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I. INTRODUCTION

Abrikosov' and Goodman' have developed phe-
nomenological theories which describe bulk supercon-
ducting alloys in high fields as a periodic array of
many microscopic super conducting and normal
regions. Their predicted critical fields, at which the
mixed state appears and disappears, depends on only
two phenomenological constants: the thermodynamic
field, II., and a nondimensional surface energy pa-
rameter. The latter specifies the free energy of the
interface or transition zone between a normal and
superconducting region. Abrikosov's surface energy
parameter is inversely proportional to ~, the phe-
nomenological constant of the Ginzburg —Landau'
theory. Gorkov" and Shapoval' have shown that x

can be calculated directly from two easily accessible
experimental properties of the material: the elec-
tronic heat capacity coeKcient p and the normal
electrical conductivity (at low temperatures) c. Bar-
deen, Cooper, and Schrieffer' had already shown that
H, can be calculated from y and T., the transition
temperature. Hence, y, T., and c. completely de-
termine the magnetic properties of superconducting
alloys. In this paper, we show how certain current-
carrying properties of these materials are likewise de-
termined by these three quantities based on a laminar
model similar to London's' and Goodman's. '

Tash z I. Composition and properties of alloys.

Alloy

p X 10—' H,o (kG) H,os(kG)
T ~ b ergs/degs/ o X 10 's cal- cal-'I cms mhos/cm culated culated

V 5.2
V. 98-Ti. 07 6.4
V. 90—Ti. 10 6.8
V. 88-Ti. 12 7.0
V. 85-Ti. 15 7.2
V. 75-Ti. 25 7.5
V. 67-Ti. 88 7.7
V. 60-Ti. 40 7.5
Nb. 75—Zr. 25 10.4
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netic field applied parallel to the major axis of the
strip cross section at 4.2'K. We also measured the
normal electrical conductivity of each sample slightly
above the critical temperature to obtain the the-
oretical upper critical field.

The alloy composition, critical temperature, elec-
tronic heat capacity coeKcient, normal electronic
conductivity, thermodynamic critical field (O'E),
and upper critical field (O'E) are listed in Table I.
The critical fields are calculated from Eqs. (5) and
(1), respectively.

The upper critical field could be measured only for
the alloys vanadium with 15% or less titanium,
whose upper critical fields were less than 50 ko, the
maximum field available in the experiments.

II. EXPERIMENTAL RESULTS

The test specimens were cold-rolled strips (0.008 in.
&& 0.025 in. ). Measurements were made in a dc mag-
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The upper critical field, H.z at 4.2'K for V-0%,
—7%,—10%,—12%,and —15%Ti alloys is shown in Fig.
1.The dashed curve in Fig. 1 is the upper field cal-
culated from the Gorkov —Shapoval formula. Their
formula for the upper critical field at O'K is the fol-
lowing (in esu units):

H'.s
——(3/2tr) ecy T,/ko .

The constants e, c, and k are the electronic charge,
the velocity of light, and Boltzmann's constant, re-
spectively. y is the electronic heat capacity coeK-
cient, T, is the critical temperature, and o is the
normal electrical conductivity.
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The upper critical field Hrs at a temperature T is
given as follows':

= H'„1 —2(T/T. ) ln2, T « T,
TH, 2

= H',.(1 —T/T. )8/~', T. —T && T. . (2)

From Fig. 2, it is clear that the measured values

The measured values of the critical current for
zero applied fields substantially agree with the value

I, = 2dH. c/4x .

I. is the Silsbee current, based on the thermo-
dynamic critical field H„ for a strip with a very small
aspect ratio (thickness f divided by width d) pro-
vided that negligible currents flow near the ends.

The thermodynamic 6eld H„ from which the
Silsbee current is calculated, is obtained from the
following formula":

= H.' [1 —1. 07( T/ T.)'], T « T.

