31)  4E(21)+E(22) —E(51)

E(21) E(22) E(31) E(51)
Nucleus MeV MeV MeV MeV E(21)+E(22) 4E(21)+E(22)
12Mg* 1.368 4.24 5.22 6.9
12Mg; 2 1.83 2.97 3.97(?) 17
20Cag® 1.52 2.42(?) 2.751(?) 30
seFese® 0.845 2.660 3.445 3.84(?) 17 34
36K 1462 0.777 1.475 2.094 2 70
Mo 0.770 1.524 1.850(?) 2.730 19.3 41
1Rusg02 0.475 1.105 1.525 3.5
16Pdgo!% 0.5116 1.1285(?) 1.5575(?) 2.7569(?) 5.0 13
s6Bazg!® 0.604 1.168 1.760(?) 0.68
625mgg!™ 0.334 1.167 u 1.508 —0.47
6251 gg152 0.122 1.087 1.236 —2.2
64Gdgg!™ 0.123 0.998 1.129 —0.71
61Gdgo!8 0.089 1.154 1.248(?) 1.622(?) —0.40 —7.4
66D yosl® 0.0867 0.966 1.049 0.38
6sErgg!®® 0.0806 0.788 0.861 0.92
68T 00108 0.0798 0.822 0.897(?) 0.55
70Y b2 0.0787 1.4675 1.5502 % —0.206
74 W 108182 0.1001 1.258 u 1.331 2.0
24 Wipg!® 0.111 0.904 1.006 0.89
7aW1121% 0.122 0.730 0.85(?) 0 N
7605108'% 0.125 1.085 1.215 —0.41
76081101 0.13715 0.76738 0.91033 1.27530 —0.64 +3.1
260815 0.15503  0.63307 0.78999(?) —0.24
260511490 0.1867 0.5572 0.755 —0.5
76051161 0.2057 0.4891 0.6909 +0.56
18P 114192 0:3165 0.6129 0.9208 0.92
18Pt 0.3285 0.6220 0.9227(?) 2.9
18Pt111% 0.356 0.689 1.001(?) 4.2
o g12¢%0 0.368 1.575 1.776 8.6
8sP0130™* 0.609 1.281 1.544 18
90T hise®® 0.058 0.969 1.023 0.39
92U140%2 0.047 0.868 0.913 0.22
92 Unaa® 0.044 0.922 0.965 1.087(?) 0.10 1.0
94Pu144’33 0. 044 1 . 030 u 1 . 071 0 . 28
98Chip?® 0.041 1.032(?) 1.074(?) —0.093
100me254 0.044 0.692 0. 734 0. 27

particles to nuclear surface oscillations (Bo 52), Bohr
presented an argument showing that the deformation
would stabilize in a configuration for which v was zero.
From the above equation this is seen to yield not only
symmetric momental ellipsoids, but ones for which
d5? are identically zero. Thus the momental ellipsoid
is a long, thin, needle-like object while the surface
itself is spheroidal. Rather than discuss symmetric
systems as a special case we shall include them, as
before, with a more general problem. The vanishing
of the third moment of inertia leads to the problem that
the energy eigenvalues given in Eq. (II-10) become
infinite unless K=0. The symmetric model of deformed
even nuclei takes the ground state band to be that with
K=0in the 4 representation so that the spin sequence
is 0, 2,4, 6,8, -+ as observed.

The Har_niltonian is
Hys=3Bs(8*+5*)
1 L2
1
T 4B,B ,,=21 sin? (y— 2rk)

3

2
2

+3Cy32, (I1-14a)
the first term being the vibrational kinetic energy,
the second the rotational kinetic energy, while the
third represents the vibrational potential energy. From
the choice of 8y and e, in Eq. (I-22a), the vibrational
potential energy is not a function of the asymmetry
parameters (this requirement dictated the choice of
B» and e,). For quadrupole surfaces these potentials
have been called ‘“y-unstable” potentials (Wi 56).
We return to this point later. The system represented
by Eq. (II-14a) is quantized by the usual methods
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Fi1c. II-1. The energy eigenvalues in units of A2/4B.3? for a
rigid, asymmetric top with a quadrupole surface (A=2) as a
function” of the asymmetry parameter y. The hydrodynamic
moments of inertia of Eq. (II-13) have been used.

(Pa 58a) in a five-dimensional, curvilinear, coordinate
space (61, 02, 63, 8, v) . This then leads to the Schrédinger
equation:

A FACTAEL P )
281598 \° 98) B sindy oy N\ oy

13 L?
T 4p ,c; sin? (y—27k/3)
X\I/(oh 67 7) = E\I/(gn ﬁ; 7) .

From the way 8 enters into this equation it is clear that
the B dependence can be separated yielding

Brrt D) —sc—rea/ 25 |o(5) - B2(6),

Jrics]

(II-14b)

2ByB* dp aB
(II-15a)
1 4d/. iy , < L2 ]‘&
= R S Do — ()
[sin 3ydy (sm i d’y) * kzzl sin? (y—2wk/3) 2(0:7)
=Ayr(6sy), (II-15b)

with
¢L<en>=§AK(v> CDar™ (05) +(— 1) Dar_x(0) ]

(I1-15c¢)

This system can be solved (Wi 56) and the solution is
discussed somewhat later. However, it is instructive
to assume that the nucleus is a rigid rotator with both
B and v as fixed parameters. This problem was first

considered by Marty (Ma 56, Ma 57) and later in
more detail by Davydov and Filippov (Da 58a). In
this case, the solution found before can be used with
the hydrodynamic moments of inertia (II-13). The
range of v is just 0<y<w/3 (this follows from the
invariance of the system under the relabeling trans-
formations 73) and the eigenvalues as functions of
v are symmetric about y=m/6. In Fig. II-1 are shown
the energy eigenvalues for different values of L<8
as a function of . For y=0, the eigenvalues are those
of a symmetric rotator with K=0 [Eq. (II-10)].
Extensive comparisons with this rigid rotator have
been made with experiment (Ma 56, Da 58a, Ma 60a)
and the slight deviations from theory have been ex-
plained by relaxing the rigidity requirement (Ma 60a)
as was done in the more general rigid top model [of
Eq. (II-11a)]. As an easy-to-use technique to analyze
nuclear level structures and aid in assigning level
quantum numbers this model is very helpful. However,
it would seem best to extend the model consistently
and include the various vibrations from the beginning,
This was done by Davydov and Chaban (Da 60a)
who assumed that the nucleus was rigid against v vi-
brations but not for 8 vibrations. The Hamiltonian
contains but four degrees of freedom which in an
angular-momentum representation is just

_:ﬁf[l_i<3i>__1_z‘”’; Ly ]
2B, |BFdB\ dB) 4B (S sin? (y—27k/3)
+3Co(B—B0)%,  (T1-16)

where the possibility that the nucleus may not oscillate
about a spherical but perhaps a spheroidal shape, given
by B, has been included in the potential energy term.
This introduces a contradiction into the theory which

'is a theory of small oscillations about spherical equi-

librium.
The Schrodinger equation again separates into two
parts, one a rotational part

3 L
1 —_— = —
[2 2w ey sL.N]m,N 0, (I-17a)

and a vibrational part

W1ld(nd), ! 2]
[ 3B, B 46 (ﬁ dﬁ>+4B2628L,N+2€2(B Bo)* |2z.v (B)
=Ev®rx(8). (II-17b)
Here the y,y are the functions of Eq. (II-15¢) with
the label V an ordering label for the spin L. The eigen-
values &,y are the ones obtained immediately before
and displayed in Fig. IT-1. The second and third terms
in the bracket of Eq. (II-17b) are a generalized po-
tential energy for the vibrator which gives rise to a new
equilibrium deformation. The potential can then be
expanded about this new equilibrium position and only
the lowest order terms retained.
A stiffness parameter pu (this parameter is often



called the “nonadiabaticity” parameter) is introduced
which is a measure of how rigid the nucleus is to 8
vibrations. When p is zero the nucleus is rigid and the
rotational structure shown in Fig. II-1 is unaltered.
As u increases to one, its maximum effective value,
the nuclear surface becomes more elastic. Upon intro-
ducing two new quantities Z and Z;, functions of &, »
and p, the new equilibrium deformation (L, N) is
given by
B*(L, N)—PB*(L, N)Bo—Bo*(1*/2) (8v+3) =0.

A new independent variable, y is defined by

y=2Z[B—-B(L, N)1/B(L, N),
¢ Zi=[Z 38+ ]

and Z is the positive real root of
Zi—(1/w) Z°—5(&L.n+3) =0.
Equation (II-17b) then becomes
[&*D,(V2y) /dy* ]+ (2v+1—y") D,(V2y) =0, (II-18)
where the dependent variable D,(VZy) is defined by
@1, (8) =B71D,(V2y);

the quantity » is the vibrational quantum number de-
termined from the boundary condition at the origin
of the B8 variable

where

D,(—V2Zy)=0

and is related to the energy eigenvalue Er s, v» label-
ing the roots of this equation with the lowest root
being denoted by n=1.

Equation (II-18) is Weber’s equation for parabolic
cylinder functions (Wh 50, Ba 53). As the nucleus
becomes quite stiff to 8 vibrations, that is in the limit
of u going to zero, Z; approaches infinity and these
Weber’s functions become the familiar Hermite func-
tions which are the solutions of the one-dimensional
harmonic oscillator. In this limit the », take on in-
tegral values:

(I1-19)

1a=0,1,2,+++, u=0.

For this case the nuclear energy-level structure is
formed by bands of rotator levels of Fig. II-1 each
separated by an amount 7iwq.

In any event, the total energy including 8 vibrations
and rotations is given by

By n=Two{ (vat3) (Z1/2)? }
+L(&rn+3) /42512438 v +2) ). (11-20)

The oscillator energy 7w, is usually treated as a scale
parameter.

In general there is no simple way to obtain the values
of v, since Weber’s functions are not tabulated and a
machine calculation of », from the boundary value con-
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dition of Eq. (II-19) is necessary. However, a graphical
method of obtaining these v, for # equal one and two
has been discussed (Wi 62a) which permits a rapid way
to compare the model energies of Eq. (II-20) with
experiment. This graphical method is good to an ac-
curacy of about 1%.

Certain qualitative features of the level structure
are now apparent. The effect of increasing u in the
ground-state vibrational band (#=1) is the same as
increasing 7. In other words, for a fixed ¥, increasing
p causes each spin level to decrease in energy relative
to the L=0 level. The greater the value of L for the
level, the greater the decrease in energy. As u is in-
creased the higher vibrational bands also come down
in energy, but the behavior is somewhat different.
The energy ratio Rinn

Rinn= (Erna— Eon)/ (Ean— Eou)

is a very strong function of +.

In Fig. II-2 are shown the behavior of Ry and Ry
as a function of v. For these it can be seen that for
values of u greater than one the change in the level
structure will be very small. Finally, u is most easily
determined when at least one level of a higher vibra-
tional band is known.

For small values of the stiffness parameter u, the
energy eigenvalues Ezn, of Eq. (II-20) can be put
into the form of Eq. (II-11a). One finds then to lowest
order in u that

b=p[14(57/4) (v+3) w*]/2.

In Table II-3 the values are shown of the parameters
v and u resulting in the best fit to the measured en-
ergy levels of a number of deformed nuclei. While
in general the rms errors between calculated and meas-
ured energies are quite small, being all of the order of
19%, this certainly does not mean that we have a com-
parable understanding of the low-energy structure of
these deformed nuclei. For it has been noted in a de-
tailed study of the osmium isotopes that while the
deviations between model predictions and experiment
are about 19%, the rms experimental uncertainty is two
orders of magnitude smaller (Em 63).

Recently an investigation of the dependence of the
inertia parameter %#2/29=7%2/6By3* on L for very large
L has been made (St 64) and it is found that this de-
pendence is quite well explained using this model.
However, this preliminary study has taken y=0 in all
cases but it does show that the 8 vibrations cannot be
treated as a perturbation (see below). The study has
been restricted to the first levels of a given L, that is
to levels labeled (L11). A detailed comparison was
reported only for Hf'® where the average deviation
between experiment and theory was 0.26%.

Finally, for values of u <0.25 the energy eigenvalue
predictions of this model differ little from those ob-
tained from Eq. (II-11a) (Kl 61).

We now turn to the problem of including v vibra-
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F16. II-2. The effect the stiffness parameter x has upon the
energy levels in the ground-state vibrational band and in the
first excited state vibrational band. In (a) the ratio of the second
L=2 level to the first L=2 level in the ground-state vibrational
band (Rs) is plotted against . In (b) the ratio of the first L=2
level in the first excited vibrational band to the first L=2 level
in the ground state band (Rae) as a function of v is shown. Note
in both cases how the value u=1 represents the effective maxi-
mum value of the stiffness parameter.

TaBLE II-3. Asymmetric-core model parameters v and u for
the low-lying positive-parity levels in even-even nuclei.

Nucleus 7 u Nucleus 7 “
Sm152 12 0.4 Os192 25.2 0.1
Gdme 11.8 0.36 Ptz 30 vee
Gdws 10.5 0.26 Pt 29 0.4
Dy160 11.4 0.26 Ra2¢ 22.3 oo
Exr16 12 0.2 Rab 19.9 aes
Ere8 12.3 . Th28 9.1 0.30
Yhb72 9.0 .o Th2o 10 0.25
Hf18 10 .. Uz 9.1 0.25
Wis2 10.9 0.28 U2 8.7 0.24
Wwisd 12.5 0.35 ys 10.9
Wwise 16.6 ves Pu8 8.3 0.20
Qs188 15.9 0.26 Py 8.6 0.22
Os88 19.2 0.25 Cf20 7.98 ..
QOsl0 21.9 0.25 Fm?4 10.1 .

)

tions so that v is to be treated as a continuous variable
rather than as a fitting parameter. As long as the vibra-
tional potential energy has the form V (B, v)=21C-3?
used in Eq. (II-14b), the separation of the 8 and «
variables can be carried out as in Egs. (II-15a, b).
This form of the potential is the proper one for a hydro-
dynamic model to lowest order in 3. The solution of
Eq. (IT-15a) is straightforward, and is most easily
obtained by noting that formally the function §2®(8)
satisfies the same differential equation as the radial
part of the three-dimensional harmonic oscillator. Thus
we have that

A=A(A+3), 1=0,1,2,3,---,

and the energy eigenvalue solutions of the harmonic
oscillator Eq. (I-16) yield

E=Tfiw(N+3) =fiw(2ng+3+5).  (II-21)

Since these solutions are equivalent to those of Eq.
(I-16) we can use Table I-1 and the above relations
to generate a table relating A, and L (Wi 56). [Rakavy
(Ra 57) gives a group theoretic method of generating
this table. Here \ is his “seniority” symbol ».] This is
shown in Table II-4, the eigenvalues being given in
Fig. I-2a. ‘

The analytic form of ¥1(fsy) of Eq. (I1I-15b), or
more simply of the Ax(y) of Eq. (II-15c), is quite
simple for the cases L=0 and L=3. The former solu-
tions are Pa(cos 3y) and Psl(cos 3y) for the latter.
Some of the solutions for L=2 have been calculated
in the form of polynomials of sin #y and cos #y and

TaBLE I1I-4. The relation between A, \, and the angular
momentum of Eq. (II-15b).

A A L

0 0 0

4 1 2
10 2 2,4

18 3 0,3,4,6
28 4 2,45 6,8




solutions for L<6 have also been reported (Ja 59,
Be 59a).

To remove the L degeneracy of these solutions the
form of the potential function V (8, v) must be changed.
The requirements of the separation of Eq. (II-14b)
imply a v potential term of the form V (8, v) =872/ (v),
while the form dictated by a hydrodynamic calcula-
tion to second order in 8 and v is a term of the form
V(B, v)=p"siny.

An approximate separation has been carried out by
Davydov (Da 61, Da 61a) who essentially starts with
the set of separated equations (II-15a, b) and adds
to the latter a y-dependent harmonic potential of the
form

V() = (BeCo/72) Be* (Y—10) ™ (I1-22)

He then investigated -y vibrations of spherical systems,
deformed but symmetric systems, and deformed and
asymmetric systems—a different approximation for
each being required. For spherical nuclei his results
are identical with those given before. It is important
to note that L=0-+ states are possible for vy vibra-
tions in deformed nuclei. Therefore, where more than
one excited 04 level exists in a nucleus at nearly the
same energy one should be associated with the first
excited B-vibrational band while the other is associated
with the first excited y-vibrational band.

An example is to be found in 7sPty6'* where two ex-
cited 0+ levels have been identified. The level at 1.267
MeV would appear to be the 04- level associated with
the first excited B-vibrational mode while the level at
1.480 MeV may well be the 04 level of the y-vibra-
tional first excited state. These two types of 0+ levels
can probably be differentiated experimentally by the
character of their gamma radiation. A similar situation
occurs in Os® which has been discussed in terms of
this and other models (Wa 62), and in several other
nuclei which have been fitted to this model (Da 61a).

Another much used interpretation of the energy-
level structure and other properties of deformed even
nuclei is based upon the assumption that the nucleus
maintains its axial symmetry so that K is a good quan-
tum number (to a high approximation). The argu-
ments to support this come from one of Bohr’s (Bo 52)
early papers, and if one uses the hydrodynamic mo-
ments of inertia K must be taken zero since J3? is zero
as seen in Eq. (II-13) if y=0. For this case then

512=,§22=—‘90 =3Bzﬁ2,
and from Eq. (II-10) the energy of each level is just
E(I)=(7/6B,8) L(L+1), K=0. (11-23)

This is in agreement with the lower lying levels in even
nuclei where the measured sequence is 0+, 24, 4,
6+, +--. Indeed levels up to about L=18 have been
obtained by Coulomb excitation (St 59a), a-particle
(Ko 64) and heavy-ion reactions (St 64) and fit this
L(L+1) rule fairly well.
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As we have seen, the A=2 surface can execute not
only rotations but 8 and v vibrations about its equi-
librium shape. The former vibrations for axially sym-
metric systems are identical in character with those
discussed in connection with Eq. (I1I-14b) and yield
a rotational band given by Eq. (II-23) based on some
vibrational frequency 7iws. As “breathing mode” vibra-
tions they preserve in axially symmetric systems that
axial symmetry.

In order to explain the systematically occurring
second excited 2+ states in these nuclei (if a g-vibra-
tional band occurs then there will be at least three
2+ levels, the upper two probably being quite closely
spaced) a vibration of the v degree of freedom is in-
voked, forming a rotational band based upon these
second 2+ levels and with quantum number K=| 2 |.
The band head is given by 7w, and the level sequence
is L=24, 3+, 44, 5+, -+ . This rotational band is
called the y-vibrational band (Ad 56). [An unfortunate
overlap in nomenclature is a source of confusion. By
v vibrations in the symmetric-core theory is meant
this rotational band built upon the second 24 level,
while in the asymmetric-core model these levels arise
naturally from the asymmetric rotator. However, in
this latter model the term < vibrations means those
asymmetry vibrations of the core discussed previously
(Da 61).] If more than two levels with even spin
appear then it may be necessary to include rotational
bands based upon higher values of K, say K=4, 6, «+-.
An example can be found in the spectrum of 7Y big'™
which has five positively identified 44 levels below
2.1 MeV and one other tentatively identified (Ha 61).
The authors of Ref. Ha 61 suggest the assignment of
four K bands (K=0, 2, 3, 4). (An alternative assign-
ment of nuclear structure parameters for this nucleus
is given in Table II-3.) In Fig. IT-3 is shown a sche-
matic drawing of how the nuclear level structure ap-
pears in such a model. The three different rotational
bands have been separated and no significance should
be attached to the relative band-head energies. The
different bands are identified by the vibrational quan-
tum numbers g, n, and K. The quantum numbers
for the ground state, 8-, and +y-vibrational bands are
then ng=n,=0, K=0); m=1, n,=0, K=0; n=0,
ny=1, K=2, respectively.

This model also includes a rotation-vibration inter-
action yielding a correction to the energy levels of the
form given in Eq. (II-11) so that if each band is as-
sumed to have the same moment of inertia, Jo, then
there are four parameters in the theory: do, fiwg, fiw.,
and b.

A symmetric-top system with three rotational bands
is no more complicated than an asymmetric-top system
with 8 vibrations and the number of parameters in
each is the same. For both systems the 7wg are essen-
tially the same and are associated with the coefficient
of the vibrational potential energy Cs. 9o in the sym-
metric system can be associated with a similar scale
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F16. IT-3. A schematic diagram of the energy level structure of
a deformed but symmetric nucleus. Three bands are shown: the
ground-state rotational band, the B-vibrational band to the left
of it, and the y-vibrational band. The nuclear parameters Awg
and fuw, are the energies of the lowest member of their respective
bands.

parameter 7wy in the asymmetric system, 7w, is re-
placed by v, while & as we have seen is replaced by the
stiffness parameter u at least for small p [for larger
values of p or higher L values it is often necessary to
introduce a term ¢L?(L-+1)® to get adequate agree-
ment between experiment and theory (St 59a)].

