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equations. In the quantized version of this formulation
of the theory one would look for an operator representa-
tion for the I"s which would reproduce the classical
commutator algebra between the various F's obtained
from their Pb's. Since now one has many more ob-
servables than degrees of freedom the observables are
not all independent of one another and so one has
certain consistency conditions to satisfy that are not
present when one eliminates degrees of freedom from
the theory directly. It is not clear at present whether
or not one can satisfy these consistency requirements.

If they can be satisfied then the BK procedure would

have the advantage over the other schemes of quantiza-
tion that it does not require a weak-field approximation
procedure to obtain its results.
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I. INTRODUCTION AND SUMMARY

As is well known, the fundamental equations of
Newtonian mechanics are invariant under the trans-
formations of the Galilei group, those of the special

theory of relativity' under the transformations of the
Lorentz group, and those of the general theory of
relativity under alP coordinate transforrnations ("prin-
ciple of general covariance"). ' The special theory,
originally developed in 1905 by Einstein in the usual
three-dimensional notation, was given a four-dimen-
sional formulation by Minkowski in 1908'; the general
theory was formulated in four dimensions from the
start."

The Minkowskian formulation of special relativistic
mechanics leads to a law of motion unifying the laws
determining the rate of change of momentum and of
energy~ and to a unification of the conservation laws.

' For recent reviews of the special and the general theory see
the two articles by P. G. Bergrnann in Encyclopedza of Physics,
edited by S. Fliigge iSpringer-Verlag, Berlin, 1962), Vol. IV.' Subject to certain restrictions not relevant for the discussion
of this section; these restrictions are considered in detail in
Sec. V.1.

'In equating "principle of general covariance" with the re-
quirement of invariance under all coordinate transformations we
are following the original terminology of A. Einstein, Ann. Phys.
49, 769 (1916).Some authors prefer a narrower interpretation of
this principle, as discussed in Sec. VII, but the physical consider-
ations involved should be kept apart from questions of termi-
nology,

'We use, as customary, the terms "three-dimensional" and
"four-dimensional" for brevity to distinguish between notations
which treat space and time coordinates on a diferent or on the
same footing, respectively. No physical distinction between the
formulations is i!nplied by these terms, however; it is one of the
main purposes of this paper to clarify the relation between differ-
ent formulations and the physical content of a theory.

H. Minkowski, Nachr. Akad. Wiss. Gottingen, Math. -physik.
Kl.53 (1908);Math. Ann. 68, 472 (1910).

For a discussion of some aspects of a three-dimensional formu-
lation see A. Peres, Bull. Res. Council Israel SF, 179 (1960).

7 J. L. Synge, in Encyclopedia, of Physics (Springer-Verlag,
Berlin, 1960), Vol. III/1.
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General relativity, by combining the principle of general
covariance and the principle of equivalence, arrives at
a description of gravitation in terms of curved four-
dimensional space —time. ' In ascending from Newtonian
mechanics to the special and general theories of rela-
tivity and thereby approaching a more perfect agree-
ment with experiment, theoretical physics introduced
two successive basic revisions of its fundamental con-
cepts. However, Newtonian mechanics still represents
a mathematical limit of the theories of relativity.
Shouldn't it then be possible to formulate it directly
in terms of concepts much closer to those of relativity
than those of Newton or its 19th century refinements,
these concepts having lneaning within the framework
of Newtonian mechanics itself rather than only as
remnants of entirely diferent structures'

Of course there exist some obvious similarities be-
tween these theories. All three theories operate in a
space —time of four coordinates; the Galilei group is a
ten-parameter group of linear transformations just as
is the Lorentz group'; some aspects of the principle of
equivalence are already embodied in Newtonian theory.
Furthermore, it was pointed out as early as 1917 by
Kretschmanne and concurred in by Einstein' that the
principle of general covariance is devoid of physical
content, and any theory whatever can be formulated
in a generally covariant form. Nevertheless, the im-
pression left with the reader by most textbooks" of
relativity and of point mechanics" is that there is indeed
a fundamental difference between a necessarily three-
dimensional Newtonian mechanics and the four-
dimensional (I.orentz-invariant or generally covariant)
theories of relativity, that the descent from relativity

F. Klein, Vorleslngen briber die Entmicklung der Mathematikim
19. Jahrhladert (Springer-Verlag, Berlin, 1927), Vol. 2, Chap. 2.

9 E. Kretschmann, Ann. Physik 53, 575 (1917).
"A. Einstein, Ann. Physik 55, 241 (1918)."Exceptions are brief discussions of the lack of physical con-

tent of the principle of genera}-covariance (with or without men-
tion of the Kretschmann —Einstein argument) in several books,
such as L. Silberstein, The Theory of General Relativity and Gravi-
tatt'ort (D. Van Nostrand Company, New York, 1922); R. C.
Tolman, Relatfeity, Thermodyrtamt'cs, and Cosmology (Oxford
University Press, Oxford, England, 1934); V. Pock, The Theory
of Space Time and Gran@ation (English translation: Pergamon
Press, Inc. New York, 1959).

~ Some aspects of a four-dimensional development of point
mechanics are contained in the use of homogeneous coordinates
in Lagrangian dynamics (compare Ref. 7, part E II); however,
this is usually treated as a purely formal device. On the other
hand, much work has been done on the generally covariant for-
mulation of the classical mechanics of continua following the
early work of Cartan (Ref. 14), and a comprehensive review is
included in the monumental article by C. Truesdell and R. Toupin
in Encyclopedia of Physics (Springer-Verlag, Berlin, 1960), Vol.
III/l. Although its general mathematical approach is closely re-
lated to the one taken here, the article does not discuss either
point mechanics or gravitation, which are our main concern. It
contains a detailed generally covariant formulation of Galilei-
invariant results, but this is hidden through the use of the term
"world-invariant'" for "generally covariant" (i.e., admitting the
group of all analytic transformations of four coordinates), a term
so conducive to confusion because of its association with the
Minkowski "world" in a physicist's mind that it is even "trans-
lated" as "Lorentz-invariant" in the German index of the volume 1

to Newtonian mechanics must be conceptually dis-
continuous. This is all the more surprising considering
that the groundwork for the reformulation of Newtonian
mechanics necessary to bring out its similarity to the
theories of relativity was laid very soon after the
creation of these theories; to some extent the close
relation between Newtonian and special relativistic
mechanics in a four-dimensional formulation was elabo-
rated by Frank almost immediately after Minkowski's
work, '3 and generally covariant formulations of
Newton's theory of gravitation were given in the 1920's
by Cartan'4 and Friedrichs. ' This paper is written in
the spirit of these early studies. Its purpose is to present
formulations of Newtonian mechanics which, while
obviously identical in their physical predictions with
the usual one, are closely analogous to the four-dimen-
sional formulations of the special and of the general
theory of relativity. It is hoped that such a presentation
will show better than the conventional approach how
closely related the theories are and that Newtonian
mechanics can indeed be formulated in such ways that
it can be considered as a well-defined conceptual as well
as mathematical limit of either the special or the general
theory of relativity. It might thereby also help to dispel
some of the "mystique" surrounding some of the con-
cepts of relativity in many minds.

Section II contains a very brief summary of those
properties of a%ne and metric spaces which are needed
for the subsequent development. Section III consists
of a review of the fundamental properties of the Lorentz
and Galilei groups and their invariants, and a brief
discussion of the significance of these invariants in
terms of measurements. It also contains a fundamental
lemma which allows us to establish a one-to-one corre-
spondence between co- and contravariant vectors of a
certain type in the affine space of the Galilei group.
Part 1 of Sec. IV contains a four-dimensional formula-
tion of Newton's Second law analogous to the Minkow-
skian formulation of Einstein's Second law. The
remaining parts of that section are designed to show
by selective applications (with particular attention
given to the question of conservations laws) that all of
Newtonian point mechanics can be re-expressed on the
basis of this formulation in close analogy to the me-
chanics of special relativity, and to separate the formal
and the physical aspects of various questions in these
theories. Section V contains a generally covariant
formulation of Newtonian and of special relativistic
dynamics in a flat space —time. In Sec. VI (which is
largely independent of Sec. IV) it is shown that
Newton's theory nf gravitation can be given a generally
rnva, riant formulation in a curved space-time„Newton's

» P. Frank, Sit@her. Kgl. Akacl. Kiss. %Vie», Math-naturw.
Kl. i&8, Abt. IIa, 373 (1909)."E.Cartan, Ann. @cole Norm. 40, 325 (1923) and 41, 1 (1924),
reprinted in Oeuvres Completes (Gauthier-Villars, Paris, 1955),
Vol. III/1, pp. 659 and 799."K.Priedrichs, Math. Ann. 98, 566 (1927).
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second law now requires that particles niove along
geodesics of the four-dimensional space, whose aKne
connections satisfy field equations of the same form as
Einstein s. Some implications of these results are
discussed in Sec. VII.

While the presentation is such that the Newtonian
and relativistic equations are generally displayed in
parallel to stress their similarity, and the Newtonian
formulas are the mathematical limit of the correspond-
ing relativistic ones, the formulations of Newtonian
mechanics given here are in principle independent of
the theory of relativity and could have been developed
without it.

II. AFFINE AND METRIC SPACES

Throughout this paper we are concerned with affine
spaces. Their fundamental concepts and mathematical
properties will be assumed known, !6 and we only pre-
sent a brief. summary. We consider an ~z-dimensional
continuum, whose points are labeled by coordinates x&.

In the following, Greek indices always run from 0 to
n —1 and Latin indices from 1 to e—1; summation
over repeated indices is understood. We now consider
coordinate transformations

x'~= x"(x~) .

A contravariant vector 2 & is defined as a quantity with
n components which transform like the dx&, i.e.,

A'»= (ax"/ax~) A~

Thus the coordinate differentials themselves form a
contravariant vector, but for the finite coordinate
differences Ax& this is only the case if the transforma-
tion (1) is linear, and for the coordinates x' themselves
only if it is also homogeneous. '~ A quantity 8, is called
a covariant vector if its components transform as

8'„= (Bx~/Bx")8,
In general one can col unambiguously associate a
covariant and a contravariant vector with each other.

We can define covariant, contravariant, and mixed
tensors of any rank by similar expressions, i.e.,

8x' Bx'& 8x& Bx
Tlap. .. — . . . . ..TA. .. (4)

Bx Bx Bx Bx

and tensor densities of weight m by a transformation
law which in addition to the factors included in (4)
contains a factor D ", where

D=
j ax"/ax~i

"For a brief introduction mell suited for our purposes see E.
Schrodinger, Space—Time Struc/ure (Cambridge University
Press, Cambridge, England, 1950)."This introduces a slight notational inconsistency which
could be avoided only at great inconvenience. A similar standard
inconsistency is the notation for the I' „~ introduced below, which
transform according to Eq. (6).

is the Jacohian of the transformation. A vect.or is a
tensor of rank 1, a scalar (invariant) one of rank 0.

We can also define addition and subtraction for
tensors of the same rank and multiplication and con-
traction for tensors of any rank. To define differentia-
tion maintaining the tensor character of any expression,
we have to introduce an agee correction I' .q with the
transformation law

Bx l' Bx" Bx" Bx ~ 8 xr"„„= +
tax Bx Bx Bx Bx Bx

(6)

(l =—=-8/Bx" (7)

The affine connection can be arbitraily assigned in one
coordinate system; it determines the meaning of parallel
displacement in the space considered. In the following
we are only concerned with symmetric connections
I'~„z——F'z, . It is clear from Eq. (6) that if we have two
different afFine connections, their difference transforms
like a tensor.

If we form the second covariant derivatives by suc-
cessive applications of Eq. (7), then in general the
differentiations with respect to different coordinates
do not commute. This property of the af.tine space is
called curvature and is described by the Riemann-
Christoffel curvature tensor R"„q„and the contracted
curvature tensor R„„defined as

+ pkv=~xp pv ~vp px+p pxp pv p pvl

R„„=—R~„),„.

R„„is symmetric provided

R~„&„——0.

A geodesic in affine space is defined as the straightest
line. As a function of a parameter r which is defined up
to a linear transformation it satisfies the equation

d'x~ dx~ dx"r„. =0.
d7' "

dr d7.

In general length can only be defined along a geodesic,
and the lengths along different geodesics can not be
compared. Such a comparison becomes possible if the
space admits a symmetric tensor of rank two g„, with
vanishing covariant derivatives, the metric tensor. '6

Then the distance ds is determined by

ds2= g„„de"dx",

which by suitable choice of the arbitrary factor in 7
agrees with the distance along geodesics.

thus F,), does not transform as a tensor except under
lzeear transformations. Then we can define covariant
derivatives by

Tax. . . —g 7"a+ +pa 7'ax . . +p. x Tea. . .

+, , . . . pl1 7 KX. . . @IX TKX...
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If the determinant of the g„„vanishes, the metric
is called singular; if it does not vanish anywhere, the
space is called metric or Riemannian. "In such a space
the geodesics are the shortest (or at least extremal) as
well as the straightest lines; the equations g„, ,=o can
be solved for the affine connections which ar'e given by

I pv } 2g (~l4gye+~vgirp ~rgpr ) y

velocity is taken to be independent of direction(, and
this combined with principle (I) implies the non-
existence of an absolute time. The two principles allow
the determination of the group of transformations
relating the space and time coordinates in diGerent
inertial systems. We consider instead first the wider

group of linear transformations of the Cartesian space
coordinates x', x2, x' and the time t=x0

(14)
where {„'„Iis called the Christoffel three-index symbol
and g&" is the inverse of g„„,defined by

We have
Bx'"/Bx' =n"„

a i /Bx'"= (n—')'
where 8"„ is the Kronecker 5 (which transforms as s.

mixed tensor). With the help of these two tensors we
now can associate with each contravariant vector A& a
covariant vector A„=g»AI', and conversely AI'= g»A„.

Thus mathematically we can always associate a metric
space with a given affine space, provided certain con-
ditions are satisfied"; in particular, this is always
possible if the space is flat. Whether this is a physica/ly
meaningful association is discussed later.

Any symmetric tensor of rank two such as g„, which
can be associated with a quadratic form can be charac-
terized by its signature, i.e. by the difference between
the number of positive and negative terms after the
quadratic form has been diagonalized. This number is
an invariant by Sylvester's "Law of Inertia of Quad-
ratic Forms. ""

n" (cx ')~ =8" (15)

The full inhomogeneous Lorentz group (also called
Poincare group) is the group of transformations (14),
restricted by the condition"

'gp„A pA ='Qp (16a)

where g„„ is a nonsingular symmetric tensor with
signature —2. From Eqs. (15) and (16a) we obtain

and by comparison with Eq. (4) it follows that it„„has
numerically the same components in all allowed coordi-
nate systems. We can define its inverse by

III. FUNDAMENTAL PROPERTIES OF THE
GALILEI AND LORENTZ GROUPS

1. Definition and Structure of the Groups

The Special Theory of Relativity is based on
Einstein's principle of relativity (I) and his principle
of the constancy of the velocity of light (II). They
are; (I) If properly formulated, the laws of physics are
of the same form in all inertial systems; (II) There
exists a maximum signal velocity in nature, the velocity
of light in empty space, which has the same value c in
all inertial systems.

