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I. INTRODUCTION

This survey is concerned with the process of single
electron scattering by an atom without excitation of
the atom or the nucleus. If radiative effects are neg-
lected in this process, the energy of the scattered elec-
tron in the laboratory system depends only on the
energy transferred to the recoiling atom. For low-

energy electrons, the atomic recoil is negligible, and
the initial and 6nal electron energies in the laboratory
system are approximately equal. For high-energy
electrons and large scattering angles, the atomic recoil
is not negligible, and the 6nal electron energy in the
laboratory system is measurably smaller than the
initial electron energy.

Extensive calculations pertaining to this scattering
process have become available, partly because the
process dominates and is less complicated than most
of the other processes involved in the interaction of
electrons with matter. One of the most important early
summaries concerning this process has been given by
Mott and Massey (M 49), who presented Born and

* Permanent address: Institute for Theoretical Physics, Norges
Tekniske Hogskole, Trondheim, Norway.

exact phase-shift calculations, which laid the ground-
work for future calculations. Later studies emphasized
various aspects of this process such as the effects of the
atomic structure in the nonrelativistic energy region
(Mo 62) or in the low momentum transfer region
(Sc 63), the effects of the nuclear structure in the
extreme relativistic energy region or in the high mo-
mentum transfer region (H 56), the radiative effects
(S 49), and the polarization behavior (Me 55, T 56).
Although the work in these different areas has provided
a wealth of data, there is a need to tie the results to-
gether in order to present a clear consistent picture of
the over-all behavior of the process. The purpose of
this review is to help satisfy this need by summarizing
and integrating the various theoretical results per-
taining to the behavior of this process. These results
cover a wide range of electron energies extending from
the nonrelativistic (&10 keV) to the extreme rela-
tivistic regions and pertain to the kinematics (Sec. III),
the radiative effects (Sec. IV), the polarization be-
havior (Sec. VI), and the cross sections with polariza, -
tion dependence in differential and integrated form
(Sec. VII) . No derivations are given and details of the
calculations can be found in the references.

The cross section for this process depends on the
initial energy and scattering angle of the electron as
well as the magnitude of the charge and the structure
of the target atom. The atomic or the nuclear charge
structures become important/approximately in the
region where the momentum transfer to the atom (in
nsec units) is less than the inverse of the atomic radius
or greater than the inverse of the nuclear ra, dius (in
units of the reciprocal Compton wavelength), respec-
tively. At present, a complete and accurate description
of the charge structures for all elements is not available,
and indeed this process has been used as a method to
determine these structures. In the present review, the
emphasis is on the behavior of the process rather
than on the structure of the atom or the nucleus,
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and in the absence of exact information about struc-
ture or about scattering potentials, various approxi-
mations are given in order to permit estimates of the
general behavior.

The formulas in this survey are intended specifically
for electron scattering; energies, momenta, and lengths
are given in units of mac', rmoc, and 5/nioc, respectively,
where mo is the electron rest mass. These formulas may
be applied also to scattering processes in which the
incident particle is a positron or a positive or negative
muon when the mass is small compared to the mass of
the target atom. For the case of the positron, it is neces-
sary simply to replace Z by —Z in the formulas. This

procedure has the effect of changing the exact and
higher order Born cross-section formulas, while the
first Born formulas remain unchanged because of their
dependence only on Z'. For the case of the muon, it is
necessary to note that the energies, momenta, and

'

lengths in these formulas are now defined in units of
m„c', nt„c, and ti/m„c, respectively, where re„ is the
muon rest mass. Therefore, for the negative muon
these formulas may be used with the explicit changes
that ro is replaced by (mo/m„) ro(= e'/nz„c') and that
rNO/Me is replaced by m„/Mo. For the positive muon,
the formulas are the same as for the negative muon
with the additional change that Z is replaced by —Z.

II. DEFINITIONS

The following definitions and useful relationships are given for the symbols and constants used in this review.
The constants are given with three significant figures although more accurate values are available.

8&, 82= initial and final total energy of the electron in a collision, in mat, units.

T&, T2= initial and final kinetic energy of the electron in a collision, in woe units.

Pi, t4 ——ratio of the initial and final electron velocity in a collision to the velocity of light.

p~, p2
——initial and final momentum of the electron in a collision, in mac units.

ni, 112——unit vector for the initial and final momentum of the electron in a collision, such that pi= pini
aild pm= p2I12.

n= unit vector perpendicular to the scattering plane (pi, p2), such that n= (pi x p2)/I pi x p2 I
=

(n, xn, )/I n, xn, I.

(i, (2——unit polarization vector pertaining to the initial and final electron in a collision. These vectors
are defined as the expectation values, (i=ui"dmi and (2——Nmtdum, where Ni and u, are eigen-
states for (i d and (2 d, respectively, such that (i.dm, =l, and (2 dm2

——Nm, and where d is the
Pauli spin operator. The unit vectors, (i and (2, may be chosen to have arbitrary directions
which can be specified in terms of the coordinate system given by the unit orthogonal vectors
Q.) Q.y) Q.y XQ.) Ol Q.) Q.2) Q.2 XQ..

Pi, P~——polarization vector for the initial and final electron hearn in a collision. The magnitude of the
vector gives the degree of polarization for the beam in the direction of the vector, and is equal
to the average expectation value of the spin operator for the beam. This magnitude is less than
unity for a partially polarized beam, and is equal to unity and zero, respectively, for the special
cases of a completely polarized and an unpolarized beam. The magnitude of P& is given by the
initial conditions, and its direction is specified by the unit vector (i in the electron rest system
such that Pi= Pi(i. The magnitude and direction of P2 are determined by the dynamics of the
scattering process. Then P, (, is the component of P2 along the chosen axis, (,.

x~, X2= angle between the vectors Q. and P~ or Q. and P~, respectively.

0=angle between the directions of the emitted and the incident electron.

p= azimuthal angle for the scattered electron.

dQ= element of solid angle, sin |' d8 dg, about the direction of p~.

q0=2pi sin 20= momentum transfer to an infinitely heavy atom in a nonradiative elastic collision
such that

I pi I

=
I p2 I

q= I pi —p~ I

= momentum transfer to an atom in a nonradiative collision, in moc units.

y= I pi —p2 —k
I

= rnornentum transfer to an atom in a radiative collision, in moc units.
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Q=((pi —p2)' —(Ei—E2)'j'= four-dimensional momentum —energy transfer

=Q,=qo/$1+(mo/Mo) (qo'/2Ei) $& (for elastic scattering at extreme relativistic energies)

=Qi)= L(pi —p2)' —k'$l (for scattering with radiation) .

|tM= angle between the directions of the incident particle and the recoiling target atom (See I'ig. 1) .
Z= atomic number of the target atom.

k= energy of the emitted photon, in nspc' units

= Tj—T2 for an infinitely heavy nucleus.

r= radius vector from the center of the nucleus, in units of Xp.

5, E, and I-=polarization functions for the determination of the polarization vectors, P~ and P~. These func-
tions are defined in formula (1A—403) in terms of the F and G or the f and g functions that
are specified in the Mott —exact phase-shift formula (1A—109) .

F(q), Gz(q) =atomic and nuclear charge form factors, respectively

= (4 /q) f p(r) (sin qr)r dr.
0

Ze p(r) = charge density for the atom or nucleus, with normalization such that fp(r) d'r= 1.

G~(q) = magnetic nuclear form factor

= (4m/q) ii(r) (sin qr) r dr.
0

p(r) =nuclear magnetic moment distribution, such that fp(r) d'r is equal to the nuclear magnetic
moment p.

da—= elastic electron scattering cross-section differential with respect to the solid angle of the scat-
tered electrons. This form of the cross section is averaged over the initial and summed over
the 6nal electron-spin states.

do—(Q, n) = elastic electron scattering cross-section differential with respect to the solid angle of the scat-
tered electrons. This form of the cross section is summed over the Anal electron-spin states and

designated by its functional dependence on the unit axial vectors (i and n.

der—(Pi, n) = same definition as da ((i, n)/dO except that (i is replaced by Pi in order to apply to a partially
polarized incident beam.

do—((2, n) = elastic electron scattering cross-section differential with respect to the solid angle of the scat-
tered electrons. This form of the cross section is averaged over the initial electron-spin states
and designated by its functional dependence on the unit axial vectors (& and ll.

d0—((i, (q, n) = elastic electron scattering cross-section differential with respect to the solid angle of the scat-
tered electrons. This form of the cross section is designated by its functional dependence on the
unit axial vectors (i, (~, and n.

Jo—(Pi, (q, n) = same de6nition as da((i, (2, n)/dQ except that (i is replaced by Pi in order to apply to a par-
tially polarized incident beam.

d Og
=bremsstrahlung cross-section di6erential with respect to the energy and solid angle of the

scattered electrons. This form of the cross section is summed over photon polarizations, inte-
grated over all photon angles, and averaged over the initial and summed over the Anal electron-
spin states.

0-=the total elastic scattering cross section, integrated over the electron scattering angles and
averaged over the initial and summed over the fjnal electron-spin states.
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dT2= the integrated cross section that is used to define the radiative correction. This cross section is
equal to the sum,

dog d0
d Tp+

l, gr.;dQdT2 dO
'

in which (do'/dQ) is the elastic electron cross-section differential with respect to the solid
angle of the scattered electron with the inclusion of the virtual photon part of the radiative
correction.

+2—p2+1

R= T'~+1,

~~= 1/(1 —Pi') ",

pa= LTi(Ti+2) ]*',

pi= P~/(1 —Pi'l '

Pl p1/+1 y

+2 p2 +1)
+2 T2+1y

&p= 1/(1 —Pp') ',

Pp= I:2'p(2'2+2) j',
p =P /(1-P'):,
Pp p2/+2.

r =pe /Pm p'c=4/1 73= .282X1 0" cm (classical electron radius).

Xp= fr/mpc=3. 86X10 " cm (Compton wavelength).

up=fP/mpe'=137Kp= (137)'rp=0.530X10 cm (Bohr radius of hydrogen atom).

RTF= 0.885upZ ' (radius of the Thomas —Fermi atom) .

8~~0.514A&rp
I approximate radius of the nucleus for a spherical nuclear model (H 56) j.

mp=9. 11X10"g (electron rest mass).

Mp~AX1. 66X10 '4
g (rest mass of the atomic nucleus).

mp/M p= 5.5A—'X 10—'.

A =Z+N (number of neutrons) 2.6Z for high Z, 2Z for low Z (mass number of nucleus).

c=3.00X10" cm per sec (speed of light in vacuum) .

e= 1.60X 10 "C (electron charge) .

e'=1.44X10 "MeV cm.

fr= 6.58X10 "MeV sec =1.05X10 "erg sec.

ht, = 12.4 keV-A.

fic= 1.97X10—"MeV cm.

a= e'/Sc = 1/137.

mac'= 0.511 MeV.

III. KINEMATICS

The kinematic relationships for electron elastic
scattering without radiative effects are derived from a
general relativistic treatment of the energy and mo=

nientum conservation laws which are given, for ex-
ample, by Blaton (B 50) and by Baldin et ul. (B 61).
The following kinematic results for this process are
given with the system of units defined in Sec. II.

The various parameters for the process in the labo-

ratory system are shown in Fig. 1. These parameters in
the center-of-momentum system are identified by the
primes on the symbols. Except for special c:uses, ;~11

symbols in the text are dehned in Sec. I.l.

A. RClatlonshlgs 1Q LckbOI'Rtol'f SQSteLXl With Tal gCt
Atom Initially at Rest

The momentum pp of the sca, ttered electron can be
written in terms of the scattering angle 8 and the energy
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Ei and momentum pi of the incident electron as

1+(mp/Mp) (Ei—pi cos 8)

1

1+2(mp/Mp) Ei sin' —,'8 ' (3.02)

X
1+2 (mp/Mp) Ei cos' —,'8

3.011+(mp/Mp) (Ei+pi cos 8)
'

where (mp/Mp)«1. For the extreme relativistic case,
Pi 1 or Ei pi, and

When Ei«(Mp/mp), the recoil energy is negligible and

ps p, . (3.03)
The momentum q transferred to the atom is given by

q'= Pi'+Ps' 2P—iPs cos 8, (3.04)

where ps is given by Kq. (3.01). In terms of the recoil
angle 8~ of the atom, q becomes

2 (Mii/mp) pEi+ (Mp/mp) jpi cos 8sr
q= 3.05

(E,+(M,/m, ) js P—is cos'8sr

The recoil angle 8~ can be obtained from the following
equation:

t 1+( m/pM )pEij(1 P'—cos'-8) —cos8L1+P(Ei/Pi) cos8j

t 1+(mp/Mp) Ei](1—P' cos' 8) + cos 8/1+2 (mp/Mp) EijL1+P (Ei/Pi) cos 8j
w hei'e

SSQ pl

Mp 1+(mp/Mp) Ei
(3.07)

When Ei«(Mp/mp) the recoil energy is negligible and

cot 8~= tan ~~0. (3.08)

B. Conversion Relationships between the Laboratory
and the Center-of-Momentum Systems

In the following equations, the primed symbols
refer to the center-of-momentum system, and it is

assumed that the target atom is initially at rest in the
laboratory system.

The relationship between the scattering angle in the
center-of-momentum and the laboratory systems is
given as

cos 8—pEs/ps
cos 8'=

(sin 8) (1—P') '* ' (3.09)

where p is defined in Kq. (3.07) and ps is given in Kq.
(3.01). The transformation for the atomic recoil angle
8~ is given as

nxnz

(2—Ps) cos' 8sr —1
cos 0~ =

P coss 8sr —1

where P is defined in (3.07) .

(3.10)

(b)

Axn,

A, X A

FIG. 1. Diagram for electron elastic scattering by an atom ini-
tially at rest in the laboratory system. In part (a), the vectors p&,
p2, and q lie in the scattering plane arith scattering angles g for the
scattered electron and 8~ for the recoiling atom. The directions of
the unit spin vectors, Q and t„'2, are specified in the electron rest
system by the unit orthogonal vectors (defined in Sec. II) ni,
n X n1, n and ng, n X n2, n, for the incident and scattered electron,
respectively. In part (b), the relationship of the coordinate sys-
tems for the incident and scattered plectron is shown in further
@tag.

IV. RADIATIVE EFFECTS

Photon emission is inherent in the process of electron
scattering. In fact, every electron that is detected after
being scattered by a pure Coulomb field has emitted
photons with a probability of unity (S 49). Because of
this radiative e8ect in which most of the photon energies
are concentrated in the very low or infrared region, an
incident beam of monoenergetic electrons scattered at a
given angle by a Coulomb field has an energy distribu-
tion in the form of an ostensible "elastic" peak plus a
low-energy tail. In an arbitrary distinction, this quasi-
elastic peak is identified with so-called "soft" or infra-
red photon emission (J 54, Y 61) and the low-energy
tail is identi6ed with "hard" photon emission.

The crux in the process of electron Coulomb scatter-
ing lies in the so-called "soft" photon region where
T2—+T~. In this "soft" region, the inelastic process in
which photons are emitted becomes indistinguishable
from the idealized elastic process in which photons are
not emitted, because all measurements involve a finite
energy interval. This corsdition has the corzseqgerzce that
the cross sectiors for the elastic process do/dais auidealised
cross section arid requires a radiative correction i' order
to predict the results of measuremelts that appty to a
firsite energy irstertiaf. This radiative correction js calcu-
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lat:ed (S 49) from a combination of the matrix elements
for real and virtual photon processes which together
give the necessary result that the cross section inte-
grated over a finite energy interval AE in the region of
T2 TI, is finite even though the inelastic cross section
d'o&/dQdT2 differential in the angle and energy of the
scattered electron diverges as TATI. In other words,
in the "soft" photon region it is necessary to introduce a
composite, integrated cross section

Tg

(d'o./dod T2) d T2
TI—DE

which is defined by the equation:

f
d o ' da do

„, d Tg= d Ti+ , (4.0-1)
T -SEJM" 2 T,—~1,, dQdTg

where d'oui/dMT2 is the bremsstrahlung cross-section
differential with respect to the energy and angles of
the scattered electron and integrated over all photon
angles, and do'/dQ is the elastic cross section with the
inclusion of the virtual photon part of the radiative
correction. The elastic cross section without the inclu-
sion of the virtual photon part of the radiative correc-
tion is designated as do./dQ and is evaluated by the
formulas in Secs. VI and VII. Formulas for the inelastic
cross section d'oui/dMT2 are given in the following
discussion and formulas for the composite cross section
defined by Eq. (4.01) are given in the following sub-
sections A and B.

The energy distribution of the scattered electrons in
the "hard" photon region where T2& TI—AE is given
by the differential bremsstrahlung cross section
d'oui/dOdT2 A. n explici. t formula. for this cross section
was calculated in the first Born approximation for a
point nucleus neglecting recoil and target spin effects
by Racah (R 34) and later by McCormick, Keiffer,
and Parzen (M 56) and is given in the following con-
densed form by Maximon a.nd Isabelle (M 64):
d ori ro Z pm 4

dMT2 2n 137 pi kQ4

XLk'Q'+2 (Q'+2) (4EiE2—Q') ]
+Lk in(E,+p, )/2p, ]L4E,'(E, yE, ') —2E,k

+4(EiE2+1)—Q'(EiE2+p2') + (16E2pp sin' &/Q')

X (2Eip2' —3E2'k) ]—(k ln (Ei+pi)/2pp)

X [4E2'(Ep+E2') +2A'2k+4(EiF. ,+1)
—

Q (EiE2+pi'-) + (161'.ipse-' sin-' 0/Q ) (2F!.happ 3Epk)]-
+ (gk2 siii2 g/p 2p iQ4) L2p 2p i(F 2+ Fi2—Fi~t2)

+3 ( Ep —Ep) '-' }+(k'/pppi')

XL(pi'+p~') (Ei~'i+1) —3(Ei+Ei)']
—L(4EiE~—Q') /2ppp~']L pi'+ p2' —k'(EiEi+1) ]},

(4.02)

where Q'= Q&'= (pi—p2) '—k', k= T, T,—(for in-
finitely heavy nucleus), and sinh oiy= —',Q.

Another formula for this cross section, which is calcu-
lated in the 6rst Born approximation with the inclusion
of arbitrary atomic screening as well as size and mag-
netic effects of the nucleus, is given in integral form
(M 64, G 64) by the following expression'.

d2g Ji y. 2 Z2 p2 &+ d (y2)
I G~(y) —F (y) }'~(y)

dodT2 2m 137 pi y 2 y4

where the function R(y) is given from the results oi
Maximon and Iss.belle (M 64) s,s

~( ) = L2/(Q'+k') ']+(Q'-y')-'( ~-' —~ -')

X Ly'+Q4 —4y'(Ep+ E2'-—1) —16EiE2]

—p(4g&2i yi) /Ap]Lp—(Q —2k/~2) —yi(Q2/2kEi) ]
+L(4Ep —y") /~2']LQ'(Q'+2kEi) —y'(Q' —2kE2) ]

and the function R,ir(y) is given from the results of
Ginsberg and Pratt (G 64) as

E~(y) = —L2/(Q'+k')''] —(Q' —y') '( &i '—&2-')

X Ly'+Q4 8Q'+4y'(EP+ —EP+1)+16(EiE2—1)]
—L(4P,'+y')/AP]LP (Q'P2kE, ) —y'(Q'+2kE, )]

+L (4p 2+y2) /A 3]LQ2 (Q2
~ 1 E ) y2 (Q2 2kE )]

In the above equations,

y = (Q'+k')'&k

2 (E y2 E Q2) 2 (y2 Q2) 2+4yQk2

+22 (Eiy2 —FlQ2) 2—(y2 —Q2) 2+4y2k2

Also as shown by the definitions in Sec. II, Gs(y) and
F(y) are the nuclear and atomic charge form factors,
respectively, Gir(y) is the nuclear magnetic form factor
Lformula (1A-104)], and the parameter y is equal to
the momentum transferred to the atom in the collision.
Because this formula is based on the first Born approxi-
mation, it is valid only for low atomic numbers. For
the case of a point nucleus where Gs(y) is equal to
unity and Gir(y) and F(y) are equal to zero, Fq.
(4.03) reduces to the high-energy limit of the Racah.
formula (4.02). In the region where the momentum
transfer y is much less than unity, atomic screening
Lgiven by F (y) ] is important. In the region where y is
much grea. ter than unity, both the size Lgiven by

Ke are grateful to Dr. L. C. Maximon and Dr. R. S. Pratt
for providing preprints of tbejr calcglatjops before publication,
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Gz(y)] and the magnetic effects I given by Gsr(y) j of
the nucleus are important.