In the hydrodynamic model, the b coefficient in Eq.
(IT-11) can be related to 9o, 7iws and 7w, and it should
be possible to evaluate & from the ground-state rota-
tional band, then predict the positions of the 8- and
v-vibrational bands. Such a program has been carried
out by Sheline (Sh 60) and the results show that &
from the ground-state rotational band is a factor of
about two times too small to explain the 8- and y-vibra-
tional band heads. In actual fact Sheline in this study
determined the constant & from the spectrum Pu?®,
then determined a scale factor s so that sb could be used
to predict the 8- and y-vibrational band heads when
used in conjunction with the moment of inertia, also
empirically determined. Finally, assuming that s should
remain constant throughout the deformed regions he
predicted the - and y-vibrational band heads for 26
nuclei. At the time of publication he could compare
four of the predictions with experiment and in two
cases got very good agreement. While this technique
is useful as a tool to aid in determining the energy
range to seek out levels of a certain character, more
complete experimental evidence in these regions of
atomic number, as well as the more recent theoretical
developments described before, cast doubt on the
validity of the approach. Since the magnitude of the
factor s is only given empirically the method would
seem to reduce to a two-parameter fitting procedure
similar to that used by Mallman (Ma 61) (who used
four parameters) which was described earlier.

Following the initial suggestions of Davydov and

Filippov (Da 58a) and the very striking agreement with
the experimental E2 transitions from the second 2
level (Va 59), several investigations have refined this
symmetric-core model to the point where agreement is
as good as (Bi 59, Li 61a, Li 62, Fa 62, Pr 63) or for
some nuclei better than, the asymmetric-core model.
While the details of each of these calculations differ,
we follow the discussions of Lipas (Li 61a) because
this treatment has been extended to study octupole
vibrations and negative parity levels in deformed
nuclei (Li 61, Li 62). The method was originally dis-
cussed by Birbrair et al. (Bi 59) and has been extended
by Danos and Greiner (Da 64b) to include giant dipole
absorption (see Sec. V). One of the original criticisms
of the asymmetric-core model was that there was no
mechanism for additional 0+ states above the ground
state (Ta 59, Ta60), which comment is of course not
valid for the more extended asymmetric models (Da
60a, Da 61).

Restricting motion to small oscillations of 8 and v
about a spheroidal equilibrium shape defined by 8=2,
and y=7vo=0, the hydrodynamic moments of inertia
of Eq. (IT-13) become

912%g22%332602 = QQZ,
5327-3432602"/2 = 437’)’2.

(11-24a)
(11-24b)

In lowest order the difference between 9,2 and 9,? is
neglected so that K is a good quantum number and
the rotational energy is given by Eq. (II-10). One then
has two choices in developing the vibrational Hamil-
tonian, either the rotational term 7%2K2/2952(y) can be
included in it (Bi 59, Li 61, Pr 63), or it can be placed
in the rotation—vibration interaction term (Fa 62).
[In this reference the authors do not use 8 and v as
the vibrational variables, but the ao; ¢4 of Eq. (I-17).
New variables, ¢y and a¢’,» are then defined with ref-
erence to the spheroidal equilibrium conditions as

ao=RBo+a"¢=By+ (8— o),
ay9= ' 1922 (1/V2) Boy*<K o,

and the dynamical equations are expressed in terms
of @’ and @’,» and terms through second order are used. ]
In any event for small oscillations about the equilibrium
shape the potential is

V(B,v) =3Cs(8—B0)*+3C "

The vibrational Schrédinger equation thus separates

[2:3%2 égﬁ%cﬁ ® *60)2} fB)=Esf(8) (1I-25)
{;:j [’%’ % <'y d%/)- (K,){f)?]""%cv’y?}q’(v) =E,®(v).
(11-26)

Equation (II-25) is the wave equation for a one-
dimensional oscillator while Eq. (II-26) is that for



a two-dimensional oscillator if one defines m?= (K/2)>.
Thus the solutions are

Eg=riwp(ns+3),
ng=0,1,2, ++-
E,=fw,(n,+1),
" wy=3|K|+2N, N=0,1,2,---, K even.

[The evenness of K arises from the fact that the regu-
larity of ®(y) at the origin restricts m to integral
values.] To these must be added the rotational energy

Er=(#?/280) [L(L+1)—K*].  (II-27)

Since the B vibrations preserve axial symmetry, such
bands have quantum number K=0 and spin sequence
0, 2, 4, --+ and #,=0. The first y-vibrational band
has #5=0, #n,=1 whence | K |=2 and the spin sequence
2, 3, 4, +--. The value n,=2 is associated with two
bands one having K=0 and spin sequence 0, 2, 4, -+
while the other has | K |=4 and spin sequence 4, 5,
6, +-+. Mixed bands can also occur the lowest having
ng=mn,=1. While these have been discussed (Ma 60,
Sh 60), there seems little experimental evidence for
more than the familiar 8 and ¥ bands (#s=1, #,=0
and 75=0, n,=1, respectively) although the large
number of 4+ levels in Yb' below 2.1 MeV (Ha 61)
would indicate the necessity, from this point-of-view,
of bands with #,>1 and perhaps #s>1. No such de-
tailed analysis has been made.

For small displacements from .axial symmetry, the
differences between d:2, 95%, and 9, cause an interaction
between these various bands and, if the asymmetry is
small enough, this interaction may be treated by per-
turbation theory. It is usual to neglect the changes in-
duced in the vibrational part of the Hamiltonian by
these slight deviations from axial symmetry so that the
perturbation Hamiltonian is

L¢ Lié+L? L

/= — 0 =172 - = =

H Trot Trot 2ﬁ: ; gkz 302 (532)0

— %ﬁ? (9’12—1 _I__g22—1_ 2g02—1) ( L12+ L22)
+21Iﬁ2 (g12—1_922—1) (L12__ L22) . (II_28)

The first term is diagonal and represents an interaction
between bands with the same K while the second term
represents an interaction between bands where AK=2.
Defining 6 by

Bod=B— Lo,

Eq. (II-28) can be written through terms of second
order as

H'= (12/29¢) [ (—26438242v%) (Li2+ L?)
+ (= (2/V3) v+ (4/V3) 8y) (L2— L) ].  (II1-28a)

The term & will connect states where Amg==1, that
is the ground and B-vibrational band, while the second
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term 6% and 42 will connect states with Anmg=0, £2,
An,=0, £2. The off-diagonal matrix elements in the
B and v space will be quite small since the energy spac-
ing will be 2%w. The diagonal terms will give rise to
corrections to the axially symmetric moment of inertia
9¢%. Finally, the term in (L— Ls?) gives rise not only
to the interaction between the v vibrations and ground
bands, but also to the interaction between the 8 and
v bands. The renormalized moments of inertia in the
lowest three bands are

ggr=902_%ﬁ2[(9/ﬁwﬁ) + (12/ﬁw7) ]7
9p=9¢"—31°[ (27 /Fiwp) + (12/%ic0) ],
9,=90— 3L (9/fiog) + (24/Fisy) ].  (11-29)

The corrections to the energies of these bands are
given by

ﬁZ 3L2 L 2
[AEgr(L)__Jﬁ: —12 <m> % , (11—303.)
[AE(L) )= —4 (%) 5%“)-1-)—2 (I1-30b)
A I (L4+1)2
501 =48 (o02) T (1)
(I1-30c)

where the terms in L(L-1) have been neglected since
they contribute to the renormalization of the appro-
priate moments of inertia in second and third order.
The result (30a) can also be gotten by a classical per-
turbation calculation (Mo 57). The usual results of
a second-order perturbation calculation are that levels
are pushed down by those above and up by those below.
Hence

[AEB(L) ]gr: - [AEgr(L) ]By
[AE‘Y(L) ]gr: - [AEgr(L> :Iva
[AEs(L) }y=—[AE,(L) s

These results have made use of second-order terms in
what is generally considered to be a first-order theory.
Lipas (Li 61a) has discussed this point in some detail
and we return to it later.

From the point of view of energy level and spin
sequence there would seem to be little reason to choose
between either the symmetric model or the asymmetric
one. Both contain the same number of parameters
which can be related to one another and both are
equally successful, in the deformed regions, in explain-
ing the level structures. To base a preference for the
symmetric model on the idea that the nucleus, as a
liquid drop, somehow cannot be asymmetric has no
support classically. It is well-known that the line of
stability for a rotating liquid drop passes from spheri-
cal shape through the MacLaurin spheroids and the
Jacobi ellipsoids into the pear-shaped figures (Ly 53).
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F16. II-4. The lowest observed nega-
tive-parity levels in even nuclei as a
function of A. Crosses represent spin-1
levels while dots represent spin-3 levels.
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Indeed, as pointed out by Berenger and Knox (Be 61),
the hydrodynamics of the problem prohibit such a
nuclear system, if in rotation, to be spheroidal, although
they expect such shapes to be a good starting point for
further approximations. The fact is that at its greatest
distortion in the asymmetric model the core is not very
far from a spheroid.

We now return to a short discussion of the negative
parity states in even nuclei. The occurrence of these
states was discovered quite early (St 54) and not long
after they were brought within the purview of the col-
lective model (Ad 56) when it was realized that they
probably arise from octupole (A=3) vibrations of the
nuclear surface. These negative-parity levels occur
throughout the deformed regions, the lowest such levels
being found at about 1.2 MeV in the rare earths and
much lower in the actinide series. In Fig. II-4 the lowest
observed negative-parity levels are plotted as a func-
tion of 4. As with the lowest 24 levels these negative
parity levels are relatively low in the deformed regions
and are considerably higher outside of them.

Comments made earlier concerning the positive-
parity levels are also true here. If the deformation
energy is greater than the vibrational energy, rotational
spectra are observed while if not, a vibrational spectrum
takes its place (Fig. I-2b). In the deformed region the
theoretical investigation can proceed along two different
lines. On the one hand one can discuss the octupole
vibration about a spherical (La 60) or spheroidal
(Li 61, 61a) shape assuming the system remains sym-
metric so that one deals with a K=0 and K=2 level
structure. In the latter study of vibrations about the
spheroidal shape the A=3 moments of inertia were
used for the case of @z, ¢3.27%0; @31=0a3,3=0 and the
problem studied from the point-of-view of perturbation
theory. Thus the vibrational kinetic energy is now

Tyiv=3Bs(8°+B%) +3Bs (da’+245?) .
Again it is assumed that, in lowest order, these octupole

180

200 220 240

vibrations preserve axial symmetry and are small so
that we still have Eq. (II-24a), but Eq. (1I-24b)
becomes
94 BB (vH-g7),
where
&= (2B3/ B:B?) a’ss.

By again placing the rotational term 7%2K%/29;2t3(y, g)
in the vibrational part of the Hamiltonian, one has
—h]1 9 1 9% 1 /0 Yy 9
Hyp=—|——+ f f —
By 9B® " B:9b® By \ov*  v*+g vy

2

® g a>] it (K/2)?
— —) == 4y b, g),
Jrag"’Jrv”—g2 ag +237 (724-g2)jL 8,7,8, )

where B, has been defined before, b= a3 and
V(ﬁ; Y, b; g) Z%Cﬁ (6_:80) 2+%C772+%Cbb2+%cgg2-

The 8 and & variables separate immediately and lead
to one-dimensional oscillator equations of the form of
Eq. (II-25) with quantum numbers 7 and #, and
K=0. For the 8 band, one takes #g=1, #,=0 and this
yields the spin-parity sequence /=0-, 2+, 44, «--
while the & band requires #g=0, 7,=1 and the sequence
I=1—,3—,5—, «--. On the other hand, the v and g
variables can only be approximately separated in
lowest order which gives rise to a doubly degenerate
system the lowest band of which has | K |=2. This
degeneracy is removed in the next order leading to
v and g bands both characterized by | K |=2 and
having the spin sequence /=2, 3, 4, ---. The v band
has even parity and the g band odd.

Interactions between the bands give corrections to
the moments of inertia as well as to displacement of the
bands relative to their unperturbed positions. The
results are an obvious extension of Egs. (II-29) and
(11-30).

This theory has been compared with experiment and




while the experimental data are rather sparse, the
qualitative agreement is quite good although there are
difficulties, in particular the details of the very rich
negative parity spectrum of W' cannot be explained.

Leper (Le 64) points out that this treatment suffers
from the defect that the principal axes of the quad-
rupole and octupole systems are coincident throughout
the motion. He generalizes the previous treatment
and also shows how to separate the v and g bands for
any frequency of vibration.

On the other hand, one can study the rotations of
a pure A=3 surface and later add vibrational degrees
of freedom to it. In this approach one defines the gs,
€3, parameters from the as,, coefficients of Eq. (I-22a)
by

az=/{ COS 1 COS t,
V2 az={ cos £sin ¢,
V2 a32={ sin g cos ¢,
V2 a33=¢ sin £sin ¢,

the generalized coordinates being (=483, #, £ ¢ and the
Euler angles. The most detailed study (Da 62) to
date of this model has taken (=0 [this is equivalent
to making the body-fixed-axis system the principal
system (Wi 62a)]. The octupole moments of inertia
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Fic. I1-5. The energy levels for a rotating octupole surface
with hydrodynamic moments of inertia as a function of the octu-
pole asymmetry parameter 5 in units of #2/4Bs{%
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TaBLE IT-5. Asymmetric-core model parameters » and u for the
negative-parity levels in even-even nuclei.

Nucleus 70 "
Wisz 83.5 1.00
Th228 12.3 0.258
Th2 14.84 0.375
Uz 15.95 0

are then

93=4B;¢%(sin? n315% sin 9 cos 45 cos? 9),
2

9= 4Bs¢? sin 7.

The proper representation is B; and the effective range
of the asymmetry parameter is 0<np<w/2. Figure
II-5 shows the energy as a function of 5 for 7<11 for
these rotating octupole shapes. The { vibrations can
be added in exactly the same way B vibrations were
added to the deformed quadrupole rotator, the eigen-
value problem becoming similar to Eq. (II-17). This
theory also has been compared with experiment (Da 62,
Wi 62a), and agreement is satisfactory for the small
amount of experimental data available. In Table II-5
are the assigned octupole surface parameters for de-
formed even nuclei with at least four known negative-
parity levels.

Several relations similar to Eq. (II-8) which are
independent of the form of the moments of inertia
exist, but are more complicated since the theory does
not relate the octupole zero-point energy with the quad-
rupole zero-point energy. One such relation is

[e(4) +8(4) I-[8(3) +8(3) ]=48(2),

where
g(L"y=E(L*)—E(1).

Finally, the restriction that :=0 has been relaxed
and the model with seven degrees of freedom studied
(Da 64a). The level structure is complex and no mean-
ingful comparison with experiment can be made until
many more negative-parity levels have been found in
deformed even nuclei.

B. Electromagnetic Transitions

Since deformed nuclei have relatively -large quad-
rupole moments it is expected that the off-diagonal
matrix elements of the quadrupole moment operator
are large in many cases. This is indeed the case and
the enhancement of electric quadrupole transitions
over the single-particle rate is another test of whether
a nucleus is deformed. From the models discussed
before it is a simple matter to calculate electric and
magnetic transition probabilities to any order since
the operators are well known. The comparison of these
electromagnetic transition rates and branching ratios
with experiment forms a much more stringent test of
a given model than does a comparison of the energy-



122 ReviEws or MODERN PuyvsiCs « JANUARY 1965
level structure alone. We discuss the multipole mo-
ments and transitions in order of increasing multipole
order.

The transition probability per unit time for the emis-
sion of a photon of energy fiw="7ick carrying off angular
momentum X\ is (Pr 62)

8r(\+1)
MHD)ITPE 7

where the reduced matrix element B(\, AL) is de-
fined as

B\, LioLy) = (2LAD™ 2 | (fI T2 |4 14

MMy

k27\+1

T(\) = —— B(\, AL),

(I1-31)

where 7, is the appropriate multipole operator de-
fined in the laboratory. Since these reduced matrix
elements have no direct energy or A dependence, usually
they, or their ratios, are the quantities compared with
experiment.

The operators inducing the transitions are spherical
tensors so that their body and laboratory components
are simply related by

=2 D> (0:) TH2. (11-32)
The static electromagnetic moments are the diagonal
matrix elements of those operators and since parity is
a good quantum number in nuclei there are no static
electric multipole moments with N odd or static mag-
netic multipole moments with A even.

The lowest multipole order is the monopole or E(0)
transitions in which the energy of the transition is
carried off by a positron—electron pair formed by in-
ternal pair creation (high-energy transitions) or by an
atomic electron emitted in internal conversion. In
many instances these monopole transitions compete
with electric quadrupole transitions in certain deformed
even nuclei.

The interaction Hamiltonian is (Ch 60)

@ 1 1
Ha(L=0)=—c[ " drupu(es| === 2),
0 Vn e

where | e;) and | e;) are the initial and final electron
wave functions and 7, and 7, the nuclear and electronic
radii and p, the nuclear density. The absolute transi-
tion probability for electric monopole internal con-
version, W is

W=QP?,
where

P=(1/¢) [ pu[ (1) R)*++++] dra.

The factor Q is available in graphic form as a function
of the transition energy (Ch 56). For a deformed but
uniformly charged nucleus whose surface is given by
Eq. (I-5L) or (I-5B), the operator inducing the

transition becomes

TB(EO){Z( +/32+5(5/ ! osv)

so that
P= (n;| T5(EO0) | n:).

These monopole transitions can take place not only
between states of L=0 but between any states with
the same spin and parity. A theoretical study of the
0'—0 transitions using a model with 8 and v vibrations
has been made in Ref. Da 61a. Calculations using the
symmetric deformed nuclear model with B vibrations
have been done for 22 nuclei (Re 61). These have been
compared with experiment where data are available
and reasonable agreement with theory is obtained
although discrepancies have been noted near the edges
of the deformed region (Ra 60).

Figure (II-6) shows a comparison of the monopole
conversion transition probability in the % shell com-
pared with the single-particle M1 and E2 gamma-ray
transition as well as the M1 and E2 conversion prob-
abilities also in the & shell. Since E2 gamma-ray tran-
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F16. II-6. Comparison of the Z£0, M1, and E2 transition proba-
bilities for internal conversion in the % shell for various values of
atomic number Z. Also shown are the single particle estimates of
the gamma-ray transition probabilities for M1 and E2 transi-
tions. After Church and Weneser (Ch 56).
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TasLE II-6. The electric monopole to electric quadrupole transition probabilities for deformed even nuclei.
The calculated values are from Ref. Re 61.

I=0+ I=2+
Nucleus Calc. Obs. Calc. Obs. Ref.
Sms? 0.032 0.013 0.077 0.03 Re 61
Gde 0.034 =~0.02 een e Re 61
Hf18 0.0075 0.0076 ees Re 61
Wisz 3.2X1072 Sa 62
Wiss 1.3X102 “Sa 62
Qsl88 .o oes 6X1073 Sa 62
Ost90 “ee oo 2.4X1073 Sa 62
Pt19s ces vos 5.8X10™ Sa 62
Th2® 0.60 1.340.6 Bj 63
Th22 oee ves 1.3 1.3 Re 61
Uz 0.74 1.0 0.60 20.5 Re 61
Uzt een 1.1 “ee Bj 63
Uz 0.42 1.33 .ee Re 61
U >0.65 0.09 Re 61
Pu28 0.31 1.040.3 Bj 63
Puzio 0.43 0.140.03 Bj 63

sition probabilities in deformed nuclei are enhanced by
several orders of magnitude over the single particle
values, it can be seen that for high Z the monopole
transitions will compete favorably with the £2 gamma-
ray transitions.

In Table I1-6 are listed the E0/E2 ratios as measured
and predicted by theory. To date no monopole tran-
sitions between negative-parity states have been re-
ported.

The next multipole orders are the electric and mag-
netic dipole transitions. However, since the electric
dipole operator can be directly related to motion of the
center of charge and since we have assumed that the
center of mass (and also charge) is at rest [this is done
by omitting the A=1 terms in Egs. (I-5L, B) Jit should
be expected that in deformed nuclei the E1 transitions
should conform to the single-particle estimates (Bl 52).
There is, however, one well-known case in which an E1
transition is hindered by a very large factor—this is
the isomeric transition in Hf'®” from the 9— state
at 1142.9 keV to the 84 state at 1085.3 keV. This is
an excellent example of K-forbiddenness in the sym-
metric-core model which is quite applicable here since
there is but one L=2- level in this nucleus. The 8+
level is then the fourth excited level of the K=0
ground-state band and its state function can be written

| I=8, M, K=0+)=&,(X) (17/87%)Dars* (8:).

The initial state must be the first number of a K=9-
band since no other negative-parity states have been
observed at lower energies. This state function is then

| I=9, M, K=9—>
= ‘I’i(X) (19/1671'2) %[Dng (01) —D%s (01) ];

where the functions ®(X) represent all other parts
of the state function except the rotational part. The
transition probability then contains a factor which is
the square of the integral over the rotational parts of

the state vectors of the form
f D ;o8 (0:) D' (65) [D%1,9(85) — D, (65) ] 492,

which is identically zero as | » |[<1. Thus for the tran-
sition to take place at all there must be some slight
K-band admixture in either or both states. The failure
of the transition to be allowed is due to the fact that
K-quantum numbers do not overlap. From the known
properties of the Clebsch-Gordan coefficients, in-
tegrals of the above type do not vanish if AK<\. The
degree of K-forbiddenness has been characterized by
the number » (Al 55),

y=AK—\, (I1-32a)

the larger » the more the transition is inhibited. For
the Hf'® isomeric transition »=8 and the transition
is much slowed. Other similar, very slow K-forbidden
transitions have been reported (Sc 57).

Magnetic dipole transitions are forbidden in even
nuclei for these collective models. In this case the
operator u is

w=grL

in units of the nuclear magneton, where gz is the gyro-

_ magnetic ratio which for the collective model is taken

as Z/A as it is for the liquid-drop model (Wa 39).

