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I. INTRODUCTION

The angular momentum for a composite system is
conventionally studied by coupling the angular mo-
menta for the constituents. The treatment of the opera-
tors is elementary and straightforward, whereas the
construction of the associated wavefunctions in this
approach represents a rather complicated problem.
In combining two angular momenta, M~ and M2,
the wavefunctions associated with the operator M=
Mr+Ms are obtained from the wavefunctions be-
longing to Mr and Ms, respectively, by means of the
vector-coupling formulas containing the so-called
Clebsch —Gordan or Wigner coeKcients. ' This problem
has been investigated extensively by several authors,
and particularly beautiful work has been carried out
by Wigner' by means of group theory.

The wavefunctions belonging to a total angular
momentum M =Mal+Ms+Ms+ could now, in
principle, be obtained from the wavefunctions of the
separate terms by means of the vector-coupling formula
by starting out from a certain component and then
successively adding all the other components, one at a
time. This method becomes complicated already with
three components, since there is no unique way of
carrying out this coupling. One ma, y combine Mz and
M~ to a resultant M~2 and couple this to M3, or one may
couple Mr to the resultant Mes of combining Ms and
M3. One obtains in this way two diRerent sets of wave-
functions to M, which are, of course, connected by a
unitary transformation, the elements of which are es-
sentially the famous Racah coeKcients. ' The coupling
of four angular momenta becomes still more com-
plicated.

The vector-coupling formalism is basically a syn-
thetic method for constructing wavefunctions of pure
angular momentum for a composite system. In con-
trast to this approach we describe here a method of an
analytic character which considers the composite
system as an entity to which the various components

' For a survey of the conventional theory of angular momentum,
see, e.g., A. R. Edmonds, Angular Momenta in Quantum Me-
chanics (Princeton University Press, Princeton, New Jersey,
1957) or M. E. Rose, Elementary Theory of Angular Momen-
tum (John Wiley lk Sons, Inc. New York, 1957l.

2E. P. Wigner, Gruppentheorie und ihre Anmendung auf die
Quantenmecharuk der Atomspektren (Vieweg und Sohn, Braun-
schweig, 1931).' G. Racah, Phys. Rev. 62, 438 (1942); 63, 637 (1943).

9

contribute in an equivalent and not necessarily in an
ordered way. Such a treatment of the system as a col-
lective without subgroups of components coupled in
a perhaps arti6cial arrangement is of essential physical
importance, for instance in treating such properties
as the total energy. The starting point is the fact that
an arbitrary trial function for the total system must be
resolvable in a unique way into orthogonal components
of pure angular momentum M associated with different
quantum numbers. Each one of these components may
in principle be found by means of the proj ecti art operator
formalism recently developed by the present author. 4 '
The basic idea is that the component of the symmetry
type desired should be obtained from the original wave-
function by means of an operator 0 which annihilates
all other components but lets the selected term survive
the operation in an unchanged form; such a projection
operator may be constructed simply as a product of
commuting factors each one of which annihilates a
term of a specific symmetry type.

The method was first used for investigating the spin
degeneracy problem4 and explicit formulas for the
singlet state were worked out; a complete treatment of
this problem for all types of multiplicity will be given
in a forthcoming paper. ' In this connection we note that
the projection operator method has an essential physi-
cal importance, since it may be used to give a mathe-
matically correct symmetry form also to a rough model
wavefunction which is otherwise essentially based on
qualitative arguments. In this way it is, for instance,
possible to generalize the simple independent-particle
model to include certain correlation and exchange
polarization eRects, 4 7 by permitting different orbitals
for different spins. The projection operator method has
also been successfully used for treating the transla-
tional symmetry' occurring in crystals.

We will now use this simple method for calculating
the wavefunctions of the total angular momentum
M of a composite system. The associated projection

4 P.-O. Lowdin, Phys. Rev. 9V, 1509 (1955).
s P.-O. Lowdin, Advan. Phys. 5, 1 (1956),particularly Sec. 3, 1.
6 A preliminary report of some results has already been given

in P.-O. Lowdin, "Nature of Valence Bond Functions, "Technical
Note from the Quantum Chemistry Group of Uppsala University,
1957; Proc. Paris Symposium "Calcul des Fonctions d'Onde
Moleculaires, " 1957.' P.-O. Lowdin, "Generalizations of the Hartree-Pock Scheme, "
Technical Note from the Quantum Chemistry Group of Uppsala
University; Ann. Acad. Reg. Sci. Upsalien. 2 (1958).
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operators are studied in some detail both as products
and in expanded form. The basic theory is presented
with a few illustrative examples, whereas the main
applications have appeared elsewhere or are reserved
for forthcoming publications.