For the case where T~&&1 and go&1, recoil, spin,
and size effects of the nucleus can be neglected. There-
fore, a formula for the cross section in this region,
which includes atomic screening effects can be obtained
in the following analytical form from Olsen's results

(0 63):

dsoo rp' Zs E2'4
dQdT2 2z. 137 k' k Sinhy

+ (2E,E,/k) 2)$1—F (qp) ]2

Et Et E2 E2 El +E2+2 p ——in —+—in ——
k k k k 2k'

I
to

r4

10—

Io

-l
to

IO

i

8= 60

)& t'Et'+ E2' 4EtEst'—w' 3+gEtEsw't' 10

EtE2(Et+ E2) Es Ets+E22
k' Et 2k'

IO I I I I
0, 2 O.zl 0.6 0.8 I.O

0IO—
Fto. 8. Same as Fig. 2 except that the electron scattering angle

is 60 deg and no screening effects are shown.

10

IO

where
w = (EtE2/k) (l,

i = (1+w') —',

sinh 22'= k(4EtEsi )
—

l,

p= ln (2EtE2/k)+E&(k/2ErEsf),

N c4M I—
13

10

Q. I MeV

-4
IO

-—---2= I5——Z=79—

IO
0 0.2 0.4 0.6 0.8

T~ /Tl

1.0

Fn. 2. Dependence of the bremsstrahlung cross section on the
electron recoil energy T& for an electron scattering angle 8 of 5
deg and for initial electron kinetic energies of 0.1, 1.0, 10.0, 100,
and 1000 MeV. The results are given in terms of the ratio

T,P (d'a o/d Tsdn) /(d(r/do) j,

where T~ is the initial electron kinetic energy, (d'0~/d7'2')) is
the bremsstrahlung cross section given by the Racah formula
(4.02) in Sec. IV, and do/dQ is the elastic scattering cross sec-
tion given by the Mott —Born formula (1A—101).Both cross sec-
tions are evaluated with the first Born approximation for a point
nucleus. The dashed lines for 0.1 and 1.0 MeV show screening
effects for aluminum and gold, and were obtained from Eq.
(4.03) with Gz(y) equal to unity, F(y) given by the Moliere form
factor in formula (1A—102b) and Esr (y) equal to zero.

and F(qp) is the conventional atomic form factor
defined in formula (1A-102). Values for F (k/2EtE2t )
with Moliere screening are given in Table I in Ref. 0 59.

The above formulas (4.02) —(4.04) have certain
limitations. First, these formulas do not include recoil
effects of the nucleus, which may be neglected for
(qp2/2Et) (mp/Mp)((1. Second, these formulas are cal-
culated in the 6rst Born approximation and therefore
may be expected to be inaccurate for large atomic
numbers as indicated for example by Fig. 22 for rely, ted
measurements in Ref. K 59. Correction factors which
may be used with formula (4.02) in the soft-photon
region in order to account for the breakdown of the
Born approximation a,re suggested by Eq. (4.10) in
Sec. IVA. Because of the restrictions imposed by the
Born approximation, the accuracy of formula (4.03) is
uncertain for large atomic numbers, even though it
includes corrections for the atomic size and for the
magnetic and size effects of the nucleus.

Examples of the behavior of the cross-section ratio,
Ttft(d'on/dMT2)/(do/dQ)), as a functton of T2 for
initial electron kinetic energies of 0.1, 1.0, 10, 100, and
1000 MeV are shown in Figs. 2, 3, 4, and 5 for electron
scattering angles of 5, 60, 120, and 180 deg, respec-
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much larger than unity, these curves must include
corrections for the size and magnetic eGects of a given
nucleus as shown by formula (4.03). The screened
cross-section evaluation from formula (4.03) with the
Moliere form factor for F(y) t given in formula (1A-
102b) j is shown by the dashed lines for the 5-deg
angle in Fig. 2. Also, Figs. 2—5 show that for T~&&i
and qtt»1, the cross section d'on/dMTs increases as Ts
decreases in the low-energy region. This increase, which
is more pronounced as Tj becomes larger, was recog-
nized by Keiffer and Parzen (K 56) who showed that
it leads to a low-en. ergy peak in the region where ps is
of the order of unity.

The radiative eGects discussed above for the "soft"
and "hard" photon energy regions must be related to
the particular experimental situation. For example, the

~ttt[ ~TTt t tl[

1.0

IO
0 0.2 0.4 0.6 0.8

T,/TI

I.O

tively. These cross sections were evaluated from the
Racah formula (4.02) for d'oui/dQdTs, and from the
Mott —Born formula (1A-101) in Sec. VII for do/dQ.
For the region in which the momentum transfer is

Fxo. 4. Same as Fig. 2 except that the electron scattering angle
is 120 deg and no screening effects are shown.
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'- Frc. 6. Dependence of the "soft" photon correction on the
initial electron kinetic energy for electron scattering angles of
30, 60, and 135 deg and for values of AE equal to 10 'Tz and
10 Tr. This correction is deimed in Eq. (4.05) and is evaluated
from Eq. (4.06).

cross section for electron Coulomb scattering at a
given angle has different values depending on whether
the electron detector accepts (A) electrons confined
to a small energy interval at the maximum energy, or
(B) all electrons irrespective of their final energies.
Case A refers to the "soft" photon correction and case
8 refers to the "soft plus hard" photon correction,
which are discussed respectively in the following sub-
sections A and B. It should be noted that these correc-
tions are obtained with the neglect of atomic screening,
nuclear size, and nuclear spin and recoil effects. How-
ever, these latter eGects probably have a much smaller
inAuence on the radiative correction factor which is a
cross-section ratio (see Secs. IVA and IVB) than on
the elastic scattering cross section.

A. The "Soft" Photon Correction

Fn. 5. Same as Fig. 2 except that the electron scattering angle
is 180 deg, 1000-MeV results are omitted, and no screening ef-
fects are shown,

The first successful treatment of the "soft" photon
region was given by Schwinger (S 49). Schwinger calcu-
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lated the "soft" photon correction factor, 1—b~, which idealized elastic cross section, and
is defined in the following equation by the ratio Fg

(d'o/dQd Ts) dTs

f d 0 do'
dT2 1 8g)

p, g~dQdT2 dQ
(4.05)

where the "soft" photon energy interval is contained
between zero and /b. E with DE«Tt, do/dQ is the

is defined in Eq. (4.01) and in Sec. II. The radiative
correction 8z which is given by Schwinger (S 49) in
terms of an integral, may be written in the following
form (0 64):

2 f Et 13') 2e g tanhg
bn ——

~

ln ——
~
(221 coth 221—1)+ . (coth' 21

—4) ——,
' (coth' 2)

—Tsss ) —L+
137~ & /(, E 12& 3 sinh 22)

' ' ' 2Et(1—pts sin' —,'8)

where p is defined by go= 2 sinh y and

(4.06)

1 t'1+b) 4a'(a+b)' 1 /a+b (1—b) 4 /a+b (a b-
L= —-' coth 221 —ln

( )ln + ln
I

ln + ln
I

2 \1 b) (1——b') (1—b)' 2 (abb. —(a' b') —\ 2s 1 2s )

—ln ln 21.2 —2L2 21.2 —2L~ 2g ln I.2

with

1—
Pb COS s8a=

1+Pr cos s8

/ 1 & 1 $1+)8,—Ls —ln 2Er11+e "1 2P, (1—bb)

f 1—cos s'81'
b=

~ a,'
~

=&a tan -',8,
i, 1+ cos s8/

and Ls(x) = Euler s dilogarithm (Mi 49). Values for Ls(z) are given in Table XIII in Sec. X
In the nonrelativistic region with Pt«1,

(8/3) (Pts/1372r) sin' rs8Lln (1/26E) + (19/30) ). (4.07)

The term containing 19/30 comes from the anomalous magnetic moment and vacuum polarization effects, indi-
cating that even in the low-energy region, electron-spin effects are important. In the extreme-relativistic large-
angle region with P& 1 and (tp'))1, 8n may be expressed by the following equation (0 64)':

844
——(4/1372r) {fin (Er/AE) —"](ln qp

—-')+ "+'4t (2r'/6) —Ls(cos'-'8) $I (4.08)

Formula (4.08) is estimated to have better than 1% accuracy even for moderate electron energies of the order
of 1 MeV. The radiative correction Bn has been evaluated from Eq. (10) in Ref. S 49 by Elton and Robertson
(E 52) for particular values of Tb, 8, and /), E, and their results are given in Table I.

A more complete summary of the "soft" photon correction factor, 1—
824, is shown in Fig. 6 for (a) electron

kinetic energies ranging from 10 ' to 10' MeV, (b) electron scattering angles of 30, 60, and 135 deg, and (c) vs, lues
of hE equal to 10 'T& and 10 'Tt. These curves which were computed from Eq. (4.06) show that the "soft"
photon correction becomes more important with increasing values of 8, Er, and 1/DE. In the limits where 8 and
p& approach zero, it can be shown that the radiative correction factor, 1—8)4, is equal to unity.

2 The term 4 fbr'/6 —Ls (cos' x28) } is equal to Schwinger's integral„4 (2)), Eq. (10) in Ref. S 49. It should be noted that the value of
C (2)) at 2) =br/2 given by Schwinger and quoted by Jauch and Rohrlich (J 54, p. 339), is C (br/2) =0.292. The correct value isgb (br/) 2 =
xb} br'/6 —Ib.($))=0.266. It should furthermore be noted that the approximation for 41(b)) given by Eq. (11) in Ref. S 49 exceeds the
correct value by 19% for 2)=br/2, rather than 8.6% as stated by Schwinger.
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TABLE I. Evaluation of the radiative correction term bg.

0.5» r, (MeV}. . .
8 (deg) . . . . . . . . . . 45

511 AE (keV}

2.5
90

100 Bg

4.0
90

9.5
90

10
25
50

100

4.8
3.9
3.2
2, 5

7.4
6.0
5.0
3.9

8.7
7.1
5.9
4.7

6.9
5.7
4.7
3.8

9
8.1
6.8
5.5

11.3
9.3
7.9
6.4

12.4
10.5
9 0
7.6

15.9
13.5
11.7
9.9

17.5
14.8
12.8
10.8

Equation. (4.08) for the extreme-relativistic, large-angle region, is valid only for AE« I'&. For the case where
AE is comparable to T&, it is necessary to use the following expression (0 64):

5ii
—— [[ln (Ei/AE) ——,",-][ln qo

—
—,']+~i~~+-', [(n'/6) —12(cos' —',0) ]+-', I (ln x) '—(2 ln x) /x —4 ln x ln (1—x)

+4t (n'/6) —L,,(x) ]+x'—l 1+4 ln 2Ei[ln x+ 2
—x—2ix' —x ']+ (ln sin ice/2 cos' —,'8) (ln x—x+1)

—(8 cos' 2i|t) '[ln x—x+x '+ix' —-'] I, (4.09)

where x= 1—( DZ/Ei) and L2(x) = Euler's diloga-
rithm (see Table XIII).This formula is valid provided
that p2' is large compared to unity, which restricts the
formula to the region above the low-energy peak pre-
dicted by formula (4.02). Another calculation which

applies to the region where dE&' is comparable to TI
but which is less accurate than formula (4.09) because
of additional approximations is given by Schiff (S 52) .
As pointed out by Schiff (S 52), the value of 8& for
these large AE values changes sign and the radiative
correction becomes positive rather than negative as in
the case of formula (4.06) where BE«Ti.

A unified treatment of the "soft" photon correction
for a class of high-energy scattering experiments is
given by Meister and Yennie (M 63). Other general
treatments of radiative e6ects are given by Yennie,
Frautschi, and Suura (Y 61) and by Mahanthappa
(M 62). For the 'special case of high-energy electron—
proton scattering, radiative corrections are particularly
important and are complicated by recoil effects which
are not discussed here and which are estimated in
some detail by Tsai (T 61) and by Krass (K 62).

The radiative correction 5g which is given in Eq.
(4.06) was calculated by Schwinger in the first Born
approximation for the 'interaction between the electron
and the nuclear potential. Suura (S 55) has shown that
in the high-energy region, there is a negligible differ-
ence in the radiative correction obtained by calculations
either to the erst order or to all orders of the Born
approximation for the nuclear potential. This latter
result suggests the following approximate relationship
between a first Born and an exact calculation for the
bremsstrahlung cross section dail/dQdT& in the soft-

photon region:

d 0'g
(EXACT)

dQd T2

(d|T d 0'g
i

—(EXACT) —(BORN) (BORN) (4.10)
(dQ dQ dQd T2

where (d' ii/odQdT, ) (BORN) is given by the Racah
formula (4.02) and the ratio [(do/dQ)(EXACT)]/
[(do/dQ) (BORN)] is evaluated for selected values of
Z, EI, and 0 in some of the curves shown in Sec. VIII.
Although the simple relationship given by Eq. (4.10)
has not been experimentally verified, it may be expected
to give fairly accurate results providing it is applied
in the region where the recoil-electron energy T2 is such
that Tg—T2&&TI.

The "soft" photon correction, defined in Eq. (4.05)
is used for quantitative predictions of electron Coulomb
scattering in a specific experimental situation (see
Ref. T 60) in which the detector of the scattered elec-
trons is operated as an energy-sensitive spectrometer
with a given energy resolution. (This correction is Not

applicable to the case in which the electron detector
accepts all electrons irrespective of their final energies. )
Such predictions require a careful interpretation of the
experimental data obtained with the particular spec-
trometer. For example, the following results apply to
the data obtained either with a pulse-height spectrom-
eter or with a magnetic spectrometer.

With a pulse-height spectrometer, the detection of
an electron is indicated by a pulse at the spectrometer
output. Then for given values of T~, 0, and Z, the
number of puIses per unit pulse-height interva) at the
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R(T2, h) dh=1.

With the above assumptions, the following relationship
is obtained by integrating Eq. (4.11):

mehB
JV(Ti, h) (th

do
d T2+

T1—g@ dodT2

Tj—AL&': d2~
F d T,, (4.12)

dMT2

where T' is equal to t (2—r)/(2+r) j(Ti—0 E) and p',

which is equal to

hc
R(Tg, h) dh,

is less than unity in the energy interval for T2 specified

by the integral limits T»—AE and T'. The integral

hc
E(E(Ti, h) dh

is the area measured under the line shape with a lower

cutoff value of h, in the pulse-height distribution. The
energy interval hE is then determined from the experi-
mental quantities h., b, and r, such that AE= T»—
$2h, /b(2 —r) j. Because Y is less than unity and the
cross section d'&r&/dQdT& decreases rapidly as Tm de-

creases, the second term on the right-hand side of Eq.
(4.12) is negligible compared to the first term. There-
fore for this case the integrated cross section defined in

Eqs. (4.01) and (4.05) is simply related to the number
of counts in the elastic line shape area of the measured
pulse-height distribution.

pulse height h is defined as 1I('(Ti, h) and is given by
the following expression:

T$ d20
1V(Ti, h) =rnnl(Q R(T2, h) dT2, (4.11)

dQd T2

where AQ is the solid angle subtended by the entrance
aperture of the spectrometer from a point at the center
of the target, ns is the number of electrons incident on
the target, m is the number of target atoms per cm',
d'(r/dQdT2 is defined in integral form in Eq. (4.01),
and R(T2, h) is the spectrometer response function
which gives the probability that an electron with energy
T2 will be detected at the pulse height h. In order to
interpret the measured pulse-height spectrum iV (Ti, h)
in terms of the "soft" photon correction factor defined

by Eq. (4.05), the following simplifying assumptions
are made about R(T2, h): (a) for a given T2, R(T2, h)
has a rectangular line shape with a width dh and a
midpoint h2=bTs (where b is a constant), such that
the spectrometer resolution r is equal to Ah/h2. , (b)
R(T2, h) is a function such that R(T2, h) =0 if h&
h, (1—r/2) or h&hs(1+r/2); and (c)

T1—hL&"

(d'o /d QdTg) dT,

is defined in Eqs. (4.01) and (4.05). For the general
case in which Ap is comparable to (pi —p2), the analysis
becomes more complicated and must be carried through
by a procedure similar to the pulse-height analysis
given above.

As a Anal word of caution, the "soft" photon cor-
rection shown by the curves in Fig. 6, gives no informa-
tion about the energy and angular distribution of the
electrons in the "hard" photon region where 0& T2&
T»—AJ". This means that at a given scattering angle,
the ratio

do T1—b, L&'

dT2
T,—P@ dMT2 0 dod T2

of the area under the elastic peak ("soft" photon
region) to the area under the low-energy tail ("hard"
photon region shown by the curves in Figs. 2—5)
cannot be determined from the value of the "soft" photon
correctiorl, . The kinematics changes drastically in the
two regions and it is necessary to consider each region
separately as shown in the following discussion of the
"soft plus hard" photon correction.

B. The "Soft plus Hard" Photon Correction

The "soft plus hard" photon correction factor is re-
quired for the calculation of the total number of elec-
trons measured at a given angle with an energy in-
sensitive detector that accepts all electrons irrespective
of their final energy. ' This correction factor differs
from the "soft" photon correction factor in Eq. (4.05)
by the addition of an extra term containing the ap-
propriate bremsstrahlung cross section. Specifically, the

3The additional in6uence of inelastic processes other than
bremsstrahlung is not considered in this case.

Kith the magnetic spectrometer operating at a given
magnetic field H, electrons are accepted in a momentum
interval corresponding to the range H(pi —p2), where

p» and p2 are the effective radii of curvature limits of
the spectrometer. The spectrometer focuses electrons
with a given momentum in a 6nite region corresponding
to an interval Hhp. For the simplifying assumption
that hp«(pi —p2), the elastic peak occurs at a value of
H=Hi such that the momentum limits, pi (or Hipi)
and p2 (or Hipl), correspond to the energies Ti and
T»—5E, respectively. It then follows that for given
values of Ti, 0, and Z, the number of electrons 1V(Ti,
Hi) per unit momentum interval at the peak field Hi
is given by the expression

do
d T2= 1V(Ti, EE(), (4.13)

d Qd T2 ~0m'

where the integrated cross section
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I I ITTTT I I TTTTTI photon correction factor for this case is given as (0 64):
d Lr LEtT

p dQd T2 dQ
dT, —=1+(Et/137m)

X [sin 8/(1+ cos fl)'jIz.—0—sin 8 cos 0+2 cos fi

X[2A, (tan rtl) —~ ln (tan —',e) jj, (4.16)
DI-
C3

CL

C) 2.0—

"soft plus hard" photon correction factor is defined as
the ratio in the following equation:

d LT dtT ' d'tT da
— d T2 —= — dl 2

dQLE22 dQ y, gP LEQd22 dQ

d tT do-
d Ts —, (4.14)

dQd T2 dQ

where the first term on the right-hand side is the
"soft" photon correction given in Eq. (4.05), the
second term is the "hard" photon correction, and the
cross-section symbols are defined in Sec. II.