Since the components of the operator L are stepping

operators in an angular-momentum representation we

have that for the laboratory components

L.l LM)

= (=D L(LA1) BC(LIL; M~4-p, —u, M) | LM +p)
(11-33)

so that for the strict symmetric model, M1 transitions

are forbidden between levels even when permitted
by the spin and parity selection rules. The case for
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TasLE II-7. The experimental ratio of transition probabilities
for magnetic dipole to electric quadrupole transitions between the
(22) and (21) levels in deformed even nuclei. This ratio is some-
times given by & where

82=0.7[ E(22) — E(21) 2B(E2:22—21) /B (M1:22—21).

Nucleus T(M1)/T(E2) X102

Sms?
Dy
Wis2
Wist
Ogl%
05188
Ogl%
Ptz
Ptist
P19
Th28
Th22

&
PWOW WO oo

the asymmetric model is similar: the only possible tran-
sitions are for AL=0 but then AK=2. Equation (II-3)
for the stepping properties of Z in the principal axis
system shows these transitions to be forbidden also.
Thus M1 transitions are absolutely forbidden in col-
lective models for deformed even nuclei. That this is
confirmed to a high degree is to be seen in Table II-7
where the ratio B(M1; 22—21) /B(E2; 22—21) is very
small for such nuclei.

This feature of collective models that the M1 tran-
sitions are zero for even nuclei depends only upon the
stepping properties of the angular momentum opera-
tors, Eq. (II-3) and (II-33), and not on their par-
ticular form. In their original paper Davydov and
Filippov (Da 58a) derived a relation for the ratio
B(M1; 22—21)/B(E2; 22—21) which was not iden-
tically zero. Several authors have commented that this
result is wrong (Ta 59, Ta 60, Ta 62) ; however, Lipas
(Li 64) in a detailed discussion shows that the error
in Ref. Da 58a was to take the magnetic dipole operator
to second order in the ay, while taking the angular
momentum operator only to first order. As a result the
ratio of reduced matrix elements, B(M1)/B(E2), is
of order | ay, |? as might be expected. Had they taken
the angular momentum operator to second order their
matrix elements would have vanished. Unfortunately
the uncritical use of these results of Ref. Da 58a is
found elsewhere (e.g. Pr 63, Gr 63).

The static magnetic dipole moment, {(u), for even
nuclei is (u)=grL and is zero for the ground states
of even nuclei. Recently, it has become possible to
measure the magnetic dipole moments of the excited
states of nuclei, which for even nuclei yields a direct
experimental determination of the collective gyro-
magnetic ratio gg. Table II-8 gives the excited-state
gyromagnetic ratios for a number of these nuclei. In
general these are for the first excited state (2'). With
few exceptions, the experimental value of gz is well
below the Z/A value usually assumed for collective
motion. This difference has also been explained by the
effects of the pairing correlation (Ni 61a).

We now turn to electric quadrupole transitions which
occur either between states of positive parity or states
of negative parity. The part of the operator with the
largest matrix elements is (Bl 52)

7
TPy=¢ ), f 162V 0, Ok, 01) ¥ dr,
k=1

with the sum running over the protons of the nucleus
and the integral over the entire space in which the
initial and final nuclear state functions ¢; and ¢; are
defined. The matrix elements for the transition are

TaBLE II-8. The measured gyromagnetic ratios of the excited
states of even nuclei. These should be compared with the Z/4
value which is also given.

Spin of
Nucleus  state 2R Z/A Reference

Fett 2 +0.53+0.16 0.464 a
Nd1s0 2 0.2240.04 0.400 b
Sm!52 2 0.3504-0.03 0.408 [4
Sm!54 2 0.2140.04 0.403 b

2 0.31£0.05 C(?’ig.

12
Gdse 2 0.367+0.03 0.416 c
Gde 2 0.3204-0.03 0.410 c
Dy 2 0.28+0.08 0.412 d
Erlee 2 0.3140.03 0.410 q
Ybi72 2 0.3044-0.034 0.407 r
Hif18 2 0.294-0.02 0.404 c(foot-
note 33)

Hif180 2 0.371+0.032 0.400 c

4 0.540.1 [
wiez 2 0.2854-0.042 0.407 f

2 0.1932-0.018 g
Wiss 2 0.20740.016 0.402 g

2 0.384-0.05 h
Wwiss 2 0.2924-0.027 0.398 g
QOg!86 2 0.3164-0.028 0.409 j

2 0.30+0.08 k
Ost88 2 0.294-0.03 0.404 1

0.204-0.02 n
0.23:0.03 p

Ptz 2 0.27+0.07 0.406 s
Hg8 2 0.3840.11 0.404 m
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of the form
z
(f| TP | i)=e2 (= 1)+ (LM | D> (65) | LiMi>/¢f*(r) kZ 7% Y2y (O, 1) 9i(x) dr.
v =1
Since all of the rotational models introduced to date have only even K-bands (this is true not only for the

models of positive-parity states but those of negative-parity states as well) » is only even, so these matrix
elements become

(71 T i)= e (=0 LMy | D) | LMY [87506) 321 ¥a0, ) ) d
LM | Do) | L [64(0) 35O, ) i) d
LM | Dn(0) | LM [#75(6) 32 r¥o st 00)8:0) dr)
= (= VLM | D0 | LMD 67106) 3= 7 Vi, 0)8:(5) e
+3(LM; | Dy 5(0;) +D%(6;) | LiM ) / ¢*s(1) ,fé 7L Voo (Ok, o1) + Voo 6k, o) J9s(r) dr

z
+5 (LM | D2y 5(0;) — D*10(6;) | LiMi>/¢*f(r) Ié 762 Voo Ok, 1) — Vo 2(bk, o) J:(r) dr}. (11-34)

This last term is zero since the rotational matrix element
(LiM ;| D%, 5(0;) — D*_0(6;) | LM ;)

vanishes both for the 4 and the B, representations.
If the charge distributions are assumed to be the same in initial and final states we may replace the
integrals over the nuclear volume by the components of the quadrupole moment tensor

0u=e(16x/5)} Z () 12V (00, ) (x) i, (I1-352)

Qo then being the intrinsic quadrupole moment of the nucleus. A simplification of Eq. (II-34) is obtained
by introducing new quantities Quo

Quo= (5/64”')}(Q#+Q—I‘)

which are, of course, model-dependent since theory depends explicitly upon the nuclear charge distribu-
tion and shape. (The Q, are identical with the %, defined in Ma 61 and are the same quantities defined in
Em 63.) Thus Eq. (IT-34) becomes

(fI TEy | iy= (= 1)*{{LM;| D* 15(8;) | LiM :)Qut+ LMy | D 2(6;)+D? 1o(8;) | LiM :)Qu0}

2L
==(=1) (2L,+1

>”C(L12Lf; ——Mia 2 _Mf)

Aol Aol
[ 2 Do (= )t (- D ICL L 000) (= )58 T A A C(L2L K 0, K O
K >0
(=D)L= DLP
22

AoL/AzLiC(LiZLf; 2'—20) —+

— L; — L:72
+[( D E[14(—1)%] A AC(LLy; 022)

2V2

:t(—l)Lﬁ‘Lf Z AK,'L':AK/LI I:C(LzZLf) K;, 27 Kf)+C(L12Lf; Ki; -2, I<f)]]Q20}) (11_36)

KS0,K5>0
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where the upper sign is for transitions between states
belonging to the A representation (positive parity)
and the lower sign is for transitions between states
belonging to the By representation (negative parity).
Mallman (Ma 61) has calculated the reduced matrix
elements for E2 transitions from Eq. (II-36) for
I1ax<6 and has compared his theory of a general
asymmetric, rigid rotator with experimental values
from 23 nuclei. (As many as 10 branching-ratio pre-
dictions have been compared.) In this process he as-
signs values to Qg and to Qg the latter through the
ratio 7=V2Qs/Qw. In general he finds good agreement
with theory and in particular the values of 7 are in
many cases quite close to the hydrodynamic value.

SZBR()Z
8T

(agtasy),

Quo=
SZCRQ?‘
4(3m%)% %

The electric quadrupole operator is a first-order opera-
tor in the as, for the quadrupole (7 states) surfaces
but a second-order operator for the octupole surfaces.
The E3 operator, is a first-order operator in the ag,.

Gregoriev and Avotina (Gr 60) have compared the
predictions of the asymmetric-core model using the
hydrodynamic moments of inertia with experiment and
fixed values of 8 and v. In this study the asymmetry
parameter v has been picked to fit the measured energy
levels. Only two branching ratios

B(E2: 22—21) /B(E2: 22—01)
and
B(E2: 31—41) /B(E2: 31—21)

have been used. Of the 24 nuclei studied, 18 have such
measured ratios. In general, the predictions of the
model are close to the experimentally observed values
with few exceptions (two notable ones are Os!® and
Pt where theory and experiment differ by more than
509%). Van Patter (Va 59) in an extensive survey of
the E2 transitions from the 2+ states in even nuclei
finds striking agreement between theory and experi-
ment especially for the branching ratio

B(E2: 22—01) /B(E2: 21—01).

For the case of the symmetric model, transitions
within the ground state band (K=0) are governed by
the first term of Eq. (II-36) while transitions within
any other band are governed by the second term. On
the other hand, transitions between the ground state
and the “gamma vibrational band” are governed by
either the third or fourth terms. Thus the branching
ratios within a band or from one band to another are
proportional to the ratios of squares of Clebsch—Gordan
coefficients. Ratios for transitions from different bands

In the hydrodynamic model if one assumes that the
nuclear charge is uniformly distributed then the quad-
rupole moment tensor components of Eq. (II-35a)
become

3Ze
Q"=E567r—)§/r2y2“(0’ @) dr
[3ZeR?/ (5m)¥ag, (x+)
- (11-35b)
12\! ZeRy?
_<?) T Y 00sC(323; ko), (n).
™ oK

Thus, for each case

Cap)

3 5,03 C(323; kuo) +C(323; k— po) 1, ().

[as the B(E2: 22—01)/B(E2: 21—01) mentioned
above] are not given completely by this model because
the elements of the quadrupole tensor Q, are inde-
pendent fitting parameters and are not related as they
are in the asymmetric model with hydrodynamic
moments of inertia. Again surveys show this model is
fairly successful in predicting the experimentally ob-
served ratios (Sh 60). However, certain cases are not
explained by this simple theory but can be explained by
assuming the mixing of the K=0 and K=2 bands
(Gr 59). The reduced matrix elements for the decay
between these two bands will then have a contribution
from the second term of Eq. (II-36) as well as from the
third and fourth terms. If the amount of K=2 band
mixed into the K=0 band is ¢ then clearly a new pa-
rameter is needed in the theory involving the ratios of
the elements of the quadrupole tensor. This parameter
is defined as

Z=€Qu/Qz

and the effects of the band mixing on the branching
ratios between bands will be

B(E2:—22-20) 10 <1+2Z)2

B(E2:—22—00) Z \1—2

where the notation is B(E2: L;K—L;K;). (This
band mixing is not identical with the K-band mixing
occurring naturally in the asymmetric top problem
in which all K bands with K< L,.x enter into the
problem. Actually, however, the strength of the higher
K bands in the state functions of the lower lying levels
in the asymmetric-top model with hydrodynamic
moments of inertia is very small so that this technique
is a very good approximation to the asymmetric-top
model.) Comparison between the model and experi-




ment has been made for 12 nuclei in the deformed re-
gions assigning values of Z to each for various B(E2)
ratios with Ln.x<4. The agreement between Z values
assigned from different ratios for a given nucleus is
fairly good although for some nuclei the agreement is
very poor being outside experimental error (i.e.,
Sm'? Er'%® and Th?®) (Ni 61).

This band mixing causes a shift of the energy eigen-
value by the amount [Eq. (II-30b)]

AE=eL*(L+1)TE(22)— E(21)]

and is therefore of the form of the energy shift due to
the vibration-rotation interaction. The survey shows
that this shift is smaller than the coefficient & of Eq.
(II-11).

In general the reduced matrix element for £2 tran-
sitions can be written as

B(E2; Li—L;)=B(E2: Li>Ly)af(Z, Li, Ly)

with B(E2: L—Ly), being for transitions between pure
K bands. Reference Li 62 gives tables of f(Z, L;, Ly)
for transitions between the 8 band (n3=1, #,=0) and
the ground-state band (ng=n,=0) with and without
B~y coupling and for transitions between the vy band
(ns=0, n,=1) and the ground-state band with B—y
coupling. In this reference comparison between theory
and experiment is made for the nuclei Gd'® and W
the conclusion being that the coupling is not sufficient
to account for the L?(L-41)? corrections to the rota-
tional energies. However, a similar but much more
detailed symmetric-model calculation with this K-band
(or rotation—vibration) interaction (Fa 64) does yield
results between theory and experiment in the de-
formed regions comparable with the asymmetric
model. Near the edges of the deformed region, es-
pecially for the osmium isotopes, the former model gives
a somewhat better fit to the reduced gamma-ray
transition ratios. This is achieved by including terms
through second order in the collective Hamiltonian
even though the surface is only expanded in lowest
order spherical harmonics. This would seem to be in-
consistent since there is evidence that first order
V4,(6, ¢) terms are of comparable magnitude to second-
order quadrupole terms (see Sec. IV A).

Since the reduced matrix elements are the most
model-sensitive measurable quantities, they should
yield the most insight into the structure of these nuclei.
An extensive comparison of experiment with these
several models has been made in the osmium region
(Em 63) and the data seems to support best the sym-
metric top model with a modicum of band mixing.
However, the 8 vibrations alone can cause considerable
shifts in these ratios of the reduced matrix elements
(Da 63) which effect has not been included in these
studies.

Experimental information concerning the branching
ratios for E2 transitions between negative-parity levels
is quite sparse. To date only two nuclei have measured
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TasLeE II-9. Intrinsic quadrupole moment Qo deformation
parameter 8 and ratio of experimental to rigid moment of inertia
for deformed even nuclei. The rigid moment of inertia is given
by $rig=24AM R*(140.318) while the experimental moment of
inertia is usually obtained from 9,=3h2/E(21).

Qo
Nucleus (barns) B 9/9rig Reference
Sm!150 3.65 0.184 0.147 El 60a
Sm152 5.86 0.290 0.380 El 60a
Sm!5* 6.83 0.336 0.551 El 60a
Gd 5.88 0.280 0.373 El 60a
Gdss 6.79 0.320 0.498 El 60a
Gdis 7.41 0.346 0.547 El 60a
Gdo 7.65 0.354 0.561 El 60a
Dyl 6.72 0.301 0.490 El 60a
Dy62 7.19 0.320 0.512 Il 60a
Dyt 7.55 0.334 0.558 Ll 60a
Eri6t 7.14 0.306 0.456 El 60a
Erte6 7.56 0.323 0.496 El 60a
Ertes 7.60 0.320 0.496 El 60a
Ert70 7.42 0.310 0.484 El 60a
Ybtno 7.48 0.304 0.455 El 60a
Ybi72 7.72 0.311 0.477 El 60a
Ybin 7.72 0.308 0.475 El 60a
Ybi7 7.60 0.301 0.445 Ll 60a
Hf76 7.8 0.30 0.41 Ad 56
Hf18 8.1 0.31 0.38 Ad 56
Hf'80 7.1 0.27 0.38 Ad 56
Wis 7.5 0.28 0.34 Ha 56
Wisd 6.7 0.25 0.31 Mc 61
Wwies 7.08 0.259 0.272 Mc 61
Ost8s 5.61 0.201 0.247 Em 63
Os188 5.33 0.191 0.214 Mc 61
Os1%0 5.0 0.18 0.18 Mc 61
Os192 4.5 0.16 0.16 Mc 61
Ptios 4.41 0.152 0.0972 Mc 61
P18 3.56 0.122 0.0890 Mc 61
P18 3.7 0.13 0.076 Ad 56
Ra22 6.63 0.184 0.223 Be 60
Ra2¢ 6.21 0.171 0.291 Be 60
Ra2® 7.22 0.197 0.351 Be 60
Ra?8 7.79 0.212 0.400 Be 60
Th 8.25 0.220 0.330 Be 60
Th28 8.47 0.225 0.403 Be 60
Th20 8.80 0.233 0.433 Be 60
Th22 9.25 0.243 0.450 Be 60
Th2# 8.93 0.233 0.467 Be 60
U0 9.46 0.245 0.443 Be 60
U2 9.98 0.257 0.470 Be 60
Uzt 9.77 0.251 0.516 Be 60
|26 10.35 0.263 0.485 Be 60
[28 10.52 0.268 0.480 Be 60
Py?238 10.95 0.271 0.493 Be 60
Puzo  11.26 0.278 0.488 Be 60

E2 branching ratios between these negative-parity
states, these being W8 (Ha 61) and Th?® (Ar 60).
The experimental papers apply the symmetric model
to these levels fairly successfully in the case of Th??
but considerably less so in W2 In this latter case an
attempt to extend the coupling of symmetric octupole
and quadrupole surface vibrations to explain the spec-
trum as well as the branching ratios has been rather
unsuccessful (Li 62). The only other study made use
of the results of Egs. (II-36) and (II-35b, =), that
is the asymmetric-core model with hydrodynamic
moments of inertia but without the vibration contri-
butions to the branching ratios (Da 62). The com-
parisons between theory and experiment are generally
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within experimental error and thus may also be said
to support this model. No extension of the band mixing,
symmetric-top model has been proposed for these
states. Much more information on the odd-parity
levels of even nuclei is needed before a definite choice
can be made.

Electric octupole transitions occur between even-
and odd-parity bands. A few E3 transitions have been

(L!Mf""+ I szl‘ I LiMiW—>

measured in the deformed regions (Ha 61) (the pref-
erence, of course, being for E1 emission followed by
E2 transitions) and there is also some evidence for
E3 Coulomb excitations (EI 60). Since the even-parity
rotational states belong to the A representation and the
odd-parity states to the B; representation, the reduced
matrix elements B(E3: L—L;) contain terms of the
form

Z
=e(—1)* 20 (= 1) (LM s+ | D_p | LM m— >f¢*f LZ: 76 Y55 (Ok, @) pi d7

Z
=e(— 1)“{ (LM w+ | D_y® | LM r— >/¢*/‘ D 1Yo (Ok, oi) s dr
k=1

z
AL Mm+ | Doy 3+ D_u? | LiM r— )/qb*,r 2o 7LV (Ok, oi) + Vo (6k, o1) 1o dT}
=1

2LA+1

:e(_1)u(———);C(Li3L,: —M—u—My) {[

2L+1

Aghs A ks

5 [+ (= D= (= )=C(Li3Ly; 000)

— (—1) Lty Z Ag 1 Ag FC(L3Ly; K;OK;)] Qoo

K>0

Aolr Al
%5

—(—1)ErHEs Z

Ky>0,K >0
where

[+ (=15 PC(L3Ls; 2—20) +

Aol Agli
2V2

A Ag M{C(L3Ls; Kiy =2, Kp)+C(L3Ls; K, 2, K)) ]] szm},

Qo= (7/647") %(Qu‘l‘ﬂ—#)

and

Z
Q= (161/7) | ¢*; - 13V 5,(01, 1) $: dr.

For surfaces given by Eq. (I-5B) assuming the nuclear
charge distribution is constant and the same in the
final as the initial state then these octupole terms can
be given explicitly. While these integrations should
be carried out from the origin to the smaller of the
quadrupole or octupole surface, within the approxima-
tions generally used it is probably sufficient to carry
out the radial integrals from zero to the mean surface
(Da 62). In this approximation the operators in lowest
order are

Qn"_— (3Z@R03/87r) A3u.

Tentative E3 transition assignments have been made
in W2 (Ha 61). Generally speaking no higher electric
transitions have been observed between the lower
lying levels of the deformed nuclei. The theory of these
transitions can be developed in a manner analogous
to that already given.

Finally, Lipas (Li 63) has made use of the collective

f=1

model of octupole vibrations about a spheroidal equi-
librium shape (Li 61, Li 61a) discussed before to cal-
culate E2 and FE3 transitions involving the various
vibrational states. From the empirical data he was
able to determine-the mass parameters Be and B;.
For the former the values calculated for transitions
from the beta to ground-state band are in poor agree-
ment with the values calculated for transitions from
the gamma to the ground-state band, which is exactly
what has been found in more recent experiments by
Greenberg et al. (Gr 63a) in Sm!'®. Lipas has also cal-
culated the reduced E1 transitions (Li 63) by dropping
the requirement that the centers of mass and charge
be coincident by postulating the relative displacement
of neutrons and protons which is analogous to the
models discussed in Sec. V. The calculated transition
probabilities are an order of magnitude smaller than
experiment.

The static electric quadrupole moments are simply



proportional to the diagonal matrix elements of the
operator Ty,r. The quadrupole moment as measured
in the laboratory, Q, is related to the intrinsic quad-
rupole moment Qg by

Q=[L(2L—1)/(L+1) (2L+3) 100

so that the measured quadrupole moments of all even-
even nuclei in their ground states will be identically
zero. The intrinsic quadrupole moment is not nec-
essarily zero, and can be most easily measured by
Coulomb excitation (Ad 56). For the symmetric-top
model the Coulomb excitation of the first excited
state yields the intrinsic quadrupole moment directly,

B(E2:01—21) = (5/16m) €2Q¢%,

and is the way most of the moments are determined.
Table II-9 shows the values of the intrinsic quad-
rupole moments of deformed even nuclei measured in
this way. Also shown is the value of the deformation
parameter 8 which is related to Qy by

Qo=[3/(57)1ZRs(1+0.168)8  (II-36)

and a comparison of the experimental moment of
inertia (for the symmetric theory)

Ix=3m/E(21)
with the rigid moment of inertia
9rig=2AMR?(140.318).
The ratio 9/9i, should be compared with the ratio
Ihyaro/Irig=456%/167 (14-0.318) .