The applications to spin and isotopic spin have
actually turned out to be very simple and, in the case
of orbital angular momentum, the atomic-state wave-
functions for the configurations p" and d have already
been derived. ' Further applications on the atomic con-
figuration f" and on the nuclear shell-model are now
also in progress. For more complicated many-particle
systems, the method is further being programmed for
the electronic computer of the type Alwac III-E in
the Quantum Chemistry Laboratory.

and M and M+. have therefore been called step-up
and step-down operators, respectively, with respect to
M, . Using (6), we obtain

M, IMp F(M', M, ') }= Mp(M, +1)F(M', M, ')

= (M,'+1) I M+ F(M', M, ') I, (7)

showing that M+ transforms the eigenfunction asso-
ciated with the pair (M', M, ') into an eigenfunction
associated with the pair (M', M, '+1). Assuming that
the function F(M', M, ') is properly 2Mrmalised and
using (4), we obtain the normalization integral for
the new function

II. GENERAL PROPERTIES OP ANGULAR
MOMENTUM

A brief review of such basic properties of angular
momentum as are of importance in constructing the
projection operators follows essentially the ideas de-
veloped by Dirac, ' but avoids the explicit introduc-
tion of matrices.

A general angular momentum M=(M„M„, M, )
measured in units of A is defined by the commutation
relation M xM=iM or

M M„—M„M,=iM, (cyclic).

Fixing attention on M„ in place of the two other
components, we introduce the auxiliary operators

I'* M', M, ' M 3f F 3f', 3l,' dh

= (M')' —(M,')'—M, '.

A corresponding theorem holds for M .
Because of the step-up and step-down properties,

one could be inclined to draw the conclusion that the
number of eigenvalues M, ' associated with a particular
M' would be unlimited, but this is not the case. Ac-
cording to (4) and (5), the eigenfunctions to (M2; M, )
are also eigenfunctions to the operators M 3f+=
M+tM+ and &+M =3f t3f and, since such operators
can never have negative eigenvalues, one obtains the
inequalities

forming a pair of hermitian adjoint operators. The
square of the total angular momentum is then given
by the three relations

M2 —M 2+M 2+M 2

=M M++M, '+M,

=M+M +M,2—M, .

Since M, commutes with M, it is feasible to consider
the combined operator (M', M, ) having the eigen-
functions F(M'; M, '), associated with the eigenvalue
pair (M')2 and M, '. From (1) and (2) the commuta-
tion relations follow

(M') '—(M, ') '—M, '& 0,

(M') '—(M, ') '+M, '& 0,

showing the existence of a largest and a smallest eigen-
value of M„which will be denoted by m) and m(,
respectively.

Let us now consider the functions M~F(M', 2N&)

and M F(M', 222&). From (7) it follows that, unless
these functions vanish identically, they are eigen-
functions associated with the eigenvalues (m&+ 1)
and (222&—1), respectively, which is a contradictory
result. Hence they must vanish and, taking their nor-
malization integrals according to (8), we obtain

(M') '—222&2—222& =0,

(6) (M') '—222&2+222&= 0, (9)
' R. Fieschi and P.-O. Lowdin, "Atomic State Wave Functions

Generated by Projection Operators, " Technical Note from the
Quantum Chemistry Group of Uppsala University (1957).

~ P. A. M. Dirac, PrinciPles of Quantum Mechanics (Claren-
don Press, Oxford, England, 1935), 2nd ed. , p. 147.

which leads to 222&= —222&. By means of (7) and (9),
it is then easily shown that the assumption that
(2N& —222&) is 22ot an integer leads to a contradiction,
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and hence we have

m& —m(= 2k, k —0 g~ 1 3 ~ ~ ~

components. This is actually accomplished by means
of the two operators 0&(M') and 0 (M,) defined by

(10) the products

and further m& —-+k, m&= —k, and

M'= [k (k+1)]&.

M' l (—l+1)
i~i k(k+1) —l(l+1) '

If the value of k is fixed, the possible values of M, '
are thus

m=k, k —1, k —2, ~ ~ ~, —k+1, —k,

giving the multiplicity (2k+ 1) .
In the following, instead of the eigenvalues (M', M, '),

we use the quantum numbers (k, m) as index in the
eigenfunctions which henceforth is denoted by F (k, m) .
Equation (8) may be written

~
M+Y(k, m) ~' (dx) = (k —m) (k+m+1) (13)

and shows how the normalization integral is changed
in the step-up procedure. For the properly normalized
eigenfunctions, the connection formulas are

M~F(k, m) =[(kWm) (k&m+1)]&F(k, m+1). (14)

The normalization condition actually leaves the
eigenfunctions undetermined with respect to a phase
factor e', but this factor is here chosen to be unity
leading to the Dirac phase convention implicitly con-
tained in (14).