In the nonrelativistic region with P«(1, Schwinger
(S 49) gives the following approximate expression for
the "soft plus hard" photon correction factor:

d20'
dT2

p dQd T2
—= 1—s (Pis/137ir) sin' sre
dQ

X [ln (&Tt)
—'+—'s+ (m

—8) tan —,'i)+ (cos fi/cos' sr8)

X ln (csc s8) j. (4.15)

In the extreme relativistic region for large scattering
angles, Keiffer and Parzen (K 56) evaluated nu-
merically the integrated cross section,

Tz—hE
(d'arr/dMTs) d Ts, .

shown by the "hard" photon contribution in Eq.
(4.14). An analytical formula for the "soft plus hard"

0 I I I I IIII I I I fllll I I I I IIII I I I I IIII
O. I I.O IO 100 IOO0

INITIAL ELECTRON KINETIC ENERGY, M e V

FIG. 7. Dependence of the "soft plus hard" photon correction
on the initial electron kinetic energy for electron scattering angles
of 30, 135, and 180 deg. This correction is evaluated from Eg.
(4.14) vrhere the first term (soft) is given by Eq. (4.05) and the
second term (hard) is given by the Racah formula (4.02) for
d' an/dodT& an-d by the Mott —Born formula (1A—101) for do/dD
For the energies larger than 10 MeV, these curves were evaluated
from Eq. (4.16).

where As(x) = (1/2i) ILs(ix) —Ls(—ix) I
= Im Ls(ix)

and Ls(s) = Euler's dilogarithm (Mi 49). For this
case, the low-energy peak given by the "hard" photon
term in Eq. (4.14) is dominant over the "soft" photon
term and the "soft plus hard" photon correction factor
becomes larger than unity.

In order to evaluate this correction for the general
case given in Eq. (4.14), it is necessary to use calcula-
tions that are consistent for the "soft" and "hard"
terms to the extent that the sum is independent of the
choice of d K Now the Schwinger calculations for the
"soft" correction [Eqs. (4.05) and (4.06)j are Z-
independent. Therefore, if one uses the Schwinger
calculations for the first term in (4.14), then the second
term in (4.14) (the "hard" correction) must be chosen
to be independent of Z. This will be the case if the
second term in (4.14) is evaluated from the unscreened
first Born calculations of Racah [Eq. (4.02)g and of
Mott [formula (1A—101)$. With the first Born un-
screened calculations specified above, the behavior of
the "soft plus hard" photon correction defined by Eq.
(4.14) is shown in Fig. 7. The curves for 30' and 135'
in the energy region above 10 MeV are evaluated from
Eq. (4.15). The curves in Fig. 7 show the dependence
of the correction on the initial electron kinetic energy
in the region from 0.1 to 1000 MeV for electron scatter-
ing angles of 30, 135, and 180 deg. It is interesting to
note that this correction becomes much larger than
unity as the electron energy increases, particularly for
the larger angles. However, because these results are
obtained with erst Born calculations for an unscreened
point nucleus, Z-dependent effects are not revealed
and the accuracy of this correction factor is uncertain.

For the total idealized elastic cross section 0., the
"soft plus hard" photon correction is obtained by inte-
grating the cross sections in Eq. (4.14) over the electron
scattering angles and is given by the following
expression:

1'z d2~ d LT

d T2=- dQ dT2
dQdT2 LT ~, z& dQdT2

Fz—b E d2~
d Ts. (4.17)

dQd T2

The important contributions to the first ("soft" cor-
rection) and second ("hard" correction) terms on the
right-hand side of Eq. (4.17) come from the region of
small qs values (or large impact parameters) where
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YAM,E II. Classification of cross-section formulas for electron scattering with radiation.

Cross section

(4.02)

(4.03)

(4 04)

(4.10)

Formula Principal authors

Racah

Maximon-Isabelle,
Ginsberg —Pratt

Olsen

Approximations

a. First Born approximation
b. Unscreened point nucleus
c. No recoil or nuclear-spin effects
a. First Born approximation
b. Screened 6nite nucleus with nuclear-spin

effects
c. No recoil
a. First Born approximation
b. Screened point nucleus
c. T1»1 and qo&1
a. Exact in Z
b. Unscreened point nucleus
c. Tq —T2« Tq
d. No recoil or nuclear-spin effects

T1

~& dT2 (4.05) and (4.06)
V'1-hE

(4.05 and (4.07)

(4.05) and (4.08)

(4.05) and (4.09)

Schwinger

Schwin ger

Schwinger

Olsen —Mork

a. First Born approximation
b. Unscreened point nucleus
c. dE&&Ty
d. No recoil or nuclear-spin effects
a. First Born approximation
b. Unscreened point nucleus
C. p1((1 and AB((Tq
a. First Born approximation
h. Unscreened point nucleus
c. p1=1, AE,'&(T1, and q02&&1
d. No recoil or nuclear spin effects
a. First Born approximation
b. Unscreened point nucleus
C. AE=Tq and p22» I
d. No recoil or nuclear-spin effects

(4.15)

(4.16)

Schwinger

Keiffer and Parzen

a. First Born approximation
b. Unscreened point nucleus
c. p1«1
a. First Born approximation
b. Unscreened point nucleus
c. q~&&1
d. No recoil or nuclear-spin effects

the radiative corrections become negligible. For a pure
Coulomb field, the total cross section r diverges as qo

approaches zero and the total "soft plus hard" correc-
tion given by the ratio in Eq. (4.17) is equal to unity.
For a screened Coulomb field, the total correction given
by Eq. (4.17) is equal to (1—6), where in the high-
energy limit, 6 is of the order (0 64) of (1/137m. ) X
(Z&/111)' ln (Z&/111) with an energy dependence
that is approximately proportional to Pi2. These results
indicate that radiative eGects have a negligible in-
fluence on. the total cross section.

A summary of the cross-section formulas in Sec. IV
for electron scattering without atomic or nuclear ex-
citation but with photon emission is shown in Table II.
This table lists the formulas according to the form of
the cross section, the authors, and the main approxi-
mations.

V. TYPES OF SCATTERING CROSS-SECTION
CALCULATIONS

In Secs. VI—VIII, the theoretical treatments of elec-
tron scattering without excitation are based on the
idealized process involving only the exchange of virtual
photons and neglect the radiative effects discussed in

Sec. IV. In addition, these calculations are limited by
the following two important considerations: (a) the
Dirac wave equation cannot be solved in a closed form
in general, as indicated for example by the discussion
in Ref. 8 54, and (b) the scattering potential must be
estimated from various models of the charge structure
of the atom and the nucleus. As a result, various ap-
proximations and procedures involving the wave func-
tion and the potential have been used, and a plethora
of approximate calculations has become available.
Each calculation yields a cross-section formula which
is valid only for a particular set of conditions. These
calculations can be broadly classified as "exact" or as
"Born," depending on the wave-function approxi-
mations.

The so-called "exact" calculations involve a partial-
wave expansion valid for all atomic numbers. Spe-
cifically, the "phase-shift" calculations (see Chap. IV
in Ref. M 49) give the cross-section formula in the
form of an infinite (and in many cases, slowly con-
vergent) series, each term of which depends on the po-
tential through the phase shift. Also there are closed-
form relativistic calculations Lsee Ref. M 47, formula
(6.6) and Ref. 0 57, formula (9.2) $ which are limited
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to values of qo&1. These "exact" formulas give the
most accurate estimates of the cross section, but have
the disadvantage that in most cases they must be
evaluated numerically. In addition, the problem of in-
cluding atomic screening and nuclear charge-density
effects is much more complicated for "exact" than for
first-order Born calculations.

The "Born approximation" calculations are carried
out with free-particle wave functions perturbed toPrst
or higher orders in Z. The validity of the first Born
approximation requires that the momentum transfer
involved in the interaction is small compared to the
electron momenta before and after the collision, or
that sin —',0(2mZ/137)«1. (See for example the dis-
cussion on p. 121 of Ref. B 57.) Higher order Born
calculations are carried out to the eth order in the
interaction with the nucleus. The higher order Born
calculations have a greater region of validity and are
more accurate than the first Born calculations. In addi-
tion, the higher order formulas approach the "exact"
formulas as e increases and in some cases can be
evaluated more easily.

The scattering potential for this process is deter-
mined by the charge and magnetic structures of the
atom and the nucleus. The problem of including the
correct potential in the "exact" calculations is very
complicated, and few "exact" calculations are available
which represent the atom as anything but a point
charge. Such exceptions are given in the energy region
below 1 keV for the atomic screening of certain elements
as indicated in the references with formula (1A—110),
and in the extreme relativistic region for various nu-
clear models as shown for example by Yennie, Raven-
hall, and Wilson (Y 54). Most calculations that ac-
count for the charge and magnetic structure of the
nucleus or the atom are based on the first Born ap-
proximation and use a central potential such that the
charge and the magnetic moment distributions are
spherically symmetric. Under these conditions, the
first Born cross-section formula for a point charge and
point magnetic moment can be corrected for the finite
structure by multiplying the contribution due to the
point charge by the factor t Gs((t) —F(g) j', and the
contribution due to the point magnetic moment by
the factor LG))r(q)/)((]'. As defined in Sec. II, the
nuclear- and atomic-charge form factors Gx((7) and

F(q), respectively, are given by the quantity

(4'/(7) p(r) (sin qr)r dr,
0

with Ze p(r) equal to the charge density for the nucleus
or the atom, respectively. Also, the magnetic form
factor G))r(q) is given by the quantity

(4 /q)f p( )(sin qr)r dr,
0

with p(r) equal to the magnetic moment distribution
for the nucleus such that fp, (r) d'r is equal to p, the
magnetic moment of the nucleus.

The nuclear form factors, Gs(q) and Gir(q), are
important for large values of the momentum transfer
q»1. For small q values, magnetic scattering effects
are negligible and the nucleus may be considered to
be a point charge with Gz((7) equal to unity. Extensive
data relating to the nuclear form factor and the nuclear-
charge distribution for various nuclear models are given
in the detailed summaries by Hofstadter and his
collaborators (see Refs. H 56, H 57, and H 60) .

The atomic form factor F(q) is important mainly
for small values of the momentum transfer q((1. For
large q values, the impact parameter is close to the
nucleus and F(q) is approximately equal to zero. The
form factor is calculated on the basis of the foLLowing
different atomic models described by the charge dis-
tribution p(r) of the atomic electrons: (a) The most
accurate calculations use the Hartree —Fock independ-
ent-particle model in which each electron is assumed
to be in the field of the nucleus plus an average field
due to the other electrons. The wave function for this
model is calculated by Hartree's self-consistent field
method which was first discussed in Refs. H 28 and
F 30. The atomic form factors based on the self-con-
sistent field method must be evaluated numerically,
and some results are given for example by Ibers (I 62)
for most of the elements and for qo values extending
from zero to 0.058. (b) The Thomas —Fermi statistics, l
model of the atom gives a smooth charge distribution
that does not show the atomic shell structure. (See,
for example, the discussion in Ref. N 55.) Although
the form factor for this model can be approximated by
an a,nalytical expression tsee formula (1A—102)$ and
is relatively simple to evaluate, it is less accurate than
the Hartree form factor discussed in (a) over certain
regions of the momentum transfer qo. the potential
given by the statistical model is particularly inaccurate
at large distances (small qo values or small scattering
angles) and at small distances (large (7O values or
large scattering angles) from the nucleus. (Differences
in these two models are also discussed in Ref. L 54.)
(c) The exponential atomic model is described by
the exponential potential V(r) = —(Ze'/r) exp( —Ar),
where A= (p/0. 885)Zl/137 and ti depends on Z and is
of the order of unity (see formula (1A—102)j. This
model gives the simplest screening approximation, but
can be expected to give only a qualitative account of
the screening unless empirical methods are used to im-
prove the accuracy. (For example, see Ref. B 60.)

With the various types of calculations and approxi-
mations outlined above, the problem is to select the
cross-section formula that applies to a given set of
conditions. A brief summary of the most accurate
formulas with recommendations for various conditions
is given in Sec. VIII.
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TAm. E III. Values of the polarization functions' S, E, and L for Z=79.

Electron kinetic energy, keV

(deg) I"unction~ 50 100 200 400 600 1000

10

30

110

130

350

170

—2.40X10 4

—0.156
0.988
1.016

0 ' 0165—0.447
0.895
1.00

—0.00784—0.701
0.713
1.14

—0.236—0.900
0.366
1.43

—0.350—0.936—0.0304
1.64

—0.356—0 ~ 815—0.457
1.84

—0.257—0.548—0.796
2.01

—0.092—0.194—0.977
2.11

4-11X10 4

—0.143
0.990
1.019

0.0179—0.391
0.920
1.05

—0.0531—0.631
0.774
1.34

—0.264—0.848
0.459
1.63

—0.379—0.920
0.0970
1.74

—0.403—0.851—0.336
1.80

—0.309—0.608—0.731
1.83

—0.114—0.220—0.969
1.84

1.29X10 3

—0.122
0.993
1.027

0.0107—0.322
0.947
1.15

—0.0726—0.538
0.840
1.54

—0.262—0.759
0.595
1.77

—0.386—0.875
0.292
1.75

—0.446—0.885—0.134
1.63

—0.377—0.697-0.610
1.48

—0.152—0.269—0.951
1.39

1.43X10 '
—0.0941

0.996
1.044

0.00437—0.244
0.970
1.24

—0.0696—0.419
0.905
1.69

—0.229—0.621
0.750
1.84

—0.355-0.767
0.534
1.67

—0.459—0.872
0.167
1.37

—0.455—0.804—0.382
1.06

—0.210—0.357—0.910
0.862

1.26X10 3

—0.0767
0.997
1.054

0.00217—0.198
0.980
1.28

—0.0610—0.344
0.937
1.75

—0.197—0.522
0.830
1.85

—0.315—0.669
0.673
1.61

—0.438—0.818
0.372
1.22

—0.491—0.853—0.176
0.834

—0.260—0.435—0.862
0.593

9.69X10 4

—0.0562
0.998
1.063

0.00073—0.145
0.989
1.32

—0.0472—0.253
0.966
1.80

—0.151—0.393
0.907
1.85

—0.250—0.523
0.815
1.55

—0.376—0.692
0.617
1.09

—0.499—0.854
0.151
0.624

—0.344—0.567—0.749
0.341

These functions are defined in formula {1A-403) for the case of an unscreened, point nucleus. The quantity D is the ratio of the Mott-exact cross section jfor-
mula (1A-109a) ] to the Rutherford cross section [formula (1A-100)].Values of these functions for various elements, angles, and energies are being prepared by
Dr. J. Coyne at the National Bureau of Standards.

The results for the cross-section formulas that have
been obtained on the basis of the above approximations
are given in Sec. VII. It is important to note that these
results apply to a target nucleus initially at rest.
Electron polarization effects are included in Secs. VI
and VII. Effects due to the polarization of the target
nucleus have not been included (see, for example,
Ref. Sc 59). In addition, all of the formulas require
radiative corrections which must be evaluated accord-
ing to the procedure discussed in Sec. IV.

UI. POLARIZATION EFFECTS

Mott has shown that polarization effects for the
elastic scattering of an unpolarized electron beam can
be predicted only by calculations of higher order than
the first Born approximation (M 49, p. 82). The spin-
dependent cross section can be obtained from the Mott
phase-shift calculations as shown by Mendlowitz and
Case (Me 55) and by Tolhoek (T 56). This cross sec-
tion can be written in the following form which cor-

relates the initial and final spin and momentum vectors
of the electron:

do ((i, (g, n) /dQ=-,'(do/dQ)ipgf1+ (n (i) (n (g)

+Sn ((i+(g) +(I- cos 8—R sin 0) (n x (i) ~ (n x (g)

+ (R cos 0+1.sin 8)n. ((i x (g) j, (6.01)

where n, (i, and (g are unit vectors defined in Sec. II.
This formula is given in further detail in formula

(1A—403), where it is shown that Ldo./dQjypg S I. aiid
R can be expressed in terms of the basic pair of func-
tions Ii and G, or f and g. These functions are defined
in formula (1A—109a) for an unscreened point nucleus
and in formula (1A—109b) for a point or finite nucleus
with screening. Sherman (S 56) has evaluated Ii and
G for an unscreened point nucleus. Values for Ldo/dQjipg,
S, I., and R which are defined in formula (1A—403) are
shown in Table III for different energies, atomic
numbers, and angles. As pointed out by Giirsey (G 57),
it is useful to note the identity S'+I'+R'=1. Other
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FIG. 8. De endence of the polarization function S on the elec-
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»G. 10. Dependence of the electron scattering angle corre-
d t the peak polarization S„(see Figs. 8 and 9) on t e

numbers.electron kinetic energy, for diferent atomic nu

results which show the graphical behavior of 5, I, and
E are given in Figs. 8, 9, 10, 11, and 12.

by Sherman (S 56) on the basis of the early work of
ott ( . 78 in Ref. M 49), and the functions L and E

are key parameters in the determination of the polariza-
tion sensitivity of the cross section. In particular for
the case of elastic scattering of unpolarized electrons,
the degree of polarization of the scattered electron

is e ual to 5 and is in the direction perpendicular
to the scattering plane as shown in Sec. V
of 5 for an unscreened point nucleus are given by
Sherman (S 56) for various angles, energies, and atomic

merically calculated from the definition given in
formula (1A—403), are shown by the curves in Figs.
9, and 10. These data show that as the electron energy
increases, the peak value of 5 occurs at larger scattering
angles and asymptotically approaches a maximum

value. Although the curves in Fig. 8 extend up to 5
MeV, Gluckstern and Lin4 have found that for energies
up to 45 MeV with Z equal to 79 the peak value of 5

h s —0.7 which is consistent with the high-
F 9 Alenergy asymptotic value indicated in ig. . so,

Fig. 9 shows that the peak value for 5 at a given energy
increases with Z, and the results of additional calcu a-
tions reveal that this peak value approaches unity in
the high-energy limit as Z approaches 137.

The values of 5 given in Table III and Figs. 8 and 9
do not include atomic screening or nuclear size correc-
tions. LOther corrections due to inelastic scattering
e6'ects have been found to be negligible by Felsner and
Rose (F 61).j Corrections due to atomic screening
may be expected to appreciably change the values of 5
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FIG. 9. Variation of the peak polarization S~ with electron
ener for different atomic numbers. The values of S„

e iven in Fig. 8 by the peak value of S for a given
are calculated for the other atomic numbers

from the defining equation given in formula

FIG. 11. Dependence of the polarization function R on the
electron scattering ang e or al f r a gold target and for the various

k 'es designated on the curves. The functio,i nelectron kinetic energies esign
n in formulaR, is defined and evaluated from the equation given in o

(1A—403) .