In the above, inertial systems are defined as those
systems in which Newton's first law is valid. The
existence of a maximum signal velocity leads to the
results that the concept of simultaneity within a single
inertial system involves an element of definition )the
particular definition implied in (II) being that clocks
are synchronized by means of light signals, whose

'8 Some properties of spaces vrith singular metric tensor are
discussed by G. Vranceanu, Lemons de Geometric DQferentielle
(Bucarest, 194/; reprinted by Gauthier-Villars, Paris), Vol. I;
t.his book includes such spaces among Riemannian ones, contrary
to the customary terminology.

'fl Compare M. Bocher, Introduction to Higher Algebra (The
Macmillan Company, New York, 1907), Sec. 50. (The term
"rank" is used here with a rlifferent meaning. )

and shall take the nonvanishing components of these
tensors to be

'gll 'f22 $33 C
—2

~ll —~22 —~33— C2

It follows immediately from Eqs. (18) that

q""O.~„cP„=g~~)

(18a)

(18b)

(16b)

A 0= &1) O.0„=0 (19)

the last one of these implies cx „n,=b„." by the well-

known properties of orthogonal transformations. These
conditions are nontensorial; however, they are equiva-

"See, e.g. , K. M. Corson, Introduction to Tensors, Spinors, and
Relativistic Wave Equations (Blackie R Son Limited, London,
1953)p

Chap. I,

and from Eq. (16) that the determinant D defined by
Eq. (5) equals &1. As only six of the n", are inde-

pendent, the group contains ten independent param-
eters.

Newtonian mechanics is in agreement with principle
(I). However, it assumes the possibility of infinite

signal velocities and of an absolute time. The full

inhomogeneous Galilei group is defined as the group
of transformations (14), restricted by the conditions8



942 REvIEws oIi' MQDERN PHYsIcs ' OcTQBER 1964

lent to the tensor equations

gay% pA p gpy ~

h A@A y=l2 )

(20a)

(20b)

with a suitable choice of g„, and 7r&". From Eqs. (15)
and (20a) we have

and thus g„„has numerically the same components in
all coordinate systems; for h&" this property follows
directly from Eq. (20b) . We choose for the nonvanish-
ing components

goo= ~,

h"= h"= h"= —1

(21a)

(21b)

Thus these tensors are singular and satisfy the equation

g I2 —0. (22)

w„= (1, 0, 0, 0) (23)

transforms like a covariant vector, with numerically
the same components in all coordinate systems; under
antichronous transformations it changes sign. Clearly
we have

h&"v~ =--0

gpy ~OIl fly'

(24a, )

(24b)

If we introduce a tensor

(25)

Because of this the relations (20a) and (20b) had to
be postulated independently, whereas the corresponding
relations (16a) and (16b) imply each other.

Equation (20a) with (21a) implies (crea)'=1 and
cr',„=0.Equation (20b) with (21b) implies cr" cr' =P,
Thus Eqs. (20) and (21) are equivalent to Eq. (19).
As they again restrict n&, to six independent compo-
nents, the Galilei group too is a ten-parameter group.
The conditions also imply again that D equals &1.

Thus in complete analogy to the structure of the
Lorentz group" the Galilei group consists of four parts,
corresponding to the four combinations of the signs of
D and eros. The part with D=croa=+1 forms a sub-
group, the proper orthochronous Galilei group, as does
the proper orthochronous Lorentz group defined by
D= sign cr'a=+1. The physical requirement of in-
variance under these subgroups is more basic than that
under the full groups, because it is these subgroups
which correspond to uniform relative motion of frames
of reference without reQections and time reversal, i.e.,
which express the equivalence of all inertial systems.
The transformations with sign o.'0= —1 are called
antichronous.

If we restrict ourselves to orthochronous Galilei
transformations, the quantity

Eq. (17) implies

a relation which degenerates as c~~, H&" and q„,
becoming independent and equal to the tensors h&" and
g„„introduced by Eq. (21) . Equation (26) then reduces
to Eq. (22), and the Lorentz transformations to the
Galilei transformations.

The structure of the two groups (14) with (16) or
(20) determines all of the space-time structure and
much of the physical content of the theories required
to be invariant under these groups. However, it does
not determine the physical content entirely. There may
be several specific laws which satisfy the invariance
requirements, and the decision between them must be
based on experiment. The familiar forms of Newtonian
and special relativistic mechanics are specific theories
satisfying the more genera/ invariance requirements of
the two groups. In the next section we discuss these
two mechanics and indicate some possibilities of gen-
eralization. In this section we restrict ourselves to
general considerations following from the group struc-
tures alone.

2. intervals

One possibility of associating an affine space with the
coordinates xp used in the Lorentz or Galilei transforma-
tions (14) is to choose all F's equal to zero in one
coordinate system; from Eq. (6) and the linearity of
(14) they then vanish in all allowed coordinate systems,
and thus this choice does not disturb the physical
equivalence of all inertial systems. This space isgaf, i.e.,
its curvature tensor E"„z„vanishes everywhere.

In the space —time of the Lorentz tra, nsformations,
we can then take the tensor g„„as the metric tensor,
since the connections (12) formed with this tensor a,ll
vanish. The four-dimensional distance is then deter-
mined by

ds'=y„y dr~ dx", (27)

ds =g~y dS~ dx" (28)

is not Riemannian. Other tensors can be introduced
which are nonsingular, " but their components do not
have the same numerical values in all coordinate

~1'j.'he requirement of.vanishing of the I"s in all coordinate
systems is satis6ed by choosing any symmetric tensor ~vhatever
~vhose components are constant in one coordinate system be-
cause of Eq. (12) anrl the linearity of the Gahlei transformation,

which is of the same form in all coordinate systems, p„,
having the same components. The space associated with
(27) is Riemannian, since rf„„ is nonsingular.

We could also try to introduce a metric tensor in the
four-space of the Galilei group. The tensor g„„ intro-
duced by Eq. (21a) is singular, and thus the space
associated with the four-dimensional distance
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systems. '-''-" This is mathematically permissible. Hut
such a "length" is not the same numerical combination
of the coordinate differentials in all inertial systems;
we say that it is not form-invariant. It takes a particu-
larly simple form in one system Z in terms of the dx&,

and while it has the same numerical value in all other
systems, this value can only be determined if the trans-
formation from Z to the other systems is known.
Physically the "length" then is not measured by the
same procedure in all frames of reference, and a pre-
ferred inertial system is introduced arti6cially.

The four-dimensional expression (28) actually refers
to a pure time interval because of the form (21a) of

g„„, and assigns a separation zero to any two simul-
taneous events. A nontrivial characterization of the
interval of such events (whose four-dimensional form
will be given in Subsection 4) is provided by the in-

variant three-dimensional length

6V Js 8$ Ch'=0. (29)

The length and time intervals defined by (29) and (28)
are those associated with the usual length and time
measurements in Newtonian physics. For later con-
venience we have written these two intervals only in
terms of infinitesimal separations, although similar ex-
pressions can be defined for finite separations.

Instead of postulating Kq. (16) and deducing the
form invariance of (27), we could have taken the form
invariance of (27) as our basic postulate, and deduced
Eq. (16) and thus the Lorentz transformations from it.

Similarly it can be shown that we can regain Eqs.
(20) from a requirement of form invariance of Eqs.
(28) and (29) under linear transformations. More
generally, if we stipulate this form invariance for Eqs.
(28) only (equivalent to the requirement of the validity
of Euclidean geometry for instantaneous measurements
within any inertial system), it can be shown that this
leads to a group of transformations (14) characterized

by a constant of the form &c ', where c is a velocity. '4

The choice c= ~ )equivalent to Eq. (29)j leads to the
Galilei group; a finite c with one choice of sign gives
the Lorentz group, while the other sign gives a group
which has not found any application in physics, '4

Dropping the requirement of form invariance, we
could generalize the allowed coordinate transformations

by treating the quantities h&", g„, and g„„as tensors
under these transformations, and require only that they

"One such possibility was suggested by E. Cartan, Bull. Math. .
Soc. Roum. Sci. 35, 69 (1933), reprinted in Oeuvres Co~np/eIes
(Gauthier-Villars, Paris, 1955), Vol. III/2, p. 1239.

"The numerically constant tensors of. the Galilei group and
the invariants which can be constructed with their help are dis-
cussed in a paper in preparation.

"A detailed exposition of this {~vith some references to the
literature) has been given recently by H. M. Schwartz, Am. J.
Phys. 30, 697 (1962) for the case of the proper orthochronous
homogeneous groups; the extension to the full groups requires
only minor modifications. An essentially equivalent axiomatiza-
tion was given by E. Hahn, Arch. Math. Phys. 21, 1 (1913).

reduce to the particular values (21) and (18) for
inertial systems and Cartesian coordinates. However,
the analogies and distinctions between Newtonian and
special relativistic mechanics are already fully apparent
with the linear transformations (14) and nothing is
added to these features by considering nonlinear trans-
formations. Thus we discuss this generalization only

briefly in Sec. V, principally as an introduction to
another generally covariant reformulation of Newtonian
mechanics given in Sec. VI. 3, which is compared with
Einstein's general theory of relativity.

3. World Lines

We now consider the world line of a particle whose
four coordinates we denote by s& and which can be
expressed as functions of an arbitrary parameter. If
they transform under the Lorentz group, it is con-
venient to take as this parameter the proper time v.

defined by
~& =gatv~~" ~~". (30)

We can dehne the four-velocity v& and four-acceleration
a& by

(31)a' =d's'/dr'nl' =dh'/dr,

and the equivalent covariant vectors v„=q„p& and
u„=rl»a'. From the definitions (30) and (31) it follows
that

V~Vp= 1) V~G~=VpC~=0. (32)

In the case of the Galilei group we similarly take
the s& as functions of a parameter r defined by

dv-'= g„, dpi" dz". (33)

'N~= gppV~ (34)

and satisfies the relations

V~ZVp= 1~ 'RpC~= 0 (35)

Clearly z differs from s'=At at most by an additive
constant. However, we prefer to distinguish the two
quantities notationally. First, this serves to emphasize
that v is a. parameter on the world line rather than a
coordinate (and thus could have been chosen differently
from t), second, this renders the formulas of Newtonian
and special relativistic mechanics much more sym-
metric and third, this distinction is needed in con-
sidering general coordinate transformations in Secs. V
and VI. The factors in the definitions are chosen so
that Eq. (30) reduces to Eq. (33) in the limit c—+~.
We can thus define a Newtonian four-velocity and four-
acceleration by the same Kqs. (31) as before. The
spatial parts of these contravariant vectors are the
usual three-velocity v (or —v for antichronous trans-
formations) and acceleration a. In the absence of a
nonsingular metric we can not automatically define any
corresponding covariant vectors. However, the vector
w„defined in Eq. (23) can be written
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analogous to (32); while independent of 0P, it is numeri-
cally equal to the limit c—+~ of the special relativistic
e„and formally plays the same role. A method which
can be used to define a covariant counterpart to a& is
developed in the following subsection.

Now we consider tmo events s&& and s2& which may
lie on the same or on diGerent world lines, and the
corresponding four-velocities e~& and e2&. In the case of
the Lorentz group, we can define in addition to the
four-dimensional distance ds (27) the following inde-
pendent invariants out of these four quantities:

where the tensor hpp is defined in Eq. (21b) and the
nonvanishing components of k„are

&0,——&,0——0, &11 ~22 43 —1. (43)

Any vectors related by Eqs. (42) automatically satisfy
(39) and (41).

From the transformation law (38) for B and the
one for v following from Eq. (14) the transformed
components of B, are

&1 (s2 sl )01py &2 (si s2 )02py M 01 02p (36)
nm gr(nm +nm 0a) no nm jeer (44)

On the other hand, a covariant four-vector must trans-
form according to Eq. (3). The transformation coeK-
cients Bxp/Bx'p follow from Eqs. (14) and (19). They
are

In the case of the Galilei group we also have three
independent invariants" in addition to the "distance"
(28), which are more conveniently written in three-
dimensional notation as

Bx'/ojx'"= 0Bx'/Bx" = n'
Avo=

I v2 —vi I )
Bx"/otx' =n"„. (45)Bx"/ojx"= —n'on", n"o,

s =
I z2—xi—2(vi+v2)(t2 ti) I ~

L+2 +1 2 (vi+ v2) (~2 ~1) 7 (v2 vi) ~ (37)
Therefore

If the events are simultaneous, the second of these
reduces to the form (29) for a finite separation.

4. A Lemma

We now consider a three-vector B (not necessarily
associated with a world line), defined a,s a quantity
whose components transform as'5

f8 QpfQ B7 (38)

It is obvious from (19), and also trivial, that we can
associate a contravariant four-vector B& with 8 by
adjoining a 0-component which is zero; this vector can
be characterized invariantly by

B&m p=0. (39)

I-emma: Given a contravariant four-vector B& sub-
ject to condition (39) and a three-velocity v (with
0 =ds /dso), the quantity

B,=(B.v, -B) (40)

Equation (39) implies (38).
It is fundamental for our later considerations that

we can also associate a covariant four-vector B„with 8
or B&. We prove the following

(no i3202+no nih nk 'J3r nm gr)

ds'= g„„dx~dx"=0 or m, dx =0. (46)

Thus by virture of the Lemma we can associate a
covariant vector dx„=k„dx with these events. This
allows us to write the three-dimensional length (29)
in a four-dimensional form as

which agrees with (44).
The vanishing of Bp» follows from the definitions of

the two vectors. Conversely, condition (41) and the
definition of 21P imply the form (40) of Bp. Equation
(42) is also readily verified from the definitions. The
fact that k„ transforms as a tensor can also be verified
directly, using the same method as for B,. Further-
more, k„satisfies e&k~=0 from its definition and h&'

satisfies Eq. (24a), which proves the last part of the
Lemma.

The Lemma is important because it allows us to
establish a one-to-one correspondence between co- and
contravariant vectors of a certain type, a correspond-
ence which in general is only possible in a metric space.

The transformation law (38) is satisfied for the
coordinate differentials (or differences) of two events
which are simultaneous, a condition which can be
expressed four dimensionally in the equivalent forms

satisfying the condition

Bpv~=0 (41)
dP = —h""k„pk„dxi' dx;

Lwith 0P defined in Eq. (31)7 transforms as a covariant
vector under the Galilei group. BI' is related to B, by

however, from definitions (21b) and (43) we have
Iz""k„pk„,=kp„and thus

B~=h~ B. Bp= k~8', (42) dP= —k„dx& dx, (47)

'~ This is the usual law for orthogonal coordinate transforma-
tions in a three-space. However, note that it is not the law of
transformation of the space coordinates under the Galilei group,
and that the transformation law for v divers from either.

subject to condition (46).
The acceleration a and the usual (velocity-inde-

pendent) Newtonian force F also transform according
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to Eq. (38) and thus we can define covariant four-
vectors

equation relating two contravariant vectors in a four-
dimensional Rat space:

u, =(a.v, —a), P,=(F v, —F) (48) mea~ =dPI'/d7 =F',

satisfying condition (41). However, no covariant four-
vectors can be constructed from either the position
vector x or the velocity v. Thus up is not the derivative
of a four-vector.

where

cP'vp =0~

a' =d's'/d7', I'P =mpVP,

F.vt' s'l-'* (
c' k c'j '

& c'i

(54)

(55S)

IV. SPECIAL RELATIVITY AND NEWTONIAN
MECHANICS

1. The Second Law of Motion

The three-dimensional forms of Newton's and
Einstein's second law of motion for a single body are'6 u&w, =0, P&= (0, F), (55N)

Lwith r defined by Eq. (30)7. It has also been noted
and commented upon frequently that we can (trivially)
write a corresponding equation (54) for Newtonian
mechanics ['with 7. defined by Eq. (33)7, with

msdv/dt = F,

~no (d/dt) $v/(1 s'/c'—) '7 = F,

respectively, or alternatively

(49N)

(49S)

which thus contains only Eq. (49N), but besot the energy
equation. However, (except for the neglected early
work of Frank" ) it seems to have escaped notice that
we can write a relation between colrgmf vectors'

dp/dt= F, p=mv, (50) mpGp= Pp~ CPSP =0) (56)

with

(51N)

(51S)

with

dE/dt=F v,

L&'= rstrsv'+ const,

L~'= mc'+ const.