In conclusion, we note the existence of the addition
theorem for angular momenta: if M=Mi+Ms, then
k=ki+ks, ki+ks —1, ~ ~ ~

) ki —ks.

III. DEFINITION OF PROJECTION OPERATORS

The numerators are products of the elementary an-
nihilation operators defined by (16) over all quantum
numbers except those characterizing the component
desired, and the denominators have been chosen so that
the operators have the value 1 when working on the
term C& F& . By using Eqs. (16)—(18), we obtain

Oi, (M') 0 (M,) F'= Cp„FI,„, (19)

(20)

which is characteristic for the projection operators. "
%e note that this relation is also of essential importance

giving the uniquely defined component of F having
a pure angular momentum with the quantum numbers
k and m.

One can visualize the expansion problem (15) by
thinking about a Hilbert space spanned by the mutually
orthogonal unit vectors FI, , in which it is required to
resolve an arbitrary vector Y into component vectors
along the axes; see Fig. 1. Geometrically this is done
by an orthogonal projection, and the operators 0 in
the left-hand side of (19) are therefore called proj ection
operators. A repeated use of 0 wouM not change the
result, which leads to the relation

Let us now consider an arbitrarily given function F,
and let us try to resolve it into components C& FI, ,
which are eigenfunctions to 3P and M„so that

(15)

where the summation goes over all possible values of
k and m. This can be done by observing that the eigen-
value relations for M' and M, may be written in the
form

{M'—k(k+1) }Fi, =0, {M,—m} Fp,„=—0, (16)

which means that the eigenfunction FI, , is annihilated
by the operator {M'—k (k+ 1) } or the operator
{M,—m}. It is hence possible to get out a specific
component C& F& in (15) by annihilating all other

' J. v. Neumann, Math, . Grundlagen der Qugntenmechunik
(Dover Publications, New York, 1943), p. 41.
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in simplifying the calculations of the energy and its
matrix elements. "

By means of the addition theorem, it is usually pos-
sible to calculate which eigenvalues (k, m) may occur
in the system, and the product (17) can then be re-
stricted to contain only a finite number of factors.
However, even the infinite product is convergent,
which is easily seen by writing (17) in the form

seems as if these products also would render a good
basis for the programming of the method for an elec-
tronic computer. In other cases, it is sometimes better
to use an expanded form of the projection operator
which will now be derived from the expression (24).

IV. EXPANSION OF THE PROJECTION
OPERATORS

M' —k (k+1)
(l k) —(i+k+1)

Let us study the operator in the numerator of the
product (24) by introducing the notation

Fi=—M' —(M,+l) (M, +1+1).For only integral values of k, the special case k=0 has
the particularly simple form

Using (4), we obtain the special relation Fp=M M~.

/ M' / M' M') By means of (6), we can further derive the more general
Op(M') =~ 1—

~

1— 1—
~

' ' '. (22) commutation relations
1 ~ 2& 23 34j

In the right-hand member, the first factor will an-
nihilate the triplet component, the second factor the
quintet, the third the septet, etc., and only the singlet
component will survive the operation, being multi-
plied by the factor 1.

Since there are usually no difficulties in constructing
eigenfunctions of 3f„ there is comparatively little use
of the operator 0 (M,) except in an actual component
analysis. In the following, we therefore assume that,
from the beginning, the given function I" is an eigen-
function of M, with the specific quantum number m.
For simplicity, we further introduce the condition m& 0;
the case of a negative m value is then handled by re-
versing the Z axis. The only possible k values range
now from k =m to a certain k =k,„evaluated from the
addition theorem, and, since only the corresponding
factors have to be included in the product (17), we
obtain after replacing l by l+m, that

M' —(1+m) (i+m+1)0(M')= Iii~ „k(k+1)—(l+m) (1+m+1) ' (23)

where e=k, —m. Since this operator is actually
supposed to operate only on functions Y, which are
eigenfunctions of 3f, associated with the eigenvalue m,
we may write (23) in the form

f(M, ) M+=M+ f(M,+1),

f(M, )M =M f(M, 1), — (26)

3f M+.=Fp,

M 'M+'=~ Fp~+=~-~+~i= ~p~i,

M My =M (FpFi) M+=M MyFiFs= FpFiFs, (27)

M pMpp= M (FpFiFs ~ ~ F, p) M+

=M M+(FiFsFp ~ F'p i)

ppp&p2F3 ~ ~ o p

Ke can now expand the projection operators by means
of the last formula.

Let us first consider the principal case m=k. This
case forms also a convenient starting point for a study
of the lower m values by means of the step-down pro-
cedure based on the use of M. The projection operator
(24) takes now the special form

for any polynomial function f of M, . Starting from
M M+ ——Fp and using (26), we then obtain successively

&'~~"' M' —(M,+l) (M,+l+1)o.-= rr
(k—m —l) (k+m+i+1)

(24) " M' —(M +l) (M,+l+1)
(—l) (2k+i+1)

i.e., we have replaced m by j/I, in the numerator but
have left the denominator unchanged.