4 R I. Glurkstern and S. R. Lin (in private communication).~ ~



in the region where go&1 as indicated for example by
the calculations of Massey (Ma 41), Bartlett and
Welton (B 41), Mohr (M 43), Mohr and Tassie
(M 54), Ta.ssie (T 57), and I.in (I. 64), and by the
experimental data some of which is summarized by
Frauenfelder and Rossi (see Fig. 11 in Ref. F 63) and

by Mikaelyan et al. (Mi 63). At present, few calcula-
tions are available which indicate the effect on S of
corrections due to the finite nuclear size. These nuclear
size effects may be appreciable for impact parameters
comparable to the nuclear radius. Some results per-
taining to nuclear size effects are given by Kerimov
and Arutyunyan (K 60) and Kresnin and Tishchenko
(Kr 60).

The polarization function 5 is related to the Mott
azimuthal asymmetry parameter, 5, { M 49, Eq. (31)
in Chap. IVj for doubly scattered electrons by the
following equation:

S(tt,) S(tI,) = S(0„0,) (6.02)

For 0~=02=90', Mott finds that in the second Born
approximation

t Z ~'t3'(1-tI')
&137) (2—P ') ' (6.03)

Some theoretical values for 5 which include screening
corrections are given in Refs. 3 41, M 43, and M 54.
Some experimental values for 8 are given in Refs. P 58
and Ne 59.

The spin-dependent cross section, do((i, (q, n)/dQ,
given by Eq. (6.01) is the starting point for predicting
polarization effects. Other useful forms of the cross
section, which are defined in Sec. II, can be derived
from this basic cross section by averaging over the
initial or summing over the final spin states as shown
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by the following equations:

do ((2, n)/dQ

=2{Ldo(4, 4, n)/dQj+L«( —4, (,n)/dQj}, (6o4)

der((g, n)/dQ

= Ldo ((g, (g, n)/dQ)+{ do ((g, —(g, n)/dQ$, (6.05)

=-;{Ld ((„n)/dQ+Ld (—(,n)/dQ]}

=
{ da ((„n)/dQ)+{ do( —(2, n)/dQ).

In these equations, the functional dependence of the
cross sections is explicitly shown only for the three
axial vectors (~, (2, and n.

Electron polarization measurements for this process
involve a partially polarized electron beam which is
described by the polarization vectors P& for the in-

cident beam and P2 for the scattered beani. The magni-
tude of either vector is zero, less than unity, or unity,
respectively, for an unpolarized, a partially polarized,
or a completely polarized beam. This magnitude can
be determined in terms of the spin-dependent cross
sections represented by Eqs. (6.01), (6.04), and (6.05) .
The direction of either vector is speci6ed in terms of
the unit vectors, Il, and 11' or D2.

First consider the polarization vector P~ for the in-

cident electron beam, such that P~= E~(~. This partially
polarized beam can evidently be represented by the
incoherent superposition of an unpolarized and a com-

pletely polarized component with relative intensities

(1—E&) and I'&, respectively. Therefore, if multiple
scattering effects are negligible, the intensity of the
beam scattered in a given direction is given by the
following expressions:

I(n) = C{(1—Pg) (do/dQ) +PgLdo ((„n)/dQj}

I.O

I I
I

I I
I

I
'

I .
)

I I
[

I {
[

{ I

l50.0 MeV
Ol

= C{do (Pg, n)/dQj (6.07)

0.4—
CJ

tL

O 0—
M

O
n- -04—

- I.o
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I80

FIc. 12. Same caption as Fig. 11 except that R is rep1aced by J.

I(—n) = C{(1—~,) («/dQ)+~, {«((„—n)/dQ3}

= CLdo(Pg, —n)/dQj,

where C is the product of (a) the number of incident
electrons per second, (b) the number of target atoms
per cm', and (c) the solid angle subtended from the
center of the target by the detector of the scattered
electrons. It has been shown for example by Kolben-
stvedt and Olsen (K 61) that any spin-sensitive cross
section for fermions is linear in (~, and contains a spin-

independent and a spin-dependent term of the form

A+V (&, as illustrated by the expression in the curly
brackets in Eq. (6.07). Therefore it follows that a
partially polarized incident beam characterized by P&
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follows from Eq. (6.07) that

r —1 2(do/dQ)
Pr=,(6.08)r+ 1 Ldo((„n)/dQ] —tdo((„ —n)/dQ]

'

0.6

0.2

where r is equal to the ratio I(n)/I( —n).
Second, consider the polarization vector P2 for the

scattered electron beam. The magnitude and direction
of this vector is given by the following equation for the
general case where 0&PI&1 such that the incident
beam is partially polarized (0(Pi(1), completely
polarized (Pi=pi ——1), or unpolarized (Pi=0):

0.8

0.6

0.4

0.2

0
0 1.0

P,

FIG. 13. Relationship between the polarization magnitudes P~
and Ps, for different values of the polarization function S )define
in formula (1A—403)g. Parts (a) and (b) show the special cases
where the direction of the polarization vector P~ is perpendicular
and parallel, respectively, to the incident electron momentum.

Ldo(Pi, (s, n)/dQ] —Ldo(Pi, —(s, n)/dQ]
L«(Pi (s n)/d"]+Ldo(Pi, —(s, n)/dQ]

'

(6.09)

where do (Pt, (s, n)/dQ is given by Eq. (6.01) with (&

replaced by Pi, as indicated in Eq. (6.07).
These results are su%.cient to predict the complete

polarization behavior for this process, as shown in the
following Secs. VI A and VI B.This behavior involving
partially polarized beams has been described by other
equivalent methods of calculation based on the density-
matrix method, as shown for example by Mendlowitz
and Case (Me 55), Tolhoek (T 56), Fano (F 57),
Bernardini, Brovetto, and Ferroni (B 58), and Mc-
Master (M 61).

A. Polarization of the Scattered Electron Beam

may be treated in the same way as a completely po-
larized incident beam characterized by (t, provided
that (t is replaced by P&=P&(& in the spin-sensitive
cross sections do. ((t, n)/dQ or do. ((i, (s, n)/dQ. Also it

The polarization of the scattered elet"tron beam for
any incident beam characterized by the polarization
vector Pi is readily obtained from Eq. (6.09). For the
general case where 0&PI&1,

(5+n P )n+ (R sin 8—L cos 0)n ic (n & Pl) + (+ cos ll+ L sin 0) (n + Pi)
P2—

1+5(n.Pi)
(6.10)

This expression is derived for the case where the cross
section do(Pi, (s, n)/dQ, is given by Eq. (6.01) with
(t replaced by Pi and with S, E, and L defined in
formula (1A—403). From Eq. (6.10) it can be shown
that the magnitude of P2 can be expressed simply in
terms of 5 and P~ as follows:

Pss= 1—$(1—Prs) (1—5') ]/(1+n PiS) '. (6.11)

Eq. (6.11) demonstrates the well-known fact that for a
completely polarized beam, the magnitude of the
polarization remains constant in the scattering process.
The relationships in Eq. (6.11) are exhibited in Figs.
13(a) and (b) for the special cases where the direction
of the polarization vector Pr is perpendicular (ni Pi——0)
and parallel (n, .P,= Pi), respectively, to the incident

beam direction. Also from Eq. (6.10) it can be shown
that the angle x2 between the vectors o. and P~ is given
by the following simple equation:

~
P, x n j (1—S') '*Pi sin xi(1—S') '

tan X2= (6 12)5+n Pi 5+Pi cos xt

where XI is the angle between n and P~.
It is useful for polarization measurements to express

P2 in the form of three orthogonal components with
directions given by the unit vectors n, nI, and n~ xn
or Il, D2, and n2 &n, as shown by the coordinate systems
in Fig. 1(b). The following two alternative expressions
are given for the cases that (1) the unit vectors for
the components of P2 and P& are given by n, n&, and
ni xn, and (2) the unit vectors for the components of
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P,= {n(5+P, n)+n, (IP, n, +I|'PI Ln, xn])
+Ln2 xn](LPI. Lnl xn]—~PI ») }/L1+5(n Pl)]

(6.14)

The following special cases are readily derived from
the general case given by Eq. (6.14):

1. Initial beam is completely polarized in the trans-
verse direction such that P» a=1:

P2 ——n. (6.15)

P2 are given by n, n2, and n2 ~ n, and the unit vectors
for the components of P» are given by n, n», and n» xn:
P,= [n(5+PI n)+nl{ (L cos 8—R sin e)P1'111

+ (R cos 0+L sin 8)PI Lnl x n] }+Lnl x n]
)& {(L cos 0—I|'. sin 8)Pl { nz x n]

—(E cos 0+L sin 0)PI nl} ]/L1+5(n. PI)] (6.13)

P2 ——nS+n, L—n, xnR. (6.16)

3. Initial beam is unpolarized such that P»=0:

P2=nS. (6.17)

Finally consider the case of double scattering by this
process. The general expression for the polarization
vector P3 of a beam that has been doubly scattered is
derived from the general expression given by Eq.
(6.14). This derivation is carried out simply by sub-
stltlltlIlg P2 fol' Pl 1I1 Eq. (6.14) with P2 glvc11 by Eq.
(6.14). Then if we introduce the subscript I for the
first scattering such that n =nz ——(n, x n2) /(~ nl x n2 ~),
5= Si, L=Lq, and E.=Ri, and the subscript II for.

the second scattering such that n=nzz= (n2xn2)/
(~ n, xn2 ~), 5= Szz, L= Lzz, and E=Elz, we obtain
the following general result for the polarization of a
doubly scattered beam:

2. Initial beam is completely polarized in the
longitudinal direction such that P» n»= 1,

nzz(SII+A) +n2(LIIB+RIIC) +ns x nzz (LzzC —E„B)
Pg=

1+SIIA
(6.18)

where

il =P2 1111={ nl 'nllQ+n2' Lnz xnzl]t:]/4,

B=P, n2=b/d,

C= P2 ~ Ln2 x nII] —
{
—n2 Lnz x nzz]~+nz'nzz~]/d

with

SI+Pl ' nI )

b= LIPI'nz+EIPI' { nl XIlz],

c= LIPI Lnl xnz] +IPI n1

d=1+SzPI nz.

P2=n2S/(1+S') . (6.19)

B. Polarization Analysis of the Incident Electron
Beam

The polarization P» of an incident electron beam can
be analyzed by this process according to Eq. (6.08).
It is necessary to measure the azimuthal asymmetry of

For the special case in which it is desired to produce
the maximum degree of polarization from an incident
unpolarized beam, P»=0, the geometry for this double
scattering process is arranged so that there is only one
scattering angle and one scattering plane to give the
conditions that S=Si= S»i, R= Ri= Rii, and n=
nz =niz. This maximum polarization, P3, obtained
from Eq. (6.18) is transverse to the scattering plane
and is given as

P, n= (r —1)/L(r+1) 5]. (6.20)

The result given by Eq. (6.20) shows that for the
case of single scattering, the measured asymmetry
ratio r determines only that particular component of
the polarization vector P» which is parallel to the unit
vector n. The vector P» is completely determined only
if all three orthogonal components are known such
that in this coordinate system

1 n(P1 n) +nl( I I) +Lnl ](Pl { I n])

I',= { (PI n)'+(P, n, )'+(P, Lnz xn])']-'*. (6.21)

Tile two tlansvclsc COIIlpollezlts, Pl 11 and Pl { nz xll],
can be determined by measuring the asymmetry ratio
r for two cases in which the scattering planes are or-
thogonal to each other. The longitudinal component
P» n» may be determined by measuring the asymmetry
ratio for a beam that has been doubly scattered. With
the subscript I for the first scattering such that n=ni,
S=Sz, R=Rq, and L=Li, and the subscript II for
the second scattering such that n=nii, S= Si»,
+—+II, L—Ln, and r &II—I(nzz)/I( —nIz), lt fol-

the scattered electron intensity for a given scattering
angle, as specified by the intensity ratio, r =
I(ll)/I( —11), for a given scattering plane. Then with
da. ((I, n/dQ) and do ((I, —n)/dQ determined from Eqs.
(6.05) and (6.01), the following relationship is ob-
tained from Eq. (6.08):
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TAsI.E IV. Classi6cation of cross-section formulas for elastic electron scattering.

Type of calculationa do ((„n)/dzz d~ (g„n) /drx do (Q, (2, n)/dQ

Classical

First Born

Higher order
Born

Exact

UPN Rutherford
(P«&1)
(1A—100)

UPN Mott —Born
(1A—101)

SPN Mott-Born
(1A—102)

UFN Mott —Born
(1A—103)

UFN Rosenbluth
(1A—104)

UPN McKinley-
Feshbach

(1A—105)
UPN Johnson —Weber-

Mullin
(1A-106)

SPN Dalitz
(1A—107)

SFN Gorshkov
(1A-108)

UPN Mott —exact
(1A—109a)

Sf N Mott —exact
(1A-109b)

SPN Mott —exact
(~ «1)
(1A—110)

SPN Moliere —exact
(1A—111)

Second Born
(1A-200)

Johnson-Weber-
Mullin

(1A—201)

Gorshkov
(1A—202)
Mott —exact
(1A-203)

First Born
(1A—400)

Second Born
(1A—300)

Second Born
(1A—401)

Mott-exact
(&A-302)

Mott —exact
(1A-.403)

Johnson —Weber- Johnson —Weber-
Mullin Mullin

(1A-301) (1A—402)

Mott —Born
(1A—500)

Mott —exact
(V~«1)
(1A—501)

UPN=unscreened point nucleus; UFN=unscreened finite nucleus; SPN=screened point nucleus; SF¹screened finite nucleus.

lows from Eq. (6.20) that

Pg'zzxx= (&zx 1)L(&xx+1)Szx] (6 22)

Then with the substitution for P, given by Eq. (6.14),
the general expression for the longitudinal component,
P~ n&, becomes

Px'zzl (~x/+x) Pl' Pzzl x zzx]

(Sx~ Sxxxzz zzxr)P1 ~ llx M —SzSxrzzz nxz
, (6.23)

g~rr g~ii

where M= (rzz —1)/(&xx+1), g=zzm fxzz xnxx]&z This
result shows that the longitudinal component P~.n~ of
the polarization vector P~ can be determined from the
measured asymmetry ratio rii of a doubly scattered
beam, providing the transverse components P~ nI and
Px [zzx xnz] are known.

VII. CROSS-SECTION FORMULAS INCLUDING
POLARIZATION DEPENDENCE

The cross-section formulas for the idealized process
of elastic electron scattering are classified into five main
groups as shown in Table IV. The first four groups
apply to the cross section which is differential with
respect to the electron scattering angles and which is
divided into four subgroups depending on whether
polarized or unpolarized electrons are scattered into a

detection system that is insensitive or sensitive to the
spin states of the scattered electrons. The fifth group
applies to the cross section integrated over electron
scattering angles and summed over electron spin states.
The formulas for a particular cross-section form
(differential or integrated) are classified according to
the type of calculation discussed in Sec. V.

Each cross-section formula is identified by three
symbols. First is a one-digit number (unity in this
case) that refers to the particular process. Second is a
letter which identifies the classification chart (Table IV
in this review) for the formulas. Third is a three-digit
number: the first digit to the left ranges from one to
five to distinguish the following five forms of the cross
section (defined in Sec. II), (1) do/dQ, (2) do ((x, n)/dQ
(3) do((2, n)/dQ, (4) da((x, Q, n)/dQ, and (5) o, and
the remaining two digits list the different formulas ac-
cording to the particular set of approximations for
which the formula is valid. All of these formulas refer
to the laboratory system with the target atom initially
at rest and do not include the radiative correction dis-
cussed in Sec. IV. Also, each formula has a numerical
and a qualitative title which indicates the important
approximations and the names of the principal authors.

The cross-section formulas for do/dQ, which con-
tains the parameters E~, 8, and Z, are grouped from
(1A—100) to (1A—111) as shown by the separate de-
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TAsz, z V. Cross-section formulas for do/dQ.

Type of calculation Formula Principal authors Conditions

Classical
First Born approximation

Second or higher order Born
approximation

Exact

(1A—100)
(1A-101)
(1A-102)

(1A—103)
(1A-104)

(1A—105)
{1A-106)
(1A—107)
(1A-108)
(1A—109)

(1A-110)

(1A-111)

Rutherford
Mott
Mott

Mott
Rosenbluth, Walecka —Prat t

McKinley —Feshbach
Dalitz
Johnson —Weber —Mullin
Gorshkov
Mott

Mott

Moliere

Point charge with p1«1.
Point nucleus, without screening.
Point nucleus, qp«1, with (a) exponen-

tial, (b) Thomas —Fermi and Moliere,
and (c) Hartree-type screening.

Finite nucleus, without screening, p1«1,
Finite nucleus with magnetic moment,

P1=1.
Point nucleus, without screening.
Point nucleus, exponential screening.
Point nucleus, without screening.
Finite nucleus, Thomas —Fermi screening.
Point nucleus (a) without screening, (b)

with arbitrary screening.
Point nucleus with arbitrary screening,

P1«1.
Point nucleus with arbitrary screening,

(qo/2Eo) «1.

tailed chart in Table V. The cross-section formulas for
do ((r, n)/dQ, which involves the parameters Er, 8, Z,
(~, and n, a,re grouped from (1A-200) to (1A—203).
The cross-section formulas for do((s, n)/dQ, which
involves the parameters, Et, 8, Z, (s, and n, are grouped
from (1A—300) to (1A—302). The cross-section formulas

for do((r, (s, n)/dQ, which involves the parameters,
Er, 8, Z, (r, (s, and n, are grouped from (1A—400) to
(1A-403). Finally, the cross-section formulas for o.,
which involves the parameters Ej and Z and which can
be derived only for a screened Coulomb field, are
grouped from (1A—500) to (1A—501).

Formula (1A-100)

[The Rutherford formula: point nucleus with no screening for nonrelativistic electrons. ]

da/dQ =4Z'rp'Err/qp4.

(1) Condotoons of Valodzty

a. Nonrelativistic: p1«1 or nZ/p1)&1.
b. No screening: 0.Z'I'«q0.
c. Point-charge nucleus: Rg«2or/P&.

d. Infinitely heavy nucleus: 2L'q(mo/Mo)«2.

(2) References

R 11, formula (5); J 55, formula (15—8).

Formula (1A-101)

[The Mott-Born formula: point nucleus with no screening. ]

da/dQ = (4Z'rp'Err/qp') $1—qp'/4EP j.

(1) Condottons of Valodhty

a. First Born approximation: nZ/P~&&1

b. No screening: cd'fe«qo.

c. Point-charge nucleus: R~&&2or/Pi.

d. Infinitely heavy nucleus: 2R& mo/~o&&1.

e. Nucleus with negligible spin effects: (qo/Z) o(mo/3Io) «1.

(2) References

M 49, formula (42) p. 80.

(3) Jqotes

This formula applies to relativistic electrons. A comparison
with the nonrelativistic formula (1A—100) shows that electron-
spin effects are given by the term L1—qo'/4R&'g.
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Formula (1A-102)

[The Mott-Born formula with screening for small momentum transfer: point nucleus with (a) exponential,
(h) Thomas-Fermi and Moliere, and (c) Hartree-type screening. ]

do 4Z'rp'Ei', f(qo)
'

dQ qp' 1—Pip

where P(qp) is the so-called atomic form factor divided by the atomic number. Formulas for F(qp) are given
below for the different screening approximations. From Born approximation calculations (M 49, p. 116), the
scattering amplitude f(qp) for a central potential V(r) is given as

(a) Exponential screening:

sin gpr
f(qp) = —2 U(r)r'dr-.

qor

1—F (qp) 1

A. +gp

where

h. = (p/0. 885) (Z"/137) in units of up
—',

with A defined by the exponential potential V(r) = —(Ze'/r) exp (—Ar), and

p 0.72 (B 60)

1.12 or 1.8 (N 59)

2.18 for beryllium (N 59).