60

40
= H', 1.74(1 —T/T. ), T. —T « T. (4)
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Fra. 2. The nondimensional critical current i, = I/I, vs
the nondimensional a plied field Ho/H, s for various alloys at
4.2'K. I, = 2dII.c 4~, the Silsbee current based on the
sample width and the thermodynamic critical field. II,2 is the
upper critical field. The solid line is the theoretical curve:

1 —(H~/H, s)&, derived from the mixed state free
energy.

where0
0 20I5IO

H'. = ~ T./(0. 17)'(G) . (5)

%e obtain a single curve for the various samples
tested when we plot the critical current I divided by
the Silsbee current I, as a function of the applied
field H. divided by the upper critical Geld H.2. This
is shown in Fig. 2. Each sample has a different value
of the ratio of H, & to H. , given by

% T.
I

FIG. 1. The upper critical field II,2 for the V—Ti system at
4.2'K. Experimental points are compared to the calculated
values (dashed curve) obtained from the Shapoval formula.
Beyond 40% Ti, extrapolated resistivity data was used.

of H.s are in good agreement with the Shapoval
formula up to the highest fields available (50 kG).
Previous experiments' with Nb —25% Zr also agreed
with Shapoval's upper critical field at 4.2'E.

= x3.03[1 —2(T/T. ) ln 2], T « T.

= x&2 T. —T«T. . (6)

T
HC2

T
9 A. El Bindari and M, M. Litvak, J. Appl. Phys. 34, 2913

(1963).
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The values of s calculated from Eqs. (2)—(6) are
indicated in Fig. 2.

III. THEORETICAL CURVE OF CRITICAL

CURRENT VS APPLIED FIELD

To predict the critical current according to the
laminar model, we have assumed the following:

(a) The alternating layers of normal and super-
conducting material are parallel to the external field,
which is applied in this case parallel to the width (or
long side) of the strip's rectangular cross section. (See
Fig. 3.)

(b) The applied field has its full value in each of
the normal layers. Negligible current Bows in them.

(c) The aspect ratio is suKciently small to neglect
end effects.

(d) The magnetic induction B and the applied

t,THICKNESS

Figure 3 shows our coordinate system: The x axis
runs parallel to the thj, ckness t, the y axis, the mag-
netic field direction, runs parallel to the width d, and
the z axis, the current direction, runs parallel to the
length.

H(x) and &(x) when nondimensionalized by H, are
denoted by h(x) and b(x), respectively. The applied
field H. and H.s divided by H, are denoted by h. and
hs, respectively. The applied current I divided by I.
is denoted by i..

From assumptions (b) and (d) above we obtain
for h(x) the following:

sinh [x]/Xh(x): hg +
The associated applied current distribution is shown
in Fig. 3.

h (x),MAGNETIC
INTENSITY~,
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~hp+ Ip

'~b(x), MAGNETIC INDUCTION
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FIELD

SUPERCONDUCTI NG LAYER

~NORMAL LAYER

Fie. 8. Magnetic field (intensity and
induction) and applied current pro6les
for a cross section near the center of
the sample. The layers of supercon-
ducting and normal material are shove
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current density j in the superconducting material
obey the London equation, that is,

V'B = X 'B (7)
vj =x j. (8)

This local electromagnetic theory is applicable for
cases of sufhcient alloying (»» 1)."

(e) The interfacial free energy is given by
qH'. X/8z. , where q is Goodman's nondimensional sur-
face energy parameter.

H,
q = H" + 1 — '-'&I tanh ' H', (9)

q
—', (H./H. ,), (10)

for cases of H,z/H, )) 1 (i.e., s )) 1).
~ A. A. Abrikosov and L. P. Gorkov, Zh. Eksperim. i Teor.

Fiz. 35, 1558 (1958) [English transl. : Soviet Phys. —SETP 8,
1090 (1959)l.