In the applications, the product forms (1/) and (23)
are often convenient for direct practical use, and it

"P.-O. Lowdin, Phys. Rev. 9/, 1509 (1955); see, particularly
Kq. (37).

p)
l (2k+i+1)

FiFsFs ~ ~ F
( ) ( ) l(2k+ +1)
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where zz=k —k. From the definition (25) follows For the projection operator (28), we obtain
directly

Fv = Fo p—(2M,+p+1), (29), M "M+"
Opo= (2k+1)! (—1)"

and, by repeated use of this formula and (27) for p n, —
e—1, e—2, ~ ~ ~, 1, we can then expand the product
in (28):

happ ~ ~ ~ p

=FiFoFa' 'F iFo FiFo'''F i'zz(2M +zz+1)

=M "Mg~—zz(2Mg+zz+1) FiFo ~ F„ i

n—1~ n—1

(zz —1) !(2k+ zz) !

=(2k+1)! Z (-1)
„=o v!(2k+ v+ 1) ! (31)

=M "Mp"—n(2Mg+zz+1)M " 'M " '
which is the expansion desired.

+ ( 1) (2M + +1) (2M + )M „,M „, + Let us now also consider the more general case
+ ' 0(m(k. By means of (24)—(27) and the expansion

(30) of (28) for p=n k+m—=k, k, we obt—ain

&'"~—"& M' —(M,+l) (M,+(+1)
(k —m —l) (k+m+i+1)

FoFiFo F~ i „F~~iFi~o= k+m ! —1 "-"+"2k+1 !
(k —m) !(2k) ! (zz k+ m—) !(I+k+m+ 1) !

=(2k+1) " 'M -M, -(-1) "'-""--"
(k—m)! p!(2k+p+1)!

(k—m)! p!(2k+p+1)!

k+m ! M "M+"—(2k+1) M o~ g ( 1)v M k—m

(k—m)! „=o v!(2k+ v+1) !

(k+m) i &max —o M o~+vM o m+v—
(32)

The application of the operator expansion (32) to
a given function I is a straightforward procedure, since
the action of the operators M and M+ can always be
found by elementary methods for a specified type of
angular momentum. For more complicated many-
particle systems, the calculations may be lengthy and
somewhat tedious, but they are never difficult and
can be carried out by routine procedures. After evalu-
ating the function I Oi, I'I, the final expression is con-
zeniently checked by investigating whether it is an-

nihilated by the operator t
M' —k(k+1)). By means

of (4), the checking relation may also be written in
the form

LM~+ —(k—m) (k+m+1) ) t Op FI =0. (33)

In theoretical investigations of expanded forms of
angular momentum wave functions, this relation is
also of basic importance for deriving recursion formulas
between the coeKcients. In the principal case m=k,
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a still simpler check is provided by the relation

M+ {Ogp F }=—0, (34)

relation c'= c implies that

CpeCav= Cpv (37)

which is also of theoretical value.
If the system is composed so that M=+$4;, we

have

(33)

and the operators M+" and M " may then be expanded
by means of the polynomial theorem in an entirely
symmetric way. Choosing a starting function F, which
contains the various parts in an equivalent way, we
can then by projection derive a function of pure total
angular momentum to which the different constituents
contribute symmetrically. This can be done even in
the case of a degeneracy, but since one is usually in-
terested in finding only a sufBciently large subset for
calculating the energy, it is not always worthwhile to
put in the amount of work required. %e return to this
problem in the following section.

In the special case when M=M&+M2, one can by
means of the binomial theorem obtain a projection
operator expansion which is equivalent in the two con-
stituents. By means of the relations (14), one can then
derive an expression for the total wavefunction which
corresponds to the ordinary vector-coupling formula.
More details about the connection with the conven-
tional theory are given in a forthcoming paper; see the
Discussion.

V. COMPLETE MATRIX REPRESENTATION
OF THE PROJECTION OPERATORS

In order to study the theoretical properties of the
projection operators 0 in greater detail, we now in-
troduce an orthonormal set of basic functions pq, p2,

@,, ~ ~ ~, p„all having M, =m, which is complete enough
to span the part of Hilbert space under consideration.
In particular, we will assume that the subspace is closed
under the operations M, M„, and M, . This implies
that, if one of these operations is applied to a basic
function, the result may always be expressed as a linear
superposition of the functions in the basic set. In treat-
ing a many-particle system, this set is usually chosen
to consist of Hartree products or Slater determinants
built up from one-particle functions, but even more
elaborate basic functions are possible. The matrix ele-
ments of the projection operator 0 with respect to this
basis are given by the relation

It follows further that the matrix c has only the
eigenvalues 0 or 1, and the latter has a multiplicity
g=1, 2, 3, ~ - ~ which is usually derivable in advance
by means of simple combinatoric arguments. In case
g= 1, this is called a nondegenerate projection problem;
otherwise a degenerate one.