LFor light elements, see formula (1A—501) and Ref. M 41. The value of Iti must be determined empirically for
specific cases, as shown by the above examples. ]

(b) Thomas —Fermi and Moliere screening: For the Thomas —Fermi potential, the atomic form factor has been
evaluated for a limited range of qo and Z values by Ibers in Table 3.3.18, p. 210 in Ref. I 62. Other tabulations
are given in Ref. 8 31. The Thomas —Fermi atomic model is expected to break down for small atomic numbers
and for very small or very large qo values. Moliere has given the following analytical approximation for the Thomas—
Fermi potential:

Ze' ' f r &

V(r) = — ga, exp
~

b, —
'&TFJ

'

where a~=0.10, a2=0.55, F3=0.35, b~=6.0, b2=1.20, b3=0.30. The atomic form factor derived from the Moliere
potential (B 57) is given by the following expression:

1—P(qo) + a;
Vo' '=i A'o+qo' '

wh«e A, = (Z~/121) 0; in units of Xo This Moliere approximation has a sharper drop in the electron distribution
at the edge of the atom and is expected to give more accurate results than the Thomas —Fermi model.

(c) Hartree-type screening:

1—I'(Vp) V'f(Vo)

q
2 4Z2] 2
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Tables of F(q()) and of the atomic scattering amplitude, f(qo), for Hartree-type screening have been prepared
by Ibers Lsee Tables 3.3.1A and 3.3.3A(1) in Ref. I 62$ for most of the elements and for smallq() values where
the Hartree-type calculations give the best screening approximation. A summary of the atomic scattering ampli-
tudes f(q()) obtained with Hartree-type screening is shown in Table VI. This table is condensed from Iber s Table
3.3.3A(1) and covers a range of qo values from zero to approximately 0.06 and a range of Z values from 1 to 80.

(I) Cogtditioms of Validity

a. First Born approximation: aZ/ttt«1.
b. Negligible electron-spin effects: tfg/2E, «1.
c. Point-charge nucleus: Rx«2gr/pg.
d. Infinitely heavy nucleus: 2Et(m()/Mo) «1.
e. Nucleus with negligible spin effects: (ifo/Z) 2 (mo/ufo) 2«1.

(Z} References

a. Exponential screening: Ma 52, formula (24};N 59, formula

(13).
b. Thomas —Fermi and Moliere screening: M 49, formula (8)

of Chap. VII, formula (13) of Chap. IX; B 30, formula (18);
M 47, formulas (6.1) r (6.6), and (7.1) (Moliere).

c. Hartree-type screening: M 49, formula (11) of Chap. IX;
M 55, formulas (1.2), (2.2), and (2.3); M 49, formula (9) of

Chap. IX (exact screening for hydrogen and helium).

(3) ftfotes

a. These formulas are not valid for very slow electrons ((1
keV) which have wavelengths and q0 values comparable to the
atomic radius such that diffraction effects are important.

b. These formulas are not valid for large g0 values for which

the Born approximation breaks down and electron-spin effects
become important.

c. For multiple scattering calculations, the Moliere "screening
angle" e() Ldiscussed by Bethe (B 53)) is given by the following

expression:

eg ——$1.13+3.76(Z/137Pt) gg/(EtRrp)'.

Reference N 59 indicates that a more accurate screening angle is
obtained from the Dalitz calculations (see formula (1A—107)j.

d. These formulas are further developed and analyzed at small

scattering angles for applications to electron microscopy by Lenz
(I 54) and by Burge and Smith (B 62).

e. Some experimental results for the elastic cross section in

the region of small q0 are given in Ref. B 60.
f. Some numerical estimates of the first Born cross section for

Thomas —Fermi and Hartree-type screening is given by Tietz
(T 59).

g. An excellent review of the cross-section formulas that are
applicable to small-angle scattering is given by Scott (Sc 63).

h. A comparison of experimental cross sections with theoretical
cross sections obtained from formula (1A—102b) and from exact
phase-shift calculations including Hartree screening is given in
Ref. Mo 63 for a gold target and for g0 values in the region of 0.2.
This comparison indicates the limitations of formula (1A-102b)
for electron energies less than 100 keV,

i. Analytical expressions which approximate the Thomas—
Fermi and Hartree —Fock screening potentials of various atoms
are given by Bonham and Strand (B 63) and by Hyatt (By 56).

Formula (1A-103)

[The Mott-Born formula for large momentum transfer: finite nucleus with recoil and with no atomic
screening. ]

d(r 4Z2yo2g12 E1 qo2/4&12]
Gs'(Q),

dQ q()' $1+(tttp/M()) (q()'/2E1) j

where Gtt (Q) is defined as the nuclea, r form factor such that

Ge(Q)
=
fo(r) erp (iO r) sr= t for point charge nucieua or for Q= 0,

v-= nuclear volume,

Ze p(r) =nuclear charge density distribution, with normalization such that

p(r) d'r=1.

The evaluation of Gs (Q) for a given nucleus depends on the nuclear charge distribution p(r). At present there

is no single analytical expression of a nuclear model that applies to all nuclei, and it is necessary to try to fit the
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experimental data for a given nucleus with a particular model. This procedure is highly specialized and is discussed
in great detail by Hofstadter (H 56) and (H 57), and by Herman and Hofstadter (H 60), who give extensive
tables of different nuclear models and the corresponding nuclear form factors.

The most accurate estimates of the cross section can be made by referring to the available da, ta (H 60) for
each nucleus. Very rough estimates of the cross section can be obtained by assuming that the nucleus is a uniformly
charged sphere with radius R~ such that

Eg 0.5143&rp,

p.= (Z/A) X0.080 proton charges per F', (H 56)

where 1 F =1&10 " cm. Then for spherical symmetry

~p cc

G.(Q) = ' '- (Q ) d'

This assumption of a spherical nucleus introduces inaccuracies in the cross sections calculated by the above for-
mula that are probably comparable to the inaccuracies introduced by the Born approximation. Tables of the
form factor Gz(Q) for such a uniformly charged nucleus are also presented in Ref. H 60. Values of Gtr'(Q) for
typical charge distributions are given in Fig. 3 of Ref. I 56.

H 60, formula (2).
(Z) EefererI, ces

(t) Conditions oj' Validity

a. First Born approximation: aZ/p1«1.
b. No atomic screening: oZ'I'«g0.

c. Nucleus with negligible spin effects: (qo/Z) '('l&sp/ill p) ((1.

(3) Eotos

This formula is most accurate for light elements and interme-
diate angles. For medium and heavy nuclei, the Born approxima-
tion is inadequate, particularly in certain regions of momentum
transfer where diffraction eifects occur (see H 60). Nuclear size
effects become more important with increasing values of T1 and
q(I. Examples of this behavior for gold and carbon are given in
Figs. 1, 2, and 4 in Ref. H 60.

Formula (1A-104)

[The Rosenbluth and Walecka-Pratt formulas: Rnite nucleus with magnetic moment for
extreme-relativistic electrons. ]

(a) The Rosenbluth formula: finite proton or neutron with recoil for extreme-relativistic electrons.

do 4ro'Et' cos' (fl/2) /Q ssto )s
dfl q

4 L1+ (ssto/Mo) (qo'/2E )j 8M J

or, as given by Sachs and his collaborators (E 60, S 62)

do. 4m 0'Ez' cos '(8/2) Gs'+ (Q/2) '(sits/Mo) 'Gsr-'

dQ qo' L1+ (ssto/Mo) (qo'/2E )j 1+(Q/2) '(rND/Mo) '

where Gs= Fr—L(Q/2) (srto/Mo)g'EFs= charge form factor; Gsr ——F,+EFs= magnetic form factor; Fi= form
factor for the Dirac structure of the proton or neutron; I"2= form factor for the Pauli structure of the proton or
neutron LNote: The form factors Fi and Fs are functions of Q', and experimental values are given in Refs. H 6()
(Figs. 7 and 8) and Bu 61 for a proton, and Ref. H 60 (Figs. 19 and 20) for a neutron. For a point proton, F,=
Fs= 1, and for a point neutron Fi 0, Fs 1.A rece——nt summar—y—concerning these form factors is given in Ref. H 63j
Mo= Rest energy of proton (938.211 MeV) or neutron (939.505 MeV); IC= the anomalous (Pauli) magnetic
moment of the proton with E= 4.79270, or of the neutron vntb E== —1.913348.
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(b) The Walecka-Prat t formula: 6nite nucleus with magnetic moment neglecting recoil for extreme-relativistic
electrons.

do 4Z'ro 1+1Gsts(Q trto l'
cos' (ll/2) Gtt'+

~

—
) [1+2 tan' (8/2) j

dO qo4 BJ Z' &2 Mp&

where the spin and magnetic moment of the nucleus are given by 1' and E, respectively, and Got E fo——r Q 0.

(I) Corsdstiorss of Valldtty

a. First Born approximation: nZ/Pq«1.
b. No atomic screening: aZ'"«g0.
c. Extreme-relativistic energies: p1 =1.

(Z) Referertces

a. Rosenbluth formula: R 50, formula (1); Y 57, formula
(2.14); H 60, formula (29), (33), (37), and (38).

b. Walecka-Pratt formula: W 62 and 6 64, formulas (9) and
(10).

(3) Notes

a. The Rosenbluth formula is derived in the one-photon ex-
change approximation and includes relativistic efFects introduced
both by the incident electron and the target proton or neutron.
The inclusion of the proton's spin in the calculations has the
efFect of increasing the cross section as the scattering angle (or
momentum transfer) increases, in distinction to the case of a
particle with zero spin (see Figs. 5, 6, and 7 in H 57).

Early interpretations of the form factors, P1 and Ii2, in terms
of the charge and magnetic form factors, Gz and G~, are given by
Ernst, Sachs, and Wali (E 60) and by Sachs (S 62). The ad-
vantages of using the formula containing G~ and G,~ are pointed
out by Hand et cl. in Ref. H 63.

b. Examples of the dependence of the cross section predicted
by the Rosenbluth formula on Q for difFerent values of E& are
shown in Figs. 7, 8, 19, 20, 27-31 in Ref. H 60.

c. Radiative effects are important for electron-proton scat-
tering and estimates of the radiative correction for this case have
been given by Tsai (T 61) and by Meister and Yennie (M 63).

d. Magnetic scattering efFects were first estimated by Jauch
(J 40) for the case of a point nucleus with a magnetic moment
and arbitrary Z compared to the case of a finite nucleus given by
the Walecka —Prat t formula.

e. An example of experimental investigations of magnetic
scattering pertaining to the Walecka-Pratt formula for arbitrary
Z is given by the results of Goldemberg and Torizuka (G 63).

Formula (1A-105)

[The McKinley-Feshbach formula: point nucleus with no screening. ]

i+
do 4Z'ro'Et' / qo l' srctZqot qo )
dQ qo' &2Erj 2E& 5 2Pt&

(I) Comdt'tsoas of Valtdjty

a. Second Born approximation: (aZ/P&)'«1.

b. No screening: ~Z 3«q0.

c. Point-charge nucleus: Rg«2'. /p1.

d. In6nitely heavy nucleus: 2E& (mp/Mp) «1.
e. Nucleus with negligible spin effects: (gp/Z)s(mp/M'p)P«1.

M 48, formula, {7).
(Z) Referertces

(3} Notes

a. This formula differs from the Mott-Born formula (1A—101)
in that it permits a wider range of Z values. A comparison of the
cross sections predicted by the two formulas is shown by the
curves in Figs. 19—22.

b. See Note d in the Dalitz formula (1A—107).

Formula (1A-106)

[The Johnson-Weber-Mullin formula: point nucleus with no screening. ]

do/d fi (4ZsyosEls/qpe) Ip,

where

Is= 1.—Ptsxs+srcrZPrx(1 —x) +(aZ) ox{ Le(1-xs) —4Q(1—x) +2x ln'x+n'(1 —x)/2+srsx/6+Pox

XLIs(1—x') +(x' ln'x) /(1 —x') +n (1—x) /4(1+x) —m'/61 I
.

I.s(x) = Euler's dilogarithm (Mi 49), Sec. X, x= sin s'g.
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(1) Conditions of Vanity
a. Higher order Born approximation: (aZ/Pi) ~(&1.
b. No screening: nZ'13&&q0.

c. Point-charge nucleus: Rx«2x/pi.
d. Infinitely heavy nucleus: 2Li (m p/Me) «1.
e. Nucleus with negligible spin effects: (go/Z) (mo/l%) (&1.

(2) References

J 61, formulas (20a) and (26).

(3) bootes

a. A comparison of the cross sections obtained with this formula
and with the Mott —exact formula (1A—109a) for different values
of E1, Z, and 8, is shown in Fig. 1 of Ref. J 61.

b. Mitter and Urban (M 53) derived this cross section in the
third Born approximation. Their formula is given in integral
form and does not give the same results as the Johnson —Weber-
Mullin formula, which are con6rmed by the work of Rosen
(R 63).

c. It may be expected that future higher order calculations
will provide cross-section formulas that have a greater range of
validity and are more accurate than formula (1A—106). For
example, a recent calculation by Rosen (R 63) gives a cross-section
formula correct to fifth order in o.Z/t3i (fourth-order Born ap-
proximation). The third-order Born terms in Rosen s calculations
can be shown to be identical to those given by the Johnson, Weber,
and Mullin formula (1A—106). Rosen's fourth-order Born terms
involve the same functions as appear in the third-order terms,
namely, Euler's dilogarithm Lo(X) discussed in Sec. X. However,
Born terms higher than the fourth order would involve compli-
cated untabulated functions, and the usefulness of these functions
depends on both the effort required to evaluate the cross section
and the accuracy desired. These criteria must be used as the basis
of comparison with the Mott-exact phase-shift calculations
given in formula (1A—109), which can be evaluated by numerical
methods with a computer. Such a comparison is particularly im-

portant when the calculations include corrections for atomic
screening and for the 6nite nuclear size.

Formula (IA-10'7)

[The Dalitz formula: point nucleus with exponential screening. ]

do 4Z'rp'EP / qe' qe' qes t' qe'l, qe , (2pi
(

1— +crz
(

—
[

tan ' ——sill (8/2) tail ']-
q04 l, 4E12 qe2+A 2

qe 2+A 2EE1)

+(As+4EP —
q s/2) tan-i

~

~P' i(Aqo)

where

V—[P sq &yA'(As+ 4PP) j'*

A= (ts/0. 885) (Z'/137) in units of )ie with A defined by the exponential potential

V(r) =—(Ze'/r) exp (—Ar)

0.72 (8 60)

1.12, 1.8 (N 59)

~2.18 for beryllium (N 59) [See formula (1A—500) and Ref. M 41 for other light elements. ]

(I) Cond~t~ons of Validity

a. Second Born approximation: (aZ/tti)'«1.
b. Exponential screening potential: See values of screening

parameter A given with formula (1A—107).
c. Point-charge nucleus: Rx«2ir/Pi.
d. Infinitely heavy nucleus: 2Zi(me/Mp) «1.
e. Nucleus with negligible spin effects: (ge/Z)'(me/Me)'«1.

(c) References

D 51, formula (2.5) p. 514; N 59, formula (40).

(3) Notes

a This formula reduces to formula (1A—105) in the limiting
case of A 0 (no screening).

b. Multiple scattering calculations are based on a screening
angle discussed by Bethe (B 53). The screening angle Oe which
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is derived from the Dalitz formula is given by the following

expression (N 59):
ap'= (p/P~l~TP) '9+ (4~/137) (PIP~&») l L (1—A') /t4 j

X In (p/PiRTF)+(0 231/Pi)+1.448P, )g.

c. The accuracy of the cross sections predicted by the Dalitz
formula is subject to the limitations of the second Born approxima-

tion and the simple exponential screening approximation. A com-

parison of the Dalitz cross section with the cross section predicted
from formula (1A—109b) with Hartree-type screening is given
in Table XII.

d. An excellent discussion of many of the higher order Born
approximation calculations for the scattering cross section is given

by Dalitz (D 51).

Formula (1A-108)
4

IThe Gorshkov formula: (a) point nucleus with Moliere screening and (b) finite nucleus with no screening. ]

(a) Formula for point nucleus with Moliere screening valid for small momentum transfer:

do 4Z'ro'EP / qo', qo . 0 ",/2Pt
~

1—,Aro+nZAr —sin—— Qa, tan ' ~—
dQ qo 5 4EP Ei 2

where

qo+Q Pa,a, tan-' + sin —~(AP+4EP —qp'/2) Wt/V&
A, +A; 2j

cR

g
2

A, =1—F(qo) = ga, ,;=i qo'+A's '

aIld

8"g= tan '

I (q 2+A,2+A 2) 2 4A .2A 2 cos2 (1g) I,

2pt Vi(A;+A;)
qo'(4pP —A,h.;)+ (h.,+A;) '(4pP+A, A;)

With Molierescreening, A, = (Z&/121)b, in units of)ip, at=0.10 Go=055 $,=0.35 br=6.0, bp=12, b 0p. 30.

(b) Formula for finite nucleus with no screening valid for large momentum transfer:

do' 4Z fo EP f x() ) ( 'A

1— A '+rrZAs ——sin (zr8) dX ()'+SEtp q') tan '~—
dQ qo' ( 4EP Et '

o qo'+X' &2pt

CO oo co
, Qt+)s . , (, , qo'

+2 d&x(&) t» ' —~+ d) r de(4)x() o) —t»-'
~

+»n (-', fl)
~
&P+4EP——Ws/Vs

0 qo) 0
I

qo

where

V' —
{(q P+g 2+/ 2) 4g 2$ o cos2 (10) }i

2pi Vs (Xi+ho)

qp (4pl ~1~2) + (~1+4) (4pP+4~2)

The nuclear charge density p(r) is related to the function x(X) by the equation

1
rp(r) =-— dhx(X))' exp ( —) r) .

ix'
o
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The normalization,

p(r) d'r=1,

gives

dhx X =1.
0

(1) Co(((tptpons of Vat(dity

a. Higher order Born approximation: ((pZ/tt() P«1.
b. Infinitely heavy nucleus: 2E(((((p/3IIp) «1.
c. Thomas —Fermi screening and nucleus with negligible spin

effects: (gp/Z) P ((((p/M p) P«1.

(Z) Refere(sees

Formulas (1A—108a) and (1A—108b) were derived from
Gorshkov's work given in Refs. 6 61 and 0 62.

(3) Notes

a. In the region (Z'"/121)«gp«Re ', formulas (1A—108a)
and (1A—108b) become identical to the McKinley —Feshbach

formula (1A—105).Therefore, for(nulas (1A—108a) and (1A—108b)
together give the cross section for all values of q0 in the second-
order Born approximation.

b. If only one exponential potential is inserted in formula
(1A—108a), i.e. a(——1, as=op ——0, or V —(Zes/r) exP ( Ar)—,
then the formula reduces to the Dalits formula (1A—107) with
Ag= A.

c. Other formulas for the cross section which are derived with
second or higher order Born approximations for a finite nucleus
are given by Lewis (L 56) in integral form for different models
of the nuclear charge distribution, and by Schiff (Sc 55). Such
calculations are also discussed by Nagel (N 60).

Formula (1A-109)

[The Mott-exact "yhase-shift" formula: (a) yoint nucleus with no screening and (b) yoint or finite nucleus
with arbitrary screening. ]

Ol

do/dQ= (rp/nPt)'(I F' I' csc'-'8+
I

G I' sec'-'8)

da/«= If I'+ Ig I'

where f=rp/np&(G F'), g=re/n—p&(F' cot —',8+G tan s8), F'=inZF/p, .