(52)

(53N)

(53S)

The constant of integration is of course not deter-
mined by the differential equations; its choice is mathe-
matically completely arbitrary, and physically irrele-
vant in the case under consideration of a single body.
While many authors take the constant in (53S) to be
zero in a desire to obtain a relation between mass and
energy, it can not be emphasized too strongly that the
equivalence of mass and energy can not be derived from
the law of motion (49S) at all, and is a physically
empty statement as long as only a single body is being
considered. '" %e return to this question in Sec. IV.S.

It is formally convenient, however, to choose the
constants equal to zero in Eq. (53N) and (53S).
Following Minkowski, 5 we can then combine the four
equations (49S) and (52)/cs with (53) in a single

'6In this section we denote corresponding formulas of New-
tonian and special relativistic mechanics by N and S, respectively,
and (except as noted otherwise) all other formulas are valid for
both theories. The subscript 0 in m0 is not necessary in the New-
tonian case, but is introduced to allow writing a single formula
for both theories in many cases.

'r For a discussion of this problem see, e.g., C. Mglller, The
Theory of Relativity I,'Oxford University Press, Oxford, England,
1952},Sec. 30.

The relations between rate of change of energy and rate
of doing work can be deduced from these equations in
a well-known manner, and we obtain

which contains the energy equation (52) as well as the
law of motion (49) (the latter with changed signs), in
both the Newtonian and the special relativistic case.
Equations (54) and (56) are obviously equivalent in
the special relativistic case, and equivalent by virtue
of the Lemma of Sec. III.4 in the Newtonian case; for
the latter case, the explicit form of the quantities
appearing in Eq. (56) is given in Eq. (48).

The difference between the two cases in Eq. (56) is
that while in special relativity we have a,=d'(rt„s') /dr',
the Newtonian ap can not be written as a second deriva-
tive; furthermore, while we can write this equation as

dP, /dr =P, (57)

in both cases, the transformation properties of I',
depend on the choice of the constants in Eqs. (53N)
and (53S).

If we choose them as appropriate for a kieeIIic energy
T which should vanish for v= 0, we have~

T= ~mv',

T= (m —ms) c' P.= (&, —p)/c',

(58N)

(58S)

and I', does rot transform as a covariant vector in
either case (and is thus also independent of the previ-
ously defi.ned P&); it is only dP, or a finite AP, which

~8 Because of the de6nition of a covariant vector B, associated
with a given contravariant vector B by Eq. {40) in the New-
tonian case and by s„8' with the values (18a) for the compo-
nents of the metric in the relativistic case, the Newtonian and the
relativistic a, differ by a factor c, as do the Fp, and the P, intro-
duced below; although this could have been avoided by a different
choice of the metric in Eq. (18), this would only have shifted
the appearance of the factor c2 to some other equations. To com-
pensate this difference and thereby maintain the symmetry of the
equations containing the potential U introduced in the next
subsection, it is understood in the following that in the relativistic
equations U is to correspond to 1/c times its Newtonian counter-
part.
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has the proper transformation property. If, on the other
hand, we choose the constant in (53S) to be zero, we
have

dPp/dr= F„ Pp ——(F., —p)/c', E=mc', (59)

and I"p now is the covariant four-vector corresponding
to Pp in Eq. (54). No choice of the constant in Eq.
(53N) allows us to deGne a true covariant four-vector
I'p in Newtonian mechanics.

The different choices of the constan. ts in Eqs. (53N)
and (53S) are physically irrelevant and Eqs. (52)—(59)
do not contain any more than Eqs. (49) or (50). It is
only through new assumptions in the case of several
bodies that the choice of constants acquire physical
significance, as is discussed in Sec. IV.S.

The considerations of this subsection are valid.
whether the system under consideration is closed or
open, i.e., whether the source of the force is considered
to be part of the system or not. No further statements
can be made for the mechanics of a single body without
further specification of the force. The question of
speci6c force functions for a single body is discussed in
the next subsection, and the problem of several bodies
in the subsequent subsections.

Fpep=0. (60)

This is automatically satisfied from the de6nition of F,
in terms of the three-dimensional force F in both the
Newtonian and the relativistic case. However, a four-
dimensional formulation does not need such constant
reference to a three-dimensional one; instead Eq. (54)
can be taken as the fundamental law of motion, and its
consequences for the four-force can be studied directly.

Equivalently, if we start from Eq. (56), the relations
replacing Eq. (60) are

PpG)p= 0,

F&vp= 0.

(61N)

In the following, we restrict the discussion to Eq. (60).
The most important forces we have to consider are

those derivable from a scalar potential U. The co-
variant vector BpU is not orthogonal to ep, however;
we must therefore take as our equation of motion,
denoting the. interaction constant by g,

mpap= g (8pU wean B,U)—, (62N)

which can also be written, using the notation of Eq.
(58N),

(63N)dldr (P.+g~.U) =g~.U,
since

v B.U=dU/dr. (64)

2. Syeci6c Force Functions

Since the covariant acceleration satis6es the relation
a,v&=0, Eq. (56) implies that we must also have

Here U and its derivatives are evaluated at the posi-
tion of the particle. It can easily be veri6ed that Eqs.
(62N) or (63N) are indeed equivalent to the usual
Newtonian equations in a force Geld F= —V'U.

In the relativistic case a possible form of the equations
is '8

nsoap= g(8pU vpv'—8 U); (62S)

moPp= 8Fpg8 (66)
in both cases."

In the Newtonian case it is an innnediate consequence
of our Lemma that in addition to cp itself any deriva-
tive d"al'/dr" leads to a covariant vector

"u =k d"a&/dr" (67)

satisfying condition (41) and thus any force propor-
tional to "a, can be used in Eq. (56); "a, does Not

equal d"a,/dr". In particular we can use 'a, for the
Lorentz radiation damping force. Similarly, forces
depending on the acceleration and its derivatives
satisfying Eq. (60) can be constructed in the relativistic
case by successive differentations of apvp=0, but no
simple general formula analogous to (67) can be given.

3. Interactions

The considerations of the last two subsections referred
to a single particle subject to an arbitrary force. If this

"We are not concerned here with possible Beld equations de-
termining Ii„. Galilei-invariant equations can easily be formu-
lated, but they can clearly not be equivalent to the Lorentz-
invariant Maxwell equations. In our context we should thus in
the Newtonian case consider Eq. (66) as a possible equation of
motion for a particle in some Galilei-invariant Beld, which happens
to be applicable to electromagnetism if the fields are given as
functions of x&. The linking of the electric and magnetic fields in a
four-dimensional tensor (rather than considering them as two
independent three-vectors) leads through the transformation
law 141 to e8ecta which are the correct limit c—+ ~ oi the reia-
tivistic ones (unlike the three-vector interpretation): An observer
moving with velocity v with respect to a frame of reference in
which the fields have the values E and 3, will note an additional
electric Geld v)(B.

another, analogous to (63N), but Not equivalent to
(62S) is Lin the notation of either Eq. (SSS) or (59)j

d/dr (P,+go, U) =gB,U. (63S)

Both of these reduce to the same Newtonian limit.
For later reference we also need the contravariant

form of Eqs. (63), which follows by contractions with
hp and pp', respectively:

4PI'/dr =girl"B, U, (64N)

d/dr (P&+gv&U) = gri& 8,U. (64S)

As is well known from electrodynamics, Eq. (60) is
identically satis6ed for a force of the form

Fp=eF~u, F~= F,p,
— (65)

which has the structure of the Lorentz force; thus the
equations of motion of a charged particle in an external
electromagnetic 6eld are
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k~8 U= —4+p

g "8 U'= —4+p

(68N)

(68S)

force is due to other particles, which in turn are acted
upon by the particle under consideration, the usual
assumption of Newtonian mechanics is that the forces
are determined by the simultaneous positions (and
possibly their derivatives) of the particles, and that
they are related by Newton's third law. No such
assumption is possible in special relativity since simul-
taneity is not an invariant concept in that theory. How-
ever, as discussed in Sec. III.3, even in Newtonian me-
chanics At=0 is only one of several possible two-body
invariants, and thus there exists the possibility of in-
troducing Galilei-invariant forces other than those
ordinarily considered, in closer analogy to possible
special relativistic interactions; this point mill be dis-
cussed in detail elsewhere. '0 In the following we restrict
ourselves as an example to the simplest types of forces in
both theories, those which can be derived from a scalar
potential satisfying a Poisson or d'Alembert equation;
extension to the Helmholtz or Klein —Gordon equations
requires only minor modifications.

We have then"""

V(x~) = —Ggg;/R;, R;= (—k~s, s,') & )~ .o,

(73N)

The d'Alembert equation is hyperbolic and the
choice of the Green's function is not unique. In view

of later applications we write down only the time-

symmetric (half-retarded, half-advanced) Green's func-

tion given by

G(x", xs)

»L(x"—*')+R3+3L(x"—x') —R)
8xc' E

tional integration over x'), using Eq. (47),

1 8(x's —8)
G(x'~, xs) =—.. . (71N)

4~ L
—u„(x"—x ) (*"—~) ]1 '

and we get from Eq. (70) with (69)

8(s,')
U(x ) = —Ggg; ', &.;, (72N)

-m ( &rani"&i )

which we can write

where 8„,=8„8,and p is the source density. In the case
of e point sources of strength g; we can take

)o=GZg' 8'L&ip(r') j&r*
i=1

SLY,),(x'"—x') (x'"—x")],4xc'

R= $—g„,(x'"—x') (x"—x') j&.

Thus we obtain from Eq. (70) with (69)

(71S)

s,p= x~ s~;(r;), — — (69)

where b4 denotes a fourfold product of Dirac 8-func-
tions, and t" is a constant. In the case of gravitation, 6
is the gravitational constant, and because of the uni-
versal proportionality of inertial and gravitational
masses the g; can be taken as equal to the mo;.

The solutions of Eqs. (68) are given by

U (x")= 4 fp(x )G—(x x") d''"x', '", (70)

where d4x' is the four-dimensional volume element and
G(x'&, x)') is the Green's function appropriate for each
particular equation. ' The three-dimensional Poisson
equation is of elliptic type and for the infinite three-
dimensional domain there exists only one Green's
function

~
X'(t) —X(t)

~

', thus we can write for its
four-dimensional equivalent (which involves an addi-

~ P. Havas and J. Plebanski (to be published shortly); possible
relativistic interactions were discussed in Bull. Am. Phys. Soc.
5, 433 (1960).

» Eq. (68 S) is a special case of the scalar meson equation (with
rest mass zero), which has been studied extensively in meson
theory; compare P. Haves, Phys. Rev. 8'7, 309 (1952), and
references given there.

» For the case of gravitation, Eq. (68S) has been studied by
O. Bergmann, Am. J. Phys. 24, 38 (1956).

~ See, e.g., D. Iwanenko and A. Sokolow, Elassische Feldtheorze
(German translation: Akademie-Verlag, Berlin, 1953). The
d'Alembert operator used by these authors differs from that of
Eq. (68S) by a factor —c'.

gx 00

U(xs) = —Gg —,
'

8(rt„),sps;") dr;,
C

(72S)

which equals

G
U(xs) = ——,gg,2c'; '

«;(r;„) «;(r )
' Kg= 'rjpgsg+5f ~

(73S)

d G 1
+sp g sspgsgi

d« '
2«« ';x« ';(;,) «;( ) )

6 1 1
g„B Qg, — . (74S)

2c ';~s '
«;(r;„) «;(r„)

These equations could of course have been postulated
directly without any reference to field equations, as was

indeed the case for Newton's theory of gravitation.

where r;„and 7; are the retarded and advanced proper
times, determined from y„~,&s,"=0,with s )0 arid &0,
respectively.

As Eqs. (68) contain all particles as sources, the
potentials (73) introduce a spurious self-interaction
into the equations of motion (63) (regrettably as
usual). Omitting these terms, we get for the kth particle

gg gaP,—Gg tc,Q—= —Ggs~, p—, (74N)
dTs iyaltRi its Ri
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p= —84(ss")/4s by delnition, we obtain

hl""B„„Up=—krogI, b~ sgl' d7-I„ (84N)

total four-momentum

hw„+P,~=O, (89N)

rll""B„„UI,= 4+G—gs 54(ss&) drj, . (84S)

S. Conservation Laws

We first consider the case of a single free particle.
Then from Eqs. (54) and (56) we have for the four-
momentum

The introduction of an adjoint field (83N) then
shown to satisfy (84N) is essentially the historical
procedure which led from Newton's law of gravitation
to the introduction of a potential satisfying Poisson's
equation.

~QP, ,=0, (90)

which only implies (87).
Since P,& is itself a four-vector, it is not necessary

that the total number of particles be the same at the
two instances of time considered, and thus Eqs. (86)—
(89) might also be valid for collisions which do not
conserve the total number of particles. On the other
hand, if we start from P,&, it is only the difference of
thoro momenta which is a four-vector; furthermore,
this is only true provided the mass does not change,
since it is the transformation law for the velocities
rather than the momenta which is responsible for this
property. 3~ Thus we can only formulate a covariant
conservation law if neither the total number of particles
nor their mass changes. We then might have a law

P~= constant, P„= constant,

which from the definitions of these quantities implies
that the mass and velocity of the particle are constant.

Since PI' is a four-vector, while this is not necessarily
the case for P, (see Sec. IV. 1), we have to distinguish
between them in the following discussion.

The existence of conservation laws involving the
total four-momentum for interacting particles depends
on the nature of the forces. In particular, the fact that
there is no invariant meaning to the concept of forces
acting instantaneously at a distance in special relativity
leads to difBculties to be discussed below. We therefore
next consider the special case of point particles with
momenta P,& iriteracting only at the instant of collision,
i.e., at zero distance, since then these diS.culties do not
arise. We want to discuss the problem of the kinds of
covariant conservation laws which are mathematically
possible; their actual existence is a question of
experiment. For simplicity we do not discuss angular
momentum.

Ke first consider the possible covariant conservation
laws involving P,J'. Taking the difference hP;P, I' of
the momenta at two diGerent times, we coll'd have a
conservation law

a+P,»=0. (86)

In the case of Newtonian mechanics this implies by
the definitions (54) and (34) in three-dimensional
notation

(87)~+~,=0,

hgp, 0. (88)'

However, we could instead of Eq. (86) formulate the
more restricted covariant conservation law for the

which implies Eq. (88) and also

~Jr,=o, (91)

and where Eq. (87) is implied in the formulation of
Eq. (90) by the previous discussion.