From relation (3/) follows directly that each one of
the column vectors

, Clv

Csv

C4p

(38)

This relation implies that the vectors c~, c2, ~ ~ ~ are
nothing but discrete representations of the functions
8&, 8&, ~ ~ ~ in a system with the basis P„. In order to
study the linear dependence of these functions, one
has to investigate their overlap matrix:

A„„= e„'e„(d*). (40)

By means of the quantum-mechanical "turn-over rule"
and (20), we obtain directly

y„O'y (dh)

~Catv

is an eigenvector to the matrix c associated with the
eigenvalue 1, but of these eigenvectors c~, c2, ~ ~, c„
can, of course, only g be linearly independent.

Let us now consider the projected functions e„e„e„",e„which are defined by

8„—Og„—QP„c„,.

c„,= „*0 „dx, (36)
y„*Op„(dh) =c„„, (41)

and form an hermitian matrix c, which is idempotent
as a consequence of the relation (20). The matrix

i.e., the overlap matrix d, is identical with the matrix
c.This means that the overlap matrix has g eigenvalues
equal to 1 and (p —g) equal to zero. Between the func-
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tions 8„there are hence (p —g) linear relations, whereas

g of them are linearly independent.
A fundamental problem is now the construction of

an orthonormal subset of order g from the functions
6&, 82, ~ ~ ., 8„. The solution is unique except for a
unitary transformation, but the special choice is not
exceedingly important if the subset is used for calculat-
ing the energy, since another unitary transformation
will then be carried out anyway. It would, of course,
be of value if one could directly construct a subset
which diagonalizes the Hamiltonian of order g in an
exact or approximate way, and this would also prove
the existence of g extra good quantum numbers. So
far, such an approach has been successful in some
special cases, and particularly the use of seniority
numbers in the nuclear shell model should be men-
tioned in this connection.

Here we first leave the question of approximate good
quantum numbers aside and concentrate on the or-
thogonalization procedure. In constructing the subset
of order g, we could either try to treat all the functions
e,, e„e„",e, in an equivalent way, or we could,
orthogonalize them successively in order by means of
the Schmidt process. " It should be observed that, in
the treatment of projections, the latter may be re-
placed by a very simple elisrsirtatiors procedure, which
is based on (20) and the "turn-over rule" used in (41).

Let us start by considering a degeneracy of order
g= 2. The two functions 0~ and 82, defined by

81 Opl 41C11+$2C21+$3C31+

O, =Op, =y,c„+y,c„+y,c„y ", (42)

may be assumed to be linearly independent. "It is then
possible to find two multipliers, dls and d22, so that gl
can be eliminated from the second expansion:

Ol 4'1C11+4'2C21+ 0'3C31+

82'= Oldls+Osd 2——0+y Csl +Ijk C3 '+ .. (43)

The relation required is c»dls+cisd22=0 with css'=
csldls+cssd22 for k&2. We can now directly conclude
that e2' must be orthogonal to 0&, since we have

The orthogonality is here accomplished simply be
eliminating gi from the expansion of 82'.

In the case of a degeneracy of order g=3, we proceed
analogously. Starting from the relations

O, =Op, =y,c„yy,c„+y,c„+
82—04 2=$1C12+$2C21+$3C31+

88=048=41C1$+'It12C28+ 4$C88+ (45)

we can, by introducing convenient multipliers, eliminate
pi from the second expansion and pi and &2 from the
third expansion:

8,'=O,d +O,d„=
4'1Cll+ 4'2C21+ 4'3C31+

0+4'2C22 +$3C82 +
8,'=O,d„yO,d„+O,d„= 0+0+y,c„'+ ". (46)

as before, one can then directly prove that the three
functions

o,=op„

82 O (4'ld12+ 4'sd22)

83——0(pldls+ psdss+4 sdss) (4&)

( 8, ~'(dx) = cll,

( 82 ~'(dx) = C22 d22*,

are mutually orthogonal.
The case of a general degeneracy of order g is treated

analogously by means of a Gaussian elimination pro-
cedure which can be carried out straightforwardly.
The successive orthogonalization can hence be per-
formed in a way which becomes exceedingly simple
because of the general properties of the projections.

Let us finally consider the normalization integrals.
By means of the "turn-over rule" and (20), we obtain

8,*8,'(dx) = (Oy, ) *O(y,d„+y,d„) (dx)
) 83

i (dx) =Cssdss*,

as is seen from the following typical example:

(48)

41 (42C21 +43C81 + ' ' ') (dx) 0.