(a) Point nucleus with no screening:

do 4Z're'Ets qo', I
G I-'qp' 4Z'rp'Ets

(lp Et pl (nZ) Et (4pl (le ) (((0

where P is the cross-section ratio of the Mott —exact formula (1A—109a) to the Rutherford formula (1A—100).
This ratio is evaluated in Refs. D 56 and S 56 as a function of the parameters E&, Z, and 8, as shown by Table
VII which is taken from the work of Doggett and Spencer in Ref. D 56.

Also in the above equation: F=Fo+Ft, and G=Go+Gt,
ir (1—inZ/Pt)Fp

——expfinZ/Pt ln sin' s8),2P 1+inZ Pt

F( ,'igflD(+——(I+—1)D(+(]( 1) 'P((cos 8)—,
L=O

Gp ———inZ/PtLcot' -', 8]Fp,

G&=-,'i+DsD( —(1+1)'D(+()(—1) 'P((cos 8),
l=O

exp (=i~i) r(l —inz/P, ) exp ( i~p() I'(p( inz/P, ')——
(I+inZ/P() P(l+inZ/Pg) p(+t'n2/P( F (p(+inZ/P, )'.

p(= k~' (nZ)'j', -—aIly ill tegel')

I'( )=t(ganuna function of argument. t(,

P( Legendre polynomial of or—d—er l.
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Note: For small angles, the following approximate expression for the above formula is obtained from the work
of Bartlett and Watson (B 39):

do. 4Z'rssEis w ZPi1+— cos'y(1 —cosft)*
dQ qs' V2 137

whel e

P (-,' —inZ/Pi) I'(1+inZ/Pi)
exp (in) =

I'(-', +inZ/Pi) I'(1—inZ/Pi)

This approximation is introduced to evaluate the Mott —exact formula at small angles because an excessive number
of phase-shift terms are required. Although this formula is not valid at small angles because it does not include
screening effects, it is useful for studies of the screening correction. The ratio of this formula to the Rutherford
formula (1A—100) approa, ches unity as the electron scattering angle approaches zero.

(b) Point or finite nucleus with arbitrary screening:

where

(go/dQ =
f f [s + [ g [s

$371Qf= . Q[(I+1)Iexp (2irtt) —1I+lIexp (2irt i .i) —1}]Pi(cosft),
1

13710
g= . QIexp (2irt t i) —exp (2irtt) I Pi'(costi).

2t

The phase shift stt is defined by the expression, sin (pir ——,is+st i), which vanishes at the origin and is obtained
from the asymptotic solution of the following differential equation

Jsg,/ciy'+ {Pis+ P (1+1)/r'$ U i}G—i=0.

Similarly rt t i is the phase shift given in the above asymptotic solution, with I replaced by —(I+1).The effect
of the nuclear and/or the atomic charge structure is contained in the effective Dirac potentia. l Ui which is given as

(I+1) D' 3 D" 1 D"
r D 4D' 2D'

where D= E —V+1, D'=dD/dr, D"=O'D/dr', I= any integer, and V= spherically symmetric potential arising
from the charge structure of the nucleus and/or the atom.

(1) Conditions of Validity

a. Point-charge nucleus: R~&&2n/Pr.
b. In6nitely heavy nucleus: 2E& (nip/Mp) «1.
c. Nucleus with negligible spin effects: (qp/Z) (nip/Mp) «1.
d. No screening for formula (1A—109a):nZ"'«qe.

(Z) References

a. No screening: M 49, formula (41), p. 80; S 56, formula (1).
b. Arbitrary screening: M 54, formulas (t) and (2); M 49, p.

74-76.

(.&) moths

a. These formulas must be evaluated for a particular case by
numerical methods. For an unscreened point nucleus, some cross-
section values obtained from formula {1A—109a) are given in

Tables III and VI, which are obtained from the results of Sher-

man (S 56) and of Doggett and Spencer (D 56). For a point

nucleus with particular screening potentials in formula (1A-109b),
cross-section data for various values of TI, Z, and 8 are given in
Refs. 3 41 (Table IV), M 43 (Fig. 1), M 54 (Fig. 21), L 63,
L64, and Table XII in Sec. VIII. Calculations pertaining to
formula (1A—109b) by Lin, Sherman, and Percus (L 63, L 64)
show good agreement with experimental results (Mo 63). Other
results for the f and g functions in formula (1A—109b) are given
in tabulated form for atomic numbers from one to ten by Bhalla
(B 64).

b. It is important to note that formu}a (1A—109b) can include
the charge-structure effect of the nucleus and the atom, providing
this structure is assumed to be spherically symmetric.

c. An approximate expression for the Mott-exact fornlula in

terms of a single power series with given coeKcients is obtained
in Ref. C 55.

d. Estimates of the nuclear size correction based on the Mott—
exact formula (1A—109b) are given in Rqfs. E 50, P 50, V 54,
and F 54,
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e. An approximate expression of the cross section for small-

angle scattering by a pure Coulomb Geld and by a finite nucleus is
given by Drell and Pratt (D 62).

f. Various experimental results have been compared with the
predictions of the Mott —exact formula. These comparisons have

shown agreement as well some inconsistencies and discrepancies.
A partial summary of these results is given in Table VIII.

g. Calculations based on formula (1A—109) are given in Refs.
F 58 and R 58 for muon scattering from a finite nucleus and in
Ref. D 56 for positron scattering from a point nucleus.

Formula (lA-110)

[The nonrelativistic Mott-exact "phase-shift" formula: point nucleus with arbitrary screening for
nonrelativistic electrons. ]

do 137rp
~ g (2l+1) Lexp (2irf i) —1]Pi(cos 0) j',

df) 2pi t=.()

where Pt(cos 8) is the /th Legeiidre coefficient (Ref. W 27, p. 302); sf i is the phase shift which depends on Pi and
the scattering potential V (r) .

In general, g~ is not explicitly defined by a single, closed, analytical formula, and it must be evaluated for a
given element [or potential V(r) ) by numerical integration. Except for a pure Coulomb potential, the contribu-
tion of all terms except the first (l=0) is negligible as Pt approaches zero, and because Ps is equal to unity, the
angular distribution becoines isotropic. As Pi increases, higher l values are introduced and the angular distribution
becomes more complicated.

(a) Exact expression for the phase shift: The phase shift sf i is defined exactly in the expression

G~ sill (Pif shr+rfi)1

where G is the asymptotic solution of the differential equation:

where V(r) is the atomic scattering potential.
(b) Approximate expression for small phase shift ((0.1 radian): For the atomic potential, V(r) «l(l+1)/2r

with Pir I l (3+1) I'*,

V(r) LJi+s(pir)]'r dr,

where J is a Bessel function (Ref. W 27, p. 355) .
(c) Approximate expression for large phase shift:

(f+l)' "
Pie —2V(r) — dr

r2 1'2

(l+s)' 'd
1 dr,

r2

where V (r) is the atomic potential and where ri and rs are the zeros of the respective integrands. This formula
may be used with good accuracy for phases as low as 0.2 rad. A discussion of this formula is given in Ref. L 37.

(1) Conditions of Validity

a. Nonrelativistic electrons: pi«1.
b. Point-charge nucleus: E~&&2~/P1.

c. In6nitely heavy nucleus: 2Ei(ma/Ale) «1.
(2) References

M 49: Chap. II, formulas (17), (19), and (27); Chap. VII,
formulas (12) and (30).

(3) Notes

a. Because the dominant terms in the series are such that
ni=-', n., the cross section for a given Tr (with P&«1) has the ap-
proximate form do/du~{Pi(cosa) }'.This behavior shows maxi-
rnum and minimum values {diffraction eGects) in the angular
distribution of the electrons.

b. For a given Z and for 8=-0, the value of do-/dQ is independent
Of T1.
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c. For a given Z and 2'~, do/d0 decreases as 8 becomes larger.
The rate of decrease in do/dn becomes larger as Ti becomes larger.

d. The value of do/dQ approaches a constant value as 8-+0.
This condition occurs because the phase shifts g~ become smaller
as tYW decreases (larger impact parameter) and although a larger
number of l values are required, there is a maximum number

l~,x beyond which the contribution of t'he remaining terms
become negligible.

e. Various estimates of this cross section for specific values of
T1, 8, and Z with diRerent screening approximations and in some

cases with the inclusion of exchange and polarization eRects, are
discussed in Chap. X of Ref. M 49 and Chap. III of Ref. M 52.
Recent improved calculations are given by Karle and Bonham

(K 64).
f. For e=0, do/dQ has a finite value because of screening effects.

g. For electron Coulomb scattering from the hydrogen atom,
do/dQ is evaluated in the energy region from 3 to 14 eV in Ref.
T 61. Other pertinent results for scattering by hydrogen are given
for example in Refs. Gi 61, R 60, and are summarized in the com-

prehensive review by Burke and Smith (Bu 62) .

Formula (1A-111)

[The Moliere-exact formula with screening for small momentum transfer: point nucleus with arbitrary
screening. ]

—= (137rp) 'Eis8r
dQ

GO 2'
p dp Jp(pgp) exp —— V (r) ds —1

Pi p

where p and s are the components of r perpendicular and parallel, respectively, to the incident electron momentum
such that r is equal to (p'+s') &, Jp(pqp) is the zero-order Bessel function, and V(r) is the scattering potential.

(I) Conditions of Validity

Small momentum transfer and negligible electron-spin ef-
fects: (qp/2E&) «1.

(2) References

M 4/, formula (4.6'); 0 57, formula (9.2) .

(3) Notes

This formula which is derived from the Klein —Gordon equation
for a spinless particle, reduces to the Rutherford formula for the
case of no screening.

Formula (1A-200)

[The "second. born" formula: point nucleus with no screening. ]

do.((„n)/dQ= [do/dQjippL1+ Sn (i],

where [do/dQfms= (4Z fp Ei'/qpe)Is= formula (1A—105) with Is aud IsS defined in formula (1A—401).

(1) Conditions of Validity

Same conditions as given in formula (1A-401},

(2) References

Equation (6.05) and formula (1A—401).

(3) Notes

See Note (c) in formula (1A—106).
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Formula (1A-201)

[The Johnson-Weber-Mullin formula: point nucleus with no screening. ]

where [do/dQjtpp= (4Z'rp'Ets/qp')Ip ——formula (1A—106) with Is and IsS de6ned in formula (1A—402).

(1) Coadktsosts of Vohdity

Same conditions as given in formula (1A—402) .

(o) Referestces

Equation (6.05) and formula (1A-402).

(3) Notes

Same notes as given in formula (1A-402) .

Formula (1A-202)

[The Gorshkov formula: (a) point nucleus with Moliere screening and (b) fmite nucleus with no screening. ]

(a) Formula for point nucleus with Moliere screening valid for small momentum transfer:

do((t, r1)/dfl= [.d~/dfljtps. L1+Sn (tj,

with

Ld&/dflflpss= (4Z'rpsErs//q&') I = formula (1A—108a),

I = 1— A~' O,ZA~——ssn —'8 a tan '$p p gp . r r
( pl)

4Ers Er;=t k &;j
3

+Q Qa,a; tan-'
~

+ sin ', 9(AP+4Ets ', qp') W—r/Vt-—
&A,+A,

1 ' A,SI.= —nZ tan (vrtt) sin' (-', 8) Ar—Qa, ln +-', Q Qa, a;(qp'+2A ) It/Vr
El i 1A~ +=4pl t 1 j=l

where

i3

g
2

a; '+A' '

V', = {(q,'+A,s+A,s)' —4A,sA, s cos' (-,'-8) I',

gg= tan ' 2ptVt(A~+A;)
qps(4Pts —A,A, ) + (A,+At)'(4Pts+A;A, )

A 2A g(A.+A .)2+P 2(q 2+ (A+A .) 2+ Us) 2

,2A .2(A+A .) 2+P 2(g 2+ (A .+A .) 2 Vt) &

With Moliere screening, A, = (Z&/121) b' in units of ~o,' ttt=0. 10~ ~s=0.55~ ap ——0.35, b&=6.0, bs 1.2, bs 0 30———— .
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(b) Formula for finite nucleus with no screening valid for large momentum transfer:

vugh ere

do.((„n)/dQ= Ld(r/dQjipsbL1+Sn (i$,

I d(rldQ]ipsb = (4Z «~Eis/qps) Ip for——mula (1A—10gb)

qo' l qo . , " X(k) , f) 'I
)gss+csZAs —s—in (sr8) d)), ,(&'+&EP—qo') t» ' 1+2 d"X(") t» '

~

4Ei9 Ei ', qp'+X' 2Pii kqoi

co co )) i+) s'l

+ dX) dXsx(X~) x()s) —tan ' ~+ sin —,'8(Xi'+4Ei' —qo'/2) W,/Vs
0 0 qo

oo
q 2+$2

SIP= —(rZ tan sr8 sin' (rs8) As(1/Ei) 2 ln (sin ~r8) —2 dXX(X) ln
X2pi

+i d4 d4X(X&)X(kg) (q'+2K') La/VI j
where

TV~= tan

X'x(X) d)
Ag ——

qo'+X'

Vs——[ (qp'+its+). ss) —4Xis),ss cos' (-,'8) }1,

2plV2(tu+) 2)

qp'(4pi' —XiXs) + (At+As) '(4pP+XtXs)

XisXss (Xi+As) '+Pis[.qp'+ (Xi+As) '+Vsj'12= 1n
)'1 )'2 (~1+~2) +pl [ qp +(kl+~2) Vs]

The nuclear charge density, p(r), is related to the function x(X), by the equation

rp (r) =—d)')((X) X' exp (—)) r) .
4x

(I) Cosdstsons of Volsdsty

a. Higher order Born approximation (nZ/Pr)'«1.

b. In6nitely heavy nucleus: 2E&(mo/Mo) «1.
c. Thomas-Fermi screening and nucleus with negligible spin

effects: (qo/Z) s (mo/Mo) '«1.

(2) References

Formulas (a) and (b) were derived from Gorshkov's work given

in Refs. G 61 and G 62.

(3) Votes

Formulas (1A—202a) and (1A—202b) together give the cross

section for all values of qo in the second Born approximation.

Formula (IA-203)

[The Mott-exact "phase-shifti' formula: (a) point nucleus with no screening and (b) point or finite nucleus
with arbitrary screening. ]

do ((i, n)/dQ= Ldo/dQ)ippL1+Sn |'i],

where n and (t are unit vectors defined in Sec. II.
Ldo/dQjrop= (137«/Pt)'(I F' I' csc' 48+ I

G I' sec' -'8) =
I f I'+ I g Is= formula (1A-109),

F'= icrZF/pi,

S= ( 2i csc 8) (—F'G*—GF'*)/(
f

F'
[

csc' s8+ } G }'sec' —,'8) =i ( fg* gf*)/(}f }'+ } g
—I').
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(a) Point nucleus with no screening: For this case, the basic pair of functions P and G which are used in the
above equations, are defined in formula (1A—109a).

For an unscreened, point nucleus, values of [do/dQ]ypg and S for various energies, atomic numbers, and angles
are given in Tables DI and VII and Figs. 8 and 9.

(b) Point or finite nucleus with arbitrary screening: For this case, the basic pair of functions f and g, which
are used in the above equations, are defined in formula (1A—109b) .

For a point nucleus with Hartree screening, values of Ldo/dQ]happ are given in Table XII. Results for a finite
nucleus are noted in formula (1A—109).

(I) Conditions of Vatidhty

a. Infinitely heavy nucleus: 2Rr(mp/Mp) «1.
b. Nucleus with negligible spin eRects: (qp/Z)'(pnp/MP«1.

c. For point-charge nucleus: Rg«2~/pl.
d. For no screening: cxZ'f3«g0.

{c) References

Equation (6.05) in Sec. VI and formula (1A—403).

(3) litotes

Recent results pertaining to cases (a) and (b) are given in
formula (1A—109).

Formula (lA-300)

[The "second Born" formula: point nucleus with no screening. ]

do ((x, n) /dQ= —,'Ldo/dQ]MsL1+ Sn (p],

where

Ldo/dQ]ipp= (4Z rp &i /qp )Is= formula (1A—105)

with Is and Iss defined in formula (1A—401) .

{I) Condptions of Vatidhty

Same conditions as mizzen in formula (1A—401)

(Z} Rejereeces

Equation (6.04} in Sec. VI and formula (1A—401).

(3) Notes

See Note (c) in formula (1A—106).

Formula (1A-301)

[The Johnson —Weber-Mullin formula: point nucleus with no screening. ]

do. ((p, n)/dQ= —',-[ do/dQ]mpL1+ Sn. (p].

where

[ dpr/dQ]rpp= (4Z'rp'I''P/qp') Ip= formula (1A—106)

with Ip and Ips defined in formula (1A—402) .
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(f) Coaditioas of Uolidity

Same conditions as given in formula (1A-402).

(Z) Referelces

Equation (6.04) in Sec. VI and formula (1A—402).

(3) /Votes

Same notes as given in formula (1A—402).

Formula (1A-302)

[The Mott-exact "phase-shift" formula: (a) point nucleus with no screening and (b) point or finite nucleus
with arbitrary screening. ]

do ((,, n)/dQ=—-,'I do/dQ]me[ 1+Sn (s],

where n and (2 are unit vectors defined in Sec. II,

I «/dQ]Ms= («/~Pi)'(I J' I'csc'-'&+
I

G I'sec'-'» = If I'+
I g I' = «iinula (1A-109),

P'= t',crZF/Pi,

S= (—2t csc» (F'G' —GF'*)/(I I" I' csc'-'ll+
I

G I' sec' 'fl) =s(fa* -gf*)/(I f I—i+
I a I')

(a) Point nucleus with no screening: For this case, the basic pair of functions P and G, which are used in the
above equations, are defined in formula (1A—109a).

For an unscreened point nucleus, values of I do/dQ]ips and S for various energies, atomic numbers, and angles
are given in Tables III and VII, and Figs. 8 and 9.

(b) Point or finite nucleus with arbitrary screening: For this case, the basic pair of functions f and g, which
are used in the above equations, are defined in formula (1A—109b).

For a point nucleus with Hartree screening, values of Ldo/dQ]sos are given in Table XII. Results for a finite
nucleus are noted in formula (1A—109).

(f) Comditions of Ualidity

a. Infinitely heavy nucleus: 2E& (sao/18 o) «1.
b. Nucleus with negligible spin effects: (gp/Z) s(oip/i)4 p) s«1.
c. For point-charge nucleus: Ra«2sr/Pi.
a. ror no screening: nZ' «gp,

(Z) References

Ectuation (6.04) in Sec. VI and formula (1A—403).

(3) Pates

Recent results pertaining to cases (a) and (b) are given in
formula (1A-109).

Formula (1A-400)

[The "first Born" formula: point nucleus with no screening. ]

do((, , („n)/dQ=hLdo/dQ], »[1+(n (,) (n (,)+Sn (f', -Pt', )

+('I. cos ft —R sin it) (n x (,) ~ (n x(s)+(E cos f,+I sin 6)n. ((i x (s)],
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where

[«/dfQioi= (4Z rs Ei'/gs )Ii= formula (1A-101),

Ii= 1—Pisxs,

I,L= 1—2x'+Pisx'

IiR= —2x(1—x') '*/Eiz

with R'+I.'= 1, and x= sin —,'8. n, (,, and (s are unit vectors defined in Sec. II.