We can eof pass from Eq. (86) to Eq. (90) in the
Newtonian case by using our I.emma, since the sepa-
rate vectors P,& do not satisfy its conditions, and its
application to the four-vector hg, P;& (all of whose
components vanish) only leads to a trivial zero vector.
On the other hand, we car pass from Eq. (90) to Eq.
(86) (with conservation of particle number) by con-
structing AP;f'=h& AP'„. Thus we can summarize the
Newtonian case as follows: If the total number of
particles is not conserved, we could have (a) no con-
servation law, (b) conservation of mass alone, (c)
conservation of mass and momentum. If the total
number of particles is conserved, we could have the
same three alternatives, and also (d) conservation of
mass, momentum, and kinetic energy. Conversely,
conservation of kinetic energy implies that of momen-

tum, mass, and the number of particles, and conserva-
tion of momentum implies that of mass. "

We can proceed. similarly in special relativity. If we

require Eq. (86), this again implies the conservation
laws (87) and (88) by the defmitions (54) and (31);
however, it should be noted that the masses m; now

depend on the velocities. The two laws could hold
again even if the number of particles is not conserved.
There is no possibility of a conservation law analogous
to (89N) involving only the total four-momentum;

3 This can be readily verified from the Galilei transformation
(14). In the previous discussions of P, in Sec. IV.1 the problem.
of a change in mass did not arise.

~ For similar considerations in three-dimensional formulation
get; the first article of Rt;f. 1, Sec. $9,
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nstead, we cou1d have

AQUA;, P,&=0, (89S)

which implies
d Qmp;=0. (92)

~This derivation of the equivalence oi mass and energy (in
three-dimensional language) from the requirement of a covariant
conservation law (90) with (59) -for a system of particles is given
in P. Frank's review article "Relativitatsmechanik, " Sec. 7, in
Handbgch der physikalischee Ned technischen 3fechanik, edited by
F. Auerbach and Vil. Hort (J. A. Barth, Leipzig, 1930), Vol. 2,
and is based on considerations by H. A. Lorentz in Das Relatz-
sitagspr&uip (Beihefte zur Zeits. iiir mathematischen und natur-
wissenschaftlichen Unterricht 1, B. G. Teubner, Leipzig, 1914).

Thus we could have conservation of rest mass, but not
of mass, without conservation of momentum. In the
Newtonian case there is of course no such distinction.

If Eq. (90) is assumed and use is made of the defini-
tion (58S) for P;„which then is not a four-vector, we

again must have conservation of the number of par-
ticles; however, now it is not necessary that the rest
masses of the particles be unchanged individually, but
only Eq. (92) is required. Then Eq. (90) implies Eqs.
(88) and (91).However, we can also choose the defini-
tion (59); then P,, is a four-vector and thus we do not
need conservation of particle number. Eq. (90) then
implies Eq. (88) and the conservation of mass, Eq.
(87) . This latter equation appears multiplied by c, i.e.,
in the form of a law of conservation of energy,

~QZ, =0. (93)

The physical content of the "equivalence of mass and
energy" does not consist in the appearance of the factor
P, but is due to the fact that neither Eq. (87) nor the
"equivalent" Eq. (93) require the conservation of resi
mass (92) or of kinetic energy (91). Therefore they
allow a system of particles with point interactions to
gain rest mass at the expense of kinetic energy, and
conversely. "

With definition (59), Eqs. (86) and (90) are equiva-
lent even if the number of particles is not conserved
(unlike the Newtonian case). In the case of definition

(58S), however, we can only pass from Eq. (86) to
Eq. (90) and conversely if the number of particles and
the sum of all the rest masses is conserved.

Thus in the relativistic case we have the following
alternatives: If the total number of particles is not
conserved, we have (a) no conservation laws, (b) con-
servation of the sum of all rest masses, (c) conservation
of inass (and equivalently of total energy) and of mo-
mentum. If the total number of particles is conserved,
we could have the same three alternatives, and also

(d) conservation of kinetic energy and of the sum of
all rest masses separately (and thus also of total mass
and energy) and of momentum. Conversely, conserva-
tion of kinetic energy implies that of momentum, the
sum of all rest masses, and the number of particles, and

conservation of momentum and of mass (energy) imply
each other.

These are the mathematical possibilities in the case
of point interactions, which are all consistent with the
second law of motion. The physical assumption made
in both Newtonian and special relativistic mechanics
is that for a system of "elementary" particles whose
number and individuality is conserved it is alterna-
tive (d) which exists in nature, and for a system of any
kind of particles whose number is not necessarily con-
served it is alternative (c), i.e., Eq. (86). The funda-
mental difference between the two theories is that this
latter alternative, which in both cases follows from the
assumption of conservation of momentum alone, does
not imply conservation of energy in Newtonian me-
chanics, while it does so in special relativity because of
the equivalence of mass and energy for each particle.

In both theories the stipulation of the conservation
law (86) for a system of particles whose number is Not

conserved implies that the energy of any one of these
particles is no longer only determined up to an arbi-
trary constant. Unlike the case of a single particle
subject to an arbitrary force, we now must choose the
constants in Eqs. (53) to be zero. The total energy of
the entire system is of course still only determined up
to a constant.

To obtain a general equivalence of mass and energy
for a general nonmechanical system requires the further
assumption of a conservation, law (86) including all
forms of energy and momentum, and a study of the
interaction of the general system with a system of
elementary free particles. ~

To proceed beyond point interactions in full

generality is a problem which has not been investigated
to any extent. If we restrict ourselves to systems of a
fixed number of particles preserving their rest masses,
it is simplest to start from variational principles of the
types (82N) and (82S). Since they are both invariant
under a ten-parameter group ['up to a divergence only
in the case (82N)7, the Galilei and Lorentz group,
respectively, they both imply ten conservation laws

by Noether's theorem, " i.e., ten quantities which do
not vary in the course of time. However, there is a
fundamental difference between the expressions which
follow from the Newtonian principle (82N)" and those
which follow from a relativistic principle such as (82S) .4s

In the Newtonian case these expressions depend only on
the time under consideration, while in the relativistic
case they involve integrals over the past and future mo-
tion of the particles, and thus are not conservation
laws in the usual sense.

4' E. Noether, Nachr. Akad. Kiss. Gottingen, Math. -phys. KI.
235 (1918); for a recent review see E. L. Hill, Rev. Mod. Phys.
23, 253 (1951).

' These were 6rst obtained by Noether's method by E. Bessel-
Hagen, Math. Ann. 84, 258 (1921).

42 The general form of these laws was given by J. %. Dettman
and A. Schild, Phys. Rev. 95, 1057 (1954). See also the erst
article of Ref. 1, Sec. 24.
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except for using an energy —momentum tensor Pl'"+ Tp"
instead of just P&"; the distinction made there between
tensors and tensor densities is not relevant here. sheWe now return to the case of a free point particle

additional tensor leads to an additional term

mp; d's;&/drs= 0. (94)

Since the space of the x& is flat, these are the Eqs. (10)
of a geodesic in this space. As was shown elsewhere, ~
this implies that there exists a symmetric tensor P~
satisfying the conservation law

which has the form

in Eqs. (3) 'and (4) of that reference (with m=4 in
our case), where $„ is an arbitrary function. We then
insert the form (99) with (69) for the divergence and

integrate over x& to obtain

Pg; h&'B, Uf„(dr;/dX;) d'A;

P~ =P ~,e„~e,'84(s,~) dr, .
—CO

(96)
and

P"=Z P'"(r*) 5'(s. ) d ', (97)

with p;& as yet undetermined, it then follows that P&'

must have the form (96) and that the law of motion
takes the form (94), both in Newtonian and in special
relativistic theory.

These considerations can be generalized in the pres-
ence of a force held for which one can de6ne a symmetric
tensor T&& whose divergence vanishes everywhere ex-

cept at the position of the particle which is itself one of
the sources of the 6eld. Restricting ourselves to the
fields described by Eqs. (68) with (69), we can take

Tf"= (4rrG) '(h»h "8 UB U——,'h&~h&"cj„UcI.U), (98N)

Tf = (4~G)-'(rf»rf "B„UB„U 're rid" cj UB —U)-, (98S)

with

Conversely, if we make the requirement of the existence
of a conservation law (95) our starting point, with P&'

of the form

Qg,fg 8 V$"('d.;/d„l;) dt;

in the Newtonian and the relativistic case, respectively,
where X; is a parameter along the ith world line which

is arbitrary except for increasing monotonically with s, .
These terms will be carried along in Eq. (9) of Ref. 43;
we then obtain instead of Eq. (12) of that reference

(D/dX;) (M; ds&/d)„)+g;h""rf„U dr;/D„=O, (101N)

(D/dX;) (M; ds~/d'A;)+gq4"B„U dr;/dX;=0, (101S)

with the covariant derivative D/dX; reducing to an
ordinary derivative in our case. This can be written

,)d7; ~~j ~7 i

D dr, ds,~ dr, &t'd, s,~ dr,—M; — +M; —i, +gofer"cI„U =0. (102S)
dk; D,; dr, dX,j dr'; ' D.;

8 T ~ =G 'ph& 8 U

0 Tg& =6 'pg&'B, U.

(99N) We now contract these equations with to„and ds;„/dr;,
respectively. Using Eqs. (30), (35) and (32) we get

We can then stipulate as the basic requirement of our
theories the conservation of all forms of energy and
momentum

d/dX;(M; dr;/dh;) =0, (103N)

d/dh;(M; dr;/dX;)+g; dU/dX;=0, (103S)

B,T& =0, Tp~= Pp&+T 1&f (100) from which we obtain

instead of Eqs. (74), because it implies these equations.
To show this we can follow the procedure of Ref. 4344"

Mi d&r/dpi= fiery

Mr der/8;= sp;—g;U,

(104N)

(104S)
48 P. Havas, J. Math. Phys. 5, 373 (1964). As noted there, no

particular physical interpretation of the tensor Pf" is implied; for
want of a better word we refer to it as the energy —momentum
tensor, although I'" has the dimensions of mass density rather
than energy density, and is not equivalent to an energy density
in the ¹wtonian case.

44 In the relativistic case this can be done more simply, since
the space is metric. E"or a general method, see M. Mathisson,
Proc. Cambridge Phil. Soc. 36, 331 I'1940); a modification of this
method and application to specific 6elds including (68S) is given
in Ref. 45.

45 P. Havas, in Recent DeeeloprrIents in Genera/ Relativity
(Pergaroon Press —PWN, New York—Warsaw, 1962},p. 259.

where Iso ls a constant of integration. Inserting these
expressions into Eqs. (102) we obtain Eqs. (74)
Loriginaliy including a spurious infinite self-action as
in the case of the Lagrangians (81), which however
can be removed by standard methods'pj. From the
significance of M; as introduced in Ref. 43 we also

6These methods have been developed for special relativity
(see Ref. 44 and other references given in Ref. 45), but are ap-
p)icable jn the Newtonian gasp with moor modigcatjons,



952 REvIEws OF MQDERN PHYBIcs OcTQBER 1964

obtain that the matter tensor must be of the form

P~ =g me@,~v, 84(s,&) dr;, (105N)

I" = Q (me, g;U—) e;&e,'h4(s,&) dr;. (105S)

V. GENERALLY COVARIANT FORMULATION OF
NEWTONIAN AND SPECIAL RELATIVISTIC

MECHANICS IN FLAT SPACE —TIME

1. General Coordinate Transformations and Funda-
mental Tensors

As discussed in Sec. III, we associated a Rat aSne
space with the coordinates x& used in the Lorentz and
Galilei transformations by choosing affine connections
F&„,such that

R'„i„(F)=0. (106)

The coordinate systems we used (Cartesian coordinates
and a special choice of the time coordinate x') were
such that the F's actually vanished in all these systems.
However, clearly the physical content of the theories is
not changed by allowing the use of curvilinear coordi-
nates or of a time coordinate which is not simply
proportional to the time as measured by natural clocks;
it is only the expression of the predictions of the theories
in terms of these coordinates which is changed, as dis-
cussed below. As mentioned in the Introduction, it was
realized at least as early as 191.7 that it should be
possible to express any theory whatever in a generally
covariant form. Following Cartan's early work, " such
a formulation was developed in great detail both for
Newtonian mechanics and for the special theory of
relativity. "'~ ~ We give only a brief outline, mainly
to allow comparison with the treatment given in Sec. VI
and to give a more detailed discussion of the significance
of this formulation in terms of measurements than in
the references cited; this discussion is equally applicable
for Sec. VI.

We have already prepared the ground for a covariant
formulation by writing all our formu1as in tensor nota-
tion. To transcribe them fully into generally covariant
form, we must only replace ordinary derivatives by
covariant derivatives fcovariant differentiation being
commutative just like ordinary differentiation because
of the vanishing of the curvature tensor (106)].Then
the formulas must simply be understood to be valid
tensor relations not just under the groups of trans-
formations (14) with (16) or (20), but under the group
of all analytic coordinate transformations (subject to
certain restrictions to be discussed below).

"R. A. Tenpin, Arch. Rat. Mech. Anal. 1, 181 (1958), an&
references given there.

"V. Foe%, Ref. 11, Chap. IV, and Rev. Mod. Phys. 29, 325
(1957).

v~ =dsl'/dr— (108)

from this we can define a covariant vector m„by Eqs.
(34) as before, which satisfies

(109)

from its definition. Alternatively, we could have intro-
duced m„rather than g„„asa basic quantity, defined by
the requirements (109) and (24a)" @ and then could
have defined g„„by (24b). The existence of coordinate
systems in which m„has the form (23) follows by the
same arguments as used above for h&" and g„„.By either

way of introducing m„we have then

(110)
as before.

All the above considerations are valid for arbitrary
analytic coordinate transformations, and there is no
mathematica/ necessity to restrict these transformations
in the following. However, if we want a reasonable
description of physical phenomena, we must exclude

any coordinate system for which signals emitted at a
time to could arrive at some points of the system at
t&to and at others at t&to. 9 This leads to different
restrictions in the two theories. In special relativity it

"It is too strong a requirement to demand t&to, since this
would assign physical meaning to the obviously conventional
orientation of the time axis and would exclude even the ordinary
antichronous transformations considered in Sec. III. Allowing
both signs does not contradict the "causality condition" that a
signal should not arrive earlier than it was emitted, which can be
looked upon as a definition either of "signal" or of "earlier. "

In particular, we must consider g„„, h&", and y„„as
tensors under these transformations. But then they no
longer possess the property of having numerically the
same components Lgiven by Eqs. (18) or (21)j in all
coordinate systems, and we must therefore give an
invariant characterization, To achieve this we require
that these three tensors be symmetric and of rank
four; 7r&" should have signature —3 (and thus is neces-
sarily singular); g„„should have signature 1 (and thus
also is singular); rl„, should have signature —2 (and be
nonsingular) . Furthermore we maintain conditions

(17) and (22) and require that

g„„,=0, hI'",.„=0, (107N)

q„„.,=0, ~~",„=0, (107S)

where each part of Eq. (107S) implies the other by
Eq. (17). Equations (106) and (107) imply that there
exist coordinate systems in which g„„h&",p„„,and pl"" are
constant everywhere; from the requirements on the
signatures and Eqs. (17) and (22) it follows that by
suitable linear transformations of these systems and
possible renumbering of the coordinates we can obtain
coordinate systems in which the components of the
four tensors take the numerical values (18) and (21).

introducing the invariant parameters r by Eqs. (30)
or (33) as before, we can still define a contravariant
four-velocity
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gl1 $12 f18 $14

goo&0, g &0,
1lmm limn

&0,
f21 f22 $28 f24

&0,

is assumed that there exists a inaximum signal velocity
equal to e in an inertial system. Thus for any signal
we must have in @ay coordinate system

ds2= g„„dx~dx"+0 (111S)

between any two adjacent events along the world line
of the signal; conversely, if two events are simultaneous,
i.e., have dx'=0, they can not be connected by a signal,
and thus for such events ds' must be negative definite.
This leads to the following conditions on g„„".