(44)

~
8,'

~
(d*) =

I o(gldls+psdss+gsdss) j'(dx)

"For a discussion of the relation between symmetric and suc-
cessive orthogonalization, see, e.g., P.-O. I.owdin, Advan. Phys. 5,
I |,'1956), particularly Sec. 3, 2."If 82 happens to be proportional to B., we vill instead con-
sider B3, B4, ~ ~ ~ etc. until we 6nd a function which is not pro-
portional to B~, this must be the case, since otherwise g= i.

(4'ldls+ $2d23+ 43dss)

X (p sc+ss$4 'c48+~ ~ ) (dx)

=&33 des ~ (49)
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The orthonormalization required is hereby concluded.
It should be observed that the functions 8„are above
taken in a definite order and, in the examples, we will
show that there is a close connection between this ap-
proach and the conventional "seniority" idea.

VI. PARTIAL CONSTRUCTION OF THE
PROJECTION OPERATOR MATRIX

In the previous section, we have assumed that the
complete matrix representation c of the projection
operator 0 with respect to the basis p1, p2, ~ ~, p„ is
available, at least in principle. This matrix is definitely
of essential theoretical interest, but, from the practical
point of view of constructing wavefunctions, it is
hardly worthwhile to evaluate the entire matrix. The
simplest way of getting the complete matrix for 0 is
probably by repeated matrix multiplication according
to (17) or (23), starting out from the complete matrix
for M'. If the latter is explicitly known, one can get
all the eigenfunctions directly simply by solving the
linear equation system corresponding to the eigenvalue
problem, and the projection operators would then no
longer be needed —except for theoretical considerations.

In constructing the wave functions by means of the
projection operator 0, the entire matrix c is not needed.
It is sufhcient to know a rectangular submatrix of
order p&&g, provided that the g column vectors con-
tained are linearly independent. This means a con-
siderable simplification of the problem. In a practical
application, one starts out by taking the projections
of the basis functions &1, P2, g3, ~ ~ ~ successively in
order combined with the elimination procedure (46)
and, unless there are accidental linear dependencies
early in the projected system, the whole process is
concluded after projecting g functions, where g is the
order of the degeneracy usually derivable in advance
by simple combinatorial arguments. Adjusting the
normalization constants by means of (48), we obtain
a convenient orthonormal subset of pure angular mo-
mentum wavefunctions describing the degenerate state.

The matrix elements of the energy, provided that
M' commutes with the Hamiltonian H,p, are

a single sum which is more easily evaluated, particularly
since only a rectangular submatrix of order pXg of H„„
is now needed.

The nondiagonal matrix elements in (52) are usually
fairly large, since the sum in the right-hand member
contains the quantity H C p. If one goes over to the
orthonormal subset 8~, 82', 83', ~ ~ ~, the correspond-
ing nondiagonal elements will come out considerably
smaller, even if they are not always small enough to
render good or approximately good extra quantum
numbers. All the basis functions p1, p2, p3, ~ ~ ~ are as-
sumed to be eigenfunctions to 3f, associated with the
quantum number m, and if they are built up from
Hartree products or Slater determinants of one-particle
functions with the individual quantum numbers m(i),
they must differ in at least two of these numbers, since

+,223(i) = 4N. This means that, if pWv, the one-particle
operators in the Hamiltonian do not contribute to
H„„, which depends only on the two-particle operators
or higher interactions in H,p. Simplifying the non-
diagonal elements of H, p with respect to the set 8~,
82', 83', ~ ~ ~ by means of the "turn-over rule" and (20),
we obtain

K12C22 +K13C32 +R14C42 +

The construction is such that one never gets a diagonal
element H in the expansion in the right-hand member,
which prevents the nondiagonal elements from be-
coming large.

VII. A SPIN EXAMPLE

In order to give some illustrations of the projection
operator formalism, we give some very simple examples.
Let us start by considering the total spip of a four-
electron system with S,=1. Denoting the elementary
spin functions by n and P, we may use a basic set con-
sisting of the four functions

P V gg OP V

and using the expansion (39) we obtain

(50) p1 =nunp,

p2= nupn, p4= paan, (54)

8 *K„Bp(dx)= Qc „+K„,c,p, (51)

which is a fairly complicated double sum. Using the
"turn-over-rule" and (20), we get instead

r8 *X.p8p(dx) = y ~K.y8p(dx)=+3'. ~„p, (52)
V

where the implicit spin coordinates in order are f2, f'2,

f3, and i 4. According to the addition theorem, one has
S=2 and S=i, and straightforward application of
formula (32) gives then

OnnnnP = 4 I nnnP —
x3 (nnPn+ nPnu+Pnnn) I, (55)

021annP = 4 (annP+ nnPu+ nPun+Pnna) .
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The complete matrices of O~~ and 02~ have hence the
form

3 —1

Ogg= ~X
3 —1

—1 —1 —1

It is hence the product of a pair singlet function and
a pair triplet function and has the seniority v=2,
whereas 6&' and 82' both have the seniority v=4.