That the experimental moment of inertia is greater
than the hydrodynamic moment of inertia arises from
the contributions of the pairing force (Be 59). How-
ever, in the collective model the moment of inertia is
a fitting parameter [in the asymmetric model the
similar parameter is wx= (Cy/By)].

III. COUPLING OF NUCLEONS TO THE CORE

A. Models of Odd-A Nuclei

In his paper on the collective model, Bohr (Bo 52)
discussed the coupling of a single nucleon to the core.
Later, he and Mottelson (Bo 53) applied the model
to discuss such nuclear properties as beta and gamma
transitions as well as static moments. Probably the
most successful form of these models are the strong
coupling ones. Intermediate coupling has been treated
in the above papers and elsewhere.

The core, and hence the potential well in which the
extra nucleon moves, is assumed to have a permanent
average deformation and any oscillations of shape which
take place have sufficiently low frequency to permit
the particle to follow adiabatically. In the strong
coupling limit the motion of the extra nucleon is exactly
the same in the body-fixed frame as that of a nucleon
moving in a spatially fixed potential well.

The picture of a single particle coupled to a core
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formed by all of the other nucleons has the advantage
of simplicity; however, a model where several nucleons
outside a closed shell are coupled to a deformed core
might be equally valid. Since this latter picture is more
difficult to treat mathematically in a nontrivial way,
it has been seldom used (Fo 53) and we confine our
comments to the single-particle model.

The total angular momentum of the nucleus I, a
constant of the motion, is now the sum of two parts,
L, the core’s angular momentum, and j, the particle
angular momentum, where

I=L+j.
Strong coupling then implies that
1y, Io]=—iIs,

(ITI-1)

cyclically
but
[jl’jﬂ: +igs,

It is customary to take the projections of I and j
along the 3-axis to be K and , respectively, while the
g-component of I is M. Since the potential in which
the particle moves is, in general, neither spherically
nor axially symmetric, j?, @, and K are not constants
of the motion. When the system possesses an axis of
symmetry it is reasonable to assume that the core will
behave like a deformed even nucleus having a similar
symmetry for which we saw that, at least for the lower
lying levels, L3=0 whence K= and are constants of
the motion.

The Hamiltonian of the system now contains two
terms, one being the kinetic energy of rotation of the
core (assuming for the moment that core vibrations
can be neglected), while the other is the Hamiltonian
of the extra-core nucleon:

cyclically.

3
H=3 3 (L&/9:) + (p%/2m) +V (1,1, 8)
k=1

3
= (1/2) 2 (I—2Luji+5i2) 9
k=1

—|—(P2/2m) +V(r7 17 S) ’ (III‘Z)

where the possibility that the potential might be de-
pendent upon the extra nucleon’s orbital angular mo-
mentum 1, and spin s, has been included.

If one further assumes that odd-4 nuclel possess an
axis of symmetry (9;=92=9,) this equation can be
put into a very simple form:

H=HR+HP+H07 (III—3)

where
Hr= (#?/240) [ (I+1) —2K*] (II1-4a)
Hy=(p*/2m)+V (r,1, )+ (7/29,) j? (I1I-4b)

H,= (—1%/90) (IijitIsfo) = (—7%/290) (Lsj—+144),
(I1I-4c)

the = referring to the usual stepping operators 0,=

017102 The term H. has been called the “rotation—par-
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ticle coupling” (RPC) term (Ke 56) which it in fact
is not since Hp is not the rotator-Hamiltonian nor is
H, the particle Hamiltonian. A true rotation—particle
coupling term would be of the form L-j. However, H,
is of the form ©-j which classically can be thought of
as a potential term giving rise to the Coriolis force, a
characterization which seems preferable here.

If the particle is tightly bound to the core, the par-
ticle levels in the potential V (r, 1, s) are rather widely
separated when compared with the spacing of the ro-
tational levels of the core. Under this circumstance the
off-diagonal matrix elements of H, are small and may
be neglected in first order. Qualitatively then, the level
structure of a symmetric, deformed, odd-4 nucleus
consists of bands of rotational levels each built upon
a separate particle or intrinsic level. The level sequence
is determined by @(=K) so that the band will contain
levels with angular momentum /=K, K41, K42, +--.
In the approximation that H, can be neglected Hg
and H, commute and the state functions are

| EIMK )= | IMK) | 2=K),

where the | IMK )=Dux™ are the solutions to the
rotator problem and the | 2)=xq are the solutions of
the problem

(I11-5)

For a spherically symmetric potential, j? is a constant
of the motion and the eigenvectors | jQ2) form a com-
plete set so that we can expand xgo in terms of them

| Q)= Cia|jQ)= 2 CiaDara’ | j )z, (III-5a)
7 i

HpXQ = EpXQ'

where | Q' )1, are the laboratory state functions. Again
making use of the symmetry properties under the
transformations 7 and 79 the appropriately sym-
metrized state functions have the form (Bo 52)

| EIMK )= (1/¥2) 3Cs[ | IMK)) | j2)

+H(=)™ [ IM-K)|j—2)] (III-6)

(EIMK' | H,| EMIK Y= — (/290) >_C*;0:Cjal[ 6x' .51
H

where in every case K—Q, >0, must be even (for
axial symmetry K=Q).

The resulting energy is then
E(I, K) = (#/290)[I (I+1) —2K*]+E,(K) ~ (III-7)
with > K=Q and E,(K) is an appropriate eigenvalue
of H, defined in Eq. (III-5). It is only necessary to
specify the potential function V(r, 1, s) in H, to solve
the eigenvalue problem for then not only the E,(K)
but the Cjq are determined.

It is possible to compare theory with experiment
without actually determining the solutions to the
particle problem if the extra nucleon is so tightly
bound to the core that AE,(K)=E,(Ks) — F,(K;)>
AE(I, K), where

AE(I,K)=E(I, K)— E(K, K)

= (12/290) [I(I+1)—K(K+1)]. (I1I-8a)

A nice example in which such a simple description of
deformed, odd-A4 nuclei does agree with observation is
found in the low-lying states of U?%. With the energies
of the various levels one can use Eq. (II1-8a) to de-
termine the moment of inertia parameter #2/29, the
mean value being 5.75 keV (it is perhaps more useful
to use this parameter, %?/29, in keV or MeV than the
moment of inertia g, in g-cm?). It is interesting to
compare this value of the moment of inertia parameter
with that of neighboring even nuclei. From Table II-9
we have that for U2 72/29, has the value 7.8 keV
while for U4 it is 7.3 keV. This supports the original
suggestion of Rainwater that the outer nucleon does
indeed polarize the core—in this case it increases the
deformation.

Despite the strength with which the odd nucleon
is coupled to the core, the Coriolis term H, does connect
states diagonal in Ke=% augmenting Eq. (III-8a) by
an additional term. The matrix elements of H, are

F (=D 6k k- LI+K) (I—K+1) (j+K) (j—K+1) F

Only for K=% bands does the second term contribute
and it is customary to write for them

+HI-K)(I+K+1) —K) G+K+1) Foxr ). (I1-9a)
of these diagonal terms,
AE(IK)= (#*/290) {I(I4+1)—K (K+1)
+ao[ (=)™ (I4+5)+106k 4}, (III-8b)

(EIM3 | H. | EIM%)=(—1)(#/280) (I+3)a,
(III-9b)
where the “decoupling parameter” a is defined as

GEZ(—UM(J"*‘%) | Ci 2 (III-9¢)

Therefore Eq. (II1-8a) becomes, with the addition

Equation (III-9a) shows that H, connects two ro-
tational bands for which AK=1. If the extra-core par-
ticle is sufficiently tightly bound that these bands are
well-separated in energy, then the effect of H, will
clearly be small. However, if the particle is rather
loosely bound, then these bands overlap strongly and
the corrections due to H, are important.
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Tasre IIT-1. Parameters for K-band mixing in a number of odd-4 nuclei. The parameters are defined in Eq. (ITI-10).
Band parameters for the case of no band mixing in these same nuclei are given in Table I11-2a, b.

(3n%/90) & (372/90) g EyX EpKH

Nucleus K (keV) (keV) (keV) (keV) a Ax

Gd1ss 3 60.00 31.20 7.50 140.0 11.75
Thise 3 71.04 67.80 6.85 388.4 10.00
Eries 2 71.64 72.90 113.3 46.30 5.00
Yh7? i 92.40 58.80 332.0 706.6 0.185 31.40
Hf? 2 66.12 90.72 550.2 591.2 38.00
Wisz i 97.84 81.30 —1.32 208.3 0.169 23.25
Os18 1 98.64 92.70 3.21 194.1 3.65X103 19,31
Cm?2% 2 35.82 37.26 257.0 2.38 8.5

Bk2#® 2 31.20 31.20 412.5 49.05 15.00

To obtain an analytic expression of the effect upon
the energy eigenvalues of two such K bands one can
simply diagonalize the matrix

Hr H.

H. Hg
which leads to the secular equation

E(I,K)-E  (K|H,|K+1)
=0,
(K+1|H,|K) E(I,K+1)—E

the solutions of which are

E(D)=} {E(I, K)+E(I, K+1)

2(K+1|H, | K)|*}
— ]} (I11-10)

AE=E(I, K)—E(I, K+1) and (K+1|H.|K) are
the matrix elements of Eq. (IIT-9a) and may be con-
veniently written as

casie]

(K+1|H.| K)=Ax[(I-K) (I+K+1)J  (I11-10a)
with
Ar=— (h*/290) ZC*jK+1CjK[(j—K) G+E+1) T

(III-10b)

K is no longer a good quantum number (even though
the core still possesses axial symmetry); however, if
the extra core particle is lightly bound then AE will
be large and K will be “approximately” a constant of
the motion.

This calculation was first applied to W with ex-
cellent results (Ke 56). The level structure of this
nucleus consists of two rather complete bands (K=3%~
and K=3%") and individual members of two others
(K=% and K=$1) below about 0.6 MeV, the ground-
state band being K=1 with the head of the K=% band
being at 0.209 MeV. The other two bandheads are
at 0.453 and 0.309 MeV. Thus the lower two bands are

connected by H,. and, since they overlap strongly, the
effect is important. Figure III-1 shows a comparison
between the measured energy-level structure and the
values calculated from Eq. (III-10). In Table III-1
are listed the various parameters for a number of odd-4
nuclei in the deformed regions. For nuclei with more
than two K bands (such as Lu'”), a similar calculation
can include the interaction between all of the bands
which are connected by H..

The question of vibrations can be handled for these
models of odd nuclei in exactly the same way as even
nuclei. Thus Eq. (IT-11) can be immediately extended
to odd-4 nuclei; keeping only diagonal terms in H,
as well as the rotation-vibration term, Eq. (III-7)

9/2- 554.2
(556.4) w' 83
2 - 453,
7/2-[503]
772~ 4121
(413.2)
2~ 3089 92+ —— 3095
5/2 - 2917 (306.6) /2t [624]
(291.8)
3/2 -——— 2088 v2— 2070
¥2-[512] (208.8) (206.0)
52— 99
(99.02)
32— 46.5
(46.49)
/2 = ———
172-[510]

Fic. IIT-1. Experimental energy levels for W8, The numbers
in parenthesis are calculated from Eq. (III-10) with the param-
eters (7%/90)3=16.307 keV, (A?/9¢)3=13.550 keV, a=0.1691,
Eyp=—1.320 keV, E»=208.27 keV, 43=23.253 keV. The experi-
mental values are from Ref. Ha 62.
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becomes
E(IK) = E»(K)
4 (72/290) [T (I4+1) — 2K+ (— 1) TH (I +4) adk 4 ]
—b[I(141) = 2K*+(—1)T(I+3) adg 3 I
(IT1-7a)

We now turn to the extra-core particle problem. We
confine attention to a rather strongly coupled particle
moving in an axially symmetric potential. Then the
Schrodinger equation defining the problem is given
by Egs. (IIT-4b) and (III-5), the solution of which
depends only upon assigning the form of the potential
function V(r, 1, s). There have been many solutions
carried out using various deformed potentials, and the
resulting eigenvalues show essentially the same qualita-
tive features. The earliest calculation was that of Hill
and Wheeler (Hi 53), the potential being an ellipsoidal
one without spin-orbit coupling. Moszkowski (Mo 55)
solved the particle problem using an infinitely deep
spheroidal potential (the spheroidal box) with and
without spin-orbit coupling. Gottfried (Go 56) used
a finite spheroidal well with spin-orbit coupling, and
recently Lemmer and Green (Le 60) used a nonspheri-
cal, velocity-dependent potential with a diffuse edge.
This latter calculation was a perturbation calculation
in the deviations from spherical symmetry while the
rest were exact calculations, the Hamiltonian being
diagonalized by machine.

The most used calculation is that of Nilsson (Ni 55)
who used an anisotropic harmonic oscillator potential
with spin-orbit and I? terms of the form

V=3mlw2(x4°) +0222]+Cl-s+DE.  (I11-11)

The I? term has the effect of depressing the high an-
gular momentum states which is in keeping with the
notion that for higher A the single-particle potential
is more of a square well than an oscillator well. The
constants C and D were picked so that the level se-
quence for zero deformation reproduces that of the
shell model with its well-known magic numbers at
2, 8, 20, 50, 82, 126, - - -. The results of this calculation,
eigenvalues and eigenvectors, have been tabulated and
published for symmetric deformations on the range
18] <0.3 for all of the oscillator shells with N<7
and the level sequence as a function of 8 has been
plotted (Ni 55, Mo 59).

The oscillator frequencies of Eq. (III-11) are re-
lated to the deformation of the core from the spherical
shape by

wt=w*(1+430)
wl=wl(1—%5).

The constant volume condition implies that the product
w.2w, be constant to first order in § which in fact yields

W 2ws=wgs.

Here § is a measure of the deformation,® and if the
nuclear surface is assumed to be an equipotential, then
§ can be related to 3 by

5= 3(5/4m)}8=20.946

(to first order). The oscillator strength is determined
by 7w, and for an isotropic oscillator it is possible to
calculate the rms radius of a particle and relate this
to the nuclear radius R=1.24%X10 c¢m, so that
fiwo=aA~* MeV. Nilsson has taken a=41, however,
A is actually an over-all scale parameter which is to
be determined for each nucleus after the levels have
been fitted.
Introducing the change of scale by

3
p= > &, (I1-12a)

k=1

€k= (mwo/fz)%xk,

the Hamiltonian becomes
Hy/fiwo=3(—V2+p?) —Bp* Vi (6, ¢) = Ho+Hs.
(11I-12b)

In picking a basis to diagonalize H, one in which Hg
is diagonal is taken; however, there is some choice. In
one of these, the commuting operators are

Hu,=(—1/2)[(&/d&) —&],  k=1,2,3

and the base vectors are just | #;, 72, #3). Another basis
is formed from the commuting operators Hy, I, I3
and s; which have eigenvalues (N-+3%), I(l41), A and
2, respectively, where

3
N= > m=0,1,2, -

k=1
I=N,N—2,N—4, -+, 10r0.

The base vectors are denoted | NIAZ) and this is the
system used by Nilsson and subsequent authors.

It is customary to replace the constants C and D
of Eq. (ITII-11) by new ones defined by

k= C/hwy,
u= D/ k.

Then the nondiagonal terms of the single-particle
Hamiltonian are just

H+(1/fi) (Cl-s+DF) = —Bo* Vo (6, @)

—2kl-s—uxl?  (I1I-13)
These operators will not connect oscillator states with
principal quantum number, N, differing by one unit
but will connect states in which AN=2. In the diag-
onalization of Eq. (III-13) Nilsson (Ni 55) has neg-

5 Various authors do not use the same definitions of ¢ and in-
deed the definition may be different in different papers by the
same author, although to first order they are the same. A table of
relations between the various deformation parameters is to be
found in Ref. Mo 59. Here we follow the definition of Ref. Ni 55.



lected all matrix elements not diagonal in V. In general
this is a very good assumption since levels with N
differing by two are separated by 2fiw,. However, for
large N and sizable deformation it is found that levels
obtained by the diagonalization process and differing
by two units in N do in fact cross. Nilsson has shown
that there is an alternative representation in which a
great deal of the effect of these nondiagonal matrix
elements can be taken into account so that such are
in fact altered.

Even with this assumption, the nondiagonal matrix
elements mix states with different values or /, A and
3 although @=A+Z2=j; and the parity (-1)’ remain
good quantum numbers. The diagonalization process
was carried out by machine with the values of « and
¢ so fixed that for zero deformation the shell-model
ordering of the states is obtained (Kl 52); usually
k is considered fixed while u is a function of N (we
use uy in what follows). In Ref. Ni 55 are tabulated
the energy eigenvalues and eigenvectors (not nor-
malized) resulting from this diagonalization process
with N<6, «=0.05 and po=m=pe=0, ps=0.35, ps=
0.45, 0.55 (normalized) ws=wus=0.45. The calculation
is for the range of distortions | 8| <0.3 and the energy
eigenvalues are also given in graphical form. In Ref.
Mo 59 these tabulations are extended to the N=35 and
7 shells with us=0.70 and u;=0.40. For light nuclei,
a different value of « has been used with greater success
and a graph of the energy eigenvalues for N <3, k=0.08
and deformation | 8| <0.6 is given in Ref. (Li 58)
where the model has been applied to the mirror pair
Mg, Al%,

The Hamiltonian defined by Egs. (III-12b) and
(I11-13) which has been diagonalized is not the same
as the Hamiltonian H, of Eq. (III-4b) since the j-j
term is missing in the former. The effect of deleting
this term has been studied (Ch 63b) in the N=2
shell where an exact diagonalization of the complete
Hamiltonian of Egs. (III-4) has been carried out as
well as the diagonalization with the j-j term missing,
with the terms of H, missing, and with both left out.
The results for a deformation of 3=0.2 are shown in
Fig. ITI-2. The levels numbered I are the result of the
diagonalization of the complete Hamiltonian, those
marked I the result of omitting the off-diagonal I-j
terms, those marked III the result of omitting only
the j+j terms, while the levels marked IV result from
the omission of both. For this shell (N=2) and for
this particular deformation the effect of omitting the
j? term is noticeable but does not result in the reorder-
ing of the lower lying levels. For higher shells the
effect is more pronounced.

For very large deformations the 1-s and I terms in
Eq. (III-13) may be treated as perturbations so that
in zero order the eigenvalues are those of a pure aniso-
tropic oscillator. In this limit the energy levels may be
labeled by the quantum numbers N, 7z, A and 2.
However, since @=A+Z is always a good quantum
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38 A

36

344

324

Tic. IIT-2. The results of an exact diagonalization of the eigen-
value problem defined by the Hamiltonian of Eq. (III-2) for
axial symmetry, (denoted by I) as compared with such a diago-
nalization omitting the off-diagonal I-j terms (denoted by II),
omitting only the j-j terms (III), and omitting both (IV). The
total angular momentum of each level is given on the right.

number it is sufficient to give only @, N, n,, A. The
parity is also usually included and the labeling con-
vention is @, &[N, n,, A] (the parity is redundant
being plus or minus as N is even or odd).

As an example, consider again W which has 109
neutrons. Since each Nilsson level is doubly degenerate,
two particles can be put into each. The 109th neutron
is then to be placed in a level with spin and parity of
1— which is only possible for a deformation of §220.2
and energy E/fiwi=26.4. Within a small region around
this deformation and energy are to be found the levels
115107, 3—[503], $—[512] and 3+[651]. Thus
all of these particle excitations should be observed
in the low-lying spectrum of W2 and in fact all but
the £+4level do occur. The appropriate level assign-
ments are: ground state 3—[510], 208.8-keV level
315127, 453.1-keV level Z—[503], and the 309.5-keV
level 3+[634] (here the 108th neutron has been ex-
cited to pair with the 109th neutron in the $—[610]
level leaving the unpaired 107th neutron to give the
level characteristics). The other low-lying levels are
just the rotational members of the bands built on these
various particle excitations. Since the form of the po-
tential has been specified, the Cjq coefficients are known
from which the decoupling parameter of Eq. (III-9c)
can be calculated as well as the parameter Ax of Eq.
(III-10b). A table is available (Ni 55) showing the
range of ¢ as a function of the spin of the level in the
K=1 band. For W the empirically determined value
for the 3—[510] level (0.19) falls within the range
given in this reference.

Similar assignments can be made for other odd-4
nuclei, such assignments depending not only on spin
and parity assignments of the levels but alpha, beta
and gamma decay systematics and occasionally on re-
action data. Table ITI-2 lists such band-head assign-
ments for a number of odd-4 nuclei in the deformed
regions.
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TasLE ITI-2. Intrinsic particle orbital assignments, moments of inertia, vibrational parameter and decoupling
parameter for (a) odd-proton nuclei and (b) odd-neutron nuclei.