Solving the London equation for b(x) in a super-
conducting layer, with the boundary conditions that
b(x) is equal to h, (x) at either side of the supercon-
ducting layer, we obtain for a single layer

b ( ) h
Cosll $ + h

slilll

cosh p sinh p
'

where 2pX is the thickness of the layer;:- P. is the x
distance measured from the center of the layer. Also,
K = -', [(h(p) + h( —p) J and hh = —', [h(p) —h( —p) j.
h, (p) and h( —p) are the field intensities on the right-
hand and left-hand sides of the layer, respectively.
Equation (11)for h(x) in a superconducting layer can
be rewritten as follows:

h(x) = h. + (K —h.) + ah-.



A. EL BINDARI AND M. M. LITvAK Critical Current and Field 10I

m(x) = h.
cosh $

cosh p
(14)

The average thermodynamic potential contributed
by the fields and currents in a single supereonducting
layer is

The nondimensional magnetization m(x) is equal to

(~/~p) [s (~g+ + ~g-)j = o. (20)

spect to p, equal to zero. However, care must be
taken to include only those pressures acting on the
layer which tend to expand or contract the layer
thickness and not that part of the 1/cr I & H. force
which tends to move the whole layer bodily to one
side. The equilibrium condition for p is then

g,
' = —

d& h(&)'+II, 1 " db

2

—2h(g) b(~)
— 8x (15)

Together with the critical condition on g, we now
can determine i. and p for a given h. We do this in
the approximation that p (( l. Equation (19) for
Dg+ ——0 becomes

Evaluating g, we have

'taIlh. p —p secll p
2p

—„,tanh p+ @sech' p (hh) cosech p .
2p

(16)

The thermodynamic potential for the normal layer
adjacent to this superconducting layer is simply

-'(hp)'+2(hp)i*+ „/'+i*' —1=0. (»)
Qp

We have used the approximations g
~ 2/Shl,

h —h. + i* tanh xo/), and Ah i*p. We have de-
fined i~ = i.[cosh (xs/X)/ sinh (t/2X)], where xe is the
x position of the center of the superconducting layer,
measured from the center of the specimen. Equation
(20) becomes

2 2

g., ' = 1 —(ha ah)' (17) (h.p) —-' = Oorp =2 s h./h2 1

3P hoP (hsh', )
(22)

where

g = ng + (1 —n)g'+ n(g/u)
= nag, y 1 —(h. W Sh)' (18)

If d, is the thickness of the normal layer, then we
defined the fraction n = d,/(d, + d.).The free-energy
contribution from the two surfaces of the supercon-
ducting layer is n(q/p)H2/8'. The total thermo-
dynamic potential g for superconducting layer, plus
either the right-hand or left-hand normal layer, and
two interfaces is

Note that the thickness of the superconducting layer,
2@X, as determined by Kq. (22), is independent of the
applied current. The most unstable condition is ob-
tained for layers near the surface of the specimen
where the applied current density is highest, i.e., for
xo ', t. Hencefort—h, i* = i. coth t/2X. When this
outer superconducting layer goes normal, then the
next layer and the next must also go normal for this
same applied current.

Equations (21) and (22) result in the critical con-
dition:

-„ tanh p —p sech' p
d,g~ = —hh.

p

+ (h, tanh p a hh coth p)' + ——1 .
p

i*+ (h./h. )-'* = 1.
Equation (23) may be rewritten in terms of current

(19) densities as follows:

"+"refers to the right-hand normal layer and "—"
refers to the left-hand one. For g to be minimum

with respect to n (0 ~& n & 1), we must have n = 1

when Ag ~, &0. Note that 0. = 1 up to the normal
transition so that the normal layers have negligible
thickness until then. When Ag~ & 0, a = 0. The
critical condition for the disappearance of the super-
conducting layer obtains when Ag+ ——0, since the

Ag involving the left-hand normal layer is lower by
the amount —4K hh.