(112aN)

(112bN)

g„,=0 un1ess p= v= 0,

h~o= ho&= 0)

and thus also
(114)z„=0 unless p, =0.

Similarly Eqs. (6) and (113) imply that the spatial
part k „of the tensor k„„ introduced by Eq. (43)
transforms independently of k„o, this combined with

(112bN) implies that

they thus only involve a reparametrization of the
time coordinate. "But then we get from the form (21)
of g„„and h~' in an inertial system and from the trans-
formation law (4) that we must have in amy coordinate
system

Ines ann $81 $82 $83 $34 Prn g n (115)

ds =g dx" dx"&0 (111N)

between any two adjacent events along the world line
of a signal; in particular, for infinite signal velocity,
ds2 must be zero, and in the special coordinate systems
used in the previous sections these events are simul-
taneous, i.e., have dx'=0. If in some other coordinate
system the corresponding time interval dx'o would not
vanish, this would mean that a signal sent with infinite
velocity from the event 1 at time x'l' would arrive at
event 2 at time x's'=x't'+dx")x't', while a similar
signal sent from event 2 at time x'2o would arrive at
event 1 at time x'lo&x'2o. But such a description must
be excluded according to our criterion, and thus we
must require that only those coordinate transforma-
tions be allowed which lead from dx'=0 for any pair
of events to dx"=0, independent of position; thus
simultaneity is still absolute. To satisfy this require-
ment the transformations must be of the form

x"=x"(x') dx' /dx )0 for all x'

or &0 for all x, x' =x' (x~), (113a)

and therefore also

x'= x'(x"), dx~/dx") 0 for all x'

or &0 for all x', x"=x"(x'o); (113b)

See, e.g. , M. Laue, Die Relatisitatstheorie (F. Vieweg fk Sohn,
Braunschweig, 1923), Vol. 2, 2nd Ed., $5, or Ref. 27, fj88. Be-
cause of our choice (18a) of signs, the signs of all expressions
involving an odd number of s's in (112 S) differ from those given
in the references quoted.

gl4 $24 $84 '$44

(112S)

(no summation over repeated indices) .

These conditions imply a similar set of restrictions on
the components of g~".

In Newtonian mechanics it is assumed that there
exist signals propagating with infinite velocity. Thus we
must now have

in all coordinate systems, since this relation is true in
an inertial system and maintains its form under the
transformations (113). Thus the spatial parts of k„,
and h&" are inverses of each other.

As the F&„„vanish in an inertial system, their values

in an arbitrary coordinates system follow from their
transformation law (6) with (113). We obtain im-

mediately
(116a)Fo„„=1'„„=0.

Several of the other components can be expressed in

terms of the tensors g„„, h&", and k,„. It can be readily
verified by evaluating each side in an arbitrary system

by application of the respective transformation laws to
the components given in an inertial system that

I'ooo= ~o log goo&,

I'" =-'slt"'(8&, +8 k. —f).k ). (116b)

The last expression together with Eq. (115) shows that
F" is the three-dimensional Christoffel symbol formed

fromm „.
2. The Relation of the Fundamental Tensors to

Measured Quantities

As discussed in Sec. IV.2, the coordinates used in

the previous sections had a direct physical significance
in terms of length and time measurements; moreover,

they had the same significance in all allowed coordinate
systems. No further information was needed to estab-
}ish the time or space intervals from a given set of
coordinate differentials dx&; these intervals were de-

termined by the same egmerical combinations of the
dx& in all systems, the fundamental tensors determining
them being the same at all points and for all systems.
The general coordinates introduced in this section do
not have such a direct physical significance. We either
must have independent knowledge of the fundamental
tensors to determine the intervals or, conversely, we

~' Some aspects of such a time reparametrization are discussed
in A. Griinbaum, Phitosophicat Problems of Space astd Time
(Alfred A. Knopf, New York, 1963), Chap. 2.
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can determine the relevant components of these tensors
from suitable measurements.

In the case of special relativity, there exists an
invariant four-dimensional interval (27) of the same
form as in the general theory of relativity, The problem
of relating this expression to space and time measure-
ments in the general theory is discussed in several text-
books"; it does not involve the question of the field
equations determining the gravitational field at all,
but only the use of arbitrary coordinate systems. Thus
these discussions apply equally to our case. Therefore
we shall not repeat them but only quote the essential
results. The length dl of a body at rest in an arbitrary
coordinate system as measured by a standard measuring
rod (i.e., a rod calibrated to measure length as dP=
—c'p „dx dx" for a body at rest in an inertial system,
and assumed not to be affected by acceleration) is
related to the metric tensor by

dP= p dx dx

'rmn = & L'vmn 'gammon/'9007y
2I (117S)

dro~= goo dxo2. (118N)

Because of (112N) the tensor g„„ is thus completely
determined by a comparison of the rates of the two
clocks,

For the length dl measured with a standard meas-
uring rod in an inertial system we previously found
the relation (47), subject to the requirement of simul-
taneity (46); as these expressions are invariant, they
must hold in an arbitrary coordinate system. But as

5' See, e.g. , Ref. 50, )14, or Ref. 27, Chap. VIII. A very detailed
discussion of this and related questions is given by H. Arzelies,
Relativite Generalize. Gravitation (Gauthier-Villars, Paris, 1961),
Fasc. I.

and thus the six independent components of the spatial
metric tensor y „can be determined by measurement
of six properly chosen line elements at all times. Only
in the case of coordinate systems for which all go

vanish is this tensor proportional to the spatial part
q „of the metric tensor (time-orthogonal systems) .

The time interval drp measured by a standard clock
(i.e. , a clock calibrated to measure time as x' at rest
in an inertial system) at rest in an arbitrary system
of coordinates and the interval dx' measured by a
coordinate clock are related by

dro2= goo dxo2

and thus p«can be determined by comparing the rates
of two such clocks. To determine all ten independent
components of p„„we still need to measure the one-way
velocity of light in three different directions (the
round-trip velocity as measured by a standard clock
necessarily being equal to c) .

In the case of Newtonian mechanics it follows from
the existence of the invariant time interval (28) that
the time intervals d7-o and dx' defined as above are
related by

3. Laws of Motion, Field Equations, and Conserva-
tion Laws

The laws of motion of Sec. IV can be transcribed
into generally covariant form as discussed in Sec. V.1.
We can use the parameters 7 discussed there and the
four-velocities ep defined by Eq. (108); the four-
accelerations now must be defined by

al'= Dv'/dr =dv'—/dr+ I"„—.ml" u", (119)

where D/dr denotes covariant differentiation. Instead
of Eq. (43) we have then

moa' =DP'/dr = F', I' f' =mom~, (12o)

with a& and the force vectors Ii& satisfying condition
(41). Thus, comparing Eq. (120) with Eq. (10), we
see that in the absence of forces the particle describes
a goedesic in space —time.

If the forces are derivable from a scalar potential,
Eqs. (120) become

DP~/dr= gh" U,

(D/dr) (P&+gw&U) =gyp'U.

(121N)

(121S)

The generally covariant field equations for these scalar
potentials, corresponding to Eqs. (68) of Sec. IV. 3, are

h~"U. - = —4+p

q~"U.,„., „=—4 p.

(122N)

(122S)

Since the left-hand sides of these equations are
scalars, this must also be the case for p and thus for
the integral appearing in its de6nition previously given
by Eq. (69) (assuming the constants g; and G to be
scalars). But 5' has the transformation property of a
scalar density of weight one. In the considerations of

simultaneity implies dx =0 in all coordinate systems,
we have

dp= —k „dx dx" (117N)

for any instantaneous measurement (or equivalently a
measurement of a body at rest) in. any coordinate
system, and the six independent components of k
can be determined by measurement of six properly
chosen line elements at all times. The other components
k&p have no significance for measurement within a given
frame of reference; furthermore, as discussed in Sec.
V.1, they do not enter the transformation law for k
and therefore also have no signi6cance for relating
measurements in different frames (and thus all allowed
coordinate systems are time-orthogonal). In addition
it follows from Eqs. (115) and (112bN) that the
tensor h&" is determined completely from a knowledge
of the components of k „. Unlike the case of special
relativity we thus have two separate tensors g„„and
k „(or equivalently hl'"), which transform independ-
ently, determining the temporal and spatial metric,
respectively.
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Sec. IV we did not have to distinguish between tensors
and tensor densities, because the transformation de-
terminant (5) entering the definition of a tensor
density (and also the expression for the transformation
of a volume element) equals 1 for all proper Galilei and
I.orentz transformations. This is no longer the case for
the general transformations considered in this section.
Therefore we must replace Eq. (69) by

p= GZg' I g I
~'Ce" (r') 0 dr', (123)

where
~ g ~

& is a sca.lar density of weight —1 (with the
invariant volume integral over p given by fp ~ g ~& dex).
If the alone space considered admits such a density
with vanishing covariant derivative, then the invariant
volume integral can be defined unambiguously (up to
a trivial constant factor) ."The necessary and sufficient
condition for this is the vanishing of expression (9),
which in our case is trivially satisfied because of Eq.
(106). For the space of special relativity (or any other
Riemannian space) we must identify g with the deter-
minant of the metric tensor. For the space of Newtonian
mechanics we can also construct a function with the
desired properties, which we can normalize to be equal
to one in a Cartesian inertial system; we do not need
its explict form here. With these choices Eq. (123)
reduces to (69) in an inertial system.

In a general coordinate system the integrals of Eqs.
(122) do not in general have such a simple form as
those of Eqs. (68), and we do not consider them any
further here. In such coordinate systems we also can
not introduce any simple conservation laws of the types
considered in Sec. IV. 5, as there is no meaning to adding
vectors at different points, and the parallel transfer to a
single point of vectors separated by finite distances
leads to unwieldy expressions. We can, however, intro-
duce local conservation laws of the type considered in
Sec. IV. 6, and can relate these to the laws of motion
in close analogy to the considerations given there. We
now start from a generally covariant conservation law
for the total energy-momentum tensor

(124)

rather thanEq. . (100). The tensors Tt" are given by
Eqs. (98) as before; by virtue of Eqs. (122) it is their
covariant rather than their ordinary divergence which
is now given by Eqs. (99). As Eq. (9) is satisfied in
the spaces under consideration, Eqs. (124) also imply
similar conservation laws for the corresponding tensor
densities. Using these rather than Eqs. (124) as a
starting point, we can again carry through the pro-
cedure of Ref. 43 as discussed in Sec. IV.6, arriving
at the same Eqs. (101), and can proceed from there
to Eqs. (121) in complete analogy; however, now it is
the tensor densities rather than the tensors which have

» See, e.g., L. P. Eieenhart, Eon Riemalrtiae -Geometry (Ameri-
can Mathematical Society, New Yoric, 1927), Sec. 5.

the form (105). Instead, the tensors are given by

Pr'= g ~ g ~

1 me, v,oe, 54(s,&) dr;, (125N)

P' =g
~ g ~

** (rle; g—,U)w, re; 64(s,") dr; (12.5S)

VI. NEWTON'8 THEORY OP GRAVITATION AND
GENERAL RELATIVITY

1. Einstein's Theory of General Relativity

The General Theory of Relativity is based on
Einstein s principle of general covariance (I) and his

4. "Inertial Forces"

The factual content of the law of motion (120) in
four-dimensional, generally covariant form is of course
still the same as that of the three-dimensional law (49)
valid only in an inertial system. The latter in the
Newtonian case equates the mass times the three-
acceleration to the (external) force; similarly the
former equates the mass times the four-acceleration to
the four-force. However, the four-acceleration (119)
was defined as the covarimst rather than the ordinary
derivative of the four-velocity e&. It is frequently felt
to be covenient to designate the ordinary derivative by
the word acceleration, and still to have a terminology
available which permits a description of the law (120)
as "mass times acceleration equals force."To this effect
the word "inertial force" is introduced for the term
—moF&„„e&v" in this law. This terminology is in agree-
ment with much of the literature of general relativity;
however, the term in the law (120) covered by this
word is not necessarily equivalent to the term desig-
nated by the same word in most of the literature of
Newtonian mechanics. The difference arises naturally
from the difference of a vectorial and a coordinate
formulation of the laws. In a vectorial formulation of
Newtonian mechanics only the difference between the
vectors ma' and ma, which is entirely due to the accel-
eratioe of a noninertial frame of reference with respect
to an inertial one, is labeled inertial force. In a formu-
lation of mechanics in terms of coordinates (whether
in three or four dimensions) it is the difference between
an arbitrary trna de'&/dr and an ttto dv'/dr expressed in
Cartesian coord&zates as well as in an inertial system
which is called inertial force. Thus no distinction is
made between terms arising purely because of the use
of non-Cartesian spatial coordinate systems and those
arising from more general transformations. Such a
distinction could be made only at the expense of much
of the formal simplification introduced by allowing the
use of arbitrary coordinate systems.

Prom their very definition, inertial forces and external
forces have different transformation properties, only
the latter being four-vectors.
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prmciple of equivalence (II). They are usually stated
as: (I) If properly formulated, the laws of physics are
of the same forin in all coordinate systems; (II) The
local effects of a gravitational Geld are equivalent to
those appearing in the description of physical phe-
nomena relative to an accelerated frame of reference.

It is frequently asserted or implied in expositions of
the, theory of relativity that these two principles by
themselves lead to Einstein's theory of general rela-
tivity. However, as mentioned in the Introduction,
principle (I) is a statement without physical content,
and any theory, including Newtonian mechanics, can
be fitted to it. Principle (II) is usually introduced by
illustrations such as "Einstein's elevator" which show
that in Newtonian mechanics gravitational forces can
be replaced by properly chosen inertial forces (because
of the universal proportionality of gravitational and
inertial mass) and it is then asserted that (II) only
extends this equivalence to nonmechanical phenomena.

If this is all that the two principles are understood
to contain, then, unlike the relation between the funda-
mental principles of Newtonian mechanics and of special
relativity, the basic principles of Newtonian mechanics
and general relativity are compatible; indeed, we have
in Sec. V already given one formulation of Newtonian
mechanics consistent with these principles, as is dis-
cussed in Subsection 2.

On the other hand, it is also frequently asserted (or
tacitly assumed) that any inertial force can be replaced
by a suitably chosen gravitutionu/ force. This statement.
does not follow from Einstein's elevator or similar
illustrations, and indeed is not true either for the usual
three-dimensional formulations of Newtonian mechanics
or for the four-dimensional formulation of Sec. V.
Nevertheless, another formulation of Newtonian me-
chanics (identical in physical content with the usual
one) can be given which does conform to this inter-
pretation of (II), as is shown in Subsection 3. Thus
even with this more stringent interpretation of the
principle of equivalence we find that Newtonian me-
chanics is compatible with the basic principles of
general relativity.