Band-head
energy Assigned orbital 3h%/9, b
Nucleus (keV) Kx[Nn,A] (keV) (keV) a
a. Odd-Proton Nuclei
s3loulds 0 2404137 71.5 +2.6X1073
103.18 3-4[411] 83.58
g5 L'b155 0 34+[411] 78.0 0.0
e Th1s7 0 2414117 73.5 —2.41X107
65 L' h1o? 0 24+[411] 70.0 —2.0X102
348 $4[413] 09.4 cee
65 L' b16! 0 34+[411] 9.1 —3.3X1072
s Hots 0 1-[523] 62.9 —2.9%1073
ssTmi? 0 1174117 72.2 +2.8X102 —0.71
69 'mI6? 0 14[411] 71.8 +3.4X1072 —0.77
316.19 7+[404] 84.18
379.31 1-[523] 62.58
so'm!7t 0 4-[411] 72.2 +2.9X103 —0.86
nLul™ 0 14-[4047] 75.54 —6.31X1073
aLwi™ 0 14[404] 80.64 —7.83X10%
aLut™® 0 2-+[624] 128.5 +3.5X10°2
73 Laldl 0 2404047 90.84 —5.20X1073
6.3 3—[514] 83.2
7sRel®s 0 54[402] 97.68 +5.36X107
496.1 1—[523] 111.96
75 Relss 0 5414027 107.06 +2.0X1073
646 1474007 144 .
75Rel®? 0 £4-[402] 114.78 —3.67X1072
7rIris 0 340402] 129.6 +3.27%10
94.25 144007 161.8 —0.015
o e 0 3474027 147.1 +3.27X1071
82.45 14-[4007] 200.0 —0.035
539.2 5414027 73.0
771ri 0 3+4+[402] 161.0 +2.79X1071
oA 0 2406517 31.8 +1.65X107?
27.5 3-[532] 54.7
327.0 1-[530] .
g Pazi 0 1--[530] eee .. eee
84.1 51[642] 15.6
166.2 3406517 20.6
o Pa28 0 1—[530] 38.0 —2.84X1073 —1.38
86.8 §+[642] 14.8
213 346517 28.5 +7.14X1072
s Np7 0 $+[0642] 28.5 +1.49X 1073

59.57 5-[523] 37.2 —2.08X1073
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Band-head
energy Assigned orbital 3h%/9, b
Nucleus (keV) Kr[Nn.A] (keV) (keV) a
o Np2=? 0 $4+[642] cee ces
74.6 $—[523] 37.0 —2.4X1073
95Am?2¥7 0 $—[523] 36.0 oo
97Bk24 0 3+[633] 28.0 —3.33X1078
8.8 $—[521] 36.8 +9.5X10¢
393 246427 34.3 +4.0X10™
b. Odd-Neutron Nuclei
2Smgglot 0 34[651]
4.85 $-+[660]
64Gdgy'® 0 3+4[651] 52.2 7.7X1072
129.2 $+[642] 46.5
212.1 3--[532] 45.0
' 303.5 3—[521] 78.1
61Gd g% 0 $-—[521] 72.7 —2.4X1072
86.5 $4-[651] 37.7 :
247.0 146607 20.8 40.88
64Gdgs'® 0 3—-[521] 65.0 —1.0X1072
64.0 §+[0642] 44.4
s6Dyos!®! 0 §+[0642] 37.5
25.6 $—[523] 66.9
74.5 $-—[521] 68.6
D yer1% 0 $—[523] 63
68Frgs'® 0 2—[523] 72.0
104.3 2—[521] 71.9 —1.0X1072
345.7 1-—[521] 79.7 +0.47
ssurgs!® 0 £—[523] 66.2
242.7 3—[521] 63.8
297.2 1—[521] 76.0 +0.56
r,sEI‘gglm 0 %—}—[633] 52.9
207.8 1-—[521] 67.2 —1.0X107¢ +0.70
585.4 £—[523] 71.5
70Y Dgg!® 0 14-[633] 47.2
24.3 1—[521] 70.4 8.0X1073 +0.79
191.4 $—[512] 75.4 1.0X1072
570.5 5-[523] 66.8
20Y byt 0 3—[521] 72.4 4.0X1073 +0.85
95.2 7+[633] 48.2
122.4 £—[512] 73.5 5.0X1073
835.6 2—[514] 76.0
70Y bros!™ 0 %—[512] 67.6 3.0X1073
351.2 3-+[633] 53.0
22Hf 0™ 0 $-—[521] 77.1 9.0X1073 +0.82
107.2 $—[512] 77.6 7.0X1073
22H ;517 0 $—[512] 70.0 4.0X1073
125.9 3$—[521] 81.0 1.0X1072 +0.75
348.8 1—[514] 86.0 3.4X1072
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TasBLE I1I-2 (Continued)

Band-head
energy Assigned orbital 3h2/9, b
Nucleus (keV) Ka[Nn.A] (keV) (keV) a
12Hf1 05177 0 2—[514] 76.4 4.0X1073
321.3 3+[624] 52.9 —1.3X1072
508.9 $—[512] 82.6
72H 107170 0 $+[624] 68.8 —1.9%X1072
74 Wi7® 0 $+[624] 61.8
365.5 $—[512] 94.6
385.2 1—-[510] 87.8 +0.48
746.1 3—[521] 90.2 +0.59
7aW10g183 0 1-—[510] 78.1 —3.0Xx10® +0.19
208 3-—[512] 97.9 —5.0X102
7605109185 0 %*[510] 71.4 —7.4)(10-—2 0.02
127.8 2—[512] 114.4 3.5X102
26081117 0 1-—[510] 48.5 —2.0X1072 —0.60
74.3 3-—[512] 134.0 —6.0X10"2
7605115'%° 0 3—-[512] 83.5
36.2 1—[510] 118
78Pti1® 0 3—[512]
78Pty13!%! 0 3—[512]
73Pt115193 0 % — [510] 26.0
78Pt1171% 0 31—[510] 117 0.69
2—[512] 36.0
2
90T hy322 0 $4+[633] 36.7 —7.4%X1073
90T hy®1 0 3+[633] 36.0 0
185 $—[752] 17.0 5.4X1072
390 1—[743]
02U12% 0 $4+[633] 35.6 —4.0X1073
312 34+[631] 34.8
92U145% 0 2—[743] 30.8 —3.5X1073
0.08 3+[631] 35.5 —1.7%1072 —0.28
129 £4+[633] 35.9 1.4X102
w2 U157 0 14[631] 46.0 9.5X1073 —0.56
145 $4-[622] 47.1 5.0X1073
94P11143237 0 %— [743]
145 3+[631]
94Pu1y 452 0 1+[631] 37.5 —6.6X10™ —0.58
286 $+[622] 38.2 —3.2X103
392 1—[743] 28.3 —8.1X10*
94Puygr? 0 3+[622]
172 34+[624] 36.0 —3.5X1072
96Cmys%! 0 3+[631]
96Cmy,28 0 3+ [622]
96Cmy49240 0 1+4[624] 37.3 2.0X1073
255 $+[622] 35.8 4.0X1073
394 $—[734] 28.5 1.7X102
98Cfis®® 0 $—[734]
98Cf1521 0 14[620] 38.8 1.5X1073 0.29
106 3+[613] 40.1 —3.0X1073

100F my55%5 0 1+[613]




An examination of a Nilsson-level diagram in the
region between the go» and 72 shells shows a con-
siderable gap at 152 neutrons for deformation of the
order of 3=0.2. Such a gap is suggestive of a “magic”
number or shell closing. Unlike the more familiar magic
numbers, there is no indication of a shell at N =152 for
spherical nuclei. There is considerable evidence that
such a shell (or perhaps better subshell) does exist
(Pe 57b, As 64) and it is interesting that the original
suggestion (Gh 54) based on alpha decay energies was
made before the work of Ref. Ni 55. In general, the
energies of emitted alpha particles decrease as the
mass number increases; however, at major closed shells
(Z=82 and N=126) this trend is reversed there being
a very steep rise in energy with increasing mass number
(Pe 50). This reversal can be distinguished at N=152
but is far milder than that occurring at the major shells,
indicating a subshell closure. The thermal-neutron
capture cross section decreases suddenly in the cali-
fornium isotopes at N=152 (being three orders of
magnitude less for Cf%? than for Ci*?) as does the half-
life for spontaneous fission (Ma 54) both signs of a
change in shells.

The assignment of Nilsson-level quantum numbers
also facilitates the investigation of the shape of the
nuclear energy surface as a function of mass number.
The total nuclear energy & is the sum of potential and
kinetic energies for all 4 particles and is thus a func-
tion of the deformation 8. The equilibrium, ground-
state deformation B, is then determined by

(08(8)/98) 8,=0.
For two particle forces Vi= D eV

&B)= ZT4+%ZV¢J‘=%E&([3) —%Z(Vi— T)).

] i
(ITI-14)

Since the &;(8) are known, the evaluation of the ex-
pectation value of the last term as a function of 8
permits the evaluation of the energy surface. For heavy
nuclei care must be taken to include the coupling be-
tween the different oscillator shells. As mentioned
before, Nilsson accomplished this by introducing a
pseudospherical basis such that the matrix elements
of the ‘“nonspherical” part of the Hamiltonian is
exactly diagonal in N. The term (V;—7.) can then
be separated into angular momentum-dependent and
independent terms for

2 (V= T)=2(V/=T!)+CV-s'+D1?,  (ITI-15)

the first term being expressed in the new system for
which the Hamiltonian is just a harmonic oscillator.
For such an oscillator the average value of potential
minus kinetic energies is zero, hence

6(8)=3226:(8) —+(Cl-s'+DI?).  (III-16)
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This expression neglects not only the Coulomb energy
between protons but any residual interactions such
as the pairing force. The change in Coulomb energy
upon distorting a spherical charged drop is (Fe 39)

E/Ed=1— (4/45)8~

Inclusion of this term thus shifts the equilibrium shape
to higher energies. However, this effect is not as great
as indicated by the ratio for heavy nuclei since different
values of u have been taken for neutrons and protons in
the unfilled shells. Equilibrium-shape studies have been
made by Mottelson and Nilsson (Mo 59) in all three
deformed regions. These show not only the general
trend of B with 4 but also the preference for prolate
shapes in deformed nuclei.

This symmetric-core model has been applied with
considerably less success to the light nuclei in the 2s-1d
shell which was the last discovered of the three well-
established regions of nuclear deformation. The sug-
gestion was first made in 1956 as a result of an exten-
sive study of Al% in the Mg* (p, v) Al® reaction (Li 56)
and the mirror pair Mg?»-Al® are probably the best
studied nuclei in the shell. After this initial suggestion
most of the other nuclei in the shell below S have been
studied from this point of view (Ra 57a). [O® (Go 59),
F¥ (Pa57), Ne® (Li61b), Na® (Pa 58), Mg (Pe 57a),
A=25 (Li 58), Al (Al 60), Al® (Sh 56), 4=29
(Br 57), P3 (Br 38). For a recent review of this
region see (Go 60).] While the results vary from nu-
cleus to nucleus, the evidence seems overwhelming
that these nuclei are deformed and that the strong-
coupling collective model does in fact explain a major-
ity of their ground-state and low-lying excited-state
properties.

One of the difficulties with applying the model in
this region is that there is a strong overlap of levels
belonging to various K bands. This condition vitiates
the separation of core and intrinsic parts of the problem
with the consequent neglect of the Coriolis term H, of
Eq. (III-4c). In his study of F* Paul (Pa 57) made
use of this term in the Hamiltonian to mix the $4[2207]
and £-+[211] rotational bands (levels 6 and 7 in Fig.
II1-3). This yields the correct level sequence for the
low-lying positive-parity states, but does not reproduce
the level spacing well. The first excited state is placed
at 0.24 MeV which is about 209 too high and it is a
mixture of 819, K=1 state and 199, K=2 state. The
next state is the $4 member of the second triplet
centered at about 1.5 MeV. It is a 54-469, admixture
of these same states. This band-mixing technique has
been used with more or less success everywhere pos-
sible in the shell; however, for certain nuclei, notably
the mirror pair at 4 =25 the bands have AK=2 which
are not mixed by H.. The success seems to depend to
a large extent on the number of bands mixed. For
instance in Na® Paul and Montague (Pa 58) on the
one hand mix the £+[211], 3+[211], §-+[202]
(levels 7, 9, and 5 in Fig. ITI-3), obtaining the second
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F16. III-3. The intrinsic particle levels for a deformed but
symmetric system whose potential function is given by Eq.
(III-11). These levels correspond to the p and 2s-1d shells
(except the level 14 which is the lowest particle state from the
2p-1f shell).

two by essentially exciting the odd particle from the
£2-+[2117] level up. This places the second excited state
(3+) about 259, lower than the measured value.
On the other hand Clegy and Foley (Cl 62) fit this
level (and the first excited -+ state) very closely by
mixing the £+ [2117] and the 3+ [2207] (levels 7 and 6)
by exciting a particle from the latter state to the former.
However, their higher excited states fit poorly. (The
important point of their calculations is that low-lying
states can be formed with this model by mixing par-
ticle and hole configurations.) However, Glockle
(Gl 64) gets a surprisingly good fit to the first six
excited states by mixing four bands 3+ [220], 3+
[211], $+[202], ++[2117 (levels 6, 7, 5, and 9). A
similar calculation has been carried out by Bunker and
Starner (Bu 64), both for Na® and for the mirror
pair Ne?-Na? with equal success. In general these
calculations do not include the vibrational parameter
b of Eq. (ITI-7a) ; however, in the mirror pair Mg#-Al%,
H, does not mix the various bands and this contribu-
tion has been added (Go 60). In this analysis the
spectra are built on the four Nilsson levels §+4 [202],
2+ [2117, 3+ [2007, +—[330] (levels 5, 9, 11, 14 in
Fig. II1-3) for the ground and first three excited-state
bands, but the $4 [2027] band (level 8) is conspicuous
by its absence. The decoupling parameters and re-
duced nucleon widths indicate a deformation param-
eter B in the range 0.3 <8 50.4. In carrying out the
fitting procedure fourteen parameters (including the
positions of the band heads) have been used to fit
twelve levels. The moment of inertia parameters
712/29, are different for each band, the difference being
as much as a factor of 2. This agrees with the intuitive

notion that the moments of inertia of such a rotating
system are larger for higher excitations (9, increases
monotonically with band-head energy). Bhatt (Bh 62)
has done a consistent calculation for most of the odd-4
nuclei in this shell using band mixing but with the same
moment of inertia for each band. While he obtains
“remarkable agreement” with a general rotational
model the agreement is much poorer than Gove (Go 60)
gets with the Nilsson model. However, Bhatt made no
attempt to include the effect of deformation vibrations
in his calculation.

We now turn to electromagnetic transitions and
static moments of the model. The multipole operators
are (Bo 53)

T(EN) = Eeﬂ'j)\ Vau(85, 05) + (3/4m) ZeRo*arty,,
J
(II1-17)

7 2
T(M)\) = z—e—mc > [gss—km gzl] V(Y05 ¢5)

4
mc A1

where in Eq. (III-17) the recoil contribution has been
omitted in the first term. Here the sums are the con-
tributions of the extra-core nucleons and run only over
those nucleons taking part in the transition. The second
terms in each equation refer to the core contributions
and their matrix elements are similar to those dis-
cussed in Sec. II. From the discussion there the electric
dipole transitions are due to single-particle terms in
Eq. (III-17) and yield little concerning the model.

Magnetic dipole transitions, on the other hand, are
important here and in fact the diagonal matrix ele-
ments of Eq. (ITI-18) were perhaps the first aspects
studied of the interaction between surface vibrations
and the extra-core particle both in weak coupling
(Fo 50) and otherwise (Bo 51, Da 53). Let us consider
the magnetic dipole moments first and then the transi-
tions. For this case A=1 and the dipole operator of
Eq. (III-18) can be simply written as

o [L@) -V (Y0, 0)) dv, (ITE-18)

(II1-19a)

where gr can be taken from the measured value of the
neighboring even nucleus or for convenience may be
taken as Z/A. Making use of Eq. (III-1) we obtain

v=grl+(g1—gr)j+ (&:—g1)s
=grl+ (g:—gr) j+ (61— 8:)1
since j=1+s. The magnetic moment is then
p=grl +[K*/(I+1) J{gr—gr+ (—1)}(2I+1)
X[ (gi—gr)a+(—1) (g.—g) ;dz(fjax,g}, (I11-20)

p=grL+gi,

(I1I-19b)

where Kgx= (NIIK | gil.+gss.| NIIK ), the a;q13 are
the normalized expansion coefficients of the Nilsson



functions, and the decoupling parameter is defined in
(II1-9c). This can be written more compactly (Ad 56,
Ke 59)

u=grl+[K?*/ (I+1) J(gx—gr)
X[14 (= 1) =427 +1) bodx 5 ]-

Thus there are three unknown quantities gg, gr and,
if K=1%, by which would require three measurements
in the same nucleus. If one is willing to assume that
the core gyromagnetic ratio is the same in an odd nu-
cleus as in its even—even neighbors, then for K>3
ground states gx can be obtained from a measurement
of the magnetic dipole moment.

In order to assign all of the magnetic dipole properties
of an odd-4 nuclcus in a consistent manner it is neces-
sary to make use of two magnetic dipole measurements
(or three if K=1%). At present, it is best to take besides
the static dipole moment of the ground state the M1
transition probability which is

T(M1:I—~I;) = (16x/9) (k/%) B(M1: I,K—I;K;).
(IT1-21)

(IT1-20a)

The reduced matrix element is most easily evaluated
by introducing the spherical tensor of rank one,

Gu= (g1—gr) jut (g—g1) Suy

which is the only part of the operator u that is effective
in inducing the transition since we saw in Sec. II
that the even-even core does not undergo M1 transi-
tions. The reduced matrix element is then

B(M1: I,K—I;K;)
= (3/4m) (ehi/2mc)*CX(IAI;; Ky, Kj— Ko, K)

X | LKy | Gryx; | 1K)
X[+ (= 1)74(21:4-1) bo 0k, 30k ,.4] 1%

where

(I11-22)

Qr+1)-, I;=1,—1,
dr,= 1, I;=1,;,
—(ZIZ—I"].)“I, If=11+1

Therefore the evaluation of this reduced matrix ele-
ment for any magnetic dipole transition (or two tran-
sitions if K=13) yields enough information (with {u))
to obtain the magnetic parameters. In practice the
B(M1) are not directly measurable since the large
collective enhancement of the E2 transitions causes a
great deal of mixing for transitions in which AI=1.
The experimental quantity which is measurable in
such a case is 6% the ratio of £2 to M1 gamma-ray in-
tensities. For the rare-earth-deformed nuclei this ratio
has roughly the range (Be 60a) 1072<46%<10. For
transitions within a K band, ¢ is easily evaluated from
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Egs. (II1-21), (I11-22), and (111-23) below:
#(I—I—1)=T(E2: [—I—1)/T(M1: [—I—1)
= (3/20) (mwQo/B){[(I—1) (I+1) I*
X (gx—gr) (14 (— 1) +4bode 3 1172,

where Qp is the intrinsic quadrupole moment of the
nucleus (see below). The sign of 6 is defined (Ad 57)
as the sign of

(gr—gr) [1— (—1)"*5bodk 3 .

In practice one must evaluate the additional pa-
rameter Qp which is most easily done by Coulomb ex-
citation and also measure the intensity ratio of the
cross-over to cascade transitions from the second (/=
Ig+2) rotational level. Knowing (u) then yields the
magnetic parameters. Table ITI-3 gives these for a
number of nuclei in the deformed regions.

There has been some criticism that 6% can be deter-
mined only with a relatively large error so that the
gyromagnetic ratios determined this way (i.e.,, by
Coulomb experiments) are not as reliable as when the
mean-life of the first rotational level is determined
(Be 62). Gyromagnetic ratios measured in this way
are also given in Table ITI-3; the overlap of observed
values being in general within experimental error.

For electric quadrupole transitions in odd nuclei the
reduced matrix element for transitions within a K band
is

B(E2: I—I;) = (5/167)eQ2C(I21;; KOK).
(I11-23)

From this relation come the many intensity rules for
E2 transitions. For instance for Coulomb excitation
from the ground state to the first and second excited
states of a rotational band one has

B(E2: I,—I,42)/B(E2: I,~I,+1)
=2(1,4+1)/1,(21,+3),
while for decays of the type discussed above one has
B(E2: I—-I—1)/B(E2: I—>I—2)
=2K2(2I—1)/(I+1)(I—14+K)(I—1—-K).

Transitions between bands built upon different in-
trinsic states can also take place. In general the re-
duced matrix elements for a transition from the state
| E1[¢K1> to the state I Ef]fo) is

B(\: I,K—IK;)
= | CUMNy; Kiy Ki— Ky, Kp) (Kr | TP\ gk, | Ki)
+ (=) IHHC N — Ky, KKy, Ky)
X(K; | TPy gor, | —Ki) 2, (111-24)

where the relation involving the coefficients Cjq of Eq.
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TasrE II1-3. Magnetic properties of some odd-4 nuclei, the magnetic dipole moments are given in units of nuclear magnetons.

Nucleus (™) 52 Sign & Zr 4 Reference
Euss 1.507 0.47 + 0.452 0.664 Be 60a
0.45 Be 62
Gdss —0.28 0.038 - 0.34 —0.54 Be 60a
Gd? —0.37 0.040 - 0.22 —0.56 Be 60a
Thise 1.52 0.02 + 0.24 1.53 Be 60a
0.44 1.37 Be 61a
Dyt —0.375 0.025 - 0.25 —0.311 Be 60a
Dy 0.52 6.7 — 0.243 0.194 Be 60a
Ho!6s 3.29 0.031 + 0.30 1.120 Be 60a
Ere7 —0.5 0.106 — 0.124 —0.219 Be 60a,
Tm!? —0.21 0.020 — 0.38 —-1.79 Be 60a
0.26 Be 62
Ybi7 —0.665 0.047 — 0.20 —0.453 Be 60a,
0.35 —0.52 Be 61a
Lul® 2.0 0.22 + 0.30 0.65 Be 60a
0.31 Be 62
0.29 0.65 Be 63
Hi 0.61 10+5 — 0.215 0.162 Be 60a
0.20 0.17 Be 63
Hfo 0.47 0.15 — 0.203 —0.172 Be 60a
0.28 Be 62
Tal8t 2.340 0.198 + 0.327 0.767 Be 60a
0.31 Be 62
Rel8s 3.144 0.033 + 0.413 1.597 Be 60a
Rel®? 3.176 0.030 + 0.413 1.617 Be 60a
0.43 Be 62
Iyt 0.17 0.14 0.46 —0.12 Be 63
U2 0.51 0.32 0.16 Al 61
(111-6), be
Cirg=(—1)"H3Cg, o/ I(2I—1) (2I-2)
. Mo= —
has been used (Ke 59). In (III-24) the first term is the (2I+4) (2I+3) (I+1)

more important for the second term only contributes
when A\>K;+ Ky, the less usual case which we shall
consider.