Since the spin projection operator commutes with
the antisymmetrization operator, the formalism is
directly generalizable to Slater determinants arid has
proven particularly valuable in studying the problem
of the separation of space and spin. ' Further details
will be given elsewhere.

02'= 4X

1'

1 1

1 1 1 1

1 1 1,

(57)

We note that On+02~=—1, giving the "resolution of the
identity" for this simple case. The case S=2 is non-
degenerate (g=1) and is characterized by a uniquely
determined function. The case S= 1 is triply degenerate
(g=3), and, by successive elimination, we obtain the
orthogonal subset

4'1 42 4 44

VIII. AN ORBITAL ANGULAR MOMENTUM
EXAMPLE

42= (21 I 1), (4= (20 I 0),

y, = (21 I 1), y4= (10 I 1),

&4= (22 I 2), @4= (11 I 2), (60)

The atomic state wavefunctions for the configura-
tions p" and d have been treated in detail by the pro-
jection operator formalism in another paper, ' and here
we give only a single typical example of a degenerate
case, namely the 'D state of the configuration d'. De-
noting the orbital angular momentum by L, we will

study the principal case L,= L= 2 by means of a basis
consisting of the six Slater determinants:

e.,'=e, -,'+e, —,'=

e,'=e,+e2+ e2 2=

3 1 1 1

1 1
2 2

0 0 (58)
(21

I 1)—= (ed2a, ndin, ndlP), (61)

which span the subspace under consideration. The
notation (21 I 1) is an abbreviation for the Slater
determinant

e2'= p„.—$4= npna —/ncaa

= (~P P~) ~~= (—~=0) && (~=1) (59)

The last function is of particular interest, since it may
be written in the form where each one-electron function is characterized by

four quantum numbers (nlm&m, ) .
By straightforward application of the expansion

(31) applied to the different basic functions p„we
obtain the complete matrix representation:

15 9 3+6 —3 —6

15 —9 —3+6

O22= —,', X
11 —Q6 —13

(62)
3+6 —3+6 —Q6 12 5+6 —4+6

3 —13 5+6 23 —10

The 'D state of d' is doubly degenerate, and the idempotent matrix (62) has hence two eigenvalues equal to 1
and four eigenvalues equal to zero. In carrying out the elimination procedure (43), we note that O&2 is propor-
tional to Op& and that the projection of p2 thus should be omitted. As basic subset, we will instead choose
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the following functions

Ossds= +X (—6 6 2 —4+6 —10 8)

O22 (3'A+ 441) 1X( 1 0 —1 0), (63)

where gs has been eliminated in the second function.
In order to find whether there is a connection with the
seniority approach, we note that, for the configuration
d' there is a '5 function of the form

{(0 I o)+ (2 I 2)+(2 I 2) —(1 I I) —(I I 1) }/5, (64)

which may be obtained from (2 I 2) by the operator
Ops. Starting from the function (2 I

corresponding to
the 'D state of a one-electron system, we can then
construct a 'D function with the seniority v = 1, namely:

'D(d') X'S(d')

= ((20 I 0)+(22 I 2) (2111)—(» I 1)}/5 (6~)

where the "product" in the left-hand member has a
symbolic character. Except for the factor 5, this ex-
pression is identical with the second function in (63).

This example is typical for the connection with the
seniority approach in treating the configuration d",
which has been investigated in detail in its entirety.
In the elimination procedure (46), the basic functions
may always be chosen in such an order that the subset
gives also the functions of lower seniority. With de-
creasing seniority, the number of projected determi-
nants increases, and the functions of lowest seniority
are hence the most complicated mathematically. The
simplest way of getting their energy is probably to ex-
press them as sums of projected determinants and to
simplify the integrals by means of the "turn-over rule"
and (20). Particularly cumbersome are the valence
bond functions in quantum chemistry, which are
singlet spin functions of seniority zero, s and the non-
orthogonality problem connected with these functions
is not yet fully solved.

The projection operator method for deriving wave-
functions has so far given several useful applications,
and it is hoped that this approach in the future will
contribute also to our theoretical understanding of the
basic physical quantity called angular momentum.