Actually, what is usually called "General Thoery of
Relativity" is a sPecijic theory in conformity with (I)
and (II) (similar to the situation for the special theory
discussed in Sec. III) . An essential requirement needed
to obtain this specific theory is that in the absence pf
gravitational fields it should reduce to the special
theory of relativity, in particular to its space-time
structure. From (II) it follows that there always exist
an infinity of frames of reference (the inertial systems)
in which the effects of a gravitational field have been
transformed away in the neighborhood of a point; these
are the systems in which special relativity is required
to hold. . Clearly this specific general theory of relativity
can not agree with Newtonian physics except in the
previously considered limit c~~. But in addition it
shows features not generally associated with either

Newtonian or special relativistic theory. It describes
the effects of gravitation in geometric terms, relating
them to the affine connections of space —time, rather
than in terms of forces; nongravitational effects exert
their inQuence on the geometry and on the motion of
particles through their energy —momentum tensor Typ;
the equations of motion are a consequence of the co-
variant conservation law for the total energy —momen-
tum tensor, which itself is a consequence of the Geld
equations; in the absence of nongravitational fields the
particles move along geodesics. In this section we com-
pare this specific general theory (to be referred to as
Einstein's general theory) and Newtonian mechanics,
but it should be clearly understood that the formula-
tions of Newtonian mechanics to be exposed are them-
selves "general relativistic" in the sense discussed above.
We find that many of the features of Einstein's general
theory, often thought to be unique, actually have their
counterpart in a suitably reformulated Newtonian
general theory.

In Einstein's theory both the effects of gravitation
and the geometry of space —time are described in terms
of the metric tensor g„„.In the absence of nongravita-
tional fields this tensor is determined by the equations'4

—1Rp jl Q gp, pE. Kggpg ptrP (126)

where R„„is the contracted curvature tensor (8), and

R=gp R~, K= SXG; (126K)

gpss'p (128aE)

(128bE)

The expressions for the F's as functions of the metric
tensor can be obtained from either of the two sets of
equations (128K) by resolution, making use of Eq.
(11), and yield the Christoffel symbols (12) for the
alone connections. With these particular connections,
Eq. (9) is automatically satisfied, and R„„ is sym-
metric. The left-hand side of Eq. (126) in its contra-
variant form 'satisfies the contracted Bianchi identity

(R~"—-', g~"R) ,.„=0. (129)
This relation can of course also be regained from Kq.
(127). Eqs. (126) or (127) were postulated by Einstein

54 Analogous to Sec. IV, in this Section we denote corresponding
formulas of Newtonian mechanics and of Einstein's theory hy X
and E, respectiveiy, and (except as noted otherwise) ali other
formulas are valid for both theories.

Pp is the energy-momentum tensor of rnatter. Ari
equivalent form of the fundamental equation is

IJ p K(gspg pgP —2gsFP) &

P= g~Pp, K= Sxo. (127)

If nongravitational fields are present, Pp has to be
ri:placed by T& = P& +Ty&' in the above equations.

The metric tensor g„„and its inverse g~" defined by
Eq. (11) both have vanishing covariant derivatives:
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as the basic law determining the gravitational and
geometric properties of space because he wanted the
covariant conservation law for energy and momentum

jPpge ~0/IF (130)

with

de&/dr+Pl' esv"=0 (131)

(132)

It was later realized by him and others that this law
need not be postulated, but is a consequence of the
conservation law (130), and that it is valid even if
the mass of the particle under consideration is not
negligible compared to that of other bodies present. "

Eq. (131) has the form of the law of motion of a
particle moving under the influence of "inertial forces"
only, as discussed in Sec. V.4. Thus in Einstein's
theory the gravitational effects are not considered to
be due to an external force, but as inertial effects;
conversely, any "inertial force" is equivalent to a
gravitational one, and principle (II) in its most strin-

gent interpretation is satis6ed.
~ For a simple derivation and references to earlier work see P.

Havas and J. N. Goldberg, Phys. Rev. 128, 398 (1962).

to be an automatic consequence of the Geld equations
Lwhich it is by Eq. (129)$ and because he wanted
these differential equations to be of second order, in
analogy to the Newtonian Poisson equation (68N).

The value of Ir in Eqs. (126) and (127) is determined
both by physical and by formal considerations. From
the definitions (8), (12), and (13) it follows that the
dimensions of the left-hand side of the Geld equations
are those of Lx&x"j '; then the form of their right-hand
side together with definition (11) imply that the
dimensions of lr are those of Pds'g~P"$ '. Throughout
this paper we have used conventions such that x'=t
and ds have the dimensions of time, gpo is dimensionless,
and I'" is a mass density; then ~ has the same dimen-
sions as G. Its numerical value follows from the re-
quirement that in an appropriately chosen limit the
solutions of the field equations should reduce to the
Newtonian gravitational potential; with our particular
conventions we obtain the value given above. Another
convention, used in most expositions of Einstein's
theory, is to take x'=ct and ds to have dimensions of
length, and I'" to be an energy density; then ~ equals
SmGc 4. An advantage of our conventions is that they
allow us to write the field equations in a form not
containing c. This constant then enters the theory only
through the physical requirement that in the absence
of gravitation the metric should reduce to that of the
special theory of relativity, as discussed above. We
return to the implications of this result in Sec. VII.

In his original work Einstein postulated the law of
motion of a test particle in the absence of nongravita-
tional 6elds to be that of a geodesic

d"yZ, +(r „„—g„„h"U )"s =0 (133)

Thus the effect of a given gravitational field U;, on any
particle regardless of velocity can be transformed away
at a given event xp (i.e., at a given point in space at a
given time only) if a physically acceptable coordinate
system 5' can be found in which

I'p„„—g„„h"U,.
vanishes at xp". Since this expression transforms like
an aKne connection, its vanishing at xp" can always
be achieved'6; it is sufficient to take

x& = x'I' ', (I'&„„g—„,h—"U )—& x'&x'" (134)

for the inverse transformation. Because of the restric-
tions (112N) and (116) this transformation is of the
form (113b) as required. In particular, if the original
coordinate system was an inertial one, the new one uses
the same time coordinate, and has spatial coordinates
in constant acceleration with respect to the inertial ones.

On the other hand, the effect of a given affine con-
nection on a particle with arbitrary velocity carrot in
general be replaced by that of a suitably chosen gravi-
tational field. This would require that Fp„„be replaced
by —g„„h"U;„but our Eqs. (116b) allow a non-
vanishing P" „while Eq. (112aN) excludes a non-
vanishing g „. Thus only for very special coordinate
systems (those whose spatial coordinates are obtainable
from those of an inertial system by a fixed linear trans-
formation plus a constant acceleration) is such a
replacement possible.

Even if we do not require that such a replacement
be possible regardless of the velocitv of a particle, but
that only the effects on particles at rest should be the
same, we can not always 6nd an equivalent gravi-
tational field. This would imply replacing I'ppp by—gpphp U;; but Eq. (112bN) excludes a nonvanishing
h, while Eqs. (116b) allow a nonvanishing I'pp. I't
vanishes only in a coordinate system whose time co-
ordinate differs from that of an inertial system at most
by a linear transformation.

The fact that we can not have a general equivalence
between gravitational and inertial forces is due to their
different transformation properties; the gravitational
forces were assumed to transform as four-vectors in
Eqs. (125), unlike the inertial ones. Therefore a general

2. Covariant Formulation of Newton'8 Theory of
Gravitation in Flat Space —Time

In Sec. V we presented a generally covariant formu-
lation of Newtonian and special relativistic mechanics,
In this formulation the Geld equations of Newton's
theory of gravitation are Eqs. (122N) and (123) with
g;=ms, , the equations of motion are given by (121N).

We now investigate whether this formulation, de-
signed to satisfy principle (I), also conforms to the
principle of equivalence (II). Using Eqs. (120), (108),
and (132), we can write the equations of motion as
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equivalence requires a different assumption as to the
behavior of gravitational forces under general coordi-
nate transformations. Such an assumption must of
course be compatible with the physical content of the
theory in its original form.

Aside from satisfying principle (II) only in a re-
stricted sense, the covariant formulation of the theory
presented in Sec. V has a structure completely different
from that of Einstein's general theory. It is a theory in
Oat rather than in curved space; whereas in Einstein's
theory the space —time structure becomes simpler if the
gravitational field has been transformed away (reducing
to the well-understood structure of the special theory),
here it becomes more complicated; unlike Einstein's
theory, there is no simple geometrical significance to
either the equations of motion or the gravitational Geld.

3. Covariant Formulation of Newton's Theory of
Gravitation in Curved Space —Time

To obtain a formulation of Newton's theory more
akin to Einstein's, we start from the law of motion. In
Einstein's theory, in the absence of nongravitational
fields, a particle's motion is determined by the geodesic
law (131) with (132). We can consider our previous
generally covariant law of motion (133) as the equation
of such a geodesic by simply considering Fp„„—g„„hp~U, ,
rather than Fp„„to be the affine connection of our space.
We shall introduce this change together with a new
notation, %e now denote the eez affine connection by
Fp„„and put

F~„„=Ql'„„+A~„,) (135)

where tp„„denotes our previous alone connection F'„„
and where

Qp„„=—g„„hp U,. (135N)

and all components of Ap„„vanish in a Cartesian
inertial system (to be referred to as a special coordinate
system in the following) .

Our law of motion is now in the form (131) which
allows it to be interpreted as the law of motion of a
particle under the influence of "inertial forces" only,
and conversely any "inertial forces" can be considered
as gravitational ones, just as was the case in Einstein's
general theory. At first sight this might appear to imply
a difference in the physical content of the formalism
developed here and of that discussed in the previous
subsection. Actually only a change in language is in-
volved; we are describing the same law of motion (133)
or (131) by different words, now considering the entire
expression (135) as responsible for gravita, tional or
equivalently for inertial effects, while previously we

transforms as a tensor. Thus the previous Eq. (106)
now becomes

(1.36)

reserved the word gravitational for the term Qp„„and
the word inertial for the term Ap„„.

Although the Riemann —Christoffel curvature tensor
formed from the A's vanishes, this is in general not the
case for the curvature tensor formed from the F's.
Therefore the space-time of the xp with the affine con-
nection (135) is curved, just like that of Einstein s
theory. However, unlike that of Einstein's theory, the
curved space of Newtonian theory is not metric, since
g„„ is singular; the tensor h&" is not its inverse, but is
related to it by Eq. (22). Nevertheless, the covariant
derivatives of both these tensors vanish (as can be
easily verified in a special coordinate system; being
tensor relations, these equations must therefore hold
in all systems) . Explicitly they are given by

gp~, p=~pgpv A @pe~ A vpgp, ~= 0) (137a)

h"",,=a,h""+A" ti'"+A" k~=0. (137b)

In general we can define comma derivatives of arbitrary
tensors in complete analogy to covariant derivatives
by Eq. (7), with all F's replaced by h. 's. Since the A. 's
as well as the I"s transform according to Eq. (6), the
comma derivatives also are tensors.

Now we can impose the necessary requirement on our
basic quantities without first having to introduce a
special coordinate system, just as in Einstein s theory.
In the latter theory, we can not accept just any metric
tensor g„„,but we must require that at any given point
there exist a frame of reference in which the space —time
structure is that of the I orentz group, i.e., in which g„„
and g&" take on the values (18) . Similarly we must now
require that only those g„„and h&" are admissible for
which at any given point there exists a frame of refer-
ence in which the space —time structure is that of the
Galilei group, i.e., in which these tensors take on the
values (21) and A&„, vanishes. Up to a linear transfor-
mation this condition on g„, and h&" can be expressed
invariantly in terms of the signatures exactly as in Sec.
V. But the vanishing of Ap„„at one point implies because
of Eq. (136) that there exists a frame of reference in
which A.&„„vanishes everywhere, and Eq. (137) then
guarantees that g„„and h"" have the values (21) every
zvhere unlike the case of Einstein's theory, where

g~', I =~Ig~. F'ppg-— Fvlg,—.=0, (128aN)

I"" —=~,t "+F I-+F „&"=0 (128bN)

However, now these equations ca~zrzot be solved for the
F's since g„„and h~" are singular.

It can be easily verified that the expressions analogous
to (128N), but formed with the h. 's (which we shall
denote by a comma instead of a semicolon), which
correspond to our previous relations (107N), also
vanish:
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(except in the trivial case of flat space) there does not
exist a frame of reference in which g„„can be reduced
to p„„everywhere. '~

Just as in the covariant formulation of the theory
given in Sec. V, there is no mathematical need to intro-
duce restrictions on the allowed coordinate transfor-
mations; however, the same physical considerations
apply, and we can therefore again only consider trans-
formations of the form (113) to be physically admis-
sible. Then we are led to the same results (112N),
(114), and (115) concerning the fundamental tensors,
regardless of the fact that space now is curved rather
than Bat. However, the particular form (116) found
for the components of F&„„now applies to the compo-
nents of A.&„„rather than I'&„„because of our change
in notation.

The considerations of Sec. V.2 apply whether space
is curved or not, and thus the relation of the funda-
mental tensors to measured quantities is the same now
as in the case previously considered.

It remains to find the equations satis6ed by the
afIine connection I'&„,. We erst calculate E„„asgiven
by (8). In the special coordinate systems this equals
—g„,h& B~U, which in turn can be written as either

R„„= g„„k—"(B~U 4"~B—„U)= g„„h"—U s, (138a)

or

R"= g"&"(~~—U I'"~~.U)—= g"h"U:n— (138b)

The first of these relations follows because A&„„ itself
vanishes in the special coordinate systems, and the
second because h& I'"„,vanishes.

In these special systems Poisson's equations must
hold if Newton's theory of gravitation is to be valid.
But then the right-hand side of Eqs. (138) equals

g„„4 GZ I g I-'5'(s;~) dr;
CO

(139a)

from Eqs. (122N) and (123). Using Eq. (125N), we
can write this as

4m Gg„„gp,I'&; (139b)

~ Up to this point the mathematical considerations of thi&
subsection are essentially those of K. Friedrichs, Ref. 15, except
that the analysis of Sec. V allowed us to start from a generally
covariant four-dimensional formalism rather than from the origi-
nal three-dimensional Newtonian formalism. The following
analysis of the allowed coordinate transformations and of the
significance of the fundamental tensors, as well as the introduction
of the 6eld equations (126) and (127) go beyond that paper, in
which no sources and thus also no tensor Pf" were introduced.
Cartan's work (Ref. 14) also contains a generally covariant formu-
lation of Newton's theory of gravitation (including continuous
sources). Although differing in many mathematical details, its
results are basically equivalent to those presented here. The re-
sults obtained recently by A. Trautman, Compt. Rend. 257', 617
{1963),are equivalent to those of Ref. 15.

4zGg„pg„,I'& . (139c)

Eqs. (138) and (139c) allow us to postulate as our
generally covariant form of Poisson's equation the same
Eq. (126) as in Einstein's theory, but with

~= 4+G; (126N'l

here R vanishes because of Eq. (22), and the constant ~

is half that of Einstein's theory. U we use Eqs. (138)
and (139b, c), however, we could equivalently postu-
late Eq. (127) as our basic equation, with the same
value of ~ as in Einstein's theory. Because of the
vanishing of R the left-hand side of Eqs. (126) and
(127) has the same value in the Newtonian case.

Since g„„ is singular, we can not obtain either a
Bianchi identity (129) or a conservation law (130)
from the Newtonian equations (126) or (127).We can,
on the other hand, either postulate that I'I"" should have
the form (125N) which satis6es Eq. (130) and implies
Eq. (131),or we could postulate Eq. (130) as a separate
requirement. The latter procedure is preferable, as it
permits consideration of more general distributions
than (125N) .