For a series of transitions involving the same initial
and final intrinsic states the nuclear matrix elements
will be identical so that the intensity ratios will be but
ratios of the squares of appropriate Clebsch—Gordan
coefficients. These interband transitions are then useful
in assigning quantum numbers to intrinsic states.

The next higher static multipole moment is the
magnetic octupole moment, (Q), which has been
measured for only seven nuclei. There have been two
theoretical investigations of (2) from the point of view
of this model. In one (Su 57), the extra particle angular
momentum j was taken as a constant of the motion
even though the particle potential was not taken as
spherical. A self-consistent calculation, within the
context of the Nilsson model has been carried out by
Williams (Wi 62) who found the octupole moment to

6 h
x[5 geRi44(3) — G(1, N, B) ]
mwo

where Ry is the nuclear radius, %/mw, the square of the
intrinsic oscillator length, and the total particle gyro-
magnetic ratio g() is defined as

g)=1" gj A% Loget (2g0/14-1) (I—0) ],

the A1 o being those of Nilsson. The function G(Z, N, )
is a complicated function of its arguments, given in
explicit form by Williams. Since only two octupole
moments have been measured in nuclei near a deformed
region most of the results of this calculation could only
be predictive in nature. In Table ITI-4 are tabulated
the results in the deformed regions. Williams has made
use of g, as a fitting parameter. These values are also
tabulated.



The electric hexadecapole moments, (Q*), have also
been investigated from the stand-point of the strong-
coupling collective model (Su 57a), but again the extra-
core particle’s angular momentum j has been taken as
a constant of the motion. To date no electric hexa-
decapole moments have been measured.

Another set of selection rules governing gamma-ray
transitions in odd-A4 nuclei are those which depend
upon the asymptotic quantum numbers and are rigorous
in the limit of infinite distortion. However, for actual
nuclei they are only approximate, hence if not fulfilled,
do not prohibit a transition but only slow or ‘“hinder”
it. These selection rules for some of the more common
multipole transitions are given in Table ITI-5 and a
more complete table in Ref. Al 5§7.

A significant detail of the Mg®-Al® spectrum is that
AK=2. This is a situation for which there is no Coriolis
mixing, but such mixing and only such mixing does
occur for an asymmetric-rotator Hamiltonian. That
such an approach might be fruitful for the deformed
region in the 2s-1d shell can be seen from the asym-
metric-model parameters for Mg?. The agreement
with this model is not as good as one finds in the rare-
earth region; it is sufficiently so to encourage the appli-
cation of an asymmetric-core model to odd-4 nuclei.

Newton (Ne 60, Ne 60a) has extended Nilsson’s
single-particle calculation to asymmetric-oscillator
potentials by relaxing the condition w,=w, in Eq.
(ITI-11). He finds that the preferred shape for model
(as distinct from actual) nuclei near N=Z=12 and
20 is asymmetric with some evidence for a similar
situation near 4=44-46. This calculation has been
extended to the N=5 shell (Du 62).

An extension to all of the odd-4 nuclei in the 2s-1d

TaBLE IIT-4. The theoretical and experimental values of the
magnetic octupole moment, (Q), in units of nuclear magneton
barns, and the deduced value of the single-particle gyromagnetic
ratio, g, for nuclei in the deformed regions from Ref. Wa 62.

Nucleus (@ )exp {Q)hy g
Mg —0.16 —3.40
Al 0.019 5.30
Cl —0.020 —0.020 2.75
CI7 —0.015 —0.015 2.90
Eu'® —0.020 3.80
Gds 0.044 —2.42
Gds7 0.054 —2.90
Thi® 0.054 3.13
Dyt 0.086 —3.20
Dy6s —0.034 —2.24
Hol6s —0.235 2.01
Er67 0.112 —3.42
Ybi73 0.003 —3.11
Lul™ 0.007 3.29
Hfm —0.032 —1.24
Hfre 0.061 —2.30
Tals! —0.001 3.41
Retss 0.064 3.84
s —0.061 —2.01
U 0.121 —2.10
Np27 —0.409 5.59
Am?2! —0.031 3.72
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TaBLeE III-5. Asymptotic selection rules for electromagnetic
transitions of multipole order E1, M1, and E2.

Multi-  Oper-
pole ator " Ar AK AN An, AN
E1l rV, £1 yes +1 0 1
0 yes 0 1 1 0
—1 -1
M1 b +1 no 1 { 0} 1 1
2
1 0 —1 1
—-2
Su +1 no 1 0 0 0
byy Su 0 no 0 0 0 0
E2 7Yy £2 no 2 0
+2
+1 no 1 { 0 1 1
2
1 0 -1 1
-2
0 no 0 2 2 0
-2 -2
0 0 0 +2
0 0 0 0

shell has been carried out (Ch 63b) with, in general,
much better agreement with experiment than Bhatt
(Bh 62) has obtained with the simpler symmetric-core
model. Because of the complicated overlapping band
structures found in this region, the calculation was
carried out initially with only the assumption that
the core is rigid against deformation vibrations. The
effect of B vibrations has since been examined (Ro 64).
The Hamiltonian is that of Eq. (III-2) with the po-
tential identical with Nilsson’s [Eq. (III-11)] except
that w,w,. The nondiagonal part of the Hamiltonian
is then

_py|  fmi T
(H—HO)/ﬁwO—P IZ; [Sin ('Y—27l'k/3)]

—(Br*/k) [Ym) cos Y+ (Yoot ¥Vss) %Y]

—2l.s—pul.  (III-25)

The parameter P is a strength parameter for the
core defined as

P=7/8ByFiwo.

Initially u and « were taken to have the Nilsson values
(ue=0, k=0.05). The model parameters are then P
and the usual 8 and v which were taken to have ranges

P>0, B>0, 0°<y<60°.

The Hamiltonian (III-25) shows that no change in
the energy levels can arise, once these parameters
have been picked, by changing « since changing it by
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2 = g =™ a factor 1/f merely changes 8 to B/f and 7wy to fliwo.
g S S oo < S looo Thus changing « only changes the calculated values of
g I [ the quadrupole moments and FE2 transition prob-
2 | = o abilities.

Bus ] ¢ : o The Hamiltonian was diagonalized in terms of the
58S basis of Eq. (IIT-6). The Pauli principle was taken
?,‘L e 3 B into account by a basis truncation procedure, in which
28| = < < e basis elements were removed which contained com-
88 2~ | 7 48 ponents of filled Nilsson levels. The results of such
ol ™ ° e e a calculation are apparently quite sensitive to this
g2 o ® procedure since a similar calculation with a different
27 &S 83 >9< method of truncation (Wa 61) failed to give such close
g2 < o S || agreement with experiment.

29 For each odd-4 nucleus in the shell, with more than
2= T three levels with measured spin and parity, the model
%E ”2 2 s g 2 § 2 o w § = >2< ‘Ti parameters were determine.d from the lgw energy-level
SEN&[F] < - o N = ~Oo o= ¥ structure. The state functions so obtained were used
e f 2 - e to calculate the static moments (u), (Q) and (@) as
g5 2 i well as the mean life of certain of the levels. To im-
§°§ Flel, g L >2< L prove the agreement between measured and calculated
§§ . S v ®© 9% quadrupole moments x was varied until this value
é'g e - i agreed with experiment. In Table III-6 are tabulated
93 o “ o o experimentally measured values as well as the calcu-
33 = b= s sz g8d = lated ones. )
52 E|c°S i3s3 °°%3 Beta vibrations are added by simply augmenting
=g -~ ! I : the Hamiltonian of Eq. (III-2) with a vibrational
:ég e & S s . 9m || term H, (Ro 64), where

oo d| s @ = S o °eeegs .

& : J2i z__ﬁ_l_ﬁ( 33>+lC(B—ﬂU)2

¥ T Te e\ o) '

£ =N ~ o

ge Bl® < § i’ 8 i i‘ j“i £ 3 f i Unfortunately, the equations cannot be separated so
TR - T T I T that a perturbation approach must be used, making
qu/: = ~ ~ " use of the rigid-core calculation as the zeroth-order
g ° gla S 3 8 N% .8 . % one. In general, this procedure improves the energy-
%% BlT o™ 9 =99 9 " 72l level fit as well as agreement between th];aory afmd e};c-
s eriment. Such agreement is quite striking for the
g}'é 'L: % o 2 o oo o me ﬁﬁrror pair Ne?-Na” the parameters for which turn
g8z 2|vy dddfdaaad] oy (t)ooé); 1;:0608366():0:2053?,7:803"6 u&ogg (Nﬁﬂ);
= P=0. 0=0. v=20° u=0. a?'), where
a‘:: . 5|58 53I8EBETIE o w is the s"tiffness parz;meter defined in Sec. II.

. 2 2|8 AT IIDA This model cannot account for negative-parity levels
lﬁ;‘f - found in the spectra in this shell. Using the parameters
> P R N N found for the mirror pair Mg®-Al® the calculation
:g% Tle s . ; ; ; ; 2 ;’ ;’ 5 ; ;‘ was extended into the 2p—1f shell (Ch. 63b) and the
EN: 2 lowest N =23 levels were tens of MeV hlghe.r than the
ST © 05 o0 OoWO OO WO negative-parity states found in these nuclei. Such an
Bk a|l" 8 2838388883254 explanation for these levels has been made with the
58 S e e e S e eSS SS S| symmetric-core model (Li 58). _

§E o o = 4o oo oo oo One great dlfﬁculty.whld_l arises in attempting to
R A | B8 S58588835%8 ext?qd these calcula.tlons' into the rare-earth and
ge SIS ©c o oo ocococooo actinide de'forrpec% regions is the fact tha_t a very‘]arge
S number of intrinsic particle levels are available to inter-
8 act. If the rotational energies are small compared with
; g e % % % T g . . oa the single-particle excitation§, then a useful simpli'ﬁca-
= SO & Sz ZZ S <dn AR O tion would be to neglect the interactions between single
§ “ particle levels. Hecht and Satchler (He 62) have done
H just such a calculation for the N=4, 5, and 6 oscillator



shells and applied it to nuclei in the upper end of the
rare-earth deformed region (specifically to Re'5, Ir'®
and Pt'¥®). They have tabulated the matrix elements
of the rotational Hamiltonian [the first terms of Eq.
(II1-2) ] as well as the level ordering for odd-proton
and odd-neutron nuclei in this region.

In fitting the model to Pt!% they have available three
single-particle levels (which is also true of the Nilsson
model). The energy-level sequence and spacing re-
sulting from using any of these levels are in good agree-
ment with experiment, at least for the four negative-
parity levels below 260 keV. As would be expected the
magnetic moment of the ground state is in reasonable
agreement with experiment, but only one set of pre-
dictions (built on their particle state 115 with 8=0.1
and y=30°) yields reasonable agreement with the
magnetic dipole transition probabilities. However, the
model fails to explain the cross-over E2 transitions
from the upper levels to the ground and first excited
states.

This model has been applied to calculating the
magnetic dipole moments of W, Os® and Fe¥ and
the energy levels of W' (Ch 63a). The magnetic mo-
ment is somewhat improved over the symmetric-core
calculation which is perhaps not surprising. The cal-
culation does improve the gamma-ray branching ratios
in W but values of v obtained for this nucleus are
not consistent. The final result is the negative one that
the best state functions do not have y=0°.

A similar calculation (Pe 61) has been applied to
Cs'® but since the region is probably not one of strong
equilibrium deformations the result is probably not
meaningful.

In an early investigation of odd-4 nuclei with asym-
metric cores Davydov (Da 59a) coupled a single j=%
particle to such a rotating core. Here j is taken as a
constant of the motion but since y5£0, Q is not. The
results have been compared with W3, Similar calcu-
lations for j=% and applied to the nuclei Th®? U2
and Np?” (Da 61b) and with j=7% and applied to Th*!,
Cm?®#, and Bk*® (Da 62a) have been reported. Taking
j to be a good quantum number is of questionable va-
lidity and casts considerable doubt on the results.
Davydov has also considered the case of such a model
with weak coupling (Da 60), where j will be an “almost
good” quantum number.

Another similar model of odd-A4 nuclei is called by
its authors the elastic ellipsoid model. The kinematical
model was first studied (Os 55, Os 56, K1 56, K1 57)
and then the dynamical model was developed (Os 58),
and is only incompletely studied, as no detailed solu-
tion of the dynamical problem has been given and the
only eigenfunctions available are empirical ones. As
usual in simple collective models the basic assumption
is that the nucleus can be thought of as an even-even
core the collective behavior of which is described by
the three Euler angles and a deformation parameter,
8, which is defined as the ratio of the semi-axis along
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the 3 direction to the radius of a sphere of the same
volume. The extra-core nucleon is assumed not to par-
take of the collective motion. Also the dynamical
properties of the core are determined only by a fraction
k of the nucleons. This is similar to the hydrodynamic
model where the moments of inertia contributions come
only from lobes of the deformed core.

To obtain the model Hamiltonian the kinetic energy
is transformed from laboratory to body coordinate
systems and then a shrinking transformation is applied
to transform the distorted core to a spherical distribu-
tion. That transformation matrix is given by

& 0 0
S=1 0 & 0
0 0 ot

which is volume conserving. The Hamiltonian can thus
be written

HcorezHR_l_Hv;

and Hp is identical with Hyy, of Eq. (II-10) while
H, depends only upon & which is an exact measure of
the spheroidal deformation and for small deformations
can be related to 8 by

S1+B(5/4m)h.

For small deformations then and taking K=0, this
model reduces to the axially symmetric hydrodynamic
case. The eigenfunctions are, however, altogether
different, being

| IM )= (1—a®)} | IMLjIN )+a | IML'{UN'),

where the mixing parameter as well as the quantum
numbers LjIN and L’j'U'N’ are determined by fitting
the observed magnetic dipole and electric quadrupole
moments.

The Nilsson calculations have been extended to
include the motion of particles in a potential of the
form given in Eq. (ITI-11) but with Vy(8, ¢) and
Y3(0, ) terms added in order to investigate the octu-
pole deformation and its stability in even nuclei (Du 59,
Du 61, Ru 63). These calculations are an extension of
earlier suggestions by Lee and Inglis (Le 57) on the
octupole deformation. However, since the particle
potential with ¥y and V3 terms added is not an even
function under point reflection, the particle eigen-
states must be of mixed parity. This point is not dis-
cussed in the particle calculations (Du 59, Du 61,
Ru 63) but it is of fundamental importance inasmuch
as parity is certainly a good quantum number for
nuclear states (Mi 64).

B. Models of Odd-0dd Nuclei

For odd-odd nuclei it can be assumed that the
nuclear properties for the most part are determined
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by the odd neutron and odd proton, each moving in
its own deformed well and associated with the projec-
tion quantum number @2, and ©,. For strong coupling
there are two possibilities for the nuclear ground state
(Bo 53),

Ki o= 2= | =ty |, (I11-26)

and the energies of these two states are separated by
an energy of the order of rotational energies in the
given region. Since such energies are small compared
with particle excitation energies, one of these can be
expected to be the ground state while the other will
be a nearby excited state. Thus assigning the individual
quantum numbers €, and , gives the head of two
low-lying rotational bands of the form

L= lQn'—'Qplr |Qﬂ~9pl +17 lﬂnﬁﬂpl +2) Yy
L=0.4Q, QutQt1, QutQ,t2,---.  (I1-27)

It is quite reasonable to expect that for a given odd-odd
nucleus the odd-neutron orbital will be the same as in
the neighboring odd-4 nuclei with the same number
of neutrons, and similarly for protons. This original
conjecture (Bo 53) has been well borne out and Peker
(Pe 57) has found that the ground states of odd-odd
nuclei in all three deformed regions can be determined
by this method being either I; or I, and often the first
excited state is then I, or I;.

The next question, of course, is which of the two
possibilities in (III-26) yields the ground state, a
matter which should give information concerning the
interparticle forces in nuclei. This problem is analogous
to the one in the j— shell model which leads to the
Nordheim coupling rules (No 50, No 51) which are
that

I= ljn_jp I: jnzln:t%: jpzlp:F%,

,jn—jp l SI—<-jﬂ+jpy

the former being known as the strong rule. Essentially,
these rules state that the intrinsic spins of the last
neutron and proton tend to align.

This reasoning has been extended by Gallagher and
Moszkowski (Ga 58) to deformed nuclei by assuming
that =, and 2, the projections of the intrinsic neutron
and proton spins along the symmetry axis, always
couple parallel. This assumption depends upon the
fact that for very large deformations, A and 2 are
separately good quantum numbers, while for actual
nuclear deformations these are only approximate
quantum numbers. However, these coupling rules de-
pend upon the asympototic quantum number assign-
ments. This then leads to the coupling rules.

].n:ln:t%y jp:lpd:%a

I=|Q2—Q|; Q. =A,+3% Q=A,F3%

I=0,4Q,; Qu=A+£3  Q=A,+3  (II1-28)

Gallagher and Moszkowski have shown that these

coupling rules account in general for the ground-state
spins of deformed odd-odd nuclei (they actually con-
sidered all odd—odd nuclei and found the coupling rules
were violated mainly in regions near closed shells,
i.e.,, not in the deformed regions). They made their
particle assignments from the previously discussed
Nilsson diagrams, however, there are some cases where
the last odd-particle configurations are not the lowest.
But even here the lowest lying level is coupled so that
the intrinsic spins of odd neutron and odd proton
couple parallel (Ga 62a).

One noteworthy breakdown of the coupling rule
(I11-28) is in Al* in which the prediction is for a 2+
ground state, but 34 is observed. However, the 2+
state is very close at 31.2 keV (the second excited state
is at 974 keV). Sheline (Sh 56) was the first to point
out the probable existence of rotational levels in this
nucleus, however, some doubt has been cast upon his
analysis (Mac 60).

Making use of the coupling scheme (IIT-28) and
the notion that odd neutron and proton move inde-
pendently each in their own potential well permits us
to write the state functions for odd-odd nuclei

| EIMK Y=[ (2I+1) /162" Y, Cj,0,Ci.xc¥0,

indy
X[x®,0,x? sk Fo,Dus™
(=1 iy ®; o0 x®D; ke, Du—x"], (111-29)

where the Cjqo were defined in Eq. (ITI-5a), and the
=+ sign is determined by the particular coupling rule
used. From this product wavefunction we obtain for
the energy eigenvalues

E(IMK) = Ep (Qp) +En (Qn) +Erot (1) = Epnir+Erot ([>
(IT1-30)

so that for a given set of particle states the rotational
band has the familiar 7(/41) dependence. [We neglect
any effects due to vibrations of the core. If necessary
we could append a vibrational function ¢(8), say, to
(I11-29) and add E.s to (II1-30).] In Table III-7
are listed the odd-odd nuclei and the assigned odd
particle states.

An interesting special case of Eq. (III-29) occurs
when both particles couple in such a way that K=0.
Then Eq. (III-29) is

| EIMO)=[(2I+1)/167"F 3 C;,0,Cio s,

gy
X[XP 50, P2,
- (— 1) iy @, o 3@ o ] Dyl *. (I11-29a)

The two particle terms in the square brackets are not
identical so that the enegy spectrum for a given pair
of intrinsic states does not display the usual rotational
I(I41) dependence; however, the even-spin and odd-
spin bands do and they are displaced slightly one with
respect to the other so that the energy eigenvalues can
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Tasre III-7. Ground-state spins, odd-neutron and odd-proton states for some deformed odd-odd nuclei. Where known similar
information for excited bands is given along with the band-head energy.