(1) Conditions of Validity

a. First Born approximation: zxZ/Pz« l.
b. No screening: aZ'I «qp.
c. Point-charge nucleus: Rg«2zr/pz.
d. Infinitely heavy nucleus: 2E~.I rn0/Al p&&1.

e. Nucleus with negligible spin effects: (qo/Z)'(zzzo/kfo)'« l.

(Z) References

This formula was obtained from first Born calculations as
given for example by Toptygin (To 59).

Formula (1A-401)

[The "second Born" formula: point nucleus with no screening. ]

do ((i, (s, n) /dfl =—',[do/dQ jiss[1+(n (i) (n (s) +Sn ((i+(s) + (L cos 8—R sin 8) (n x (i) ~ (n x (s)

+ (R cos fl+ L sill 0)11 ((i X (s) z

where

[dzi/d& jios = (4Z ro Ei /zIo ) Is = formula (1A—105),

Is= 1 PPx'+rrz—xZPix (1 x), —

IsS= (2crZx'Pi ln x)/Ei(1 —x') ',

IsI.= 1—2x'+Pisxs+zrnZPix(1 —x),

zx(1—x')'z zen:)J2R=—
Ei I, 2 (1+x)

with R'+L'= 1 (to first order in ozZ) and n, (i, and (s are unit vectors defined in Sec. II, x= sin sl).

(f) Cozzditiozzs of VatiCkty

a. Second Born approximation: (zzZ/Pz)s«1.

b. No screening: ~Z'I &&qp.

c. Point-charge nucleus: Rg&&2~jpl.
d. Tnfinitely heavy nucleus: 2I:1mp/iMp&&1.

e. Nucleus with negligible spin effects: (zfo/Z)'(zzze/Me)'« l.

(2) References

"l'his formula was obtained from second Born calculations as
given for example by (~iirsey (G 57), Banerjee (Ba 58), and

Toptygin (Yo 59).
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Formula (lA-402)

[The Johnson-Weber-Mullin formula: point nucleus with no screening. ]

do'((i (s n)/did= —. Ldo'/did]&pe[ 1+(n (i) (n. (s)+Sn ((i+(s)+ (L cos 8—R sin 8) (n x (&)

~ (n x (,) + (R. cos 8+L sin 8)n ((,x (,) $,

where

["do/dQlips= (4Z rp'Ei'/gp') Is= i'ormula (1A—106),

Is= 1 Pisx'+r—rctZPix(1 x) + (rr—Z) 'x[ Ls(1—x') —
4Ls (1—x) +2x ln' x+sr'(1 —x) /2

+sr'x/6+P 'x[ Ls (1—x') + (x' ln'x) /(1 —x') +sr'(1 —x) /4 (1+x)—sr'/6] ]

20!Zx
IgS= s, lnx+w zIlng+ ln4/x-

Zi(1—x') &

1 s
ln (1+x)

IsI.= 1—2x'+Pi x +srnZPix (1 x) + (—aZ) 'x [ (1+2x)Ls (1—x') —4Ls (1—x) +2x ln' x+sr'/2 (1—4x/3)

+Pi'xl —Ls(1—x') + (x' ln' x) /(1 —x') +sr'(1 —x) /4(1+x) +m'/6$ },

and E. m.ay be obtained from the relationship:

S'+R'+ L'= 1.

Also, Ls(x) = Euler's dilogarithm (Mi 49), Sec. X, x= sin s8, and n, (i, and (q are unit vectors defined in Sec. II.

(I) Condktions of Validity

a. Higher order Born approximation: (o.Z/pq) s«1.
b. No screening: nZ'I'&&g0.

c. Point-charge nucleus: Re«2n. /Pi.
d. In6nitely heavy nucleus: 2E& (mp/M p) «1.
e. Nucleus with negligible spin effects: (gp/Z)'(mo/ado) '«1.

(2) References

J 61, formulas (19), (25), and (26).

(3) Eotes

a. A comparison of the values of 5 obtained from the above
approximate formula and the Mott —exact formula (IA—403a)
for different values of Pq, Z, and 8 is shown in Fig. 2 of Ref. J 61.

b. Another formula for this cross section, which is less accurate
than formula (1A—402), has been calculated with a lower order
Born approximation by Johnson and Mullin Lformula (23) in
Ref J 607 and by Giirsey /formulas (5) and (11) in Ref. G 57$.

c. See Note c in formula (1A—106).

Formula (1A-403)

[The Mott-exact "phase-shift" formula: (a) point nucleus with no screening, and (b) point or finite nucleus
with arbitrary screening. ]

do ((i, (s, n)/dQ=Kdo/dOjippL1+(n (&) (n (,)+Sn ((i+(s)

or
+ (L cos 8—R sin 8) (n x (,) ~ (n x (,) + (R cos 8+L sin 8)n ((,x Q) g,

+ Refg*n ((i x(s) —Im fg*n ((i+(s),
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where

Ldo/dQjies= (ro/npr)'(I F' I' csc'-'0+
I

G I' sec'-'0) =
I f I' + I g I' = formula (1A—109),

f= («/~pi) (G—F ),

g= (fo/erpi) (l~ cot s0+G tall s0),

F'=i nZF/pt,

S= (—2i csc 0) (F'G"—GF'*)/(I F' I' csc' —,'0+
I
G I' sec' —,'0) =i ( fg* gf*)—/(I f I'+

I g I'),

R=2 csc 0(F'G~+Gl&"'*)/(I F' I' csc'--', 0+
I

G I' sec'-'0)

= 4«'0(fg" +f'g) '»»(—
I f I'—

I g I') j/(If I'+
I g I')

L= (I G I' sec'--,'-0 —
I

F' I' csc' -'-0) /(I F' I' csc' -'0+
I

G I' sec' -'-0)

= C»n 0(fg*+f'g)+ '«s 0(I f I-' —
I g I') j/(I f I'+

I g Is).

Also, S'+R'+1.'=1, and n, (i, and (s are unit vectors defined in Sec. II.
(a) Point nucleus with no screening: For this case, the basic pair of functions F and G which are used in the

above equations, are defined in formula (1A—109a) .
For an unscreened, point nucleus, values of Ldo./dQlies, S, R, and I. for various energies, atomic numbers, and

angles are given in Tables III and VII, and Figs. 8—12.
(b) Point or finite nucleus with arbitrary screening: For this case, the basic pair of functions, f and g, which

are used in the above equations, are defined in formula (1A—109b).
For a point nucleus with Hartree screening, values of Ldo/dQ]rpg are given in Table XII. Results for a finite

nucleus are noted in formula (1A—109).

(1) Conditions of ValiCity

a. Infinitely heavy nucleus: 2E&(me/Mo) «1.
b. Nucleus with negligible spin effects: (qe/Z)'(me/Mo)'«1.

c. For point-charge nucleus: R~«2s/p~.

d. For no screening: nZ'"(&qo.

(Z) References

T 56, Eq. (3.8) .Also: Me 55, M 49, S 56, G 57, 8 58, and M 61

(3) lt"otes

Recent results pertaining to cases (a) and (b) are given in
formula (fA—109).

Formula (lA-SOO)

[The Mott-Born formula: point nucleus with (a) exponential, (b) Thomas-Fermi, and (c) Hartree-type
screening. ]

(a) Fxponential screening:
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where A= (fs/0. 885) (Z&/137) in units of )to ', with A defined by the exponential potential V(r) = —(Ze'/r) g
exp ( A—r), fs~0.72 (3 60), ~1.12 or 1.8 (N 59) .

For light elements, more accurate estimates are given by this formula according to Ref. (M 41) if p is placed
equal to 0.66 and if Z& is replaced by following factors:

Atom
Factor replacing Z&

0
9.5

F
13.5

Ne
9.8

(b) or (c) Thomas —Fermi or Hartree-type screening:

f'(qo) / qo ) . 2x. '"'
qo )' 2pr

0 =2%' f'(qo) 1 —
I 7o&qo — f'(qo) qo dqo,

n (1—Pr') (2Bij PP o 2Erj Pi'

where the term containing (qo/2Ei)' makes a negligible contribution to &r The. scattering amplitude f(qp) is de-
fined in formula (1A—102) and is related to the atomic form factor F(qo) by the following equation:

Estimates of P(qo) and of the scattering amplitude f(qp), are given as a function of qp for various elements by
Ibers (I 62) for both Thomas —Fermi and Hartree-type screening. Table IX gives a summary of values for the
function, f'(qo), for the atomic numbers 1, 7, 13, 47, and 80: in the region where 0&qo&0.0582, f(qo) s is evaluated
with Hartree-type screening (I 62) and with Thomas —Fermi screening )Moliere approximation, formula
(1A-102b) j where 0.0582&qo& 1.0.

The total cross section o given above by formula (1A—500b) is evaluated for different atomic numbers in Table
X and Fig. 14. These results were obtained with the Hartree form factor given in Tables VI and IX for go ln the
region 0&qo&0.0582, and with the Moliere form factor given in formula (1A—102b) for qp in the region 0.0582&
qo&2Pr.

(f) Coppd@porps of Vafpdpfy

a. Central-type screening potential with electron kinetic
energy &1 keV.

b. Point-charge nucleus: Rg«2rr/Pr.

c. Inffnitely heavy nucleus: 2F&(mp/Mp) «1.
d. Nucleus with negligible spin effects: (qp/Z) (mp/Mp) «1'
e. Validity of different screening approximations is discussed

in Sec. V.

(Z) Refererpces

a. Exponential screening: Ma 52, formula (27).
b. Thomas —Fermi screening: M 55, formula (1.11); Ma 52,

formula (26).
c. Hartree-type screening: M 55, formula (1.11).

(3} Not. s

a. An exact screening formula for hydrogen and helium is
given in Ref. M 49, formula (10), p. 185.

b. For Thomas-Fermi screening, formula (26) in Ref. Ma 52

gives the cross section directly in terms of the Thomas —Fermi

potential, and the general results for any Z are shown in Fig.
23, p. 190 of Ref. M49 as well as in Ref. B 30.

c. Most of the contribution to the total cross section o comes
from the region of small gp values where the Born calculations are
reasonably valid and where the Mott to Rutherford cross-section
ratio is approximately unity. Therefore corrections to the total
cross section are expected to be small for large qp values where
formulas (1A—500a) —(1A—500c) breaks down. Because screening
eKects are important for small gp values, the total cross section is
very sensitive to the type of screening that is used.

d. In the extreme-relativistic limit, the total cross section be-
comes independent of the incident electron energy as shown by
formulas (1A—500b) and (1A—500c).

e. For Hartree screening, Mohr (M 43) has evaluated o for
gold with the results that:

Electron kinetic energy: 0.392 MeV 1.06 MeV

0- .. 0.15 7rap' 0.127f-ap' 0.1171-ap' ~

f. An approximate analytical formula for the total cross sec-
tion in the 6rst Born approximation with atomic screening is
given by Tietz (T 59}.



920 REvrEws oz MODERN PHYSICS QCToHKR 1964

Formula (1A-501)

[The nonrelativistic Mott-exact formula: point nucleus with arbitrary screening for nonrelativistic electrons. ]

(a) Spin-independent cross section:

4~(137r0)' "
o= g(21+1) sin'rtt,

Pl t=o

where If' is the orbital angular momentum of the electron, and / has integer values from zero to inhnity. For a
given /, g~ is a constant known as the phase shift, which is related to the angular momentum of the scattered
particle. The value of st t depends on pt and on the scattering potential of the atom. In general, stt is not explicitly
defined by a single, closed analytical formula [see Eq. (19) in Chap. II of Ref. M 49) and it must be evaluated
for given elements by numerical integration according to the procedures discussed in Chap. UII of Ref. M 49.

For Pt((1, only the zero-order phase (l=O) is important and o = [4sr(137ro) /Pt ) sins rt0. As P& approaches unity,
the number of phases that are not negligible in contributing to the total cross section increases.

(b) Spin-dependent cross section:

2rr(137rs) '
cr = . , Q g (2j+1) sin' rt t t,

PP t j ty&=

where p» is the phase shift for an electron with energy E& and with a given spin orientation with respect to its
orbital angular momentum /5. This formula is given in general form by Wu and Ohmura (p. 155 and 136 of Ref.
Wu 62) and was applied for a particular case in electron elastic scattering in the presence of a resonance by Simp-
son and Fano (S 63).

(1) Coldstsoas of UaHdity

a. Infinitely heavy nucleus: 2L& {mo/Mo) «1.
b. Nonrelativistic electrons: p1«1. .

(2) Refereieces

a. M 49, formula (18) on p. 24 for spin-independent cross
section.

b. S 63, formula (1) and Wu 62 (pp. 155 and 136) for spin-
dependent cross section.

(3) Notes

a. Formula (1A—501a) is the integrated form of formula

(1A—110) and is only valid for nonrelativistic energies.

b. When 0~&&-',~, the value of sin v~ {and therefore of o) does
not show an oscillatory dependence on E&. For this condition of
small values of q&, the first Born approximation is valid,

c. The contribution of all phases g~ with l & S, can be neglected
if V(r)«S(S+1)/2r' for P,r~(S(S+1)}&. The convergence is
best for small Z and TI.

d. For a given TI (with p1«1), the rate of convergence of the
series for 0. as well as the magnitude of the terms in the series de-
pends critically on the atomic potential V (r) . Because the atomic
potentials have widely different dependences on r (for example
the atomic fields of the alkali elements extend to much greater

distances than the noble gases), the cross sections o for the
different elements have a wide range of magnitudes,

e. For a given Z, the rate of convergence of the series for a as
well as the magnitude of the terms in the series depends critically
on Ti (with tt~&&1). The dependence of the cross section on T&

has a qualitative behavior which can show minima or maxima
and which is characteristic of the class of potentials of the elements
belonging to a given column in the periodic table. (See M 49
p. 206-210.)

f. Various estimates of this cross section have been made for
specific cases of TI and Z. In these calculations the phase shifts
have been evaluated with different screening approximations
and in some cases with the inclusion of exchange and polarization
effects. A summary of the results of these calculations is given in

Chap. X of Ref. M 49 and Chap. III of M 52.

g. Because of screening effects, the total cross section 0 has
a finite value. Otherwise for a pure Coulomb field, o—+c . With
screening, da/dQ Qattens out to a constant value as e—4, and,
therefore, the integrated cross section 0. is insensitive to whether
or not the lower limit of the angular integration is zero or an
arbitrarily small cutoff angle 8, which corresponds to an impact
parameter equal to the atomic radius IfrF so that lt, = (p&ErF) '.

h. Some results in the electron-volt energy region of the total
cross section for electron Coulomb scattering by various elements
are given in Refs. Ma 56 (Fig. 7), N 61, Mo 62, and C 62.
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TABLE VII. The Doggett —Spencer results for the ratio of the Mott —exact (formula (1A—109a) g to the Rutherford
C
formula (lA—100)g

cross sections.

Electron kinetic energy (MeV}
2 1 0.7 0.4

Z=6

0.2 0.1

0'
15
30
45
60
75
90

105
120
135
150
165
180

0'
15
30
45
60
75
90

105
120
135
150
165
180

0'
15
30
45
60
75
90

105
120
135
150
165
180

00
15
30

60
75
90

105
120
135
150
165
180

1.000
0.999
0.961
0.888
0.788
0.666
0.532
0.397
0.269
0.1591
0.0742
0.0206
0.0024

1.000
1.020
0.997
0.935
0.838
0.714
0.575
0.431
0.294
0.1742
0.0813
0.0226
0.0024

1.000
1.069
1.094
1.066
0.987
0.865
0.712
0.543
0.375
0.224
0.1052
0.0289
0.0026

1.000
1.124
1.235
1.292
1.274
1.177
1.013
0.801
0.569
0.348
0.1651
0.0452
0.0033

1.000
0.999
0.962
0.890
0.790
0.669
0.537
0.403
0 ' 277
0.1680
0.0839
0.0310
0.0129

1.000
1.020
0.998
0.936
0.840
0.718
0.580
0.438
0.302
0.1831
0.0912
0.0329
0.0131

1.000
1.068
1.093
1.066
0.988
0.868
0.716
0.549
0.383
0.234
0.1157
0.0402
0.0141

1.000
1.123
1.234
1.292
1.274
1.179
1.017
0.807
0.578
0.359
0.1781
0.0594
0.0180

l.000
1.000
0.963
0.894
0.797
0.680
0.551
0.421
0.298
0.1923
0.1106
0.0591
0.0416

1.000
1.020
0.999
0.939
0.846
0.727
0.594
0.455
0.323
0.207
0.1179
0.0614
0.0419

1.000
1.068
1.093
1.068
0.993
0.876
0.729
0.566
0.405
0.259
0.1446
0.0710
0.0456

1.000
1.121
3.231
1.290
1.275
1.184
1.028
0.825
0.602
0.390
0.214
0.0983
0.0581

1.000
1.001
0.970
0.911
0.828
0.728
0.617
0.505
0.400
0.308
0.238
0.1938
0.1786

=13
1.000
1.019
1.003
0.954
0.874
0.773
0.658
0.538
0.424
0.324
0.247
0.1980
0.1811

1.000
1.064
1.091
1.074
1.013
0.914
0.788
0.648
0.508
0.382
0.282
0.218
0.1964

=50
1.000
1.109
1.216
1.279
1.277
1.208
1.078
0.907
0.718
0.535
0.385
0.285
0.251

1.000
1.000
0.967
0.903
0.814
0.705
0.586
0.466
0.352
0.254
0.1787
0.1310
0.1148

z
1.000
1.020
1.001
0.947
.O. 861
0.752
0.628
0.499
0.377
0.270
0.1868
0.1342
0.1163

z
1.000
1.066
1.092
1.072
1.004
0.896
0.761
0.610
0.460
0.325
0.218
0 ~ 1497
0.1261

z
1.000
1.115
1.223
1.284
1.277
1.197
1.055
0.869
0.664
0.467
0.305
0.1980
0.1608

Z=

1.000
1.002
0.977
0.929
0.860
0.776
0.683
0.590
0.501
0.425
0.366
0.328
0.316

1.000
1.019
1.008
0.968
0.903
0.818
0.722
0.621
0.525
0.441
0.376
0.334
0.320

1.000
1.059
1.089
1 F 080
1.032
0.952
0.847
0.729
0.611
0.505
0.420
0.366
0.348

1.000
1.096
1.197
1.264
1.276
1.227
1.126
0.988
0.832
0.682
0.557
0.475
0.446

1.000
1.003
0.987
0.954
0.906
0.846
0.781
0.714
0.651
0.596
0.554
0.527
0.518

1.000
1.018
1.013
0.988
0.943
0.883
0.815
0.743
0.674
0.613
0.566
0.536
0.526

1.000
1.050
1.082
1.085
1.057
1.004
0.931
0.848
0.763
0.687
0.626
0.587
0.573

1.000
1.072
1.161
1.232
1.262
1.246
1.188
1.101
0.999
0.899
0.815
0.760
0.741

1.000
1.004
0.996
0.976
0.946
0.909
0.868
0.826
0.786
0.751
0.725
0.708
0.702

1.000
1.015
1.017
1.004
0.977
0.941
0.898
0.852
0.808
0.769
0.738
0.719
0.712

1.OQQ

1.038
i.070
1.082
1.073
1.045
1.003
0.952
0.900
0.852
0.813
0.789
0.780

1.000
1.043
1.113
1.188
1.228
1.242
1.226
1.1.90
1.142
1.093
1.053
1.026
1.017

1.000
1.004
1.001
0.990
0.974
Q. 953
0.930
Q. ~05
0.882
0.862
0.846
0.836
0.833

1.000
1.013
1.017
1.013
0.999
0.970
0.955
0.928
0.902
0.879
0.861
0.850
0.846

1.000
1.026
1.054
1.072
1.076
1.067
1.047
1.022
0.995
0.970
0.960
0.937
0.932

1.000
1.018
1.060
1.120
1.173
1.207
1.225
1.230
1.229
1.225
1.221
1.219
1.219

00
15
30
45
60
75
90

105
120
135
150
165
180~

1.00Q
1.127
1.358
1.658
1.918
2.044
1.981
1.726
1.324
0.855
0.422
0.1158
0.0068

1.000
1.125
3.354
1.653
1.912
2.040
1.980
1.731
1.335
0.874
0.446
0.1444
0.0368

1.000
1.120
1.344
1.638
1.897
2.029
1.979
1.745
1.366
0.924
0.513
0.222
0.1187

1.000
1.108
1.315
1.599
1.857
2.000
1.974
1.777
1.444
1.050
0.683
0.422
0.328

1.000
1.008
1.290
1.564
1.819
1.971
1.966
1.801
1.510
1.159
0.830
0.595
0.511

1.000
1.0'74
1.230
1.479
1.728
1.896
1.936
1.842
1.640
1.385
1.143
0.969
0.908

1.000
1.042
1.133
1.328
1.555
1.741
1.844
1.859
1.799
1.698
1.592
1.514
1.486

1.000
1.024
1.040
1.157
1.336
1.518
1.672
1.786
1.866
l.920
1.955
1.974
1.978

1.000
1.024
0.998
1.023
1.122
1.267
1.435
1.614
1.799
1.978
2.100
2.233
2.267
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TABLE VIII. Partial summary of experimental results on electron Coulomb scattering for qo&10.