Given the conservation law (130), we can in both
Einstein's and Newton's theory derive the law of
motion (131) with (132) from it, as well as the form
(125N) of the energy —momentum tensor, provided we
restrict ourselves to simple poles of the gravitational
field, i.e., to a form (97) for each particle. For Einstein's
theory this has been known for some time"; for the
Newtonian case it was shown recently in Ref. 43. Simi-
larly we can derive the law of motion and the form of
the energy —momentum tensor for particles with an in-
trinsic dipole moment in both cases."

If we do not have singular distributions, but are
dealing with continua, we can still maintain the 6eld
equations (126) or (127) and the form (130) of the
conservation law. It still contains the equations of
motion, but their form now depends on the equation
of state of the matter under consideration; the
Newtonian problem does not differ in principle from
the Einsteinian one, which has been investigated for
many special cases. '~

As noted in the Introduction, the Newtonian
mechanics of continua has been given a generally
covariant formulation some time ago and a compre-
hensive review was given in Ref. 12. This formulation
was that of the Bat space of Sec. V only, implying
consideration of gravitation as a body force. However,
it can be generalized along the lines of this subsection
without difhculty; all that is required to allow treating

"See, e.g. , R. C. Tolman, Ref. 11; V. Fock, Ref. 11; G. C.
McVittie, General Relativity and Cosmology (Chapman R Hall
Ltd. , London, 1956) .

from the condition (21a) on the value of g„„ in the
special coordinate system this is equal to
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gravitation as a geometric concept is to interpret the
aflme connections I'&„, of Ref. 12 (originally introduced
as those of flat space as in Sec. V) as describing the
curved space of this subsection, and thus as being
determined by the field equations (126) or (127). P

The 6eld equations are of course nonlinear in the
Newtonian case as in Einstein's theory because of the
structure (8) of R„„; however, for the Newtonian
theory this nonlinearity must be spurious. Mathe-
matically this is evident from Eqs. (138) because in
the special coordinate system the factor g„,h& reduces
to a constant.

It might be instructive to consider some applications
of the equations considered here before embarking on
a detailed comparison of the two theories. In the field
of a single body of mass M the nonvanishing inde-
pendent I"s are given in Einstein's theory from the
Schwarzschild metric as"

I',p
——(2b) ' db/dr,

I"„=(2a) 'da/dr,

P33—I 22 Sin 8)

I'33= —sin 8 cos 8,
b= 1—2GM/rc',

I"pp ——(c'/2a) db/dr,

I"„=—r/a,

I'g2= I'ga=r ',

I'»= cot 6,

a=6 ' (140K)

in Schwarzschild coordinates (r, r7, y, &). In the
Newtonian case we have to evaluate Eq. (135). The
potential U equals —GM/r; the calculation of the h. 's

(arising from the use of polar coordinates) can be
simplified by applying Eqs. (116). The nonvanishing
independent I"s are given by

I'pp= G3II/r',

I'33= I'2~ sin' 8,
I'23~= —sin 8 cos 8,

I' u= I' u= r2 3 —1

r3„= cote. (140N)

Clearly in the limit ciao the Schwarzschild F's reduce
to the Newtonian ones, regardless of the magnitude of
3f. Thus the curvature tensor ot the Schwarzschild
field also reduces to that of the Newtonian Field in the
same limit. We do not give the explicit expressions for
the former; for the latter, the only independent non-
vanishing components are, from (140N) and (8),

R pip= —2R ppp= —2R ppp= —2G3E/r (141).
The geodesics corresponding to bound orbits show the
well-known advance of the perihelion in the First case,
and no such eQ'ect in the second.

To 6nd the paths of light rays is a problem beyond
the scope of mechanics. However, in the case of

Compare also Sec. 238 of Ref. 12; some of the generalizations
mentioned there are formal extensions of mechanics to generalized
spaces and thus differ frorri Newtonian mechanics in their physical
content, whereas the generalization considered here is simply a
transcri ption of Newtonian mechanics including gravitation.

'9 See, e.g., Ref. 27, Secs. 122 and 123.

Einstein's general theory these paths are geodesics of
zero length (which must be described by a parameter
different from (132)$; this leads to the well-known
deflection of light rays in the Field of a large mass.
If we use the same deFinition in the Newtonian case,
taking ds'=0 in (111N), this corresponds to infinite
speed and to straight lines in the special coordinate
systems. If we take instead the geodesics (131) corre-
sponding to particles moving with speed c (which are
null geodesics in Einstein's theory, but not here), we
get half the deflection following from Einstein's theory. '

The similarity between the general relativistic
Newtonian and Einsteinian field equations (126) or
(127) allows a new approach to the subject of
Newtonian cosmology, " which will be discussed else-
where. "

4. Inclusion of Nongravitational FieMs and Compari-
son with Einstein's I'heory

In the formulation of Newtonian mechanics given
in the previous subsection we did not consider any non-
gravitational forces. In Einstein's theory such forces
are included by adding their energy —momentum tensor
Tf&' to that of rnatter 8' in the field equations (126)
or (127), as noted before, and it is natural to follow
the same procedure in the Newtonian case; this implies
no new physical effects, as is discussed below. In
Einstein's theory the field equations then lead to a
conservation law of the form (124) for matter plus
nongravitational Field energy; such a conservation law
has to be postulated separately in the newtonian case.
The equations of motion can again be obtained from this
conservation law 4'6'; in the Newtonian case the pro-
cedure is the same as that of Sec. V.3, only the inter-
pretation of the I'&„„being different, which now in-
clude the gravitational effects.

The tensors Tr& to be included in Eqs. (126) and
(127) must be obtained by a suitable generalization
of the special relativistic and the Newtonian tensors,
respectively, which in turn follow from the particular
Field equations satisfied by the nongravitational fields
under consideration. In the case of Einstein's theory,
the requirement unposed (as discussed in Sec. VI.1)
is that the equations should reduce to those of special
relativity in an inertial system; such a system is defined
as one in which all the components of F&„„vanish at a
point x" and the components of g„„reduce to the values

~ J. Soldner, Herl. Astron. Jahrbuch 161(1804), reprinted in
Ann. Phys. 65, 593 (1921).

"For a recent review see O. Heckmann and K. Schucking in
'E&ncyclopedia of Physics, edited by S. Fliigge (Springer-&erlag,
Berlin, 1959l, Vol. LII, p. 489.

6' P. Havas {to be published)."For the methods available in Einstein's general theory see L.
Infeld and J. Plebanski, 3fotion and Relativity (Pergamon Press-
PWN, New York-Warsaw, 1960) and references given there; P.
Havas, Phys. Rev. 108, 1351 (1957) (a detailed account of the
application to nongravitational fields along the lines described in
Ref. 55 is in preparation).
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(18a). Thus an inertial system can in general only be
deGned locally. On the other hand, it is generally con-
sidered to be a particularly gratifying feature of
Einstein's general theory that it allows a deGnition of
an inertial system which avoids the difhculty posed
in Newtonian mechanics; there an inertial system is
defined as one in which Newton's first law is valid, but
a test of this law requires the absence of a resultant
force, whereas Newton's law of gravitation proclaims
the omnipresence of gravitational forces.

In the case of the generally covariant form of
Newtonian theory under discussion, we have of course
global systems of reference available (the ones used in
Sec. IV, called inertial systems there in agreement with
customary usage, and called special systems in this
section), in which the usual results of Newtonain
mechanics hold in their usual form. Thus we must
choose our nongravitational Geld equations and the
corresponding Ty&' to agree with the equations of Sec.
IV in these systems. This seems both to disagree with
the procedure of Einstein's general theory, and to
deprive us of an important advantage of this theory.
Actually, this is not the case, as will now be shown.

In the present context, we must use a local descrip-
tion of Newtonian nongravitational forces by means of
field equations such as Eq. (68N). Newtonian me-
chanics assumes that forces originating in physically
different sources (such as gravitating masses and
electric charges) are additive, and thus a field equation
for a nongravitational Geld in the special coordinate
systems can not contain any gravitational fields, and
conversely.

This implies that the inclusion of a nongravitational
T&&' in Eqs. (126) and (127) is only allowed if it is

purely formal, but does not have any effect on the
equations determining the F&„,. This is indeed the case
for the Ty&' of the scalar Geld considered in Sec. IV;
it is given by Eq. (98N), and thus g»Ty&' vanishes.
Ke can expect a similar behavior for any other Tff'

which might be deGned from Newtonian scalar Geld

equations other than (68N) which are associated with
instantaneous action-at-a-distance forces, both for
physical reasons and because no contravariant tensor
other than h&" is available for the construction of T~I';
then Eq. (22) guarantees the vanishing of g»Ty»

In the differential equations for the nongravitational
Gelds, any gravitational terms are described by the
F&„„.Thus the requirement that such terms should be
absent in the special coordinate system implies that the
equations for the Gelds must be the same whether they
are written in terms of ordinary derivatives /such as
Eq. (68N)$ or (as required for a generally covariant
formulation) in terms of covariant derivatives. LThis
is indeed the case for Eq. (68N), since the additional
term h& 1'"~B„Uintroduced by using cpvariant differen-
tiation vanishes in the special system, as noted before
(with a different meaning of U.) in deriving Eq.
(138c).) But this is also the case in coordinate systems

in which the F&„„ themselves vanish. As any scalar
potential remains unchanged under arbitrary coordi-
nate transformations, it only remains to be shown thp, t
there are coordinate systems with vanishing I'&„„jn
which the fundamental tensors have the same numerical
values as in the special coordinate systems to establish
that we could adopt a procedure completely analogous
to that of Einstein's theory. This is accomplished by
the same procedure by which it was shown in Sec. VI.2
that a given gravitational Geld can be transformed
away. The same transformation (134) can be used,
except that due to our change of notation the term in
square brackets now is just I'&„„.We still simply have
a transformation of the form (113b), with the same
time coordinate used in both coordinate systems, and
with Cartesian spatial coordinates in constant accelera-
tion with respect to each other. But from the considera-
tipns pf Sec. V.i. it follows immediately that such a
coordinate transformation does not change the numeri-
cal values of g„„and h&".

Thus we are free to deGne an inertial system as one
in which all the components of F&„„vanish a,t a ppint g&

and the components of g„„and h~" reduce to the values
(21); we can then require that in such a system the
equations of Newtonian mechanics (in their four-
dimensional form as presented in Sec. IV) should be
valid locally. This definition and requirement are thus
completely analogous to those of Einstein's thepry. 64

The inertial systems defined in this manner again have
only a local signiGcance; on the other hand. they pro-
vide the same means of escape from the Newtonian
problem of defining such a system as Einstein's theory,
and by the same expedient of relegating gravitation to
the status of an inertial force.

Thus the essential difference between the two theories
in their treatment of frames of reference in a curved
space is not in the deGnition of inertial systems, but, in
the fact that Newtonian theory allows the establish-
ment of global frames of reference in which the cpm-
ponents of the fundamental tensors g„„and hI'" take the
same values everywhere. The existence of these frames
of reference implies the existence of an aKne connec-
tion A&„„satisfying the condition (136) for a flat space,
unlike the affine connection l'~„, which is associated
with the gravitational Geld and which has no direct
connection with the fundamental tensors.

In Einstein's general theory as originally fprmu]ated,
on the other hand, there is only one afFine connection
1'&„„,which is the Christoffel symbol (12) formed from
the fundamental metric tensor g„„. However, it was
proposed some time ago by Rosen ' to fprmu]ate

64 A similar rede6nition of inertial systems eras sug ested by
O. Hecktnann and E. Schiicking, Z. Astrophys 88, 95 1955.) in
connection with (three-dimensional) considerations on Newtonian
cosmology.

N. Rosen, Phys. Rev. 5'7, &47 and 150 (1940); Ann. Phys.
(N. Y.) 22, 1 (1965). As the notation of these papers and
that of Ref. 15 are irreconcilable, it seemed least confusing to use
a third notation in this section, maintaining as much of sgapd@qd
notations of the literature as possible.
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X~",,=0. (144)

This tensor furnishes a second fundamental quadratic
form da' in addition to ds' given by Eq. (11):

do'= 'A„, dx~ dx'. (145)

The introduction of these quantities can be regarded
as simply a formal device which leads to a formulation
of the equations of Einstein's theory more convenient
for certain purposes discussed by Rosen than the
customary one. For some of these purposes both quanti-
ties are needed. However, the only aspect of Rosen's
discussion relevant in the context of this section is
the possibility of distinguishing between "true" gravi-
tational forces and inertial forces through the intro-
duction of h.&„„.In eGect this is the analog in Einstein's
theory of retracing our steps from the formulation of
Newtonian theory given in Sec. VI.3 to that consid-
ered in Secs. V and VI.2. For this purpose alone it
would not be necessary to introduce the tensor P„„
all that is required is that F&„. and A1'„„should ap-
proach the same limit far away from the sources
E&'+T~&' of the gravitational field. This in itself is
su%.cient to tie Einstein's theory to a Qat space, and
whether we then wish to interpret it as a Qat space
or a curved space theory becomes a question of seman-
tics; exactly as in the case of the Newtonian theory, as
discussed in detail above, it depends only on which

amenity we want to consider as the affinity of the "true"
space.

This question of a formal interpretation of Einstein's
theory as a Bat-space theory has to be distinguished

Einstein's theory in terms of two a@ne connections
I'&„„and A&„„related by Eq. (135) as above, with i1&„,

again satisfying Eq. (136). The tensor Q&„„ is defined

by him as

Q'.,=2g"(g . +g-..—g". )

where the comma derivative is defined as in Eq. (137).
From the definitions (8) and (137) and from condition
(136) it can be seen easily that the curvature tensor is
given in both theories by

R*„i„=Q"„„,), Q"„i,,—+Q"p)Q&„„ Q"p„Q—&„i„ (142)

and thus the contracted curvature tensor by

E„„=Q"„„,g
—Q"„i,,+Q"piQ&„„—Q"~„Q&„y. (143)

Thus in terms of Q&„„(as well as of I'&„„) the left-hand
side of the field equations (127) is of the same form
in both cases.

In Rosen's formulation the connection F&„„ is as
usual the Christoffel symbol (12) formed from the
metric tensor g„„.But in addition z second nonsingular
tensor X„„is introduced such that the ChristoBel symbol
formed with )„„gives the connection A!„„:

from another question raised by Rosen. As an alterna-
tive to the purely formal introduction of the tensor )„„
he suggested the possibility of considering this tensor
rather than g„, as the actual metric of the physical
space-time, and to identify it (in a suitable class of
coordinate systems) with the Minkowski metric g„,.
This amounts to a different assumption on the behavior
of clocks and measuring rods than that adopted both
in Einstein's general theory and in Sec. V. The prob-
lems connected with this interpretation are discussed
in detail by Rosen.

In the formulation of Newtonian theory given here
the connection A.&„„ is indispensable, but there is no
need to relate it to a tensor )„,. However, we are free
to do so by Eqs. (144) if we desire to carry the analogy
with Rosen's formalism as far as possible.

As far as the formal structure of both theories is con-
cerned, ),„ is completely arbitrary except for the re-
quirement of flatness (136). It thus might appear
tempting to try to imitate Rosen's suggestion and to
use )„„to introduce a Minkowski metric into Newtonian
theory. Formally this is indeed possible; however, any
attempt to interpret it as the actual metric of space-
time must fail, since the conditions imposed on signals
by the Minkowski metric and by the Newtonian
instantaneous action-at-a-distance forces, discussed in
Sec. U.1, are incompatible.