Ix. DISCUSSION: FURTHER DEVELOPMENTS

Since the results in this paper were first preliminarily
reported in our technical note No. 12 in 1958, there
has been a considerable development along this line of
approach. The general theory of normal constants of

motion in quantum mechanics and their projection
operators have been discussed by the author. " The
theory is here based on the use of the concept of "scalar
product, " but it has later been realized that this con-
cept is unnecessary and that all the fundamental
theorems are characteristic for a theory based solely
on linear algebra. These generalizations are discussed
in a forthcoming paper. A series of powerful theorems
seems to be common to both quantum theory aiid group
algebra, and it is essentially these theorems which
provide the simple treatment of angular momenta for
many-particle systems discussed here.

The connection between the successive and sym-
metric treatment of angular momenta has been studied.
The Clebsch —Gordan coeKcients have been derived
by means of projection operator technique. " For the
case of the spin, the connection between the product
projection operators and the Young tableaux projec-
tion operators has been treated by McIntosh. " The
spin projection operators and the associated . spin
eigenfunctions have further been considered by Percus
and Rotenberg' and by Pauncz. ' A study of the Racah
coefficients by means of the projection operator tech-
nique is now also under way.

The atomic wavefunctions of pure angular mo-
mentum for the configurations p" and d" have been
studied in some detail. ' The atomic configurations
d" have been treated by Abate" and by Rotenberg, "
and the corresponding eigenfunctions have here been
evaluated by means of electronic computers. Applica-
tions to nuclear structure have been carried out by
Calasis" and to diatomic molecules by Cooley."

The use of the "component analysis" of a given trial
function by means of the projection operator tech-

'4 P.-O. Lowdin, Rev. Mod. Phys. 34, 520 (1962).
~~ Jean-Louis Calais, Technical Note No. 25 from the Uppsala

Quantum Chemistry Group, 1 June 1959.
'6 H. McIntosh, J. Math Phys. 1, 453 (1960)."J. K. Percus and A. Rotenberg, J. Math. Phys. 3, 928 (1962).' R. Pauncz, to be published.' R. Fieschi and P. O. Lovrdin, see Ref. 8; Proc. Robert A.

Welch Foundation, Conf. Chem. Res. II Atomic Structure (1958),
p. 5.' E. Abate and E. Fabri, "Use of an electronic computer for
the construction of Exact Kigenfunctions of Orbital Angular
Momentum in L-S Coupling, " Centro Studi Calcolatrici Elettro-
niche, Universita di Pisa (unpublished).

s' A. Rotenberg, J. Chem. Phys. 39, 512 (1963).~ J. L. Calais, Technical Note No. 52 from the Uppsaia Quan-
tum Chemistry Group, 1 October 1960."J.W. Cooley, "Some Computational Methods for the Study
of Diatomic Molecules, "NYO Report No. 9490 (1961).
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nique is of particular importance in connection with
the correlation problem in many-body quantum theory.
In the conventional Hartree —Fock procedure, one
usually assumes that the basic Slater determinant
shall have the symmetry of the system without realizing
that this condition is really a constraint on the varia-
tional procedure. '4 This leads to a symmetry dilemma
in the Hartree —Fock scheme. If the symmetry con-
straint is removed, the total energy of the system will

go down, but at the same time the basic Slater deter-
minant D will become a mixture between various sym-
metry types. Since these symmetry types do not
interact with respect to the Hamiltonian, one of the
symmetry components will necessarily have a lower
energy than the original determinant, and this sym-
metry component can now be selected by means of a
proper projection operator. ' The corresponding wave-
function %=OD will have the correct symmetry and
a lower energy than the original Slater determinant,
but it is clear that a still further lowering can be ob-
tained by another optimization of the one-particle
functions involved. This leads to the so-called "ex-
tended" Hartree —Fock scheme "'

This approach contains the method for treating cor-
relation eGects by using "different orbitals for different
spins" as a special case. The treatment of a spin-pro-
jected Slater determinant is a comparatively compli-

~ P.-O. Lowdin, Technical Note No. 95 from the Uppsala
Quantum Chemistry Group, January 1963; see also the discussion
remarks from the Sanibel Symposium, Rev. Mod. Phys. 35,
(1963)."P.-O. Lowdin, Rev. Mod. Phys. 32, 328 (1960).

'6 P.-O. Lowdin, J. Appl. Phys. Suppl. 33, 251 (1962).

cated problem which is greatly simplified by the
existence of the so-called "pairing theorem". ' The
spin-mixture contained in a single Slater determinant
has been analyzed by Ohno and Sasaki. ~ The first-
order density matrix, the natural-spin orbitals and
their occupation numbers as well as the spin density
for a spin-projected Slater determinant has been ob-
tained by Harriman. '8

Energy calculations according to this approach have
been carried out by means of the so-called alternant
molecular orbital method, and particularly the results
obtained for conjugated systems and the infinite linear
chain are very encouraging. '9 In the investigations by
Pauncz and de Heer, remarkably good results have been
obtained not only for ground state but also for the
excited states of various spin multiplicity. '0
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