Reference

Parameters
0.51Ti
(MeV) (des)

Comparison with
Theory'

(V 46), (8 4'/),
(M 48)

(P 52), (K 52)

(Ch 55)

(a 55)

(S 56)

(P 56)

(Da 56)

(Ke 59)

(S 59}
(Mo 63), (L 64)

4, 13, 29, 47, 78,
79

Up to Z=78
13

13, 79

92

79

47, 78, 92

36, 54, 80

13, 28, 47, 79

29, 50, 79

1.27-2.27

0.150-2.2
0.4, 0.5
0.6, 1.0, 1.7
0.4, 0.5
0.20

4.33

0.15

1.00, 1.75, 2.50

8.05, 0.10, 0.20, 0.40

20-60

60—120

100-150

30—150

90, 105

70-150

45, 60, 90

60, 90, 120, 135

60, 90, 120, 150

20-110

res (a)

No (a)
res (a)
res (a)
Yes (a)
res (a)
res (a)
res (a)
No (a)
Yea (b)

~ These results are compared with formula (1A-109). Cases with reasonable agreement or disagreement, respectively, are designated by Yes(a) or No(a) for
formula (1A-109a), and Yes(b) or No(b) for forinula (1A-109b).

TABLE IX. Atomic scattering function~ f'(qo).

Z=1 Z=j Z= 13 Z= 80

0
0.00243
0.00485
0.00728
0.00970

0.0121
0.0146
0.0170
0.0194
0.0243

2.80X10-»
2.Sgx 10-»
2.05X10-»
1.46X10 "
9.70xip-»

6 2PX 10—is

4.00X10 "
2.60X ip-is
1.70X10-»
7-90X10 'o

4.84X10
4.41X10
3.65xip is

2.82X10 'o

2.07X10

1.44X10
1 OOX10 'o

6.89X10 "
4.76X ip iz

2.30X10 'z

3.72X 10-»
2.87X10 "
1.80X10 "
9.gpXjp 'o

5.29X10 "
2.99X10 "
1.8SX10 "
1.23X10-'6
8.65X10 "
4.90X10 'z

7-74X10 "
6.79X10 '""

5-58X10 "
4.24X10 '"
3.11X10 '""

2.26X10 "
1.64X10 "
1.2PX10 "
8.82X10-"
4.93X10-'6

1.77X10 i4

1.50X1o '4

i.17X10 "
8.43X10 "
5.93X10 »

4.20X10»
3.03X10»
2.23X10 »
1.67X10 "
9.99X10-i6

0.0291
0.0340
0.0388
0.0437
0.0485

4.10X10 "
2.30X10 '9

1.40X10 "
8.40X10
5.80X10 ~

1.23X10
7.29X10 '
4.41X10 's

89X10—is

1.96X10-is

3.03X10 "
2.03xip-»
1.30X10 '
9.00X10 's

6.30X10-'

2.89X10 "
1.82X10 '6

1.19X10 "
8 10X10

—»
5.78xip-»

6.30X10 I
4.20X10 'o

2.89X10 "
07X10

1.51X10 'o

0.0534
0.0582

4.00X10 ~
2.90X10—ao

1.21X10—'s

X1P
4.84xip '
3 61X10 " 4.36X10 "

3.25X10-»
X ip

8.65X10»

0.07
0.08
0.09
0.10
0.12

6.7ox 10-»
4.39X10 "
2.98X10-»
2.08X10 "
1.1PX10-»

5-20X10 '9

3.16X10—i9

2.02X10 '
1.35X10
6.74X10 2o

1 ~ '68X 10—is

1.03X10-»
6.64X10 "
4.48X10-»
2.24X10 "

1-84X10 'z

1.15xip 'z

7.89X10—is

5.17X10 "
2.65X10 "

4.80X10 'z

3.P6X10-»
2.03X10 »
1 40X10 'z

7 24X10 is

0.14
0.16
0.18
0.20
0.22

6.28X10 "
3-84X10 "
2.48X 10-»
1.67X10 "
1 .1'?X10-»

3.'?3X10-~o

2.22X10 'o

1.40X10 'o

9.29X10 2'

6.41X10 »

1.24X10 "
7.47X10 "
4.72X10 2o

3.14X10 2o

2.18Xjp "

1.49X10 "
9.01X10 "
5.77X10 "
3.87X10 "
2.69X10 '9

4. 12X10 's
2.50X10 's
1.61X10 is

1.08X10 's

7.54X10 '9

O. 24
0.25

8.37X10 2'

7.16X10 " 4.53X10 "
87X ip

1.54X10 'o

1.31X10 2o
1.92X1o "
1-64X10 " 5.40X10 "

4.64X10 'o

~ This scattering function is defined as p(qo) = (4ZWo2/qo4) [1-F(qo)]». Hartree-type (162) and Thomas-Fermi [Moliere approximation, formula (1A-102b) )

form factors are used in the regions where O~qo~0. 0582 and 0.07~qo~1.0, respectively.
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VID. DISCUSSION OF CROSS-SECTION
FORMULAS

The cross-section formulas in Sec. VII are classified
in Table IV according to the type of calculation, the
principal authors, and the form of the cross section.
The cross-section symbols are defined in Sec. II. No
single formula in Table IV is universally applicable to
all conditions in electron scattering. In fact, formulas
must be selected according to the type of approximation
and the region of validity imposed by experimental
conditions. The accuracy of a formula depends on which
approximations are satisfied: for example, in the region
of small qo, the cross sections predicted by a first Born

FIG. 14. Dependence of the total cross section 0. on the electron
kinetic energy for different atomic numbers. This cross section
was computed from formula (1A—500c) with the Hartree form
factor (given in Tables VI and IX) for qp in the region 0&0,0582
and the Moliere form factor [given in formula (1A—102b)] for
qp in the region 0.0582 &qp&2p&.

Range of qp
values~

0&qp& 0.06

Cross-section
formula

(1A—111)
(1A—102c)

Comments

Accuracy is uncertain
and depends on choice
of screening potential.

TABLE XI. Selection of formulas for diferent qp values.

TABLE X. Dependence of total Coulomb scattering cross section
0. on Z.

PPo I
For P&&0.2]
(barns)

1.02X104
1.49X10'

10.4 X104
16.5 X10'
2o. 1 X104

0.06&qp & 1.0 (1A—109b) with Har-
tree-type screening,
or

(1A—109a) multi lied
by the factor
F(qp)p, where F(qp)
is the Hartree atomic
form factor given in
Tables VI and IX.

1.0&qp & 10.0 {1A—109a)

For high Z()50), and
for T1)0.2.

For low Z(&50), and
for T1)0.2.

Atom behaves like point
charge.

6
7
8
9

10

11
12
13
14
15

16
1/
18
19
20

21
22
23
24
25

26
27
28
29
30

31
32
33
34
35

80

21.8 X104
23.4 X104
24 ~ 8 X104
25.6 X104
26.0 X104

43 ~ 9 X104
56.5 X104
/3. 2 X104
83.5 X104
91.0 X104

92.0 X10'
100 ' 0 X104
106 ' 0 X104
142.0 X104
1/3. 0 X104

177.0 X104
179.0 X104
181.0 X104
181.0 X104
182.0 X104

183 0 X10'
184.0 X104
185.0 X104
185 ' 0 X104
185 ' 0 X104

208.0 X104
224.0 X104
238.0 X104
251.0 X10'
261.0 X104

271.0 X10'

435.0 X104

924.0 X104

10.0&qp&2p, (1A-104)
(1A—109b)

(1A-108)
(1A—103)

For proton or neutron.
Nuclear form factor

must be speciled.
Accuracy is uncertain

and depends on choice
of nuclear form fac-
tor and on Z.

For muons with qo in units of m&c, these limits must be mu1tiplied by the
factor mp jm„.

calculation with Hartree-type screening may be more
accurate than that predicted by a higher order Born
calculation with simple exponential screening. When
formulas are used outside their regions of validity, the
accuracy cannot be specified unless comparisons can
be made with experimental data.

The most important single criterion that can be
used as the basis for the selection of these formulas is
the magnitude of the momentum transfer qo. The rela-
tive importance of the charge and the magnetic struc-
tures of the atom and the nucleus and the validity of
the Born approximation depend to a large extent on
the region of qo values that occur in the scattering
process for a given case. Atomic screening effects are
important for small qo values where the impact param-
eter is larger than the E shell radius (qp(Zi137) and
nuclear effects are important for large qo values where
the impact parameter is smaller than the nuclear radius
(qp) 1003 &).

In addition, a quantitative criterion for the validity
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TABLE XII. Ratio' of the screened to the unscreened cross section evaluated by Lin.

400 keV 200 keV 100 keV 50 keV
8

(deg)

10
30

60

90

120

150

Z= 79

0.771
0.935

0.995

0.997

1.01

1.02

Z=29

0.987
1.03

0..981

0.984

0.996

1.03

Z=79

0.636
0.892

(1.07)
0.987

(0.794)
1.01

(0.592)
1.03

(0.481)
1.05

(0.420)

Z=29

0.939
1.00

(0.980)
1.00

(0.948)
0.999

(0.925)
1.01

(0.916)
1.01

(0.913)

Z=79

0.469
0.794

(1.16)
0.957

(0.927)
1.02

(0.692)
1.07

(0.544)
1.11

(0.454)

Z=29

0.869
0.986

(0.991)
1.01

(0.964)
1.02

(0.942)
1.04

(0.929)
1.01

(0.925)

Z=79

0.307
0.631

0.870

1.00

.'t. 19

Z=29

0.732
0.966

1.02

1.04

1.05

These ratios are evaluated by Lin (L 64) for the electron kinetic energies, electron scattering angles 8, and the target atomic numbers designated above. The
unscreened cross section is evaluated from the Mott phase-shift formula (1A-109a) and the screened poss section is evaluated with Hartree-type screening (see
Refs. By 86, Mo 63, and L 64) from the Mott phase-shift formula (1A-109b). For the ratios in the parentheses, the screened cross section is evaluated from the
Dalitz formula (1A-107) where the exponential screening factor A= Egg 1.

of the Born approximation formulas is that.

(Zg,/1378, )«1.
On the basis of these conditions, the selection of
formulas is made according to the region of momentum
transfer qo as shown by the tentative suggestions given
in Table XI.

The accuracy of these formulas can only be deter-
mined from comparisons with experimental data, as
given for example in Table VIII and in Ref. I 56 for
large q0 values. The most accurate cross sections are ob-
tained from the phase-shift calculations in formulas
(1A—109), (1A—110), and (1A—111). However, these
formulas cannot be readily evaluated for all cases.
With the inclusion of accurate potentials for the atom
and the nucleus, the phase-shift calculations become
exceedingly involved in particular regions of go. In such
cases, it is necessary to use formulas (1A—105),
(1A—106), (1A—107), and (1A—108) which in some
cases may give close approximations to the exact
phase-shift formulas. A partial summary of cross sec-

I

I
1

/

I

Z=13

tions predicted by the Mott phase-shift formula
(1A—109b) with Hartree-. type screening and by the
Dalitz formula (1A—107) with simple exponential
screening is shown in Table XII, which is condensed
from the results obtain. ed by Lin (L 64). A detailed
summary of the cross-section behavior predicted by
the exact phase-shift formula (1A—109a) for a point
nucleus without screening corrections is given by the
curves in Figs. 15—22. These data give the exact cross
sections for various atomic numbers, energies, and
angles, in terms of the simple Mott —Born formula
(1A—102). Figures 19—22 show a comparison of the
corrections necessary for the erst Born formula
(1A—102) and the second Born formula (1A—105) . The
data in these curves can be used to estimate correction
factors for the bremsstrahlung Born cross sections as
indicated in Eq. (4.10) and to help determine accurate
potentials for the atom and the nucleus.

The polarization sensitivity of the cross section can
be estimated from the Mott-exact formulas (1A—403),
(1A—302), and (1A-203), and from the higher order
Born formulas shown in Table IV. The most accurate
estimates for an unscreened point nucleus are given by
the Mott phase-shift formulas.

1.0—
i-
O
X
W

b~

o.s

O
CQ

b Cs

20 40 60 80 100 120 140 160 180
ELECTRON SCATTER lNG ANGLE, DEGREES

FIG. 15. Dependence of the cross-section ratio for aluminum
on the electron scattering angle for difI'erent electron kinetic
energies. The ratio is given by the Mott —Born formula (1A—101)
for da/dQ (BORN) and by the Mott-exact formula (1A—109a)
for d0/dn (EXACT) for a point nucleus without screening. Above
10 MeV the curves for this ratio are approximately the same.

Z ~ 29

I-
C3

1,0
UJ

b~l~,M 09

a 0.8o
tQ

b Ce
'U 'U 07

OOI Mey

0.6--
20

I t

40 60 80 100 120 140 160 180
ELECTRON SCATTERlNG ANGLE, DEGREES

FIG. 16. Same caption as Fig.~15 except that aluminum is re-
placed by copper.
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I i T

I.O ~ —-

0.9
I-
&C
X

0.8

'Ot t7

%0'

0.6

x 0.8

b C9

0.6

0.4

0.2—

Z=I3

Z =29

Z =79

—FIRST BORN
---SECOND BORN

30 40 60 80 100 120 I40 I60 I80
ELECTRON SCATTERING ANGLE, DEGREES0.4

20 40 60 80 IOO I 20 I 4(III I 60 I 80
ELECTRON SCATTERING ANGLE, DEGREES

FIG. 20. Same caption as Fig. 19, except that the energy 0,10
FIG. 17. Same caption as Fig. 15 except that aluminum is re- MeV is replaced by 0.40 MeV.

placed by tin.

Z=79

I.O M eY

I-
C3

x 0,8
LIJ

0.6

o 0,4

b

Q2

20 40 60 80 IOO I 20 I40 l60 ISO
ELECTRON SCATTERING ANGLE, DEGREES

FIG. 18. Same caption as Fig. 15 except that aluminum is re
placed by gold.

I.O Z= I3
Z= 29

O
0.8x

LLI

04
O

b~

Z~ 50

Z=79

? ——
FIRST BORN

--SECOND BORN

I
20 40 60 80 IOO I 20 I40 I60 I80

ELECTRON SCATTERING ANGLE, DEGREES

FIG. 21. Same caption as Fig. 19, except that the energy 0.10
MeV is replaced by 1.0 MeU.

O. IO MeV

I-
O
x 08

y 0.6—
z

0.4

0.2—

Z = l3

Z=29

Z =50

—FIRST BORN——SECOND BORN

1.0
O

x
0.8

b~
0 W

0.6

O
Q4

& IOMeV —FIRST BORN—-SECOND BORN

Z= I3

Z*29
2 =I 3

~2= 29

gZ-. 50

20 40 60 80 IOO I20 I40 160 I80
ELECTRON SCATTERING ANGLE, DEGREES

FIG. 19. Dependence Of the cross-section ratio at an electron
kinetic energy of 0.10 MeV on the electron scattering angle
for difterent atomic numbers. The ratio is given by the Mott—
Born formula (1A—101) (solid lines) for do/dQ (BORN) and
by the Mott —exact formula (1A—109a) for d~/dQ (EXACT)
for a point nucleus without screening. For the dashed lines,
do./dQ (BORN) is given by the McKinley —Feshbach formula
(1A—105) .

0.2

0 I I I I

20 40 60 80 IOO l20 140 I60 I80
ELECTRON SCATTERING ANGLE, DEGREES

FIG. 22. Same caption as Fig. 19, except that the energy 0.10
MeV is replaced by & 10 MeV, where the curves for this ratio
are approximately the same for energies greater than 10 MeV.
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0.00 0.01 0.02

TABLE XIII. Values for Euler's dilogarithm Q(x).

0.04 0.05 0.06 0.07 0.08 0.09

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.000
0.103
0.2ii
0.326
0.449
0.582
0.728
0.889
1.075
1.300

O. oio
O. ii3
0.222
0.338
0.462
0.596
0.743
0.907
1.095
1.326

0.020
0.124
0.233
0.350
0.475
0.610
0.758
0.924
1.116
1.353

0.030
0.134
0.245
0.362

,0.488
0.624
0.774
0.942
1.137
1.381

0.040
0.145
0.256
0.374
0.50i
0.639
0.790
0.960
1.159
1.410

0.05i
0.156
0.268
0.387
0.514
0.653
0.806
0.978
1.181
1.441

0.061
0.167
0.279
0.400
0.528
0.678
0.822
0.997
1.203
1.473

0.07i
0.178
0.291
0.41i
0.54i
0.682
0.839
1.016
1.226
1.508

0.082
0.189
0.303
0.424
0.555
0.697
0.855
1.035
1.250
1.546

0.092
0.200
0.314
0.437
0.568
0.712
0.872
1.055
1.275
1.589

The total cross section is estimated from the screened
Mott —Born formula (1A—500). The accura, cy of the
formula is uncertain and depends appreciably on the
choice of the atomic form factor. In the nonrelativistic
region, it is necessary to use the more complicated non-
relativistic phase-shift formula (1A—501) .
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X. MATHEMATICAL APPENDIX
Euler's dilogarithm appears in many of the formulas

in this survey, which are given in analytical form.

Euler's dilogarithm is designated by the function
Ls(x), wlllcll 1s cleflIlecl as

'ln (1—si)
Ls(x) =-

a

This function (sometimes called the Spence function)
has been evaluated by Mitchell (Mi 49) for nine-place
tables of Ls(x), —1&x&1. A condensed version of
Mitchell's results for 0&x&1 is given in Table XIII.
Ls(x) for other values of x may be obtained from
X'able XIII using the transformation formulas:

x) 1: Ls(x) =-'sm' ——', ln' x—Ls(1/x),

—1&x&1: Ls( —x) = ,'Ls(x') —Ls-(x),

Ls(x) = —ew'+ LsL1/(1 —*)3
—-,'» (1—x)» Lxs/(1 —x) j.
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