Odd-particle configuration

Odd-particle configuration

Band head Band head
Nucleus (keV) In Proton Neutron Nucleus (keV) Ir Proton Neutron
F2 0 2+ 1402207  34[211] Tm1s 0 24 14117 54[642]
Na2 0 3+ 3+[211]  3+4[211] Tm16s 0 3+ 1404117 3+[633]
Na2 0 4+ 34[211]  §4[202] Tmio 0 1+ 144117 3-[521]
3 5
472 1+ $+[211]  §-+[202] T2 0 92— 1+[411]  $+[512]
Al 0 5+ $+0202]  3-+[202]
229 0+ s40202]  3+[202] Lu” 0 4— I4[404]  2—[521]
Al 0 3+ $+[202]  34[211] Lu' 0 1- 3+[404]  §-[512]
31.2 2+ 5402021  i4[211] 1 6— 3+[404]  §-—[512]
P® 0 1+ 1402117 34[211] Lu'® 0 7— 3+[404]  3-[514]
~200 1— I4[404]  Z—[514]
P 0 1+ 142117 34[200]
Tal’s 0 7— 24-[404] 2—[514]
CI 0 0+ 3+[202]  $+[202] ? 1+ 3-[514]  §—[514]
143 3+ $40202]  $+[202]
Tals0 0 9— $—-[514] $-+0624]
Cipe 0 2+ $+[202]  3+[200] 212 1+ 1414041  $4+[624]
Eul® 0 3— 3+[411]  §—[521] Tate 0 3— I4[404]  1-—[510]
55 0— 5-[532]  s4+[642]
Ret® 0 7+ 5404027  3+[624]
Euts 0 3— 3+[411]  §-[521] ~200 24 54[402]  24[624]
Thiss 0 3— $4+0411]  §-[521] Reist 0 3— $4+[402]  3-[510]
Tb 0 83— s[4l §-[521] Re® 0 1= §+[402]  §-[512]
Ho'® 0 5+ I-[523] §-—[521] Re1® 0 1— 54[402]  3-[512]
169 44+ 11/2—[505] 2—[512]
Ho 0 1+ 7—-[523] $—[523]
90 6— 1-[523]  54[642] Iriss 0 2— 3+[411]  §-[512]
Ho'® 0 1+ 3-[523] §-[523] Tz 0 4—  FH[A02]  3-[517]
139 6— $—-[523]  §+[642] Trio 0 1— $+[402]  3—[512]
Hos 0 0— 1-[523]  %4[633] Am?2® 0 1— 5-[523]  54[622]
12 7— 1-[523]  %+[633] 48.6 5— §—[523] 54[622]
190 3+ 1-[523]  1—[521]
419 1+ 1-[523] 5—[523] Bk 0 2— §—[521]  3+[620]
499 4+ 1-[523] 3-—[521] 85.2 T+ #4+0633]  34[613]
99 5— 3-[521]  Z+4[613]
Tm® 0 1+ 7-[523]  §—[523] 382 6+ s4[642]  Z4[613]
be written as The low-lying level structure of this last nucleus
has been studied by the Ho'% (d, p) Ho'® reaction and
=0) = F... (even) ’
E(IME=0) = Epis®*+Ewo(I) I, even some 31 levels below 820 keV have been found (St 63).
= Epair®®+E(Io) I, 0dd. (III-30a) By using rotational energy systematics alone these

This displacement of odd and even spin values in
K=0 rotational bands has been observed in Am?¥
(As 60) where the spin-1 state is displaced down-
ward relative to the spin-O state. It has also been ob-
served in Ho'® where the spin-1 state is displaced
upward relative to the spin-O state making the latter
the ground state (He 60). The direction and the amount
of this displacement depends upon the details of the
interaction between the odd nucleons.

authors have been able to fit a large number of these
levels into four rotational bands the lowest two being
the spin-0 and spin-7 bands built upon the odd proton
and odd neutron Nilsson levels 2— [5237], 2+ [633],
respectively. Two other bands with K=3 and K=4
are built on the levels Z— [5237, +— [521]. The K=0,
7 bands have the same moment of inertia while the
K=3, 4 bands have a different and smaller moment
of inertia. While making spin and parity assignments
from energy systematics alone is a doubtful pro-
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TasLe IIT-8. Comparison of experimental and calculated values of the magnetic dipole moment of deformed odd-odd nuclei. Equa-
tion (IIT-31b) has been used for the calculations. The tabulated values of gz are from either Table II-8 or ITI-3. When no value is

listed Z/A was used. :

Q Hexp Mty

Nucleus R 4 B8 (barns) (nm) (nm) 2R
F20 2 + 2.0924-0.002 0.886
Na2 3 0.21 1.746 1.747
Na2 4 0.27 1.6884-0.005 1.69
P32 1 0.13 —0.2523 —0.25

+0.0003
CI 2 —0.25 —0.0168 1.28539 1.28

+0.00009
Eut 3 0.27 1.91240.003 1.91 0.21
Euls 3 0.22 2.1 2.1 0.35
The 3 0.32 1.4 £0.5 1.45 +0.18 1.96 0.367
Threo 3 0.32 1.9 £0.5 1.60 £0.25 1.90 0.28
Hot66m 7 0.32 3.3 £0.5 3.74 0.31
Tm!7 1 + 0.614+0.05 0.26 £0.02 0.26 0.31
Lu'™ 7 0.32 8.0 0.7 3.07 +0.28 2.81 0.304
Am?? 1(K=0) 0.30 0.33 0.39 0.39

cedure, this case is reinforced somewhat by making
use of previous spin and parity assignments of a few
of the lower levels (He 60, Es 61).

A similar rotational structure has been investigated
in the lowest deformed region, in Na* also by the (d, p)
reaction on Na* (Da 64). Again Nilsson levels are
assigned the odd proton and the odd neutron; however,
here most of the levels below about 4 MeV are con-
sidered to arise from the assignment of the odd neutron
to any one of four different levels (numbers 5, 8, 9,
and 11 in Fig. ITI-3).

In order to explain the energy difference between the
ground states of F'® Na? and Al* which have T=0
and the first excited T'=1 state (/=04), a more
specific model has been introduced (Ke 64) in which
the two odd particles are coupled to a deformed (but
symmetric) even—even, rotating core. The Hamiltonian
is then

H=(12/290) L*+H p,+ H po+ V2
= (#2/290) (1= ji—J2) *+Hp,+Hp,+ Vs,

where Vis is a residual two-body interaction which in
the cited calculation is taken as having a Gaussian
radial dependence while the spin-isotopic-spin part
has the Rosenfeld (Ro 49) mixture. If AE be the energy
difference between these lowest 7’=0 and 7=1 states,
then
AE= 69— (72/90)Q,

where

So=(T=1|Vi| T=1)—(T=0| V| T=0).

The calculated values of 8¢ quantitatively reproduce
the experimental values of AE.

The magnetic dipole moments can be calculated
on the basis of the model of noninteracting odd par-
ticles by taking the sum of two terms like Eq. (III-20)
one for the odd neutrons and one for the odd protons.
For the asymptotic quantum number description, the
magnetic dipole moment is (Ga 58)

u=[I/(T+1) gr== (Ap+g:7Z,) F g2 ],
(II1-31a)

where g, is usually taken as the free proton or neutron
value and the upper and lower signs are determined
by the coupling rules. Equation (III-31a) with
ge=Z/A has been applied to almost all odd-odd
nuclei (Ga 58); however, a calculation only for de-
formed regions has been done by Hooke (Ho 59) who
used the relation

w="L1/(141) Jlgr+ (T )+85" (sp ) 85" (Su3) ],
(III-31b)

taking gr=0.40. In Table III-8 the experimental and
theoretical values of the magnetic dipole moments of
deformed odd-odd nuclei are tabulated using Eq.
(III-31b) for the calculated values. Wherever possible
gr was taken from either a neighboring odd-A nucleus
or an even—even nucleus as a simple way to take into
account any pairing effects in the nuclear core. The
deformation B is obtained from the experimental value
of Qo or 1 and these also are tabulated. The appropriate
single-particle Nilsson levels are given in Table III-7.

Gamma-ray transition probabilities can be calcu-
lated using the state functions of Eq. (III-29). The
result differs in one important respect from the similar
case in odd-4 nuclei which leads to Eq. (III-24). In



this case there is an integral, called by Gallagher the
overlap integral (Ga 60), in addition to the Clebsch—
Gordan coefhicient and the matrix element of the tran-
sition operator. The overlap integral contains only the
initial and final nontransforming particle state func-
tions and is zero unless they represent the same state.

Thus, for odd-odd nuclei an additional type of for-
biddenness (in addition to K forbiddenness) arises
involving two-particle transitions. Such a situation
has been called “non-overlap forbiddenness” by
Gallagher who has discussed the relatively few meas-
ured gamma-ray transitions in deformed odd-odd
nuclei (Ga 60).

IV. ALPHA AND BETA TRANSITIONS

A. Alpha Transitions

The collective models described before have been
successfully applied to explain some of the puzzling
details of alpha-decay fine structure. It was early
recognized that the relation between alpha energy
and parent mass number showed shell effects very
clearly, the energy increasing as the mass decreases
until a shell was crossed, at which point there was a
precipitous decline in the decay energy (Pe 50). How-
ever, away from the shell edges the ground-state—
ground-state alpha decay in even—even nuclei was quite
well described by the Gamow—-Condon—-Gurney model
of the penetration of charged particles through a spher-
ically symmetric barrier (see Ref. Pe 57b for a general
review of alpha-decay theory and a compilation of ex-
perimental results). The decay from ground state to
excited states in such nuclei did depart from this theory
and in some cases to a considerable extent (As 53).
The fact that this was not due simply to the added
angular momentum carried off by the alpha particle
was indicated by the fact that the alpha half-lives to
the second excited states were increased by too great
an amount relative to the ground state (often hundreds
of times longer). It was suggested that a deformed
potential barrier might give rise to such half-life de-
partures from simple theory (As 53). Indeed, earlier
calculations had been reported in an attempt to ex-
plain just such fine-structure details (Pr 49). (For an
early discussion of nuclear rotational motion and alpha
decay see Te 38.)

Probably the most puzzling feature was to be found
in the decays of the odd-A4 nuclei where the ground-
state to ground-state transitions were often strongly
inhibited whereas the simple shell model would suggest
that their decay rates should be comparable with that
of the even—even neighbors. In discussing the alpha
spectrum of Am*!, Rasmussen (Ra 54) suggested that
the ground-state-ground-state transition occurs in a
process which leaves the odd nucleon (the ninety-fifth
proton) in a state different from the odd nucleon state
of the parent nucleus, thus strongly retarding this decay
mode. On the other hand, the transitions to the third
and fourth excited states leave this odd nucleon in the
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same state as'in the parent. This is now known to be
the situation, for the ground state of Am?% has the odd
proton in the state §— [523] while the ground state
of Np? is the §+ [642] state, the §— [523] state
being at 60 keV in this nucleus (see Table ITI-2). The
notion of favored alpha decays in odd-A nuclei has
been defined by Bohr, Froman, and Mottelson (Bo 55)
as being those decays which do leave the odd nucleon
in its original state and these decays should be com-
parable with similar decays in neighboring even—even
nuclei. Thus the rate for a given decay is strongly in-
fluenced by the alpha formation factor, this factor being
greatest when the alpha is formed from a neutron pair
and a proton pair, each pair occupying states which
differ only in the sign of Q. Thus these favored tran-
sitions will be characterized by the selection rule
AK =0, no change in parity.

A more detailed discussion of the fine structure is
facilitated by introducing the hindrance factor F(z)
which is the factor by which the observed alpha half-
life is different from that calculated. The ground-state
to ground-state decays of even—even nuclei conform
to the simple theory. Their half-lives are quite closely
given by the Geiger—Nuttall rule (Ge 11)

lOg l%=A(Z) Eeff%—*—B(Z) .
The hindrance factor is then

IOg F(Z) = IOg L’;.—' A (Z) Eef{‘x—B<Z), (IV—I)

where E;: is the effective decay energy when account
has been made of electron screening. A table of FE
as well as a table of 4(Z) and B(Z) are in Ref. Pe 57b.
A more useful quantity, which might be called the rela-
tive hindrance factor f(Z), which is F(Z) but nor-
malized by taking it equal to unity for all ground-state
transitions in even nuclei, is

fl(Z)thl(Z)/Fground(Z)' (IV-‘Z)

The reduced hindrance factor is also useful for it is the
hindrance factor with the effects of the centrifugal
barrier penetrability and any effects due to the non-
central character of the interaction (important in de-
formed nuclei) reduced out.

Numerous calculations of the alpha decay hindrance
factor have been made for deformed nuclei, which are
applicable to the heavy-element alpha emitters as most
of them are deformed. Some of these studies have been
devoted only to the decay of even—even nuclei (Ra 56,
St 57a, Ro 61) while others dealt with both even—even
and odd-A4 nuclei (Fr 57, Ra 62). In general these cal-
culations have taken the deformed nuclear surface as
possessing an axis of symmetry, although two have been
generalized to asymmetric deformed shapes (Ro 61,
Ra 62). We shall outline one of these more general
calculations indicating the differences between it and
the calculations employing axial symmetry.

The essence of the problem is to calculate the pene-
tration of an alpha particle with given angular mo-
mentum through an anisotropic barrier. The system
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to be considered is the alpha particle and the daughter
nucleus; the Hamiltonian in the center of mass of the
two-body system is

H=H\+H saughter+Hint, (IV-3)

where
Ho=— (1/2M )V, (IV-4a)
H gaughter= Hrot+Hpare+Hoin (IV-4b)

and H;,, is just the electrostatic potential between
the alpha particle and the daughter nucleus. The three
terms in Eq. (IV-4b) are analogous to Hamiltonians
discussed in Secs. IT and III.

The state function for this system can be written as

| IiM )= exp (—iEt/F) D rYfufi(r)
Izl

(I)Mirir(llb 0: (2} 016)‘) ] (IV—Sa)

where ¢ stands for the parent nuclear quantum numbers
and f for the daughter quantum numbers. The variables
7, 0, ¢ are the daughter-alpha radial distance, the
angular orientation of the alpha relative to the labo-
ratory, while the 6; are the Euler angles specifying
the orientation of the daughter nucleus and the B, are
the vibrational deformation parameters. The function
&y Tiin Eq. (IV-5a) is then

®u 17 (U1, 0, @, 0, r) =[(21,41) /162 T, (B))

X 2> A1 Boxa Dl x,(05)
Mpm
Ky,i%

+(—l)lr—ij—n/ijIfo—K,(Bi) ]' (IV—Sb)

In all these calculations the vibrational term in
Eq. (IV-4b) has been neglected and attention focused
only on the deformed rotator aspects of the nuclei.
However, recent measurements of alpha decay to
vibrational states have been reported (Bj 63) indicat-
ing that this term might well be considered. The quan-
tum number Q characterizes the rotational band in the
daughter nucleus to which the decay proceeds while
v, characterizes the vibrational state. In any event by
neglecting H.i, one sets I, (8y\) =1. The nuclear sur-
face is represented by Eq. (I-5B)

2

S, ¢)=R1+ 2 a.V(0,¢")],
=2
where the g, have been defined in Eq. (II-12). [ Fréman
(Fr 57) took the surface to be axial and of the form

Sa(6') =R 1+ g‘, Br¥r(0)] (IV-6)

and kept terms for A<8 and even for positive parity
transitions. ] Corresponding to this surface the electro-
static potential (Hin;) can be expanded in the appro-
priate harmonics (Pr 49) as
2(z—2)e2 & ,
V) =T 3 V6, ) Va0, o)

u=2

with the expansion coefficients being determined by

8re
Va8, 7, ) =—

5rd nuclear volume

rllgp(,ll) Y2#(8/I’ ¢Il> drN.

One method of solving the wave equation is to use
a method suggested by Christy (Ch 55) which makes
use of a three-dimensional WBK approximation and
notions from ray optics. This involves the extremal
problem

>
/ K ds=minimum,
Y4

where p and p’ are two points inside the barrier while
K can be written as

K=K({')=k{[V(r)—8]/6}}
=Ko(7') —*—AK(?’, 0,, ‘Pl) )

the explicit form of K, and AK being given in (Ra 62)
for the asymmetric core and in (Fr 57) for the sym-
metric core.

Comparison with experiment is made through the
reduced transition probability ¢;; which is the reciprocal
of fi(Z) defined in Eq. (IV-2). Actually, the I de-
pendence of the centrifugal barrier is taken out, yield-
ing a quantity &, (Fr 57, Ra 62) which is compared
with the similar experimental quantities.

The actual numerical results depend critically upon
the boundary conditions (Ra 62). The condition at
large distances is that the wavefunction represents only
outgoing waves. However, for the condition at the
nuclear surface Froman (Fr 57), Strutinskii (St 57a),
and Rostovskii (Ro 61) take the function constant.
Rafiqullah (Ra 62), on the other hand, finds that this
assumption does not reproduce the observed Z de-
pendence of the &; which deviate considerably from
the empirical values for large /. He has taken this
boundary condition as

Yo(0', ©') =1I/OZ€2,4 Vo.(0/, &) (IV-7)
m

and used the empirical data to predict the boundary
conditions. [Rasmussen and Segall (Ra 56) solve the
coupled set of differential equations for the problem
by both outward and inward numerical integration.
In the former case, better agreement with the empirical
intensities for Cm?*? are obtained for a nonconstant
boundary condition at the nuclear surface. This is
also found true for the inward integration. ]

For even-even nuclei Rafiqullah (Ra 62) finds that,
in general,

_ Dk, Ak (Cor,+ D verakigioar)
Coot2_er-ahona—ar ’
(1/

b (IV-8)

while for nuclei having y<15° this can be simplified
since to good approximation in the lowest band Ax #~~
bo.x,. The quantities Zk,2-9 and Cik, are available in
numerical form (Ra 62).
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TaBLE IV-1. The empirical by for even-even alpha emitters calculated from the hindrance factors given in Ref. Pe 57b and the
fitted values of 8, e and e2. The calculated values of by for /=28 are labeled by* and the calculated values of Qa and Qs are from

Ref. Ra 62.

Parent

nucleus b by a1 bat B=B €20 €42 gt Q20 Qzs2
9o Th20 1.30 0.77 0.10 0.21 4.73 —16.88 0.007 10.30 2.71
92U22 1.24 0.60 0.31 . 0.24 —2.40 —72.81 0.11 12.66 1.53
uPu2s 1.02 0.22 0.30 0.18 0.24 —1.62 —23.58 0.10 12.65 2.08
96Cm?2%2 1.00 0.12 0.36 0.28 0.25 —2.42 —23.08 0.10 14.20 1.44
9sCf28 0.77 0.21 0.32 0.25 —-5.15 —219.1 0.09 14.02 2.55

In Table IV-1 are the results of this calculation
where the quantities to be compared with experiment
are the by values. Unfortunately, only for Pu®® and
Cm?% is such a comparison possible. In Table IV-2 are
Froman’s results (Fr 57) for these same nuclei where
by and by have been fitted to the empirical values. The
values of 8; and B4 are also tabulated. Froman estimates
that Bs and Bs will be of the order of 2)X10~2 that is the
same order of magnitude as 8;. These results throw con-
siderable doubt on the validity of expanding the nuclear
surface only to lowest order (i.e., ¥y, terms), but using
second- and even third-order terms in the expansion
of the moments of inertia about the symmetric shape
in the study of the rotation—vibration interaction
(Fa 64) (see Sec. II). [Similar values are found by
Kjallquist (Kj 58), but larger values have been cal-
culated by Harada (Ha 64).]

Table IV-1 shows that the alpha wavefunction on
the nuclear surface is strongly distorted by the nu-
clear deformation. In general, the wavefunctions are
highly elongated at the equator and very much re-
duced at the poles, a circumstance postulated by
Christy (Ch 55) to explain the /=4 intensity for Cm??.

Froman (Fr 57) has also considered odd-parity
transitions in even—even nuclei. However, since es-
sentially no empirical data were available, he made
only rough theoretical estimates of the hindrance
factors.

The favored transitions in odd-4 nuclei can be in-
vestigated in a manner similar to these transitions in
even—even nuclei. However, as mentioned before (Sec.
III) nothing is known about the values of v for nuclei
above the 2s-1d shell or even if an asymmetric-core

TaABLE IV-2. Froman’s (Fr 57) fitted values for 8, and 8; and
his calculated values for bg and bs. The latter are to be compared
with the empirical values of Table IV-1. The estimated values of
Bs and Bs to fit the theoretical and empirical be; and bg values are
Bs=~pP3=~0.02 for Pu® and Cm?22,

Parent

nucleus B2 34 bsx b31
901 h2%0 0.26 0.041 0.39 0.14
92 U%2 0.26 0.029 0.32 0.11
91 Pu?® 0.26 —0.024 0.14 0.02
96Cm?#2 0.26 —0.041 0.06 0.00
98Cf26 0.18 0.000 0.03 0.01

model is necessary or useful in the other deformed
regions. Assuming y<15° and that the alpha wave-
function on the nuclear surface is given by Eq. (IV-7)
the reduced transition probabilities for the favored
transition ,—I; is

St | CTdly; IOI) |2
=
" | CTaL; IO |

where the ¢; can be given in terms of the Cik, and
hig 200 of Eq. (IV-8). Unfortunately even these ¢;
cannot be calculated for asymmetric odd-4 nuclei
so the procedure is to interpolate for the particular
Z from the neighboring even—even nuclei. This reduces
the results of the asymmetric-core case to those of the

TasLe IV-3. Theoretical reduced transition probabilities
c1s1, obtained by replacing the ¢;’ values by the reduced transition
probabilities of the neighboring even-even nuclei, interpolated to
the Z value of the odd-A nucleus considered.

Parent

Cin CIfl
nucleus I; Iy (emp.) (theor.)
o Pat 3/2- 3/2- 1 1
5/2~ 0.32 0.38
7/2- 0.23
92U238 5/2+ 5/2+ 1 1
7/2+ 0.34 0.31
9/2+ 0.093 0.13
11/2+ 0.018
9 Pu2® 1/2+ 1/2+ 1 1
3/2+ 0.35 0.26
5/2+ 0.35 0.39
7/2+ 0.0049
9sAm24 5/2- 5/2- 1 1
7/2- 0.31 0.24
9/2~ 0.083 0.083
11/2- 0.0018 0.0016
13/2- 0.00076 0.0013
Am3 5/2- 5/2- 1 1
7/2- 0.25 0.24
9/2~ 0.052 0.083
11/2- 0.0016
13/2- 0.0013
96Cm?243 5/2t 5/2+ 1
7/2+ 0.29 0.23
9/2+ 0.080
ngSm 7/2+ 7/2+ 1 1
9/2+ 0.13 0.11
11/2+ 0.050 0.033
13/2+ 0.0034
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symmetric-core problem. Some of these results are
tabulated in Table IV-3. The calculated values are in
fair agreement with -the empirical ones considering
the nature of the assumptions made.

Finally, one can consider the unfavored transitions
in odd-4 nuclei in which the transition connects bands
in which the odd nucleon is in different intrinsic states.
Here the relative hindrance factor is-far more influenced
by ‘the formation factor for the alpha particle than by
the barrier penetration factor. Such calculations have
been done near the “magic numbers” using simple
shell-model theory and, in general, the technique is
outside the scope of these general phenomenological
collective models.