It remains to discuss the precise nature of the transi-
tion from the Einsteinian to the Newtonian form of the
general relativistic equations and conversely. This
problem has been fully discussed by Friedrichs"; it can
be answered somewhat more brieQy if we use Rosen's
formulation of Einstein's theory. To proceed from the
Newtonian theory contained in Eqs. (127), (135),
(135N), (136), and (128N) to that of Einstein, we
drop Eqs. (135N) and (128bN), and require that the
metric g„„be nonsingular, with signature —2; then a
tensor g&" can be defined by Eq. (13) which automati-
cally satisfies Eq. (128K), and Eq. (135K) is similarly
satisfied.

To achieve the transition from the Einstein theory
in Rosen's formulation contained in Eqs. (127), (135),
(135K), (136), and (128K) to that of Newton, we first
introduce a tensor B~"=c 'gl"" satisfying

g +pv —g 2 $ v (146)

We then require erst that H&" be replaced by a tensor
h&" of signature —3 satisfying Eq. (146) and that the
determinant

~

H~"
) go to zero as c ' for c—+~, and

second that there exist a scalar U such that the con-
nection dered by

f:,J+g"&"~.U (147)

converge toward a connection h.&„„satisfying Eq. (136)
in the same limit; then the ChristoGel symbols {„'„)of
Einstein's theory converge to the Newtonian F&„„.The
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proof is given by Friedrichs'5 66; the significance of this
result is discussed in the next Section.

VIL DISCVSSION

In the course of this study we have 6rst presented
in Sec. IV a formulation of Newtonian mechanics which
parallels Minkowski's formulation of the special theory
of relativity. Both of these theories were developed in
a four-dimensional space —time with Cartesian spatial
coordinates; in such a formulation they are invariant
under the Galilei and the I.orentz group, respectively.
Then these theories were rewritten in Sec. V in a form
which is invariant under arbitrary coordinate trans-
formations (restricted only by the requirement of a
reasonable description in time of the propagation of
signals, whose round-trip velocity has no upper limit
in Newtonian theory and a limit c in special relativity) .
Finally in Sec. VI Newtonian mechanics was rewritten
to make gravitation a geometric feature, described by
affine connections F&„„which are determined by field
equations identical with those of Einstein's general
theory of relativity; the distinction is in the require-
ments imposed on the solutions. In the case of Einstein's
theory these are that locally in an inertial system de-
fined as a frame of reference in which all F's vanish at
a point x&, the special theory of relativity and in par-
ticular its space —time structure as described in Secs.
III and IV should hold; in Newton's theory, they are
that locally in an inertial system, defined in the same
way as in Einstein s theory, Newtonian mechanics and
its space —time structure as described in Secs. III and
IV should hold. These requirements imply that in
Einstein's theory the F&„„are the ChristoGel symbols
formed from the metric tensor g„„;in Newtonian theory
a condition relating the I'&„, to a scalar potential U
must be imposed separately.

Before discussing these formulations further, we
should contemplate the amazing flexibility of rnathe-
matical formalisms. Let us consider specifically
Newton's second law combined with his law of gravi-
tation. Their original formulation was given as a three-
dimensional law of motion and a similar action-at-a-
distance force law. Everything which can be said about
the motion of a system of gravitating particles can be
deduced from these equations; none of the formula-
tions developed later adds anything to the physical
predictions of the theory. But how many diGerent
ways of putting the fundamental laws there are!
Already in the three-dimensional formulations we can
replace the original laws by variational principles, and
the action-at-a-distance force law by a field description
governed by a Poisson equation. In the four-dimensional
formulation within the framework of the space —time

68The choice of constants and signs in Kris. (13) and (21)
differs from that of Ref. 15; thus the transition conditions stated
here show a similar difference, and the proof requires correspond-
ing trivial modifications.

of the Galilei group we can restate the second law so as
to contain in addition to the law of motion also the
relation between work and kinetic energy LEq. (63N) $;
the law of gravitation can be restated as a four-dimen-
sional action-at-a-distance law LEq. (74N) ) or Poisson
equation $(68N) ); this equation and the law of motion
can be derived from a variation principle (81N) in-

volving particles and 6elds; the law of motion combined
with the law of gravitation can be derived from a
Fokker-type variational principle (82N) for the
particles alone, or from a conservation law (110)
involving both particles and fields. Generalizing the
four-dimensional formulation by first allowing arbi-
trary coordinate transformations in Qat space —time,
we have the second law in the form (120) and Poisson's
equation in the form (122N); the law of motion com-
bined with the law of gravitation can be derived from
a covariant conservation law (124) involving both
particles and fields. In curved space —time the law of
motion becomes the geodesic law (131) and the
equations determining the gravitational field via the
afiine connection are given by Eqs. (126) or (127); the
law of motion can be derived from the conservation
law (130) for the matter tensor alone.

The variety of ways, in part based on entirely dif-

ferent sets of concepts, in which we can expless the
fundamental laws for gravitating matter, all leading to
identical physical predictions, should caution us not
to put undue stress on the supposed implications of a
particular formulation of a theory, even if other formu-
lations might not be available at a given time.

As to the formal relation of Newton's theory in its
various four-dimensional formulations to the similar

formulations of Einstein's special and general theory
of relativity, the main difference is that the space —time
of the latter theories is metric, whereas that of the
former is only aKne, or more precisely is affine with a
singular metric. Physically this distinction arises from
the existence of a limiting signal velocity c in the
theories of relativity. The formal analogy would have
been brought out even more strongly if in the theories
of relativity we had not used the contravariant tensors
p&" and g&" /define as the inverse of g„„and g„„by Eqs.
(17) and (13), respectivelyf, but instead only the
tensors H&" defined by Eqs. (26) and (146), respec-

tively; then it would have been clearer how the formu-
las of these theories degenerate to those of Newtonian
theory in the limit t,.—+~, H&" now corresponding to the
singular Newtonian tensor h&". Ke refrained from this
because this would have put the formulas of Einstein's
theories into an unfamiliar form.

In Secs. IV and V nothing more than such a straight-
forward limiting process is required to obtain the New-

tonian formulas from those of special relativity except
for some of the formulas involving variational princi-
ples. The slight complications involved in this case
are due to the fact that we must be careful in taking
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the limit because the covariant four-velocity e„reduces
to the constant vector m„.

The relation of Newton's and Einstein's general
theories presented in Sec. IV involves more than the
limit c—+00, as already noted. In Einstein's theory
there exists a close relation (12) between the affine

connections F&„„and the metric tensor g„„, which is
broken in the limit. But then the ten independent Geld

equations (126) or (127) are not sufhcient to deter-
mine the 40 independent components of I'&„,. A new
restriction has to be imposed, which is provided by
the introduction of the scalar potential U in the ex-
pression (147) and imposition of the convergence
requirement discussed at the end of Sec. V.4.

A similar separation of the one connection I'&„„

and the metric of the physical space is introduced into
Einstein's general theory by Rosen's suggestion of
using a tensor X„„rather than g„, for this metric. This
tensor is introduced in the theory through the artiGce
of having two amenities I'~„„and A.&„„which are the
Christoffel symbols formed with g„„and )„„,respec-
tively. While this suggestion overs an alternate inter-
pretation of Einstein's theory, there is no such choice
available in Newton's theory, which does not permit
the association of a physically meaningful metric
tensor with I'&„„.

The separation of one connections and metric in
Newtonian theory necessitates a reexamination of the
relations of the concepts of curvature, metric, and non-
Euclidean geometry. The curvature of an n-space is
defined in terms of the afline connections F&„, by Eq.
(8). If the rs-space is metric, this curvature can also be
expressed in terms of the metric tensor g„„and a knowl-

edge of this tensor allows us to determine whether the
n-space is curved or not. If it is Qat, we can introduce
a global coordinate system in which the square of the
n-dimensional line element is a diagonal quadratic
form; if all terms are- positive, the geometry of the
n-space is Euclidean, otherwise it is pseudo-Euclidean.
However, geometry in the ordinary sense refers to
properties of the three-dimensional subspace x'=
constant of the four-dimensional space-time. This
geometry may be non-Euclidean even if the 4-space
is Bat. A case in point is the space —time of special
relativity. If we allow arbitrary coordinate transforma-
tions, the square dp of the three-dimensional line
element is given by Eq. (117S). This involves more
than just the spatial components of the metric tensor,
and is not necessarily reducible to a sum of squares
everywhere by a transformation of the spatial coordi-
nates alone; thus the spatial geometry may be non-

Euclidean, the geometry of a rotating disk being the
most familiar example.

In Newtonian theory the curvature tensor (8)
formed from the F&„„cannot be expressed in terms of a

metric tensor, and the knowledge of the fundamental
tensors g„„and h&" does not allow us to determine

whether the 4-space is curved or not. Furthermore,
the geometry of the three-dimensional subspace is
determined by Eq. (117N), which in turn is deter-
mined by h "from Eq. (115).But by Eq. (136) there
always exist global coordinate systems in which h "
takes the values (21b) whether or not the 4-space is
curved, and in which dP is the sum of squares; since
the values of the components of h " in any coordinate
system can be obtained from those in these special
systems alone, and conversely, it follows that the ge-
ometry of the subspace x'= constant is always Eu-
clidean.

Thus Einstein's and Newton's theory of general
relativity both ascribe curvature to space —time, and
both consider this curvature to correspond to gravita, -

tional eGects. While in both theories the curvature
tensor can be determined from a study of gravitational
eGects, '~ its determination from a study of metric
effects is possible only in Einstein's theory.

The above considerations concerned local properties
of space —time. The global properties are closely con-
nected with cosmological problems, and will be dis-
cussed elsewhere. "

The close resemblance between Einstein's and
Newton's theory in the form developed in Sec. VI
might be of advantage in the further exploration of
Einstein's theory in two respects. First, the transcrip-
tion of known Newtonian results into the formalism
of Sec. VI.3 might be helpful as the first step in an
approximation procedure for the solution of the corre-
sponding problems in Einstein's theory (or to take an
educated guess at the form of exact solutions) . Second,
this resemblance might help in the understanding of
some features of Einstein's theory which are intimately
connected with its four-dimensional structure and until
now appeared to have no counterpart in Newtonian
theory.

In our discussion of the principle of general co-
variance we equated this principle to the requirement
of invariance under arbitrary coordinate transforma-
tions; as mentioned in the Introduction, in this form
the principle imposes only a formal requirement, but
has no physical content. This appears to be the main
reason why some authors prefer a narrower interpre-
tation by adding requirements such as "that within
the theory no privileged set of frames can be con-
structed'" to the formulation of the principle. There
seems to be little to be gained in arguing about termi-
nology. It is more important to investigate whether

"For a direct determination by means of the "geodesic devia-
tion" in the motion of test particles see F. A. K. Pirani, Acta
Phys. Polon. 15, 389 (1956). In that paper the method is de-
veloped for Einstein's theory, but the extension to Newton's
theory is immediate; indeed, from a study of the three-dimen-
sional Newtonian equations a tentative suggestion is made there
for a four-dimensional genera}ization of Poisson's equation as an
approach to Einstein's theory, which hears some resemblance to
some of the mathematical considerations at the beginning of
Sec. VI.3.
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such an additional requirement would indeed provide
a better guide in constructing "generally covariant"
theories than the original one. It would certainly seem
to deprive the Newtonian theory presented in Sec. VI. 3
of the label "generally covariant, " since Eq. (136)
allows the construction of privileged frames of reference,
although it has no bearing on the fact that this theory
is closely analogous to Einstein's theory. But Rosen
in reformulating Einstein's theory also introduced Eq.
(136). Did this deprive Einstein's theory of general
covariance 3 If Rosen's suggestion is treated as a formal
one, this seems to lead to a purely semantic argument.
If it is treated as the physical statement that the metric
tensor of physical space is X„„rather than g„„, it does
appear to introduce physically privileged reference
systems. But the actual physical consequences of the
new interpretation are identical with the old ones,
only the language of the description has been changed.

These arguments might be dismissed because there
is after all no need to introduce Eq. (136) into Einstein's
theory, Then the question arises whether privileged
frames of reference can be constructed within the
theory as originally formulated. This seems to come
down to a semantic argument about the word "privi-
leged. " Certain coordinate systems can be singled out
locally by some special properties; these are the "in-
trinsic coordinates" used in the construction of observ-
ables. ' Globally a class of coordinate systems is singled
out by the usual boundary conditions which require
the metric to be Minkowskian at infinity, as has been
remarked by many authors. "Thus, if taken literally,
the narrower definition of the principle of general
covariance might deprive Einstein's theory of the
label "generally covariant" too.

As for the principle of equivalence, in Sec. VI we
carried through a reformulation of Newtonian me-
chanics to conform it to this principle in its most
stringent form. Up to this section we had treated
Newtonian and special relativistic mechanics in parallel.
We could also have transcribed special relativity by a
similar change in language as introduced in Sec. VI.3
for Newtonian mechanics, and could thereby also have
arrived at a geodesic law of motion (131).However,
the 6eld equations of the special relativistic scalar

~ Especially in connection with Mach's principle; for a recent
brief discussion and references to the literature see Ref. 51, Chap.
14. Compare also V. Fock, Refs. 11 and 48, and the article on
invariance groups by P. G. Bergmann in Fundamental Topics in
Relativistic Iilu@ Mechanics and Magnetohydrodynamics, edited
by R. Wasserman and C. P. Wells (Academic Press Inc., New
York and London, 1963}.

potential U, when transcribed in terms of the curvature
tensor, show no resemblance to Einstein's field equa-
tions (126) or (127), even though the metric structure
of the two theories is identical, and therefore we did
not include this formulation of the special theory here.
It appears from this result, perhaps not surprisingly,
that Newton's theory of gravitation is a more legitimate
forerunner of Einstein's than a special relativistic
theory would be. Supporting this conclusion is another
consideration based on the fact that Einstein's general
theory of relativity has only two constants, t," and 6,
available for studying limiting cases, and that t,. enters
the theory through the requirements imposed on the
solutions for the field equations rather than through
the equations themselves. If we let c approach infinity,
we can arrive at Newton's theory of gravitation by
changing the requirements imposed in the manner
discussed earlier. On the other hand, if we let G ap-
proach zero, but maintain the requirements on the
solutions, we obtain as one possible solution the global
space —time structure of special relativity, and this
solution together with the conservation law (124)
implicit in the held equations leads to the equations
of motion of the special theory without gravitation, as
discussed in detail in Ref. 45.

Thus Einstein's general theory of relativity contains
the special theory of relativity without gravitation and
Newton s theory of gravitation in a four-dimensional
generally covariant form as two distinct straight-
forward limits. Historically, the emphasis in the
development of Einstein's theory was on the generali-
zation of the space —time structure of the special theory
of relativity to incorporate the principles of general
covariance and of equivalence. The Beld equations
were obtained by trying to build a four-dimensional
analog of Newton's theory in its three-dimensional
form, and estab/ishing the exact correspondence re-
quires a somewhat awkward double limiting process. '
If on the other hand we choose an approach from the
four-dimensional form of Newton's theory, the in-
corporation of Einstein's two principles leads directly
to field equations of the same form as in Einstein's
theory; to obtain this theory we only have to change
the requirements to be imposed on the local space —time
structure in an inertial system. For some purposes this
alternate approach appears to be preferable.
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