The equilibrium condition on the width p of the
superconducting layer is obtained by setting the
derivative of the thermodynamic potential, with re-

J. +i (H.) =i. ,

j.= (I/2dX) coth (t/2X),

J, = (H.c/4~&) t,anh p = (H./H. ,)-:q. ,

j.—= H. /4c~X,

(24)

(25)

(26)

(27)

where j. is the maximum local applied current
density, j, is the maximum supercurrent density in

a superconducting layer, and j.is the critical current
density discussed by Bardeen. "

For all the samples tested, t/2X )) 1 so that
coth t/2X 1. Therefore, we can make a direct com-

II J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).
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parison of the "I/I, vs H./H. 2" experimental data
with the following theoretical curve:

I/I. + (H./H. s)' = 1,
which is the solid curve in Fig. 2.

(28)

Ag, h'. 1 ——
iI a h.i. 2 ——

iIpi ' 2pi

+i.+ ——1.
p

Minimizing g as before, we obtain

(h. + i.)' —1 —(i.h./2p) ~( 0

(29)

(30)

—h. +q=0.
From Eq. (31) we determine that the threshold

Geld, regardless of the applied current, is still

h. = i4 = g'* (3/2hs)',

as Goodman predicted for no applied current. We
note that Eq. (30), with p ~ ~, is the Silsbee rule:

IV. THRESHOLD FOR THE MIXED STATE
IN A BULK SPECIMEN

We now consider the limit for which the supercon-
ducting layers are thick (compared to lt) even though
x may be large. This situation arises just above the
threshold for the mixed state. In the previous section
wehad p((1.Now p)) l.

After omitting terms which are small by factors of
e '", the thermodynamic potential difference will
then reduce to

i. = 1 —k.. This rule holds for fields below h&. For
fields above h&, ~. lies above the Silsbee value be-
cause of the added term i.h./2p. For ~ )) 1, the
small-p limit is quickly reached as h. increases.
When the threshold behavior is thus limited to very
low fields, I4 being much less than A,&, the I vs H
curve closely resembles Eq. (28) even in the low field
region.

V. CONCLUSIONS

(1) The Gorkov —Shapoval expression for the upper
critical field has been verified over a wide range of
compositions and materials. (2) A thermodynamic
analysis can predict the current-carrying capacity of
a nonideal superconducting strip (with the applied
field parallel to the long side of the strip cross sec-
tion) from a single equation, involving only H. and
H, &. (3) The applied current fiows within a penetra-
tion depth of the surface. (4) There exists a critical
total current density thaI; is independent of the ap-
plied field and current. (5) According to the laminar
model, the applied current does not aQ'ect the thresh-
old field for the mixed state.
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T. G. BERI.INcoURT, Atomics Internationa/: I would like
to point out that your values for the upper critical field and
for resistivity are in relatively good accord with our own
values for the Ti—V system. However, I think you are un-
justified in trying to interpret these data in terms of
Shapoval on the basis of measurements at only one tempera-
ture, 4.2'K, which turns out to be a temperature where the
Gor'kov and Shapoval relations show relatively good ac-
cord. Our own data published on this system show rather
good accord with Gor'kov. We did measure the upper crit-
ical field as a function of temperature. Another point. You
assume rather than prove that the Lorentz force is stabilized
in your calculation. We know also that you can change the
current capacity drastically by cold-working the sample, so

it is surprising that all your data seem to fit the same curve.
A. E. BINDARI, Avco-Everett Research Laboratory: When

you analyze the model you see that the Lorentz force has
to cancel when the field is parallel to the current. If you look
at our present case, the Lorentz force moves the body to
one side if it is not pinned, but in any case does not afFect
the size of the lamina. This is not true when we reverse the
direction of the field and the field becomes perpendicular
to the surface; then the Lorentz force may afFect the results.

J. P. McEvov, R.C.A. Laboratories: Was the sample of
NbZr annealed &

BINDARI: No, all the samples were heavily cold-worked.
McEvov: Can you estimate the degree of cold work?
BINDARI: We rolled it from a ~ in. down to 8 mils.