B. Beta Transitions

The operators inducing beta transitions, like those
inducing electromagnetic transitions, can be written
in terms of spherical tensors (Ro 54) and are also even
or odd under point reflection. Calling X the rank of the
spherical tensor operator then, there is an obvious K
selection rule (Al 55) which can be formulated as

| K—K: | <\ (IV-9a)

which is similar to the usual selection rule for the an-
gular momentum

| Ii—1I;|SNSIA+1,.

These selection rules are similar to the gamma selec-
tion rules, and in fact both the beta and gamma decay
theories can be cast in the same form (Al 55). How-
ever, the selection rule (IV-9b) is rigorous while that
of Eq. (IV-9a) is not since it depends upon the K
purity of the initial and final states, so violation of this
selection rule acts to hinder or retard that particular
transition rather than prohibit it. The degree of K
forbiddenness is defined as in the gamma-ray case by
v where

(IV-9b)

y=AK—\. (I1-322)

For odd-4 nuclei there is a further set of selection
rules which depend upon the asymptotic quantum
numbers [N, n., A], and in the limit of infinite dis-
tortion these selection rules are rigorous. However,
since deformed nuclei have relatively small distortions,
in fact, these selection rules are also only approximate.
Transitions in which all of these selection rules hold
are called “unhindered” while those which are allowed
by (IV-9a) and (IV-9b) but are forbidden by one or
more of the (N, #,, A) selection rules are called “hind-
ered” (Al 55a). These beta-decay selection rules for
all of the beta transition operators through second for-
bidden transitions have been tabulated (Al 57) and
we give in Table IV—4 these selection rules for allowed
and first forbidden transitions. The notation for the
nuclear matrix elements is similar to that of Preston
(Pr 62). Several tabulations of ft values exist (Al 55a,
Mo 59) which show that, at least for allowed and first

forbidden transitions, the hindered and unhindered
transitions separate empirically just-as the ff values
for different degrees of forbidenness are separated
by different orders of magnitude. In general these
ranges are a< log ft<<b where the limits are a=4.5,
b=235.0 for allowed unhindered; ¢=6.0, 5=7.5 allowed
hindered; ¢=35.0, b=7.5 first forbidden, unhindered;
a=17.5, b=8.5 first forbidden hindered.

Another obvious rule is that the ratio of f¢ values for
two transitions to different members of the same rota-
tion band will be in the ratio of the squares of the ap-
propriate Clebsch—Gordan coefficients.

ﬂ(IiKz—"Ilfo)_I:C<[i)\11f§Ki:Kf"Kiny)]z
Jt(ILK —~IyK;) | CUMNy; Ky K;—Ki K)) |
(IV-10)

For a detailed comparison one can calculate the
nuclear matrix elements using the Nilsson state func-
tions for a given distortion determined by the level
structure or other properties. One can then calculate
the f¢ values which for allowed transitions, using the
notation of Ref. Pr 62, is

f0t=2’n"3 ln 2[<L0>(gV2 ' mﬁ' |2+g42 ! mo lz) ]~17

where (Lo) is a number near unity and the g; are the

TaBLE IV-4. Asymptotic selection rules for allowed and first
forbidden beta transitions in deformed nuclei.

Matrix

element AT Ar AK AN An,  AA
(1) 0 no 0 0 0 0
(a) 0,1 no 0,1 0 0
no 0—0
(r) 0,1 yes 0 +1 1 0
no 0—0 —1 —1
1 1 0 1
(o) 0,1 yes 0 1 1 0
no 0—0 -1 —1
1 1 0 1
(ys) 0 yes 0 1 “+1 0
-1 -1
1 0 1
Te(1, @) 0 yes 0 1 +1 0
-1 -1
1 0 1
T:(1, @) 0,1 yes 0 1 0 1
no 0—0 1 {+1 “+1
or 3% -1 -1
1 1 0 1
T»(1, @) 0,1,2 yes 0 1 0 1
no 0—0 “+1 +1
-3 -1 —1}
or 10
1 1 0 1
{+1 +1 0
1 -1
2 1 0 1




coupling constants and 9 and 9N, are the Fermi and
Gamow-Teller transition operators. Nilsson has dis-
cussed this evaluation briefly for mirror transitions
and for certain forbidden transitions, the ‘‘unique”
forbidden transitions, in which the operators are quite
analogous to the gamma case.

Bogdan (Bo 62a, Bo 63) has calculated the matrix
elements for Ath forbidden transitions using Nilsson
state functions assuming (V—A) type interactions
and has compared them with two or three transitions
to even—even nuclei in the rare-earth deformed region.

For beta transitions between even nuclei, Gallagher
(Ga 60) has defined two different classes of transition:
those in which the initial and final state have the same
relative coupling of the two odd nucleons, and those
in which the states have different relative couplings.
In the former case, the matrix elements in the asymp-
totic limit of infinite distortion become the product
of an overlap integral (c.f. Sec. ITII B) with the asymp-
totic selection rules discussed before. For the case of
transitions between states of different relative coupling
Gallagher found that the odd particles must have
A,=A,=0, Q,=Q,=% for nonvanishing contributions
to the transition matrix elements in allowed and first
forbidden decays. He classified twelve such beta tran-
sitions in the deformed regions and found that the
ranges of the ft values were essentially the same as for
the odd-A cases. (This statement is stronger than de-
manded by the empirical evidence as he was able to
classify only one allowed unhindered and one first
forbidden hindered decay and five each of allowed
hindered and first forbidden unhindered.)

Similar transitions have been discussed from the
point of view of the asymmetric model (Da 60b) in
which the final states are given quite specifically for
any level of angular momentum L (c.f. Sec. II); how-
ever, the initial state functions (for the odd-odd parent)
are taken as

| IM )= or(7) ;GKDMK[

which is a pure rotational model of odd-odd nuclei
and neglects any possibility of the interaction between
the two odd nucleons. Clearly this calculation cor-
responds only to transitions between initial and final
states having the same relative coupling of the odd
nucleons. The ax are not known, so to proceed it was
necessary to take the odd-odd parent as being sym-
metric (K a good quantum number) and calculate
only the ratios of ff products for different final states.
In this case one has

(1K —Lyy) _[ZKIAKILICWLU; K, K1—K;, K1) ]2
LK~ Ly) | D Ax2C(INLeys; Kiy Ko— K, Ky)

K,

which reduces to (IV-10) when K/ is a good quantum
number. The data are too sparse to decide upon the
merits of this calculation, although it would seem that
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if one is going to insist on a nuclear model with an
asymmetric core the odd—odd case should be handled
in a more consistent manner.

V. PHOTONUCLEAR REACTIONS

Immediately after the discovery of the photonuclear
giant resonance by Baldwin and Klaiber (Ba 47, Ba 48)
several theoretical models to explain the process were
suggested by Goldhaber and Teller (Go 48). They
invoked collective dipole effects to explain some of the
properties of the cross-section curve as a function of
energy in particular the energy of the resonance, as
well as the integrated cross section. In one of these
models the nucleons execute harmonic oscillations each
about its equilibrium position the spring constant being
the same for all nucleons in all nuclei. Thus, the res-
onance energy F,, is a universal constant identical for
all nuclei which even at that time did not agree with
experiment. The second model was a two-fluid model
in which compressible proton and neutron fluids os-
cillate against each other, with the restoring forces
proportional to the density gradients and E,, inversely
proportional to the nuclear radius or to 4% Finally,
they suggested that the dipole motion might be caused
by the oscillation against each other of the neutrons
and protons taken as rigid spheres. This yields E,
proportional to R7*=A~% For this model they also
calculated the integrated cross section.

The second model has been extensively investigated
by Steinwedel, Jensen, and Jensen (St 50, St 50a)
who solved the two-fluid problem for a spherical nu-
cleus and related the resonance energy E., to the phase
velocity of second-sound # in the fluid by

E,=2.08kuR™!

which is proportional to A~%. This model has been ex-
tended by Danos (Da 58) and Okamoto (Ok 58) to
spheroidal systems relating, among other things, the
width of the resonance to the intrinsic quadrupole
moment Qp. This width is due to the splitting of the
resonance because the spheroid has two different
eigenfrequencies associated with its semi-axes. These
latter calculations were confirmed by Fuller and Weiss
(Fu 58) who were able to measure the giant resonance
sufficiently accurately in terbium and tantalum to
show a double peaked curve.

A major experimental difficulty in these measure-
ments is related to the fact that the giant resonance
is studied with a bremsstrahlung x-ray distribution,
the unfolding of which from the measured yield curves
injects the major uncertainty into the results. Recently
it has become possible to obtain essentially mono-
energetic x-ray beams of variable energy from high-
flux electron linear accelerators which permit very ac-
curate determination of the photonuclear cross-section
curves. It would seem that this is now the preferred
way to determine the shape of the nucleus in its ground
state.
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The calculation of Steinwedel, Jensen, and Jensen$
proceeds from Hamilton’s principle

6/Ldt=6/dtf£dr=5/dt/(5—‘0) dr=0,

where £, 3, and U are the Lagrangian-, kinetic-, and
potential-energy densities, respectively. The fluid ve-
locities are denoted by v(¢), where

vi(t) =1:(2),
the r(¢) being the generalized coordinate of an element
of the fluid, the index 7 referring to neutron or proton

fluid. The variation is carried out with respect to the
r;(¢) and subject to the constraints on the densities p;

Po=pp~+pn=constant, (V-1)
prtVpp¥p=0, (V-2a)
PutV+puV,=0, (V-2b)
and to the boundary condition
IV |mry =0. (V-3)

The condition (V-1) is that of a homogeneous in-
compressible total fluid while conditions (V-2) are
the familiar statement of the conservation of mass
(Se 59).

The physical process at hand requires (a) that the
total number of nucleons remain fixed during photon
absorption, (b) that the electromagnetic field be
coupled to the nucleus, and (c) that the dipole oscil-
lations be coupled to other internal degrees of freedom
broadening the resonance to some width I'. Require-
ment (a) can be entered into the variational calcula-
tion through a Lagrange multiplier while (b) requires
adding the force on an electric charge g(E4+vxB).
Finally, the width must be added through a dissipa-
tion term which is done in an ad koc fashion. The vari-
ational principle then becomes

6/L dt=[ dt/(55—6°0+51;—|—6@) dr=0.
The potential energy density is just the symmetry
energy (Pr 62)
V=K (pp—px)*/po-

Carrying through the variation leads, after lineariza-
tion, to a wave equation with damping of the form

[aV2— T (/) — (8%/0¢) Jop (xt) =0

which can be simplified by assuming a harmonic time
dependence for p,(r, ¢)

po (T, £) =p,@[1+7 (1) exp (—iwt)]
whence the wave equation
(V2+E*)n=0. (V-4)

8 The most lucid exposition of this development is to be found
in Ref. Da 61c which is unfortunately unpublished.

This equation with the boundary condition of Eq.
(V=3) is identical with those associated with the
acoustical vibrations of a gas contained in a rigid
spherical shell the solutions of which have long been
known (St 45). For the particular case at hand the
eigenvalue problem may be expressed as

tan kr=2kr/(2—k%?);

the lowest nontrivial solution of which was given by
Lord Rayleigh (St 45) as kr=119.267/180=2.08.
This mode leads to the energy

= ﬁw1= aAd~¥MeV

with =70 and it has been asserted that qesp=380
(Da 61¢).

Both Danos (Da 58) and Okamoto (Ok 56, Ok 58)
have investigated the relation between the intrinsic
quadrupole moment Qg of a deformed nucleus and the
splitting of the giant resonance cross-section curve into
two peaks (Okamoto considered the width of the un-
resolved resonance peak to be related to Qp, while
Danos takes the resonance widths to be parameters
of the theory which is more correct). Okamoto solved
Eq. (V-4) with the boundary condition (V-3) in
spheroidal coordinates while Danos made use of the
I=1, m=0 solution by MacLauren (Mac 98) of the
analogous acoustical problem and the I=1, m==+1
solutions from which he (Danos) showed that to a good
approximation the two frequencies for a spheroidal
nucleus are related by

wb/we=0.911(a/b) +0.089, (V-5)

valid on the range of deformation normally found in
nuclei (Da 58). Here ¢ and b are the semi-axes with
b normal to the symmetry axis. For a randomly oriented
target the average cross section will be

(0(E) n=130a(E) +30s(E).

It was also shown that if the width T'; is a function of
resonance energy then

(”a) max/(ab)xnaxz Fb/ZI‘a.

Equation (V-5) relates the ratios of the resonance
energies to that of the semi-axes and hence to the
deformation parameter 3 so that knowing the positions
of these peaks the intrinsic quadrupole moment Qy,
can be calculated from Eq. (II-36). These predictions
were confirmed by Fuller and Weiss (Fu 58) who
observed the splitting in tantalum and terbium and
compared the intrinsic quadrupole moments deter-
mined in this way with those determined by Coulomb
excitation. The agreement was quite good.

The extension of these ideas to ellipsoidal nuclear
shapes has been done by Inopin (In 60) and Okamoto
(Ok 62). The former has used a variational method
to obtain the wave numbers %; in the form

k:=(2.08/R;) (0.9240.08R;/ Ry), (V-6)
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TaBLeE V-1. Photonuclear cross-section parameters for nuclei in the deformed regions. In the column labeled Type, 8 re-
fers to a bremsstrahlung gamma-ray beam while v refers to a monoenergetic gamma-ray beam used in the experimental determination

of the listed parameters.

oa E, Tq b Ey Ty Qo
Nucleus mb MeV MeV mb MeV MeV b Type Reference
Thse 258 12.5 2.4 310 16.3 4.0 5.6 B Fu 58
Thie 188 12.2 2.67 233 15.6 4.30 7.0 ¥ Br 64
Hots 318 12.2 2.35 328 16.0 4.5 7.6 <] Fu 62
Hots 200 12.10 2.65 249 15.75 4.4 7.40 v Br 63
Ers 318 12.2 2.33 328 16.0 4.5 7.6 B Fu 62
Tast 308 12.45 2.3 348 15.45 4.4 5.7 B Fu 58
Talst 198 12.75 3.0 244 15.50 5.0 6.71 v Br 63
U8 510 10.85 2.45 570 14.10 4.00 12.8 % Bo 64

2 Natural erbium.

where R; is the ith semi-axis of the ellipsoid. Inopin
then compared this calculation with the work of Fuller
and Weiss (Fu 58) on terbium, reinterpreting their
data to yield a resolved three-peak resonance curve
with resonance energies at 12.5, 15.0, and 16.8 MeV.
Using these and Eq. (V-6) he calculated the deforma-
tion and asymmetry parameters 3=0.30 and y=19°.
This reinterpretation does violence to the cross section
determinations of Fuller and Weiss and is not consistent
with the reported experimental errors. It also does not
take into account fully the (v, 2%#) cross section which,
from the monoenergetic gamma-ray work, is known to
make a large contribution to that part of the cross-
section curve above the first resonance peak.

Okamoto (Ok 62) makes use of a geometrical method
to calculate the ratios of the resonance energies. He
gives a table of predicted resonance energies of 44
nuclei from Ne® to Hg®. No predictions are made in
in the actinide deformed region and only the isotopes
Os'* and Pt2 Pt1% and Pt in the lower deformed
region are given. Since the platinum isotopes may have
the greatest asymmetry (y=30°) it is interesting to
note his predictions of 13.5, 14.2, and 14.9 MeV are
considerably closer together than Inopin finds for a
much less asymmetric nucleus. Such close resonances
are probably not resolvable by present techniques. With
regard to the platinum isotopes recent betatron meas-
urements on the separated isotopes Pt'%4 Pt!% Pt!% and
Pt!® show a very broad and unresolved resonance for
the even-A4 isotopes and a rather narrow resonance for
the odd-A isotope (He 64). The former are not in-
consistent with some sort of splitting of the resonance
but the latter effect in Pt!® indicates that it is not de-
formed to any great extent.

Much more accurate work can be done using mono-
energetic gamma-ray beams for then it is also possible
to measure the (v, 21n) cross section. In Table V-1
are tabulated the resonance energies, widths, and de-
rived intrinsic quadrupole moments Qp for a number

of nuclei in the deformed regions. In general the res-
onance parameters are obtained by fitting each res-
onance to a ‘“Lorentz” line of the form

o (E) =0o(Eo) /[1+ (E*— E¢*)*/T*E7],

where oo(Ey) is the peak cross section at energy F,
while I' is the width of the resonance at half-maximum
(Fu 62a).

Since in principle the shape of the giant resonance
could resolve the question of whether or not a de-
formed nucleus is spheroidal or ellipsoidal, one would
hope that careful measurements would resolve this
question independently of the interpretation of the
spectra. Unfortunately, the question is still unresolved.
As mentioned before it was originally suggested that
the experimental evidence from Th!® indicated it to
be ellipsoidal (In 60) and recent measurements with
a bremsstrahlung beam (Bo 62b) have been fitted
with three Lorentz lines with energies at 12.25, 15,
and 17 MeV, widths of 2.5, 3.2, and 2.0 MeV, and
heights of 278, 191, and 305 mb. On the other hand,
data obtained using a monoenergetic gamma-ray beam
rule out the above interpretation of three such widely
spaced resonances but do not distinguish between a
prolate spheroidal deformation and an ellipsoidal de-
formation (Br 64). A similar situation exists in Ho!6
where the betatron data are not accurate enough to
distinguish between spheroidal and ellipsoidal shapes
(Fu 62). For this nucleus and Ta'® the monoenergetic
x-ray data could not be fitted with three Lorentz
shapes, the conclusion being that these nuclei are “es-
sentially spheroidal” (Br 63).

It has been shown that the coherent photon scatter-
ing cross section is related to the total nuclear absorp-
tion cross section (Fu 56). The scattering cross section
has been measured for a few nuclei in the deformed
regions and a discrepancy exists between this scatter-
ing and the absorption cross section. This discrepancy
is associated with a second component of the scatter-
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ing cross section called the “tensor’” component (Fu 62)
so that the total scattering cross section is

do/dQ= (do/dQ) s+ (do/dR),,

the first term being the so-called scalar cross section.
It has been found that the tensor cross section is sensi-
tive to the shape of the deformed nucleus, being much
larger for ellipsoidal nuclei than spheroidal nuclei
(Fu 62).

Danos and Greiner have amalgamated the hydro-
dynamic models of the low energy structure of de-
formed nuclei and the dipole oscillations of the giant
resonance (Da 64c). In this development they have
considered the interactions between the dipole oscilla-
tions and the rotations and vibrations of an even—even
nucleus; however, the effect of the odd particle (or
particles) for odd-A (or odd-odd) nuclei should be
small for the giant resonance, hence the theory is con-
sidered to have validity for all nuclei for which a col-
lective hydrodynamic model is meaningful (i.e., for
A250). Further, the calculation is done within the
context of the adiabatic approximation, that is, that
E oL EywKEg where Fy is the energy of the giant
resonance. The particular form of the theory of the
low-energy rotation—vibration problem is that one of
the rotations and vibrations of an axially symmetric
system where the collective parameters are a¢’=2(8— )
and @’ s=6yy/V2 mentioned in Sec. IT (Fa 62, Fa 62a,
Fa 64) although the theory could use other low-energy
models as a starting point.

The total Hamiltonian consists then of a term for the
rotations, one for the vibrations and one for the dipole
oscillations. Calling the total angular momentum I
the nuclear angular momentum L and the angular
momentum of the dipole oscillations j then

I=L-]j

which is just Eq. (III-1). That is, the dipole oscilla-
tions enter the rotational problem in the same way
the extra-core nucleon enters the similar odd-4 prob-
lem. Here j is restricted to values appropriate to a
dipole oscillation. The total Hamiltonian can then be
written as

H=Hp+Hvi,2-+Hi+Hy p+H,at+Hir

where H.j, and its associated Schrodinger equation
is similar to that of Egs. (II-25) and (II-26) (except
the variables are ¢y’ and ay'), H,_g is similar to that
of (I1I-28) and H,g4is identical with H, of Eq. (II1-4c).
The dipole oscillation problem is treated in the second
quantized representation and is similar to Eq. (I-16).

The wavefunctions are products of a vibrational
term, a rotational term, and a dipole term

‘/’ = (Pn;;n.,DMKI *ﬂs,

respectively, where #g and #, are the vibrational quan-
tum numbers and s indicates the dipole mode, being
zero for excitations parallel to the symmetry axis and
=1 for excitations normal to this axis. These functions
must be properly symmetrized under the 7 and 7%
operators discussed in Sec. IT. The energy eigenvalues
are then

E(I: K7 gy Ny S)
=[I(I+1)—K2— | s | 1Er+Tiws+Hicoy(ns+%)
+7iwy (ny+1).

The coupling between the dipole oscillations and
the quadrupole vibrations stabilizes the nuclear sur-
face in an asymmetric shape so that the upper resonance
is split into two peaks. Further, some of the dipole
strength of these two resonances goes into a satellite
line of each peak due to the coupling of a single quan-
tum oscillation in the v mode. ,

This model has been fitted to the betatron data of
the deformed odd-4 nucleus Ho'% (Fu 62). The pa-
rameters Eg, hwg, fiw, were fit to the low-energy struc-
ture of the neighboring even—even nucleus Er'% while
Bo was determined from the separation of the giant
resonance peaks. The widths I'; were fit to an expres-
sion of the form

Tw=TEd

with 6=2.2. The agreement between experiment and
theory is very good indeed (Da 64b) and considerably
better than for the so called “static” theories dis-
cussed earlier where the cross section was too low on the
high-energy side of the giant resonance peaks.
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